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Abstract 

The Robocup Rescue Simulation System (RCRSS) is a dynamic system of multi-agent interaction, 

simulating a large-scale urban disaster scenario. Teams of rescue agents are charged with the tasks 

of minimizing civilian casualties and infrastructure damage while competing against limitations on 

time, communication, and awareness. This thesis provides the first known attempt of applying 

Genetic Programming (GP) to the development of behaviours necessary to perform well in the 

RCRSS. Specifically, this thesis studies the suitability of GP to evolve the operational behaviours 

required of each type of rescue agent in the RCRSS. The system developed is evaluated in terms of 

the consistency with which expected solutions are the target of convergence as well as by comparison 

to previous competition results. The results indicate that GP is capable of converging to some forms 

of expected behaviour, but that additional evolution in strategizing behaviours must be performed 

in order to become competitive. An enhancement to the standard GP algorithm is proposed which is 

shown to simplify the initial search space allowing evolution to occur much quicker. In addition, two 

forms of population are employed and compared in terms of their apparent effects on the evolution 

of control structures for intelligent rescue agents. The first is a single population in which each 

individual is comprised of three distinct trees for the respective control of three types of agents, the 

second is a set of three co-evolving subpopulations one for each type of agent. Multiple populations 

of cooperating individuals appear to achieve higher proficiencies in training, but testing on unseen 

instances raises the issue of overfitting. 
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Chapter 1 

Introduction 

This thesis utilizes Genetic Programming (GP) to evolve the decision logic for a set of rescue agents 

in the RoboCup Rescue (RCR) agent simulation domain. 

The RoboCup Rescue competition [1] is an branch of the well-known RoboCup Soccer (RCS) 

league [2]. Similar to RCS , RCR is a multi-agent simulation competition in both robotics and 

artificial intelligence. The RCR, however, involves a more complex environment than its predecessor 

with multiple teams of cooperating agents and dynamic objectives. The RCR system models a 

large-scale urban disaster scenario similar to the aftermath of an earthquake in a densely populated 

city. 

International competitions in RCR take place annually. Three RCR leagues exist: a robot 

league, a virtual robot league, and a simulated agent league. This thesis focusses on the simulated 

agent league. Here, instead of controlling actual robots, a simulation environment is provided to 

replicate a post-earthquake disaster scenario. Competitors in the RCR simulated agent league are 

charged with the task of developing an intelligent mechanism for the control of emergency response 

teams. Namely, there exist Ambulance, Fire Brigade, and Police Force teams, which must rescue 

civilians, extinguish fires, and clear roadblocks respectively. Each agent plays an important role in 

the mitigation of this simulated crisis, both individually and in conjunction with each other. 

As an established competition of 10 years, RCR offers not only a standardized simulation envi­

ronment but also a wealth of benchmark results from all of the past competing teams. Therefore 

it is an appropriate system for the development and evaluation of novel approaches. An additional 

inspiration for the use of this environment in this thesis is an ideological motivation to further the 

knowledge in a collaborative field directed towards helping those in need. 

GP is a popular form of automatic programming which uses the evolutionary mechanism of 

natural selection to evolve potentially complex programs from simple building blocks. The approach 

of this thesis is to utilize Genetic Programming to evolve the controlling behaviours of the emergency 

teams in the RCR Simulation System (RCRSS). To the best of the author's knowledge this is the first 

1 



CHAPTER 1. INTRODUCTION 2 

attempted application of GP to the development of agent control behaviours for the RCRSS. Much 

research has been done in the field of evolving intelligent behaviours, such as the foraging behaviour 

of ants [3, 4] and predator-prey behaviours [5, 6]. However, considerably less literature exists on the 

evolution. of more complex behaviours such as those required in this multi-agent, multi-objective, 

dynamic environment. 

A common motivation for the utilization of GP in novel situations is its potential to discover 

unexpected solutions that a manually-coded solution may overlook. Whether intentionally or not 

a human programmer will imbue their solution with the biases of their training and outlook. GP's 

admittedly chaotic approach to searching the solution space may yield solutions beyond the limits 

of a programmer's expectations. 

Since the RCR domain is a complex one (having eluded a definitively optimal solution amidst a 

decade of competition), it may seem unreasonable to expect GP to perform well at all. While it may 

be a daunting task, a successful application of an automation technique to the development of such 

complex intelligence would be a great stride in Machine Learning and speaks to the fundamental 

motivation of Artificial Intelligence. 

It should be made clear from the outset that the goal of this work is not to surpass the previously 

benchmarked results of past RCR competitors, although such a result would be considered a success. 

The main goal of this thesis is to study the suitability of GP for evolving the necessary 'intelligence' 

required within this complex environment. This study is not one-dimensional. The interest here is 

as much about individual emergent behaviours as it is about the coalescence of those behaviours 

into an effective set of heterogeneous intelligent rescue agent teams. This thesis examines the ability 

of variations of GP to evolve several specific behaviour elements that are required in the RCRSS. 

The main contributions of this thesis are as follows: 

• First application of GP to RCRSS 

To the best of this author's knowledge, this thesis presents the first known application of 

Genetic Programming to the RoboCup Rescue Simulation System. This entails the develop­

ment of a suitable GP language to describe the RCR environment with sufficient depth and 

modularity to allow for a wide range of possible solutions. 

• Step-wise learning paradigm for GP 

This thesis presents a definition and analysis of the 'step-wise' learning paradigm for GP. 

This is a strategy to simplify the computational effort required by GP to solve a problem by 

subdividing the solution space using subsets of the GP language. This is shown to reduce the 

size of the initial search space without limiting the sufficiency of the GP language as a whole. 

• Exploration of GP's suitability for developing certain intelligent behaviours 

A Genetic programming system is applied to the development of the operational behaviours 

required to perform the expected tasks in the RCRSS. This thesis primarily focuses upon GP's 



CHAPTER 1. INTRODUCTION 3 

ability to develop the operational behaviours, which are those behaviours specified by the 

problem itself. This is evaluated in terms of the consistency with which the evolved populations 

converge to the expected behaviours. It was found that given a descriptive enough fitness 

fun~tion to guide the search, GP is capable of determining simple go-to-and-act behaviours, 

but not more complex tasks such as knowing how and when to refuel. 

• Comparison of two forms of GP population 

Two types of GP population are developed for the control of this multi-agent system. A 

comparison performed between a single population of heterogenous individuals and co-evolved 

cooperating subpopulations of homogenous individuals. It was found that the use of multiple 

subpopulations inspired higher proficiencies in training, however, this lead to an overfitting 

issue resulting in lower performance when tested on unseen problem instances. 

Finally, the best performing behaviours during training are tested against the preliminary com­

petition results from RoboCup Rescue 2006. The results indicate promise for the ability of GP to 

create solutions, but the overall performance does not suggest that automatic programming is a 

sound replacement for manual programming techniques in this domain. 

The remainder of this dissertation is organized as follows. Chapter 2 explains the background 

information of the elements of this thesis. A description of the RCRSS is presented in terms of 

the problem to be solved as well as a brief overview of its implementation. Following this is a 

brief tutorial of Genetic Programming. Finally, a review is presented of work related to Genetic 

Programming, Cooperative Multi-Agent Systems, the RoboCup Domain, and RoboCup Rescue. 

Chapter 3 describes the system implemented for this thesis. This includes the application of GP to 

the RCRSS, the GP language developed, and a break-down of the objectives this system is applied 

to. Chapter 4 presents the setup details, results, and discussion for the experiments performed in 

this thesis. Finally, chapter 5 summarizes the conclusions of this thesis including suggestions and 

intended directions of future work. 



Chapter 2 

Background Information 

This chapter presents background information necessary for the rest of this thesis. Specifically, 

the sections of this chapter describe RoboCup Rescue, Genetic Programming, and previous works 

related to these topics and this thesis as a whole. 

2.1 Robocup Rescue Simulation System 

On January 17th 1995, the Great Hanshin Earthquake hit the Japanese port city Kobe. It measured 

6.8 on the Moment magnitude scale, causing approximately 6500 deaths, and upwards of $100 billion 

in damage [7, 1]. The scale of the damage was largely due to the high density of the population in 

Kobe. In response to this disaster it was decided that the current disaster relief policies needed to 

be rethought and restructured. 

On April 30th 1999, at the location of Japan's local RoboCup Soccer (ReS) competition, it was 

decided that a simulator would be created to model large scale urban disasters, and the Robocup 

Rescue Simulation System (RCRSS) and Robocup Rescue (RCR) league were founded [1] . Building 

on the success of RCS, it is hoped that the RCR simulator and competitions will serve to promote 

international research collaboration in the fields of AI and robotics, toward the development of 

improved rescue capabilities. 

RCR is a post-earthquake urban disaster mitigation simulation. The RCR league itself consists 

of three competitions: the robotics competition, the virtual robot competition and the simulated 

agent competition. This thesis focusses on the latter. 

4 
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2.1.1 Problem Objectives 

The ReRES attempts to model a real-world large scale urban disaster. Accordingly, the objectives 

of the simulation are similar to those you would expect in a real-world disaster. Version 0.49.91 of 

the simul'ator, which is used in this thesis, uses Formula (2.1) as the scoring function for a single 

run. 

H{;£; Score = (P + --) * --
Hinit Bmax 

(2.1) 

where P is the number of persons alive, H is the amount of health points of all agents (civilians 

included), Hinit is the initial health points of all agents, B is the area of buildings that remain 

unburnt , and Bmax is the area of all buildings. 

From this it can be seen that this problem can be expressed in terms of multi-objective opti­

mization. The two main objectives are the minimization of civilian casualties (and injuries) and the 

minimization of damage done to buildings by fire. A third sub-objective not expressed in Formula 

(2.1) is the clearing of debris from the roads. Three types of agents exist in this environment and 

are individually tasked with accomplishing these objectives. These agent types are the Ambulance 

Teams (AT), Fire Brigades (FB), and Police Forces (PF). 

The saving civilians objective is generally performed by the AT agents. This objective, however, 

can be broken down into three smaller tasks. Firstly, the civilian must be located. This task can be 

accomplished by anyone of the three types of agents (AT, FB, or PF). Following this, the civilian 

must then be rescued from the collapsed building. This task can only be performed by AT agents, 

but can be expedited by the use of multiple ATs. Finally, the civilian must be transported back to 

a refuge, this requires exactly one AT agent to accomplish. 

The second objective, minimizing building damage, is pursued by the FB agents. Several fires are 

ablaze throughout the simulated city area. Each fire, if left unattended, will damage the building 

on which it burns as well as spread to adjacent buildings. As with the saving civilians objective, all 

types of agents can locate a fire, however only FB agents are capable of extinguishing one. Multiple 

FBs may work together to extinguish a single fire or spread out to contain many fires. Each FB 

agent must be mindful of their current water capacity, which is used up while extinguishing and 

requires refilling at a refuge when low. 

A third objective, not expressed in Formula (2.1), is the clearing of debris from the roads. This 

is the task given to the PF agents. Without the removal of roadblocks many civilians and fires 

will be unreachable. Therefore, although this task does not directly influence the score, a PF team 

unsuited for this objective will be a major detriment to both other main objectives. 

1 Available online: http://sourceforge.net/projects/roborescue/ 
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2.1.2 Problem Constraints 

Hampering the agents' ability to achieve their objectives are a number of constraints, all of which 

model a real life scenario. The foremost constraint the agents must work against is time. The fires 

spread and damage buildings over time and civilians lose health while trapped. Thus agents are 

competing against the clock to complete their objectives as efficiently as possible. Compounding 

this constraint, the simulator lasts 300 cycles, at a rate of 1 cycle per second, where each cycle 

simulates one minute of real time. Commands such as taking actions or communicating are issued 

by the agents once per cycle, however all commands that are not issued in the 1 second allotted 

are ignored. Thus, in effect, the simulation proceeds in an approximation of real-time, where an 

uncertain agent can waste valuable time pausing to make up its mind. 

The second most significant constraint facing the agents is their own limited awareness. Every 

cycle, the simulator's kernel issues limited sensory information to each agent at a small radius around 

their location. This information contains what they see and whether or not they hear someone. Such 

a limited awareness of a rapidly changing environment means that agents must be highly adaptive 

in order to proceed effectively with their objectives. Combined, the limited awareness and various 

time constraints illustrate the fully dynamic nature of this problem. 

Additional constraints on the problem are defined in the parameter file on a per-instance basis. 

Some parameters are given standard values, these include limits on the size and number of commu­

nications each agent can send as well as the number of communications they can hear each step, a 

limited number health points (HP) that are consumed when an agent takes damage from fire, and 

limited extinguishing range and water capacity for FB agents. Other parameters, such as the map 

used, and the positions of all objects on the given map, are defined at the time of competition. 

2.1.3 Simulator Design 

The Robocup Rescue Simulation System (RCRSS) is structured in multiple modules as seen in Figure 

2.1. The central module, known as the kernel , connects to all other modules via UDP sockets2 , and 

performs a managerial role for all of its connected components. 

The GIS (Geographical Information System) initializes and provides the kernel with information 

on the location of every object in the simulation world , including roads, buildings and agents. A 

number of component simulators connect to the kernel, each controlling individual aspects of the 

environment such as fires or traffic. 

The final set of modules are the agents. The list of agent modules connected to the kernel may 

contain 0 or more of the following: Civilians, Fire Brigades (FB), Ambulance Teams (AT), Police 

Forces (PF), Fire Station, Ambulance Centre and/or Police Office. Figure 2.2 presents a screen 

shot of the viewer from a sample simulation execution. Agents here are represented as circles of a 

2For detailed information regarding the specific protocol used during simulation see [1] 



CHAPTER 2. BACKGROUND INFORMATION 7 

Viewer 

I ..... ~ .. d 1 
results 

Init ial Simulation 
configuration results i"' ... 

~ E :Jo 
GIS Kernel Simulators 

:Jo 
Commands 

~"""V 1 information 1 Comm."" 

1"'1 
Agents 

Figure 2.1: Structure and behaviour of RCRSS modules 

Figure 2.2: Example viewer display from execution of RCRSS 

particular colour. Civilians (shown in green in Figure 2.2) are automated agents that will move to 

a refuge if not trapped or injured. Civilians trapped in buildings require assistance and will slowly 

lose HP until they die (black in Figure 2.2). Fire Brigade agents (red in Figure 2.2) extinguish fires. 
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Ambulance Center 

Figure 2.3: Communication links between rescue agents and centres in the RCRSS 

The amount of water they can carry to do so however is limited. A Fire Brigade with no water must 

return to a refuge and wait a number of steps to refill. Ambulance Team agents (white in Figure 

2.2) are responsible for rescuing civilians from collapsed buildings as well as transporting them to 

refuges. Police Force agents (blue in Figure 2.2) are responsible for clearing roads by removing 

blockades. Lastly, the Fire Station, Ambulance Centre and Police Office agents are buildings that 

act as communication hubs for their respective agent teams as illustrated in Figure 2.3. 

Command Direction 

Action Commands 
Move 
Clear 
Extinguish 
Rescue 
Load 
Unload 
Say 
Tell 

agent -+ kernel 
agent -+ kernel 
agent -+ kernel 
agent -+ kernel 
agent -+ kernel 
agent -+ kernel 
agent -+ kernel 
agent -+ kernel 

Sensory Information 
See kernel -+ agent 
Hear kernel -+ agent 
Listen kernel -+ agent 

Description 

Move agent 
Police Force agent clears a road 
Fire Brigade agent extinguishes a building 
Ambulance Team agent removes a trapped civilian from a building 
Ambulance Team agent loads an injured civilian for transport 
Ambulance Team agent unloads a carried civilian 
Agent communicates to other nearby agents 
Agent communicates via transmission 

Visual information near agent 
Auditory information near agent 
n·ansmission from another agent 

Table 2.1: List of agent commands in the RCRSS 

All communication between simulator and/or agent modules are presented as commands that 

must travel through the kernel to reach their destination. An agent wishing to perform some action 

sends a command to the kernel. The kernel then broadcasts each action to all of the simulators, 

and those with use for the command act on it and respond. The list of agent action and sensory 

commands is presented in Table 2.1. 

As an example, consider an AT agent wishing to rescue a civilian from a nearby building. At time 

t, the agent receives a see command from the kernel containing information regarding the civilian, 
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Figure 2.4: GP chromosome representation: The genotype refers to the tree structured solution 
while the phenotype refers to the actual formula when decoded from the tree. 

including its buriedness. The AT decides to rescue this civilian and thus sends a rescue command 

to the kernel. The kernel then broadcasts this command. The Misc simulator, which is responsible 

for such things as civilian buriedness and health would then respond to the kernel stating that the 

civilian becomes less buried. Then at time t + 1 the AT receives another see command containing 

this civilian with a buried ness less than at time t. 

This description of the RCRSS has been kept brief to spare the recreation of the RCRSS manual. 

For a more detailed explanation of this simulation environment, see [1] and [8]. 

2.2 Genetic Programming 

"GP is a systematic, domain-independent method for getting computers to solve problems automati­

cally" [9]. Genetic Programming (GP) was first popularized in 1992 [3] and has since been successful 

in achieving human-competitive results in various fields including electronic design, game playing, 

searching, sorting and more [10, 9]. In GP, solutions are traditionally represented as program trees 

(or s-expressions), where each internal node in the tree is a problem-dependent operator and its 

subtrees are its operands. The leaf nodes of the tree are terminals in the expression. Together the 

set of all terminals and operators in the GP language are known as the primitive set of the given GP 

system. Figure 2.4 illustrates the chromosome representation of a simple formula. Here the tree, 

known as the genotype (or genetically represented solution) , represents the formula below it, known 

as the phenotype (or actual solution). 

The task of genetic programming is to evolve a population of programs that solve a given problem. 

This is done using the concepts of natural evolution found in the Evolutionary Algorithm (EA) 
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Figure 2.5: Example subtree crossover: Subtrees in each of the parents (top) are swapped to create 
new offspring (bottom) 

framework. In EAs and in GP an initially random population of solutions to a problem is evolved 

by iteratively applying reproduction and selection operators. 

The standard GP reproduction operator is a crossover operator known as the subtree crossover. 

As depicted in Figure 2.5, offspring are created by exchanging the subtree of one parent for the 

subtree of another, while ensuring syntactic and program correctness. The standard GP mutation, 

known as subtree mutation, works in the same fashion. One parent is selected for mutation and 

subtree crossover is performed with a randomly generated second parent. A third operator, known 

as cloning (sometimes called reproduction) , can be used in place of crossover or mutation. In cloning 

an individual is simply copied over from one generation to the next. 

With a new population of programs instantiated by the reproduction operators, the individual 

programs are evaluated on their performance at solving some problem based on a problem-dependent 

fitness function . The resulting fitness scores are the basis for the subsequent selection operation. 

A common selection operator used in GP is tournament selection. In tournament selection, a 

small number of individuals (typically between 2 and 7) are picked at random from the population. 

From these individuals the best is then selected according to its fitness score. Two such selected 

individuals are used for crossover, and one such selected individual is used for mutation or cloning. 

The iterative application of the process of selection and reproduction is intended to search the high 

dimensional space of possible solutions (solution space) to ultimately refine the quality of solutions 

in the population from a random collection of individuals to a converged population of near-optimal 

solutions. The crossover and mutation operators serve to create new solutions in the population 

thus exploring the solution space, while the selection operator refines the population to samples of 
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its superior individuals thus exploiting known good areas of search. There is a necessary tradeoff to 

be addressed between exploration and exploitation in a GP population, the equilibrium of which is 

problem-dependent. 

Varia~ions to each of these operators exist in the literature, but are not used in this thesis. For 

information and references on extensions to the simple GP system refer to [9]. 

2.3 Related Work 

2.3.1 Improvements to Genetic Programming 

A large number of useful techniques and paradigms exist which have enhanced the performance of 

certain algorithms. This section presents several of such techniques which are of interest to this 

thesis. 

A common technique used in evolutionary algorithms known as co-evolution, describes a situation 

in which the fitness of two or more individuals are dependent on each other in some way. In nature 

it is an understood fact that the evolution of organisms occurs in tandem with that of the organisms 

in its environment. For example, bees and flowers have co-evolved to dependency. In the simulated 

evolution of GP (and similar heuristics), it is sometimes beneficial or even natural to express such 

dependencies. Problem environments involving multiple agents can be simplified by the use of 

multiple individuals from the GP population acting and thus being evaluated together. Two forms 

of co-evolution exist in literature: competitive and cooperative. The competitive form has been widely 

applied in the environments of artificial life and game playing as it provides a natural difficulty ramp 

of opponents [11, 12, 13, 6]. As Koza describes in [14], "one almost never has a priori access to 

[an ideal] strategy for the opposing player or the ability to perform an exhaustive test." The use of 

competitive co-evolution allows the environment of one individual to contain a similarly competent 

adversarial individual. 

Cooperative co-evolution is considerably less prolific in literature and tends to arise primarily in 

situations where the environment dictates the collaboration of multiple individuals, and often the 

performance of all individuals is given a single evaluation [5, 11, 12,4]. The RoboCup Rescue problem 

is one such environment where teams of heterogenous and homogenous agents exist simultaneously 

in the environment striving towards a common goal with intertwining tasks. While competitive 

co-evolution offers the challenges and benefits of a matched opponent, cooperative co-evolution 

imposes the strengths and weaknesses of one individual on the fitness of another. It is often difficult 

to determine the individual contributions to a global fitness value, leading to what is known as 

the credit assignment problem [15]. In this way one individual's prowess at a given objective may 

be overridden by the ineptitude of a 'cooperating' peer. In order to combat these negative effects, 

clones of a single individual are typically used in place of multiple individuals. Thus the fitness of 

a single individual is dependent on its own proficiency and its ability to cooperate with itself. An 
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alternative scheme proposed in [16] is to use heterogenous individuals consisting of multiple agents 

per individual. This way, the agents making up a team will evolve together, removing the need for 

any specific credit assignment beyond the team's overall evaluation. 

A se~ond improvement technique is Automatically Defined Functions (ADFs) [17, 18, 19, 9] . 

ADFs are a technique used to modularize the automatically generated code of a GP solution to more 

closely resemble the human concept of program organization. These are implemented as separate 

trees from the solution tree, given their own constraints and GP language subset, but are evaluated 

and evolved along side the main solution tree. In terms of the GP individual, an ADF can be used 

in the same way as any other terminal primitive. This allows GP to reuse blocks of code without 

the need to spontaneously evolve them multiple times. The ability of ADFs to call other ADFs 

as well as recursive ADF calls leads to a potential for hierarchical structuring of solutions, which 

has been suggested as an effective means to automatically solve complex problems. The drawback, 

however, is that realm of each ADF must be specifically defined in terms of parameters, language, 

and interconnection. The ideal set of this information is often unknown a priori and can be difficult 

or expensive to search for. Architecture altering operations are an attempt to address this issue by 

dynamically evolving these attributes, however additional evolution is required to do so [20, 18]. 

Similar to the notion of ADFs is the Adaptive Representation (AR) paradigm [21]. While 

with ADFs functions are evolved as part of an individual and evaluated along-side the individual, 

here functions are actively sought out and constructed. By using a combination of domain-specific 

knowledge and statistical data gained from the GP population, small blocks of code are identified 

as fit candidates and generalized into new functions. The recursive application of this approach 

gradually raises the abstraction level of the function set thus narrowing the search space over time. 

Stone et al.'s Layered Learning [22] is a technique in which a complex problem (such as creating 

soccer-playing intelligence) is hierarchically decomposed into simpler sub-problems or layers (such as 

intercepting a pass, evaluating a pass's success, selecting an appropriate target for a pass, etc). Each 

layer solves one problem which lends itself to the solution or simplification of the succeeding layers. 

The use of layered learning is appropriate for situations in which a direct solution from inputs to 

outputs is intractable. As a general framework, Layered Learning does not dictate how a problem is 

to be decomposed or the specific machine learning algorithm to be used at each layer. The examples 

provided in [22] use a different algorithm for each layer (Neural Networks, C4.5, and Reinforcement 

Learning respectively for the examples mentioned above). 

A Layered Learning variant of Genetic Programming was applied to a simplified soccer sub­

problem by Gustafson [23J. In that approach a standard single-layer GP that aimed at minimizing 

passing turnovers was compared to a two-layered GP that first sought to maximize passing accuracy 

before minimizing turnovers. In the layered learning GP, the population from the final generation 

of the first layer was the initial population of the second layer. The only difference to the actual GP 

system between layers was the fitness function used. The results found that both GP variants were 
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capable of finding good solutions while the layered learning GP converged much quicker. 

Zhang et al. [24] describe a similar technique known as Fitness Switching. Here, a complex prob­

lem is broken down into n sub-behaviours, each of which is associated with a fitness that motivates 

that beh!l-viour. The GP individuals are structured with n subtrees, one for each behaviour/fitness. 

In the sequential variant of Fitness Switching, each subtree is evaluated in turn by separate GP 

executions resulting in a situation similar to Layered Learning. Zhang et al. argue, however, that 

a co-evolutionary variant of Fitness Switching is superior to both sequential Fitness Switching and 

standard GP. In this variant a single GP execution is used to evolve all sub-behaviours simultane­

ously. 

This thesis deals with the use of Genetic Programming to solve a difficult problem within limit­

ing constraints. This necessitates the use of improvement techniques such as those described in this 

section. This thesis uses the term hierarchical evolution as an umbrella term to describe those tech­

niques that construct complex solutions out of simpler ones. The hierarchical evolution techniques 

described above in this section were considered as extensions to the GP system developed for this 

thesis. A number of techniques which would require additional evolutionary time were discarded 

as infeasible in this instance due to the strict time constraints and already high execution time. 

Similarly techniques which employ problem decomposition were omitted from consideration since 

alterations to the RCRSS were neither simple nor desirable alternatives. Fitness switching was at­

tempted, the description of which is presented in Chapter 4.2. Ultimately a new form of hierarchical 

evolution was developed that draws on features of many of these techniques. This technique, called 

Step-wise learning, employs the stages of goals found in fitness switching and layered learning, it 

uses the search-space simplification found in problem decomposition without altering the problem, 

and provides the search space direction found in seeded populations without programmer bias. The 

specifics of the Step-wise learning technique are described in Section 3.4. 

2.3.2 Evolving Cooperation in Multi-Agent Systems 

Panait et al. [25] classify learning in cooperative multi-agent systems into two broad categories: 

team learning and concurrent learning. In team learning a single learner is trained to control a team 

of agents. This may lead to a larger search space as the single learner must account for interactions 

within the team. The team of agents may be: 1) homogenous, where a single behaviour is learned 

and cloned to multiple agents, 2) heterogeneous, where multiple behaviours are learned by a single 

learner one for each agent, or 3) hybrid where the team is separated into heterogenous "squads" of 

homogenous agents. Typically this is a choice determined by the amount of specialization required 

by the environment. In concurrent learning multiple learners are co-evolved to control multiple 

agents, usually one learner per agent. This has the effect of reducing the individual search space by 

dividing it amongst the learners, but contrarily complicates the search space by adding additional 

learners to the environment. A similar tradeoff identified in concurrent learning is that it enhances 
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the ability to create specialized agents, but it requires consideration be paid to the credit assignment 

problem. 

In [5J Luke et al. investigated variations of breeding rules for populations of cooperative preda­

tors in 8: predator-prey simulation. Three types of populations were developed, a population of 

homogeneous individuals where multiple predators are made from a clone of a single GP individual, 

and two populations of heterogeneous individuals where each GP individual is made up of four ADFs 

each representing a single distinct predator. Of the two homogeneous populations, individuals in 

one are allowed to interbreed freely between ADFs, and in the other ADFI was bred specifically 

with ADF1 , ADF2 with ADF2, etc. It was concluded that the latter - the restricted interbreeding 

heterogenous population - evolved more rapidly. In addition it was determined that agents utilizing 

a more direct form of sensing between each other outperformed lower-grade or more general sensing 

techniques, suggesting the use of direct communication (as seen in RCR) as a distinct advantage for 

cooperating agents. 

Raik et al. [26J applied genetic programming to the evolution of volleyball playing agents, 

where agents were tasked with selecting the correct type of shot and direction for a given situation. 

Several stages of development were noted ranging from random to perfection. Initial applications 

of cooperation (passing the ball) were seen as detrimental to fitness as it led for more opportunities 

for error, though ultimately the perfect strategies were developed which used the necessary amount 

of cooperation. 

Panait et al. [4J utilize genetic programming in the discovery of ant foraging behaviour rules. In 

that work cooperation is central to the task of finding a path between a food source and a nest , and 

arises as a necessity of the pheromone-based decision/communication model used by ants. 

Yong et al. [27] studied the co-evolution of neural networks in a predator-prey domain. A com­

parison was performed between a centralized approach where all predators are centrally controlled 

versus an autonomous approach where each predator is controlled by a network evolved from a sepa­

rate subpopulation. Additionally a comparison between communicating versus non-communicating 

agents was performed, where communication here is defined as knowledge of the relative locations 

of each peer. Several subtasks of increasing difficulty are presented to the evolving populations. It 

was found that non-communicating heterogenous teams evolved quicker and more effectively over 

each task the than the other techniques considered. The cooperation developed is attributed to 

stigmergy; that is, indirect coordination based on "role-based responses to the environment" (e.g. 

the pheromone communication of ants). Thus each subpopulation converged to specific roles due to 

cooperative co-evolution. 

Iwata et al. [28J define cooperation in multi-agent systems in five ways relating to teamwork 

theories and coordination theory. From this they extract ten specific definitions of cooperation in 

the RCR simulation. Their analysis compares and contrasts the various definitions of cooperation 

amidst the competitors of RoboCup Rescue 2006, but does not relate them to any other means of 
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fitness evaluation to determine the utility of such definitions. 

2.3.3 RoboCup Domain 

Kummerleje [29] examines the applicability of the RoboCup domain to research, education, and 

the dissemination of technological advances. While primarily focussed on the RoboCup Soccer 

(RCS) domain, the paper concludes that RoboCup provides a wide array of challenges suitable for 

a diverse field of researchers. Moreover, the uncertainty and thus the complexity of the RoboCup 

Rescue system is far greater than that of RoboCup Soccer, so the challenges provided by RCR make 

it an even more suitable scenario for research. 

The feasibility study of this thesis, at least from a coarse-grained perspective, is largely based 

upon the research done using GP in the RCS league. Although the soccer domain is simpler than the 

rescue domain, requiring a homogenous set of agents to achieve a single goal, a number of similarities 

exist. For instance, both domains consider teams of cooperating agents ideally coordinating in a 

dynamic environment with limited awareness. The fact that GP has been applied successfully to 

this domain illustrates promise for the RCR domain. Luke et al. [11, 30] considered RCS to be a 

very difficult problem for GP, but agree that there is an attractiveness to having solutions to such 

a difficult problem created automatically. Amongst the many challenges faced in their project, they 

report time being the most difficult. To reduce the amount of time spent evolving solutions they use 

a number of techniques including co-evolution, more expressive (higher-level) functions in the GP 

language, and highly-parallelized executions. An interesting note was that a multi-facetted fitness 

function was found to be less effective than a simple difference of goals function . In 1997 Luke et 

al. presented their evolved soccer players at the robocup soccer competition. These evolved agents 

defeated two human-coded soccer teams, suggesting the utility of GP in this domain. 

Wilson [31] attempted several experiments utilizing low-level GP primitives to evolve soccer­

playing strategies. An initial experiment which mapped soccer-simulator given perceptions to actions 

with very few additional functions was unable to find any meaningful combinations of logic. A 

second experiment, which attempted to seed the population with hand-coded solutions, found that 

the population quickly converged to those solutions. A final experiment increased the abstraction 

level slightly and managed to evolve simple chasing behaviours. 

Aronsson's application of GP to the Robocup Soccer domain was met with reasonable success [32]. 

By limiting the search space via a small function set and hand-coded portions of the agent's logic, 

Aronsson evolved both coordinated defensive and offensive behaviours. Time and computational 

constraints as well as a necessarily small population size are cited as major issues in this domain. 

2.3.4 RoboCup Rescue Team Description Papers 

As an open source competition, all participants in the RCR league submit not only the source code of 

their work, but also each must provide a Team Description Paper (TDP) explaining their approaches 
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and contributions. Thus, a wealth of information is available from past competitors. Kleiner et al. 

[33] form the winning team of RCR 2004 known as ResQ Preiburg. This team contributed approaches 

to many of the subproblems found in RCR. Perhaps most notable is their solution to the problem of 

efficient path planning known as longroads. Here, multiple small segments of road in the simulators 

road graph are connected into one single longroad which has no inner crossings. This considerably 

shrinks the graph on which agents must plan their movements. In addition to this the ResQ Freiburg 

team studied the lifetime expectancy of civilian agents trapped in buildings. This information was 

then used in a genetic algorithm to select the best sequence of trapped civilians to rescue. 

Paquet et al. [34] formed the DAMAS team, placing second in the 2004 RCR competition. Their 

main contribution was the development of a 'selective perception' learning method. This offline 

learning technique forms a decision tree that serves to reduce the size of the search space when a 

FB agent needs to decide which building to extinguish. The technique uses a reward system similar 

to the Q-values in reinforcement learning. 

Habibi et al. [35, 36, 37] forming the Impossibles team have competed several times in RCR 

competitions, most notably achieving first place in 2005 and second place in 2007. They have used a 

number of techniques including fuzzy logic, auction heuristics, emotional decision making, Breadth 

First Search, Dijkstra's algorithm and reinforcement learning for path finding, as well as the manual 

modelling of trends to aid the prediction of civilian life expectancy. 

Martinez et al. [38] used an evolutionary reinforcement learning strategy called XCS to evolve 

decision rules for determining the number of ambulances required to rescue a victim based on a 

attributes such as the victim's health points, buriedness and the current world time. In addition 

this paper used the longroads mechanism from the ResQ Freiburg team [33], a next victim selection 

algorithm similar to the fire selection presented by the DAMAS team [34], as well as several hard 

coded decision rules for things such as rubble clearing and fire extinguishing. The agents designed 

in [38] were compared to the results from the 2004 RCR competition and it was concluded to have 

outperformed most. 

While a sizeable volume of TDP's exist covering a wide array of techniques applied to RCS, none 

appear to have utilized GP for the development of rescue behaviours. 



Chapter 3 

Genetic Programming System for 

RoboCup Rescue 

This chapter describes the design and implementation details of the genetic programming system 

developed and applied to the RoboCup Rescue Simulation System in this thesis. An overview of the 

developed system is illustrated in Figure 3.1. There are three main components to the system: ECJ, 

RCRSS, and app.Rescue. ECJ and RCRSS are predefined systems adapted for use in this thesis 

and are described in more detail in Chapter 2. The implementation contributions of this work are 

in the app.Rescue component and are described throughout the remainder of this section following 

a brief description of the modifications made to the ECJ and RCRSS components. 

Evolutionary Computation in Java (ECJ)l is the GP system used in this thesis. RCRSS2 , as 

described in Section 2.1 is the problem being solved by the GP system. Both of these systems are 

provided freely by their authors, but have been modified for use in this thesis. ECJ was modified to 

allow for threaded evaluation of cooperative individuals from three separate subpopulations and to 

read entire populations from file. The RCRSS system was altered to allow for multiple simultaneous 

simulations to run on a single machine. In order to hasten execution times the standard lO-minute 

wait time to shut down simulators was replaced with a broadcasted exit message. Further, the 1-

second wait for agent commands at each step of simulation was changed to be a maximum 1-second 

wait , meaning the simulator would proceed sooner iff all agent commands (and communications) 

were presented in less than 1-second. These alterations sped up the RCR simulation (and thus the 

GP evaluation) dramatically without altering the problem definition. 

1 ECJ available online: http://cs.gmu.edu/ eclab/projects/ecj/ 
2RCRSS available online: http://sourceforge.net/projects/roborescue/ 
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Figure 3.1: Overview of the developed RCR-GP system. Three main elements are the ECJ system, 
the app.Rescue directory, and the RCRSS 

3.1 Design and Implementation 

The implementation within this thesis is primarily concerned with combining the ECJ GP system 

with the RCRSS problem domain. To this end, app.Rescue is a custom directory within the ECJ 

system that takes care of all of the intermediary tasks required to combine these systems. This 

includes defining the parameters and language, managing multiple RCRSS executions in parallel, 

and automatically converting GP trees into compiled java class files on the fly for subsequent use as 

agent control structures in the RCRSS. This section describes the design of the population structure 

(a set of parameters to the ECJ system), and the evaluation of a single GP individual (in terms of 

its conversion into RCR agents). Discussion of the GP language is deferred to Section 3.2, and of 

the experimental parameters is deferred to Chapter 4.2. 

The first attempted variant of the GP population structure consists of a single population as 

illustrated in Figure 3.2a. Each individual in the population is made up of three trees, one for 

each of the three autonomous agent types (AT, FB, and PF). Multiple agents of the same type all 

use the same GP tree during simulation (e.g. all ATs use the same decision logic). Distinct trees 

are necessary for different types of agents as their tasks vary greatly. Yet, utilizing homogeneous 

individuals during simulation simplifies the evolution process by only needing to evolve one AT, 

one FB, and one PF. Past research [11] has shown that homogeneous teams of agents evolved more 
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(a) (b) 

Figure 3.2: Implementation of two forms of population. a) Each individual contains the trees for all 
three types of agents. b) Three separate sub-populations exist, each containing the tree for a single 
type of agent . 

readily than heterogeneous ones, so this strategy is ideal for this problem with such limiting time 

constraints. All three sub-trees are evaluated on their combined performance, and the GP individual 

will succeed or fail based on the overall proficiency of the entire individ ual. In the terminology defined 

in [25J (described in section 2.3), this system uses a hybrid team learning approach where a single 

learner (GP individual) controls heterogeneous squads of homogeneous agents. 

A second GP system (Figure 3.2b) is developed which uses the concurrent learning approach 

described in [25J , except it does so again with squads of homogeneous agents. In this system, three 

sub-populations are co-evolved. One individual from each population is selected for evaluation. 

Multiple clones of this individual are used to fill up teams of similar agents (as with above). There 

is an inherent credit assignment problem associated with the concurrent learning approach, as in 

this case three unrelated individuals would still share a single simulation score. The advantage 

to using this approach in this problem, however, is that each individual can be given a separate 

score. Thus the fitness of each individual is changed to be task-dependent. That is, the AT tree 

is evaluated based on the amount of civilian health points remaining at the end of simulation, the 

FB tree is evaluated based on the area of unburnt buildings, and the PF tree is evaluated on the 

number of cleared blockages. In this way, an effective tree for controlling one type of agent will not 

be overly hindered by having its score lumped together with an unfit tree controlling a different 

agent. Cooperative co-evolution is still in effect in this GP system as the agent tasks are still very 

intertwined (e.g. a burning building will quickly harm civilians) . 

Evaluation of a GP individual in this system consists of a single execution of the RCRSS. The 

trees that makeup a GP individual are passed into the 'Code Factory' . This module parses three 

GP trees (one for each type of agent) then produces and compiles a java class with three methods 

(one for each tree). Trees in the java files are in the form of nested method calls to the executing 

agent (except for the if statement which is converted to its ternary syntax), this prevents the needs 

to parse a GP tree at every use. When an agent is created in the RCRSS it is assigned a specific 
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tree according to the GP individual and generation numbers. When an agent is prompted to act at 

each step, it will call the method appropriate to its type from the tree file it has been assigned. 

Each RCRSS execution runs for 300 simulation steps, taking a maximum of 1 second each, for 

an average execution time of approximately 2.4 minutes (after the modifications mentioned above). 

Executions utilizing fewer steps are unacceptable due to the drawn out nature of the problem. 

Many objectives cannot be completed quickly or even reached initially, and there is a growing loss of 

score and increased difficulty to the problem as time progresses. Since a complete 300 step RCRSS 

execution must be completed once for every individual in the GP population for every generation in 

the GP system's execution, these times quickly add up to very long experimentation times. In order 

to combat this, small population sizes were used and multiple evaluations are done in parallel. A 

typical experiment involving 50 individuals for 50 generations requires about 100 hours of execution 

divided by the number of parallel evaluations (1, 2 or 4 were used in this thesis depending on the 

capability of the computer being used). 

Within each RCRSS execution there exist a number of rescue agents (in the default map setup 

there are 24 agents and 3 centres). Habibi et al. [36J describe two main approaches to implementing 

RCR agents: centralized and distributed. In the centralized models, the AT, FB and PF agents send 

all their information to the central hubs (i.e. the ambulance centre, the fire station, and the police 

office) and wait for instructions. In this paradigm the responsibility of decision making is entirely 

placed in the central agents. This does, however, have the natural benefit of coordinating all of the 

non-central agents. In the distributed model, each individual agent is responsible for making its own 

decisions based on the information its given. In this model, the central agents act only as relays for 

information such that every agent has a similar view of the world. This thesis operates using the 

distributed model, since this model more naturally lends itself to the design of a low-level decision 

logic. 

A single agent is comprised of two parts (see Figure 3.3). The first part of the agent is concerned 

with the storage and communication of a world model. This part is manually coded. Put simply, 

the agent will remember any new or changed objects in the environment, and if they are important 

(e.g. a civilian discovered, or a building's fiery ness changed) then it will communicate the new or 

changed object. The second part of the agent is concerned with the decision and action processes. 

This takes the form of a Genetic Programming tree utilizing language primitives that deal with the 

world model (from the first part of the agent) and action. commands to the kernel. The specifics of 

the language are discussed later in this chapter. Also illustrated in Figure 3.3 are the three centres. 

As described earlier, these act as communication hubs. As such, they consist of only the world model 

and communication aspects of the agents. This component differs from the autonomous agents' in 

that there is a lack of visual and auditory sense in the centres. All new information to the centre 

'agents' is provided via communication from agents. 
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Figure 3.3: Structure of agent simulator module implementation. Each agent is made up of an 
evolved tree that controls its decisions and actions, and manually programmed memory and com­
munication. Agents of the same type will share copies of the same tree, while agents of different 
types will have differing trees. Bold lines indication bi-directional communication links 

3.2 GP Language 

Perhaps the most fundamental part of the setup of a GP system is the design and implementation 

of the GP language. The language determines not only the expressiveness of the system, but also 

the solution/search space of the problem. If one creates too simple of a language the GP system 

may be unable to describe meaningful solutions to the problem. Conversely, a language that is too 

complicated may create too large of a solution space for evolution to search. Koza discusses the idea 

of sufficiency in the terminal and function sets of a GP language in [3], stating that "the sufficiency 

property requires that the set of terminals and the set of primitive functions be capable of expressing 

a solution to the problem." Although there is no general means for determining sufficiency, it must 

be given consideration. 

As an automatic programming technique, the ideal of genetic programming is to minimize the 

effort of the programmer in solving the problem. By this reasoning, the ideal language would be one 

that arises naturally from the problem itself. In the case of using GP for simulated agent behaviour, 
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a natural language could be the various aspects of sensory input given to the agent , and simple 

functions that tie sensory input to actuators. A low-level approach such as this, however, has been 

found to be more difficult for the evolutionary process to handle than combinations of higher-level 

primitiv~s. This difficulty is commonly attributed to the large gap between the low-level building 

blocks and the evaluation of high-level solutions. This serves to illustrate the importance of the GP 

language, in that ultimately the design of the GP language can determine whether the task at hand 

is within GP's capabilities. 

When designing any GP language, there are several complicating factors. The first issue in 

designing the GP language is the importance of providing ample functionality without dictating 

strategy. That is, the primitives used in the GP language must be capable of combining into mean­

ingful solutions, but themselves, should not limit or overtly bias the search. This concept arises from 

the idea that one of the primary motivations for applying GP to difficult problems is its potential for 

discovering unexpected solutions. To address this issue the language developed in this thesis aims 

to provide as much of the environmental knowledge as possible without colouring it. Primitives that 

abstract lower-level knowledge are either natural abstractions (such as identifying a fire as opposed 

to a building with a large fire attribute), or are part of a broad set of abstractions (such as the near­

estBuilding primitive as part of the set including farthestBuilding, largestBuilding, randomBuilding, 

fieryestBuilding, mostBrokenBuilding, etc). The second challenge faced when designing a GP lan­

guage deals with the efficiency of the language. Manual coding of a solution offers the programmer 

the opportunity to optimize the overall execution of the program. Whereas constructing solutions 

from smaller pre-made modules (primitives) makes this considerably more difficult. While an indi­

vidual primitive may be optimized to efficiency (e.g. Using quickSort as a sorting primitive), the 

combinations of primitives is somewhat unpredictable by design, and thus difficult to optimize (e.g. 

Multiple potentially redundant uses of the sort method would be unnecessary in a manual program, 

but potentially unavoidable in a GP constructed solution). This complication is particularly relevant 

in this thesis due to the strict time constraints imposed on each execution of the solution trees and 

the representation of sense and memory as lists of objects. 

The language used in this thesis consists of functions that describe aspects of the environment 

(sensors), actions that can be used within the environment (actuators), and some logical constructs 

to enable meaningful decision-making. In addition, there are some primitives added to this language 

that simplify this scheme for the sake of evolvability. For example, the at_Fire primitive serves one 

single function: to determine whether a given Fire Brigade is close enough to extinguish a building. 

So rather than providing a language with a Max-Extinguish-Range, a Distance, and a LessThan 

primitive and hoping that evolution learns to combine them properly and in the right context , a 

single primitive (atYire) is provided that returns a boolean value describing if the Fire Brigade is 

in range of the fire. 

In order to maintain a meaningful structure in the logic trees, this thesis uses a strongly typed 
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Symbol Name 

Atomic Types 
A Action 
B Boolean 

. T Target 
L List 

Subtypes of T 
T agent Agent 
Tbuild Building 
T civ Civilian 
Troad Road 

Subtypes of L 
Lagent List of AT agents 
Lbuild List of buildings 
Lciv List of civilians 
Lroad List of roads 

Descri ption 

Root type, the actions an agent can take 
Thue or False 
Any object in the simulation environment 
A list of non-specific-typed elements 

Any AT,FB, or PF 
Any building (includes fires and refuges) 
Any Civilian 
Any Road (blockaded or not) 

A list containing only agents 
A list containing only buildings 
A list containing only civilians 
A list containing only roads 

Table 3.1: Types in the GP language 
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GP language [39]. This means that nodes in the tree have return types, and expected child types. 

Table 3.1 lists the various types used in this language.3 The root of the tree returns an Action type, 

and often times action-type primitives require a Target-typed child. The language is designed such 

that terminal nodes return a list of some type of Target, as is the natural setup for the problem. 

The list is then potentially refined to only the 'important' targets and the 'best' is then selected 

from the list, where 'important' and 'best' are generic terms to be defined by the specific primitives 

used. Much of the remaining structure of the logic trees is made up of if-statement primitives which 

are controlled by environmental information in the form of boolean terminals and functions. The 

complete listing of the language used is presented in Tables 3.2 through 3.9, sorted and described 

by topic in the remainder of this section. 

Actions 

The action primitives (see Figure 3.2) are modelled almost directly on the actions available to the 

RCR agents during simulation. A divergence occurs for the sake of evolvability at the point of 

deciding on a target. For the primitives Load, Remove (known as Rescue in the simulator but 

renamed for clarity), and Clear, the targeting is done automatically if a suitable target is within 

3ECJ version 19 (used here) provides atomic-types and set-types. Set types can be used similar to subtyping 
so long as precautions are taken. For instance, the mechanism of set typing, allows the use of any of the set-type 
elements in place of the set-type itself or vice versa. So a node expecting a Target argument could instead use a 
T agent. However , a primitive that returns Target can also be used in place of an expected T agent. This can lead to 
unsafe typing as a T road could be used in place of a Target which is then used in place of a T agent. The rule used in 
this thesis to counteract these effects is that no primitives in the language return the general set-type (ie. Target is 
only ever used as a parameter's type , never a return type). 
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Action Returns 

if(B,AI ,A2) A 
move(T) A 
moveB(T) A 
clear 0 A 
extinguish(Tbuild) A 
load 0 A 
unload 0 A 
remove 0 A 
rest 0 A 

Description 

If B evaluates true then return Al else return A2 
Move the agent to target T 
Move the agent to target T, ignore blockades 
Remove a roadblock if within reach (PF only) 
Extinguish fire at target T (FB only) 
Load civilian if within reach (AT only) 
Unload a carried civilian (AT only) 
Rescue a trapped civilian (AT only) 
The agent does nothing this turn 

Table 3.2: Action primitives in the GP language 

24 

range. This was not acceptable for Extinguish as often multiple targets are in range, where one may 

be more desirable than another. For the Move primitives, the targets are selected via evolution, but 

the path to the target is determined via an A * search [40]. The default Move operation attempts 

to find an unblocked path to the goal, while MoveB returns the straightest path despite blockades. 

This was found beneficial during initial testing to make PF agents clear main pathways. If an 

agent's chosen action for a turn cannot be completed it is ignored for a turn, equivalent to that 

agent performing a Rest action that turn. Finally, the if-statement is included in this section as 

it is used to decide between two Action-returning subtrees. This is the source of branching in this 

language, enabling decision making. 

Environment 

There are two main sources of environmental information in this language, stemming from two main 

types of information. Information about objects in the environment are stored in and accessed as 

lists of specific types. Information about conditions or states of the environment are queried via 

functions that return boolean values. The listings of primitives providing these types of information 

are found in Tables 3.3 and 3.4 respectively. 

The list primitives are mainly comprised of full collections of single object types, such as all­

Buildings or allBlockades. Some of these collections are of generic objects such as buildings or 

roads, while others are collections of more specific subsets such as fires (buildings that are burning) , 

or blockades (roads that are blocked). This was a simplification provided to the GP language to 

enhance evolvability. A few other list primitives were developed to utilize the interconnectedness of 

the map. 

Boolean environmental primitives come in various styles. Primitives beginning with 'any' are 

queries about the agents global awareness. Primitives prefixed with 'at' are examining the agent's 

immediate surroundings. Primitives starting with 'has' are queries of other agents, which are hoped 

to provide a level of intentionality to cooperation. Additionally, some boolean primitives are designed 
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Primitive Returns Description 

allAgentsO Lagent Returns a list of all Agents 
allATsO Lagent Returns a list of all Ambulance Teams 

Returns a list of all Blockades allBlockadesO L road 

allBuildingsO Lbuild Returns a list of all Buildings 
allCivsO Lciv Returns a list of all Civilians 
allFBsO Lagent Returns a list of all Fire Brigades 

Returns a list of all burning Buildings 
Returns a list of all Police Forces 
Returns a list of all Roads 

allFiresO Lbuild 

allPFsO Lagent 

allRoadsO L road 

allRefugesO Lbuild Returns a list of all Refuges 
allTrappedO Lciv Returns a list of all trapped Civilians 

Returns all roads with access to Tbuild 

Returns all roads connected to T road 

Returns all buildings accessible from T road 

getEntrances(Tbuild) Lroad 

getAdjacentRoads(T road) L road 

getAdjacentBuilds(T road)Lbuild 

Table 3.3: Environmental List Primitives of the GP language 

Primitive Returns 

any Blockades 0 B 
anyFiresO B 
anyTrappedO B 
atBlockadeO B 
atFireO B 
atlnjured0 B 
at Refuge 0 B 
atTrapped() B 
hasAgent (T agent) B 
hasBuild(Tagent) B 
hasCiv(Tagent) B 
hasRoad(T agent) B 
isNullTarget(T) B 
isLoadedO B 
isEmpty(L) B 
pathExists(T) B 
waterlsEmptyO B 
waterlsFullO B 
waterIsUnderHalfO B 

Description 

Returns true if there are any known blockades 
Returns true if there are any known fires 
Returns true if there are any known trapped civilians 
Returns true if the agent is currently near a blockade 
Returns true if the agent is currently near a fire 
Returns true if the agent is currently near an injured civilian 
Returns true if the agent is currently in a refuge 
Returns true if the agent is currently near a trapped civilian 
Returns true if T agent'S current agent pointer is not null 
Returns true if T agent'S current build pointer is not null 
Returns true if T agent'S current civ pointer is not null 
Returns true if T agent'S current road pointer is not null 
Returns true if T is null 
Returns true if there is a loaded civilian on this AT 
Returns a true if list L is empty 
Returns true if a path exists to T from current position 
Returns true if this FB's water tank is empty 
Returns true if this FB's water tank is full 
Returns true if this FB's water tanks is less than 50% 

Table 3.4: Environmental Boolean Primitives of the GP language 
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as potential checks for the results of other primitives. IsNullTarget, and isEmpty both provide the 

agent with a means of verifying that some level of target selection was effective, while pathExists 

will verify if a Move operation is possible. The remaining primitives (isLoaded, waterIs ... ) are 

agent-specific checks that allow the agent to verify its own condition. 
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List Refiners 

In order to make use of the large collections of environmental objects, the agents are provided with a 

wide array of type-specific list-refining primitives. These primitives are a simple way for the agent to 

reduce tlie size of potential targets based on very specific properties of the targets. There is however, 

a large potential for error while using these primitives as multiple overlapping uses can either be 

redundant or simply empty out the list. A reasonably small sized depth limit should counteract this 

effect. The collection of list refining primitives developed for this thesis is presented in Figure 3.5. 

Primitive 

buildBurning(Lbuild) 
buildExtinguished(Lbuild) 
buildFierynessf (Lbuil d ) 

buildHasCiv(Lbuild) 
buildInRange (Lbuild) 

buildIsExplored(Lbuild) 
buildIs Unexplored (Lbuild) 

civDead(Lciv ) 
civNearDeath(Lciv ) 
civInjured(Lciv) 
civWounded(Lciv) 
civHurt(Lciv ) 
civUnhurt(Lciv) 
civ Alive (Lciv ) 

civBuried(Lciv ) 
civDamaged(Lciv) 
agentIsAt (Lagent) 

agentIsFb(Lagent) 

agentIsPf(Lagent) 

Returns 

Lbuild 

Lbuild 

Lbuild 

Lbuild 

Lbuild 

Lbuild 

Lbuild 

L civ 

Lciv 
L civ 

Lciv 

L civ 

Lciv 

Lciv 

L civ 

Lciv 

Lagent 

Lagent 

Lagent 

Description 

Removes all non-burning buildings from the given list 
Removes all burning buildings from the given list 
Maintains only those buildings with fieryness values of f 
Removes all buildings that don't contain civilians 
Removes all buildings outside of extinguish range 
Removes all unexplored buildings 
Removes all explored buildings 
Removes all living civilians from the given list 
Removes all civilians with more than 24% health 
Maintains only civilians with health in the range 25%-49% 
Maintains only civilians with health in the range 50%-74% 
Maintains only civilians with health in the range 75%-99% 
Removes all civilians with less than 100% health 
Removes all dead civilians from the given list 
Removes all unburied civilians from the given list 
Removes all undamaged civilians from the given list 
Removes all FBs and PFs from the given list 
Removes all ATs and PFs from the given list 
Removes all ATs and FBs from the given list 

Table 3.5: List-Refining Primitives of GP language 

The use of lists and list refiners allows for a bottom-up approach to decision making. This seems 

like a more natural description of the solution in this setting as the agents must maintain awareness 

of all of the potential threats and act accordingly on those that require it most or that will have the 

greatest impact. 

Selectors 

Tables 3.6 through 3.9 display the vast number of potential target selection primitives. These prim­

itives are used for extracting a single element out of a list, based on some type-specific criteria. This 

should allow agents to fully optimize their decision making process as tailored to whatever strategy 

is deemed optimal. As with any primitive, the wide range of options may have the detrimental effect 

of expanding the search space too wide, though it is hoped that the strategies taken during evolution 
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here will provide sufficient focus. Table 3.6 lists the set of general target selectors. These primitives 

can be used on any type of list , though in fact , separate instantiations of these primitives exist for 

each type. The rest of the target selectors select based on extremes of various attributes for each 

type of o,bject. 

Primitive Returns Description 

farthest(L) T 
randomElement(L) T 
nearest(L) T 

Returns the target from L with the largest distance from the agent 
Returns a random element from list L 
Returns t he target from L that is nearest to the agent 

Table 3.6: General Target Primitives of the GP Language . . 

Primitive Returns 

selBuildFieryest(Lbuild) Tbuild 

selBuildLeastFiery(Lbuild) Tbuild 

seIBuildMostArea(Lbuild) Tbuild 

seIBuildLeastArea(Lbuild) Tbuild 

selBuildMostBroken(Lbuild) Tbuild 

selBuildLeastBroken(Lbuild) Tbuild 

Description 

Returns the Tbuild with the highest fieryness from Lbuild 

Returns the Tbuild with the lowest fieryness from Lbuild 

Returns the Tbuild with the most area from Lbuild 

Returns the Tbuild with the least area from Lbuild 

Returns the Tbuild from Lbuild that is most broken 
Returns the Tbuild from Lbuild that is least broken 

Table 3.7: Building Target Primitives of the GP Language. 

Primitive 

selCiv Healthiest (Lciv) 

selCiv LeastHealth(Lciv ) 
selCiv MostBuried (Lciv) 

seICivLeastBuried(Lciv ) 
selCiv MostDamaged (Lciv) 

seICivLeastDamaged(Lciv ) 

Returns 

T civ 

T civ 
T civ 
T civ 
Tciv 
T civ 

Description 

Returns the healthiest T civ from L civ 

Returns the T civ from L civ that is nearest to death 
Returns the most buried T civ from L civ 
Returns the least buried T civ from L civ 

Returns the most damaged T civ from L civ 

Returns the least damaged T civ from L civ 

Table 3.8: Civilian Target Primitives of the GP Language. 

3.3 Main Objectives of this Thesis 

The main objective of the RCR competition is to develop intelligent systems to control the Ambu­

lance Team, Fire Brigade, and Police Force agents in the RCRSS. The primary goal of this thesis 

is to excel at this objective using Genetic Programming by focusing on evolving the behaviours 

necessary. This thesis focuses not just on the ability of the agents to achieve high scores (as mea­

sured by the simulation system), but also on the specific strengths and weaknesses of GP to evolve 

individual behaviours. Since the overall task of performing well according to the RCRSS default 
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Primitive Returns Description 

seIRoadMostBlocked(Lroad) T road 

seIRoadLeastBlocked(Lroad) T road 

seIRoadWidest(Lroad) T road 

selRoadN arrowest (Lroad) T road 

selR.oadMostOpenLines (Lroad) T road 

seIRoadMostBlockedLines(Lroad) T road 

selR.oadFewestOpenLines(Lroad) T road 

selR.oadFewestBlockedLines(Lroad) T road 

selR.oadMostLines(Lroad) T road 

seIRoadFewestLines(Lroad) T road 

seIRoadHghestCost(Lroad) T road 

selR.oadLowestCost(Lroad) T road 

Returns the T road from Lroad with the most blockage 
Returns the T road from Lroad with the least blockage 
Returns the widest T road from L road 

Returns the narrowest T road from L road 

Returns the T road from Lroad with the most open lanes 
Returns the T road from Lroad with the most blocked lanes 
Returns the T road from Lroad with the least open lanes 
Returns the T road from Lroad with the least blocked lanes 
Returns the T road from Lroad with the most total lanes 
Returns the T road from Lroad with the fewest total lanes 
Returns the T road from L road with highest repair cost 
Returns the T road from Lroad with smallest repair cost 

Table 3.9: Road Target Primitives of the GP Language. 

scoring formula is a complex one involving multiple dynamic objectives and constraints, it is unsuit­

able to evaluate the entire result on a success or fail basis. Ideally, it is hoped that agents will be 

evolved to rival the competence of human-created agents from past RCR competitions. However, 

as genetic programming is not typically designed for such difficult tasks, the objective of this work 

will be to evaluate the developed system's ability to evolve behaviours capable solving individual 

subproblems. The intent of this work was to examine each of the behaviours described below in this 

section, starting from scratch with minimal assumptions. However, the challenge posed in applying 

Genetic Programming to the development of these behaviours within the time constraints of this 

thesis proved the topic to be too broad. Thus this thesis focusses primarily on the appropriateness 

or operational behaviours, relegating the remaining behaviours to ongoing and future work. 

Appropriateness 

The first class of behaviours to be examined is the selection of appropriate actions. The ability of 

an agent to intelligently decide on the action best suited to its current situation can be described as 

the base-stage of the agent development. Tasks such as deciding to extinguish a nearby fire, rescue 

a nearby civilian, or move to an objective when not near one are among the 'simple' objectives in 

this class of sub-problems. Other tasks in this category, such as FB agents knowing to return to 

the refuge to refill their water tanks, are not as straight forward but are just as necessary. This 

suggests a gradient of difficulty within this class of sub-problems. This will be addressed in two 

steps. Step 0 aims at evolving the core structure of the agent logic. The ideal is to create agents 

that have intelligence enough to move to an objective and act on it. Following this, step 1 aims at 

having agents with logic to complete their entire complex objective. For example, an AT should be 

capable of finding a trapped civilian, freeing them, loading them, transporting them to a refuge and 

then unloading them. By the end of evolution in this class of behaviours it is hoped that agents will 
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be effective and efficient at the performance of their core tasks. Also, it is expected that as a result 

there will be a reduction in behaviours that are either detrimental or nonsensical. 

Task A~signment 

The second behaviour class is the allocation of resources. Before a FB agent moves to extinguish a 

fire, or before an AT agent moves to rescue a civilian, it ought to make an intelligent decision on 

which fire or civilian is the most important or efficient to act upon. Also, while each agent has a 

specific objective to accomplish and all must work diligently at mitigating the simulated disaster, 

effective exploration of all corners of the map is required in order for all agents to be aware of the 

current total state of the city. Thus, a proper balance between the delegation of exploration and 

objective action is a necessary task-assignment problem in this domain. Effective prioritization of 

tasks is what elevates the winning teams of past RCR competitions above the rest. This form of 

strategizing behaviour is clearly a step above the action selection objectives of the previous class. 

The expectation here is that individuals evolved to perform the simpler tasks of the previous class 

will be better suited for evolution of more complicated behaviours than individuals with no prior 

adaptation. 

Cooperation 

The third behaviour mechanism encompasses several forms of cooperation. Agents of different teams 

must cooperate in order to achieve mutual benefits in their individual objectives. Most notably, PF 

agents must clear roadblocks allowing FB and AT agents to reach their intended targets. Also, 

civilians trapped in burning buildings will take more damage than those trapped in buildings that 

are not lit, so cooperation is required between all types of agents. In addition to this, agents of the 

same type must often cooperate. Most tasks that agents perform can be hastened by the use of 

multiple agents acting at once. Conversely, many objectives may also benefit from the dispersion of 

agents to increase the total area of awareness and number of tasks being completed. Thus a balance 

of these two variants of cooperation may be required. Since agents of the same type will share 

the same GP program tree, intra-type cooperation may be considered equivalent to cooperating 

with oneself, while inter-type cooperation will present cooperation in a more conventional form. In 

general, the definition of cooperation in this thesis will be the gathering of knowledge by one agent 

about another agent and subsequent use of that knowledge to guide their own actions. Thus there 

is a notion of intention to the cooperation that is expected here. Without this one could rightly 

argue that cooperation is an in-built element of the RCR environment itself as all agents acting 

independently ultimately have the shared experience of working towards a common goal. 
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3.3.1 Challenges of Evolution 

The above classes of behaviours specify two types of challenge that this problem poses to the de­

veloped GP system: operational behaviours and strategizing behaviours. Operational behaviours 

are those found in the Appropriateness behaviour class. These are behaviours that are necessary 

parts of the rescues agents as defined by their roles in the RCR environment itself. The remaining 

behaviour classes describe strategizing behaviours. These are a form of optimization in the sense 

that the behaviours developed in these classes aim to use the operational behaviours in the best 

way possible. The distinction between operational and strategizing behaviours is the presence of an 

expected solution. Operational behaviours are predefined by the RCRSS. For example, the com­

plete operational behaviour of an AT agent is to rescue civilians, load them, transport them to a 

refuge, and then unload them. In contrast, strategizing behaviours have no predefined solutions. 

For example, there is no given rule for determining the best order in which to rescue each civilian. 

Typically, competitors in the RCR competitions will construct complex solutions to the deter­

mination of the best strategizing behaviours while assuming the underlying operational behaviours. 

This thesis, on the other hand, aims to examine the suitability of GP to build solutions from the 

ground up. Therefore, the operational behaviours are not overlooked as an objective for evolution. 

This increases the challenge of automating the development of rescue behaviours, but is necessary 

to gain a clear understanding of GP's limitations. 

In practice, determination of operational behaviours through evolution requires GP to discover 

the missing parts of an environment. The agent roles are predefined in the RCRSS and remain 

unfulfilled until GP evolves solutions that satisfy them. For the evolution of strategizing behaviours, 

GP must learn the best ways of utilizing the operational behaviours. 

In order to examine the effectiveness of GP for evolving the controlling behaviours of RCR 

agents, GP should be utilized to evolve both operational and strategizing behaviours. The focus of 

this thesis is on the evolution of operational behaviours. The evolution of strategizing behaviours is 

left for future work. 

3.4 Step-wise Learning Paradigm 

As described in Section 2.3, hierarchical evolution is known to improve the ability of evolutionary 

algorithms by breaking down a problem into component parts and gradually combining their indi­

vidual solutions. Commonly this is either done as isolated learning tasks on smaller sub-problems, 

by using fitness functions that emphasize particular aspects of the problem, or via the combination 

of primitives into higher-order primitives. Composition of primitives was thought to be too complex 

and time consuming for this thesis, and decomposition of the problem seemed unfeasible considering 

the complexity of the simulator. Use of task-specific fitness functions was considered, but were found 

to be insufficient to reduce the complexity of the problem. 
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The approach to hierarchical evolution taken in this thesis is a step-wise increment of the size 

of the GP language. The step-wise learning paradigm was designed here as a means of simplifying 

the search space as well as focusing the evolution on certain specific aspects of the RCR problem. 

The inte!1tion here is to initially limit the size of the search space by using a very small subset of 

the GP language. Once evolution has occurred on one step, then expand the language with specific 

primitives according to the goals of the next step. Each step (with the exception of step 0) has a 

seeded population that comes from the final population of the step before it. The objectives listed in 

the previous section are each represented here as one or more steps. In this way, the implementation 

of language steps are used to simultaneously address the objectives of the thesis as well as present 

the search space as a gradually increasing challenge for the developed system. Each step is comprised 

of a specific subset of the GP language that was listed in Section 3.2, as well as the collection of 

subsets from the steps that came before it. An exception to this is the "Cooperation" steps which 

are considered as a side step at each phase of the evolution to determine if cooperation evolves and 

if it is beneficial. 

The language sets for each step are selected from the full set based on the aspects of the environ­

ment which they describe, and thus the apparent potential information they provide to solutions. 

Under the assumption that the entire GP language is a reasonably complete description of the 

environment, the primitives that make up each step are complete descriptions of a section of the 

environment required to promote the desired behaviours. Thus when it is said that this thesis eval­

uates the system's ability to evolve such behaviours, it is evaluating the system's ability to create 

such behaviours out of building blocks that are sufficient to do so. 

Appropriateness 

The appropriateness behaviour is broken down into two steps. The objective of the first step (step 

0) is to establish an evolutionary convergence amidst an initially random sampling of the solution 

space. This is a task that proved difficult in previous experiments that used this thesis's entire 

GP language. This initial step in the evolution of RoboCup Rescue agents uses a core subset of 

the overall language as presented in Table 3.10. The primitives selected had to be a semi-complete 

description of the bare-bones of the problem in order to have the search space contain meaningful 

solutions. This step's language consists of the various actions available to the agents, access to 

known targets (fires, trapped civilians, blockades), simple environment queries (e.g. atFire), and an 

if-statement to provide structure. The goal of this step is to start from a random population and 

develop the decision logic structure necessary to have the agents perform the simplest form of their 

tasks. Since the only target selection mechanism is "nearest", well adapted agents from this step 

should exhibit a greedy behaviour, moving to the nearest target and acting on it. 

The second half of appropriateness, step 1, was designed to extend the language from step 0 to 

allow a more complete description of the environment and wider range of expression in the potential 
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Primitive 

if(B,AI ,A2) 
move(T) 
moveB(T) 
extingulsh(Tbuild) 
loadO 
unloadO 
remove 0 
clear 0 
nearest(L) 
allBlockadesO 
allFiresO 
all Refuges 0 
allTrappedO 
atBlockadeO 
atFireO 
atInjured0 
atRefugeO 
atTrappedO 
getEntrances(T build) 

Primitive 

any BlockadesO 
anyFiresO 
anyTrappedO 
rest 0 
isLoadedO 
waterIsEmptyO 
waterIsFullO 
water Is Under Half 0 
allFiresInRangeO 
pathExists(T) 

Returns Description 

A 
A 
A 
A 
A 
A 
A 
A 
T 

Lroad 

Lbuild 

Lbuild 

Lciv 

B 
B 
B 
B 
B 

L road 

If B evaluates true then return Al else return A2 
Move the agent to target T 
Move the agent to target T, ignore blockades 
Extinguish fire at target T (FB only) 
Load civilian if within reach (AT only) 
Unload a carried civilian (AT only) 
Rescue a trapped civilian (AT only) 
Remove a roadblock if within reach (PF only) 
Returns the target from L that is nearest to the agent 
Returns a list of all Blockades 
Returns a list of all burning Buildings 
Returns a list of all Refuges 
Returns a list of all trapped Civilians 
Returns true if the agent is currently near a blockade 
Returns true if the agent is currently near a fire 
Returns true if the agent is currently near an injured civilian 
Returns true if the agent is currently in a refuge 
Returns true if the agent is currently near a trapped civilian 
Returns all roads with access to Tbuild 

Table 3.10: Language Step 0: Core problem structure 

Returns 

B 
B 
B 
A 
B 
B 
B 
B 

Lbuild 

B 

Description 

Returns true if there are any known remaining blockades 
Returns true if there are any known fires 
Returns true if there are any known trapped civilians 
The agent does nothing this turn 
Returns true if there is a loaded civilian on this AT (AT only) 
Returns true if this FB's water tank is empty (FB only) 
Returns true if this FB's water tank is full (FB only) 
Returns true if this FB's water tank is less than 50% (FB only) 
Returns a list of all extinguishable fires (FB only) 
Returns true if a path exists to T from current position 

Table 3.11: Language Step 1: Appropriate action selection 

solutions. Several primitives were added to the language (see Table 3.11) that may enhance the 

individuals' decision making ability. Ideally, the addition of type-specific personal (as opposed to 

environmental) queries will enable agents to cope with the full complexity of their tasks. Specifically 

this step aims to develop agents with the ability to perform the more difficult aspects of their duties, 

such as refilling water tanks for FB agents, and loading and transporting civilians for AT agents. By 

the end of this step well-adapted individuals should exhibit complete rescue behaviours, choosing 

the appropriate action for a given situation. 
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Primitive 

allB uildings 0 
allCivsO 
allRoadsO 
buildIsExplored (Lbuild) 

buildIs Unexplored (Lbuild) 

getAdj acentRoads (T road) 

getAdjacentBuilds(T road) 

farthest (L ) 
randomElement(L) 

Task Assignment 

Returns 

Lbuild 

Lciv 

L road 

Lbuild 

Lbuild 

L road 

Lbuild 

T 
T 

Description 

Returns a list of all Buildings 
Returns a list of all Civilians 
Returns a list of all Roads 
Removes all unexplored buildings 
Removes all explored buildings 
Returns all roads directly connected to Troad 

Returns all buildings accessible from T road 

Returns T from L with the largest distance from the agent 
Returns a random element from list L 

Table 3.12: Language Step 2: Exploration 

The task assignment behaviour class is broken down into three steps. The first, (termed step 2 

to follow from the appropriateness steps 0 and 1), deals with developing the exploration ability. 

To accomplish this, primitives were added to this subset that would increase an agents ability to 

represent a wider range of targets. The first two list-refining primitives are used which explicitly 

denote buildings as explored or unexplored, and two new target selection primitives are added to 

reduce the system's tendency to only consider the nearest target. 

Following this step, the remainder of the task assignment behaviour class is addressed in two 

steps, separated so as not to be decidedly too large of a step. First, step 3 provides an increased 

variety of target selection primitives as seen in Table 3.13. Next, step 4 provides a large number 

of list refining primitives, listed in Table 3.14. Both of these steps have the effect of saturating the 

language with many potential options. Although this may be a substantial increase in the size of 

the search space, it is hoped that GP will determine which of the added primitives are beneficial to 

the overall solution. From this point of view the development of task selection behaviour becomes 

an exercise in reduction of dimensionality. 

Cooperation 

Cooperation in this thesis is considered to be the gathering of knowledge by one agent about another 

agent and subsequent use of that knowledge to guide their own actions. Thus the primitives which 

make up the cooperation step have the common attribute of giving access to information about other 

agents. Since it is not clear from the outset whether cooperation is a difficult behaviour to evolve or 

whether its effects will be generally beneficial, experiments involving cooperation will be considered 

as a side-step at each of the previously mentioned evolution steps. This way cooperative behaviours 

can be evaluated in terms of their prevalence in the population and their effect on the resulting 

score at each stage of evolution. Table 3.15 lists the primitives used in each cooperation step. 

The primitives in these steps are selected to match with the general concepts of their immediately 
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Primitive Returns Description 

selBuildFieryest(Lbuild) Tbuil d 

selBuildLeastFiery(Lbuild) Tbuild 

selBuildMostArea(Lbuild) Tbuild 

selBuilclLeastArea(Lbuild) Tbuild 

selBuildMostBroken(Lbuild) Tbuild 

selB uildLeastBroken (Lbuild) T build 

seICivHealthiest(Lciv ) T civ 

seICivLeastHealth(Lciv) T civ 

seICivMostBuried(Lciv ) T civ 

seICivLeastBuried(Lciv ) T civ 

seICivMostDamaged(Lciv ) T civ 

seICivLeastDamaged(Lciv) T civ 

selRoadMostBlocked(Lroad) T road 

selRoadLeastBlocked(Lroad) T road 

selRoadWidest(Lroad) T road 

seIRoadNarrowest(Lroad) Troad 

selRoadMostOpenLines(Lroad) T road 

selRoadMostBlockedLines(Lroad) T road 

seIRoadFewestOpenLines(Lroad) T road 

selRoadFewestBlockedLines (Lroad ) T road 

seIRoadMostLines(Lroad) T road 

seIRoadFewestLines(Lroad) T road 

seIRoadHghestCost(Lroad) T road 

seIRoadLowestCost(Lroad) T road 

Returns the Tbuild with the highest fieryness from Lbuild 

Returns the Tbuild with the lowest fiery ness from Lbuild 

Returns the Tbuild with the most area from Lbuild 

Returns the Tbuild with the least area from Lbuild 

Returns the Tbuild from L bui ld that is most broken 
Returns the Tbuild from Lbuild that is least broken 
Returns the healthiest T civ from L civ 
Returns the T civ from Lciv that is nearest to death 
Returns the most buried T civ from Lciv 

Returns the least buried T civ from L civ 

Returns the most damaged T civ from Lciv 

Returns the least damaged T civ from Lciv 

Returns the T road from L road that has the most blockage 
Returns the T road from L road with the least blockage 
Returns the widest T road from Lroad 

Returns the narrowest T road from Lroad 

Returns the T road from L road with the most open lanes 
Returns the T road from Lroad with the most blocked lanes 
Returns the T road from Lroad with the least open lanes 
Returns the T road from L road with the least blocked lanes 
Returns the T road from Lroad with the most total lanes 
Returns the T road from L road with the fewest total lanes 
Returns the T road from Lroad with highest repair cost 
Returns the T road from Lroad with smallest repair cost 

Table 3.13: Language Step 3: Task Assignment (a) 

Primitive 

isN ullTarget(T) 
isEmpty(L) 
buildBurning(Lbuild) 
buildExtinguished(Lbuild) 
buildFierynessf (Lbuild) 

buildHasCi V(Lbuild) 

buildInRange(Lbuild) 
civ Dead(Lciv) 
civNearDeath(Lciv) 
civ Injured (Lciv) 

civ Wounded (Lciv) 

civHurt(Lciv) 
civUnhurt(Lciv ) 
civ Alive(Lciv ) 
civBuried(Lciv ) 
civDamaged(Lciv) 

Returns 

B 
B 

Lbuild 

Lbuild 

Lbuild 

Lbuild 

Lbuild 

L civ 

L civ 
L civ 

L civ 

L civ 
L civ 

Lciv 
L civ 

Lciv 

Description 

Returns true if T is null 
Returns a true if list L is empty 
Removes all non-burning buildings from the given list 
Removes all burning buildings from the given list 
Refines the list to those buildings with fieryness values of f 
Removes all buildings that don't contain civilians 
Removes all buildings outside of extinguish range 
Removes all living civilians from the given list 
Removes all civilians with more than 24% health 
Maintains only civilians with health in the range 25%-49% 
Maintains only civilians with health in the range 50%-74% 
Maintains only civilians with health in the range 75%-99% 
Removes all civilians with less than 100% health 
Removes all dead civilians from the given list 
Removes all unburied civilians from the given list 
Removes all undamaged civilians from the given list 

Table 3.14: Language Step 4: Task Assignment (b) 
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Primitive 

Cooperation Step 0 
nearest(Lagent) 

allATsO 
allFBsO 
allPFsO 
last Agent (T agent! ) 

lastBuild(T agent) 

lastCiv(T agent) 

lastRoad(Tagent ) 

Cooperation Step 1 
hasAgent (Tagent) 
hasB uild (Tagent) 
hasCiv(Tagent) 
hasRoad(Tagent) 

Cooperation Step 2 
allAgentsO 
farthest(Lagent) 
random(Lagent) 

Cooperation Step 3 

Returns 

Tagent 

Lagent 

Lagent 

Lagent 

Tagent 

Tbuild 

T civ 

Troad 

B 
B 
B 
B 

Lagent 

Tagent 

Tagent 

Description 

Returns the nearest T agent in Lagent 

Returns a list of all Ambulance Teams 
Returns a list of all Fire Brigades 
Returns a list of all Police Forces 
Returns the last T agent that T agent! considered 
Returns the last Tbui ld that Tagent considered 
Returns the last T civ that T agent considered 
Returns the last T road that T agent considered 

Returns true if Tagent's current agent pointer is not null 
Returns true if Tagent's current build pointer is not null 
Returns true if Tagent's current civilian pointer is not null 
Returns true if Tagent's current road pointer is not null 

Returns a list of all Agents 
Returns the farthest T agent in Lagent 

Returns a random agent from Lagent 

No new primitives this step. 
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Cooperation Step 4 
agentIsActing(Lagent) Lagent Removes all agents whose last action was not a successful res­

cue action 

Table 3.15: Cooperation Language Steps 

preceding steps, so earlier cooperation steps have simplified sets of primitives to reduce the step size. 

In general, the cooperation primitives either provide access to agents or their status. Each time an 

agent considers a target it is saved as its last considered target of a given type. This information 

is then accessible by other agents to enable ' intentional' cooperative actions. Thus considerations 

regarding cooperation can be evaluated in terms of the use and subsequent reward (or lack thereof) 

of these specific primitives. 

3.5 Training and Validation 

The training data used throughout experimentation is the default initialization of the RCRSS. The 

map and map setup used is the standard Kobe map presented earlier in Figure 2.2. Each individual 

in GP populat ion is evaluated once based on its performance on this map. While this is not an 

ideal situation for the evolution of robust behaviours it is necessary in order to limit the amount 

of execution time required. It should be noted that the GP tree itself is used over 300 times per 

evaluation, in a constantly changing environment. 
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The validation of the results of this thesis must vary depending on the step being evaluated. In 

the case of validating GP's ability to evolve appropriate action behaviour, the validation must take 

into account the behaviours themselves. These first two steps have specific expected solutions, that 

are the b,ehaviours required by the RCRSS in order for the rescue agents to attain the base-line of 

functionality. This functionality is assumed by any manual solution to this problem. Thus the goal 

of these first steps are not the development of finely-tuned strategies, but the analysis of GP's ability 

to determine the necessary courses of action given the simulation environment. That being said, the 

validation of these steps will take the form of a manual analysis of the most commonly converged-to 

behaviours, and the frequency of expected solutions in the final populations. 

The remaining steps build upon this basic functionality with attempts to improve the abilities 

of the rescue agents evolved. In the case of these later steps the GP system is tasked with learn­

ing strategic behaviours, in contrast to the appropriateness steps where the GP is learning more 

operational behaviours. In these later steps the behaviours developed can be compared in terms of 

their relative effectiveness between each other and ultimately compared to the strategies manually 

developed by past competitors in the RCR competition. 



Chapter 4 

Experiments and Results 

4.1 Experimental Setup 

Before providing the experimental setup details, a distinction must be made explicit between the 

terms Score and Fitness. Here score refers to the RCRSS scoring formula (formula 2.1) while fitness 

refers to the mechanism for evaluating an individual in the GP population. In many cases the fitness 

is equal to the score, however it is not necessarily so. 

The experiments in this thesis were run on a variety of machines from the Brock University 

Computer Science department. In total, 46 computers were used, their specifications are as follows: 

-20x Intel(R) Pentium D CPU 3.40GHz, 1GB RAM 

-20x Intel(R) Core(TM)2 Duo CPU 3.00GHz, 4GB RAM 

-3x AMD Phenom(TM) II X4 955 3.20GHz, 4GB RAM 

-3x Intel(R) Core(TM) i7 CPU 2.67GHz, 6GB RAM 

The parameters used in the GP system developed here were initially given values commonly 

found in GP implementations. After some preliminary experiments the values seen in Table 4.1 

appeared to be the most effective. Many values remained standard. However, an unexpected result 

initially suggested that 100% mutation should be used in place of any crossover. This parameter 

is discussed further in Section 4.2. The values in Table 4.1 are used throughout experimentation 

unless otherwise specified. When crossover is examined in Section 4.2, subtree crossover is used with 

crossover rates from 0% to 100% and depth 10. All experiments are averaged over 10 runs. While 

more runs would be ideal, the computational cost of each run limits the execution of more runs 

under the time constraints. 

A number of initial experiments were performed utilizing the developed GP system in the stan­

dard format (i.e. with no problem decomposition). The results from these experiments (Section 

4.2.1) suggested the need for an alternative GP technique. Existing layered and hierarchical GP 

37 
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Parameter 

Initialization 
Initialization Depth 
Crossover Rate 
Mutation Rate 
Mutation 
Mutation Depth 
Selection 
Tournament Size 
Elitism 
Generations 
Population Size 

Value 

Ramped half-and-half 
1 - 10 
0% 
100% 
Subtree Mutation 
10 
Tournament 
3 individ uals 
1 individual 
50 
50 

Table 4.1: Default parameter set used throughout experimentation unless otherwise specified. 
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techniques were considered but were decided unsuitable for the heavy constraints of this task (see 

Section 2.3). An inspired peer of these techniques was designed and implemented for the purposes 

of this thesis and is described in the section that follows. 
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4.2 Results 

4.2.1 Some Initial Experiments 

Once the construction and combination of GP and RCR systems were complete a simple experiment 

was run. The fitness for this first experiment was the score output from the simulation system 

(equation 2.1, equation 4.1). This experiment (deemed ExpO) is the ideal of GP for this problem. 

A low-level language is presented (described in Section 3.2) and the fitness is equated to the overall 

objective of the problem. An effective evolution in this experiment would not only result in the 

achievement of the intended objective, but would also prove GP capable of effective performance in 

problems with high-level abstraction between the constructed individuals and the complex environ­

ment of their interaction. 

(4.1) 

Unfortunately, GP was not capable of evolving in this experiment. The convergence graph for 

ExpO (see Figure 4.1) fully illustrates this lack of performance. While regrettably unpromising, this 

experiment does identify an important issue that remains central to the remainder of experiments 

throughout this thesis. The reason GP fails to optimize on this fitness function is due in no small 

part to the disparity between the GP language and the calculation of the score. Not one single 

primitive has a direct impact on the simulation score. Primitives such as Extinguish and Remove 

operate on one or more intermediate simulators which then (if successful) operate on the score. 

Also, if considered alone, not one single primitive is capable of even indirectly affecting the score. 

Before extinguishing, a FB agent must move to a burning building (or wait for the blaze to reach their 

position) . To rescue a civilian, an AT agent must first remove them from debris, load them, transport 

them to a refuge and finally unload them. This separation between genotype and phenotype creates 

an unpredictable fitness landscape that clearly becomes difficult to optimize outside of a random 

search through the possibilities. One final note explaining GP's difficulty with this evolution is the 

complexity of the environment. As an example, consider the FB agent who waits for the blaze to 

approach its position. Even if this FB agent were capable of extinguishing all fires within its range, 

the delay taken in waiting for the fires to reach them would allow the blaze to spread wide in all other 

directions . Thus the overall score would be nearly unchanged despite their valiant 'efforts'. This 

means that simpler or partially-correct solutions to the problem may go unrewarded or unnoticed. 

These factors combine to present the evolutionary mechanism of GP with a difficult issue. With 

such a low causality between solution and fitness, convergence of solutions (as is the evolutionary 

mechanism) does not coincide with convergence of fitness . This leaves the GP with no clear direction 

the search space to follow towards maximizing the fitness. 

The question may then arise, 'why not simply decrease the level of abstraction between the 

language and the score?' That is, why not create higher-level primitives that operate directly on 
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Figure 4.1: Experiment 0 convergence curve, min, mean and max 

the environment. For example, a primitive called extinguishNearestFire which first moves to the 

nearest fire and then extinguishes it, would clearly be simpler for GP to use than the equivalent 

combination of primitives in the GP language used here. The reason this is not done in this thesis is 

threefold. Firstly, the structure of a given agent in the simulation does not allow for multiple actions 

to be executed in a single simulation step. While this could be easily circumvented with some state 

variables used over several consecutive simulation steps, the GP language used here was constructed 

as a replacement for the existent agent decision module. As such, primitives have been restricted 

to use within a single simulation step. The second reason why such high-level primitives are not 

implemented here is because such primitives would limit GP's 'creativity' . GP is often employed to 

find solutions that a human creator may have overlooked. The creation of primitives that dictate 

strategy are in opposition to this potential purpose of GP. A counter-question to the above could be 

proposed, 'why not create a primitive such as extinguishAllFires?' A line of abstraction had to be 

drawn at some point and it was decided to reside somewhere near to the sensory data and actions 

that agents natively have access to. Thirdly, this thesis aims to explore the capabilities of GP. Thus 

following the ideals of a 'natural' language that does not dictate strategy despite the challenges such 

a description may pose is within the scope of the ideals of this thesis. 

Following the lessons learned from Exp 0, several attempts were made at tailoring the fitness 

function for simple improvements to the evolution. The concept of a fault was developed to describe 

situations during the simulation where the language performed an invalid action. Such situations 

occurred when an agent attempted an action on a target of an incorrect type, for example a FB 

agent extinguishing a civilian (all such faults have since been removed from the language). Another 

common source of faults was the use of operations on an empty list. For the experiments here a 
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penalty was subtracted from the fitness score for the occurrence of each fault. The penalty was 

designed to reduce the score by 75 points on the worst case scenario of 25 agents faulting for each 

of the 300 simulator steps. Conversely, the concept of 'safety' primitives was monitored in a similar 

fashion to represent the use of primitives that check the state of the environment before acting (e.g. 

atFire, anyTrapped, isEmpty, etc). The fitness functions attempted are presented as formulas (4.2) 

through (4.5). 

fitness! = score - faults (4.2) 

fitness2 = -faults (4.3) 

fitness3 = score - faults + safety (4.4) 

fitness4 = score + safety (4.5) 

Common throughout experiments with each of these fitness functions was GP's ability to optimize 

on the faults or safety objectives. However, these optimizations often came at the detriment of the 

score objective. Rather than an intelligent or judicious organization of primitives into an effective 

decision logic, the GP individuals were biased towards those primitives that fault less or simply don't 

fault at all. Primitives such as Rest and Move will not fault. Primitives such as Extinguish or any 

of the list-refining primitives are likely to cause faults if not properly used. Thus the resulting GP 

individuals contained very short logic trees, often consisting of a small Move operation or a single 

Rest primitive. Ultimately this led to a population that was unwilling to risk using potentially faulty 

primitives, and thus there was no reward in terms of simulation score. Similarly, to optimize the 

safety objective, trees became bloated with if statements utilizing safety primitives but with little 

or no useful actions. 

These tailored fitness functions failed to reduce the gap between genotype and fitness score. 

However, while very inconsistent, some good individuals did appear in occasional populations proving 

that it was possible within this scheme, but suggesting that the fitness landscape is too rugged for 

this approach. In order to simplify the search, it was decided to narrow the search space by limiting 

the number of primitives in the language to a small subset. This led to the step-wise evolutionary 

strategy described in the next section, following a brief discussion about parameters. 

Commonly known good values were initially used for the parameters, however it was found that 

having a very high mutation and little to no crossover seemed to give the GP a better chance of 

generating a good individual. This saw the best individual in a population occasionally jump to a 

reasonable fitness despite a general lack of ability to evolve throughout the population as a whole. 
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The estimated reason for this is that mutation is freer than crossover to generate novel subtrees 

that may be useful in removing the population from local optima. In this regard, one could consider 

crossover to be a form of mutation that is constrained to only generating pre-existing subtrees. While 

the value of 100% mutation rate is based on a version of the system that used an older variant of the 

GP language and non-step-wise learning, there may still be a practical benefit to it. The seeding of 

one step's population into the next creates a population composed entirely of primitives from the 

previous step, and none from the new step. The typically high value for crossover would reinforce 

this undesirable state, but high mutation values should work to counteract it. 

Further testing of this value was performed with crossover rates of 0%, 20%, 40%, 60%, 80% 

and 100% in the step 0 single population setup (used below). While the quality of solutions in 

terms of fitnesso appear to converge faster and to lower values with increased use of crossover, it is 

not drastically so. A two tailed t-test was performed between the 0% mutation set and each other 

experimental set. P values ranged from 0.37 to 0.83, all well within the range of a 95% confidence 

interval, suggesting that the use (or lack of use) of crossover has no statistically significant impact on 

the results. While this is somewhat unusual, it is not without precedent. Two independent studies 

comparing crossover to mutation found that the results of mutation were generally more favourable in 

situations involving smaller populations [41, 42]. This thesis uses small populations out of necessity 

as larger populations would be too time consuming to evolve. Therefore, for the reasons of its utility 

in maintaining high diversity throughout such compressed evolutionary executions, as well as for 

its practicality in spreading new primitives to a seeded population, a value of 100% mutation rate 

and 0% crossover rate was adopted as the standard for the remainder of experimentation. This 

parameter is further examined utilizing the best solutions from the work in the following step, in 

order to support this theory of small population sizes. 

4.2.2 Step-wise Evolution Results 

Appropriateness, Step 0: Single Population Fitnesso 

The first set of results obtained by this thesis proved the stepping procedure to be immediately 

better than the non-stepping procedure. While the non-stepping procedure was occasionally ca­

pable of finding a good result after many generations of searching amidst large populations, the 

step-wise evolution consistently found better-than-random results in short time spans with smaller 

populations. A comparison of the average convergence of both experiment 0 and step 0 is presented 

in Figure 4.2. As expected a smaller search space leads to improved performance. 

The fitness distribution of the population providing the average min, max, and IQR of the 

population's scores as it evolves is illustrated in Figure 4.3. Perhaps the most obvious characteristic 

of the distribution is that the minimum values of the population scores remain relatively constant 

throughout the entire evolution. This is likely a result of the difficult solution space (dynamic, 

uncertain, etc), where small changes to an individuals solution may have a large impact on its 
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Figure 4.2: Comparison of the means of Step 0 and Exp O. 
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Figure 4.3: Average population distribution of step O. From bottom to top in each column, lines 
indicate the min, Ql, median, Q3, and max of the population scores at each generation. 
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Figure 4.4: Max and mean proficiency of each type of rescue team over time. 

fitness score. As evolution progresses these weaker individuals form a minority of decreasing size, as 

evident by the increasing gap between min and Ql, and the relatively smaller gaps between Ql and 

up. This asserts that some amount of convergence is taking place. 

Figure 4.4 illustrates the maximum and mean proficiency over time of each type of rescue agent . 

The proficiency values here represent the ratio of remaining civilian health, the ratio of unburned 

buildings, and the ratio of cleared blockades, for AT, FB, and PF agents respectively. Note that 

these proficiencies do not represent the fitness function for these experiments. From this figure it is 

clear that the improvements in score are due to the evolution of effective FB logic and little else. In 

fact, the slight improvement seen in the AT proficiency can be explained as a lack of fires harming 

civilians leading to more civilian health remaining at the end of simulation. 

A manual analysis of the decision logic trees of the final generations from these experiments 

was performed to determine the developed behaviours. It was found that FB agents evolved to the 

expected solution for this step or logically equivalent variants to this solution in the majority of 

runs. Figure 4.5a) presents the fire brigade agent tree evolved in the best-scoring GP individual of 

this step. The logic of this solution is simple: move to the nearest fire and extinguish it. This simple 

logic was found independently in all of the experimental runs (almost ubiquitously in some). Most 

populations even made correct use of the getEntrances primitive to avoid having FB agents harm 

themselves by walking into the buildings they were extinguishing. 

In contrast to the very effective FB decision tree in 4.5a), the decision tree in 4.5b) performs quite 

poorly. Both trees have an identical structure and all but a single terminal node is changed from a) 

to b). Despite having only a single differing node the fitness is a clear decrease, as is expected given 

the change in logic. This highlights the volatility of solutions in this search space. Such volatility 
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could be the cause of the lack of performance found in both the AT and PF behaviours. Neither 

of these types of agents seem to have evolved consistently well-defined behaviours appropriate to 

the task at hand. In the final generation, a handful of individual PF trees managed to clear more 

than 10% of the roadblocks with convoluted behaviours. One noteworthy PF behaviour cleared all 

roadblocks between it starting point and the nearest refuge accounting for 20% of the total amount, 

which could clearly be beneficial to a properly operating team of individuals (remember FB agents 

will need to refill their water tanks at the refuge, and AT agents must bring wounded civilians to 

a refuge). One single individual out of the final populations of 10 executions evolved a PF decision 

tree that cleared 55% of road blocks utilizing a refined greedy approach. During evolution a number 

of good PF trees appeared, which used the greedy approach, often skewed amidst many nonsensical 

combinations of primitives. These solutions however, having no direct impact on the score, were not 

preferred by selection. This is evident by the PF's low mean, seen in Figure 4.4. 

The most effective AT in terms of score as well as percentage of civilian health preserved, main­

tained 36% of the total initial health of all civilians. This however was achieved utilizing the logic 

seen in the AT tree of Figure 4.6. It is clear from looking at this AT's decision tree, that the AT had 

no hand in preserving the health of any civilian. Not surprisingly, the FB tree from this individual 

managed to preserve 89% of the surface area of buildings, this combined with the randomized dam­

age calculations for trapped civilians brought this solution to the top. This hints that the difficulty 

in evolving AT logic may be the unpredictability resulting from the effects of external forces. So, 

unlike the FB and PF logics, small pieces of semi-correct logic will not benefit the fitness. Instead 

AT trees that are in the same GP individual as an effective FB tree have the selective advantage 

regardless of their own merit . Again, small elements of proper behaviour logic were found in some 

AT trees, but convoluted similar to the PFs. 

Finally, the fact that the tree in 4.6 has the highest score of all 500 individuals (50 individuals, 

10 runs, final generation only), illustrates the bias of the scoring function. Here we have a somewhat 

well adapted FB, along side a useless AT, and a confused PF (note that this PF will only clear when 

NOT at a blockade). The scoring function is heavily weighted to the survival of individuals, and 

rightly so given the context of this simulator. However this clouds the evaluation of the behaviours 

of the individual agents. As seen in this case, a lucky break in the random damage coupled with a 

somewhat effective (although not optimal) FB has allowed the score to favour two ineffective trees. 

This issue is addressed later in this section with the introduction of multiple populations. 

Appropriateness, Step 0: Single Population Fitness5 

The primary reasons for the convergence to sub-optimal solutions appear to be a result of an inability 

to evolve operational AT and PF behaviours. It is theorized that this is due to the credit assignment 

problem that is inherent in having three trees control 25 agents in a single individual that is given 

a single fitness score. This single fitness score is heavily weighted towards the number of surviving 
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(a) (b) 

Figure 4.5: Example Fire Brigade trees from final population of step O. (a) Thee from the best 
scoring individual. (b) Similar tree that performs poorly. 

AT FB PF 

Figure 4.6: The best individual from the first step 0 experiment. Note that the FB tree is the only 
contributing member of this individual. 
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Figure 4.7: Mean and max scores of fitnesSo (coloured blue) versus fitnesss (coloured red). 

individuals (whole numbers), less weighted towards the amount of unburnt buildings (ratio: [0,1)), 

and ignorant of the work done by the police force . To address this a new fitness formula was first 

designed that put all three agent types on similar footing. This formula is as follows: 

j . HPfinal UnburnedArea ( Bfinal) ztnesss = + + 1 - ---
H P init Area B init 

(4.6) 

where HP is the amount of civilian health (f inal is at the end of simulation, init is at the beginning), 

UnburnedArea is the total area of unburned buildings at the end of simulation, Area is the total 

building area, and B is the amount of blockage (blockades) . 

The simulator scores achieved in this experiment appear slightly worse in terms of max and mean 

than those of the previous experiment. Examination of Figure 4.7 suggests that fitness5 converges 

to a slightly lower optima than fitnesso . This is apparently due to the similarly decreased FB 

proficiency (see Figure 4.8) evolved in these experiments. On average the FB proficiencies in the 

final generation of fitnesss are slightly less than those of fitnesso. However the single best individual 

from the fitness5 experiment outperforms the single best individual of the fitnesso experiment by 

approximately 2%. This can be attributed to the statistically significant improved PF proficiencies. 

With the PFs capable of opening roads, FBs will have increased access to burning buildings. This 

means that identical FB behaviours in both experiments will have better results in the fitness5 

experiments, however, having to share the evolutionary spotlight (in terms of fitness) with PF trees 

has the effect of slightly holding back the evolution of the FB trees. Thus while the single best FB 

solution preserved 94% of all buildings, the average best solution per run preserved just above 80%. 

The best behaviours of these FB agents is the 'move to the nearest target and act ' behaviour that 

was found in both experiments. Similar behaviours were found in the PF agents (as with before as 
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Figure 4.8: Max and mean proficiency of each type of rescue team utilizing fitness5 . FB values are 
indicated with red lines, PF are blue lines, and AT are green lines. 

well), however in this experiment there is a reward to the PF behaviours so they are not overlooked 

and thus maintained in the population. The PF behaviours demonstrating the highest proficiency 

at clearing blockades are found in large convoluted trees containing many Clear and Move actions. 

This leads to a more chaotic behaviour that appears to be a simple form of exploration. This will be 

further explored in the Task Assignment section of the results with the introduction of exploration 

primitives. 

The AT proficiencies remain unevolved. The trees developed are typically single action trees 

containing no if-statements. It is suspected that this is due to the fact that it is still a single fitness 

to evaluate three distinct plans of action. Since the FB and PF plans are evidently more readily 

evolvable, improvements to the AT logic may be going unnoticed by the evaluation. 

Appropriateness, Step 0: Multiple Populations Fitness5 

A second form of population was implemented to address the lack of evolution occurring in the 

AT trees. This population consists of three distinct cooperating sub-populations, one for each type 

of agent. This way, each agent type could be evaluated and evolved with increased independence, 

utilizing a score that is directly representative of the work done by a given tree. The fitnesses used 

for each subpopulation are the respective parts of formula (4.6). Apart from these two changes, the 

experimental parameters remain identical to those used in the discussion so far. 

A comparison between the mean and maximum scores of experiments using a single population 

versus multiple sub-populations is presented in Figure 4.9. From this it is clear that the use of 

multiple populations has a great impact on the speed of evolution. While both experiments reach a 
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Figure 4.9: Single versus multiple sub-populations comparison. Mean and max for both single 
(labelled S, coloured red), and multiple (labelled M, coloured blue) subpopulations. 

similar state in terms of mean population score, the multiple population experiments find top scores 

near 55 within 10 generations on average, while the single population peaks around scores of 50. 

Similar to the single population, step 1 does not improve the solutions in the multiple population 

tests. 

Figure 4.10 presents the max and mean proficiencies of each type of agent. When compared to 

Figure 4.8 the multiple populations appear to offer an advantage to both speed of evolution and 

maximum proficiency, while the mean proficiencies for each agent type appear similar between both 

experiments. FB proficiency at preserving buildings is found at a maximum of 92%-94% in the final 

population of every run of this experiment as compared to only a handful of times in the single 

population experiment. PF agents again demonstrate some evolution, clearing 20% of roadblocks on 

average and achieving a maximum proficiency of 76%; roughly equivalent to their single population 

counterpart. AT however remain unevolved, any slight improvements in proficiency at preserving 

civilian health is attributable to increased FB proficiency at stopping fires from reaching civilians. 

The change in convergence speed and maximum proficiencies may be attributable to the presence of 

separate elitism individuals in the multiple population experiments as opposed to a shared elitism 

individual in the single population, which may alone be the critical difference when deciding between 

these two forms of population. The trees developed here are similar to those of the single population. 

Appropriateness, Step 0: Fitness7 

The introduction of multiple populations did not stimulate the evolution of AT behaviours as was 

hoped. The best AT proficiencies continue to coincide with effective FBs. The issue here seems to 
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Figure 4.10: Max and mean proficiency (fitness) of each type of rescue team over time in the multiple 
population experiment utilizing fitness5. FB values are indicated with red lines, PF are blue lines, 
and AT are green lines. 

be the random amounts of damage done to civilians causing an unclear evaluation of AT behaviours. 

Also, the task of the AT must be performed completely in order for it to have any effect. Simply 

clearing a civilian does not preserve its health, the civilian must be brought to a refuge in order to 

stop taking damage. Formula (4.7) was created to address these issues. 1 

f
. (BUrYJinal HPJinal) UnburnedArea ( BJinal) ztnesS7 = x + + 1 - --

BUrYinit H Pinit Area Binit 
(4.7) 

where Bury is the amount of total 'buriedness' of all civilians. This describes how badly buried a 

civilian is within a building, and consequently how much work and time are required for the AT 

to successfully remove them from the building. As with fitness5, this formula is separated into 

its component parts (at each '+') for experiments using multiple populations. It was decided to 

multiply the unburying proficiency with the health preservation proficiency so that AT trees that 

did not perform the former task were given a score of zero. This provided the evolution of AT 

populations with a clear starting point in terms of fitness that reflected meaningful constructions as 

opposed to random influence. 

The experiments involving this formula did not improve the AT proficiency at preserving civilian 

HP, as seen in Figure 4.11. The maximum proficiency of ATs at this task actually dropped slightly 

due to the loss of elitism specific to this task, the mean proficiency however remained the same. It 

1 Fitness6 was first created which averaged the buried ness with civilian damage, but was found that the random 
health still overwhelmed the buriedness scores. Fitness7 corrected this by having a score of 0 assigned to any AT 
that did not start rescuing civilians. Although fitness6 is not analyzed in this thesis, the numbering was preserved to 
coincide with the database of results collected. 
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is important to understand here that it is not necessarily the evolution of scores, but the evolution 

of behaviours that is sought in this experiment. To this end, fitness7 does in fact provide an 

improvement, as many ATs learn simple clearing behaviours. This is seen as an increase in both 

mean and max values of the 'bury' task in Figure 4.11, as compared to the zero development prior to 

this experiment. While the maximum proficiency does not rival the competence of the FB and PF 

agents (which remain expectedly unchanged in this experiment), task-appropriate behaviours are 

developed. The specific behaviours developed here appear to be of two main schools. The majority 

of runs converge towards the expected solution for the step 0 language, namely 'move to a target 

and act on it', often containing significant bloat around this simple core of logic. However a minority 

(3 out of 10 runs) converged towards an alternative solution stateable as 'if at a blockade then move 

to the nearest trapped civilian, if not a blockade then remove'. This behaviour is generally less 

effective than the expected one, although it does result in the removal of a few civilians from their 

peril. This can be seen as a sort of commentary on the prevalence of blockades in the environment, 

ultimately suggesting a potential reason for the limited competence at this task. Later steps should 

explore this further. 

For the sake of comparison, an experiment utilizing fitness7 on a single population was performed. 

The proficiency scores developed for AT agents in this experiment suggests that the expected be­

haviour was much less evolvable in this experiment, likely due to the combination of a poorly weighted 

function for a relatively more complicated task (as compared to the other two types of agents). An 

attempt was made to weigh the fitness to favour AT development more heavily by multiplying the 

AT's combined HP and Bury proficiency by 10. Theoretically this shifts the AT proficiency values 

from [0,1] to [0,10], however in practice these values will likely not exceed 1 or 2 at maximum and will 

typically reside in the [0,0.1] range as opposed to the [0,0.01] range in which they resided previously. 

The results of this reweighting (presented in Figure 4.12), raised the evolvability of AT behaviours 

without effecting the mean FB and PF behaviours. As compared to the multiple popUlation scheme 

using fitness7, the mean proficiencies of each task remain similar, while the speed of convergence and 

maximum proficiency values appear to be decreased in the single population (just like with previous 

single versus multiple population comparisons). 

Appropriateness, Step 0: Summary 

To summarize the results of this . step, Table 4.2 lists each experiment and the most common be­

haviours developed in final generations of each population. It is important to recall that there is an 

expected outcome for this step. Ideally, each agent should learn the simple goto-and-act logic akin 

to that of the ideal FB agent found in Figure 4.5a). Other well-performing behaviours are welcome 

solutions to this problem. 

A common occurrence amongst nearly all populations for all runs in the multiple population 

experiments is a lack of convergence to a single identical tree due to the presence of bloat. Bloat 
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Figure 4.11: Max and mean proficiency of AT agents in the multiple population experiment utilizing 
fitness7, at the tasks of preserving civilian HP (seen in green), and removing buried civilians (seen 
in brown). 
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Figure 4.12: Max and mean proficiency of AT agents in the single population experiment utilizing 
fitness7, at the tasks of preserving civilian HP (seen in green), and removing buried civilians (seen 
in brown). 
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Population Prominent Behaviour 
Single Population, fitnesso 

AT No useful development. 
FB Expected behaviour (9 of 10 runs), often with bloated solutions (5 of 9 times). 
PF . No useful development. 

Single Population, fitness5 
AT No useful development. 
FB Expected behaviour (8 of 10 runs), often with bloated solutions (4 of 8 times). 

PF 
Expected behaviour with bloated solutions or alternate destinations (10 of 10 
runs). 

Multiple Populations, fitness5 
AT No useful development. 
FB Expected behaviour with bloated solutions (10 of 10 runs). 
PF Expected behaviour with bloated solutions (10 of 10 runs). 

Single Population, fitness7 
AT Expected behaviour (3 of 10 runs), blockade based decision (2 of 10 runs) 
FB Expected behaviour (7 of 10 runs), often with bloated solutions (5 of 7 times) 
PF Expected behaviour with bloated solutions or alternate destinations (10 of 10 runs) 

Multiple Populations, fitness7 

AT 

FB 
PF 

Expected behaviour (7 of 10 runs), blockade based decision (3 of 10 runs), bloated 
(10 of 10 runs). 
Expected behaviour with bloated solutions (10 of 10 runs). 
Expected behaviour with bloated solutions (10 of 10 runs). 

Table 4.2: Summary of behaviours developed in the Step 0 experiments. 

in these trees can be defined in two ways. Some occurrences of bloat are logically bloated trees 

containing branches of primitives that will never be executed in any circumstance (e.g. two nested 

if statements using the same condition), and other occurrences are contextually bloated trees that 

contain primitives that are not logically ignorable, but given the initial conditions of the simulated 

run, will never be executed (e.g. primitives following an if(atRefuge) where no complementary 

command to move to refuge exists). In both cases the bloat serves to protect other parts of the 

program from harmful mutations by providing a large number of mutation points that will have no 

effect on the outcome. The high frequency of bloated variations on the expected solution especially 

in the multiple population experiments leads to a wide variety of logically similar yet syntactically 

distinct individual trees in each population. Interestingly, in the PF trees this limited form of 

convergence has the effect of creating similar clearing logic but to alternative destinations, such as 

'if at blockade then clear else move to refuge/fire/trapped'. 

A number of unique, unexpected, and interesting solutions were created throughout this step's 

experiments without being converged to by the general population. Such behaviours include an 

AT with the appearance of self-preservation logic, that would rescue a civilian in the expected way 

unless the building were suddenly on fire, at which time the ambulance would move outside the 

building. Another interesting behaviour was a PF tree that said to clear paths between refuges and 
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fires, which could be quite useful in the next step where FB agents need to learn to refuel. 

Finally, summary tables of the best trees of each agent type found in each experiment, are 

presented in Tables 4.3 through 4.5. The best trees are determined by their proficiency at their 

desired task (regardless of the fitness function used). AT proficiencies are listed as pairs in the 

format (HP,bury) and chosen as the tree which provided the highest overall proficiency (HP times 

bury). In the case of two identical proficiencies, the best is chosen as the one with the higher 

proficiency in the 'bury' task, then by HP, then finally at random. The trees here are presented 

in the form of LISP-style s-expressions. Tree format illustrations of these trees are presented in 

Appendix A. Also included in this table is the simulator score attained during the trees evaluation. 

Recall, that this score is based on the performance of the given tree as well as a tree from each of 

the two remaining agent types. 

Returning to the issue of the suitability of mutation versus crossover in this work, recall that 

experiments using 100% mutation were initially found to be equivalent in effectiveness to experiments 

using crossover. It was hypothesized that this was due to the small population sizes. Here, results 

from four experiments utilizing the improved setup developed over the past section are compared. 

The previously established results using multiple populations and fitness7 with a population size of 

fifty (50) individuals and a 0% crossover rate, is compared to similar experiments, first using 80% 

crossover (20% mutation) and a 50-individual population, and second using 80% crossover and a 

population of 200 individuals. As a control a fourth experiment is run using 100% mutation (0% 

crossover) with a population of 200 individuals. Table 4.6 presents the mean and max proficiencies on 

all 4 agent tasks (two AT agent tasks, one FB, and one PF) for each experiment. As expected, both 

large population experiments outperform their smaller population counterparts on most proficiencies, 

however the evaluation of the larger populations requires four times the amount of computation time 

(approximately 400 hours per run divided by the number of parallel evaluations, based on an estimate 

of 2.4 minutes per evaluation). 

In the experiments utilizing 50-individual populations, the comparison of mutation versus crossover 

appears inconclusive, similar to the results mentioned in the previous discussion. Both the max and 

mean proficiency for the AT task of unburying civilians are higher in the experiment using 0% 

crossover than in the 80% crossover experiment, likely due to tendency of mutation to escape local 

optimal. The 80% crossover experiment has higher mean proficiencies in the remaining tasks, likely 

caused by the higher rate of convergence caused by the crossover operator. These results appear 

to indicate, as before, that there is no clear bias of proficiency towards using crossover or mutation 

with a small population size. 

The experiments utilizing 200-individual populations have a clearer distinction. Here the ex­

periments utilizing the crossover operator consistently outperform those using only mutation. This 

appears to be in affirmation of the hypothesis that as population sizes increase, so to does the im­

portance of crossover. Referring to Figures 4.13 through 4.16, it appears that experiments utilizing 
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Population Tree Proficiency Score 
Single,.fitnesso (Move (nearestRoad allBlockades)) (0.365,0.000) 59.04 
Single, fitness5 (if atBlockade (Move (nearestRoad (getEntrances (0.346,0.000) 49.73 

(nearestBuild allRefuges)))) Remove) 
Multiple, fitnesss (Move (nearestRoad (getEntrances (nearestBuild (0.370,0.000) 58.57 

allFires) ) ) ) 
Single, fitness7 (if atTrapped Remove (Move (nearestCiv all- (0.237,0.208) 43.95 

Trapped))) 
Multiple, fitness7 (if atBlockade (if atTrapped Remove (Move (near- (0.302,0.224) 50.99 

est Road (get Entrances (nearestB uild allFires))))) 
(if atTrapped Remove (Move (nearestCiv all-
Trapped))) ) 

Table 4.3: Summary of the best AT trees (by proficiency) developed in the Step ° experiments. 

Population 
Single, fitnesso 

Single, fitness5 

Multiple, fitnesss 

Single, fitness7 

Multiple, fitness7 

Tree 
(if atFire (Extinguish (nearestBuild allFires)) (Move 
(nearest Build allFires))) 
(if atFire (Extinguish (nearestBuild allFires)) (Move 
(nearest Road (getEntrances (nearestB uild allFires))))) 
(if atFire (if atlnjured (Move (nearest Road (getEn­
trances (nearestBuild allRefuges)))) (Extinguish (near­
estBuild allFires))) (if atlnjured (if atTrapped (Move 
(nearestCiv allTrapped)) (Extinguish (nearestBuild 
allRefuges))) (if atInjured (Move (nearestRoad (getEn­
trances (nearestBuild allFires)))) (if atInjured (Move 
(nearestBuild allRefuges)) (if atInjured (Extinguish 
(nearest Build allRefuges)) (Move (nearest Build all­
Fires) )) ) ) ) ) 
(if at Refuge (Move (nearest Road allBlockades)) (if at­
Fire (Extinguish (nearest Build allFires)) (Move (near­
estBuild allFires)))) 
(if at Fire (if at Refuge (if at Refuge (if atFire (Ex­
tinguish (nearestBuild allRefuges)) (Move (nearestCiv 
allTrapped))) (Extinguish (nearestBuild allRefuges))) 
(Extinguish (nearestBuild allFires))) (Move (nearest­
Build alIFires))) 

Proficiency Score 
0.908 53.80 

0.942 49.93 

0.925 50.42 

0.911 50.05 

0.942 53.86 

Table 4.4: Summary of the best FB trees (by proficiency) developed in the Step ° experiments. 



CHAPTER 4. EXPERIMENTS AND RESULTS 

Population 
Single, fitnessQ 

Single, fitness5 

Multiple, fitness5 

Single, fitness7 

Multiple, fitness7 

Tree 
(if atTrapped Clear (if atBlockade (if at Refuge (MoveB 
(nearestCiv allTrapped)) Clear) (if atRefuge Clear 
(if atTrapped Clear (MoveB (nearestRoad allBlock­
ades)))))) 
(if atInjured (MoveB (nearestCiv allTrapped)) (if 
atBlockade (if atBlockade Clear (MoveB (nearest­
Civ allTrapped))) (if atFire (if atTrapped Clear 
(MoveB (nearest Road (getEntrances (nearest Build all­
Refuges))))) (MoveB (nearestRoad allBlockades))))) 
(if atTrapped Clear (if atBlockade (if atInjured (if at­
Fire Clear (MoveB (nearestCiv allTrapped))) Clear) 
(if atInjured (if atTrapped (MoveB (nearestBuild all­
Fires)) (MoveB (nearestCiv allTrapped))) (MoveB 
(nearest Road allBlockades))))) 
(if at Blockade Clear (MoveB (nearest Road allBlock­
ades))) 
(if atBlockade (if atTrapped (if at Refuge (MoveB 
(nearestCiv allTrapped)) Clear) (if at Refuge (if 
atInjured (MoveB (nearestCiv allTrapped)) (MoveB 
(nearestRoad allBlockades))) Clear)) (if atFire 
(MoveB (nearestRoad (getEntrances (nearestBuild 
allRefuges)))) (MoveB (nearestRoad allBlockades)))) 

Proficiency Score 
0.554 50.47 

0.774 50.62 

0.764 45.92 

0.775 42.52 

0.724 18.76 

Table 4.5: Summary of best PF trees (by proficiency) developed in the Step 0 experiments. 

56 

crossover have mean fitnesses that converge faster and to slightly greater proficiencies than their 

mutation-based counterparts in both small and large population sizes. What appears to change in 

the crossover rate comparison between large and small populations is the consistency with which 

crossover outperforms mutation as the population size increases. 
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Population Crossover ATHP ATHP ATBury ATBury FB FB PF PF 
Size Rate Mean Max Mean Max Mean Max Mean Max 
50 0% 0.2435 0.2937 0.0291 0.1508 0.7761 0.9345 0.2445 0.7580 
50 80% 0.2590 0.2671 0.0279 0.1214 0.8339 0.9306 0.3205 0.7642 
200 0% 0.2454 0.2972 0.0430 0.2441 0.7711 0.9372 0.3557 0.8138 
200 80% 0.2570 0.2913 0.0541 0.2618 0.8281 0.9490 0.3999 0.8206 

Table 4.6: Comparison of the size of a population versus the usefulness of high and low crossover 
rates 
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Figure 4.13: Comparison of maximum convergence between 80% crossover and 0% crossover using 
populations of 200 individuals. Darker colours represent 80% crossover (cr80) and lighter colours 
represent 0% crossover (crO) . 
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Figure 4.14: Comparison of mean convergence between 80% crossover and 0% crossover using popu­
lations of 200 individuals. Darker colours represent 80% crossover (cr80) and lighter colours represent 
0% crossover (crO) . 
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Figure 4.15: Comparison of maximum convergence between 80% crossover and 0% crossover using 
populations of 50 individuals. Darker colours represent 80% crossover (cr80) and lighter colours 
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Figure 4.17: Max and mean proficiency of each type of rescue team utilizing a single population and 
the language of step 1. FB values are indicated with red lines, PF are blue lines. 

Appropriateness, Step 1 

Building on the well-developed results of step 0, step 1 aims to complete the evolution of rescue 

behaviours by adding primitives that deal with the more complicated steps of the agent's tasks. 

The expected behaviours of this step are continuations or additions to the pre-existing 'goto-and­

act' behaviours. For FBs the expected behaviour is extended to include returning to a refuge (and 

waiting there) to refill the water tanks. ATs are expected to load the civilians they unbury, and 

transport them to a refuge before unloading them. The task of PF agents remains unchanged. 

Figures 4.17 through 4.20 illustrate the proficiencies of each agent type for the single and multiple 

population experiments. The vertical lines in these figures represent the transition from step 0 to 

step I, and the sudden drop in the multiple population maximum value curves at this transition is 

due to the loss of the elitism individuals. The nearly fiat mean convergence curves in these figures 

illustrates the lack of improvement found in this step. Examination of the trees developed reveals 

that the added primitives were not used successfully and were often found amidst bloat rather than 

effective structures. 

Comparison with RCR Competition Results 

For completeness, the best individual from each run of the past two steps was tested on a number 

of maps previously used in competition. Specifically the individuals evolved here are compared 

to the results of the first three days of the 2006 RCR competition2 . Recall, however, that the 

2The results from 2006 are used because, as of writing this, they are the most complete and readily available results 
and map sets available for download that use v0.49.9 of the RCRSS 
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Figure 4.18: Max and mean proficiency of AT agents utilizing a single population and the language 
of step 1. The tasks are preserving civilian HP (seen in green), and removing buried civilians (seen 
in brown) . 

1 

0.9 

0 .8 r 
0 .7 

e- 0 .6 .:: 
.11 0.5 c! e 0.4 1:1. 

0.3 

0 .2 

0 .1 

0 

,r --
IF" IY 

J 
If , 
I - ...... ~ ~,.., 

.,;-
I 
'''' "" "" "'" "" '" '"'''' "" '" "" """ 

- FB_Mean 

- FB_M ax 

- PF_ M ean 

-PF~Max 

1 11 21 3 1 41 51 61 71 81 91 

Generation 

Figure 4.19: Max and mean proficiency of each type of rescue team utilizing multiple populations 
and the language step 1. FB values are indicated with red lines, PF are blue lines. 
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Figure 4.20: Max and mean proficiency of AT agents utilizing multiple populations and the language 
of step 1. The tasks are preserving civilian HP (seen in green), and removing buried civilians (seen 
in brown). 

goal of steps 0 and 1 are the evolution of the operational behaviours required by the RCRSS, not 

strategizing behaviours. The results of the competing teams on the other hand, most likely presume 

this operational behaviour in the process of designing their strategies. The results of the comparison 

are presented in Tables 4.7 through 4.9, sorted alphabetically by team with the results of this thesis 

using single and multiple populations for steps 0 and I, separated at the bottom. Each column 

represents one map (i.e. one problem instance) specified by the organizers of the competition. 

During competition each team's solution is run once on the given map, and their score is recorded. 

For the purposes of experimentation, ten populations exist (one per run), and the best individual is 

selected from each population and tested on the competition maps (for the multiple-subpopulation 

experiments the best of each type of agent was selected). The experimental results presented here 

are the best scores of those 10 individuals. From this comparison it can be seen that the evolved 

solutions are not on par with the highly competitive solutions prepared by the teams in the RCR 

league. However, on a number of maps the evolved solutions do achieve scores that surpass the 

lowest few competitor scores, suggesting that there is potential for GP in this domain given some 

further evolution and focus into development of strategizing behaviours. 
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Day1 Kobel VC1 Foligno1 Kobe2 
AladdinRescue 97.13 71.44 81.91 73.93 
Bam 85.31 47.2 63.66 40.18 
CSU_YunLu 46.75 65.57 72.71 50.97 
DAMAS-Rescue 46.18 49.53 51.23 38.85 
FCPortugal 80.1 52.73 50.11 58.33 
Hinomiyagura 96.48 39 48.46 28.57 
Impossibles 106.4 60.41 63.03 56.49 
Incredibles 93.6 64.63 82.42 64.88 
ITANDROIDS 77.49 62.88 67.54 47.61 
lUST 104.5 79.52 97.19 92.38 
Kosar 38.89 65.1 86.72 69.11 
KSHITIJ 64.64 56.09 69.67 41.55 
MRL 107.8 70.71 101.3 77.01 
NITRescue06 70.9 39.49 65.49 44.26 
Persia 88.77 70.57 64.37 51.5 
Poseidon 104.1 75.36 86.64 83.77 
RoboAkut 77.05 72.37 62.92 44.43 
8.0.S 105.2 80.07 93.23 58.97 
SBCe-Saviour 107.4 81.64 85.25 88.14 
Single, StepO 37.72 28.97 38.12 22.37 
Multiple, StepO 32.69 28.23 40.60 21.40 
Single, Step1 38.53 28.10 38.91 22.43 
Multiple, Step1 38.59 25.66 41.64 20.69 

Table 4.7: Comparison of step 0 and step 1 scores to past RCR competitors (2006 competition, 
preliminaries day 1). 
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Day2 VC2 Random 1 Kobe4_1 Random2 Kobe4_2 
AladdinRescue 62.23 83.97 62.84 15.42 59.41 
Bam 43.63 45.11 75.13 12.87 64.5 
CSU3unLu 47.05 35.27 78.45 17 71.74 
DAMAS-Rescue 43.79 67.35 61.75 12.52 72.04 
FCPortugal 47.97 24.12 67.81 14.48 66.94 
Hinomiyagura 50.11 17.19 62.29 10.62 58.62 
Impossibles 86 83.91 83.53 22.72 76.69 
Incredibles 77.05 63.27 64.99 24.44 71.25 
ITANDROm S 58.22 60.69 82.47 18.81 76.2 
lUST 92.57 63.77 101.9 25 .37 93.32 
Kosar 82.43 64.18 97.06 18.08 88.05 
KSHITIJ 60.04 47.78 70.83 14.76 69.83 
MRL 80.29 87.98 88.68 33.32 93.33 
NITRescue06 41.68 43.62 73.32 12.56 67.15 
Persia 76.22 60.56 81.44 17.55 76.51 
Poseidon 82.86 95.33 89.53 0 102.1 
RoboAkut 76.29 58.71 84.52 21.68 77.06 
S.O.S 92.01 83.79 90.4 25.99 88.46 
SBCe_Saviour 99.7 92.98 88.99 28.26 97.02 
Single, StepO 30. 11 20.21 63.37 9.91 57.69 
Multiple, StepO 31.73 20.52 62.80 10.50 55 .51 
Single, Stepl 28.62 22.66 63.71 9.91 58.26 
Multiple, Step 1 29.72 20.48 62.74 9.16 55.89 

Table 4.8: Comparison of step 0 and step 1 scores to past RCR competitors (2006 competition, 
preliminaries day 2. 
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Day3 Kobe3 Random3 Random4 Random5 TOTAL 
AladdinRescue 60.92 106.98 95.459 60.59 932.23 
Bam 52.82 95.921 80.072 54.624 761.03 
CSU_YunLu 71.81 90.028 80.157 60.249 787.75 
DAMAS-Rescue 58.88 102.1 77.468 52.942 734.64 
FCPortugal 63.56 85.904 70.534 47.024 729.63 
Hinomiyagura 55.19 67.924 47.514 39.727 621.72 
Impossibles 76.14 110.27 98.452 70.727 994.76 
Incredibles 74.57 103.24 94.234 70.014 948.60 
ITANDROIDS 68.46 103.41 56.372 65.686 845.83 
lUST 84.88 108.33 99.524 82.699 1125.91 
Kosar 78.51 106.25 97.477 67.68 959.55 
KSHITIJ 59.1 89.903 83.18 0 727.37 
MRL 82.72 110.31 98.49 82.481 1114.45 
NITRescue06 62.47 87.494 80.427 52.997 741.87 
Persia 72.92 100.09 89.084 70.012 919.61 
Poseidon 87.52 109.44 98.298 82.763 1097.65 
RoboAkut 75.05 106.39 91.397 0 847.87 
S.O.S 74.94 107.24 74.902 77.513 1052.68 
SBCeJ)aviour 73.52 108.22 96.487 87.895 1135.47 
Single, StepO 55.20 58.58 49.96 40.51 512.72 
Multiple, StepO 55.10 60.71 46.98 37.67 504.43 
Single, Stepl 55.55 66.46 53.18 39.13 525.45 
Multiple, Stepl 53.73 56.73 49.54 37.72 502.27 

Table 4.9: Comparison of step 0 and step 1 scores to past RCR competitors (2006 competition, 
preliminaries day 3. 



Chapter 5 

Conclusions and Future Work 

Genetic Programming is termed an 'Automatic Programming Technique' due to its process of de­

veloping program-structured solutions, yet there is a considerable amount of manual effort involved 

in the design and initialization of a GP system. Perhaps most notably so in the design and imple­

mentation of the GP language. It seems that the utility of Genetic Programming is in bridging the 

gap between a 'natural' description of the problem and a desirable description of the solution. In 

order to hierarchically decompose a problem into smaller sub-problems, or even to have GP focus on 

sub-areas of a problem the manual effort in designing the scenario begins to outweigh the amount 

of effort saved by having GP cover the remaining distance. So the design of simpler methods to 

improve GP's capabilities is a necessary part of utilizing GP as a means for the automatic creation 

of complex solutions such as control of autonomous agents. To this end, this thesis introduces the 

step-wise learning paradigm in order to initially reduce the size of the search space, and gradually 

expand it while maintaining focus on known good areas of search. It is found that when compared 

to a standard GP the step-wise procedure is capable evolving more rapidly and to better results. 

In a complex search space that seems unyielding to a standard GP, by the judicious selection of a 

simpler initial search space the step-wise learning was capable of first evolving simple behaviours 

and building upon them. While it is within the ability of a GP algorithm to ignore useless primitives 

in a language, for a problem with such heavy constraints and large search space as the RCR, it is 

infeasible to do so. 

This thesis applied Genetic Programming to an environment with a very rugged fitness landscape. 

This means that small changes in the solution can lead to large changes in the fitness of that solution. 

This requires a very fine grained search through the solution space so that small and isolated areas 

of good solutions are not skipped over entirely. To further complicate this, the strict time-line and 

costly evaluation forced the GP system to be developed to evaluate fewer samples from the solution 

space. Despite these difficult parameters some reasonable solutions to the problem were evolved 

creating the basic expected decision logic as well as some unexpected behaviours. However, mixed 
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success was observed as the core rescue behaviours were developed, but not the extended rescue 

behaviours. 

It was found that control of Fire Brigade (FB) agents was the most readily evolved of the three 

types of agents. When utilizing a single population where individuals consisted of a tree for each 

type of agent, the FB agents shaped the evolution of the entire individual. It was found that a 

more expressive fitness function lead to better solutions, allowing the Police Force (PF) agents to 

evolve their own behaviours. Ambulance Teams remained unevolved until a correction to the fitness 

function motivated the development of simple rescuing behaviours but the overall task of preserving 

civilian health remained elusive. 

A comparison between a single population of individuals containing three trees and multiple 

co-evolved subpopulations each containing a single tree is carried out alongside the evolution of 

behaviours to ascertain if either of these benefit the evolution. While the multiple sub-population 

is capable of maintaining higher maximum solutions and faster convergence due to the presence of 

elitism specific to each type of agent, it is determined that the mean quality of solutions remains 

unchanged within the set limit of generations. 

The expensive operation in this GP system is the evaluation of an individual. Given the setup 

of this system, three trees can be simultaneously evaluated, whether those three trees all belong 

to the same individual or three separate individuals. In the case of those three trees belonging to 

separate individuals from three separate populations, three times the number of selection operators 

are applied, and on a much more specific comparison. This suggests that the multiple population ex­

periments have the advantage of a more accurate selection without a significant increase in execution 

time. 

Ongoing and Future Work 

Although this thesis shows that GP has potential for use in developing rescue agent control struc­

tures, a number of experiments that were anticipated to further explore the suitability and effective­

ness of the application of GP to the RCR domain could not be completed. The challenge that the 

RCR domain poses to the evolution of solutions was much greater than what was initially thought, 

and thus the time constraints would not allow for the completion of all experiments. A number of 

experiments have been started, and will be completed as ongoing and future work. 

In order to proceed with the remaining steps that were presented in Section 3.4 but not completed, 

the core structure of the agent logic must first be in place. Since the GP system developed here 

was unable to evolve the second (more complicated) variation of operational behaviours, manually 

constructed trees were added to the population to bias the search to that area of space. Seeding 

the population with a small percentage of expected solutions makes sense in this situation as the 

expected solution comprises the necessary structure required by the RCRSS domain, which can then 

be built upon in the steps that follow. This was not done initially for the purposes of exploring GP's 
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ability to create this structure on its own, but for the sake of examining the remaining behaviours 

in the absence of evolved solutions, a seed population is a reasonable alternative. To create this 

seeded population, five trees of each type (10% of the population) from the evolved population 

resulting from step 1 were replaced by manually constructed trees. These will be evolved for a full 

50 generations to create a population that is essentially converged. 

From here the exploration and target selection behaviours will be examined. Both of these 

behaviours (three steps) are expected to improve the quality of the solution trees. In the case of 

exploration, the evolved behaviours will be examinable in terms of an expected solution similar to 

the previous steps. Also the use of explorative behaviours in proper conjunction with the basic 

behaviours expected from the previous steps should have a positive influence on proficiency and 

score as more targets are found and acted upon. The target selection behaviours on the other hand 

come with no expected solution. Thus, the changes in proficiency and score will constitute the 

effectiveness of these steps. 

Finally the cooperative behaviours developed following each of the previous steps will be exam­

ined. Similar to the exploration behaviour, proper use of the cooperation primitives should have 

noticeable behaviours, and improvements to the performance of those individuals utilizing them. 

At first consideration, following the results of steps 0 and 1 it seems unreasonable to expect GP 

to perform well in the steps mentioned above. However there is a clear distinction between the types 

of tasks of the first two steps and that of the remaining steps. In the first two steps the goal of the 

GP system was to evolve individuals that perform the task expected of them in the environment. 

Without this ability, agents often have little to no effect on the fitness of the GP individual. Following 

the creation of a population that has these abilities, the goal of the remaining steps of evolution 

is to adjust and ideally enhance these already existent behaviours. So while the former consists of 

a population of sharp contrast between somewhat fit and completely unfit individuals, the latter 

ideally consists of a population of gradual improvements concentrated in an area of the search space 

known to contain competent solutions. 
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Appendix A 

Best Trees of Step 0 

Figure A.l: AT Single Population Fitnesso Best Tree 
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Figure A.2: AT Single Population Fitness5 Best Tree 

Figure A.3: AT Multiple Population Fitness5 Best Tree 
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Figure A.4: AT Single Population Fitness7 Best Tree 

Figure A.5: AT Multiple Population Fitness7 Best Tree 
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Figure A.6: FB Single Population Fitnesso Best Tree 

Figure A.7: FB Single Population Fitness5 Best Tree 
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Figure A.8: FB Multiple Population Fitnesss Best Tree 

Figure A.9: FB Single Population Fitness7 Best Tree 
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Figure A.l0: FB Multiple Population Fitness7 Best Tree 

Figure A.ll: PF Single Population Fitnesso Best Tree 
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Figure A.12: PF Single Population Fitness5 Best Tree 

Figure A.13: PF Multiple Population Fitness5 Best Tree 
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Figure A.14: PF Single Population Fitness7 Best Tree 

Figure A.15: PF Multiple Population Fitness7 Best Tree 


