
Spin Labile Conducting Metallopolymers: 
A new architecture for hybrid multifunctional materials 

Brandon Djukic, RSc. 

Department of Chemistry 

Submitted in partial fulfillment 
of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Faculty of Science, Brock University 
St. Catharines, Ontario 

©2010 



Abstract 

The synthesis of 3-ethynylthienyl- (2.07), 3-ethynylterthienyl- (2.19) substituted qsal 

[qsalH = N-(8-quinolyl)salicylaldimine] and 3,3' -diethynyl-2,2' -bithienyl bridging bis­

qsal (5.06) ligands are described along with the preparation and characterization of eight 

cationic iron(III) complexes containing these ligands with a selection of counteranions 

[(2.07) with: SCN- (2.08), PF6- (2.09), and CI04- (2.10); (2.19) with PF6- (2.20); (5.06) 

with: cr (5.07), SeN- (5.08), PF6- (5.09), and CI04- (5.10)]. Spin-crossover is observed 

in the solid state for (2.08) - (2.10) and (5.07) - (5.10), including a very rare S = 5/2 to 

3/2 spin-crossover in complex (2.09). The unusal reduction of complex (2.10) produces a 

high-spin iron(I1) complex (2.12). 

Six iron(II) complexes that are derived from thienyl analogues of bispicen [bispicen = 

bis(2-pyridylmethyl)-diamine] [2,5-thienyl substituents = H- (3.11), Phenyl- (3.12), 2-

thienyl (3.13) or N-phenyl-2-pyridinalimine ligands [2,5-phenyl substituents = diphenyl 

(3.23), di(2-thienyl) (3.24), 4-phenyl substituent = 3-thienyl (3.25)] are reported 

Complexes (3.11), (3.23) and (3.25) display thermal spin-crossover in the solid state and 

(3.12) remains high-spin at all temperatures. Complex (3.13) rearranges to form an 

iron(II) complex (3.14) with temperature dependent magnetic properties best described as 

a one-dimensional ferromagnetic chain, with interchain antiferromagnetic interactions 

and/or ZFS dominant at low temperatures. Magnetic succeptibility and Mossbauer data 

for complex (3.24) display a temperature dependent mixture of spin isomers. 
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The preparation and characterization of two cobalt(II) complexes containing 3-

ethynylthienyl- (4.04) and 3-ethynylterhienyl- (4.06) substituted bipyridine ligands 

[(4.05): [Co(dbsqh(4.04)]; (4.07): [Co(dbsq)2(4.06)]] [dbsq = 3,5-dbsq=3,5-di-tert-butyl­

I ,2-semiquinonate] are reported. Complexes (4.05) and (4.07) exhibit thermal valence 

tautomerism in the solid state and in solution. 

Self assembly of complex (2.10) into polymeric spheres (6.11) afforded the first spin­

crossover, polydisperse, micro- to nanoscale material of its kind. . Complexes (2.20), 

(3.24) and (4.07) also form polymers through electrochemical synthesis to produce 

hybrid metaUopolymer films (6.12), (6.15) and (6.16), respectively. The films have been 

characterized by EDX, FT-IR and UV-Vis spectroscopy. Variable-temperature magnetic 

susceptibility measurements demonstrate that spin lability is operative in the polymers 

and conductivity measurements confirm the electron transport properties. Polymer (6.15) 

has a persistent oxidized state that shows a significant decrease in electrical resistance. 
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Chapter 1: Spin-crossover and valence tautomerism in molecules 

1.01 Introduction to spin labile magnetic materials 

For the development of fundamental SCIence, In addition to practical applications, 

examining the magnetic properties of new materials is an area of great interest. 

Ambitions within this field include attempting to enhance the versatility of materials by 

including labile magnetic properties that switch as a result of external perturbations. In 

this regard, many molecular compounds, including spin-crossover (SeQ) complexes and 

valence-tautomers (VT), have already been studied. The spin active centres in SeQ and 

VT compounds display labile electronic configurations and are typically switchable 

between high- and low-spin states leading to distinctive changes in magnetism. These 

changes can be caused by external perturbations like the variation of temperature, 

pressure or by light irradiation. [1-2] 

1.02 The spin-crossover phenomenon 

i) Geometry and spin state 

... ··· .... dZ
2 d,t-l 

f /-----<:~, __ _ 
.I dxy dxz dyz 

.. 
... 

... --------
free ion spherical field octahedral splitting 

Figure 1.01: The energy level diagram of transition metal ions with octahedral 
coordination geometrY3

] 
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The crystal field effect occurs when the d-orbitals are split as a result of ligand 

coordination. The d-orbitals become lower or higher in energy with respect to a spherical 

field, the barycenter, in which all five orbitals are degenerate. For transition metals with 

octahedral coordination geometry, orbitals that fall directly on the axis of the octahedron 

are higher in energy than the orbitals that are diagonal with respect to the axis and 

partially filled shells (d4 to d7
) have several possible spin states because of these non­

degenerate d-orbitals (Figure 1.01).[3-5] 

eg --

Jl 
I ~ ~,g. 

Figure 1.02: A low-spin d5 transition metal with octahedral geometry[3] 

I '" Sm," 

Figure 1.03: A high-spin d5 transition metal with octahedral geometry3] 

One electronic configuration resulting from the non-degenerate energy levels occurs 

when the energy difference between the orbitals (do) is larger than the energy used in 

pairing the electrons. The electrons are paired according to the Aufbau principle causing 

a cancellation of the electron spin, giving rise to the term low-spin (LS). The example in 

Figure 1.02 depicts a low-spin d5 transition metal with octahedral geometry. A second 

configuration, called high-spin (HS), occurs when the energy difference between the 
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orbitals is smaller than the energy required to pair the electrons and the electrons spread 

out in accordance to Hund's rule of maximum multiplicity. The example in Figure 1.03 

depicts a high-spin d5 transition metal with octahedral geometry. [3-5] 

ii) Ligand field theory 

Figure 1.04: The spectrochemical series (field strength increases to the right) 
[bpy = 2,2' -bipyridine ][3] 

Ligands affect the magnitude of the d-orbitals splitting (do) according to their field 

strength as described by the spectrochemical series (Figure 1.04). Strong-field ligands 

(x-acceptors) like 2,2'-bpyridine and CN- are more likely to fonn low-spin complexes 

because they create a larger do splitting. Weak-field ligands (x-donors) like r and SCN-

cause a smaller do splitting and are more likely to produce high-spin complexes. When 

first transition series metals are coordinated to ligands of intennediate field strength, or 

by combining strong and weak field ligands, a moderate do splitting is created. The 

potential for spin lability is then furthered because neither spin state is significantly 

beneficial in achieving the lowest possible energy state. [3] 

iii) Spin labile complexes 

Most transition metal complexes feature only one spm state (across a range of 

temperatures), either high- or low-spin, but in 1931 Cambi and Szego first reported 
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complexes, [tris(N,N-diorganodithiocarbamato)iron(III)], which exhibited solid and 

solution magnetic moments that were between the two values normally observed for 

iron(III) complexes (high-spin, fleJf:::: 5.9 IlB; low-spin, fleJf:::: 2.0 IlB). The anomalous 

behaviour was accounted for by suggesting an equilibrium between the two 

"magnetically isomeric" high- and low-spin forms and resulted in introducing the concept 

of spin lability. [6] 

iv) Thermodynamics of spin-crossover 

Spin lability can be described by considering the energy available for the system in 

question. The /'io splitting is related to the internal potential energy (ll) of the transition 

metal, with energy costs associated with either pairing electrons or populating the higher 

energy levels of the /'io splitting, and in combination with the pressure (P) and volume (J') 

can be used to determine the enthalpy (ll) in (Eq. li7
]: 

H=U+pV (Eq. I) 

Using the enthalpy and entropy (S), spin-crossover can be rationalized by the Gibbs (G) 

energy equation in (Eq. 2i7
]: 

G=H-TS (Eq.2) 
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In standard examples of thermal sea, the transition from high- to low-spin occurs as the 

sample is cooled. The enthalpy tenn of the low-spin state is slightly lower in energy than 

that of the high-spin state. At low temperature, the entropy tenn becomes smaller 

increasing the significance of the enthalpy tenn and since the enthalpy of the low-spin 

state is lower in energy it is the preferred configuration at low temperature. At high 

temperature, the entropy tenn becomes significant, as an increase in entropy can now 

drive the Gibbs energy of the system to a value lower than the low-spin state. The 

greatest amount of entropy and therefore lowest possible energy configuration is then 

achieved when the electrons are unpaired. [8] 

1.03 Characterization of magnetically labile materials 

i) Variable temperature magnetic susceptibility 

The magnetic moment (p.eff), a measure of the strength and direction of magnetism, is a 

highly prevalent way to quantify the magnetic spin in transition metals and can be 

observed by measuring the magnetic field surrounding the metal with a SQUID (super 

conducting quantum interference device) magnetometer. The contribution of the 

system's internal magnetism to the external magnetic field of the SQUID is the sum of 

the intrinsic and orbital magnetic moments of the unpaired electrons in the material. 

Greater numbers of unpaired electrons can, therefore, create larger magnetic moments. 

The magnetic moment is expressed in Bohr magnetons (IlB) and is derived from the 
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magnetic susceptibility U'M) (cm3morIK-1) measurements (Eq. 3) and is also closely 

related to the spin only formula (Pso) (Eq. 4) [9]: 

f-lf!;U= 2.83-rx;;T 

f-l,fO = 2-.JS(S+ 1) 

(Eq.3) 

(Eq.4) 

As an example, a typical high-spin iron(II) complex (8 = 2) has values of XMT = 3.2 cm3 

mor1K-1 corresponding to Ileff = 5.1 !lB. Whereas, iron(II) in the low-spin state (8 = 0) 

has typical values around Ileff = 0.0 !lBYO-ll] 

ii) Mossbauer spectroscopy 

Mossbauer spectroscopy is a technique based on the resonant emission and absorption of 

gamma-rays in solids. Mossbauer is similar to nuclear magnetic resonance (NMR) 

spectroscopy because it probes nuclear transitions and is sensitive to similar electron­

nucleus interactions that cause chemical shifts. The advantage of Mossbauer 

spectroscopy is that it has an extremely fine energy resolution and can detect even subtle 

changes in the nuclear environment of the relevant atoms including changes in spin state. 

A sample is exposed to a beam of gamma radiation and a detector measures the intensity 

of the beam transmitted through the sample. The atoms in the source, emitting the 

gamma-rays, must be of the same isotope as the atoms in the sample absorbing them, 

which limits the application of Mossbauer spectroscopy. Fortunately, 57Fe is a naturally 

occurring isotope that can provide gamma-rays suitable for Mossbauer experiments on 
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samples containing iron and is therefore an invaluable tool in verifying the occurrence of 

spin-crossover. [12-13] 

In Mossbauer experiments, three types of nuclear interactions can be observed: 

1) The isomer shift (IS) reflects the chemical bonding of the atoms and is related to the 

electron density at the nucleus. The isomer shift is observed as a shift of all peaks in the 

spectra corresponding to a particular atomic environment. Thermal vibration of the 

nuclei will cause a small shift the gamma ray energy as a result of a second order doppler 

effect. [12] 

2) The quadrupole splitting (QS) results from an interaction between the electric 

quadrupole of the nuclei and the surrounding electric field gradient, creating non­

degenerate states that split the nuclear transitions into two peaks. The QS is measured as 

the separation between the two peaks and reflects the character of the electric field at the 

nucleus. [12] 

3) The third interaction is called hyperfine or Zeeman splitting and is a result of the 

interaction between the nucleus and any surrounding magnetic field. [12] 
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Figure 1.05: Mossbauer spectra of (1.01)[14] 

In the resulting spectra, gamma-ray absorbance intensity is plotted as a function of the 

source velocity where the intensities of the peaks reflect the relative concentrations of 

compounds in the sample and can be used for semi-quantitative analysis. For example, 

the Mossbauer spectra of an iron(II) complex [Fe(bpen)(NCS)2J [bpen = 1,6-bis(2-

pyridyl)-2,5-diazahexane J (1.01) displays temperature dependent absorptions (Figure 

1.05). A symmetrical doublet is observed at 150 K with an IS of ~ = 0.963 mm/s and a 

QS of /).£Q = 1.355 mm/s, representing the high-spin state of the iron(II) complex. At 90 

K the symmetry of the doublet is broken, as one of the two peaks becomes slightly more 

intense, due to an additional doublet appearing with parameters that represent the low-
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spin state. As the temperature is decreased, the intensity of the first doublet diminishes as 

the second doublet increases in intensity. At 20 K the spectrum is dominated by the 

doublet produced by low-spin iron(II) with an IS of ~ = 0.400 mm/s and a QS of MQ = 

0.230 mm/s. [14] 

iii) Electron spin resonance 

Electron spin resonance (ESR) is a technique for studying chemical species that have one 

or more unpaired electrons, such as complexes possessing a transition metal ion or free 

radicals. The basic physical concepts of ESR involve exciting the electron spins in the 

presence of an external magnetic field. Electrons have a magnetic moment associated 

with the spin (S = 112) and a spin quantum number with magnetic components ms = + 112 

and ms = -112. In the magnetic field, the electron's magnetic moment aligns itself either 

parallel (ms = -112) or antiparallel (ms = +112) to the field. The electrons are exposed to 

microwaves at a fixed frequency. As the external magnetic field is increased, the gap 

between the ms = + 112 and ms = -112 energy states is widened until it matches the energy 

of the microwaves so that the unpaired electrons can move between the two spin 

states. [15-16] 
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Figure 1.06: A diagram of complex (1.02) 
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Figure 1.07: Variable temperature ESR spectra of (1.02i17] 

Since a paramagnetic analyte is the principal requirement for observing an ESR 

transition, it is a technique particularly useful in studying the states of iron(III) seo 

materials. For example, the spectra of (1.02) (Figure 1.06), an iron(III) spin-crossover 

compound with an N40 2 donor set, shows three Kramer's doublets with a broad ESR 

signal of the high-spin state at room temperature and a sharp ESR signal of the low-spin 

state at 77 K (Figure 1.07)p7-19] 

iv) Heat capacity measurements 

Molar specific heat capacity can be defined as the amount of the heat energy required to 

increase the temperature of a mole of a substance by one Kelvin. The heat capacity is a 

physical quantity containing contributions from various molecular degrees of freedom 

including the potential energy in vibrational modes. Consequently, calorimetry is a 

suitable experimental tool to help explore the mechanism involved in seo phenomena as 
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IS illustrated in Figure 1.08 by the complex [Fe(phen)2(NCS)2] [phen = 1,10-

phenanthroline] (1.03). The transition entropy due to sca involves a dominant 

contribution from the non-electronic vibrations, in addition to a contribution from a 

change in the spin multiplicity, and results in a discontinuity of the lattice heat capacity at 

the transition temperature. [20] 
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Figure 1.08: Variable temperature specific heat capacity of (1.03i20] 

v) Electronic absorption spectroscopy 
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Figure 1.09: Variable temperature electronic absorption spectra of (1.04i21] 
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The absorption bands resulting from ligand field transitions in the high- and low-spin 

states of SeQ complexes have different energies that can be observed by electronic 

absorption spectroscopy. As the SeQ occurs, the intensity of each band changes to 

reflect the population of each state. A thermally induced seQ will usually result in 

thermochromism and a variable temperature UV -Vis experiment can provide a 

preliminary detection method for the transition. The electronic spectrum of the iron(II) 

complex [Fe(ptz)6(BF4)2] [ptz = l-propyltetrazole] (1.04), in the high-spin state, shows 

one ligand field band in the near-infrared region (Figure 1.09). In contrast, the low-spin 

ion has two ligand field bands, one in the visible region and another in the ultra-violet 

region. The absorptions resulting from charge transfer bands can often obscure the ligand 

field transitions in the visible region. In this case, however, the charge transfer 

transitions do not occur in the visible region and the ligand field transitions are the only 

factor determining the colours observed, resulting in a vibrant change from violet to 

colourless. [21-24] 

vi) X-ray diffraction 
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Figure 1.10: A diagram of the cation [Fe(qnal)2t (1.05) 
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X-ray diffraction is a widely used tool for the characterization of seo complexes, in part 

because it offers structural evidence regarding the synthesis of a compound but also 

because the crystallographic metal-ligand bond lengths can be used to characterize the 

spin state of a complex. In ideal cases, the structure can be solved both above and below 

the spin transition and the observed change in coordinate bond lengths can be used as 

evidence to support magnetic switching. In typical examples like [Fe(qnal)2t [qnalH = 

N-(8-quinolyl)-2-hydroxy-l-naphthaldimine] (1.05), the high-spin coordinate bond 

lengths are longer than the low-spin bond lengths because popUlating the high-spin state 

results in partially filling orbitals that have antibonding character. In (1.05), the change 

in bond lengths between Fe-N are more pronounced in comparison to Fe-O, L\Fe-N 0.15-

0.18 A and L\Fe-O 0.03-0.04 A. [1,25-27] 

1.04 External control of magnetic switching 

i) Thermal magnetic switching 

a) Thermal spin-crossover 
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Figure 1.11: Variable temperature magnetic susceptibility of (1.06i28] 
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In the 1960s the anomalous magnetic properties of [Fe(bpY)2(NCS)2] (1.06) were 

observed by Baker and Bobonich[28] and afterwards by Konig and Madeja[29]. A profile 

showing the thermal variation of XMT was used to examine the magnetic properties 

(Figure 1.11). The compound (1.06) undergoes a change from high-spin to low-spin as a 

result of decreasing temperature, which is centred at Tl/2 = 213 K, where Tl/2 denotes the 

midway point between the equilibrium of the two states. For temperatures greater than 

Tl/2, XMT remains constant (close to 3.53 cm3Kmol- l
) upon cooling, with values 

corresponding to what is expected for iron(I1) ions in the high-spin state. When the 

temperature decreases below Tl/2, XMT drops to 0.4 cm3Kmol- l
, indicating a change to 

low-spin state. Thermal SCQ is the name given to this type of transition because the 

complex can crossover from one spin state to another as a result of the temperature 

change. [28-30] Since the observations of Baker and Bobonich, there have been many 

interesting reports of complexes that exhibit thermal spin-crossover. For the most part, 

the complexes contain either iron(II)[31-41] or iron(III) [42-52] atoms as the spin labile 

component, but in a few rare cases, cobalt(I1) [53-56] , chromium(II)[57-58] and 

manganese(III)[59-64] complexes also undergo thermal spin-crossover. 

b) Thermal valence tautomerism 
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Figure 1.12: The valence tautomerism of (1.0Si l
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Figure 1.13: The magnetic profile of (1.0Si lJ 

Buchanan and Pierpont reported the cobalt complex [Co(II)(3,5-dbsq)2(bpy)] [dbsq = 3,5-

dbsq=3,5-di-tert-butyl-l,2-semiquinonate] (1.07), which undergoes a thermally induced 

electron transfer between the cobalt(I1) centre and the semiquinone ligand in solution. 

The valence tautomerism of (1.07) can be expressed as [Co(IIHs)(3,5-dbsq)2(bpy)]~ 

[Co(IIILs)(3,5-dbsq)(3,5-dbcat)(bpy)] [HS = high-spin; LS = low-spin; dbcat = 3,5-di-

tert-butyl-l,2-catecholate], thus accompanying the electron transfer is a SeQ process 

from high- to low-spin. After the initial discovery, valence tautomerism was also 

reported in the solid state for [Co(II)(3,5-dbsq)2(phen)lCH3C6Hs (1.0S), with abrupt 

transitions between the high and low temperature magnetic states (Figure 1.12). The plot 

resulting from the XMT product versus temperature displays magnetic properties and a 

transition curve similar to other SCQ compounds (Figure 1.13)y,6s-66] 
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ii) The light induced excited spin state trapping effect 
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1.0 

Figure 1.14: A diagram of complex (1.04) 

• 
• · · Ii · · .: 
, 

- :: . , . :: 
! 

!J.~~~~~~~~~~~=-~l·~~~-: 0.0 -
o 100 200 300 

l{UESST} Temperature IKI 

Figure 1.15: The LIESST effect of complex (1.04) with arrows indicating the 
excited state region[67] 

The discovery of light induced SeQ was a significant advancement in the development of 

seQ materials because it represented the first step towards the practical control of 

magnetic switching. [68-69] Decurtins et al. observed light induced excited spin state 

trapping (LIESST) in the solid state with the mononuclear iron(II) SeQ complex 

[Fe(ptZ)6] (BF4)2] [ptz = I-propyltetrazole] (1.04) (Figures 1.14-1.15). Complex (1.04) 

undergoes an abrupt thermal spin transition upon cooling at Tl/2 = 271 K, favouring the 

low-spin state at low temperature. However, by irradiating (1.04) with green light (A. = 
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540 run) at 10 K the low-spin complex can then be converted back to high-spin. The 

compound remains in the high-spin state until it reaches the critical temperature Tc = 70 

K, at which point the thermal energy becomes sufficient to overcome the activation 

barrier to thermal relaxation of the material.[70] The UV-Vis spectrum of the low-spin 

complex shows a MLCT band at 548 run that corresponds to the green light used in 

exciting the complex. The metastable high-spin state has an absorbance band at 850 run 

and when (1.04) is irradiated with red light corresponding this band, it converts back to 

the low-spin state. Consequently, the complex exhibits photo induced bistability below 

70 K because it can adopt either the low-spin (ground) state or a metastable high-spin 

(excited) state depending on its historyJ711 

Figure 1.16: Diagrams of (1.09) (left) and (1.10) (righti72
] 
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Figure 1.17: The LIESST effect for (a) (1.09) and (bJ (1.10) with arrows 
indiucating the excited state region 72] 
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Some iron(III) complexes also undergo a spin conversion upon irradiation, although 

fewer examples are known in comparison to iron(II) complexes. The known examples, 

containing iron(III), are fully characterized and have the general formula [Fe(III)(Lht 

with N402 donor ligands. The structurally related complexes [Fe( qsal)2]NCS [qsalH = N­

(8-quinolyl)salicylaldimine] (1.09) and [Fe(pap)2]BF4 [papH = 2-hydroxyphenyl-(2-

pyridyl)-methaneimine] (1.10) (Figure 1.16), for example, both display an increase in 

magnetization associated with the LIESST effect when irradiated (800-1000 nm and 500-

600 nm respectively) at 5 K in a SQUID magnetometer (Figure 1.17). In (1.09), the 

increase in magnetization by illumination was observed, but relaxation from the high-spin 

state to low-spin was induced even at 5 K. In contrast, a sample of (1.10) that was 

illuminated at 532 nm for 1 h at 5 K had more sustainable results. Upon illumination, the 

magnetic response of (1.10) increased, reaching a limiting value of 'XmT = 2.0 cm3Kmor1
, 

which suggested 50 % of the low-spin isomer was converted to high-spin. The 'XmT value 

remained constant when the temperature was sufficiently low but decreased as the 

temperature increased. [72-74] 
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Figure 1.18: The Mossbauer spectra of (1.10) (a) room temperature (b) 5 
K (c) 5 K after illumination at 532 nm[72] 

The room temperature Mossbauer spectrum of (1.10) shows a doublet with a narrow 

quadrupole-splitting (IS = 0.38 mmls; QS = 1.14 mmls) representing the HS state (Figure 

1.18). On cooling to 5 K the Mossbauer spectrum shows a new absorption doublet with 

wide quadrupole splitting (IS = 0.09 mmls; QS = 3.09 mmls) representing the low-spin 

state. After collecting the spectrum, the sample was illuminated at 532 nm for one hour 

and measured once again. In the spectrum measured after illumination, a doublet with a 

narrow quadrupole-splitting appeared (IS = 0.43 mmls; QS = 1.17 mmls), representing 

the HS state, and confirmed that half the low-spin iron ions 'were converted to high-spin. 

The metastable state was sustainable provided that the sample was kept below 80 K. 

When the sample temperature was increased to 150 K and then lowered to 5 K, only the 

low-spin state was observed. [72] 

19 



iii) Pressure effects on spin-crossover 

a) Variable pressure effects on compounds that exhibit SCQ 
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Figure 1.19: Pressure effects on spin-crossover in compound (1.03) (a) 105 Pa 
before and after applying pressure (b) 0.17 GPa (c) 0.34 GPa (d) 0.57 GPa[75] 

The investigations into the thermal spin transition of [Fe(phenh(NCS)2] (1.03) include 

studies of the SCQ exhibited at varied pressures (Figure 1.19). At ambient pressure, the 

transition curve in (1.03) is extremely steep with T1I2 = 177 K. As the pressure is 

increased to 0.17 GPa, the shape of the spin transition curve is essentially unchanged, but 

is parallel to the original curve and shifted to higher temperature. As the pressure is 

increased, the transition curve becomes more gradual. At pressures around 0.6 GPa the 

sample is mostly in the low-spin state even at room temperature. The LS state has a 

smaller molecular volume than the high-spin state and becomes favoured as pressure 

increases in the molecule. With increased pressure, there is a relatively larger enthalpy 

term in the Gibb's energy of the high-spin state, which reduces its population until it 

disappears entirely. [75] 
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b) Pressure induced spin-crossover 
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Figure 1.20: A diagram of complex (1.11) 
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Figure 1.21: Pressure induced spin-crossover of (1.11) at (a) 105 Pa (b) 0.44 GPa 
(c) 0.56 GPa (d) 0.86 GPa (e) 1.05 GPa[75] 

The variable temperature XMT product of [Fe(abpt)2(NCShl [abpt = 4-amino-3,5-

bis(pyridin-2-yl)-1,2,4-triazolel (1.11) (Figure 1.20), at different pressures, is displayed 

in Figure 1.21. At atmospheric pressure, the complex is high-spin at room temperature 

and as the temperature is lowered, XMT remains constant until temperatures below 25 K 

are reached. The sharp decrease inxMTbeyond 25 K was accounted for as the zero-field 

splitting of the high-spin iron(ID ions. As the pressure is increased to 0.44 GPa, the 

compound initially exhibits the same high-spin character at high temperature, but an 

incomplete thermal SCQ appears around Tl/2 = 65 K. Relatively sharp spin transitions 

begin to occur at Tl/2 = 106, 152 and 179 K, as the pressure increases to 0.56, 0.86 and 

1.05 GPa, respectively. The application of hydrostatic pressure to the high-spin 
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compound [Fe(abpt)2(NCS)2] demonstrates the principle of inducing thermal spin-

crossover, in a controlled manner, by shifting the enthalpy parameter to larger, more 

positive values. [75,78-79] 

1.05 Profiles of thermally induced spin-crossover 
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Figure 1.22: Typical profiles of thermally induced spin-crossover (i) abrupt (ii) gradual 
(iii) gradual and incomplete (iv) multistep (v) hysteretic 

The origin of the SCQ phenomenon is purely intramolecular but in the solid state 

interactions between molecules, including subtle structural and electronic modifications, 

can dramatically influence the change in spin state and are referred to as cooperative 

effects. In molecular compounds, the cooperativity parameter depends greatly on the 

intermolecular interactions between molecules, which include hydrogen bonding and 11Ht 

orbital overlap, or through polymeric coordination bonds. Typical profiles of thermally 

induced spin-crossover are represented in Figure 1.22 as plots of high- and low-spin state 

fractions versus the temperature. [2] 
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i) Abrupt spin-crossover 
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Figure 1.23: The abrupt spin-crossover exhibited by (1.03)[2] 

Figure 1.24: The packing diagram of complex (1.03)[2] 

Figure 1.22 (i) depicts an abrupt transition between the high- and low-spin states, which 

usually occurs if communication between neighboring metal centres is strong, as in the 
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example [Fe(phen)2(NCS)2] (1.03). For (1.03), at 292 K the magnetic data indicates that 

the complex is in the high-spin state XmT = 3.41 cm3morl K-1, and gradually decreases to 

XmT = 2.83 cm3mor1K-1 at 178 K (Figure 1.23). Suddenly, at Tl/2 = 176.5 K the XmT 

product decreases to 1.04 cm3mor1K-1 and is indicative of an abrupt change in spin state. 

X-ray analysis of a single crystal revealed that the molecular packing consisted of 

continuous sheets of molecules, where neighboring 1,1 O-phenanthroline (aromatic) 

ligands have considerable x-x interactions to facilitate cooperativity (Figure 1.24). [2,80] 

ii) Gradual spin-crossover 
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Figure 1.25: The gradual spin-crossover exhibited by (1.12i2] 
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Figure 1.26: The packing diagram of complex (1.12i2] 

Gradual SeQ is illustrated in Figure 1.22 (ii) and is usually the result of molecules that 

do not interact strongly with each other in the solid state. In gradual SeQ, the change in 

magnetism occurs very slowly over a wide temperature range. For instance, 

[Fe(btz)2(NeS)2] [btz = 2,2'-bithiazoline] (1.12) is known to undergo gradual thermal 

SeQ (Figure 1.25) and helps to further justify the significance of enhanced cooperativity 

through molecular interactions like x-x orbital overlap. Single crystal X-ray analysis of 

(1.12) was used to examine the structural attributes and it was found that the molecular 

packing was similar in comparison to the packing of (1.03), with continuous sheets of 

molecules along the ab plane. Neighboring ligands of (1.12) were found to position 

themselves in a nearly identical way to (1.03) and yet the significant change in 
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magnetism occurred over a much wider temperature range (Figure 1.26). A key 

difference between these two compounds, (1.03) and (1.12), is that the bithiazoline ligand 

of (1.12) is made of non-aromatic heterocycles and the x-x interactions are significantly 

reduced, which also reduces the amount of cooperativity in the sample. [2,81] 

iii) Incomplete spin-crossover 

Incomplete sca results when a change in spin state is observed but the spin equilibrium 

is not driven fully from one extreme to the other at any temperature. The manifestation 

usually results in a magnetic moment that is significantly different than the anticipated 

high- or low-spin value. Despite the abrupt change in the magnetic properties of (1.03), it 

is also an example of an incomplete spin-crossover. At 110 K, XmT is 0.58 cm3morlK-1 

corresponding to a magnetic moment of 2.16 ~B, which is higher than expected for a low-

spin iron(lD complex. The anomalously large magnetic moment can be rationalized as 

17 % of the high-spin isomer remaining even at low temperature. [75] 

Figure 1.27: The 1-isopropyltetrazole (iptz) ligand of [Fe(iptz)6](SCN)2 (1.13) 
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Figure 1.28: The gradual and incomplete spin-crossover exhibited by (1.13i82
] 
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Figure 1.22 (iii) shows the profile of a SpIll-crossover that is both gradual and 

incomplete. This form of SCQ is particularly difficult to identify by SQUID 

magnetometry, often requiring Mossbauer spectroscopy for a more accurate description 

of the magnetic states. An example, [Fe(iptz)6](SCN)2 [iptz = l-isopropyltetrazole 

(Figure 1.27)] (1.13), features an incomplete and gradual SCQ represented in Figure 

1.28 that, when compared to the more standard profile of (1.03), appears as a less obvious 

form of magnetic lability. [82] 

iv) Multistep spin-crossover 

a) Bimetallic spin-crossover complexes 

--a:d=b 
(1.15) (1.16) (1.17) 
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Figure 1.29: Examples ofligands used in bimetallic spin-crossover complexes[83-87] 

The majority of reported SCQ complexes contain a single metal ion; however, the 

preparation of bi- or polymetallic spin-crossover complexes have also afforded materials 

that display cooperative magnetic switching. Typically, N-heterocyclic bridging ligands 

are used in the assembly of bimetallic iron(II) SCQ complexes and include ligands such 

as 2,2'-bipyrimidine (1.14i83
], pyrazoles (1.ISi84], 4,7-phenanthroline-5,6-diamine 
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(1.16)[85], pyridine derivatives like ddpp [ddpp = 2,5-di(2' ,2" -dipyridylamino )pyridine] 

(1.17i86
], and 4,4'-bipyridine (1.18)[87] (Figure 1.29). 

Figure 1.30: The molecular structure of complex (1.19i88
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Figure 1.31: The two step spin-crossover of (1.19i88
] 

The compound [Fe2(ddpp)2(NCS)4]·4DCM (1.19), has the dinuclear structure shown in 

Figure 1.30 and has extensive intra- and interdinuclear 1t-1t interactions, in addition to 

interactions involving the thiocyanate sulfur atoms. A two-step spin transition from HS-

HS ---+ HS-LS ---+ LS-LS was observed by SQUID magnetometry, with transitions at 
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TII2(1) = 180 K and TII2(2) = 80 K (Figure 1.31). The crystal structure in the plateau 

region, between the steps, showed that each dinuc1ear molecule was trapped in an ordered 

HS-LS form with appropriate Fe-N distances and octahedral distortions. For comparison, 

the HS-LS structure contrasts with the averaged (disordered) structure found at the 

plateau temperature in the compound [(bztpen)Fe(Il-N(CNh)Fe(bztpen)(PF6)3] [btzpen = 

N-benzyl-N,N' ,N' -tris(2-pyridylmethyl)-ethane-l ,2-diamine] (1.20).[87-89] 

b) Polymetallic spin-crossover complexes 

Figure 1.32: The molecular structure (left) and a diagram displaying the Fe(U)­
ligand coordination of (1.21) (righti90

] 
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Figure 1.33: The variable temperature magnetic profile of (1.21i901 
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Figure 1.34: The Mossbauer spectra for complex (1.21i90
] 

Polynuclear molecular systems of the are accessible via self assembly and can be used to 

precisely arrange spin active metal centres. In one such system, [Fe4(L4)(CI04)s] [L = 

4,6-bis(2' ,2" -bipyrid-6' -yl-2phenyl-pyrimidine] (1.21), displayed in Figure 1.32, a plot 

of XmT versus temperature affords a profile that suggests a noncooperative one step 

gradual spin-crossover (Figure 1.33). However, further examination with Mossbauer 
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spectroscopy (Figure 1.34) and X-ray crystallography revealed that the population 

shifted as a result of sca from approximately 3LS:IHS ---+ 2LS:2HS ---+ 1LS:3HS upon 

increasing temperature. In addition, the magnetic properties of (1.21) can also be 

affected by light and pressure, representing a unique prototype for a multilevel magnetic 

device. [90-91] 

v) Hysteresis in spin-crossover 
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Figure 1.35: The variable temperature magnetic profile of (l.22i2] 

Figure 1.36: A diagram of complex (1.22) 

Figure 1.22 (v) displays a type of spin-crossover that has a hysteretic profile, where non-

identical T1I2 temperatures between warming and cooling runs occur and produce two 

transitions between the high- and low-spin states. The magnetic profile of 

[Fe(dppz)2(NCS)2] [dppz = dipyrido[3,2-a:2'3'-c]phenazine] (1.22) features abrupt and 

hysteretic transitions between warming and cooling (Figures 1.35 - 1.36). The ligand of 
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complex (1.22) has an extended aromatic system, capable of significant 1[-1[ interactions 

between neighbouring molecules due to the ligand overlap. The aromatic overlap is 

identified as a significant factor in the observation of hysteresis and demonstrates the 

benefit to cooperativity through 1[-1[ extension. [2,92] 

a) Magnetic bistability and path dependent memory 

i 11:' State 1 (HS) 

i .,. State 0 (LS) 

Perturbation 

Figure 1.37: A general diagram for the memory effect of SeQ materials[94] 

A fundamental concept of SeQ materials is molecular bistability, which may refer to 

either a single molecule or to an assembly of molecules, and can be dermed as the ability 

of the system to be observed in two different electronic states at the same temperature. [93] 

Qne of the most notable examples of molecular bistability is the magnetic hysteresis that 

results from thermal perturbations of SeQ materials because two distinct electronic states 

are accessible at the same temperature, conferring a path dependent memory effect 

(Figure 1.37).[94] As a result, the presence of hysteresis and an abrupt change in the 

magnetization curve are considered highly important requirements for SeQ materials in 

order to realize useful magnetic switching. Thus, examining the methods used in 

controlling SeQ is an important subject to consider when attempting to develop large 

hysteresis loops that are also centred around room temperature. [28] 
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b) Thermal hysteresis in iron(II) spin-crossover complexes 

Figure 1.38: A diagram of [Fe(pmpea)2(NCS)2] (1.23) 
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Figure 1.39: The variable temperature magnetic profile of (1.23i95
] 

[Fe(pmpea )2(N CS)2] [pmpea = cis-bis( thiocyanato )bis[ N-(2' -pyridylmethylene )-4-

(phenylethynyl)-anilino] (1.23) is an example of an iron(II) compound that shows a large 

hysteresis loop as a result of cooperative x-x interactions (Figure 1.38). In the magnetic 

profile, the spin transition temperatures were identified as T1I2( cooling) = 194 K and 

T1I2(warming) = 231 K, corresponding to a hysteresis width of 37 K (Figure 1.39). The 

crystal structures of both the high- and low-spin states were obtained, revealing the 

characteristic changes in Fe-N bond lengths as a result of the transition. Another key 

aspect was the short contacts (3.45 A) between the phenyl rings of adjacent (1.23) 

33 



molecules because their proximity was assigned as the pathway for the cooperativity that 

resulted in the large hysteresis loop. [95] 

c) Thermal hysteresis in iron(III) spin-crossover complexes 

Thermal hysteresis has also been observed in some iron(III) sca complexes including 

[Fe(qsal)2]NCSe-DMSa (1.24), which was found to exhibit a very wide thermal 

hysteresis. In the fIrst cycle, the compound exhibits an apparent hysteresis loop of 115 K 

(Tl/2(warming) = 324 K and Tl/2 (cooling) = 209 K). However, solvent molecules of the 

compound are removed at around 324 K and cause the magnetic profIle to change during 

the second warming sweep. The spin transition in the warming mode now occurs at Tl/2 

= 285 K and the hysteresis width is estimated at 76 K. Again, it is thought that the main 

pathway for the observed cooperativity arises from the intermolecular x-x interactions 

between the quinoline and phenyl rings. [96] 
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d) Multistate thennal hysteresis 
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Figure 1.40: The variable temperature magnetic profile of (1.25i97
] 

In a closely related compound, [Fe(qsal)2]NCSe·nCM (1.25), a similar apparent spin 

transition is observed in the initial sweep (TI/lwarming) = 392 K and Tl/2 (cooling) = 212 

K) (Figure 1.40). After the first loop, it shows an interesting two-step spin-crossover in 

warming mode. The transitions of "step 1" and "step 2" are centred around Tl/2(Step 1) = 

215 K and TI/2(Step 2) = 282 K, respectively. The hysteresis widths are estimated at 3 K 

(step 1) and 70 K (step 2), the second being another example of an extremely wide span 

in comparison to other spin-crossover complexes. [97] 

The two step hysteresis resulting from the desolvation of (1.25) is a curious phenomenon, 

especially when contrasting the observed magnetic properties with those of (1.24) and 

considering that in their nonsolvated fonns, (1.24) and (1.25) have an identical molecular 

fonnula (i.e [Fe(qsal)2]NCSe). In this case, single crystal X-ray analysis provided vital 
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information to help understand the differences between (1.24) and (1.25). The structures 

are closely related, each of the iron(III) atoms has pseudo-octahedral geometry, 

coordinated by the four nitrogen atoms and two oxygen atoms of the two ligands, an 

N4Q2 donor set in each case. However, when examining the space groups of the crystal 

structures, notable differences between (1.24) and (1.25) were identified. The crystal 

structure of (1.24) has the PI space group and contains a continuous chain of quinoline 

groups that have considerable x-x overlap with neighbouring phenyl rings. In the case of 

(1.25), X-ray analysis revealed the P-l space group, with an inversion centre. The main 

interactions were, again, attributed to the x-x overlap of quinoline and neighbouring 

phenyl rings. However, the dihedral angles of the two ligands on each iron atom of 

(1.24) and (1.25) were considerably different and they were identified as distinct ligands 

in (1.25), "A" and "B". Within the crystal, ligand A interacts with a neighbouring ligand 

A and ligand B interacts with a neighbouring ligand B resulting in the creation of two 

distinct x-x interactions, one through the A ligands and one through the B ligands. Under 

the assumption that the symmetry remained upon desolvation, the compound was fitted to 

a model of the form (B:Fe:A)(A:FeB) and was described as undergoing a 

(LS)(LS)~(HS)(LS)~ (HS)(HS) spin-crossover. [96-98] 

e) Thermal hysteresis near room temperature 

For most practical applications the hysteresis in SeQ materials must occur around room 

temperature and there is a focus on the rational design of new SeQ systems to achieve 

this goal. In some instances, the temperature range of the thermal hysteresis loop can be 
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tuned by varying the ligands coordinated to the iron. When perfectly dry, the compound 

[Fe(Htrz)3(CI04)2] [Htrz = 1,2,4-1H-triazole] (1.26) shows a rather smooth spin transition 

around 265 K with a 5 K thermal hysteresis. However, when one drop of water is added 

to 50 mg of the complex, the transitions in both the warming and cooling mode become 

very abrupt (T1/2(warming) = 313 K and T1/2(cooling) = 296 K) as a result of increased 

communication through hydrogen bonding. Further tailoring resulted from the addition 

ofNH2trz [NH2trz = 4-amino-I,2,4-triazole] to the reaction flask, preparing compounds 

with the general formula [Fe(Htrz)3-3x(4-NH2trz)3x](CI04)2·nH20. It has been shown that 

the critical temperatures of the spin transitions decrease with increasing NH2trZ. When x 

= 0.05 the iron centres undergo a thermal hysteresis that spans room temperature 

(T1I2(wanning) = 304 K and T1I2 (cooling) = 288 K).[99] 

The iron(II) compound, [Fe(2-pic)3]Ch·H20 [2-pic = 2-picolylamine] (1.27), exhibits 

thermal bistability spanning 91 K (TII2(warming) = 295 K and T1/2(cooling) = 204 K) and 

the difference in magnetic states can be observed even at room temperature. However, 

the duration of this transition is not solely a result of SCO and has been accounted for by 

a low temperature phase transition in addition to the SCO processYOO-101
] 

1.06 Multifunctionality in spin-crossover materials 

Having arrived at a reasonable understanding of how to control spin-crossover through 

cooperative interactions, current research is focused on developing practical applications 

for spin-crossover materials. One facet of these efforts includes micro- and 
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nanopatterning of spin-crossover compounds into logical structures. [102-103] Other efforts 

have been devoted to the design of new spin-crossover compounds in which seo may be 

combined with other physical or chemical properties in a synergistic manner. Efforts 

towards this multifunctionality include combinations of seo with magnetic exchange, 

liquid crystalline properties, host-guest or ligand isomerisation effects and electrical 

conductivityy04] 

1.07 Spin-crossover and electrical conductivity 

i) An overview of spin-crossover conductors 

Spin-crossover compounds are an attractive component in hybrid materials that combine 

electrical conductivity and magnetism. Within these materials, it is implied that the 

physical properties coexist, but combining them could also cause the properties to 

influence one another, directly, or through a mutual secondary effect. In this regard, SeQ 

is an interesting magnetic property to incorporate into these hybrid materials because of 

the ability to switch between high-spin and low-spin states by variation of temperature, 

pressure or light irradiation. The interest is further enhanced in some examples when 

bistability is observed. The switching leads to distinctive changes in magnetism, but also 

changes in the coordinate bond lengths of the metal, which can alter the structure of the 

material. The change in structure and morphology can, in turn, have significant 

influences on the conductivity. [104] Although seo is commonly observed in both neutral 

and positively charged complexes, the seo conductors previously reported use · 

38 



combinations of cationic SeQ complexes with known anionic/radical molecular 

conductors in their design. Furthermore, the redox stability and cationic nature of most 

iron(III) SeQ compounds, in comparison to iron(II), makes them more suitable for this 

approach. As a result, the known SeQ conductors all fall within the general formula of 

an iron(III) SeQ cation and an anionic conductor. [104-106] 

ii) The coexistence of magnetic switching and electrical conductivity 

Figure 1.41: A diagram of [Fe(sah-trien)t[Ni(dmit)2r- (1.28) 

Figure 1.42: A packing diagram of (1.28) in the high-spin state[107] 
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Figure 1.43: The variable temperature magnetic profile of (1.28iI07] 

The iron(III) complex [Fe(sah-trien)t[Ni(dmit)z]n-- [sah-trien = bissalicylidene-

aminotriethylenetetramine, dmit = 4,5-dimercapto-l,3-dithiole-2-thione] (1.28) (Figure 

1.41) is a typical example of an iron(III) SeQ conductor. Within this material, the layers 

of [Ni(dmit)z]n-- are described as being in a fractional oxidation state that give rise to the 

electron transport properties, a room temperature electrical conductivity of 0 .20 Scm-I. 

The [Ni(dmit)z]n-- layers form segregated stacks separated by layers of [Fe(sah-trien)t 

cations (Figure 1.42). The [Fe(sah-trien)t units undergo cooperative SeQ behaviour 

including a hysteresis loop of 30 K centred at 240 K (Figure 1.43). In this example (of a 

hybrid seQ conductor), the two physical properties, electrical conductivity and magnetic 

switching, coexist in the same material, although they are not reported to have a 

significant influence on each otheryo7] 

40 



iii) Interactions between magnetic switching and conductivity 
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Figure 1.44: A diagram of [Fe(qsal)2][Ni(dmithh (1.29) 

Figure 1.45: A packing diagram of (1.29) in the high-spin state[I08] 
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Figure 1.47: The interaction between conductivity and spin-crossover in (1.29i108
] 

A similar iron(III) complex, [Fe(qsal)2][Ni(dmit)2h (1.29) (Figures 1.44 - 1.45), is 

noteworthy because it is one of the few sea conductors reported that exhibits an 

interaction between electrical conductivity and a change in spin state, A narrow 

hysteresis is observed between 90 - 120 K in both the magnetic and resistivity profiles 

(Figures 1.46 - 1.47), At room temperature, this material is a semiconductor and 

becomes more resistant upon decreasing temperature, which is typical for molecular 
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conductors. However, the hysteresis in the resistivity profile is atypical because 

measurements taken during the heating sweep were more conductive than in the cooling 

sweep, indicating that the spin-crossover was influencing the electrical conductivity. 

Unfortunately, the crystal structure of the low temperature phase was not determined and 

the mechanism ofthe conducting states bistability remains unclear. [108] 

iv) The chemical pressure effect 

A mechanism explaining how the spin transition can affect conductivity was achieved 

from further studies on another related iron(III) seQ system, 

[Fe(qnal)2][Pd(dmit)2Js·acetone (1.30). In this example, an abrupt and almost complete 

spin transition between the low-spin and high-spin states was observed at around 220 K 

and the crystal structures, both above and below the spin transition, were obtained. 

Structural changes in the coordination bond lengths (~Fe-O: 0.03-0.04 A, ~Fe-N: 

0.15-0.18 A) and angles around the Fe(III) atoms resulted from the spin-crossover and 

were indicated as the cause of a uniaxial crystal lattice deformation (shrinking of one axis 

by 0.2 A upon cooling). 

160 200 240 .280 

TeriJperature(KI 

Figure 1.48: The interaction between conductivity and spin-crossover in (1.30i2S] 

43 



The material (1.30) is a semiconductor, with a conductivity of 1.6 x 10-2 Scm -1 at room 

temperature, that depends strongly upon its crystal structure and packing to achieve 

electron transport. The packing of the [Pd( dmit)2r- layers is affected by the crystal 

lattice deformation and results in an anomaly in the resistivity profile observed around 

220 K, at the temperature range of the spin transition (Figure 1.48). This result displayed 

that the expansion and contraction of an iron(III) seo complex can induce a chemical 

pressure effect similar to those caused by modifying a molecular structure by substitution 

of smaller or larger substituents. [25] 

v) Developing other kinds of of seo conductors 

Figure 1.49: A diagram of complex (1.31) 

Many of the successful efforts in designing spin-crossover conductors involve using 

compounds that are closely related (described previously). However, there have been 

efforts to develop a more diverse selection of spin-crossover components for use in new 

materials. One important effort is aimed at developing iron(II) seo conductors because 

they have well documented cooperative effects (through it- it interactions, hydrogen and 

coordination bonding, in addition to intriguing LIESST effect properties) and it is thought 

that these properties can be used to strongly modulate or influence the electrical 

conductivity. One design, complex (1.31), uses chalcogen atoms attached to the seo 

complex through conjugated bonds to achieve strong intermolecular interactions (Figure 
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1.49). Since chalchogens are often used in molecular-based conductors their close 

proximity also functions as a potential path for electron transport. [109] 
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Figure 1.50: The variable temperature magnetic profile of (1.31)[109] 

At room temperature (1.31) favours the HS state ("/.}.1T = 3.1 cm3 K morl
) and upon 

decreasing the temperature to 130.5 K (T1I2 cooling) an abrupt change in the magnetic 

profile was observed (1.31) (Figure 1.50). After the transition the "/.}.1Tvalue is almost 0, 

indicating the equilibrium begins to favour the LS state. Upon heating the sample (after 

cooling) the reverse transition to HS occurred at 132.5 K (T1I2 warming).[109] 

Figure 1.51: A packing diagram of complex (1.31)[109] 
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The crystal structures of (1.31), in both the LS state at 103 K and the HS state at 160 K, 

were determined and changes in the coordinate bond lengths clearly indicated that the 

spin transition was occurring. Intermolecular S'" S distances in the sample were also 

observed to change as a result of the spin transition (Figure 1.51). At 160 K there are 

two short S"'S contacts. One contact is 3.542 A between S(1) and S(5') in the ligand and 

thiocyanate anion respectively. The other contact, 3.689 A, is found between ligand 

molecules containing S(2) and S(3), forming a one-dimensional S''' S chain-like 

structure. At 1 03 K, the contacts are still in the same relative positions, as observed in 

the high temperature phase, but the S(2) and S(3) contact is now much shorter at 3.573(2) 

A. A third S"' S contact with a distance of 3.689(3) A also forms between S(4") and 

S(6), converting the solid into a two-dimensional S"'S network.[I09] 

The abrupt spin transition and narrow hysteresis loop of (1.31) suggest that strong 

cooperative interactions derived mainly from short S'" S contacts are present within this 

molecule. Unfortunately, the cooperative effects were not observed to influence the 

conductivity because measurements verified that the complex was an insulator. It was 

then suggested that in order to introduce conducting properties into an iron(II) spin­

crossover system, further extension of the ligand's x -system was required.[109] 
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Figure 1.52: The interaction between conductivity and spin-crossover in (1.32i l101 

FeCo Prussian blue analogues are another example of multifunctional materials that 

combine temperature dependent resistivity and magnetism. In 

[Nao.38CO(II)1.31 [Fe(III)(CN)6J- 5.4H20] (1.32) for example, the %MT values varied 

significantly depending on temperature due to switching between the Fe(IIILs)_Co(IIHs) 

and Fe(IILs)_Co(IIILs) states, which also causes a reversible phase transition in the 

material. The resistivity versus temperature plot shows an abrupt change in conductivity 

at the temperature where the phase transition occurs, in addition to a hysteresis loop in 

both the resistivity and magnetism plots (Figure 1.52)YIO] 
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Chapter 2: Iron(III) spin-crossover complexes 

2.01 Goals and objectives 

Qur goal is the generation of polymeric materials from molecular SCQ precursors that are 

attached, through covalent bonds, to thiophene heterocycles. The thiophene groups of the 

complexes will then be linked together through oxidative coupling to form conjugated 

polymers. These will be the fIrst examples of electrically conductive metallopolymers 

that contain spin-labile substituents. Also, since each SCQ unit will be joined through a 

covalent linkage, a new structural paradigm for spin-crossover materials will result from 

this synthesis. 

2.02 The spin-crossover component 

With respect to the choice of the spm-crossover component, several preliminary 

considerations were addressed. Since conjugated polymers can be prepared through 

oxidative coupling, a SCQ component featuring a metal in a higher oxidation state, like 

iron(III), could impart added stability towards our synthetic goals. A number of iron(III) 

complexes are known to exhibit spin-crossover, including those made from the qsal 

ligand (2.01) [qsalH = N-(8-quinolyl)salicylaldimineJ. Spin-crossover complexes based 

on qsal, with SCN- or SeCN- counteranions, are notable examples because they feature 

very abrupt spin-transitions. [72,96-98] These complexes also display wide thermal 
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hysteresis loops that result from -increased co-operativity through strong intermolecular 

interactions generated by close 1r-1r contacts in the solid state. [25] 

2.03 Iron(lII) qsal complexes 

i) A preliminary study on iron(lII) qsal complexes 

Iron(III) qsal complexes were identified as an ideal starting point for the aims of this 

research. However, familiarity with the synthesis and characterization of these 

complexes, in addition to their structural properties were preliminary goals set before 

attempting to append the ligand with a thiophene group. These compounds would be 

used as reference points to assess the appended complexes we would prepare afterwards. 

ii) Synthesis and characterization 

(2.01)H 
X- = Cl- (2.02), r- (2.03) 

Reagents and conditions: (i) MeOH. (ii) 0.5 eq FeCh'6H20, MeOH (and Kl, H20 for (2.03». 

Scheme 2.01: The synthesis of complexes (2.02) and (2.03) 

Complex (2.02) was generated by reaction of two equivalents of the ligand precursor 

(2.01)H with hydrated iron(lII) chloride to produce [Fe(2~01)2]C1. A metathesis reaction 

followed with an aqueous solution containing an excess of KI to afford the precipitate 
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(2.03) (Scheme 2.01). The complexes (2.02) and (2.03) are analytically pure and produce 

clean ESI mass spectra, with the largest peak corresponding to the [Fe(2.01)zt cation. 

Also, the FT-IR spectra for both complexes show a highly characteristic absorption, the 

imine (C=N) stretch at 1601 em-I, attributed to the coordinated ligand (2.01). 

iii) Structural properties 

Figure 2.01: The molecular structure of (2.03) with ellipsoids drawn at the 50 % 
probability level 
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Table 2.01: Selected bond distances and angles for (2.02) 

Atoms Distance (A) Atoms Angle CO) 

Fe(1)-N(1) 1.986(4) N(I)-Fe(l)-N(1) 88.4(2) 
Fe(1)-N(2) 1.940(4) N(1)-Fe(1)-N(2) 82.3(2) 
Fe(l)-O(l) 1.871(3) N(1)-Fe(1)-N(2) 94.7(2) 

N(1 )-Fe(1 )-0(1) 90.4(1) 
N(2)-Fe(1)-0(1) 89.0(1) 
N(2)-Fe(1 )-0(1) 93.9(1) 
0(1 )-Fe(1 )-0(1) 91.1(1) 
N(l )-Fe(1 )-N(2) 175.9(2) 
N(2)-Fe(1)-0(1) 175.9(2) 

(standard deviations in the last digit are quoted in parenthesis) 

Single crystals of (2.03), suitable for X-ray diffraction, were grown from slow 

evaporation of a saturated methanol solution. The expected pseudo-octahedral 

coordination geometry of (2.03) reveals bond lengths and angles that are all consistent 

with those of similar iron(III) compounds (Figure 2.01).[97] The Fe-O distances are 

shorter than the Fe-N distances and induce a slight distortion in the nearly perpendicular 

FeN40 2 octahedron of (2.03) (Table 2.01). 

2.04 Thienyl-substituted qsal complexes· 

i) Synthetic methodology 

After our preliminary investigation of iron(III) qsal complexes, we shifted towards our 

main synthetic objective, namely appending the qsal ligand (2.01) with a thiophene 

heterocycle. The framework of (2.01) is amenable to structural modification, which is 
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advantageous for tethering to the thiophene component. We also chose to incorporate an 

ethynyl spacer between the qsal ligand and the thiophene group to help prevent steric 

congestion of the compounds while still maintaining the conjugation. The structurally 

modified (2.01) ligand was then used in the synthesis of model complexes containing 

iron(IID, to investigate the effect of thiophene ring substitution on the electronic or 

magnetic properties of the [Fe(2.01)2t moiety. 

ii) Ligand synthesis 

0 

I .... A Br ..# H 

j ;) 
0 

0 

~ ~OH .. I -

ii) 
-l= \j OH 

(2.05) (2.04) 

o 

S~OH 
iv) 

(2.06) (2.07)H 

Reagents and conditions: (i) TMS-acetylene, (i-Pr)2NH, 2 mol % PPh3, 2 mol % 
PdClz,(PPh3)2, 3 mol % CuI, 84 °C, 4 h. (ii) MeOH, THF, KOH. (iii) 3-
bromothiophene, THF, (i-pr)2NH, 2 mol % PPh3, 2 mol % PdClz,(PPh3)z. 3 mol % 
Cui, 65 °C, 20 h. (iv) 8-aminoquinoline, EtOH. 

Scheme 2.02: The synthesis of (2.07)H 
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A 3-ethynylthienyl substituted qsalH ligand was prepared In four steps from the 

commercially available reagents 5-bromosalicylaldehyde and 3-bromothiophene 

(Scheme 2.02). Sonogashira cross-coupling between 5-bromosalicylaldehyde and 

ethynyltrimethylsilane afforded the protected acetylene precursor (2.04), which was 

deprotected by stirring overnight in base to afford (2.05). Another Sonogashira reaction 

between (2.05) and 3-bromothiophene provided the aldehyde precursor (2.06) as a yellow 

powder, which was condensed with 8-aminoquinoline to yield the modified ligand 

(2.07)H as a crimson oil, which is somewhat unstable in solution · but has been fully 

characterized. 
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Figure 2.02: IH-NMR spectrum of (2.07)H in CDCh 
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In the IH-NMR spectrum of (2.07)H (Figure 2.02), the peak attributed to the hydroxyl 

proton at 14.45 ppm is shifted downfield relative to hydroxyl proton resonance at 11.13 

ppm in the aldehyde precursor (2.06). The singlet observed at 8.93 ppm is characteristic 

of the imine proton when compared to the imine singlet at 8.95 ppm observed for 

(2.01)H. Twelve addiotnal peaks are found in the aromatic region of the spectrum and 

are consistent with the expected resonances of the three thienyl, three salicyl and six 

quinoline protons. The imine C=N stretch is also observed in the FT-IR spectrum. 

iii) Coordination chemistry 

i) 

(2.07)H 

OJ. ::or-o .. - ~ 

". ./' 
............ /'+ 

N--------------F'e3 -----------.. ~ ,/ -----' cP .. / -"" N x-
;-=-c/ _ -

Reagents and conditions: (i) (2.08) FeCh·6H20 , NaPF6, MeOH, H20 ; (2.09) 
FeCh' 6H20, KSCN, MeOH, H20; (2.10) FeCI04• 6H20, KSCN, MeOH, H20. 

Scheme 2.03: The synthesis of complexes (2.08) - (2.10) 

Homoleptic coordination complexes were generated by reaction of two equivalents of 

(2.07)H with hydrated iron(lII) chloride in the presence of triethylamine, followed by 

metathesis with aqueous solutions containing an excess ofNaPF6 or KSCN to afford dark 

green precipitates of the PF6- (2.08) or SCN- (2.09) salts containing the [Fe(2.07ht 

cation (Scheme 2.03). Complex (2.10), containing a perchlorate anion, was prepared by 

direct reaction of Fe(CI04k 6H20 with two equivalents of (2.07)H in a dichloromethane 

(DCM)-acetonitrile solution. All complexes are analytically pure and produce ESI mass 

spectra with a dominant peak corresponding to the [Fe(2.07)2t cation. The FT-IR 
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spectra for complexes (2.08) - (2.10) are very similar, the only significant changes being 

due to the characteristic absorptions of the different anionic component. A sliglit shift 

(-15 cm-I
) in the C=N stretching frequency to lower energy, relative to uncoordinated 

(2.07)H, also indicates coordination. 

(2.07)H 

Reagents and conditions: (i) Mn(C2H30 2)2'4H20, DCM, MeOH. 

Scheme 2.04: The synthesis of complex (2.11) 

In addition to our targeted iron(III) containing sca compounds we also prepared a 

closely related complex that was not spin labile so that we could further probe the 

magnetic and electronic properties of our models. A homoleptic manganese complex 

(2.11) was generated in an analogues procedure to the iron containing species. Two 

equivalents of (2.07)H were combined with hydrated manganese(I1) acetate to afford the 

neutral [Mn(2.07)2] complex as a red precipitate (Scheme 2.04). The complex was 

analytically pure and produced an ESI mass spectrum with a dominant peak 

corresponding to the [Mn(2.07)2t cation. The FT-IR spectrum for complex (2.11) is 

similar to (2.08) - (2.10), with a nearly identical C=N stretching frequency (-4 cm-I 

lower). 
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iv) Structural properties 

(2.11) 

Reagents and conditions: (i) [Fe(2.07)2]SCN·2.5· H20, acetone. 

Scheme 2.05: The reduction of (2.10) 

Using a variety of different techniques and solvent combinations, efforts to grow single 

crystals of complexes (2.08) - (2.10) suitable for X-ray diffraction studies were 

unsuccessful. On the basis of the characterization data collected, however, we are 

confident in the proposed formulations for complexes (2.08) - (2.10). Curiously, the 

attempted recrystallization of (2.10) in an aerobic acetone solution generated black plate 

crystals of the reduced iron(II) complex (2.12) as an acetone and water solvate. Redox 

stability certainly accounts for some of the difficulties encountered during the attempted 

crystal growth of (2.08) - (2.10), but we have only observed this reduction for complex 

(2.10) in acetone solution (Scheme 2.05). 
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Figure 2.03: The molecular structure of (2.12) with ellipsoids drawn at the 50 % 
probability level 

Table 2.02: Selected bond distances and angles for (2.12) 

Atoms 

Fe(1)-N(1) 
Fe(1)-N(2) 
Fe(1)-N(3) 
Fe(1)-N(4) 
Fe(1)-O(1) 
Fe(1)-O(2) 

Distance (A) 

2.143(2) 
2.130(2) 
2.157(3) 
2.142(3) 
1.913(2) 
1.915(2) 

Atoms 

N(1 )-Fe(1 )-N(2) 
N(1)-Fe(1)-N(3) 
N(1 )-Fe(1 )-N( 4) 
N(2)-Fe(I)-N(3) 
N(3)-Fe(1)-N(4) 
N(1 )-Fe(1 )-0(2) 
N (2)-F e(1 )-0(1 ) 
N(2)-Fe(1)-0(2) 
N(3)-Fe(1 )-0(1) 
N( 4)-Fe(1 )-0(1) 
N(4)-Fe(1)-0(2) 
0(1)-Fe(1)-0(2) 
N(2)-Fe(1)-N(4) 
N(1 )-Fe(1 )-0(1) 
N(3)-Fe(1)-0(2) 

Angle (0) 

76.8(1) 
87.5(1) 
97.7(1) 
92.9(1) 
76.4(1) 
90.5(1) 

87.50(9) 
102.99(9) 
90.3(1) 

97.16(9) 
87.16(9) 
96.1(1) 

168.37(9) 
164.09(1) 
163.0(1) 

(standard deviations in the last digit are quoted in parenthesis) 
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The expected iron pseudo-octahedral coordination geometry is shown in an ORTEP 

diagram of the molecular structure of (2.12) (Figure 2.03). Two anionic molecules of 

(2.07) are coordinated at three meridional positions through their donor phenolate 

oxygen, as well as the quinolyl and imine nitrogen atoms. Coordinate bond lengths 

indicate the +2 oxidation state for the metal, with Fe-N lengths greater than 2.13 A in all 

cases and each Fe-O bond length is greater than 1.9 A (Table 2.02). In comparison to 

other similar, structurally characterized, iron(III) complexes coordinated to (2.01), Fe-N 

coordinate bond lengths are all less than 2 A and Fe-O bond lengths are less than 1.9 A. 

The absence of a perchlorate counteranion in (2.12) also supports the +2 iron oxidation 

state. [97] 

Figure 2.04: The packing diagram of (2.12) 
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A packing diagram of (2.12) (Figure 2.04) highlights a 1[-1[ interaction between a 

quinolyl ring fragment from one molecule and the ethynyl substituent of an adjacent 

molecule. The distance between the ethynyl triple bond and the centroids of the quinolyl 

ring is 3.499 A. 

Figure 2.05: The molecular structure of (2.11) with ellipsoids drawn at the 50 % 
probability level 
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Table 2.03: Selected bond distances and angles for (2.11) 

Atoms 

Mn(1)-N(1) 
Mn(1)-N(2) 
Mn(1)-N(3) 
Mn(1)-N(4) 
Mn(1)-0(1) 
Mn(1)-0(2) 

Distance (A) 

2.283(5) 
2.270(6) 
2.276(5) 
2.254(6) 
2.087(4) 
2.091(4) 

Atoms 

N(1)-Mn(1)-N(2) 
N(1)-Mn(1)-N(3) 
N(1 )-Mn(1 )-N( 4) 
N(2)-Mn(1)-N(3) 
N(3)-Mn(1)-N(4) 
N(1)-Mn(1)-0(2) 
N(2)-Mn(1)-0(1) 
N(2)-Mn(1 )-0(2) 
N(3)-Mn(1)-0(1) 
N(4)-Mn(1)-0(1) 
~(4)-Mn(1)-0(2) 

0(1)-Mn(1)-0(2) 
N(2)-Mn(1)-N(4) 
N(1 )-Mn(1 )-0(1) 
N(3)-Mn(1)-0(2) 

Angle (0) 

72.3(2) 
94.0(2) 
91.1(2) 
90.0(2) 
73.0(2) 
86.9(2) 
84.6(2) 
111.8(2) 
87.4(2) 
111.4(2) 
84.2(2) 
100.5(2) 
155.6(2) 
156.8(2) 
157.3(2) 

(standard deviations in the last digit are quoted in parenthesis) 

The recrystallization of (2.11) in a mixture of methanol and DCM generated orange 

crystals of the manganese(lI) complex. An ORTEP diagram of the molecular structure 

features the same pseudo-octahedral coordination geometry for (2.11) (Figure 2.05) as 

found for the iron complex (2.12). In (2.11), two molecules of (2.07) are coordinated at 

the three meridional positions through the oxygen and two nitrogen atoms. The Mn-~ 

coordinate bond lengths are within the range of 2.25-2.28 A and the Mn-O bond lengths 

are both around 2.09 A. The O-Mn-O bond angle of 100.5° in (2.11) is comparable to the 

95.9° O-Fe-O angle of (2.12) and demonstrates the structural similarity between the iron 

and manganese gsal complexes (Table 2.03). 
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Figure 2.06: The X-ray powder diffraction pattern of (2.09)[111] 
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Figure 2.07: The calculated powder diffraction pattern of (2.11)[111] 
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Figure 2.08: A low angle comparison between (2.09) and (2.11i11l1 
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We attempted to obtain X-ray powder diffraction patterns to further examine the 

structural properties of complexes (2.08) - (2.10). Complex (2.08) was not suffiCiently 

crystalline to provide us with a diffraction profile. However, data was acquired for a 

poorly crystalline sample of (2.09) (Figure 2.06). The low angle powder data for (2.09) 

matches well with the calculated powder profile for (2.11) and suggests that these 

complexes may share similar structural properties (Figures 2.07 - 2.08). 

Figure 2.09: The X-ray powder diffraction pattern of (2.10illl ] 

The profile obtained from polycrystalline (2.10) (Figure 2.09) is substantially different 

from both the calculated pattern of (2.11) and the observed pattern of (2.09) and does not 

allow us to draw any relationships regarding the structural properties of this material. 
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v) Magnetic characterization 

4.5.....------------'"1 

3.6 

1.5 

, 0.5 ....... ...--.a... ....... ...-.............. ...-.............. --. ....... .u 
o 100 200 300 

Temperature (K) 

Figure 2.10: Variable temperature magnetic susceptibility measurements for complexes 
(2.08) - (2.10) in a 5000 Oe magnetic field[Ill] 

Magnetic susceptibility measurements were carried out with a SQUID magnetometer 

over the temperature range 2.5 K - 325 K for complexes (2.08) - (2.09) and 5.0 K - 325 K 

for complex (2.10) and are displayed as plots of XMT versus T (Figure 2.10). For 

complexes (2.08) and (2.10), spin-crossover from an S = 5/2 to an S = 112 state is 

indicated by the decrease in XMT with decreasing temperature. The observed values of 

XMT for complexes (2.08) and (2.10) at 325 K (respectively 2.89 and 2.66 cm3molK1
) are 

less than the expected spin-only values for pseudo-octahedrally coordinated high-spin 

iron(III) (4.34 cm3moIK-1
), which is possibly due to some proportion of the low-spin 

component present at this temperature. As the temperature is decreased, a concomitant 

decrease in XMT is observed. The temperature is then raised from the lowest point of 

measurement and the XMT values observed are virtually identical to those recorded during 

the initial cooling. The profile of these data indicate that the spin-crossover in complexes 

(2.08) and (2.10) are best described as a gradual transition without thermal hysteresis, 
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which is typical for iron(III) complexes. At the lowest temperature of measurement 2.5 

K (or 5 K for (2.10» XMT values of 0.74 and 0.79 cm3molK-l
, for complexes (2.08) and 

(2.10) respectively, are a little higher than the anticipated value for low-spin iron(III) 

(0.375 cm3molK-I
) but are comparable to related iron(III) complexes. 

Velocity (mmls) 

Figure 2.11: The Mossbauer spectra for complex (2.08) with experimental data 
(dots) fitted to theoretical lines [Ill] 

Mossbauer spectra (Figure 2.11) for complex (2.08), recorded at 293, 100, and 5.8 K, 

mirrors the variable temperature magnetic susceptibility data. At 293 K two sets of 

doublets with distinct quadrupole splittings (QS) are observed, which are typical for 

iron(III) complexes that exhibit gradual spin-crossover. The inner doublet with QS of 

0.66 mm/s and an IS of 0.41 mmls is assigned the high-spin isomer. The outer doublet 

with a QS of 2.56 mmls and IS of 0.14 mm/s, is assigned to the low-spin isomer. The 

intensity of the inner doublet decreases with decreasing temperature, while a concomitant 

64 



increase in the intensity of the outer doublet occurs. At 100 K the outer doublet becomes 

the dominant absorption and the intensity ratio of the inner and outer doublets changes 

very little with further decreases in temperature. The QS for the outer doublet, at 5 K, is 

2.849 mmls and is consistent with low-spin iron(III). 

Complex (2.09) has different variable temperature magnetic properties when compared to 

(2.08) or (2.10). Although the profile of the data for (2.09) is typical for iron(III) spin-

crossover complexes and is similar to the profiles of (2.08) and (2.10), the XMT values are 

anomalously higher (Figure 2.10). During the data acquisition, the experiments to obtain 

values for (2.09) were run very slowly to ensure thermal equilibrium at each point of 

measurement (data was collected in triplicate and from two independently prepared 

batches of the complex). The data obtained in all cases were very similar, the XMT values 

decreased gradually between 325 and 5 K. At 325 K, the xMTvalue (4.37 cm3moIK-1
) for 

(2.09) is consistent with high-spin iron(III) and is higher than the values observed for 

(2.08) or (2.10). 
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Figure 2.12: Reduced magnetization versus field data for (2.09) (large black dots) 
recorded at 5 K between theoretical curves[111] 
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There is a very slight increase in XMT between 13 and 10 K, and magnetization versus 

field experiments at 5 K indicated no magnetic ordering for (2.09), ruling out the 

possibility of a magnetic phase transition. The magnetization versus field data for (2.09) 

is shown in Figure 2.12 and plotted between dotted and solid lines that represent 

theoretical S = 3/2 and S = 112 respectively. The value of Mat at 5.5 T (5 K) approaches 

2.3 NIlB, which is significantly higher than the expected value for low-spin iron(llI) (0.69 

NIlB) and is closer to the expected value for an S = 3/2 intermediate state (2.67 NIlB). 

Below 10 K, XMT continues to slowly decrease to a fmal value of 2.58 cm3molK-1 at 5 K, 

which is higher than the xMTvalues observed for (2.08) and (2.10) at similar temperatures 

and is, again, much closer to the anticipated value for an S = 3/2 state (1.87 cm3molK-1
) 

than an S = 112 state. Thus, the variable temperature magnetic susceptibility data 

obtained from (2.09) suggests a thermally induced spin-crossover to an intermediate S = 

3/2 state. An S = 3/2 state can occur if the energy levels of the orbitals are non­

degenerate and the occupancy of four orbitals requires less energy than the pairing energy 

while the fifth has a L10 splitting large enough to cause the pairing of one electron. 
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Table 2.04: Mossbauer data for (2.08) and (2.09) 

Compound Temperature IS QS Site Pe(III) 
COC) (mmls) (mmls) (%) Spin State 

293 
0.41(1) 0.66(2) 73.6 5/2 
0.14(2) 2.56(4) 26.4 112 

(2.08) 100 
0.50(1) 0.61(2) 24.7 5/2 

0.200(1) 2.837(3) 75.3 112 

5.8 
0.51(1) 0.58(2) 23.0 5/2 

0.201(2) 2.849(7) 77.0 1/2 

293 
0.38(1) 0.69(2) 66.5 5/2 
0.19(22 2.28(42 33.5 3/2 

100 
0.40(1) 0.61(2) 27.0 5/2 

(2.09) 
0.203(22 2.76(12 73.0 3/2 

10.6 
0.37(1) 0.66(2) 30.5 5/2 

0.205(2) 2.649(3) 69.5 3/2 

5.7 
0.41(2) 0.60(2) 29.3 5/2 

0.210(22 2.649(4) 70.7 3/2 

-6 ~3 0 3 
-

1. 

Velcxity(mrn/s) 

Figure 2.13: Mossbauer spectra for complex (2.09) with experimental data (dots) 
fitted to theoretical lines [lll] 
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In an attempt to help us understand this unusual magnetic behaviour and to confirm the 

unusual S = 5/2 to S = 312 crossover in (2.09) Mossbauer spectra were recorded on a 

freshly prepared sample at a variety of temperatures (Table 2.04, Figure 2.13). The 

Mossbauer data collected for complex (2.09) at 293 K indicate that there is a mixture of 

spin isomers, as in the data collected for complex (2.08). The high-spin isomer of (2.09) 

is dominant at 293 K, displaying QS and IS values that are consistent with S = 512 

iron(III) (Table 2.04). As the temperature is lowered from 293 to 100 K, the intensity of 

the inner doublet decreases and the intensity of the outer doublet increases, which is 

similar to the observations made with (2.08) and suggests that a thermally induced spin­

crossover is operative in (2.09). At the lowest temperature of measurement (5.7 K), the 

QS value measured for the outer doublet (2.649 mmls) of (2.09) is much smaller than the 

QS observed for (2.08) at the same temperature, which was ascribed to low-spin (S = 112) 

iron(III) in (2.08) in conjunction with variable temperature magnetic susceptibility 

results. 

Although the iron(III) S = 3/2 spin state is quite rare, a similar observation was made by 

Neva et al. during Mossbauer studies on an azide-substituted iron(III) porphyrin 

complex. The QS of 2.649 mmls observed for (2.08) is consistent with the S = 3/2 state 

observed in Neva's azide complex,l112-1l3] Other iron(III) porphyrin complexes that 

reportedly exhibit an intermediate spin state typically exhibit QS values that are greater 

than 3 mmlsy14] However, from a structural and electronic perspective, complex (2.09) 

is significantly different from iron(III) porphryin complexes, and we have no reason to 

assume that the Mossbauer properties of (2.09) will be similar. Also of note, the feature 
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described in the XMT profile of (2.09) at approximately 10K is mirrored in the Mossbauer 

spectrum at 10.6 K. Relative to the spectrum taken at 100 K, the intensity of the outer 

doublet decreases slightly between 10.6 and 5.7 K, with a small increase in the intensity 

of the inner doublet. We cannot rule out the possibility of a structural phase transition in 

the very low temperature regime, which results in a slight increase of the high-spin 

isomer population. However, this feature does not detract from the clear observation of a 

thermally induced spin-crossover operative in (2.09). 

500 2000 3500 
Magnetic Field tOe) 

5000 6500 

Figure 2.14: A powder ESR spectra of (2.09) at 298 and 120 K[lll] 
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Figure 2.15: A powder ESR spectra of (2.10) at 120 K[111] 
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The transition between S = 312 and 5/2 states in iron(III) porphyrin complexes has been 

observed by Ohgo through low temperature ESR studiesP 15] Currently, there are no 

other reported examples of non-porphyrin iron(III) complexes that display a thermal 

equilibrium between S = 5/2 and S = 3/2 states. However, as with the iron(III) porphyrin 

complexes, ESR spectroscopy provided clear and unambiguous confirmation of the S = 

3/2 state on powdered samples of (2.09) at 298 K and 120 K (Figure 2.14). A resonance 

at g = 4.03 is observed at 298 K, which is characteristic for S = 3/2 systems. As the 

temperature is decreased, the intensity of the g = 4.03 resonance increases, suggesting, in 

accordance with the data from variable temperature magnetic susceptibility experiments, 

that the proposed S = 5/2 to S = 3/2 crossover is a thermal equilibrium, with a distinct S = 

3/2 state dominant at low temperature. For comparison purposes, we ran an ESR 

experiment with complex (2.10) at 298 K but could not obtain a spectrum (Figure 2.15). 

At 120 K, however, a spectrum is observed from (2.10), which is typical for S = 112 

systems, with no indication of a g ~4 resonance, indicating that the iron(III) ion is in the 

low-spin state. Taken together, the data from variable temperature magnetic, Mossbauer 

and ESR measurements, provide strong evidence that a very unusual S = 5/2 to S == 3/2 

crossover is operative in (2.09). 

Complex (2.12) features iron(II) in the high-spin state, XMT == 3.60 cm3mol K-1 at 325 K, 

and no significant temperature dependence or solid-state spin-crossover is evident from 

the magnetic data for temperatures above 50 K (Figure 2.10). XMT begins to drop 

sharply below 50 K, however, likely resulting from a combination of zero-field splitting 
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(ZFS) of the high-spin state and weak intermolecular anti ferromagnetic interactions 

through close intermolecular 71:-71: contacts observed in the crystal packing of (2.12). 

vi) Electronic absorption spectroscopy 
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Figure 2.16: The variable temperature absorbance profile of (2.09)[111] 

In the visible region of the spectrum at 298 K, solutions of ligand (2.07)H in DCM 

exhibit an absorbance maximum at 500 run, (8) = 285 M-1cm-1, resulting from an 

intraligand charge transfer absorption (ILCT). At room temperature, darkly coloured 

ethanol solutions of complexes (2.08) - (2.10) each exhibit LMCT bands at 

approximately 450 run, (8) = 4100 M-1cm-1 for (2.10). Cooling ethanol solutions of 

(2.08) - (2.10) in liquid nitrogen results in changes to the physical appearance of the 

solutions. The absorption measurements (400 - 900 run) at 77 K for complexes (2.08) -

(2.10) were examined as ethanol glasses. As a typical example, the spectra obtained for 

(2.09) at 298 and 77 K are shown in Figure 2.16. For each complex, a dramatic increase 

in absorbance of the LMCT band is observed at lower temperatures, along with the 

appearance of a new broad absorption centred at approximately 850 nm. 
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vii) Electrochemistry 
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Figure 2.17: Cyclic voltammograms of (a) (2.01)H and (b) (2.07)H 

Table 2.05: Electrochemical data for (2.01)H and (2.07)H in DCM 

Compound 

(2.01)H 
(2.07)H 

EO ox (V) vs. fc 

0, +0.6, +0.8 
0, +0.6 

(Refer to section 8.04 for experimental details) 

-1.8 
-1.8 

1.6 

Cyclic voltammograms of the ligand (2.07)H were obtained primarily to assess the 

thiophene oxidation potential (Figure 2.17). In a cathodic scan of (2.07)H, no reduction 

processes are evident until approximately -1.8 V versus ferrocene (fc). At -1.8 V an 

irreversible wave, likely corresponding to the reduction of the imine, is observed at a 

slightly more negative potential in comparison to the voltammogram of unsubstituted 

(2.01)H (Figure 2.17). An irreversible anodic process is noted at 0.0 V, which is also 

present in the voltammogram of (2.01)H and likely represents oxidation of the hydroxyl 

group. Above +0.4 V, irreversible oxidations are observed in (2.07)H, which are also 
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present in the profIle ofunsubstituted (2.01)H. These oxidations obscure the oxidation of 

the thiophene ring in (2.07)H, but it is observed as an irreversible feature at + 1.2 V. Refer 

to Table 2.05 for a complete list of redox events for (2.01)H and (2.07)H. 
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Figure 2.18: Cyclic (left) and differential pulse (right) voltammograms of (2.02) 
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Figure 2.19: Cyclic (left) and differential pulse (right) voltammograms of (2.08) 

55 

15 

t -25 
3 

-65 .L-._. ___________ .. _. ____ . 

-2.6 -1.6 -0.6 

Potential (V) 

0.4 1.4 -1.0 -0.5 0 .0 0.5 1.0 

Potential (V) 

Figure 2.20: Cyclic (left) and differential pulse (right) voltammograms of (2.09) 

1.5 

1.5 

73 



50 

10 

5 

-50 +----------,------,---------,----.- .----,-- o ~; ------ - ---------
-2.6 -1.6 -0.6 

Potential (V) 
0.4 1.4 -1.0 ~O.S 0.0 0.5 1.0 

Potential (V) 

Figure 2.21: Cyclic (left) and differential pulse (right) voltammograms of (2.10) 

Table 2.06: Electrochemical data for (2.02), (2.08) - (2.11) in ACN 

Compound 

(2.02) 
(2.08) 
(2.09) 
(2.10) 
(2.11) 

EO ox (V) vs. fc 

+0.7, +0.9, + 1.3 
+0.7, +0.9, +1.2 

+0.3, +0.7, +0.9, +1.2 
+0.7, +0.9, +1.2 
+0.3, +0.7, +0.9 

-0.6, -2.0, -2.2 
-0.7, -2.1, -2.3 
-0.7, -1.9, -2.1 
-0.7, -2.1, -2.3 

-1.8,2.1 

(Refer to section 8.04 for experimental details) 

1.5 

The cyclic voltammograms of the iron(III) complexes (2.08) - (2.10) are all very similar. 

The cathodic scan reveals a reversible Fe3
+

/2
+ couple at -0.7 V (versus fc), followed by 

two quasi-reversible reduction processes at -2.1 and -2.3 V, (-1.9, -2.1 V for (2.09» that 

occur as a result of reducing the imine double bonds of each coordinated ligand (2.07). 

Over anodic potentials, irreversible features are observed at +0.7, +0.9 V, and +1.2 V that 

are also observed in the profile of (2.02) and represent oxidation of the qsal ligand 

components. An extra irreversible feature, centred at +0.3 V, is noted in the CV of (2.09), 

but not in the voltammagram of (2.02), (2.08), or (2.10), and is ascribed to a thiocyanate-
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based oxidation process. For comparison, the cyclic voltammogram of KSCN in 

acetonitrile shows an irreversible feature at about +0.2 V. An effort to resolve the anodic 

waves was attempted by using differential pulse voltammetry over a potential of -1.0 V to 

+ 1.5 V. In this region, the differential pulse voltammogram (DPV) of (2.02) exhibits 

four broad waves, corresponding to the reduction and oxidation events present in the CV 

(Figure 2.18). In the DPVs of complexes (2.08) - (2.10) four waves are also noted over 

this same region, plus one additional wave for the SCN- component of (2.09) (Figures 

2.19 - 2.21). The key difference between (2.08) - (2.10) and (2.02) is found in the anodic 

wave centred at +1.2 V. The peak at +1.2 V is much broader for (2.08) - (2.10) because 

the thiophene ring oxidation falls within this regime, overlapping with the qsal 

oxidations. Repeated cycling between 0 and 1.5 V for solutions of (2.08) - (2.10) did not 

result in electropolymerization as indicated by the absence of an electroactive film 

deposited on the working electrode following the experiment. 
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Figure 2.22: Cyclic voltammogram of complex (2.11) 

The cyclic voltammogram of the manganese(II) complex (2.11) is similar to the iron(III) 

complexes (Figure 2.22). The cathodic scan reveals a two quasi-reversible reduction 

processes beyond -1.6 V that occur as a result of reducing the imine double bonds of each 
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coordinated ligand (2.07). Over anodic potentials, the complex reveals a quasi-reversible 

oxidation event at 0.33 V, characteristic of the MnZ+/3+ redox coupleJ1l
6] The 'ligand 

based oxidations were broad and observed at potentials above +0.5 V. Refer to Table 

2.06 for a complete list of redox events for (2.02), (2.08) - (2.11). 

vii) Summary 

The results have demonstrated that 3-ethynylthienyl substitution of ligand (2.01) is 

compatible with the iron complexes because their spin-crossover properties are 

maintained. However, complexes (2.08) - (2.10) did not undergo electropolymerization, 

likely because of the high, irreversible thiophene oxidation potential and steric bulk of the 

[Fe(qsal)zt substituent. Further efforts to lower the oxidation potential of the 

polymerizable component (while also reducing steric congestion) are required to make 

qsal-type ligands containing substituents more amenable to electropolymerization 

reactions. 
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2.05 Terthienyl-substituted qsal complexes t 

i) Extending the conjugation 

An important prerequisite for electropolymerization of many metal-containing monomers 

is a relatively low oxidation potential, which may be achieved by incorporating longer 

polymerizable groups with extended conjugation or by using electron-donating 

substituents. Lower oxidation potentials allow for polymerization · without significant 

decomposition or competing side-reactions that can occur at higher potentials. Longer 

polymerizable groups also reduce steric interactions between bulky metal centres, which 

may prevent efficient coupling of monomers. In this regard our next synthetic target 

included a terthiophene substituted variation of complex (2.08) to assist in our efforts 

towards polymerization. [117] 
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ii) Ligand synthesis 

()-Br ____ Brr-Br 

i) s---r 
Br 

(2.13) (2.14) 

;.]x 
-"-~s OH 

iv) "'b I 

(2.16) (2.15) 

Vi)] ~J .. IUOH v) 
(2.17) 

(2.18) (2.19)H 

Reagents and conditions: (i) Br2, 48 % HBr(aq) Et20 35 °C, 3 h. (ii) 2-
thiopheneboronic acid, DME, H20, 10 mol % PdCI2,(PPh3h K2C03, 100 °C, 3 d. 
(iii) 2-methyl-but-3-yn-2-ol, (i-Pr)2NH, 3 mol % PdCh,(PPh3)2, 3 mol % Cui, 84 °C, 
24 h. (iv) MeOH, Toluene, KOH, 6 d. (v) ICI, THF. (vi) 5-iodosalicylaldehyde, 
THF, TEA, 3 mol % PPh3, 3 mol % PdCh,(PPh3)2, 5 mol % Cui, 65 °C, 5 d. (vii) 8-
aminoquinoline, CHCI3. 

Scheme 2.06: The synthesis of (2.19)H 

The terthienyl-substituted qsalH ligand was prepared in a seven step convergent synthesis 

from the commercially available reagents 3-bromothiophene and salicylic acid (Scheme 

2.06). 3-bromothiophene was reacted with bromine in the 2 and 5 positions, affording 

the precursor (2.13), which was used in a Suzuki cross-coupling reaction with 2-

thiophene boronic acid producing (2.14). A Sonogashira coupling between the 
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terthiophene derivative and 3-methyl-3-butyn-2-01 provided (2.15), a terthiophene 

compound with a protected ethynyl group, which was then deprotected by refluxing in 

the presence of base giving (2.16). At the same time, 5-iodosalicylaldehyde (2.17) was 

prepared by reacting iodine monochloride with salicylaldehyde and then used 

immediately in another Sonogashira reaction with the deprotected ethynyl group of 

(2.16). The resulting aldehyde precursor (2.18) was then condensed with 8-

aminoquinoline to yield the modified qsalH ligand (2.19)H as a crimson oil, which was 

hydrolytically unstable in solution. 

~~~ 8~ ~~~~ ~~ m~ ~~ ~~~~ ~~ !M 

t~~~~ 

I ! 

_-.....-/'--__ ~'-_L--J U· "----. __ ~ 

Figure 2.23: IH_NMR spectrum of (2.19)H in CDCh 

Ligand (2.19)H has been fully characterized and has notably similar spectroscopic 

properties in comparison to (2.07)H. In the IH-NMR spectrum of (2.19)H (Figure 2.23), 

the peak attributed to the hydroxyl proton at 14.45 ppm is shifted downfield relative to 
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the hydroxyl proton resonance at 11.19 ppm in the aldehyde precursor (2.18). A peak 

found at 9.00 ppm is characteristic of the imine proton when compared to the imine 

singlet at 8.95 ppm observed for (2.01)H. Sixteen addiotnal peaks are found in the 

aromatic region of the spectrum and are consistent with the expected resonances of the 

seven terthienyl, three salicyl and six quinoline protons. The imine C=N stretch is also 

observed in the FT-IR spectrum at 1618 em-I. 

iii) Coordination chemistry 

OH 

~ 
s 

Reagents and conditions: (i) FeC13• 6H20, NaPF6, MeOH, H20. 

Scheme 2.07: The synthesis of (2.20) 

A homoleptic coordination complex was generated by reacting 2 equivalents of (2.19)H 

with hydrated iron(lII) chloride, followed by metathesis with an aqueous solution 

containing an excess of NaPF6 to afford a green precipitate of the PF6- salt (2.20) 

containing the [Fe(2.19)2t cation (Scheme 2.07). The complex was analytically pure, 

producing an ESI mass spectrum with a dominant peak corresponding to the [Fe(2.19)2t 

cation. The FT -IR spectrum for complex (2.20) displays characteristic absorptions 

80 



including vibrations of the anionic PF6- component and a slight shift in the C=N 

stretching frequency to 1603 cm- l indicating the coordination of (2.19) to the iron(I1I) 

cation. 

OH 

~ 
s 

s 

(2.11) 

Scheme 2.08: The synthesis of (2.21) 

A closely related homoleptic manganese(II) complex (2.21) was generated in an 

analogues procedure to the iron containing species so that we could further probe the 

magnetic and electronic properties of our models. Two equivalents of (2.19)H were 

combined with hydrated manganese(I1) acetate to afford the neutral [Mn(2.19)2] complex 

as an orange solid (Scheme 2.08). The complex produced an ESI mass spectrum, with a 

peak corresponding to the [Mn(2.19)2t cation. The FT -IR spectrum of complex (2.21) is 

also very similar to (2.20), with a nearly identical C=N stretching frequency (-4 cm-1 

higher). Previous studies on complex (2.11) confirmed that manganese(I1) was non-spin-

crossover when coordinated to the N40 2 donor set of the qsal ligands, and would 

therefore be useful in preparing non-spin-crossover analogues of polymers generated 

from (2.20). 
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iv) Magnetic characterization 

6.0 

100 200 

Temperature(K) 
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Figure 2.24: The magnetic profile of (2.20) in a 5000 Oe magnetic field[1l8] 

Magnetic susceptibility measurements were carried out with a SQUID magnetometer 

over the temperature range 2 - 350 K for complex (2.20) and are displayed as a plot of 

magnetic moment (Peff) versus temperature (Figure 2.24). The observed value of Peff for 

complex (2.20) at 350 K is 5.9 J.l.B and is in good agreement with the expected value for 

one pseudo-octahedrally coordinated high-spin iron(III) ion. Spin-crossover from an S = 

5/2 to an S = 112 state is indicated by the decrease in moment with decreasing 

temperature. As the temperature is raised from the lowest temperature measurement, the 

Peff values observed are identical to those recorded during the initial cooling. The profile 

of these data indicates a typical iron(III) spin-crossover in complex (2.20) with a gradual 

transition without thermal hysteresis. At the lowest temperature of measurement, 2.0 K, 

a Peff of 3.7 J.l.B is observed, which is higher than the anticipated value (1.73 J1.B) for low 

spin iron(III) and suggests some proportion of high-spin component is still present at this 

temperature. 

v) Electrochemistry 
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Figure 2.25: Cyclic voltammogram of the ligand (2.19) 

Table 2.07: Electrochemical data for (2.19)H in DCM and (2.20)- (2.21) in ACN 

Compound 

(2.19)H 
(2.20) 
(2.21) 

EO ox (V) vs. fc 

+0.7 
+0.4, +0.5, +0.8, +1.1, +1.2 

+0.3, +0.6, + 1.2 

EO red (V) vs. fc 

-0.7, -2.1 -2.3 
-1.3, -2.0 

(Refer to section 8.04 for experimental details) 

Cyclic voltammograms of the ligand (2.19)H and complexes (2.20) - (2.21) were 

obtained to assess their suitability for electrochemical polymerization. The cyclic 

voltammogram of (2.19)H reveals a quasi-reversible peak centred around +0.7 V (versus 

fc) assigned to oxidation of the terthienyl substituent (Figure 2.25). Ligand (2.07)H, our 

fIrst thiophene bearing qsal ligand, had an irreversible oxidation at higher potential 

indicating that this ligand and complexes made from it may be more suitable for 

electopolymerization. 

83 



80 

-60 +------------,----------~ 

-2,6 -0,5 

Potential (V) 

1,6 

Figure 2.26: Cyclic voltammogram of complex (2.20) 
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Figure 2.27: Cyclic voltammogram of complex (2.21) 

The cyclic voltammogram of the iron(III) complex (2.20) reveals a reversible Fe3
+

/2
+ 

couple at -0.6 V in the cathodic scan followed by two quasi-reversible reduction 

processes after -2.0 V that occur as a result of reducing the imine double bonds of each 

coordinated ligand (2.19) (Figure 2.26). Over anodic potentials, broad and quasi-

reversible features above +0.4 V are assigned to oxidation of the terthienyl substituent. 

Beyond +0.7 broad irreversible oxidations occur, representing the oxidation of the qsal 

ligand components. The cathodic scan of the manganese complex (2.21) shows two 

quasi-reversible reduction events are present that are similar to the monothienyl 

manganese complex (2.21) (Figure 2.27). The anodic scan of the manganese(II) 

complex (2.21) reveals a quasi-reversible oxidation at +0.3 V, characteristic of the 
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Mn2
+

/3
+ redox couple. As in complex (2.20), complex (2.21) displays the same ligand 

based quasi-reversible and irreversible oxidations at +0.6 V and after +0.7 V. Refer to 

Table 2.07 for a list of redox events for compounds (2.19)H - (2.21). 

vi) Summary 

Complex (2.20), with the occurrence of a gradual and incomplete spin-crossover, has 

very similar magnetic properties to the monothienyl iron(lll) complexes formed from 

(2.07). The electrochemical properties of (2.20) are also enhanced in comparison to 

complexes derived from (2.07) because the terthienyl oxidation occurs at a significantly 

lower potential. The lower oxidation potential of terthiophene, combined with its 

improved steric properties, have made complex (2.20) better suited for further 

electrochemical polymerization experiments. 

Notes: 

A version of this chapter has been published: 

* Djukic, B.; Dube, P. A.; Razavi, F.; Seda, T.; Jenkins, H. A.; Britten, J. F.; Lemaire, 
M. T. Inorg. Chern. 2009,48,699-707. 

t Djukic, B.; Lemaire, M. T.lnorg. Chern. 2009,48, 10489-10491. 
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Chapter 3: Iron(II) spin-crossover complexes 

3.01 Iron(II) bispicen derivatives bearing thiophene substituents t 

i) Goals and objectives 

Figure 3.01: The bispicen ligand (3.01) 

We are interested in developing multifunctional spin-crossover conducting materials and 

our approach is focused on combining these properties by preparing hybrid 

metallopolymers. To date, however, all reported SeQ conductors have contained 

iron(IIn but, since iron(In complexes tend to have sharper spin transitions in comparison 

to iron(III), we decided to produce iron(II) containing seQ analogues as well. We also 

wanted the ligand to coordinate to the metal ion so it could be closer to the anticipated 

polymer backbone, in an effort to facilitate stronger interactions between the coordinated 

SeQ unit and the conducting polymer. Inspection of the SeQ literature led us to bispicen 

[bispicen = bis(2-pyridylmethyl)-diamine] (3.01) reported by Toftlund and co-workers in 

the 1980s (Figure 3.01)Y19] These tetradentate ligands feature an ethyl or propyl spacer 

between the 2-pyridylmethylamine substituents, which could easily be replaced with a 

thiophene heterocycle substituted at the 3,4-ring positions. As an initial foray into this 

research, we have designed new ligands with structural features that could enable 

electropolymerization of the precursor iron(II) coordination complexes. 
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ii) Ligand synthesis 

O:!N N02 

Br-f)-Br .. BrJ:j-Br 
i) 

(3.02) 

ii) j 
N? C( 9 HCI'H2N

O
NH2'HCI "'0 

NH HN .. 0 iii) 
(3.03) 

(3.04) 

Reagents and conditions: (i) conc. H2S04 < 20°C, conc. HN03, < 30°C, 3h. (ii) Sn, conc. 
HCl, < 30°C. (iii) NaOH, MeOH, 2-pyridinecarboxaldehyde, NaBH4 75°C, 15.5 h. 

Scheme 3.01: The synthesis of ligand (3.04) 

0) '<;I" ..- I[) (!) 0 0 """ crJ r- (!) 00 ('PI) 0) 
O(J)oO)r-r-I[)",,"Or-NOOoo 0 
(!) l() r- (!) (D (D (!) (D '<;I" crJ N N N"- a 

o:io::ir--.:r--.:~r--.:r--.:r---:~r--.:r--.:r--.:~r--.: u:i 
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Figure 3.02: IH-NMR spectrum of (3.04) in CDCh 

87 



The thiophene substituted bispicen ligands were prepared in several steps from the 

commercially available reagent 2,5-dibromothiophene (Scheme 3.01). In a modified 

literature procedure, where we used non-fuming concentrated acids, 2,5-dibromo-3,4-

dinitrothiophene (3.02) was made by nitration of the 2,5-dibromothiophene and collected 

in a reasonably good yield. [120] Compound (3.02) was reduced with an excess of mossy 

tin precipitating the dihydrochloride salt of 3,4-diaminothiophene (3.03). Neutralization 

of (3.03) with KOH, followed by condensation reactions in methanol with 2-

pyridinecarboxaldehyde, generated an imine intermediate that was reduced with NaB~ 

to afford the tetradentate ligand (3.04). The IH-NMR spectrum ofligand (3.04) indicates 

the correct peak integration for the purported structure (Figure 3.02). Ten peaks are 

observed around the aromatic region of the spectrum and are consistent with the eight 

pyridyl and two thienyl protons. A multiplet observed at 4.45 ppm representing six 

resonances has the correct integration for the expected NH and aliphatic protons. 

0J:{2 Q 02N N02 

-Q- f , B(OH)2 QJ:k; Br Br • Br S Br ~ 

i) ii) -- ~ ,? 
(3.02) (3.05) 

C( 9 Nt 

m, j 
~ HCI'H2N NH2'HCI 

NH HN .. ~ oJ:)-Q iv) __ I -"'" 
-- ~ ,? (3.06) 

(3.07) 

Reagents and conditions: (i) cone. H2S04 < 20°C, cone. RN03, < 30°C, 3h. (ii) 2-
phenylboronic acid, DME, H20, 6 mol % Pd(PPh3)4, K2C03, 65°C, 13 h. (iii) Sn, EtOH, 
cone. HCl, 15 h. (iv) KOH, MeOH, 2-pyridinecarboxaldehyde, NaBH4 75°C, 2 h. 

Scheme 3.02: The synthesis of ligand (3.07) 
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Figure 3.03: IH-NMR spectrum of (3.07) in CDCh 

ii) 61f:o 
(3.02) (3.08) 

? o .. 
iv) ~

1'H2 NHtHCI 

s s 
S 

(3.09) 

(3.10) 

Reagents and conditions: (i) conc. H2S04 < 20°C, conc. RN03, < 30°C, 3h. (ii) 2-
thiopheneboronic acid, DME, H20, 6 mol % Pd(PPh3)4, K2C03, 100°C, 8 h. (iii) Sn, 
EtOH, conc. HCI, 15 h. (iv) KOH, MeOH, 2-pyridinecarboxaldehyde, NaBH4 75°C, 2 h. 

Scheme 3.03: The synthesis of ligand (3.10) 
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Figure 3.04: IH-NMR spectrum of (3.10) in CDCh 

Compound (3.02) was also used in a Suzuki-Miyuara cross-coupling reaction with 

phenylboronic acid to generate a 2,5-diphenyl substituted compound (3.05), which was 

also reduced with excess tin (3.06) and reacted with 2-pyridinecarboxaldehyde to give the 

ligand (3.07) (Scheme 3.02). A second Suzuki coupling between (3.02) and 2-

thiopheneboronic acid generated the 2,5-dithienyl substituted compound (3.08), again 

reduced with excess tin (3.09) and reacted with 2-pyridinecarboxaldehyde affording the 

ligand (3.10) (Scheme 3.03). The ligands (3.04), (3.07) and (3.10) are very unstable oils 

that had to be purified quickly and used directly in subsequent coordination reactions. 

These instability issues are not observed with similar reported ligands that do not feature 

thiophene substitution, and likely arise from nucleophilic reaction of the nitrogen atoms 
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at the 3,4-thiophene ring positions. Despite this instability, we were still able to acquire 

high-resolution mass spectra and IH-NMR spectra for each ligand showing the correct 

integration and confirming the molecular formulae in each case (Figures 3.03 - 3.04). In 

the spectrum for ligand (3.07), 18 peaks are observed in the aromatic region, which are 

consistent with the expected 10 phenyl and 8 pyridyl protons of the ligand. The multiplet 

observed at 4.31 ppm represents six resonances that have the correct integration for the 

expected NH and aliphatic protons. In the spectrum for ligand (3.10), 14 peaks are 

observed in the aromatic region, which are consistent with the expected 6 thienyl and 8 

pyridyl protons of the ligand. The singlet observed at 4.38 ppm represents four 

resonances that have the correct integration for the expected aliphatic protons and the 

broad peak at 4.92 ppm likely represents the NH protons. 

iii) Coordination chemistry 

.. 

~ ~ 

ctr:Y 
HN NH 

R~R i) 

R = H (3.04), Ph (3.07), 2-Th (3.10) R = H (3.11), Ph (3.12), 2-Th (3.13) 

Reagents and conditions: (i) FeBF4, KSCN, MeOH. 

Scheme 3.04: The synthesis of complexes (3.11) - (3.13) 

Iron(II) complexes were prepared by coordination of (3.04), (3.07) and (3.10) with 

iron(II) tetrafluoroborate in deareated methanol solutions, followed by the addition of 

excess aqueous KSCN, to generate green precipitates of complexes (3.11) - (3.13) 

(Scheme 3.04). Complexes (3.11) and (3.13) are analytically pure powders, stable to air 
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in the solid-state but very unstable in solution, even when deareated, which hindered 

single crystal growth and the collection of X-ray diffraction data. Despite this, we could 

use FT -IR spectroscopy (VC=N) to identify the stereochemistry about the metal centre. 

Complexes (3.11) and (3.13) feature a strong "doublet" between 2060-2080 cm-t, 

indicating cis-stereochemistry, which has been observed in other similar reported 

complexes. The energy of this band has been previously correlated to the electronic 

ground-state of the complex and the energies observed for complexes (3.11) or (3.13) 

suggest a significant population of the high-spin 5T2 state at room temperature. Complex 

(3.12), which was prepared under identical conditions to (3.11) or (3.13), is unstable in 

the solid state and in solution, making characterization difficult, but based on our 

spectroscopic data, we are confident in the purported structure. As opposed to (3.11) or 

(3.13), complex (3.12) features a sharp and strong single band at 2070 cm- l
, which 

suggests an unusual trans disposition of the thiocyanate ligands and a HS ground state . 

• 
i) 

R = Ph (3.12), 2-Th (3.13) R = Ph (3.14), 2-Th (3.15) 

Reagents and conditions: (i) MeOWDCM 

Scheme 3.05: The synthesis of (3.12) - (3.13) 
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Figure 3.05: The molecular structure of complex (3.14) with ellipsoids drawn at the 50 % 
probability level 

(dashed lines indicate an intermolecular S···S contact) 

Figure 3.06: The packing diagram of (3.14) 
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Table 3.01: Selected bond distances and angles for (3.14) 

Atoms Distance (A) Atoms Angle CO) 

Fe(1)-N(1) 2.291(3) N(1)-Fe(1)-N(2) 73.5(1) 
Fe(1)-N(2) 2.087(4) N(1)-Fe(1)-N(2) 104.3(1) 
Fe(I)-N(4) 2.202(4) N(1 )-Fe(1 )-N( 4) 89.9(1) 

Fe(1 )-Fe(l)' 12.914(2) N(1)-Fe(I)-N(4) 91.7(1) 
N(2)-Fe(1)-N(2) 77.5(1) 
N(2)-Fe(1)-N(4) 93.1(1) 
N( 4)-Fe(1 )-N( 4) 102.1(2) 
N(1 )-Fe(1 )-N(I) 177.3(1) 
N(2)-Fe(1)-N(4) 157.9(1) 

(standard deviations in the last digit are quoted in parenthesis) 

Attempts to recrystallize deareated solutions of (3.11) - (3.13) consistently resulted in 

solution colour changes, from green to red over a period of days, which we attributed to 

iron(II) oxidation at first. Red solutions of (3.12) deposited X-ray quality crystals and, 

surprisingly, revealed a structurally rearranged material (3.14) (Scheme 3.05). Complex 

(3.14) contains two coordinated molecules of rearranged (3.07) and is shown in an 

ORTEP diagram of the molecular structure (Figure 3.05). The iron(II) metal centre falls 

on a two-fold axis, rendering each coordinated ligand symmetrically equivalent with 

coordinate bond lengths consistent with an oxidation state assignment of +2 for the iron 

ion (Table 3.01). Coordination of the ambidentate thiocyanate ligand occurs exclusively 

through the nitrogen atoms, which are a harder donor in comparison to the sulfur and are 

more suitable for coordination with the iron(II) ion. Each molecule of rearranged (3.07) 

coordinates through Nl and N2 of a bidentate pyridine-imidazole-type fragment of the 

molecule. In the other imidazole-type ring, atom N3 features a covalently bound and 

uncoordinated 2-pyridylmethylene substituent. Crystallographically equivalent 
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thiocyanate ligands are coordinated cis to the iron centre and are disordered over two 

positions. Molecules of (3.14) pack in a one-dimensional chain structure along the c-

axis, with intermolecular S"'S contacts (3.54 -4.40 A due to disorder) between 

coordinated thiocyanate ligands among adjacent molecules along the chain (Figure 3.06). 

Over time, red solutions of (3.13) also deposit a dark red powder (3.15) from which FT-

IR and mass spectrometric data indicate that a similar structural rearrangement occurs, 

but we could not obtain X-ray quality crystals from these solutions. Similar structural 

rearrangements have not been reported for other iron(II) bis(thiocyanate) complexes 

containing tetradentate bis(2-pyridylmethyl)-type ligands, suggesting that the thienyl 

substituent or the electronic effect of this substituent is involved in the mechanism for 

this rearrangement. 

iv) Magnetic characterization 

5.0 (3.13) 

'4.0 -i . (3.11) 
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a 100 200 300 
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Figure 3.07: Variable temperature magnetic properties of (3.11) and (3.13) in a 
5000 Oe magnetic field[121] 

The variable temperature magnetic properties of (3.11), (3.13) and (3.14) were analyzed 

with SQUID magnetometry and the data is presented as plots of the effective magnetic 
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moment (/leff) versus temperature. In powder samples of (3.11), the variable temperature 

magnetic susceptibility data indicates the possibility of a gradual and incomplete spin-

crossover without thermal hysteresis (Figure 3.07). At 350 K, the magnetic moment of 

(3.11) is 4.95 /lB and gradually decreases while decreasing the temperature to 2 K. At 2 

K, the observed magnetic moment of 2.4 /lB is higher than anticipated for a complete 

crossover to the low-spin state (theoretical value isO /lB). However, the moment at low 

temperature is very similar to that observed by Toftlund for structurally similar iron(II) 

complexes and points toward an incomplete spin-crossover in these materials. The 

magnetic properties of (3.13) between 5 - 325 K feature little temperature dependence 

with magnetic moment values that suggest a high-spin ground state for this complex. 

The magnetic moment of (3.13) decreases rapidly below 40 K, indicating a combination 

of ZFS and intermolecular antiferromagnetic interactions. 
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Figure 3.08: Variable temperature magnetic rzroperties of (3.14) in a 5000 Oe 
magnetic field[ 21] 
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Figure 3.09: Reduced magnetization versus field data for (3.14) recorded at 5 K[l21] 

Complex (3.14) has very different variable temperature magnetic properties than either 

(3.11) or (3.13). The magnetic moment is significantly higher than anticipated for a 

magnetically isolated mononuclear iron(II) complex at room temperature (Figure 3.08). 

As the temperature is decreased a gradual increase in magnetic moment is observed, 

suggesting intermolecular ferromagnetic interactions may be operative. The magnetic 

moment reaches a plateau of 8.1 JlB at nearly 8 K, and then slightly decreases. However, 

low temperature magnetization versus field experiments performed at 5 K provided no 

indication of ferromagnetic ordering, with a saturation magnetization of 4.6 NJlB at 3.5 T, 

which is a typical value for high-spin iron(II) (Figure 3.09). 
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Figure 3.10: Calculated spin density distribution in (3.14) with natural population 
analysis derived atomic spin density shown for the most important 

contributors[121] 

A possible pathway for magnetic exchange coupling was suggested in the molecular 

packing of (3.14), since close intermolecular S··· S contacts were observed between 

coordinated thiocyanate ligands from adjacent molecules. To investigate this, DFT at the 

B3LYP/DZVP level was used to calculate the structure and spin density of complex 

(3.14), revealing significant spin delocalization (0.16) onto the coordinated thiocyanate 

ligands (Figure 3.10) and suggesting that the magnetic exchange pathway is that ofa I-D 

s = 2 ferromagnetic chain. The experimental data was also fit to a Bonner-Fisher I-D 

chain model (g = 2.13 and Jlk = +7.5 K), which provides further evidence to support this 

claim and can be found elsewhere. [121] 

98 



v) Electronic absorption spectroscopy 
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Figure 3.11: Variable temperature absorbance profile of (3.11) in ethanol[121
l 
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Figure 3.12: Solutions of (3.11) in ethanol at variable temperatures 

The room temperature spectrum of (3.11) in ethanol features a weak absorption at 640 

nm. However, upon cooling solutions of (3.11) to 77 K, a large increase in absorption 

intensity is observed along with the growth of a shoulder on the low energy side of the 

640 nm absorption (Figure 3.11). The colour of the solution, pale green as observed at 
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room temperature, becomes dark . green upon decreasing temperature to 77 K and light 

yellow upon heating to 330 K (Figure 3.12). These observations are in agreement with 

the magnetic data and suggest spin-crossover is occurring in solutions containing (3.11). 

The new absorption feature centred at 700 nm is likely due to the band of the low-spin 

state of (3.11). Ethanol solutions of complexes (3.12) and (3.13) exhibit absorption 

maxima at 650 nm (s = 400 M-1cm-1), with no evidence of temperature dependence in the 

absorption intensities. 

vi) Electrochemistry 
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Figure 3.13: Cyclic (left) and differential pulse (right) voltammograms of (3.13) 

Table 3.02: Electrochemical data for (3.13) in ACN 

Compound EO ox (V) vs. fc EO ref (V) vs. fc 

(3.13) +0.4, +0.8, + 1.0, +1.3 -0.1 , -1.4, -2.1 

(Refer to section 8.04 for experimental details) 
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The electrochemical properties of complex (3.13) were investigated with cyclic 

voltammetry and feature a number of broad and irreversible processes versus ferrocene 

(Figure 3.13). During cathodic scans, the irreversible waves at potentials greater than 

-1.0 V are attributed to pyridine ring reductions. During anodic sweeps of (3.13), an 

irreversible oxidation process centred at +0.4 V is observed and is likely attributed to the 

dehydrogenation of the NH bonds. Complex (3.13) also has a very broad irreversible 

oxidation at + 1.3 V along with irreversible processes at +0.8, + 1.0 V that are attributed to 

a combination of thienyl oxidation processes. Using differential pulse voltammetry, the 

iron(II) oxidation potential was determined to be -0.1 V versus ferrocene and observed 

along with the other oxidative events in the cyclic voltammogram. No indication of 

polymerization reactions were observed while attempting to electropolymerize complex 

(3.13) by repeated scanning over the terthienyl oxidation potential. Similar results were 

also observed for complex (3.11). The irreversible oxidations at low potentials suggest 

that (3.13), in addition to (3.11) and (3.12) are insufficiently stable for electrochemical 

reactions. Refer to Table 3.02 for a list of redox events for compound (3.13). 
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3.02 Substituted iron(II) ppi derivatives 

i) Ligand synthesis 

Figure 3.14: A diagram ofFe(ppi)2(NCS)2] (3.16) 

Our first attempts at generating an iron(II) spin-crossover complex bearing an 

electropolymerizable component resulted in a series of compounds with unique 

properties, however, their instability made them unsuitable for further reactions. Keeping 

with the same theme of modifying an existing spin-crossover compound, our target 

changed to derivatives of [Fe(ppi)2(NCS)2] [ppi = N-phenyl-2-pyridinaldimine] (3.16) 

because they could be easily structurally modified and were expected to have increased 

stability in comparison to the bispicen derivatives we previously synthesized (Figure 

3.14). [122-124] 

• 
ii) 

R=Ph (3.17), 2-Th (3.19) R = Ph (3.18), 2-Th (3.20) 

Reagents and conditions: (i) (3.17) 2-phenylboronic acid, (3.19) 2-thiopheneboronic acid, 
DME, H20, 10 mol % Pd(PPh3)4, K2C03, 95°C, 72 h. (ii) 2-pyridinecarboxaldehyde, 
DCM, pentane. 

Scheme 3.06: The synthesis ofligands (3.18) and (3.20) 
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(3.21) (3.22) 

Reagents and conditions: (i) 3-thiopheneboronic acid, DME, H20, 5 mol % Pd(PPh3)4, 

K2C03, 95°C, 72 h. (ii) 2-pyridinecarboxaldehyde, DCM, pentane. 

Scheme 3.07: The synthesis of ligand (3.22) 
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Figure 3.17: IH-NMR spectrum of (3.22) in CDCh 

A diphenyl substituted ppi ligand was selected as the first target and was prepared in two 

steps from the commercially available reagent 2,5-dibromoaniline (Scheme 3.06). First a 

a Suzuki-Miyuara cross-coupling reaction with phenylboronic acid was used to generate 

the 2,5-diphenyl compound (3.17), followed by a reaction with 2-pyridinecarboxaldehyde 

to give the ligand (3.18). Following this same methodology, 2-thiopheneboronic acid 

was also used in a coupling reaction with 2,5-dibromoaniline to generate the 2,5-dithienyl 
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precursor (3.19) and ligand (3.20) (Scheme 3.06). The monothienyl analogue was 

prepared from 4-iodoaniline, which was reacted with 3-thiopheneboronic acid and 2-

pyridinecarboxaldehyde, affording compound (3.21) and ligand (3.22) (Scheme 3.07). 

The IH-NMR spectra for ligands (3.18), (3.20) and (3.22) are shown in Figures 3.15 -

3.17, respectively, with the correct peak: integration for their purported structures. In the 

spectrum for ligand (3.18), 17 peaks are observed around the aromatic region, which are 

consistent with the expected 13 terphenyl, 4 pyridyl protons of the ligand. Further 

downfield, at 8.74 ppm, a singlet is observed which is characteristic of the (deshielded) 

imine proton. For ligand (3.20), the 13 peaks observed around the aromatic of the 

spectrum are consistent with the expected 6 thienyl, 3 phenyl and 4 pyridyl protons of the 

ligand. The singlet at 8.78 ppm is characteristic of the imine proton. Simallarly, for 

ligand (3.22), 11 peaks are observed around the aromatic region of the spectrum, which 

are consistent with the expected 3 thienyl, 4 phenyl and 4 pyridyl protons of the ligand. 

A singlet at 8.69 ppm is also observed which is characteristic of the imine proton. 
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Figure 3.18: The molecular structure of (3.20) with thermal ellipsoids drawn at 
the 50 % probability level 

Table 3.03: Selected bond distances and angles for (3.18) 

Atoms Distance (A) 

C(6)-N(2) 2.291(3) 

Atoms 

C(5)-C(6)-N(2) 
C(6)-N(2)-C(7) 

122.4(3) 
118.4(2) 

(standard deviations in the last digit are quoted in parenthesis) 

Ligand (3.20) is more stable than our other thiophene bearing Schiff base ligands, (2.07) 

for example, and we were able to obtain single crystals suitable for X-ray diffraction 

experiments. An ORTEP diagram displays the molecular structure of the ligand (Figure 

3.18) where each of the thiophene rings are disordered to a different extent between two 
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positions. The crystal structure is completely consistent with the anticipated Schiff base 

product and displays the imine bond between C(6) and N(2) (Table 3.03). 

ii) Coordination chemistry 

R 

H 
2 N~ 

N0 
.. 

I) 

R = Ph (3.18), 2-Th (3.20) R = Ph (3.23), 2-Th (3.24) 

Reagents and conditions: (i) Fe(II)S04' 7H20, KSCN, MeOH, 72 h. 

Scheme 3.08: The synthesis of complexes (3.23) - (3.24) 

.. 
i) 

(3.22) (3.25) 

Reagents and conditions: (i) Fe(II)S04'7H20, KSCN, MeOH, 72 h. 

Scheme 3.09: The synthesis of complex (3.25) 

Iron(II) thiocyante, prepared from hydrated iron(II) sulfate and KSCN, was used in the 

coordination of ligands (3.18), (3.20) and (3.22) to prepare complexes (3.23) - (3.25) 

(Schemes 3.08 - 3.09). The complexes are isolated as analytically pure powders and 

produced F AB mass spectra that all display a peak corresponding to the molecular cation. 

The FT -IR spectra for the complexes are also consistent with the proposed structures and 
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show the thiocyanate and imine stretching frequencies at approximately 2060 and 1593 

cm-), respectively. 

iii) Structural properties 

Figure 3.19: The molecular structure of (3.23) with thermal ellipsoids drawn at 
the 50 % probability level 
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Table 3.04: Selected bond distances and angles for (3.23) 

Atoms 

Fe(1)-N(1) 
Fe(1)-N(2) 
Fe(1)-N(3) 
Fe(I)-N(4) 
Fe(1)-N(5) 
Fe(1)-N(6) 

Distance (A) 

2.052(6) 
2.097(5) 
2.069(6) 
2.119(5) 
2.023(7) 
1.99(1) 

Atoms 

N(1)-Fe(1)-N(2) 
N(1)-Fe(I)-N(4) 
N(I)-Fe(1)-N(5) 
N(I)-Fe(1)-N(6) 
N(2)-Fe(I)-N(3) 
N(2)-Fe(1)-N(4) 
N(2)-Fe(1)-N(6) 
N(3)-Fe(I)-N(4) 
N(3)-Fe(1)-N(5) 
N(3)-Fe(1)-N(6) 
N(4)-Fe(I)-N(5) 
N(5)-Fe(I)-N(6) 
N(1)-Fe(1)-N(3) 
N(2)-Fe(1)-N(5) 
N(4)-Fe(1)-N(6) 

78.1(2) 
91.7(2) 
90.6(3) 
96.6(3) 
103.2(2) 
88.5(2) 
92.1(3) 
76.6(2) 
86.8(3) 
95.0(3) 
86.8(3) 
94.3(3) 
168.2(2) 
167.6(3) 
171.5(3) 

(standard deviations in the last digit are quoted in parenthesis) 

Part of the appeal towards designing complex (3.23) stems from our anticipation that this 

complex would be stable enough to acquire single crystal structural information and to 

use its structure as a reference for the other complexes prepared in this series. Single 

crystals suitable for X-ray diffraction were grown from a solution of (3.23) in a mixture 

of methanol and dichloromethane, left to slowly evaporate. The expected iron cis-

pseudo-octahedral coordination geometry is shown in an ORTEP diagram of the 

molecular structure of (3.23) (Figure 3.19). The iron centre is coordinated to two 

molecules of (3.18) through their donor nitrogen atoms, in addition to the nitrogen atoms 

of two thiocyanate anions. Coordinate bond lengths indicate the +2 oxidation state of the 

metal, with Fe-N lengths ranging from 1.99 to 2.12 A (Table 3.03). 
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Figure 3.20: The molecular structure of (3.24) with thermal ellipsoids drawn at 
the 50 % probability level 

Figure 3.21: A space filling diagram showing the imine (N4)-thiophene (S3) 
contact of (3.24) 
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Table 3.05: Selected bond distances and angles for (3.24) 

Atoms 

Fe(1)-N(1) 
Fe(1)-N(2) 
Fe(1)-N(3) 
Fe(1)-N(4) 
Fe(1)-N(5) 
Fe(1)-N(6) 

Distance (A) 

2.188(3) 
2.266(4) 
2.186(4) 
2.310(5) 
2.063(5) 
2.080(5) 

Atoms 

N(1)-Fe(1)-N(2) 
N(1 )-Fe(1 )-N( 4) 
N(1)-Fe(1)-N(5) 
N(1)-Fe(1)-N(6) 
N(2)-Fe(1)-N(3) 
N(2)-Fe(I)-N(4) 
N(2)-Fe(1)-N(5) 
N(3)-Fe(1)-N(4) 
N(3)-Fe(1)-N(5) 
N(3)-Fe(1)-N(6) 
N(4)-Fe(1)-N(5) 
N(5)-Fe(1)-N(6) 
N(1 )-Fe(1 )-N(3) 
N(2)-Fe(1)-N(6) 
N(4)-Fe(1)-N(5) 

Angle CO) 

74.9(1) 
86.1(1) 
109.4(2) 
92.0(2) 
97.2(1) 
100.0(1) 
88.4(2) 
73.0(1) 
92.5(2) 
96.5(2) 
82.9(2) 
92.1(2) 
156.2(2) 
166.3(2) 
164.0(2) 

(standard deviations in the last digit are quoted in parenthesis) 

We were also able to acquire an X-ray crystal structure of complex (3.24), from slowly 

evaporating mixtures of toluene and dichloromethane and many aspects of this structure 

were found to be similar to the terphenyl analogue (3.23). The iron cis-pseudo-

octahedral geometry, through the expected coordination of two ligands of (3.20) and 

anionic thiocyante, is shown in an ORTEP diagram of the molecular structure of (3.24) 

(Figure 3.20). There are, however, some unique features in the crystal structure of 

(3.24). Although each thiophene ring in the molecule is disordered to some extent, only 

the ring containing S3 is positioned inward towards the iron centre and, although 

disordered, occupies this position over 80 % of the time. The significance stems from the 

close (2.946 A) thiophene S3 .. · N4 imine contact (Figure 3.21), that results in an 

elongation of the Fe1"'N4 bond by 2 % in comparison to the other Fe1"'N2 imine 
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coordinate bond (Table 3.05). In comparison, the terphenyl complex (3.23) (as well as 

other similar derivatives) does not show significant difference between its two 

Fe"'N(imine) coordinate bond lengths, which are also shorter than the Fel"'N4 bond of 

(3.24). 

iv) Magnetic characterization 
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Figure 3.22: Variable temperature magnetic susceptibility measurements for 
complexes (3.23) - (3.25) in a 5000 Oe magnetic field 

The variable temperature magnetic properties of (3.23) - (3.25) were analyzed with 

SQUID magnetometry and the data is presented as plots of the effective magnetic 

moment versus temperature (Figure 3.22). In powder samples of (3.23), the variable 

temperature magnetic susceptibility data indicate a fairly abrupt spin transition without 

thermal hysteresis. At 320 K, the magnetic moment of (3.23) is 5.04 IlB and decreases 

with decreasing temperature to 1.2 JlB at 5 K, which is higher than anticipated for a 
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complete crossover to the low-spin state (theoretical value is 0 /lB) and is likely caused 

by incomplete spin-crossover. Complex (3.25) has a nearly identical profile when 

compared to (3.23) except that the magnetic moment is closer to the theoretical value at 

low temperature (2 K). At 300 K, the magnetic moment of (3.24) is 4.78 J!B and is 

slightly lower than either (3.23) or (3.25), but is similar because it suggests a dominant 

population of the high-spin state. However, despite this initial similarity, the profile of 

the data becomes very different. Instead of an abrupt transition to the low-spin state a 

gradual decrease in magnetic moment is observed. The magnetic moment at 2 K is still 

2.49 /lB, a curious value since it is not consistent with the other two complexes. 

Table 3.06: Mossbauer data for (3.24) and (3.25) 

Compound Temperature IS QS Site Fe(I!) Spin 
(OC) (mmls) (mmls) (%) State 

293 
0.97(1) 2.60(2) 68 2 
0.32(3) 0.54(5) 32 0 

(3.24) 100 
1.103(3) 3.087(7) 80 lor 2 
0.418{8) 0.78{2} 20 0 

5.6 
1.107(2) 3.088(5) 85 lor 2 
0.42{l) 0.79{3} 15 0 

293 
0.983(2) 2.731(3) 83 2 
0.29{2} 0.32{2} 17 0 

(3.25) 100 
1.25(4) 2.8(1) 93 2 

0.416{2) 0.807{3) 7 0 
5.6 0.421(1) 0.815(2) >98 0 
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Figure 3.23: The Mossbauer spectra for complex (3.24) (left) and (3.25) (right) 
with experimental data (dots) fitted to theoretical lines 

To confirm the observation of thermal spin-crossover in complex (3.24), the variable 

temperature Mossbauer properties of (3.24), and for comparison (3.25), have been 

investigated. For complex (3.25), the Mossbauer data in each case mirrors the variable 

temperature magnetic susceptibility data. At 293 K, the spectrum of (3.25) features two 

quadrupole doublets of significantly different intensity. The most intense doublet has 

Mossbauer parameters typical for high-spin iron(II) (Table 3.06), while the minor 

component features typical low-spin iron(II) parameters consistent with the variable 

temperature magnetic susceptibility data. 125 At 100 K, the intensity of the high-spin 

fraction is dramatically reduced, and the low-spin state is dominant (93 % of iron sites are 

low-spin at 100 K). At 5 K, the low-spin isomer is the only detectable component in the 

Mossbauer spectrum. 
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The spectrum of (3.24) at 293 K also features two quadrupole doublets, with the most 

intense component (68 %) featuring Mossbauer parameters consistent with high-spin 

iron(II) (S = 2), and a minor component consistent with S = 0 iron(lI), which is in line 

with the data from variable temperature magnetic susceptibility measurements. However, 

further cooling produces a curious result. The Mossbauer spectrum at 100 K also 

features two quadrupole doublets, with the minor component exhibiting Mossbauer 

parameters consistent with S = 0 iron(lI), but the relative percentage of S = 0 iron(lI) sites 

has actually decreased upon cooling, which is opposite to what is expected for a typical 

spin-crossover, like that observed for (3.25). Also of note, the value of XmT at 100 K is 

much less (xmT = 1.79 cm3Kmorl
) than the expected value for a sample containing 80 % 

S = 2 iron(lI) (the theoretical value of XmT is 2.4 cm3 K morl
, assuming a g value of 2). 

Between 100 and 5 K, the Mossbauer spectrum changes very little, with the intensity of 

the major doublet at 100 K increasing slightly at the expense of the minor doublet. Based 

on these observations, we speculate that complex (3.24) is possibly undergoing a spin­

crossover to an unusual S = 1 state, in addition to some small fraction of S = 0 iron(II), 

suggesting that the energies of the S = 2, 1, and 0 states in (3.24) are very similar. There 

are no reports of pseudo-octahedral complexes undergoing such spin crossovers; 

however, S = I states are more common in some 5-coordinate iron(lI) complexes.8 To 

further investigate these unusual results, variable temperature magnetization and EPR 

experiments are in progress, in addition to DFT calculations to help identify the relative 

energies of the S = 2, 1, or 0 states for complex (3.24). 
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v) Electronic absorption spectroscopy 
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Figure 3.24: Solvatochromism exhibited by (3.23) 

The room temperature spectra of (3.23) and (3.25) in dichloromethane feature absorption 

maximums at 621 nm (E = 1510 M-1cm-1) and 630 nm (E = 1690 M-Icm-I) respectively. 

The absorption profile of (3.24) features a maximum at 560 nm (E = 1850 M-I cm-I) and 

is more intense and at higher energy in comparison to the other two complexes. All three 

compounds (3.23) - (3.25) feature vibrant solvatochromism. The most dramatic 

example, complex (3.23), is displayed in Figure 3.23 and changes from purple to 

colourless as the solvent polarity is increased. Also, solutions of (3.24) In 

dichloromethane are green initially, but after adding the electrolyte N(C4H9)4PF6 used for 

electrochemical experiments, will appear red. 
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vi) Electrochemistry 
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Figure 3.25: Cyclic (left) and differential pulse (right) voltammograms of (3.23) 
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Figure 3.26: Cyclic (left) and differential pulse (right) voltammograms of (3.18) 
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Figure 3.27: Cyclic (left) and differential pulse (right) voltammograms of (3.24) 
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Figure 3.28: Cyclic (left) and differential pulse (right) voltammograms of (3.20) 
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Figure 3.29: Cyclic (left) and differential pulse (right) voltammograms of (3.25) 
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Table 3.07: Electrochemical data for derivatives of (3.16) in DCM 

Compound 

(3.16) 
(3.18) 
(3.20) 
(3.23) 
(3.24) 
(3.25) 

EO ox (V) vs. fc 

+0.6, +0.9 
+0.6, +1.2, + 1.5 
+0.6, +0.7, +1.2 

+0.5, +1.3 
+0.4, +0.8, + 1.0 

+0.6, +1.2 

EO ref (V) vs. fc 

0.0 
-0.9, -1.5, -2.1 
-1.0, -1.6, -2.2 
0.0, -1.0, -1.4 
-0.2, -0.8, -1.6 
0.0, -0.8, -1.6 

(Refer to section 8.04 for experimental details) 

The electrochemical properties of the complexes (3.23) - (3.25) have been investigated 

using cyclic and differential pulse voltammetry (Figures 3.24, 3.26 and 3.28 

respectively). In the cathodic sweeps of complexes (3.23) - (3.25), broad and irreversible 

oxidation waves below potentials of -1.3 V versus ferrocene are noted in the cyclic 

voltammograms. The same reductions are observed at slightly higher potentials in the 

voltammograms of the ligands (3.18) and (3.20) and are likely attributed to imine and 

pyridine reduction events (Figures 3.25 and 3.27). In the anodic sweep of complex 

(3.23), the Fe2
+

/3
+ redox couple is observed at around 0.0 V. At potentials above +0.3 V, 

several broad and irreversible oxidation waves are noted in the cyclic voltammogram. 

Deconvolution by differential pulse techniques suggests that there are at least two distinct 

oxidations occurring in (3.23). These waves are also present in the voltammogram of the 

uncoordinated ligand (3.18) and can be ascribed to irreversible ligand centred oxidations 

in the metal complexes. The oxidation of the terphenyl component likely occurs at the 

most positive potential hindering efforts to electrochemically polymerize (3.23) by 

repeatedly scanning over this region. Ligand (3.18) features an additional irreversible 
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oxidation centred at + 1.5 V, not observed in the voltammogram of (3.23), resulting from 

a second phenyl oxidation. The Fe2
+/3+ redox couple of complex (3.24) is slightly lower 

in comparison to (3.23) and is observed at around -0.2 V. At potentials above +0.3 V 

broad quasi-reversible waves are noted in the cyclic voltammogram. Deconvolution by 

differential pulse techniques suggests that there are several oxidations occurring in (3.24). 

These waves are also present in the voltammogram of the uncoordinated ligand (3.20) 

and can be ascribed to ligand centred oxidations in the metal complex. The oxidation of 

the thienyl component likely has its origin at the lowest potential, making it a suitable 

candidate for electrochemical polymerization. For complex (3.25), a very broad Fe2+/3+ 

redox couple is present in the cyclic voltammogram around 0.0 V. A quasi-reversible 

peak at +0.7 V and an irreversible process at higher potentials are also observed by both 

the cyclic and differential pulse techniques. The oxidation of the thienyl component 

likely occurs at +0.7 V, but despite its quasi-reversible nature efforts towards 

electropolymerization were not successful. As a reference, the parent compound 

[Fe(ppi)2(SCN)2] (3.16) was also prepared, primarily to assess the potential of the Fe2
+

/3
+ 

redox couple. Using cyclic and differential pulse techniques the oxidation was found to 

occur at around 0.0 V versus ferrocene and is in good agreement with compounds (3.23) 

- (3.25) (Figure 3.29). Refer to Table 3.06 for a list of redox events for complexes (3.23) 

- (3.25) and their respective precursor compounds. 
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vii) Summary 

Complexes (3.23) - (3.25) are stable and display spin isomerisation consistent with spin-

crossover, which is favourable. However, in terms of generating polymeric materials 

from these complexes, the electrochemical properties of (3.24) were found to better 

suited for our goal, in comparison to (3.23) and (3.25), because of the low oxidation 

potential of the terthienyl component. 

Notes: 

A version of this chapter has been accepted for publication. 

t Cheng, H.; Djukic, B.; Jenkins, H. A.; Gore1sky, S. I.; Lemaire, M. T. Can. J. Chem. 
2010, submitted for publication. 
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Chapter 4: Cobalt(ln valence tautomers 

4.01 A valence tautomer bearing a thiophene substituent * 

i) Goals and objectives 

Since Pierpont and Buchanan's discovery of valence tautomerism (VT) in cobalt 

complexes of the semiquinone radical anion, a large number of molecular complexes 

showing the hallmark features of VT, including cobalt-semiquinone intramolecular 

electron transfer coupled with a concomitant spin-crossover within the cobalt ion, have 

been reported. There are only a handful of published VT complexes featuring more than 

a single cobalt ion, including two VT coordination polymers, and VT metal-organic 

nanoparticles, which adds to the overall interest in the study of multi-metallic VT 

materials. Regarding our efforts towards the construction of complex hybrid materials 

that feature magnetic switching and electrical conductivity, we would also like to make 

use of the properties of the cobalt-semiquinone VT complexes and combine them with 

the conductive properties of conjugated polymers.[1,126-136] 
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ii) Ligand synthesis 

Brzn-D 

Br-Q-NB Br N .. 
i) 

(4.03) 

(4.04) 

Br--Q-OB ~ ;j 
N N 
(4.01) 

Reagents and conditions: (i) Pd(PPh3)4, THF, N2, 24 h, RT (ii) TMS­
acetylene, (i-Pr)2NH, 3 mol % PdCh(pPh3h 6 mol % PPh3, 10 mol % 
CuI, N2, 12 h, 105°C. (iii) KOH, MeOH, N2, 12 h, RT (iv) (i-Pr)2NH, 
3 mol % PdCh(pPh3h 3 mol % CuI, N2, 12 h, 105°C. 

Scheme 4.01: The synthesis ofligand (4.04) 

A 3-ethynylthienyl substituted 2,2' -bipyridine ligand was prepared in four steps from the 

commercially available reagents 2,5-dibromopyridine and 3-bromothiophene (Scheme 

4.01). An ethynyl spacer was also incorporated between these two units to help prevent 

steric congestion of the coordination complexes. 2-Pyridylzinc bromide solution was 

first used in a Negishi cross-coupling reaction with the 2,5-dibromopyridine providing 

(4.01). A Sonogashira coupling between (4.01) and ethynyltrimethylsilane produced the 

protected acetylene precursor (4.02). Deprotection of the acetylene group, followed by 

stirring overnight in a potassium fluoride solution, afforded (4.03). Another Sonogashira 

123 



reaction between (4.03) and 3-bromothiophene afforded the ligand (4.04) that has been 

fully characterized. The IH-NMR spectrum is consistent with the molecular structure 

displaying 10 peaks in the aromatic region that correspond to the 3 thienyl and 7 

bipyridyl proton resonances. 

iii) Coordination chemistry 

I) 

(4.04) 

r.-I.-BU 

I-BUi-{ 

Q- 0 
1/"" " r N······::jjo(II)(dbsq) 

.... 

(4.05) 

I-Bu 

I-BU-Q = dbsq 

0-0 

Reagents and conditions: (i) Coidbsq)g, toluene, N2, 12 h, RT 

Scheme 4.02: The synthesis of complex (4.05) 

The ethynylthienyl-substituted derivative of 2,2'-bipyridine (4.04) was reacted with 

Pierpont's cobalt dbsq "tetramer" to produce complex (4.05) as an analytically pure 

powder (Scheme 4.02). Complex (4.05) is stable in the solid state, but decomposes in 

solution over a period of hours, even under dry and anaerobic conditions, which hindered 

our efforts to grow crystals suitable for X-ray diffraction. We are confident in the 

purported structure from other structural and analytical data including the FT -IR 

spectrum, F AB-MS and elemental analysis (including C, H, N and S). 

124 



iv) Magnetic characterization 
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Figure 4.01: Variable temperature magnetic susceptibility plot for complex (4.05) 
in a 5000 Oe magnetic field[137] 

Magnetic susceptibility measurements were carried out over the temperature range 2-300 

K for complex (4.05) and the data are displayed as a plot of effective magnetic moment 

versus temperature (Figure 4.01). The profile of the data clearly suggests that valence 

tautomerism is operative within the complex as the magnetic moment of (4.05) at 2 K is 

1.74 IlB, which is equal to the expected value for one unpaired electron residing in the 

lone coordinated dbsq ligand of the low temperature tautomer. Increasing the temperature 

results in a steady increase in magnetic moment, which approaches 3.0 IlB at 300 K but is 

less than expected for non-interacting S = 3/2 cobalt(II) with two coordinated S = 112 

dbsq radicals (4.98 IlB). The reduced moment likely results from a combination of 

antiferromagnetic coupling between cobalt and coordinated dbsq and the presence of 

some proportion of the cobalt(III)(dbsq)(dbcat) tautomer at this temperature. 
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v) Electronic absorption spectroscopy 
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Figure 4.02: Variable temperature absorbance profile of (4.05i137
] 

The electronic absorption properties of (4.05) were measured in an ethanol solution at 

298 K, and as a frozen glass at 77 K (Figure 4.02). As is typical of cobalt-

bis(semiquinone) valence tautomers, changes in temperature result in significant changes 

to the electronic spectrum. At 298 K, the Vis-NIR spectrum of complex (4.05) features 

broad absorptions across the visible region into the NIR. Typically, the higher 

temperature tautomer displays a cobalt(II)-to-semiquinone charge transfer absorption 

centred at approximately 800 nm. We observe a decrease in the absorbance of this band 

at 77 K, and an increase in the absorption of a band between 500 and 600 nm, consistent 

with the optical changes reported for other valence tautomers. The new, more strongly 

absorbing feature has a maximum absorbance at 580 nm and is characteristic of a 

catecholate-to-cobalt(III) charge transfer band, typical for the lower temperature 
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tautomer. The optical changes observed are all completely consistent with the purported 

valence tautomerism. 
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Figure 4.03: Cyclic voltammograms of (a) (4.04) and (b) (4.05) 

Table 4.01: Electrochemical data for (4.04) in DCM (4.05) in DMF 

Compound 

(4.04) 
(4.05) 

+0.8 
+0.7 

EO red (V) vs. fc 

-1.3 
0.0, -0.3, -0.7, -1.0, -2.3 

(Refer to section 8.04 for experimental details) 

1.0 

The electrochemical properties of compounds (4.04) and (4.05) were studied by cyclic 

voltammetry in DCM and DMF solutions respectively. In the ligand (4.04), one quasi-

reversible cathodic wave is observed at -1.3 V (versus fc) and is assigned to the reduction 

of the 2,2' -bipyridine substituent (Figure 4.03). Over anodic potentials, ligand (4.04) 
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features an irreversible wave at +0.8 V, likely due to the oxidation of the thiophene ring. 

In the voltammogram of complex (4.05) a complex series of reduction processes are 

observed (Figure 4.03). At the most negative potentials two closely spaced waves are 

present and are attributed to the reduction of the 2,2' -bipyridine component. In 

comparison to the ligand (4.04), these reductions occur at more negative potentials, but 

are typical for electronic changes that occur upon metal ion coordination. Several 

irreversible waves are observed between -1.1 and 0.0 V, which likely represent 

dbsq/dbcat and C03+
/2

+ reduction events. Repeated cycles between 0 and +1.5 V in 

acetonitrile solutions of (4.05) did not result in electropolymerization. An increase in the 

peak current with increasing scan number and the deposition of an electroactive film on 

the working electrode were not observed. It is likely that the steric bulk of the [Co(dbsq21 

substituent and high oxidation potential of the thiophene prevented 

electropolymerization. Refer to Table 4.01 for a list of redox events for compounds 

(4.04) - (4.05). 

4.02 A valence tautomer bearing a terthiophene substituent t 

i) Extending the conjugation 

A second VT target included a terthienyl analogue of (4.05) due to the anticipated lower 

oxidation potential of terthiophene and the reduction of steric interactions between bulky 

metal centres, both allowing for more efficient polymerization. 
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ii) Ligand synthesis 

·'rr sQ-Br .. s=-,I Br Br-Q-Br 
N 

i) Br 

(2.13) 

.'ar{) 1 m) 
ii) j 0 

B(OH)2 

Br-Q-{) I' s 

Br 
(4.01) 

(2.14) 

;,) j 

'0 j ~ I~ .. -Si = \. b ~ # 
v) INN 

(4.03) (4.02) 

I' s 

f S 
# 

(4.06) 

Reagents and conditions: (i) Br2, 48 % HBr(aq), Et20 , 50°C. (ii) 2-thiopheneboronic acid, 
DME, H20, 10 mol % PdC12(PPh3) 2, K2C03, 100°C, 3 d. (iii) Pd(PPh3)4, THF, N2, 12 h. 
(iv) TMS-acetylene, (i-PrhNH, 3 mol % PdClz(PPh3h , 6 mol % PPh3, 10 mol % CuI, N2, 
12 h, 105°C. (v) KOH, MeOH, N2, 12 h. (vi) anhydrous DIPA, 3 mol % PdClz(PPh3)2, 3 
mol % CuI, N2, 12 h, 105°C. 

Scheme 4.03: The synthesis of ligand (4.06) 
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Figure 4.04: IH-NMR spectrum of (4.06) 

A 3-ethynylterthienyl substituted 2,2' -bipyridine ligand was prepared by a convergent 

synthesis using reagents (2.14) and (4.03) (described previously) in a Sonogashira cross-

coupling to afford (4.06) (Scheme 4.03). Ligand (4.06) has been fully characterized and 

the IH-NMR spectrum is displayed in Figure 4.04. The aromatic region contains 14 

peaks in the aromatic region that correspond to the 7 terthienyl and 7 bipyridyl proton 

resonances. 
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iii) Coordination chemistry 

i) 

(4.06) 

~-BU 

t-B~ 
Q- 0 

If
, " 
N ...... ::Co(II)(dbsq) 

..--." :,' 

If , 

t-Bu 

t-Bu-Q = dbsq 

0- 0 

Reagents and conditions: (i) Co4(dbsq)8, toluene, N2, 24 h, RT 

Scheme 4.04: The synthesis of(4.07) 

The terthienyl-substituted derivative of2,2'-bipyridine (4.06) was reacted with Pierpont's 

cobalt dbsq "tetramer" to produce complex (4.07) as a dark green, analytically pure, 

powder (Scheme 4.04).[138] The stability of complex (4.07) is comparable to complex 

(4.05) in the solid state, but also decomposes in solution over a period · of hours, even 

under dry and anaerobic conditions, again hindering our efforts· to grow crystals suitable 

for X-ray diffraction. We are confident in the purported structure from other structural 

and analytical data, including the elemental analysis (C, H, N and S) and FAB-MS, which 

exhibits a peak corresponding to the ionized (4.07)+ cation. 
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iv) Magnetic characterization 
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Figure 4.05: Variable temperature magnetic data of (4.07) in a 5000 Oe 
magnetic field[139] 

Variable temperature magnetic data obtained from a powder sample of (4.07) confmn the 

presence of valence tautomerism in the solid state (Figure 4.05), with features that are 

typical for other reported and structurally related VT complexes. At the highest 

measured temperature (350 K), the effective magnetic moment observed from (4.07) is 

4.1 IlB, which indicates that the equilibrium favours the [(dbsq)2Co(II)(4.06)] tautomer at 

high temperature. With decreasing temperature, the moment gradually decreases to a 

fmal value of 2.1 IlB at 2 K, indicating that at low temperature the equilibrium favours the 

expected [(dbcat)(dbsq)Co(III)(4.06)] tautomer. These observations are completely 

consistent with the magnetic properties observed in our other cobalt bis(semiquinone) VT 

complex (4.05). 
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v) Electronic absorption spectroscopy 
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Figure 4.06: Variable temperature absorbance profile of (4.07) in ethanol[139] 

In the absorbance spectrum of (4.07), a peak is observed in the visible region, between 

400 and 600 run, in ethanol at 298 K (Figure 4.06). As an ethanol glass at 77 K, the 

visible spectrum of (4.07) changes significantly, including an increase in absorbance 

between 400 and 600 run, and the growth of a broad shoulder on the lower energy side of 

the 450 run absorption. For comparison, in similar VT materials a MLCT band is 

typically centred at approximately 800 run, as is observed in toluene spectra of (4.07). 

However, this absorption is not present in the room temperature spectrum of (4.07) in 

ethanol. [140] 
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vi) Electrochemistry 
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Figure 4.07: Cyclic voltammograms of (a) (4.06) and (b) (4.07) 

Table 4.02: Electrochemical data for (4.06) and (4.07) in DCM 

Compound EO ox (V) vs. fc EOref (V) vs. fc 

(4.06) 
(4.07) 

+0.7 
+0.7 0.0, -0.3, -0.7, -1.3, -2.2 

(Refer to section 8.04 for experimental details) 

1.4 

The electrochemical properties of (4.07) were studied by cyclic voltammetry in dry and 

deoxygenated dichloromethane (Figure 4.07). A rich manifold of waves is present in the 

voltammogram, as is typical for cobalt-semiquinone coordination complexes. Of key 

interest, a quasi-reversible wave at +0.7 V (vs. ferrocene) is observed, which we can 

attribute to oxidation of the terthienyl substituent after comparison with the 

voltammogram of the ligand (4.06) (Figure 4.07). Refer to Table 4.02 for a list of redox 

events for compounds (4.06) - (4.07). 
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vii) Summary 

Complexes (4.05) and (4.07) exhibit valence tautomerism in the solid state, however, 

complex (4.05) did not undergo electropolymerization. As a result the electrochemical 

properties of (4.07) are better suited for further electropolymerization experiments 

because of the quasi-reversible nature oftheterthienyl substituent. 

Notes: 

A version of this chapter has been published: 

* O'Sullivan, T. J.; Djukic, B.; Dube, P. A.; Lemaire M. T. Can. J. Chern. 2009, 87, 
533-538. 

t O'Sullivan, T. J.; Djukic, B.; Dube, P. A.; Lemaire M. T. Chern. Cornrnun., 2009, 
1903-1905. 
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Chapter 5: Bimetallic iron(III) spin-crossover complexes 

5.01 Spin-crossover complexes containing a bridging bis-qsalligand* 

i) Goals and objectives 

Following the synthesis of the monometallic iron(III) SeQ complex containing ligand 

(2.19) as a precursor to spin-crossover metallopolymers, we designed a bridging bis-qsal 

ligand containing a 2,2' -bithienyllinker as a logical extension of our thienyl-substituted 

sea complexes. The complexes made from this ligand represent the first bimetallic 

qsal-type SeQ materials and offer a new structural paradigm for the study of SeQ in 

bimetallic iron(III) complexes. 
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ii) Ligand synthesis 
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Reagents and conditions: (i) Br2, CH3COOH, CHCh, 100°C, 24 h. (ii) Zn, EtOH, H20, 
CH3COOH, HCI, 100°C, 24 h. (iii) TMS-acetylene, DIPA, 6 mol % PPh3, 6 mol % 
PdCh,(PPh3)2, 6 mol % Cui, 95°C, 20 h. (iv) MeOH, THF, KOH. (V) ICI, THF. (vi) THF, 
DIPA, 10 mol % PPh3, 10 mol % PdCh,(PPh3) 2, 10 mol % Cui, 43°C, 20 h. (vii) 8-
aminoquinoline, THF, EtOH. 

Scheme 5.01: The synthesis of(5.06)H2 
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, ) 

Figure 5.01: The molecular structure of (5.05) with ellipsoids drawn at the 50 % 
probability level 

Table 5.01 : Selected bond distances and angles for (5.05) 

Atoms 

C(5)-C(6) 
C(13)-O(I) 

Distance (A) 

1.201(3) 
1.223(3) 

Atoms 

C(9)-C(13)-0(1 ) 124.4(2) 

(standard deviations in the last digit are quoted in parenthesis) 

Compound (5.06)H2 was prepared in six steps from commercially available 2,2'-

bithiophene (Scheme 5.01). Bromination of 2,2'-bithiophene generated 3,3',5,5'-

tetrabromo-2,2' -bithiophene (5.01), followed by a selective dehalogenation with zinc 

metal to produce the 3,3' -dibrominated product (5.02). A Sonogashira coupling between 

(5.02) and ethynyltrimethylsilane provided (5.03), which was deprotected with KOH to 

the rather unstable 3,3' -diethynyl-2,2' -bithiophene precursor (5.04). Next, we used 5-

iodosalicylaldehyde (2.17) in a Sonogashira reaction with (5.04) at 43 °C to afford the 

dialdehyde (5.05), reproducibly and in good yield. Single crystals suitable for X-ray 
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analysis of compound (5.04) were obtained. An ORTEP diagram of the molecular 

structure displays the functionalized aldehyde precursor, salicylic acid, coupled to 2,2'-

bithiophene through the acetylene bond ofC(5) and C(6) (Figure 5.01 and Table 5.01). 

j. . " "'i ....... ' ...... , .......... ; .. ".' J .. L ...... Ii . j~. ! .) l,-~~ ~· .,t _1$)\'4 "",'1 ' .\ .i r\, If'¥"'8i. P'l. Of' , .,...,._~ ~ """"'~ 
--r-- TO. , ._........-.-, i j ' y--' --r-" ! , • I 

15.0 14:5 14.0 1:3.5 ,3.0 12.5 12.0 11.5 11.0 10.5 10,0 

1~( 
! '~ I 

Figure 5.02: IH-NMR spectrum of (5.06)H2 in CDCh 

Compound (5.06)H2 was isolated by reaction of (5.05) with four equivalents of 

8-aminoquinoline, producing an orange, analytically pure solid after purification. Using 

less than four equivalents of 8-aminoquinoline resulted in an incomplete conversion to 

the diimine, which made the compound difficult to purify. Compound (5.06)H2 was fully 

characterized but is unstable in solution or while stored as a solid. The IH-NMR 

spectrum of (5.06)H2 has hydroxyl and imine proton resonances at 14.7 ppm and 9.02 

ppm respectively, similar to compounds (2.01)H, (2.07)H and (2.19)H, that are 

characteristic of the imine synthesis (Figure 5.02). Additionaly, 22 peaks are observed in 
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the aromatic region of the spectrum, corresponding to the 4 bithienyl, 6 salicyl and 12 

quinoline protons. The C=N imine absorption in the FT-IR spectrum is observed at 1620 

iii) Coordination chemistry 

(5.06)H2 -----i) 

cP o-p' - A :. 

\. # N.,..... /./ -

~··-·····----:7F~~ .. -------~ 

- .// ""LPN" c:f. ,-
\. # -

Reagents and conditions: (i) (S.07) FeCh·6H20, (2.01), THF, MeOH,; (S.08) 
FeCh·6H20, (2.01), NaPF6, THF, MeOH; (S.09) FeC13·6H20, (2.01), KSCN, THF, 
MeOH; (S.10) FeCI04• 6H20, THF, MeOH. 

Scheme S.02: The synthesis of bis-qsal complexes (S.07) - (S.10) 

It was best to prepare bimetallic complexes containing ligand (S.06) after producing the 

ligand in situ from (S.OS) rather than isolating the solid because of the instability of 

(S.06). The bimetallic iron(III) complex (S.07), containing two cr counteranions, was 

prepared first by reaction of two equiv of FeCh·6H20 with (S.06) (Scheme S.02). The 

addition of stoichiometric amounts of ligand (2.01) followed, in order to "cap" the 

available coordination sites on the iron centres. These steps produced an analytically 

pure powder that served as the starting point for the preparation of complexes (S.08) and 

(S.09). When attempting to generate the bimetallic complexes in one step, by combining 
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(5.06)H2 with an iron(III) salt and 2 equiv of (2.0l)H, we isolated a significant amount of 

[Fe(2.0l)2t with very little bimetallic product. Complexes (5.08) and (5.09), containing 

PF6- and SCN- counteranions, respectively, were generated by metathesis of (5.08) with 

aqueous solutions containing an excess of NaPF6 or KSCN. The perchlorate analogue 

(5.10) was prepared in a more direct manner by reacting (5.06) with Fe(CI04)J- 9H20 

followed by addition of two equiv of (2.0l)H. Complexes (5.07) - (5.10) are analytically 

pure powders that provide characteristic mass spectra, which include fragments of the 

molecular ion with either one or two counteranions removed. The complexes have very 

similar FT-IR spectra that all include the expected imine absorption around 1603 em-I, 

which is shifted to lower energy in comparison to the same absorption in the 

uncoordinated ligand (5.06)H2. The only significant differences in the FT -IR spectra of 

(5.07) - (5.10) result from the absorptions of the different counteranions. 

iv) Magnetic characterization 

8.5 

2.5 .&..,ji.-l.-'-""'-I"-l. .................. '-'-................ ~ ........ """""""'" 

o 100 200 300 
Temperature (K) 

Figure 5.03: Variable temperature magnetic susceptibility of (5.07) - (5.10) in a 
5000 Oe magnetic field[141] 
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Evidence for temperature dependent spin-crossover behaviour for each of the complexes . 

is provided by variable temperature magnetic susceptibility, Mossbauer and ESR 

spectroscopy. First, we recorded magnetic susceptibility measurements on analytically 

pure powdered samples of (5.07) - (5.09) using a SQUID magnetometer between 2 - 350 

K and found that their variable temperature magnetic properties are similar. For each 

complex, data are displayed as plots of XMT versus T, and each plot features a very 

gradual decrease in XMT with decreasing temperature toward 20 K, followed by a more 

rapid decrease between 20 K and 2 K (Figure 5.03). No hysteresis is observed upon 

warming from 2 K back to 350 K, which is typical behaviour for iron(III) spin-crossover 

systems. The XMT values at 350 K for (5.07) - (5.09) are slightly less than the anticipated 

values for two high-spin (S = 5/2) iron(III) ions in the absence of any magnetic coupling 

with a theoretical spin-only value of 8.75 cm3Kmorl. The lower XMT values that we 

observe at 350 K likely result from some proportion of the lower-spin isomer present at 

this temperature and are not the result of any intramolecular antiferromagnetic coupling 

(see Mossbauer). At the lowest measured temperature of 2 K, XMT values for (5.07) -

(5.09) indicate a lower spin state, but not the expected S = 112 for each iron(III) atom in 

the low-spin state, which would have a theoretical value of 0.75 cm3Kmorl. Rather, the 

XMT values observed at 2 K are approximately 3.5 cm3Kmor1 at 2K and suggest an 

incomplete spin-crossover for each of (5.07) - (5.09). 
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Figure 5.04: Variable temperature Mossbauer data for complexes (5.07) - (5.10), 
experimental data (dots) fitted to theoreticallines[141] 
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Table 5.02: Mossbauer data for (5.07) - (5.10) 

Compound Temperature IS QS Site Fe(III) 
eC) (mmls) (mmls) (%) Spin State 

293 
0.34(1) 1.07(1) 95 5/2 
0.40(9) 3.2(4) 5 112 

200 
0.34(1) 0.96(2) 74 5/2 

(5.07) 
0.07(2) 2.48(3) 26 112 
0.44(1) 1.08(1) 72 5/2 

100 
0.14(1) 2.58(3) 28 112 

6 
0.49(1) 1.01(5) 58 5/2 
0.19(1) 2.59(5) 42 112 

293 
0.35(1) 0.92(2) 88 5/2 
0.31(7) 2.6(1) 12 112 

200 
0.43(3) 1.03(5) 80 5/2 

(5.08) 
0.11(4) 2.54(1) 20 112 
0.47(1) 1.05(2) 69 5/2 

100 
0.18(1) 2.65(3) 31 112 

6 
0.47(2) 0.91(3) 58 5/2 
0.17(1) 2.55(2) 42 112 

293 
0.36(1) 0.96(1) 87 5/2 
0.30(9) 2.4(1} 13 112 

200 
0.36(1) 0.93(2) 72 5/2 

(5.09) 
0.11(2) 2.53(4) 28 112 
0.43(1) 0.98(1) 62 5/2 

100 
0.14(1) 2.57(2) 38 112 

6 
0.49(1) 1.01(5) 58 5/2 
0.19(1) 2.59{5) 42 112 

293 
0.26(2) 0.76(3) 45 5/2 
0.13(1) 2.78(2) 56 112 

200 
0.25(3) 0.58(5) 30 5/2 

(5.10) 
0.16(1) 2.39(3) 70 1/2 
0.16(4) 0.51(5) 23 5/2 

100 
0.19(1) 2.42(1) 77 112 

6 
0.33(2) 0.55(2) 20 5/2 
0.20(1) 2.43(2) 80 112 

To help support our interpretation of the data from variable temperature magnetic 

susceptibility studies, we have also obtained Mossbauer spectra for complexes (5.07) -

(5.09) at 293, 200, 100, and 6 K. The data are plotted for each complex (Figure 5.04) 
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and Mossbauer parameters for all complexes are listed in Table 5.02. As expected from 

the magnetic data, complexes (5.07) - (5.09) share similar Mossbauer properties and 

indicate the presence of two different sets of spin states in thermal equilibrium with one 

another. For (5.07) - (5.09) the Mossbauer spectra at 293 K each display a doublet with 

quadrupole splittings (0.92 mmls - 1.07 mm/s) and isomer shifts (0.3 mm/s - 0.4 mm/s) 

that are typical for other reported monometallic high-spin iron(III) bis-qsal complexes. 

Another smaller component with Mossbauer parameters that suggest an S = 112, 112 state 

is also observed at this temperature.[25,142-143] As the temperature decreases, the intensity 

of the high-spin doublet also decreases and is accompanied by an intensity increase in the 

low-spin doublet. The changes in the proportion of each state are small and occur slowly, 

reflecting the variable temperature magnetic data. At 6 K the Mossbauer spectrum of 

(5.07) indicates 58 % high-spin and 42 % low-spin components, which has a theoretical 

XMT value of 5.39 cm3K mor1 that is similar to the value 5.2 cm3Kmor1 observed for 

magnetic susceptibility measurements at this temperature. Together, the variable 

temperature susceptibility and Mossbauer data suggest that over half of the iron(III) in 

(5.07) - (5.09) is in the high-spin state at low temperature. The mixed spin states can be 

interpreted in several ways, but a comparison of the coordinate bond lengths in the low 

temperature X-ray crystal structure of each complex would be required to make an 

accurate conclusion. 

The variable temperature magnetic susceptibility profile for complex (5.10) is 

significantly different from those observed for (5.07) - (5.09). The magnetic 

susceptibility data at 350 K, XMT for (5.10) is 5.1 cm3Kmor1 and suggests a considerably 
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larger component of the iron(III) low-spin state at this temperature. At 293 K, the 

Mossbauer spectrum suggests that 55 % of the iron(III) is in the low spin state, which is 

mirrored by the XMT value of 4.7 cm3Kmor i when compared to the anticipated 4.3 cm3K 

morl for this proportion. In the Mossbauer spectrum of (5.10), the doublet associated 

with the low-spin iron(lII) increases in intensity and the high-spin doublet decreases with 

decreasing temperature. At 6 K, the data indicates 20 % high-spin and 80 % low-spin, 

which is again supported by the xMTvalue of3.1 cm3Kmor i observed at 6 K and is close 

to the expected value of 2.4 cm3Kmorl. The different magnetic properties observed from 

(5.10) are not unprecedented and likely have their origins in different structural properties 

compared with (5.07) - (5.09) that occur as a result of changing the counterions. [72,96-98] 

(a) 

o 1000 2000 3000 4000 5000 

Magnetic Field (Oe) 

(b) 

o 1000 2000 3000 4000 5000 

Magnetic Field (Oe) 

Figure 5.05: Powder ESR spectra of (a) (5.09) and (b) (5.10)[141] 

ESR spectra were obtained from powder samples of each complex at 298 and 110 K, and 

reflect the magnetic susceptibility and Mossbauer analysis. ESR spectra for complex 

(5.09) are displayed beside (5.10) (Figure 5.05). For comparison, the spectra of (5.07) 
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and (S.08) are nearly identical to (S.09). The room temperature spectrum of (S.09) 

indicates the presence of both high-spin (g = 4.3) and low-spin (g = 2.1) iron(lII). As the 

temperature is decreased to 110 K, the resonances become slightly more resolved and 

intense but still provide g-values that are similar to those observed in the room 

temperature spectrum and support the Mossbauer and magnetic susceptibility data 

presented previously. The broadness of the resonances is attributed to spin-spin 

interactions that have been observed for other iron(III) spin-crossover complexes. [144-145] 

The ESR spectra of complex (S.10) exhibit nearly identical peaks at each temperature, 

with only small intensity differences resulting from the small decrease in the proportion 

of the high-spin isomer between these temperatures. 

v) Electrochemistry 
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Figure S.06: Cyclic (left) and differential pulse (right) voltammograms of (S.07) 
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Figure 5.07: Cyclic (left) and differential pulse (right) voltammograms of (5.08) 
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Figure 5.08: Cyclic (left) and differential pulse (right) voltammogram of (5.09) 
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Figure 5.09: Cyclic (left) and differential pulse (right) voltammogram of (5.10) 
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Figure 5.10: The cyclic voltammogram of (5.06)H2 

Table 5.03: Electrochemical data for (5.06)H2 - (5.10) in ACN 

Compound 

(5.06)H2 
(5.07) 
(5.08) 
(5.09) 
(5.10) 

EO ox (V) vs. fc 

+0.2, +0.6, +0.9, + 1.2 
+0.3, +0.8, + 1.1 
+0.4, +0.6, + 1.1 
+0.4, +0.9, +1.1 

+0.5, +1.1 

EO red (V) vs. fc 

-0.7, -2.1 , -2.3 
-0.6 
-0.6 
-0.7 
-0.6 

(Refer to section 8.04 for experimental details) 

The electrochemical properties of complexes (5.07) - (5.10) have been investigated using 

cyclic and differential pulse voltammetry and are very similar to those observed for the 

reported monometallic iron(III) complexes of ligand (2.07) (Figures 5.06 - 5.09). In the 

anodic sweep of complexes (5.07) - (5.10), broad and irreversible oxidation waves above 

potentials of +0.1 V (versus fc) are noted in the cyclic voltammograms. Deconvolution 

by differential pulse techniques suggests that there are at least three distinct anodic 

processes in (5.07) - (5.10), all at similar potentials in each complex. These waves are 

also present in the voltammogram of the uncoordinated ligand (5.06)H2 and can be 
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ascribed to irreversible ligand based oxidations in the metal complexes (Figure 5.10). 

The oxidation of the 2,2' -bithienyl bridge likely occurs at the most positive of these 

oxidations, and we attempted to electrochemically polymerize (5.07) - (5.10) by 

repeatedly scanning over this region. No polymerization was observed, however, due to 

a combination of poor monomer solubility, steric congestion, and the high irreversible 

2,2' -bithienyl oxidation potential. Ligand (S.06)Hz features another irreversible 

oxidation centred at +0.2 V, which is not observed in the voltammograms of (5.07) -

(5.10), and likely results from the oxidation of the hydroxyl group. Also, due to the 

instability of (5.06) in solution, it is possible that some of the observed waves in the 

voltammograms of complexes (5.07) - (5.10) could have originated from decomposition 

products. Over cathodic potentials, one quasi-reversible wave, representing iron(III) 

reduction, is centred at potentials around -0.6 V for (5.07) - (5.10). At more negative 

potentials, broad irreversible processes, likely due to the imine reduction, are observed. 

Refer to Table 4.02 for a list of redox events for compounds (S.06)Hz - (5.10). 

vi) Summary 

The bimetallic complexes (5.07) - (5.10) exhibited spin-crossover that was gradual and 

incomplete, similar to the iron(ill) complexes of Chapter 2. Therefore, linking two spin­

crossover components together through the bithiophene bridge did not adversely affect 

the magnetic properties. However, like the complexes made from ligand (2.07) in 

Chapter 2, complexes (5.07) - (5.10) are unsuitable for electrochemical polymerization. 
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Notes: 

A version of this chapter has been published. 

* Djukic, B.; Poddutoori, P. K.; Dube, P. A.; Seda, T.; Jenkins, H. A.; Lemaire, M. T. 
Inorg. Chern. 2009,48,6109-6116 
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Chapter 6: Polymeric materials 

6.01 Conjugated polymers 

N· .tQ+. .!-Vi. 
(6.01) (6.02) (6.03) 

.~* +0+. '1O-o--d. 
(6.04) (6.05) (6.06) 

Figure 6.01: Conjugated polymers (i) polyacetylene (6.01), (ii) polythiophene 
(6.02), (iii) polythiazole (6.03), (iv) poly(3-methylthiophene)(6.04), (v) 
polyphenylene ( 6.05), (vi) poly( thiophene-phenyl ene-thiophene ) (6.06) 

Conjugated polymers are materials that feature an extended x-system along the polymer 

backbone and, generally, exhibit unique electronic properties, including high electrical 

conductivity when doped (vide irifra), and electrochromism. Typical examples of 1[-

conjugated polymers (6.01) - (6.06) are shown in Figure 6.01. Significant efforts have 

focused on the synthesis of conjugated polymers with pendant functional groups to 

enhance their physical propertiesY46-148] 

i) Electrical conductivity in conjugated polymers 

Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa were awarded the Nobel 

Prize for Chemistry in 2000, for their discovery that electrical conductivity can be 

achieved within conjugated polymers. Electrical conductance (u) is measured in siemens 

(S) and expresses the ability of electricity to flow through a material. The conductance is 

the reciprocal of resistance and is determined through Ohm's law (Eq. 6.1) by applying a 
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known potential (U) across the material and measuring the current (1) that passes through 

it (Eq. 5).[149] 

u=UU (Eq.4) 

LUMO _ Conduction band 

HOMO _ Vaience band 

Cs 

Figure 6.02. Energy band diagram for increasing lengths of (6.01iI50
] 

Conjugated 1t-bonds are a key aspect of the conductive properties of polymers because 

they allow electrons to become delocalized throughout the entire length of the polymeric 

chain. The 1t electrons are in the highest occupied molecular orbital (HOMO) of the 

polymer and have properties similar to the valence band in a solid-state semiconductor 

due to Peirels distortions and slightly non-degenerate energy levels along the chain 

(Figure 6.02). The lowest unoccupied molecular orbital (LUMO) of the polymer 

signifies the lowest energy level of the conduction band and the energy separation 

between the HOMO and the LUMO defmes the band gap Y 50] 

Conjugation is not the only attribute of the polymer that results in conductivity because 

the electrons must also be able to travel freely through the polymer. Conductivity can be 

achieved by partial occupation of the valence band by removing an electron and 

introducing a hole in the LUMO where other electrons can travel. Electrons can also be 
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directly injected into the conduction band of the polymer and are free to accelerate under 

the influence of an applied electric field. The process of creating these partially filled 

bands and the charge carriers (hole and electron pairs) is called doping and also derives 

its name from an analogy to solid-state semiconductors. [151] Electrical conductivity can 

also be achieved through derivatization by reducing the energy gap separating the 

conduction and valence bands allowing for redistribution between electrons and holes at 

higher and lower energy levels. [152] 

ii) P-doped conducting polymers 

Conducting polymers are said to be p-doped when a hole is introduced into the valence 

band. In 1977 Heeger, MacDiarmid and Shirakawa discovered that oxidation of 

polyacetylene (6.01) films with halogen vapour made them up to 109 times more 

conductive in comparison to non-oxidized polyacetylene films. [153-154] The doped form of 

polyacetylene can have electrical conductivity values exceeding 105 Sm- I
, which was 

higher than any previously known polymer. Teflon (6.07), a polymeric insulator, and 

silver, a metallic conductor, for comparison have conductivities of 10-22 Sm-I and 108 

Sm-I
, respectively. Since Heeger, MacDiarmid and Shirakawa's discovery, many p­

doped conducting polymers have been reported, most notably polythiophene (6.02), 

which is used extensively in a variety of organic materials due to its stability. [155] 
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iii) N-doped conducting polymers 

Conjugated polymers containing electron-withdrawing imine nitrogen atoms have 

electron-accepting properties and are highly susceptible to chemical and electrochemical 

reduction. In a process called n-doping, an electron is injected into the conduction band 

of the polymer and generates a charge carrier within the polymer chain. (156] For example, 

polythiazole (6.03) is an insulator in its undoped state with a low electrical conductivity, 

10-8 Sm-\ but upon reduction with sodium a significant increase in conductivity is 

observed producing a semiconducting material (10-1 Sm-1)Y57] 

iv) Spectroscopic properties 
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Figure 6.03: The spectroelectrochemistry of (6.04iI58
] 

Electrochemistry can be combined with optical spectroscopy to study the redox 

properties of many electroactive species, including conjugated polymers. Spectral 

measurements are often made using optically transparent electrodes that have been coated 

with a thin layer of the polymer film. The spectroscopic response from an oxidation or 

reduction process is measured directly through the electrode. Indium tin oxide (ITO) 
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coated glass containing a poly-3-methylthiophene (6.04) film displays a 1t-1t* transition at 

508 nm corresponding to the band gap of the polymer (Figure 6.03). With increased 

potential, lower energy charge carrier bands begin to appear at 800 nm and 1300 nm, 

while the absorbance of the initial1t-1t* transition is concurrently reduced. The polymer 

film can switch between a red reduced state at -0.2 V and a blue oxidized state at +0.5 V 

versus Agi AgCl. [158] 

6.02 Polymetallic materials 

i) Coordination polymers 

~ @=Metal 

~ • = Ligand 

~~ 

Figure 6.04: A general coordination polymer diagram 

A coordination polymer is a metal coordination compound where ligands bridge between 

neighboring metal centres forming a continuous array of metal-ligand units (Figure 

6.04). The nature of the bridging ligand can vary from halides to polyatomic ligands, 

including conjugated heterocycles like 4,4'-bipyridine (1.18). The diversity ofthe ligands 

results in a wide assortment of possible architectures with uniform, repetitious 

arrangements that span in 1, 2 or 3 dimensions. Although many coordination polymers 

have been prepared, particular relevance to our work includes those which also feature 

SCQ. In particular, the I-D chains formed from iron(II) featuring 1,2,4-triazole 

derivatives can exhibit room temperature spin transitions and wide thermal hystereses. 
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These covalently bridged SCQ chains displayed enhanced cooperativity, physical 

properties and commercial viability. [88,159-160] 

ii) Conjugated metallopolymers 

~ Illsulator 

TYl)e II Conjugated Polymer 

@ Metal Group 

Figure 6.05: Type I - III conjugated metallopolymers[146] 

Coupling transition metal complexes to x-conjugated polymers produces materials in 

which the unique (optical or magnetic) properties of the metal complex may be coupled 

to those of the conjugated backbone. In this approach, the polymer acts as a large 

polydentate ligand, creating polymetallic materials with uniform arrangements of metal 

centres. There are three main variations of conjugated metallopolymers, as classified by 

Wolf, each with an extended x-system along the polymer backbone as a common 

structural trait (Figure 6.05).[146] The extended x-system distinguishes them from the 

coordination polymers described previously. 
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iii) Type I conjugated metallopolymers 

Type I metallopolymers contain pendant metal centres linked to a conjugated organic 

backbone. The linker is electronically insulating and the metal ions/complexes are 

attached to the polymer molecule through the link by electrostatic interaction, 

coordination bond, or covalent bondingY46] 

iv) Type II conjugated metallopolymers 

In type II metallopolymers, the metal complexes constitute part of the polymers main 

chain by metal-ligand coordination or conjugated linkage between the ligand and 

polymer. Generally, the electronic interactions between the metals and polymer are 

stronger in comparison to pendant metal centres. [146] 

v) Type III conjugated metallopolymers 

Type III metallopolymers contain the metal in the polymer backbone and the metal can 

become involved in electronic delocalization through d1t-p1t overlap between the polymer 

1t system and metal orbitals of appropriate symmetry. As a result the electronic 

interactions between the metal and backbone can become quite strong. [146] 
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6.03 Synthesis of conjugated polymers 

i) Chemical synthesis 

Figure 6.06: Conjugated polymers with higher (left) and lower (right) regioregularity 

Chemical synthesis can be used to prepare conjugated polymers by oxidative coupling of 

monocyclic precursors. Polythiophenes, (6.02), (6.04) and (6.06), for example, are 

prepared by the oxidative polymerization of thiophene groups, using reagents like ferric 

chloride or iron(Ill) perchlorate as the oxidant.[161] Polymers with varying degrees of 

regioregularity are produced from this form of chemical oxidation (Figure 6.06). 

Regioregularity, where each repeating unit is derived from the same structural isomer of 

the monomer, can be improved by other methods including metal-catalyzed 

polymerization, analogous to Kumada, Negishi or Suzuki cross_couplingsY62-163] 

ii) Electrochemical synthesis 
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Scheme 6.01: A mechanism for thiophene electropolymerization[165] 
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Electropolymerization is a method that was first used to prepare organic polymers such as 

polythiophene (6.02) but can also been used to prepare metal-containing conjugated 

polymers. Electropolymerization involves oxidation or reduction of a monomer at a 

potential that produces a reactive species, generally a radical-cation or radical-anion. 

These radicals undergo coupling to give first dimers, and subsequently, longer oligomers 

and polymers. The key requirement is that the resulting polymer and any components 

such as functional groups or metals incorporated into the polymer structure must be 

relatively stable at the potential required for polymerization. · Monomers that 

e1ectropolymerize at lower potentials are at an advantage because there is a reduced 

possibility for decomposition. As an example, the electropolymerization mechanism for 

five-membered heterocycles such as thiophene is shown in Scheme 6.01. Coupling can 

occur at the a or f3 positions of the ring; however, the a coupling is favored and leads to 

longer conjugation lengths. In many thiophene derivatives, the ratio of a to a and a to f3 

coupling upon electropolymerization is unknown. The polymer is obtained as a thin film, 

the thickness and morphology of which can be controlled by the electrochemical 

parameters (for example potential, current and deposition time). In addition, oxidative or 

reductive doping can be achieved in situ electrochemically, allowing these polymers to 

switch, easily, between more insulating and more conductive statesY53,164-165] 

CC~:N~:P 
U 

5 
(6.09) 

Figure 6.07: A diagram ofNi(saloth) (6.09) 

160 



10 

o 

(6.08) 
-10t-_____________ --1 

10 

o 

-10 

-0.5 0.0 0.5 H) 

Potential (V) 

Figure 6.08: The cyclic voltammagrams of (6.08) and (6.09i l
66] 

The investigation of the ligand salothH2 [salothH2 = N,N'-bis(salicylidene)-3,4-

. thiophenediamine] (6.08) and its nickel complex, [Ni(saloth)] (6.09) (Figure 6.07), are 

useful in illustrating electropolymerization through cyclic voltammetry (CV) (Figure 

6.08). In the ligand (6.08), the first CV scan possesses the largest change in current as 

the potential is increased. The subsequent scans show a continued ebbing of the current 

response and indicate that electropolymerization is not occurring. In contrast, (6.09) 

displays the common hallmarks of electropolymerization after repeated potential scans. 

The first scan exhibits a sharp monomer oxidation at +0.72 V and a reductive process at 

+0.50 V. During the second scan, a new oxidation appears at a lower potential (+0.55 

V), which is attributed to the oxidation of the newly formed polythiophene derivative 

(6.10). Continued scanning brings about an increase in current response with respect to 

the initial monomer oxidation. In addition to this increased electro activity, a thick orange 
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film is observed on the surface of the electrode, which is also consistent with polymer 

formation. [166-169] 

6.04 Characterization techniques for conjugated metallopolymers 

Several characterization methods, encompassing aspects of structure, morphology and 

elemental composition are available for conjugated metallopolymers. In addition to UV­

Vis and FT -IR spectroscopy, the techniques we have used for characterization include 

scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and 

small angle x-ray scattering (SAXS).[170] 

i) Scanning electron microscopy 

Scanning Electron Microscopy (SEM) collects images of the sample surface by scanning 

it with a high-energy beam of electrons. The electrons interact with the atoms on the 

surface of the sample producing signals that contain information about the 

topography'p70] 

ii) Energy dispersive X-ray spectroscopy 

Energy dispersive X-ray spectroscopy (EDX) is an analytical technique used for the 

qualitative or quantitative elemental analysis of a sample by measuring the emission of 

X-rays that are characteristic of the atomic structure of the element. A high energy beam 
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of electrons is typically focused on a sample, which contains atoms in their ground 

electronic state. The incident beam can excite an electron in an inner shell of an' atom, 

ejecting it from the shell and creating a hole. An electron from an outer, higher-energy, 

shell then fills the hole and the difference in energy between the higher-energy shell and 

the lower-energy shell is released in the form of an X-ray. The X-ray energy is 

characteristic of the unique atomic structure of the particular element under investigation. 

The quantity of X-rays at a given energy level is counted and this information can be 

used to identify the elemental composition of the specimen. [170] , 

iii) Small angle X-ray scattering 

Small-angle X-ray scattering (SAXS) is a technique where the scattering of X-rays by a 

sample is used for the determination of structural properties such as averaged particle 

size, shapes and characteristic distances of partially ordered materials. X-rays are 

directed at the sample with a low incident angle (near 0° and limited to a range of around 

1°) to create an intensity pattern based on the elastic scattering of the X-rays that 

correspond to the structural arrangement of the material. The advantage of SAXS 

experiments is that a crystalline sample is not needed. However, the random orientation 

of the material leads to a loss of information due to spatial averaging when compared to 

crystallography. [170] 
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6.05 Goals and objectives 

Our current goal is the generation of polymeric materials from molecular spin-crossover 

complex (or VT) precursors that, from the previous work outlined in Chapters 2 - 4, we 

have identified as suitable for polymerization. We will use the techniques described in 

sections 6.01 - 6.04 to synthesize and characterize the polymers. Oxidative coupling will 

be used to link together the thiophene rings . of our complexes to form conjugated 

polymers and will provide the first examples of electrically conductive metallopolymers 

containing spin-labile substituents. 
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6.06 Chemical polymerization of (2.10)* 

i) Synthesis and characterization 

Figure 6.09: Purple microspheres of (6.11p71] 
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(2.10) 

Reagents and conditions: (i) CH3CN, 2 months 

Scheme 6.02: The synthesis of (6.11) 

An acetonitrile solution containing (2.10), a brown microcrystalline powder, and excess 

perchlorate anion was left open to air at room temperature. After several weeks, the dark 

purple spherical particles of (6.11), corroborated by SEM (Figure 6.09), were observed 

to form from the solution (note that similar formations, shown in Appendix 2, are also 

observed for solutions of (5.07) and (5.10». Although the particles are not sized 

uniformly, their spherical shape is reminiscent of well-known polymer micro spheres, 

which have been observed to deposit from solution during a precipitation polymerization 

mechanism (Scheme 6.02).£172
-
175

] The FT-IR spectrum of (6.11) is nearly identical to 

(2.10), with very minor differences in absorbance intensity. Very slight energy 

differences for the C=N imine stretch of the coordinated ligand (-2 cm-1
) and CI-O 

stretch of the perchlorate anion (-4 cm -1), allows for the assertion that the structure of 

(6.11) is very similar to (2.10). Elemental analysis of (6.11) (including C, H, N, S and Fe 

analyses) is also consistent with the purported structure. Additionally, the solubilities of 
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(2.10) and (6.11) differ markedly, with (6.11) insoluble in common polar and non-polar 

solvents. 

ii) Structural properties 
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Figure 6.10: The X-ray powder diffraction pattern of (6.11)[171] 

To obtain more detailed structural information, a PXRD profile of (6.11) has been 

obtained and the data acquired indicate that (6.11) is amorphous, but also suggests 

possible scattering features at very low angle (Figure 6.10). In contrast, the previously 

examined PXRD data of precursor (2.10) (Figure 2.09), clearly indicate the 

polycrystalline nature of this molecular complex. 
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Figure 6.11: X-ray scattering (left) and Guinier (right) plots of (6.11i l7l
] 

Further evidence for the purported macromolecular structure of (6.11) is obtained from 

small angle X-ray scattering (SAXS) experiments (Figure 6.11). Significant low angle 

scattering, above the background, from powder samples of (6.11) was observed. The 

low-q data does not show an obvious Guinier region, which can be explained by the 

polydisperse nature of the particles, including very large particles, as is corroborated by 

the SEM images of (6.11). The high-q data clearly exhibits a linear (Porod's law) region 

with a slope of approximately -4 (a.u.), which indicates the presence of particles with 

well-defined surface features. The minimum particle size giving rise to the behaviour in 

the q-range analysed is about 70 A. 
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iii) Electronic absorption spectroscopy 
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Figure 6.12: The reflectance spectrum of (2.10i l71
] 

Evidence suggesting (6.11) forms through polymerization of the thienyl substituents is 

demonstrated in the diffuse reflectance visible spectrum. The absorbance spectrum of 

(2.10), calculated from the reflectance profile, features a maximum at 470 nm that is 

similar to the spectrum of (2.10) in solution and results from a LMCT transition (Figure 

6.12). The spectrum of (6.11) features a similar LMCT absorption band, in addition to 

another broad and more intense feature at a longer wavelength (>775 nm), which we 

ascribe to transitions between intergap states of the conjugated polythiophene backbone. 

The visible absorption data strongly supports our assertion that the polymer micro spheres 

are generated by polymerization of the thiophene substituents. 
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iv) Magnetic characterization 
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Figure 6.13: Variable temperature magnetic susceptibility data for (6.11) in a 
5000 De magnetic field[l71] 

We have obtained variable temperature magnetic susceptibility data for (6.11), which is 

presented along with the data obtained from (2.10) (Figure 6.13). For comparison, we 

have plotted the magnetic moment of (6.11) for one independent unit of the anticipated 

polymer structure, which helped to make clear the differences between the two data sets. 

At the highest recorded temperature (325 K), the magnetic moment of (2.10) is somewhat 

higher than the magnetic moment of (6.10) (4.6 vs. 4.2 IlB). However, the data indicates 

that some component of the low-spin isomer is present in each sample at this temperature 

since the anticipated value for pure high-spin iron(IID is 5.9 1lB. The temperature 

dependent profile of the data is also different since (2.10) undergoes spin-crossover. more 

rapidly than (6.11). At the lowest measured temperature (2.5 K), the magnetic moment 

of (6.11) is now somewhat higher than (2.10) (2.8 vs. 2.4 IlB), but both are consistent 

with magnetic moments observed at this temperature for other reported iron(lII) spin-

crossover complexes. The magnetic profile of complex (6.11), like (2.10), does not 

display thermal hysteresis. 
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6.07 Electrochemical polymerization of (2.21) t 

600 

i) Synthesis and characterization 

Reagents and conditions: (i) B14NPF6, CH3CN, N2 

Scheme 6.03: The synthesis of(6.12) 
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Figure 6.14: The electrochemical 
polymerization of (2.21) on an ITO substrate (left) and the cyclic voltammogram of 

(6.12) on a platinum button (right) 
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Figure 6.15: Current versus scan rate experiments for (6.12) 

During the investigation of the electrochemical properties of complex (2.21) It was found 

that repeated scanning over a potential window of -0.5 to 1.0 V resulted in 

electropolymerization and the deposition of a transparent red film of (6.12) on a platinum 

button or ITO-coated glass working electrode (Scheme 6.03 and Figure 6.14). The 

electrochemical properties of (6.12) were investigated after removal of the coated 

electrode from the solution, washing with acetonitrile, and then running cyclic 

voltammograms of the polymer in a fresh monomer free solution. The linear peak 

current dependence on the scan rate was observed and indicates the presence of an 

electro active deposit on the working electrode (Figure 6.15). The elemental composition 

of the (6.12) film was determined by quantitative EDX spectroscopy. An average of 11 

experiments indicate that the Fe:S and Fe:P ratios are in the range expected for the 

purported structure. In the electronic absorption spectrum of (6.12), an absorption band 

with a maximum at 510 run is observed. This absorption is assigned predominately to 1t -

1t* transitions of the conjugated polythiophene, which obscure the expected LMCT band 

that is characteristic of iron(III) complexes. The FT -IR spectrum of (6.12) is very similar 

to the FT-IR spectrum of (2.21) and indicates that the polymeric structure was obtained 
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from electropolymerization without any structural alteration to the pendant iron 

coordination complex. 

Reagents and conditions: (i) B14NPF6, DCM, Nz 

Scheme 6.04: The synthesis of (6.13) 

.. 
i) 

(2.07) 

Reagents and conditions: (i) BlLtNPF6, DCM, Nz 

Scheme 6.05: The synthesis of (6.14) 
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Figure 6.16: Electrochemical polymerization of (2.21) (left) and (2.07)H (right) 
on an ITO substrate 

1.0 

Polymers closely related to (6.12), a manganese(II) analogue (6.13) and the 

uncoordinated ligand (6.14), were also prepared by electrochemical synthesis to aid in the 

analysis of physical properties (Schemes 6.04 - 6.05 and Figure 6.16). 

ii) Magnetic properties 
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Figure 6.17: Variable temperature magnetic susceRtibility data for (6.12) in a 15000 Oe 
magnetic fie1d[ 18] 
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The variable temperature magnetic properties of (6.12) were investigated by SQUID 

magnetometry. Three independently prepared films of (6.12) were electrochemically 

generated on ITO-coated glass slides and then dried under vacuum for 24 h. The portion 

of the slide containing the film was cut and weighed, then loaded into a plastic straw and 

lowered into a SQUID magnetometer. The magnetic data were acquired from 330 to 60 

K at a field of 1.5 T, collecting four DC scans for each temperature point with a wait of 

60 s for temperature stability at each point (Figure 6.17). Following the experiment, the 

film was removed from the glass using DMSO, ethanol and gentle scrubbing with a 

tissue. The same piece of ITO-coated glass was loaded into the SQUID and an identical 

experiment was run so that the diamagnetic contribution to the susceptibility could be 

subtracted. The paramagnetic susceptibility of (6.15) was calculated based on the mass 

of the repeat unit of the polymer and the results are presented as a plot of the effective 

magnetic moment (peff) versus temperature. At 330 K, the magnetic moment (6.8 IlB) is 

a little higher than the expected value for one high-spin iron(III) ion (5.9 IlB) and likely 

results from a polaronic spin contribution from the conducting polymer backbone. We 

observed a steady decrease in the magnetic moment with decreasing temperature, 

indicating that a gradual spin equilibrium is operative in (6.12). At approximately 60 K, 

the magnetic moment per repeat unit is about 2.6 IlB, which is greater than 1.73 IlB, the 

anticipated value for one unpaired electron per complex, but is typical for low-spin 

iron(III) in other similar qsal-containing complexes. No thermal hysteresis in the 

magnetic properties was observed since the differences in magnetization values between 

warming and cooling modes at each temperature point were insignificant. 
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Figure 6.18: Variable temperature conductivity of electrodeposited films of 
(6.12) - (6.14illSf 
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The variable temperature resistivity of electrodeposited films of (6.12) with an estimated 

thickness of 130 nm (Michelson interferometry was used to obtain the value) were also 

investigated on ITO-coated glass using the van der Pauw method.[176] Four contacts (gold 

wires) were applied to the film with silver paint and then the temperature dependent 

conductivity (reciprocal of resistivity) profile of the (6.12) film coated on ITO glass was 

collected. Profiles were collected by sweeping through the desired temperature range 

while simultaneously collecting data points Figure 6.18). During the cooling phase, data 

was collected between 300 K and 20 K over a period of 1.2 hours. The temperature was 

kept below 20 K for 20 minutes and then allowed to gradually rise back to ambient 

temperature over a period of 15 hours. The conductivity of the (6.12) film and the ITO-

coated glass is significantly higher than the conductivity of the bare ITO-coated substrate, 
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which was measured after removal of the film. Based on a comparison between the 

(6.12) film and ITO coated glass versus the bare ITO-coated glass, we estimate the 

conductivity of (6.12) to be on the same order of magnitude as other poly(terthiophene) 

materials (approximately 10-100 Scm-1).[153, 165, 176-177] Although the circuit gains a 

considerable amount of conductivity from the ITO substrate, the comparison indicates 

(6.12) is substantially more conductive than the other spin-crossover conductors that have 

been reported to date. [107-108] Curiously, we also observed large differences between 

cooling and warming measurements of the (6.12) coated ITO, that were not observed on 

the bare ITO glass slide. We decided to perform identical variable temperature resistivity 

experiments on a SCO free manganese(U) analogue of our iron(UI) polymer and the 

polymer of the uncoordinated ligand, (6.13) and (6.14) respectively, to further investigate 

the apparent hysteretic conductiv~ty profile of (6.12). The conductivity data acquired 

from (6.13) and (6.14) films are nearly identical, since upon cooling and warming, no 

large differences between the runs were observed. 
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6.08 Electrochemical polymerization of (3.24) 

i) Synthesis and characterization 

.. 
i) 

(3.24) (6.15) 

Reagents and conditions: (i) B14NPF6, DeM, N2 

Scheme 6.06: The synthesis of (6.15) 
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Figure 6.19: The electrochemical polymerization of (3.24) (left) and the cyclic 
voltammogram of (6.15) on a platinum button (right) 
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Figure 6.20: Current versus scan rate experiments for (6.12) 
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We decided to prepare an iron(II) spin-crossover metallopolymer next, to further examine 

the conductive properties of spin labile polymers. While studying the electrochemical 

properties of (3.24) in DCM by cyclic voltammetry, it was found that 

electropolymerization could be achieved by performing successive cycles, between -0.5 

and + 1.3 V versus ferrocene, to oxidize the thiophene groups (Scheme 6.06 and Figure 

6.19). Successful electropolymerization resulted in the deposition of a transparent orange 

film of (6.15) on a platinum button or ITO-coated glass working electrode. The 

electrochemical properties of (6.15) were investigated after removal of the coated 

electrode from the reaction solution, washing with DCM, and then running cyclic 

voltammograms of the polymer in a fresh monomer free solution (Figure 6.20). A linear 

peak current dependence on the scan rate was observed and indicates the presence of an 

electro active deposit on the working electrode. 
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Figure 6.21: Differential pulse voltammograms of (6.15) (left) and the iron(II) 
oxidation of (6.15) (right) 
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Figure 6.22: Differential pulse voltammograms polymer precurrsors (3.20) (left) 
and (3.24) (right) 

Films of (6.15) were also carefully examined by differential pulse techniques, revealing 

large peaks beyond +0.5 V attributed to the thiophene oxidation, in addition to a smaller 

redox event, centred at approximately -0.1 V versus ferrocene (Figure 6.21). We ascribe 

this oxidation to the iron(II) metal centre due to its similar potential in comparison to 

complexes (3.16) (Figure 3.29) and (3.24) (Figure 6.22). The elemental composition of 

(6.15) was confirmed by EDX spectroscopy and verified that the Fe:S ratio is in the range 

expected for the purported structure. The FT-IR spectrum of (6.15) provided further 

structural corroboration of the polymer film because it is very similar to the FT -IR 

spectrum of (3.24) and verified that the polymeric structure included an imine-pendant 

iron coordination complex. 
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ii) Magnetic properties 
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Figure 6.23: Variable temperature magnetic properties of (6.15) in a 15000 Oe 
field 

The variable temperature magnetic properties of (6.15) were investigated by SQUID 

magnetometry, following a similar procedure to the analysis of (6.12). The magnetic data 

were acquired from 330 to 5 K at a field of 1.5 T, allowing the temperature of the SQUID 

to stabilize before collecting measurements at each point (Figure 6.23). Following the 

experiment, the film was removed from the glass using DMSO, ethanol and gentle 

scrubbing with a tissue. The same piece of ITO-coated glass was loaded into the SQUID 

and an identical experiment was run so that the diamagnetic contribution to the 

susceptibility could be subtracted. The paramagnetic susceptibility of (6.15) was 

calculated based on the mass of the repeat unit of the polymer and the results are 

presented as a plot of the effective magnetic moment (p,ejf) versus temperature. At 330 K, 

the magnetic moment (3.9 /lB) is a lower than the expected value for one high-spin 

iron(II) ion. We observed a steady decrease in the magnetic moment with decreasing 

temperature, indicating that a gradual spin equilibrium is operative in (6.15). At 5 K, the 

magnetic moment per repeat unit is about 0.9 /lB, and is greater than anticipated for a 
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complete crossover to the low-spin state (theoretical value is 0 ~B). A slight difference 

in magnetic moment values was also observed between cooling and warming runs. 

iii) Electronic absorption spectroscopy 

j 0.25
1 

j 
j I 

100mV 400mV 600 mV 

g I 
~ 0.15 i 

I , 

J 
i 
I 

0.05 +-1 ----.-, ---,-, ---,-, ---" 
400 500 600 700 800 

Wavelength (nm) 

900mV 

600mV 
500mV 
400mV 
100mV 

Figure 6.24: The spectroelectrochemical properties of (6.15) 

In order to investigate the optical properties of (6.15), a film was electrochemically 

grown on an ITO electrode. The visible absorption spectra of (6.15) at room temperature 

features an absorption centred around 410 nm with a broad shoulder at lower energy that 

spans the visible spectrum (Figure 6.24). As the film is oxidized electrochemically, the 

low energy shoulder begins to grow in comparison to the maximum at 410 nm. In these 

spectra, the band observed at higher energy is 1t-1t* in origin and the lower energy 

absorption results from transitions between intergap states of the polymer. The observed 

increase in absorbance of the low energy absorption is related to the doping level of the 

182 



polymer via electrochemical oxidation and is completely reversible up to potentials of 

600 m V versus ferrocene. [179] 

iv) Variable temperature conductivity 
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Figure 6.25: Variable temperature conductivity of polymer (6.15) measured by 
sweeping (left) and settling (right) 
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The variable temperature resistivity of electrodeposited films of (6.15) were investigated 

on ITO-coated glass using the four contact van der Pauw method. The temperature 

dependent conductivity (reciprocal of resistivity) profile of (6.15) coated on ITO glass 

was collected by sweeping through the desired temperature range while simultaneously 

collecting data points (Figure 6.25). The data collected for (6.15) was quite similar to 

(6.12), comparable in both the profile and magnitude. Upon observing the similarities 

between the two profiles, we investigated the possibility of a temperature dependent 

memory effect common to our polymers. Rather than sweeping through the data points, 

we decided it would be important to settle (pause) at each temperature, allowing the 
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temperature to stabilize and the system to reach equilibrium before collecting the data 

points. After the investigation, it was found that no sustainable memory effects were 

observed in (6.15) as a result of thermal perturbations. 
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Figure 6.26: Variable temperature resistance of (6.15) measured before (solid line) and 
after (dotted line) oxidation 

Poly (6.15) undergoes reversible electrochemical oxidation, and we were also interested 

in looking at the electron transport properties of the oxidized state. However, the 

electrochemically oxidized form of (6.15), although persistent under ambient conditions, 

was not suitable for assembly into our cryostat circuit. Thus, we turned to a chemical 

oxidation experiment, with molecular bromine, to examine this state with greater ease. 

Two contacts, 5 mm apart, were attached to the surface of the ITO supported polymer 

(6.15) and the resistance was measured versus the temperature. After collecting the 

profile of the neutral polymer, the sample was saturated with bromine and the film turned 

from orange to dark brown. The sample was placed under vacuum to remove residual 

bromine, and the resistance profile was collected again. The resistance of the oxidized 

polymer was found to be lower at all measured temperatures (Figure 6.26). 
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6.09 Electrochemical polymerization of (4.07)t 

i) Synthesis and characterization 
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Figure 6.27: The electrochemical polymerization of (4.07) (left) and the cyclic 
voltammogram of (6.16) on a platinum button (right) 
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Figure 6.28: Current versus scan rate experiments for (6.16) 

To further highlight the versatility of our approach in the development of multifunctional 

materials, we decided to also prepare the first conducting metallopolymer known to 

exhibit valence tautomerism. The electrochemical properties of (4.07) were studied by 

cyclic voltammetry in dry and deoxygenated DCM and electropolymerization was readily 

accomplished by performing successive cycles between -0.5 and 1.0 V versus ferrocene 

to oxidize the terthiophene groups (Scheme 6.07 and Figure 6.27). Successful 

electropolymerization resulted in the deposition of a transparent red film of (6.16) on a 

platinum button or ITO-coated glass working electrode. The electrochemical properties 

of (6.16) were investigated after removal of the coated electrode from the solution, 

washing with DCM, and then running cyclic voltammograms of the polymer in a fresh 

monomer free solution. The linear peak current dependence on the scan rate was 

observed and indicates the presence of an electroactive deposit on the working electrode 

(Figure 6.28). The elemental composition of (6.16) was confirmed by EDX 

spectroscopy and indicated that the Co:S ratio is in the range expected for the purported 

structure. Phosphorus was also observed in the EDX spectrum of the polymer films, 
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which we attribute to the residual electrolyte trapped within the polymer film commonly 

observed in electrochemically generated films. [180] 
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Scheme 6.08: The synthesis of (6.17) 
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Figure 6.29: The electrochemical polymerization of (6.17) 

A polymer of the uncoordinated ligand (6.17) was also prepared in an identical manner to 

aid in the analysis of the physical properties of (6.16) (Scheme 6.08 and Figure 6.29). 
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ii) Magnetic properties 
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Figure 6.30: Variable temperature magnetic properties of (6.16) and (6.17) in a 
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Evidence for the presence of valence tautomerism in (6.16) films was provided by 

variable temperature magnetic susceptibility experiments. A fresh film was grown on an 

ITO-coated glass slide, and that part of the slide containing the film was cut, loaded into a 

plastic straw and then lowered into a SQUID magnetometer. For a background 

subtraction, an identical experiment was performed on an equal mass of ITO-coated glass 

that was cut from the same slide containing (6.16). The data obtained between 50 and 

300 K are slightly noisy, owing in part to the very small mass (0.2 mg) of deposited film, 

but the general features of the plot strongly support our assertion that VT is operative in 

(6.16) (Figure 6.30). The magnetic values are based on the mass of the repeating unit, 

and vary between 2.1 and 6.0 IlB, for the lowest and highest temperatures of 

measurements, respectively. Additionally, we have ruled out the possibility that these 

magnetic changes observed in our films are the result of temperature-dependent polaronic 

spin concentration changes by repeating the above experiment with a film containing 

metal-free polymer (6.17). After background subtraction, we observed a weak 
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paramagnetic response from (6.17) with little temperature dependence, which suggests 

that any contribution to the temperature dependent magnetic properties observed in (6.16) 

is negligible. 

iii) Electronic absorption spectroscopy 
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Figure 6.31: Variable temperature absorption profile of (6.16) (left) and (6.17) (right i 139l 

Polymer (6.16) is insoluble in common organic solvents, and is very stable under ambient 

conditions (as determined by Vis-NIR spectroscopy, over a period of weeks). In order to 

investigate the optical properties of (6.16), a film was electrochemically grown on an ITO 

electrode. The metal-free polymer (6.17) was also generated on an ITO glass slide for 

comparison. The absorption spectra of (6.16) at 77 K and room temperature were 

collected and displayed modest temperature dependent properties (Figure 6.31). The 

room temperature spectrum of (6.16) features an absorption centred around 450 nm, and 

another broad absorption that falls into the NIR at 1000 nm, which are commonly 

observed in electrochemically generated polythiophenes. The higher energy band is 1t-1t* 

in origin, and the lower energy absorption results from transitions to intergap states of the 
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polymer, a consequence of residual doping of polythiophene from the 

electropolymerization.[179] It is very likely that the lower energy absorption also obscures 

the cobalt(II)-to-dbsq charge transfer absorption, a MLCT band that is typically centred 

at approximately 800 run in similar non-polymeric VT materials. [140] Upon cooling the 

film of (6.16) to 77 K, the absorbance of the long wavelength band decreases between 

1400 and 800 run, and a very modest increase in absorbance between 500 and 700 run is 

observed. The absorbance changes are not mirrored in the Vis-NIR spectrum of the 

metal free polymer (6.17), which is rather different from (6.16) because (6.17) absorbs 

less at 77 K than it does at 298 K over the entire measured wavelength range. From this 

observation we can rule out the possibility that the optical changes observed in (6.16) are 

the result of thermo chromic changes to the polythiophene upon cooling. However, the 

optical changes we observed in (6.16) are too subtle to draw any conclusions regarding 

valence tautomerism in the polymer film. It is apparent that the contributions from 

absorption bands originating from transitions within the polymer chain obscure, at least 

partially, the typical charge transfer absorptions of cobalt-semiquinone valence 

tautomers. 
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iv) Variable temperature conductivity 
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Figure 6.32: Variable temperature conductivity profile of (6.16) 

The variable temperature resistivity of electrodeposited films of (6.16) were investigated 

on ITO-coated glass using the four contact van der Pauw method. The temperature 

dependent conductivity (reciprocal of resistivity) profile of the (6.16) film coated on ITO 

glass was collected by sweeping through the desired temperature range while 

simultaneously collecting data points (Figure 6.32). The conductivity of the (6.16) film 

and the ITO-coated glass is comparable to our other spin labile metallopolymers (6.12) 

and (6.14) and we estimate it to be on the same order of magnitude. The data was 

collected by sweeping, exactly like the conductivity experiments for (6.12) and (6.14), 

but we did not observe any significant differences between cooling and warming 

measurements. As the threshold level of conductivity is reached for (6.16) at around 110 

K, a change in the slope of the conductivity profile is observed, as expected. 

Interestingly, a similar, although less steep change in slope is observed in the variable 

temperature magnetic profile. 
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A version of this chapter has been published 

* Djukic, B.; Singh, M. A.; Lemaire, M. T. Synth. Met. 2010, 160, 825-828. 

t Djukic, B.; Lemaire, M. T. Inorg. Chern. 2009,48, 10489-1049l. 

t O'Sullivan, T. J.; Djukic, B.; Dube, P. A.; Lemaire M. T. Chern. Cornrnun., 2009, 

1903-1905. 
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Chapter 7: General conclusions 

A new frontier in the field of magnetochemistry is the production of multifunctional 

materials. These materials feature two or more properties that are not naturally found 

associated with one another, including magnetic lability and conductivity. Conductive 

materials with labile magnetic states are typically generated by combining two 

independently prepared molecular precursors, [Fe(qsal)2t like spin-crossover cations and 

partially oxidized [M(dmit)2t- anions. However, these materials are typically weakly 

conducting. Our hybrid approach toward spin-crossover conductors is completely 

different because we focused on the preparation of conducting metallopolymers 

containing pendant spin-crossover complexes (or valence tautomers) attached directly to 

polythiophene derivatives. This design takes advantage of the inherent conducting 

properties of conjugated polymers, in addition to established synthetic methods, and their 

processability. The close spatial proximity of the spin labile and conducting components 

also augurs well for a stronger interaction between the magnetic and electron transport 

properties. 

The first objective, described in Chapter 2, was to investigate derivatives of iron(III) qsal 

complexes, which were identified as an ideal starting point for the overall goals of this 

research. We modified the qsalligand (2.01) by appending a thiophene ring to it through 

a conjugated bridge. The structurally modified (2.01) ligand was then used to make · 

model complexes containing iron(III), to investigate the effect of thiophene ring 

substitution on the electronic or magnetic properties of the [Fe(qsal)2t cation. Three 
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iron(III) complexes with the appended ligand (2.07) were prepared. Characterization by 

variable temperature magnetic susceptibility, Mossbauer an ESR measurements revealed 

that structural modification of ligand (2.01) with an ethynylthienyl component is 

favourable because the iron(III) complexes generated still undergo spin-crossover. For 

complexes (2.08) and (2.10), a gradual and incomplete spin-crossover was observed 

between the S = 5/2 and S = 112 states. Complex (2.09) displays a rare S = 5/2 to 

S = 3/2 crossover that is also incomplete. An examination of the electrochemical 

properties of (2.08) - (2.10) followed and we did not observe electropolymerization 

through the appended thiophene rings. The initial results encouraged us to continue 

modifying the qsal ligand in an effort to make the electrochemical properties more 

amiable to polymerization. We attached a terthiophene component to (2.01) and prepared 

an iron(III) complex (2.20) bearing the modified ligand. Complex (2.20) has similar 

magnetic properties to the monothienyl iron(III) complexes formed from (2.07), with the 

occurrence of a gradual and incomplete spin-crossover. The electrochemical properties 

of (2.20) were enhanced in comparison to the monothienyl complexes, because the 

terthienyl oxidation occurs at a significantly lower oxidation potential, which is 

favourable for successful electrochemical polymerization. 

Our second objective, discussed in chapters 3 and 4, was to design different kinds of spin 

labile monomers that we could use in subsequent electrochemical polymerization 

reactions. Since iron(II) spin-crossover complexes are considered the best example of 

molecular bistability, it seemed logical to incorporate an iron(II) spin-crossover complex 

into our conjugated polymers. [93] There are many examples of iron (II) complexes 
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exhibiting abrupt spm state transitions and thennal hysteresis, conferring the true 

bistability of these materials. Although new avenues for research with SCO materials are 

underway, no previous examples of iron(II) spin-crossover conductors have been 

reported to date. Our first efforts focused on three new thiophene containing "Toftlund­

like" bispicen ligands (3.04), (3.07) and (3.10). Coordination of (3.04) and (3.10) with 

iron(II) bis(thiocyanate) resulted in the anticipated cis-pseudo-octahedral complexes 

(3.11) and (3.13) respectively. The complexes were characterized and featured 

incomplete spin-crossover in (3.11), or high-spin iron(II) in (3.13). Coordination of 

(3.07) with iron(II) bis(thiocyanate) produced a very unstable complex (3.12) that, in 

solution, undergoes a ligand-centred structural rearrangement to produce a stable 

complex (3.14). A similar rearrangement was also noted to occur for complex (3.12) as 

well, but only trace amounts of this rearranged product (3.15) could be isolated. 

Complex (3.14) features intriguing variable temperature magnetic properties and our 

analysis indicates that the temperature dependent magnetic behaviour of (3.14) is best 

described as a one-dimensional ferromagnetic chain with interchain antiferromagnetic 

interactions and/or ZFS at low temperatures, which reduces the magnetization. No 

indications of polymerization reactions were observed while attempting to 

electropolymerize complex (3.13). The irreversible oxidations observed at low potentials 

in the cyclic voltammogram (3.13), suggest that complexes (3.10) - (3.12) are 

insufficiently stable for electrochemical reactions. 

The instabilities of the "Toftlund-like" complexes (3.10) - (3.13) caused us to explore 

another iron(II) spin-crossover system derived from [Fe(ppi)2(NCS)2] (3.16). Three 
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[Fe(ppi)2(NCS)z] derivatives were prepared containing 2',5'-dipehenyl- (3.23), 2',5'­

dithienyl- (2.24) and 4' -thienyl- (3.25) appendages. Complexes (3.23) and (3.24) were 

structurally characterized and upon comparison it was found that in (3.24) one imine 

(N4)-thiophene (S3) was causing an elongation of the Fel"'N4 coordinate bond. 

Characterization by variable temperature magnetic susceptibility measurements revealed 

that structural modification of complex (3.16) is favourable because the derivatives 

undergo spin-crossover. For complexes (3.23) and (3.25), an abrupt spin-crossover was 

observed between the S = 2 and S = 0 states. In contrast, the magnetic profile of complex 

(3.24) displays a more gradual slope to lower magnetic values. Further magnetic 

characterization of (3.24) and (3.25) resulted from Mossbauer spectroscopy. The 

Mossbauer spectra of complex (3.25) exhibits high- and low-spin fractions consistent 

with an S = 2 to S = 0 transition and is in agreement with the magnetic susceptibility 

measurements. The Mossbauer data for complex (3.24) also displays a temperature 

dependent mixture of spin isomers. With our current data, the transition in (3.24) is most 

consistent with an S = 2 to S = 1 crossover, with some thermal spin isomerisation of the S 

= 0 state also observed. An examination of the electrochemical properties followed and 

we did not observe electropolymerization for complexes (3.23) and (3.25). Complex 

(3.24), with a terthiophene oxidation potential that was significantly lower than other 

oxidation events, was better suited for electrochemical polymerization reactions. 

Cobalt(II) valence tautomers were selected as a third variation of the spm labile 

component to incorporate into our conjugated metallopolymers. We prepared two new 

derivatives of 2,2'-bipyridine ligands bearing thiophene (4.04) and terthiophene (4.06). 
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Reaction of these ligands with [C04( dbsq)8] resulted in monothienyl (4.0S) and terthienyl 

(4.07) appended coordination complexes that, as demonstrated by variable temperature 

magnetic susceptibility and Vis-NIR experiments, exhibited valence tautomerism. 

Complex (4.0S) served as a model to study the effects of thiophene substitution on the 

electronic or magnetic properties of the cobalt-bis(semiquinone) valence tautomers but 

did not undergo electropolymerization. The electrochemical properties of (4.07) were 

better suited for electropolymerization in comparison to (4.0S) because of the quasi­

reversible terthienyl oxidation. 

Our third objective, discussed in Chapter 5, was to prepare bimetallic analogs of the 

iron(III) complexes made in Chapter 2, as a logical extension of our spin-crossover 

systems. Four bimetallic iron(III) spin-crossover complexes (S.07) - (S.10) were made 

from ligand (S.06), each having a different counteranion. The complexes were 

characterized with variable temperature magnetic susceptibility, Mossbauer, and EPR 

spectroscopy and had magnetic properties similar to the iron(III) complexes of Chapter 2. 

Since the observed spin-crossover remained gradual and incomplete, it was found that 

tethering two [Fe(qsal)2t components together through the bithiophene bridge did not 

adversely affect the magnetic properties. 

Our hybrid approach toward synthesizing polymeric spin-crossover conductors is 

described in Chapter 6 and features four main variations including both chemical and 

electrochemical syntheses. The first adaption was an unexpected chemical formation of 

metallopolymeric micro spheres (6.11) from acetonitrile solutions containing the 

197 



molecular spin-crossover precursor (2.10). We characterized this metallopolymer using 

SEM, FT-IR, elemental analysis (including C, H, N, S, Fe analyses), small-angle'X-ray 

scattering (SAXS) techniques, and PXRD. Of greatest significance, the polymeric 

spheres also exhibit spin-crossover observed by variable temperature magnetic 

susceptibility, conferring that (6.11) is the first spin-crossover microscale (or, due to the 

polydisperse particle size, nanoscale) material of its kind. 

The remammg metallopolymers described m Chapter 6 were synthesized 

electrochemically. Polymer (6.12), containing and iron(III) spin-crossover component, 

was electrochemically generated from (2.21) and was characterized by IR and EDX 

analysis, followed by variable temperature magnetic susceptibility measurements that 

confirmed spin-crossover is operative in the polymer film. The variable temperature 

conductivity measurements demonstrated that (6.12) is substantially more conductive 

than the other known spin-crossover conductors. We also observed large differences 

between cooling and warming conductivity measurements of (6.12) coated on ITO, that 

were not observed on the bare ITO glass slide or similar polymers (6.13) and (6.14) upon 

sweepmg. 

Our second spm labile metallopolymer (6.15), containing an iron(II) spin-crossover 

component, was generated from (3.24). Polymer (6.15) was characterized by IR and 

EDX analysis, followed by variable temperature magnetic susceptibility measurements 

that confirmed spin-crossover is operative in (6.15). Variable temperature conductivity 

measurements verified that (6.15) is a semiconductor and, accordingly, the first spin-
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crossover conductor containing an iron(II) spin labile component. The conductive . 

properties of (6.15) are on the same order of magnitude as (6.12) and during sweeping 

measurements, display similar differences between cooling and warming conductivity 

values. A second conductivity experiment, where the temperature was allowed to 

stabilize before collecting the data points, revealed that no sustainable memory effects in 

(6.15) occurred as a result of thermal perturbations. Spectroelectrochemical results 

displayed vibrant changes in the optical properties of the oxidized film, in addition to 

demonstrating the stability of the oxidized state by its reversible nature. The oxidation of 

thin films of (6.15), by chemical methods, revealed a substantial decrease in electrical 

resistance after oxidation. 

Our third example of a spm labile metallopolymer (6.16) features a cobalt­

bis(semiquinone) valence tautomer and was made from complex (4.07). Polymer (6.16) 

was characterized by UV -Vis, NIR and EDX analysis, followed by variable temperature 

magnetic susceptibility measurements that confirmed that valence tautomerism is 

operative in the polymer film. Variable temperature conductivity measurements on thin 

films of (6.16), unlike (6.12) and (6.14), did not display significant differences in cooling 

and warming measurements upon sweeping. A change in the slope of both the variable 

temperature magnetic and conductivity profiles was also observed near 110 K. 

The results obtained from these investigations have demonstrated that our hybrid 

metallopolymer approach toward spin-crossover conductors is advantageous due to the 

conducting properties of conjugated polymers. Considering the quantity of reported 
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magnetically labile complexes and variety of established synthetic methods for ligand 

design and polymerization, a vast expanse of potential research has been discovered. In 

particular, incorporating the spin labile component within the conjugated polymer 

backbone should be an active focus because interactions between the magnetic and 

electron transport properties may be further enhanced. 
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Chapter 8: Experimental 

8.01 General procedures 

All reagents were commercially available and used as received unless otherwise stated. 

Deaerated and anhydrous solvents were obtained from a Puresolve PS MD-4 solvent 

purification system, and all air andlor moisture sensitive reactions were carried out using 

standard Schlenk techniques, unless otherwise stated. Elemental analyses were obtained 

from Guelph Chemical Laboratories, Guelph, ON, Canada, Canadian Microanalytical 

Services, Ltd, Delta, BC, Canada and Atlantic Microlab, Inc. Norcross, GA, USA. 

8.02 Instrumentation 

FT -IR: spectra were recorded on either a Shimadzu IRAffmity-l or ThermoMattson RS-

1 spectrometer as KBr discs or as evaporated films on N aCI plates. 

Interferometery: Thickness of the polymer films were measured with a Michelson 

interferometer using a WILD M8 Stereomicroscope fitted with a LEITZ WETZLAR 

interferometer lens. 

ESR: Electron spinc resonance (ESR) spectra were recorded as powders in quartz tubes 

on a BrukerElexsys E580 pulsed and CW X-band (9 GHz) spectrometer, equipped with a 

liquid helium cryostat. 
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Mass spectrometry: EI and F AB spectra were obtained using a Kratos Concept 1 S High 

Resolution EIB mass spectrometer. ESI spectra were obtained using a Broker HCT Plus 

Proteineer LC-MS. 

Melting point: A Stuart Scientific SMP10 apparatus was used to measure melting points. 

Mossbauer spectroscopy: Analysis was preformed usmg a constant-acceleration 

spectrometer (Wissel GMBH, Germany) in a horizontal transmission mode using a 50 

mCi 57CO source and a Janis SHI-850-1 closed cycle helium refrigerator cryostat for 

variable temperature measurements. 

NMR: lW13C-NMR spectra were recorded on a Bruker Advance 300 MHz spectrometer 

with a 7.05 T Ultrashield magnet 

SAXS: Transmission SAXS measurements were taken with a Cu Ka source, graphite 

monochromator, 3-slit shaping system, beam path evacuation to between 40-75 mT, with 

1.1 m sample-detector separation. The detector used was a one-dimensional gas phase 

position sensitive detector with 101.6 mm active length (1024 channels) and semi­

transparent Al beam stop. The angle calibration was determined by direct 28 variation 

and monitoring of the location of the primary beam and confirmed through use of a silver 

behenate standard. The current setup yields a resolution of 179.5 ± 0.3 channels/degree 

with a typical minimum angle (28) of approximately 0.070°. The minimum angle varied 

202 



slightly as the detector was moved periodically (perpendicular to the beam path) to allow 

monitoring of the direct beam (working with the minimum power of 20 kV x 5 rnA) for 

absorption/transmission measurements. Data acquisition was performed with 

35 kV x 38 rnA with the main beam placed behind the beam stop so that the edge of the 

beam stop defined the minimum accessible scattering angle. An extended line-shaped 

beam, approximately 10 mm height and 1.5 mm width at the sample position, was used to 

improve scattering statistics. Desmearing is done using the direct desmearing algorithm 

and correction for the geometry of the linear position sensitive detector is made on the 

background-corrected and de smeared data. The sample was mounted onto a single layer 

of Kapton tape with as even a distribution as possible over an area of about 

17 mm x 2.2 mm and appeared to be uniformly opaque after sample loading. The Kapton 

tape support was mounted on an Al plate, 2 mm in thickness and having an aperture equal 

to that of the sample area. Transmission of the direct beam through the Kapton tape and 

the ample was measured at 20 kV x 5 rnA for 5 s with 7 repeated exposures for statistical 

sampling. A transmission ratio of about 25 % (tape and sample relative to the tape alone) 

was seen indicating that the sample is a strong absorberlscatterer of X-rays at this energy. 

SAXS measurements on the bare Kapton tape used a 333 min exposure, and a 436 min 

exposure for the tape and sample experiments. The background and sample data were 

normalized according to counting time and measured transmission. The removal of a 

Kapton artifact peak that is seen at about 0.070 A-I in the background data as well as in 

the raw sample data, was used to verify effective removal of background scattering 
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SEMlEDX: data was collected on a Pentafet EDS with a Link Systems detector 

(beryllium windows, 20 kV energy) at the CCEM, McMaster University, ON, CA. or an 

AMRA Y 1600T SEM at Brock University. For EDS experiments the "apparent 

concentration" is calculated directly from the intensity of the characteristic X-ray peak 

before corrections for atomic number, absorbance, and fluorescence (ZAF). 

UV-Vis: spectra were recorded on a Shimadzu 3600 UV-Vis-NIR spectrophotometer or 

ThermoSpectronic/Unicam UV -4 spectrophotometer. Room temperature spectra were 

acquired from solutions in appropriate solvents. Spectra at 77 K were obtained as ethanol 

glasses in 5 mm NMR tubes immersed in a transparent liquid nitrogen dewar. Polymer 

spectra were attained from solid samples through either absorbance or diffuse reflectance 

experiments pending on their opacity and using ITO and BaS04 as substrates 

respectively. Polymer spectra at 77 K were achieved by directly immersing the sample 

into the liquid nitrogen dewar. The molar absorptivity (E) for experiments is reported in 

M-1 cm -I, except when insolubility precluded an accurate determination. 

8.03 Variable temperature magnetic susceptibility measurements 

Variable temperature magnetic susceptibility measurements were recorded on a 

superconducting quantum interference device (SQUID) magnetometer (Quantum Design 

MPMS) with a 5.5 T magnet (temperature range 1.8 to 400 K) in an appropriate external 

field of 0.5 T for bulk quantity samples or 1.5 T for polymer films. The samples were 

carefully weighed into gelatin capsules, which were loaded into plastic straw, and 
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attached to the sample transport rod. Diamagnetic corrections were made using Pascal's 

constants. Diamagnetic contributions from the straw, capsule and substrateS were 

subtracted by running these free of sample. The samples analyzed were analytically pure 

with clear observation of SCO when indicated and the effects of possible magnetic 

impurities are negligible towards the overll scope of this project. 

8.04 Electrochemical experiments 

Electrochemical experiments were performed with a Bioanalytical Systems Inc. Epsilon 

electrochemical workstation. The supporting electrolyte in each experiment was dried in 

an oven at 115°C for 24 h before use. Compounds were dissolved in anhydrous solvent 

(ACN, DCM or DMF) and de aerated by sparging with N2 gas for 20 minutes. Solution 

concentrations were approximately 10-3 M unless otherwise stated. A typical three­

electrode set-up was used including a platinum button (or ITO working electrode when 

indicated), silver wire reference electrode, and a platinum wire auxiliary electrode. Scan 

rates for CV experiments were 100 mV/s except for current versus scan rate experiments. 

F errocene was used in all cases as an internal standard and all potentials quoted are 

versus the ferrocene oxidation potential. Indium tin oxide (ITO) coated borosilicate glass 

cuvette slides (5-15 ohms) were purchased from Delta Technologies, LTD. 
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8.05 Electrical conductivity 

The cryostat consisted of a Lakeshore Cryotronics temperature controller (model DRC 

91C), CTI-Cryogenics 8001 controller, 8003 compressor and a CTI-Cryogenics Cryo­

Torr 8 high vacuum pump. The temperature dependence of the resistivity data was 

measured by a standard four probe dc technique and collected on MPMS MultiVu 

Application software (Revision 1.57 Build 075). The probes were made by adhering gold 

wires to the surface of the film with small amounts of silver paint or epoxy, and then 

soldering the wires to the cryostat sample holder. The film was carefully inspected to 

ensure that it contained no cracks and that the contact between the film, each gold wire 

and the cryostat sample holder remained uninterrupted. The sample holder was fitted into 

the cryostat sample chamber and then placed under vacuum. A current of 1.0-2.0 rnA was 

applied to the circuit using a Keithly 224 programmable current source and then the 

variable temperature resistivity measurements were initiated. For temperature 

stabilization experiments, the same four probe technique was used but the data were 

collected and recorded on a superconducting quantum interference device (SQUID) 

magnetometer (Quantum Design MPMS) with a 5.5 T magnet. 

8.06 X-ray structure determination and powder diffraction 

Crystals of suitable size were mounted on a glass fiber and data were collected on a 

SMART APEX II diffractometer located at the McMaster Analytical X-ray Diffraction 

Facility (MAX) (or a Nonius Kappa-CCD system located at the University of Toronto) 
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with Mo Ka radiation (A = 0.71073 A). Data were processed using APEX v2.2.0 (or 

Kappa-CCD) software and solved by direct methods (SHELXS-97). 

X-ray powder diffraction data was obtained with a Bruker APEX II diffractometer using 

Mo Ka radiation at 295 K and a detector-to-sample distance of 17 cm or a Bruker 

SMART 1K diffractometer, at 295 K, using Cu Ka radiation, and a detector-to-sample 

distance of 5 cm. The powder was mounted in a glass slide and a 5 min still scan was 

recorded with the sample at co = 20°. For comparison, the X-ray powder diffraction 

pattern of single crystals was calculated using the program Mercury 1.4.2. 

8.07 Computation 

All DFT calculations were performed using the Gaussian 03 package using the B3LYP 

hybrid functional and the DZVP basis set for all atoms and tight SCF convergence 

criteria were used for all calculations. [181-183] The converged wave functions were tested 

to verify that they correspond to the ground-state surface. The evaluation of atomic 

charges and spin densities was performed using the natural population analysis (NP Ai184
-

185] and the analysis of molecular orbitals in terms of fragment orbital contributions were 

carried out using the AOMix program[l86]. Time-dependent DFT (TD-DFT) calculations 

at the B3L YP/DZVP level were performed to calculate the absorption spectra as 

described previously.[187] 
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8.08 Experimental for Chapter 2* 

1. Iron(III) qsal complexes 

i) Ligand synthesis 

(2.01)H: qsalH 

Figure 8.01: (2.01)H 

(2.01)H was prepared by stirring 1 equivalent of 8-aminoquinoline with 1 equivalent of 

salicylaldehyde in MeOH and used in situ to produce the ligand (2.01) during 

coordination. IH-NMR (300 MHz, CDCh): 13.95 (br, 1H), 9.02 (dd, lH, J = 4.2, 

1.7 Hz), 8.95 (s, 1H), 8.22 (dd, 1H, J= 8.3,1.7 Hz), 7.76 (dd, lH, J = 8.0, 1.4 Hz), 7.60 

(t, 1H, J= 7.5 Hz), 7.53 (m, 3H), 7.11 (d, 1H, J= 8.2 Hz), 6.99 (td, 1H, J= 7.4,0.9 Hz) 

ppm. MS (EI +): mlz 248 [M+, 4.1 %],203 [(M - C7H30t, 100 %].[188] 
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ii) Complex syntheses 

(2.02): [Fe(2.01)2]CI 

OJ r' - u P 
" j N ........... /,// -

'. ' 3+ II ~------.... -------Fe --- --------tiI 

d- //// ·········cP·N f , , v-
" j 0- _ 

cr 

Figure 8.02: (2.02) 

0.417 g (3.40 mmol) salicylaldehyde was combined with 0.492 g (3.40 mmol) 8-

aminoquinoline and stirred in MeOH (25 mL) for 10 minutes. 0.461 g (1.70 mmol) 

FeCh·6H20 in MeOH (75 mL) was added to the flask. The solution was concentrated 

and cooled and the resulting solid was collected by vacuum filtration. Yield: 0.740 g (74 

%). MS (ESI +, MeOH): mlz 550 [(M - CIt, 100 %]. FT-IR (KBr): 3430 (hr, m), 3950 

(w), 2924 (w), 1601 (s), 1580 (m), 1528 (s), 1500 (m), 1461 (w), 1425 (m), 1399 (m), 

1380 (w), 1318 (m), 1210 (w), 1145 (w), 1088 (w), 1030 (w), 901 (w), 827 (w), 756 (m), 

607 (w), 562 (w), 513 (w) em-I. [189] 

(2.03): [Fe(2.01h]I· H20 

OJ -Or' - u / 
"jN ...... /,/ -

....... ,/+ II 
r ---------····---Fe3 -----------tiI 

d- .,/,/'/ ·········cP·N f , 
d- v-

" j -

Figure 8.03: (2.03) 
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(2.02) (1.00 g, 1.70 mmol) was combined with Kl (1.8 mmol, 0.37 g) in H20 (100 mL) 

and stirred for 24 hours. The resulting solid was collected by vacuum filtration, washed 

with water (50 mL) and pentane (50 mL). Yield: 1.1 g (91 %). MS (ESI +, MeOH): mlz 

550 [(M - I)+, 100 %]. FT-IR (KBr): 3424 (hr, w), 3036 (w),3015 (w), 1601 (s), 1580 

(m), 1528 (s), 1501 (m), 1460 (m), 1425 (m), 1400 (m), 1379 (m), 1298 (m), 1238 (w), 

1205 (m), 1144 (s), 1084 (w), 1030 (w), 962 (w), 903 (w), 829 (m), 760 (s), 664 (w), 608 

(w), 567 (w), 515 (w), 463 (w) em-I. Elemental analysis: calculated (found)% for 

C32H2202N4Fe; C, 55.27 (54.96); H, 3.48 (3.18); N, 8.06 (8.02)Y89] 

Concentrated solutions of (2.02) were prepared by combining 0.122 g (1.00 mmol) 

salicylaldehyde with 0.144 g (1.00 mmol) 8-aminoquinoline in 10 mL MeOH while 

stirring for 10 minutes. 0.135 g (0.500 mmol) FeCh-6H20 in 20 mL MeOH was added 

to the flask, followed by 0.083 g (0.50 mmol) KI in an additional 10 mL MeOH. The 

solution was filtered and the solvent was left to slowly evaporate providing single 

crystals of Fe( qsal)2I. 
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2. Thienyl-substituted qsal complexes 

i) Ligand synthesis 

(2.04): 5-(Ethynyltrimethylsilyl)salicylaldehyde 

Figure 8.04: (2.04) 

5-Bromosalicylaldehyde (4.65 g, 0.0231 mol), PPh3 (0.121 g, 2 mol %), Pd(PPh3hCh 

(0.324 g, 2 mol %), and CuI (0.132 g, 3 mol %) were combined with 150 mL of 

deaerated anhydrous diisopropylamine. Ethynyltrimethylsilane (2.50 g, 0.0254 mol) was 

added last, and the mixture was heated to reflux for 4 h. The reaction was concentrated 

under reduced pressure, combined with pentane (300 mL), and then filtered through a 

Celite pad. The solvent was removed by rotary evaporation to afford a light yellow 

powder. Yeild: 4.95 g (99.8 %). Mp: 121-124 °C. IH-NMR (300 MHz, CDCh): & 11.11 

(s br, IH), 9.87 (s, IH), 7.73 (d, IH, J = 2 Hz), 7.64 (dd, IH, J = 9, 2 Hz), 6.97 (d, 1H, J 

= 9 Hz), 0.27 (s, 9H) ppm. 13C-NMR (300 MHz, CDCh): & 196.0, 161.5, 140.1, 137.3, 

120.3, 117.9, 115.1, 103.2,93.2, -0.1 ppm. MS (EI +): mlz 218 [M+, 29 %], 203 [(M -

CH3t, 100 %]. FT-IR (KBr): 3427 (m), 3206 (w), 2957 (w), 2878 (w), 2150 (m), 1668 

(s), 1475 (s), 1377 (w), 1285 (s), 1245 (m), 1149 (s), 843 (8), 757 (m), 693 (m), 584 (w) 

cm -I. Elemental analysis: calculated (found)% for C12HI402Si; C, 66.03 (66.39); H, 6.47 

(6.78). 
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(2.05): 5-Etbynylsalicylaldebyde 

o 

~OH 
Figure 8.05: (2.05) 

5-Ethynyltrimethylsilylsalicylaldehyde (2.04) (4.95 g, 0.0226 mol) was dissolved in THF 

(20 mL). Potassium hydroxide (1.27 g, 0.0226 mol) was dissolved in MeOH (10 mL) and 

added to the THF solution. The reaction mixture was stirred at room temperature 

overnight, and then the solvent was concentrated under reduced pressure. The residue 

was dissolved in CHCh and washed with 0.05 M HCI (400 mL) and distilled water (400 

mL). The organic phase was dried over MgS04, filtered, and the solvent was removed by 

rotary evaporation to obtain a light yellow powder. Yield: 3.26 g (98 %). Mp: 115-118 

°C. IH_NMR (300 MHz, CDCh): () 11.15 (br s, 1H), 9.89 (s, IH), 7.75 (d, IH, J = 2 Hz), 

7.66 (d, 1H, J = 9, 2 Hz), 7.00 (d, IH, J = 9 Hz), 3.06 (s, 1H) ppm. 13C-NMR (300 MHz, 

CDCh): () 196.0, 161.8, 140.2, 137.5, 120.4, 118.2, 114.0, 81.9, 76.8 ppm. MS (EI +): 

mlz 146 [M+, 100 %]. FT-IR (KBr): 3427 (w), 3273 (s), 3010 (w), 2886 (w), 1663 (s), 

1580 (m), 1477 (s), 1377 (m), 1290 (s), 1201 (s), 1140 (m), 910 (w), 847 (m), 766 (m), 

720 (w), 643 (m), 579 (w), 453 (w) em-I. Elemental analysis: calculated (found)% for 
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(2.06): 5-(3'-Ethynylthienyl)salicylaldehyde 

OH 

Figure 8.06: (2.06) 

(2.05) (1.00 g, 6.84 mmol), 3-bromothiophene (1.12 g, 6.84 mmol), PPh3 (0.090 g, 5 mol 

%), Pd(PPh3)2Ch (0.240 g, 5 mol %), and CuI (0.065 g, 5 mol %) were added to 

anhydrous and deareated THF (50 mL) containing diisopropylamine (0.97 mL). The 

reaction was stirred under reflux for 20 h, cooled to room temperature, and then 

concentrated under reduced pressure. The residue was combined with pentane (300 mL), 

and then filtered through a Celite pad, concentrated to dryness, and the residue was 

dissolved in acetone. The solution was filtered, and concentrated to dryness again. The 

residue was dissolved in CHCh and washed with 0.05 M HCI (200 mL) and distilled 

water (200 mL). The organic phase was dried over MgS04, filtered, and the solvent was 

removed by rotary evaporation to afford a light yellow powder. Yield: 0.84 g (54 %). 

Mp: 95-95 DC. IH-NMR (300 MHz, CDCh): 0 11.13 (hr s, 1H), 9.91 (s, 1H), 7.77 (d, 

1H, J = 2 Hz), 7.69 (dd, 1H, J = 9, 2 Hz), 7.54 (d, 1H, J = 3 Hz), 7.35 (dd, 1H, J = 5, 3 

Hz), 7.22 (d, 1H, J = 5 Hz), 7.02 (d, 1H, J = 9 Hz) ppm. 13C-NMR (300 MHz, CDCh): 0 

196.1, 161.4, 139.7, 138.8, 129.8, 128.7, 125.6, 121.9, 120.5, 118.2, 115.2, 87.0, 84.1 

ppm. MS (EI +): mlz 228 [M+, 100 %]. FT-IR (KEr): 3427 (w), 3095 (w), 2921 (w), 

2854 (w), 1656 (s), 1578 (w), 1480 (m), 1375 (w), 1286 (m), 1199 (w), 1115 (w), 957 

(m), 867 (w), 801 (w), 742 (w), 686 (w), 624 (w), 575 (w), 521 (w), 446 (w) em-I. 

Elemental analysis: calculated (found)% for CI3HgS02; C, 68.41 (68.66); H, 3.54 (3.30). 
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(2.07)H: theqsalH 

Figure 8.07: (2.07)H 

(2.06) (0.293 g, 1.29 mmol) was dissolved in CHCh (0.4 mL) and added to a solution of 

8-aminoquinoline (0.185 g, 1.29 mmol) in ethanol (50 mL). The solution was stirred at 

room temperature for 72 h and then filtered. The solvent was removed by rotary 

evaporation to afford the crimson oil of (2.07)H. Yield: 0.431 g (93 %). IH-NMR (300 

MHz, CDCh): 8 14.45 (br s, IH), 8.97 (dd, IH, J = 4, 2 Hz), 8.93 (s, IH), 8.19 (dd, IH, J 

= 8, 2 Hz), 7.75 (dd, IH, J = 8, 2 Hz), 7.64-7.45 (m, 6H), 7.31 (dd, IH, J = 8, 2 Hz), 

7.20 (d, IH, J = 5 Hz), 7.06 (d, IH, J = 9 Hz) ppm. 13C-NMR: The instability of (2.07) 

prevented the acquisition of a publishable 13C-NMR spectrum. HRMS (EI +) calculated 

for [C22HI40N2St: 354.08361 found 354.08269. FT-IR (KBr): 3427 (m), 3038 (w), 1619 

(s), 1495 (s), 1384 (m), 1284 (m), 1244 (w), 1161 (w), 1084 (w), 1054 (w), 891 (w), 827 

(m), 787 (m), 754 (w), 595 (w), 469 (w) cm -1. Elemental analysis: calculated (found)% 

for C22HI40N2S; C, 74.56 (74.21); H, 3.99 (3.85); N, 7.91 (7.97). UV-Vis (CHCh): Amax 

(s (111 cm-I» = 500 nm (285). 
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ii) Complex syntheses 

Figure 8.08: (2.08) 

(2.07) (0.489 g, 1.38 mmol) was suspended in MeOH (40 mL), combined with Et3N 

(0.140 g, 1.38 mmol), and stirred for 10 min. FeCh·6H20 (0.187 g, 0.690 mmol) was 

then added, and the solution was stirred for 1 h. An excess of NaPF6 (0.406 g, 2.42 mmol) 

was added and the mixture was stirred overnight. Combining the mixture with distilled 

water (250 mL) resulted in a deep green microcrystalline precipitate that was filtered off, 

washed with water, pentane, and then dried. Yield: 0.624 g (89.7 %). MS (ESI +, 

CH3CN): mlz 762 [(M - PF6t, 100 %]. FT-IR (KBr): 3052 (w), 2920 (w), 1606 (s), 

1574 (m), 1504 (m), 1455 (m), 1375 (m), 1307 (m), 1164 (w), 1089 (w), 842 (vs), 780 

(w), 557 (w), 511 (w) em-I. Elemental analysis: calculated (found)% for 
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Figure 8.09: (2.09) 

(2.07) (0.489 g, 1.38 mmol) was suspended in MeOH (40 mL), combined with EhN 

(0.140 g, 1.38 rnmol) , and stirred for 10 min. FeCh·6H20 (0.187 g, 0.690 rnmol) was 

then added, and the solution was stirred for 1 h. An excess ofKSCN (0.235 g, 2.42 rnmol 

was added and the mixture was stirred overnight. Combining the mixture with distilled 

water (250 mL) resulted in a deep green microcrystalline precipitate that were filtered off, 

washed with water, pentane, and then dried. Yield: 0.497 g (87.2 %). MS (ESI +, 

CH3CN): mlz 762 [(M - NCSt, 100 %]. FT-IR (KBr): 3450 (m), 3052 (w), 2921 (w), 

2053 (vs), 1607 (s), 1574 (s), 1503 (m), 1456 (s), 1376 (m), 1308 (m), 1164 (m), 1088 

(w), 1038 (m), 927 (w), 828 (m), 782 (m), 677 (w), 547 (m), 511 (w) em-I. Elemental 

analysis: calculated (found)% for C45H2602N5S3Fe·2.5·H20; C, 62.43 (62.91); H, 3.61 

(3.18); N, 8.08 (7.45). UY-Yis (CH3CN): A.max = 455 nm. 
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(2.10): [Fe(2.07)2]CI04 

Figure 8.10: (2.10) 

(2.07) (0.397 g, 1.12 mmol) was dissolved in DCM (10 mL), and a half-equivalent of 

Fe(Cl04k6H20 (0.20 g, 0.56 mmol) dissolved in CH3CN (15 mL) was added at room 

temperature in air. A dark precipitate formed immediately in the solution, to which an 

additional 25 mL of CH3CN was added. The mixture was stirred for 2 h, and the dark 

maroon precipitate was isolated by vacuum filtration, washed with water, pentane, and 

dried. Yield: 0.34 g (71 %). MS (ESI +, CH3CN): mlz 762 [(M - Cl04t, 100 %]. FT-IR 

(KBr): 3098 (w), 3063 (w), 1605 (s), 1573 (s), 1527 (m), 1503 (s), 1454 (m), 1397 (m), 

1376 (m), 1306 (m), 1241 (w), 1190 (w), 1093 (vs), 829 (m), 782 (m), 760 w), 622 (m), 

548 (w), 512 (w) em-I. Elemental analysis: calculated (found)% for CWI2606N4S2FeCl; 

C, 61.29 (61.25); H, 3.04 (3.01); N, 6.50 (6.31). UV-Vis (CHCh): Amax (8 (M-1 em-I)) = 

450 nm (4100). UV-Vis (BaS04): Amax = 475 nm. 
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(2.11): [Mn(2.07)21 

Figure 8.11: (2.11) 

8-aminoquinoline 20.3 mg, 0.141 mmol was added to a solution of (2.07) (32.2 mg, 0.141 

mmol) in DCM (10 mL) and stirred for 30 minutes. Mn(C2H30 2)2"4H20 (17.3 mg, 

0.0706 mmol) was dissolved in MeOH (10 mL) and added to the solution, which was 

stirred for an additional 30 minutes and then filtered. Slow evaporation of the solvent 

under aerobic conditions provided single crystals suitable for X-ray diffraction. Yield: 

41.0 mg (77 %). MS (ESI +, CH3CN): mlz 762 [(Mt, 30 %]. FT-IR (KBr): 3300 (br, s), 

2962 (w), 2921 (w), 2852 (w), 2195 (w), 1603 (s), 1584 (m), 1499 (s), 1457 (s), 1402 

(m), 1339 (w), 1275 (w), 1237 (w), 1157 (m), 1120 (w), 1089 (w), 1063 (w), 865 (w), 

823 (w), 781 (w), 622 (w), 502 (w) em-I. Elemental analysis: calculated (found)% for 

C44H2602N4S2Mn; C, 69.38 (68.97); H, 3.45 (3.15); N, 7.36 (7.11). UV-Vis (CH3CN): 

A.max (E ~I em-I)) = 485 nm (1.5 x 104). 
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Figure 8.12: (2.12) 

(2.10) (40 mg, 0.046 mmol) was stirred in acetone (20 mL) for 0.5 h. The solution was 

filtered and divided into two equal portions, which were left to stand open to air at room 

temperature. Black plate crystals formed by slow evaporation. MS (ESI +, CH3CN): 762 

[M+, 100 %]. FT-IR (KBr): 3063 (w), 2961 (w), 2922 (w), 2851 (w), 1605 (s), 1573 (s), 

1504 (s), 1454 (m), 1376 (m), 1314 (m), 1260 (m), 1203 (m), 1164 (m), 1129 (m), 1088 

(m), 825 (s), 777 (s), 623 (w), 551 (w), 511 (w) em-I. Elemental analysis: calculated 

(found)% for C47H3204.sN4S2Fe; C, 66.83 (64.76); H, 4.18 (3.99); N, 6.63 (6.04). uv­

Vis (CHCh): A.max (8 (M-I em-I)) = 445 nm (4400). 

3. Terthienyl-substituted qsal complexes 

i) Ligand synthesis 

(2.13): 2,3,5-tribromothiophene 

Figure 8.13: (2.13) 
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3-bromothiophene (6.00 g, 36.8 mmol) was added to a mixture of 48 % HBr(aq) (10.8 mL) 

and EhO (9.6 mL) and cooled to 5 °C. Bromine (11.6 g, 72.5 mmol) was dissolved in 48 

% HBr(aq) and added to the solution of 3-bromothiophene while maintaining the 

temperature of 5 °C. The mixture was then heated for 3 hours at 50 °C, extracted in Et20 

and passed through a small column of alumina using EtzO as the eluent. Yield: 11.6 g 

(98 %). IH-NMR (300 MHz, CDCh): 0 6.90 ppm (s, IH). MS (EI +): mlz 326 

(2.14): 3'-Bromo-2,2':5' ,2"-terthiophene 

I' S 

Figure 8.14: (2.14) 

9.12 g (28.4 mmol) of (2.13) was added to a round bottom flask and then combined with 

anhydrous 1,2-dimethoxyethane (270 mL) and a 1.0 M aqueous solution of K2C03 (200 

mL). The mixture was purged by N2 sparging for 0.5 h, followed by the addition of 2-

thienylboronic acid (8.00 g, 62.5 mmol) and 10 mol % (with respect to 2,3,5-

tribromothiophene) PdClz(PPh3)2 (3.18 g, 2.75 mmol). The reaction mixture was heated 

at 95°C for 72h. The reaction contents were combined with H20 (400 mL) and extracted 

into DCM (400 mL). The organic extracts were combined, dried over MgS04, 

concentrated (not to dryness) by rotary evaporation, and then pentane was added to 

precipitate out reaction by-products, which were removed by gravity filtration. The 
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filtrate was concentrated to dryness and the crude product was purified by column 

chromatography (SiOz) using hexane as eluent to obtain of vibrant yellow oil. Yield: 4.27 

g (46 %). IH-NMR (300 MHz, CDCb): () 7.50 (d, 1H, J = 4 Hz), 7.39 (d, 1H, J = 5 Hz), 

7.28 (d, 1H, J = 5 Hz), 7.21 (d, 1H, J = 4 Hz), 7.14 (m, 2H), 7.07 (m, 1H) ppm. 13C_ 

NMR (300 MHz, CDCb): () 135.8, 135.7, 134.4, 130.9, 128.2, 127.8, 127.5, 126.7, 126.2, 

125.5, 124.5, 108.0 ppm. MS (El +): mlz 328 [M(81 Brt, 100], 326 [MC9Brt, 100]. 

HRMS (El +) calculated for C12H7SBr (325.88933), found 325.89021.[190] 

(2.15): 3' -(3-hydroxy-3-methylbut-1-ynyl)-2,2 ':5' ,2"-terthiophene 

I' S 

~==--+-'OH 

Figure 8.15: (2.15) 

The following procedure is a modified version of Shin and co-workers. (2.14) (2.90 g, 

mmol) was dissolved in diisopropyl amine (50 mL) and sparged with Nz for 0.5 h. 

Pd(PPh3)zClz (187 mg, 0.240 mmol) and CuI (51 mg, 0.26 mmol) were added to the 

solution containing (2.14). After refluxing for 24 h, the reaction mixture was 

concentrated by rotary evaporation and diluted into HzO. The organics were extracted 

into DCM, passed through a Celite pad, dried over MgS04 and concentrated to dryness. 

The residue was dissolved in a minimal amount of hexane and chromatographed on silica 

gel using a 5:1 mixture of hexane-ethyl acetate as the eluent to give a yellow oil. Yield: 

2.1 g (70 %). IH-NMR (300 MHz, CDCb): () 7.46 (dd, 1H, J = 3.6, 0.9 Hz), 7.32 (dd, 
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1H, J = 5.1,0.9 Hz), 7.24 (dd, 1H, J = 5.1,0.9 Hz), 7.16 (dd, 1H, J = 3.6,0.9 Hz), 7.10 

(s, 1H), 7.07 (dd 1H, J = 5.1, 3.6 Hz) 7.03 (dd 1H, J = 5.1, 3.6 Hz), 2.50 (hr, 1H), 1.7 

(s,6H) ppm. MS (EI +): mlz 330 [M+, 14 %], 312 [(M-CH3t, 18 %], 272 [(M-C3H60), 

100 %].[191] 

(2.16): 3'-(Ethynyl)-2,2':5',2"-terthiophene 

I' S 

Figure 8.16: (2.16) 

The following procedure is a modified version of Shin and co-workers. (2.15) (350 mg, 

1.1 mmol) is added to a mixture of MeOH (45 mL) and Toluene (20 mL) and sparged 

with N2 for 1 h. Potassium hydroxide (5.0 g, 89 mmol) is then added and the mixture is 

heated to 100°C. After confirmation of the disappearance of the starting material by IH_ 

NMR (2 d), the solution is extracted with DCM and chromatographed on silica gel using 

hexane as the eluent to give a yellow oil. Yield: 230 mg (80 %). IH-NMR (300 MHz, 

CDCh): 07.58 (dd, IH, J = 3.7, 1.0 Hz), 7.34 (dd, 1H, J = 5.1, 1.0 Hz), 7.28 (m,lH), 

7.21 (dd, 1H, J = 3.7, 1.1),7.17 (s, 1H), 7.10 (dd, 1H, J = 5.0,3.7),7.07 (dd, 1H, J = 

5.1 3.8) ppm. MS (EI +): mlz 272 [~, 100 %].[191] 
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(2.17): 5-Iodosalicylaldebyde 

fX
? 

I" 
I "OH 

Figure 8.17: (2.17) 

The following procedure is a modified version of Pauls and co-workers. A 1.0 M 

solution of iodine monochloride in dry THF (100 mL) was added to a flask containing a 

mixture of salicylaldehyde (12.2 g, 0.100 mol) and Iz (25.4 g, 0.100 mol). The reaction 

was stirred at room temperature for 48 h, and then added to a saturated aqueous solution 

of Na2S03 (1 L). The solution was stirred at room temperature as the purple color 

gradually disappeared, and the THF was completely evaporated resulting in a precipitate 

that was filtered, washed with water, and dried providing a white solid. Yield: 23 g (94 

%). IH-NMR (300 MHz, CDCh): () 10.97 (br s, IH), 9.85 (s, IH), 7.87 (d, IH, J = 2 

Hz), 7.80 (dd, IH, J = 9, 2 Hz), 6.83 (d, IH, J = 9 Hz) ppm. MS (EI +): mlz 248 [M+, 

100 %]y92] 

(2.18): 3' -(5-etbynylsalicylaldebyde )-2,2' :5',2" -tertbiopbene 

Figure 8.18: (2.18) 
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(2.16) (0.915 g, 3.36 mmol) was dissolved in anhydrous THF (100 mL) and purged by N2 

sparging for 0.5 h. In the following order, triethylamine (0.70 mL, 4.9 mmol), 

Pd(PPh3)2Clz (77 mg, 0.10 mmol), CuI (34 mg, 0.17 mmol), PPh3 (29 mg, 0.11 mmol) 

and (2.17) (1.19 g, 4.80 mmol) were added to the THF solution containing (2.16). After 

refluxing for 5 d, the reaction mixture was concentrated by rotary evaporation and diluted 

into H20. The organics were extracted into DCM, passed through a Celite pad, dried over 

MgS04 and concentrated to dryness. The residue was dissolved in a minimal amount of 

warm CHCh and the product precipitated in pentane (50 mL). The product was washed 

with small amounts of pentane and cold methanol to afford a yellow solid. Yield: 0.56 g 

(42 %). Mp: 146-147 DC. IH-NMR (300 MHz, CDCh): () 11.19 (s, IH), 9.94 (s, 1H), 

7.81 (d, 1H, J = 1 Hz), 7.75 (dd, 1H, J = 5, 1 Hz), 7.50 (d, 1H, J = 1 Hz), 7.37 (d, 1H, J 

= 2 Hz), 7.29 (d, 1H, J = 3 Hz), 7.23 (d, 1H, J = 2 Hz), 7.20 (s, 1H), 7.12-7.08 (m, 3H) 

ppm. 13C-NMR (300 MHz, CDCh): () 196.2, 161.6, 139.6, 138.5, 136.8, 136.1, 135.7, 

134.3, 128.0, 127.3, 126.8, 125.9, 125.6, 125.2, 124.3, 120.6, 118.3, 117.4, 115.1, 92.4, 

84.7 ppm. MS (EI +): mlz 392 [~, 100 %]. FT-IR (KBr): 3449 (w), 2922 (w), 2853 

(w), 1655 (s), 1584 (w), 1457 (w), 1384 (w), 1282 (w), 1176 (m), 1140 (m), 831 (w), 685 

cm-1 (s). Elemental analysis: calculated (found)% for C21H1202S3; C, 64.26 (64.37); H, 

3.08 (2.88). 
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(2.19)H: theqsalH 

Figure 8.19: (2.19)H 

(2.18) (0.21 g, 0.54 mmol) was dissolved in CHCh (25 mL) and purged with N2 for 0.5 h. 

8-aminoquinoline (0.077 g, 0.54 mmol) was added to the solution of (2.18), and the deep 

red mixture was stirred at room temperature under N2 for 24 h. The solution was 

concentrated to dryness by rotary evaporation to afford (2.19)H, pure and in near 

quantitative yield. (2.19)H is unstable and was not generally isolated, but used directly in 

coordination reactions (we isolated pure (2.19)H for characterization). IH-NMR (300 

MHz, CDCh): () 14.45 (s, 1H), 9.00 (m, 2H), 8.22 (d, IH, J = 8 Hz), 7.79 - 7.48 (m, 7 

H), 7.36 - 6.93 (m, 7H) ppm. 13C-NMR: The instability of (2.19)H prevented the 

acquisition of a publishable 13C-NMR spectrum. MS (MALDI-TOF -): mlz 517 [(M-

Hr, 80 %], 491 [(M - COr, 78 %] 391 [(M - C9H6N)-, 100 %]. FT-IR (KBr): 3447 (hr, 

s), 2953 (m), 2922 (s), 2853 (m), 1654 (m), 1618 (s), 1559 (w), 1458 (w), 1261 (w), 1083 

(w), 872 (w), 789 (w), 693 (w) em-I. Elemental analysis: calculated (found)% for 

C30HISN20S3; C, 69.47 (69.14); H, 3.50 (3.16); N, 5.40 (5.11). 
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ii) Complex syntheses 

(2.20): [Fe(2.19)2]PF6 

Figure 8.20: (2.20) 

(2.18) (0.21 g, 0.54 mmol) was dissolved in CHCh (25 mL) and purged with Nz for 0.5 h. 

8-aminoquinoline (0.077 g, 0.54 mmol) was added, and the deep red mixture was stirred 

at room temperature under Nz for 24 h (generating ligand (2.19) in situ). FeCh-6H20 

(0.073 g, 0.27 mmol) in MeOH (10 mL) was added to the solution of (2.18), resulting in a 

solution color change from red to brown. The brown solution was stirred for 4 h, and then 

concentrated by rotary evaporation to remove the CHCh completely. MeOH (50 mL) and 

THF (50 mL) were added to the concentrated solution, followed by the addition of solid 

NaPF6 (0.318g, 1.89 mmol). The mixture was stirred for 8 h, subsequently added to an 

aqueous solution (500 mL) of NaPF6 (0.200 g, 1.19 mmol), and stirred overnight. The 

brown-green precipitate was collected by vacuum filtration, washed with water, and then 

pentane. Yield: 250 mg (76 %). MS (ESI +, CH3CN): mlz 1090 [(M - PF6t, 100 %]. 

FT-IR (KBr): 3420 (br, m), 2920 (w), 1603 (s), 1575 (m), 1524 (m), 1503 (m), 1451 (w), 

1378 (m), 1319 (m), 1214 (w), 1191 (w), 1165 (w), 1088 (w), 831 (s), 696 (m), 542 (w), 
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512 cm-1 (w) cm-I. Elemental analysis: calculated (found)% for C6oH34N402S6FePF6; C, 

58.30 (58.13); H, 2.77 (2.93); N, 4.53 (4.84). 

(2.21): [Mn(2.19)2J 

Figure 8.21: (2.21) 

8-aminoquinoline (5.5 mg, 0.038 mmol) was added to a solution of (2.18) (15 mg, 0.038 

mmol) in DCM (5 mL) deaerated with N2 gas and stirred for 30 minutes. A solution of 

Mn(C2H20 2)z-4H20 (4.7 mg, 0.019 mmol) in MeOH (10 mL) was added to the DCM 

solution, which was stirred for an additional 30 minutes and then dried by vacuum 

affording an orange solid. Yield: 20 mg (98 %). MS (FAB +): 1090 [(M + H)+' 3 %], 

572 [(M - C30HISN20S3t, 65 %]. FT -IR (KBr): 3460 (w), 2959 (m), 2924 (m), 2853 

(m), 2195 (w), 1607 (m), 1506 (m), 1464 (m), 1402 (w), 1375 (m), 1335 (w), 1261 (s), 

1092 (s), 1022 (s), 798 (s), 748 (w), 686 cm-1 (w) cm-I. 
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8.09 Experimental for Chapter 3 t 

1. Bispicen derivatives 

i) Thiophene derivative 

(3.02): 2,5-dibromo-3,4-dinitrothiophene 

Figure 8.22: (3.02) 

Concentrated H2S04 (40 mL) was added to a 3-neck round bottom flask and then purged 

with N2 for 30 minutes while being cooled in an ice bath. 2,5-dibromothiophene (10.7 g, 

44.4 mmol) was added slowly, maintaining a temperature below 20°C. Concentrated 

RN03 (7 mL) was then added to the round bottom flask dropwise to keep the temperature 

under 30°C. Following the addition, the mixture was stirred for an additional 3 hand 

then poured over ice (160 g). After the ice had melted, a solid residue was recovered by 

vacuum filtration, washed with water producing and recrystallized from MeOH to 

provide a light yellow powder. Yield: 7.64 g (52 %). 13C-NMR (600 MHz, CDCb): b 

140.3, 113.4 ppm. MS (EI +): mlz 332 [M+, 100 %]Y20] 
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(3.03): 3,4-diaminothiophene·2HCI 

Figure 8.23: (3.03) 

Concentrated HCl (25 mL) was added to a 3-neck round bottom flask, which was then 

degassed by sparging with N2 for 30 minutes. (3.02) (1.28 g, 3.80 mmol) was added and 

the reaction mixture was then cooled in an ice bath. Tin (3.19 g, 26.9 mmol) was added 

slowly while maintaining a temperature of 25-30 °C. The flask was then stirred until all 

the tin metal was consumed and then cooled to 3 °c overnight. The resulting precipitate 

was recovered by vacuum filtration and washed with diethyl ether and affording a white 

solid. Yield: 0.640 g (83 %). IH-NMR (300 MHz, CDCh): () 6.16 (s, 2H), 3.36 (hr, 4H) 

ppm. MS (EI +): mlz 114 [(M-2HClt, 100 %]Y20] 

(3.04): N,N'-bis(2-pyridylmethyl)-3,4-diaminothiophene 

C{ 9 
NH HN o 

S 

Figure 8.24: (3.04) 

(3.03) (0.20 g, 1.1 mmol) was added to an oven-dried 3-neck round bottom flask fitted 

with a reflux condenser and flushed with N2 for 5 minutes. In a separate flask, sodium 

hydroxide (0.086 g, 2.2 mmol) was dissolved in methanol (20 mL) and sparged with N2 

for 20 minutes and then transferred by syringe into the flask containing (3.03). The 
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mixture was stirred for 30 minutes, followed by the addition of2-pyridinecarboxaldehyde 

(0.24 g, 2.3 mmol) and then the mixture was heated to reflux for 1.5 h (in the absence of 

light). The solution was removed from the heating mantle while NaBH4 (0.21 g, 5.7 

mmol) was added in small portions and then the reflux was continued for an additional 

for 14 hours. The solvent was removed by rotary evaporation and the residue was 

extracted into DCM and dried with MgS04. The solution was passed through a Celite 

pad and then concentrated by rotary evaporation combined with pentat;le (50 mL), filtered 

and dried. The residue was chromatographed with neutral alumina, using 2: 1 hexane-

EtOAc followed by 1:2 hexane-EtOAc as the eluents, providing bright yellow oil. Yield: 

0.053g (17 %). IH_NMR (300 MHz, CDCh): 08.60 (d, 2H, J = 45Hz), 7.67 (td, 2H, J = 

7.5, 1.8Hz), 7.39 (d, 2H, J = 7.8Hz), 7.21 (dd, 2H, J = 5.2, 1.8Hz), 6.01 (s, 2H), 4.45 (m, 

6H) ppm. 13C-NMR (600 MHz, CDCh): 0 158.5, 149.3, 139.5, 136.7, 122.2, 121.8,97.6, 

51.4 ppm. MS (FAB +): mlz 297 [(M\ 100 %)], 93 [(M-ClOHlON3St, 62 %]. HRMS (EI 

+) calculated for [CI6H16N4St: 296.10951, found 296.10957. FT-IR (KBr): 3447 (hr, s), 

3105 (m), 2960 (w), 2923 (m), 2851 (w), 1594 (s), 15.7 (m), 1436 (m), 1261 (w), 1097 

(br, w), 801 (w), 757 (m) em-I. 

ii) Diphenylthiophene derivative 

(3.0S): 3,4-dinitro-2,S-diphenylthiophene 

Figure 8.2S: (3.0S) 
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Phenylboronic acid (0.20 g, 1.7 mmol) was added to a Schlenk flask and flushed with N2 

gas for 5 minutes. 1,2-dimethoxyethane (5 mL) and water (1.8 mL) were added to the 

reaction flask, which was then sparging with N2 for 30 minutes. K2C03 (0.50 g, 3.6 

mmol), (3.02) (0.10 g, 0.60 mmol), Pd(PPh3)4 (0.040 g, 0.040 mmol) were added to the 

flask, and the mixture was heated to 65°C under nitrogen for 13 hours. The reaction 

mixture was washed with water and extracted with DCM, dried with MgS04, and 

concentrated to dryness. The residue was chromatographed over silica gel using 1:3 

DCM: hexane as the eluent giving a yellow powder. Yield: 0.16 g (80 %). Mp: 145-147 

°C. IH-NMR (300 MHz, CDCb): b 7.54 (m, lOH) ppm. 13C-NMR (600 MHz, CDCh): 8 

140.8, 136.8, 130.9, 129.3, 129.1, 128.1 ppm. MS (EI +): mlz 326 [M+, lOO %]. HRMS 

(EI +) calculated for [CI6HlON204St: 326.03613, found 326.03557. FT-IR (KBr): 3448 

(hr, m), 3059 (w), 1963 (w), 1542 (s), 1524 (s), 1448 (m), 1395 (s), 1327 (s), 1261 (m), 

lO79 (m), 902 (m), 748 (s), 691 (s) em-I. Elemental analysis: calculated (found)% for 

C16HlON204S; C, 58.94 (57.43); H, 3.09 (3.71); N, 8.58 (7.81). 

(3.06): 3,4-diamino-2,5-diphenylthiophene·2HCI 

Figure 8.26: (3.06) 

(3.05) (0.33 g, 1.0 mmol) in absolute ethanol (30 mL) and concentrated HCl (60 mL) was 

added tin metal (3.63 g, 30.6 mmols) in small portions and stirred at room temperature 
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for 15 h. The resulting precipitate was collected by vacuum filtration and washed with 

H20 to afford a pale yellow solid. Yield: 0.24 g (71 %). Mp: 205-207 °C. IH-NMR 

(300 MHz, CDCh): 07.56 (m, 4H), 7.45 (m, 4H), 7.30 (m, 2H), 3.67 (br, 4H) ppm. 13C_ 

NMR (600 MHz, CDCh): 0 134.4, 133.2, 129.1, 127.6, 126.7, 116.5 ppm. MS (FAB+): 

mlz 266 [(M-2HClt, 100 %]. HRMS (EI +) calculated for [CI6HI4N2St: 266.08777, 

found 266.08880. FT-IR (KBr): 3330 (m, d), 3047 (w), 2920 (w), 2848 (w), 1616 (m), 

1595 (m), 1523 (m), 1489 (m), 1429 (s), 1313 (w), 970 (m), 754 (s), 703 (m), 621 (w), 

573 (w) em-I. Elemental analysis: calculated (found)% for CI~I6N2SClz; C, 72.22 

(70.01); H, 5.30 (5.35); N, 10.52 (9.93). 

(3.07): N,N'-bis(2-pyridylmethyl)-3,4-diamino-2,5-diphenylthiophene 

Figure 8.27: (3.07) 

(3.06) (0.12 g, 0.35 mmol) was added to an oven-dried 3-neck round bottom flask fitted 

with a reflux condenser that was flushed with N2 for 5 minutes. In a separate flask, 

potassium hydroxide (0.040 g, 0.69 mmol) was dissolved in methanol (20 mL), sparged 

with N2 for 20 minutes and then transferred via syringe into the flask containing (3.03). 

The mixture was stirred for 30 minutes followed by the addition of 2-

pyridinecarboxaldehyde (0.22 g, 2.1 mmol) and then refluxed for 1 h and protected (in 

the absence of light). The reaction was then cooled down to RT followed by adding 20 

232 



eq. of NaBH4 (0.26 g, 6.9 mmol), and then refluxed at 75°C for 1 h under an atmosphere 

of nitrogen. The reaction mixture was diluted into Na2C03 solution (PH = 9.5), extracted 

into diethyl ether, dried over MgS04 and concentration by rotary evaporation. The 

residue was chromatographed over neutral alumina using DCM as the eluent and 

concentrated to dryness affording 0.12 g of (3.07), which was used directly in 

coordination reaction due to instability. IH-NMR (300 MHz, CDCh): 8 8.52 (m, 2H), 

7.59 (m, 16H), 4.31 (m, 6H) ppm. 

iii) Terthiophene derivative 

(3.08): 3' ,4'-dinitro-2,2':S' ,2"-terthiophene 

Figure 8.28: (3.08) 

Thiophene-2-boronic acid (3.29 g, 25.7 mmol) was added to a Schlenk flask and flushed 

with N2 gas for 5 minutes. 1,2-dimethoxyethane (5 mL) and water (1.8 mL) were added 

to the reaction flask and then sparged with N2 for 30 minutes. Potassium carbonate (0.25 

g, 1.8 mmol), (3.02) (3.1 g, 9.3 mmol) and Pd(PPh3)4 (0.65 g, 0.56 mmol) were added to 

the flask and the mixture was refluxed at 100°C for 8 h. The reaction mixture was 

washed with water and extracted into DCM, dried with MgS04 and concentrated to 

dryness. The residue was chromatographed over silica gel using 1:3 DCM: hexane as 

eluent giving a yellow solid. Yield: 0.050 g(48 %). IH-NMR (300 MHz, CDCh): 87.62 
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(dd, 2H, J = 5.1,0.9 Hz), 7.57 (dd, 2H, J = 3.6,0.9 Hz), 7.20 (dd, 2H, J = 5.1,3.6 Hz) 

ppm. MS (FAB +): mlz 338 [~, 100 %].[193] 

(3.09): 3' ,4'-diamino-2,2':5' ,2"-terthiophene·2HCI 

Figure 8.29: (3.29) 

(3.08) (0.27 g, 0.80 mmol) in absolute ethanol (30 mL) and concentrated HCI (60 mL) 

was combined with 30 eq. of tin metal (2.84 g, 24.0 mmol) in small portions. The 

resulting mixture was stirred at room temperature for 15 h. The resulting precipitate was 

collected by vacuum filtration and washed with H20 affording a yellow solid. Yield: 

0.28 g (88 %). IH_NMR (300 MHz, CDCh) = () 7.30 (dd, 2H, J = 4.8, 1.5 Hz), 7.11 (m, 

4H), 3.76 (br, 4H), ppm. MS (FAB +): mlz 278 [(M-2HClt, 100 %].[193] 

(3.10): N,N' -his(2-pyridylmethyl)-3,4-diamino-2,2' :5' ,2" -terthiophene 

C( 9 
NH HN 

.s. H ,s ....... 
(r's?-\jJ 

Figure 8.30: (3.10) 

(3.09) (0.10 g, 0.28 mmol) was added to an oven-dried 3-neck round bottom flask fitted 

with a reflux condenser. The apparatus was then flushed with N2 for 5 minutes. 2 eq. of 
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KOH (0.032 g, 0.57 mmol) was dissolved in methanol (20 mL) in a round bottom flask 

and degassed by sparging with N2 for 20 minutes. Under a nitrogen atmosphere, the 

solution was transferred by syringe into a 3-neck round bottom flask. The mixture was 

stirred for 30 minutes followed by the addition of 6 eq. of 2-pyridinecarboxaldehyde 

(0.18 g, 0.16 mL, 1.7 mmol). The reaction mixture was refluxed for 1 h and protected 

from light by covering with foil. The reaction was then cooled to RT, followed by adding 

20 eq. of NaBH4 (0.22 g, 5.7 mmol), and then refluxed at 75°C for 1 h under an 

atmosphere of nitrogen. The reaction mixture was diluted into NaHC03 solution (PH = 

9.5) and extracted into diethyl ether. The organic extracts were combined and dried over 

MgS04. The reaction mixture was diluted into water and extracted into diethyl ether. 

Organic extracts were combined, washed with saturated N aCl solution, and dried over 

MgS04. Concentration by rotary evaporation provided 0.10 g (76 %) of pure brown­

yellow oil, which required no further purification. IH-NMR (300 MHz, CDCh) () 8.51 

(d, 2H, J = 4.8Hz), 7.64 (m, 2H), 7.26 (m, 4H), 7.17 (m, 4H), 7.06 (m, 2H), 4.92 (hr, 

2H), 4.38 (s, 4H) ppm. 13C-NMR (600 MHz, CDCh) () 159.0, 149.1, 138.7, 136.5, 135.7, 

127.2, 125.2, 124.9, 122.1, 116.1,52.6 ppm. MS (FAB +): mlz 461 [M+, 52 %], 369 [(M­

C6H6Nt, 100 %]. FT-IR (KBr): 3428 (s), 2922 (s), 2853 (m), 1593 (m), 1466 (hr, m), 

1431 (m), 1402 (m), 1219 (br, m), 1148 (m), 1045 (br, m), 691 (s) cm-I. Elemental 

analysis: calculated (found)% C24H20N4S3; C: 62.61 (62.61), H: 4.38 (5.57) N: 12.16 

(8.50). 
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iv) Complex syntheses 

(3.11): [Fe(3.04)(NCS)2] 

Figure 8.31: (3.11) 

(3.04) (0.025 g, 0.080 mmol) was added to a flask flushed with N2 gas, followed by the 

addition of methanol (8 mL). The solution was sparged with N2 gas for 10 minutes and 

then iron(II) tetrafluoroborate (0.028 g, 0.080 mmol) was added. The mixture was stirred 

for 0.5 h, followed by the addition of KSCN (0.033 g, 0.34 mmol) dissolved in H20 

(lOmL) and sparged with N2 gas for 10 minutes. The flask containing (3.04) was stirred 

overnight, gradually fonning a green precipitate which was isolated by vacuum filtration, 

washed with water, methanol and then dried. Yield: 0.032 g (80 %). MS (FAB +): mlz 

468 [M+, 17 %], 410 [(M-SCNt, 100 %], 351 [(M-2SCNt, 99 %]. FT-IR (KBr): 3448 

(hr, s), 3159 (br, m), 2920 (m), 2060 (br, s), 1603 (m), 1425 (m), 787 (m), 762 (m) em-I. 

Elemental analysis: calculated (found)% for CIsHI6N6S3Fe; C, 46.16 (46.85); H, 3.44 

(3.04); N, 17.93 (16.62). UV-Vis (MeOH): Amax = 640 run. 
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(3.12): [Fe(3.07)(NCS)z1 

Figure 8.32: (3.12) 

(3.07) (0.10 g, 0.22 mmol) was added to a flask flushed with N2 gas, followed by the 

addition of methanol (lO mL). The solution was sparged with N2 gas for lO minutes and 

then iron(II) tetrafluoroborate (0.080 g, 0.22 mmol) was added. The mixture was stirred 

for 0.5 h, followed by the addition of KSCN (0.090 g, 0.89 mmol) dissolved in H20 

(lOmL) and sparged with N2 gas for 10 minutes. The flask containing (3.04) was stirred 

overnight, gradually forming a green precipitate which was isolated by vacuum filtration, 

washed with water, methanol and then dried. Yield: 0.069 g (50 %). MS (FAB +): mlz 

620 [M+, 3 %], 562 [(M-SCNt, 18 %], 503 [(M-2SCNt, 17 %]. FT-IR (KBr): 3424 (hr, 

m), 3194 (hr, w), 2921 (m), 2851 (w), 2071 (s), 1602 (w), 1508 (w), 1261 (w), 1102 (m), 

1018 (m), 802 (m), 757 (m), 698 (m) em-I. Elemental analysis: calculated (found)% for 

C30H24N6S3Fe; C, 58.07 (59.21); H, 3.90 (4.97); N, 13.54 (11.00). UV-Vis (MeOH): Amax 

= 650nm. 
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(3.13): [Fe(3.10)(NCS)21 

Figure 8.33: (3.13) 

(3.10) (0.12 g, 0.25 mmol) was added to a flask flushed with N2 gas, followed by the 

addition of methanol (10 mL). The solution was sparged with N2 gas for 10 minutes and 

then iron(II) tetrafluoroborate (0.085 g, 0.25 mmol) was added. The mixture was stirred 

for 0.5 h, followed by the addition of KSCN (0.10 g, 1.0 mmol) dissolved in H20 (10mL) 

and sparged with N2 gas for 10 minutes. The flask containing (3.04) was stirred 

overnight, gradually forming a green precipitate which was isolated by vacuum filtration, 

washed with water, methanol and then dried. Yield: 0.090 g (57 %). MS (FAB +): mlz 

632 [M+, 13 %], 578 [(M-SCNt, 5 %]. FT-IR (KBr): 3425 (br, m), 3222 (w), 3107 (w), 

3075 (w), 2921 (w), 2851 (w), 2081 (s), 2063 (s), 1602 (m), 1572 (w), 1484 (w), 1440 

(w), 1411 (m), 1232 (w), 1101 (w), 899 (w), 760 (w), 697 (m) em-I. Elemental analysis: 

calculated (found)% for C26H2oN6SsFe; C, 49.37 (49.30); H, 3.19 (2.94); N, 13.29 

(12.86). 
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Figure 8.34: (3.14) 

(3.12) (20 mg) was recrystallized in 1: 1 MeOHlDCM (4 mL) to produce red-black 

crystals over a period of2 weeks. FT-IR (KBr): 2961 (m), 2922 (m), 2855 (m), 2060 (s), 

1628 (m), 1597 (w), 1470 (w), 1437 (w), 1261 (m), 1096 (s), 1024 (s), 802 (s), 754 (m), 

694 (m) em-I. MS (FAB +): mlz 1002 [(M-SCNt, 8 %],445 [(C28H2IN4S/, 100 %], 353 

[(C22HI5N3S/, 52 %]. Elemental analysis: calculated (found)% for C58.5~INlOS4FeCI; 

C, 63.86 (63.90); H, 3.78 (N/A, small sample size prevented account measure of H %); 

N, 12.63 (12.13). 

Figure 8.35: (3.15) 
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(3.14) (20 mg) of was added to 1:1 MeOHlDCM (4mL) to produce a red-black powder 

over a period of 2 weeks. MS (FAB +): mlz 1086 [(M-SCNt, 1.6 %], 457 [(M-

2. Substituted "ppi" complexes 

i) [Fe(ppi)2(NCS)2] synthesis 

(3.16): [Fe(ppi)2(NCS)2] 

Figure 8.36: (3.16) 

The ligand 2-pyridinalphenylimine (Ppi) was prepared by stirring analine (0.093 g, 1.0 

mmol) with 2-pyridinecarboxaldehyde (0.107 g, 1.00 mmol) in MeOH (5 mL) for 1 hour 

while sparging with N2. In a separate flask, a solution of KSCN (0.131 g, 1.35 mmol) in 

H20 (10 mL) was sparged with N2 gas for 0.5 hours, combined with Fe(II)S04·7H20 

(0.139 g, 1.00 mmol), stirred for 0.5 hours and added to the flask containg the ppi ligand. 

The resulting blue precipitate was collected by vacuum filtration and washed with water, 

pentane and then dried. Yield: 230 mg (87 %). MS (FAB +): mlz [(Mt, 11 %], [(M­

SCNt, 78 %], [(M - 2SCNt, 56 %], [(M - C13HION3St, 100 %]. FT-IR (NaCI): 3059 
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(w), 2962 (w), 2058 (s), 1591 (br, m), 1487 (m), 1441 (w), 1362 (w), 1302 (w), 1261 (w), 

1198 (w), 1155 (w), 1014 (w), 922 (w), 743 (s), 549 (w) cm-1.£122] 

i) Diphenyl-substitued ppi ligand synthesis 

(3.17): 2,5-diphenylaniline 

Figure 8.37: (3.17) 

2,5-dibromoaniline (0.74 g 3.4 mmol) was added to a round bottom flask and then 

combined with anhydrous 1,2-dimethoxyethane (100 mL) and a l.0 M aqueous solution 

of K2C03 (30 mL). The mixture was purged by N2 sparging for 0.5 h, followed by the 

addition of 2-thienylboronic acid (0.83 g, 6.8 mmol) and Pd(PPh3)4 (0.39 g, 0.34 mmol). 

The reaction mixture was heated at 95°C for 72h. The reaction contents were combined 

with H20 (200 mL) containing 20 g NaCI and extracted into DCM (200 mL). The organic 

extracts were combined, dried over MgS04, concentrated (not to dryness) by rotary 

evaporation, dissolved in hexanes and then filtered through Celite. The filtrate was 

concentrated to dryness to obtain a white solid. Yield: 480 mg (65 %). Mp: 186-187 °C. 

IH_NMR (300 MHz, CDCh): 07.69 (m, 10H), 7.29 (d, 1H, J = 5.9 Hz), 7.15 (d, 1H, J = 

6.3 Hz), 7.05 (s,1H) ppm. 13C-NMR (600 MHz, CDCb): 0 143.9, 14l.6, 14l.1, 139.3, 

130.9, 129.1, 128.9, 128.7, 127.30, 127.28, 127.1, 126.8, 117.7, 114.3 ppm. MS (EI +): 
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mlz 245 [M+, 100 %]. HRMS (EI +) calculated for [CIsHIsNt: 245.12045, found 

245.12008. FT-IR (NaCl): 3448 (m), 3374 (m), 3018 (w), 1611 (s), 1555 (m), 1477 (m), 

1408 (m), 1311 (w), 1259 (w), 1219 (w), 1148 (w), 1069 (w), 1011 (w), 860 (w), 812 

(w), 756 (s), 698 (s) em-I. 

(3.18): N'-(-2,2':5',2"-terphenyl)-2-pyridinalimine 

Figure 8.38: (3.18) 

(3.17) (170 mg, 0.69 mmol) was dissolved in 0.5 mL of DCM and added dropwise to a 

solution of pentane containing 2-pyridinecarboxaldehyde (100 mg, 0.93 mmol). The 

solution was concentrated to 10 mL and cooled. The resulting white precipitate was 

washed with cool pentane and dried under vacuum. Yield: 190 mg (83 %). Mp: 119-121 

°C. IH_NMR (300 MHz, CDCh): b 8.74 (s, IH), 8.73 (d, IH, J =4.9 Hz), 8.09 (d, lH, J 

= 7.9 Hz), 7.80 (m, 3H), 7.64 (m, 12H) ppm. 13C-NMR (600 MHz, CDCh): b 161.1, 

154.9, 149.6, 149.1, 141.5, 140.3, 139.1, 136.7, 134.7, 130.9, 130.3, 128.9, 127.8, 127.7, 

127.1, 127.0, 125.4, 125.1, 121.9, 117.4 ppm. MS (EI +): mlz 334 [~, 62 %], 256 [(M-

Cs~Nt, 100 %)]. HRMS (EI +) calculated for [C24HIsN2t: 334.14700, found 

334.14756. FT-IR (NaCI): 3055m, 2920m, 2857w, 1629m, 1589m, 1472s, 1438, 1386, 

1263, 1182, 1080 (w), 1034 (w), 991 (w), 901 (m), 837 (w), 756 (s), 698 (8) em-I. 
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Elemental analysis: calculated (found)% for C2JIISN2; C, 86.20 (85.75); H, 5.43 (5.07); 

N, 8.38 (8.48). 

ii) Dithienyl-substitued ppi ligand synthesis 

(3.19): 2,S-dithienylaniline 

Figure 8.39: (3.19) 

2,5-dibromoaniline (0.453 g 2.16 mmol) was added to a round bottom flask and then 

combined with anhydrous 1,2-dimethoxyethane (34 mL) and a 1.0 M aqueous solution of 

K2C03 (17 mL). The mixture was purged by N2 sparging for 0.5 h, followed by the 

addition of 2-thienylboronic acid (0.829 g, 6.48 mmol) and Pd(PPh3)4 (0.25 g, 0.22 

mmol). The reaction mixture was heated at 95°C for 72h. The reaction contents were 

combined with H20 (200 mL) containing 20 g NaCI and extracted into DCM (200 mL). 

The organic extracts were combined, dried over MgS04' concentrated (not to dryness) by 

rotary evaporation, dissolved in hexanes and then filtered through Celite. The filtrate was 

concentrated to dryness to obtain an orange oil. Yield: 310 mg (55 %). IH-NMR (300 

MHz, CDCh): 0 7.42 (m, 3H), 7.34 (dd, IH, J = 5, 0.5 Hz), 7.30 (dd, IH, J = 3.5, 0.8 

Hz), 7.20 (dd, IH, J = 3.6, 1.5 Hz), 7.18 (m, 2H), 7.08 (d, IH, J = 1.6 Hz), 4.12 (hr, 2H) 

ppm. 13C-NMR (600 MHz, CDCh): 0 144.4, 144.2; 140.9, 135.0, 131.5, 128.1, 127.8, 
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125.9, 125.4, 124.9, 123.3, 119.4, 116.5, 113.2 ppm. MS (EI +): mlz 257 [~, 100 %]. 

HRMS (EI +) calculated for [C14HllNSzt: 257.03329, found 257.03344. FT-IR (NaCl): 

3443 (hr, w), 2924 (s), 2857 (w), 1612 (s), 1552(w), 1483 (m), 1427 (w), 1308 (w), 1260 

(w), 1198 (w), 1088 (w), 1049 (w), 949 (w), 839(w), 804 (s), 698 (s), 447 (w) em-I. 

(3.20): N-(2,S-di(2-thienyl)phenyl)-2-pyridinalimine 

s ~ 

N~ 
N:J 

Figure 8.40: (3.20) 

(3.19) (250 mg, 0.95 mmol) was dissolved in 2 mL of DCM and added dropwise to a 

solution of hexane (4 mL) containing 2-pyridinecarboxaldehyde (150 mg, 1.40 mmol). 

The resulting yellow precipitate was collected by vacuum filtratio~ washed with cool 

pentane and dried. Yield: 190 mg (58 %). Mp: 155-158 °C. IH-NMR (300 MHz, 

CDCh): 88.78 (d, 1H, J = 4.7),8.74 (s, 1H), 8.43 (d, 1H, J = 7.8), 7.93 (t, 1H, J = 7.7), 

7.83 (d, 1H, J = 8.2), 7.60 (dd, 1H, J = 8.2, 1.6), 7.51 (d, 1H, J = 3.7), 7.46 (m, 4H), 

7.34 (d,lH, J = 5.0), 7.14 (m, 2H) ppm. 13C-NMR (600 MHz, CDCh): 8 161.2, 154.6, 

149.7, 147.6, 143.4, 140.0, 136.8, 134.3, 128.4, 128.2, 127.6, 127.5, 126.8, 125.9, 125.4, 

125.2, 124.2, 123.4, 122.5, 115.9 ppm. MS (EI +): mlz 346 [~, 62 %], 268 [(M-

346.06023. FT-IR (NaCl): 3063 (w), 2916 (w), 1620 (m), 1582 (w), 1464 (m), 1431 (m), 
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1402 (w), 1352 (w), 1211 (w), 1119 (w), 978 (w), 897 (w), 874 (w), 852 (w), 817 (s), 781 

(w), 700 (s), 617 (w), 478 (w) cm-I. Elemental analysis: calculated (found)% for 

C2oHI4N2S2; C, 69.35 (69.80); H, 4.07 (3.69); N, 8.09 (8.11). 

iii) Thienyl-substitued ppi ligand synthesis 

(3.21): 4-thienylaniline 

Figure 8.41: (3.21) 

4-iodoaniline (0.219 g 1.00 mmol) was added to a round bottom flask and then combined 

with anhydrous 1,2-dimethoxyethane (15 mL) and a 1.0 M aqueous solution of K2C03 

(10 mL). The mixture was purged byN2 sparging for 0.5 h, followed by the addition of2-

thienylboronic acid (0.127 g, 1.00 mmol) and Pd(PPh3)4 (0.058 g, 0.050 mmol). The 

reaction mixture was heated at 95°C for 72h. The reaction contents were combined with 

H20 (200 mL) containing 20 g NaCI and extracted into DCM (200 mL). The organic 

extracts were combined, dried over MgS04, concentrated (not to dryness) by rotary 

evaporation, dissolved in hexanes and then filtered through Celite. The hexanes were 

then discarded and the Celite pad containing (3.21) was washed with CHCb, 

concentrated and then combined with pentane. A red precipitate that appeared instantly 

was removed by filtration, followed by concentrating the pentane solution to 10 mL and 
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collecting a yellow solid precipitate. Yield: 55 mg (31 %). Mp: 96-98 °C. IH-NMR (300 

MHz, CDCh): () 7.45 (d, 2H, J = 8.5 Hz), 7.41 (m, 3H), 6.67 (d, 2H, J = 8.5 Hz), 3.72 

(hr, 2H) ppm. 13C-NMR (600 MHz, CDCb): () 145.6, 142.4, 127.5, 126.7, 126.1, 125.8, 

118.0, 115.3 ppm. MS (EI +): mlz 175 [M+, 100 %]. HRMS (EI +) calculated for 

[C lOH9NSt: 175.04557, found 175.04594. FT-IR (NaCl): 3406 (hr, s), 3314 (m), 3093 

(w), 2922 (w), 1618 (s), 1497 (m), 1267 (m), 1196 (m), 1126 (w), 1094 (w), 837 (m), 777 

(s), 698 (m), 628 (m), 565 (m), 511 (m) em-I. 

(3.22): N-(4-(3-thienyl)phenyl)-2-pyridinalimine 

N~ 
N0 

Figure 8.42: (3.22) 

(3.21) (50 mg, 0.29 mmol) was dissolved in 1 mL of DCM and added dropwise to a 

solution of pentane (10 mL) containing 2-pyridinecarboxaldehyde (34 mg, 0.31 mmol). 

The solution was concentrated to 3 mL by slow evaporation. The resulting yellow 

precipitate was collected by vacuum filtration, washed with cool pentane and dried. 

Yield: 63 mg (84 %). Mp: 117-120 °C. IH-NMR (300 MHz, CDCb): () 8.76 (d, 1H, J = 

4.2 Hz), 8.69 (s, IH), 8.26 (d, 1H, J = 7.9 Hz), 7.88 (td, 1H, J =7.6, 1.7 Hz), 7.70 (d, 2H, 

J = 8.5 Hz), 7.51 (m, IH), 7.46 (m, 5H) ppm. 13C-NMR (600 MHz, CDCb): () 160.2, 

154.6, 149.8, 141.7, 136.7, 134.5, 127.8, 127.2, 126.3, 126.2, 125.1, 121.9, 121.7, 120.2 
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ppm. MS (EI +): mlz 264 [M\ 100 %]. HRMS (EI +) calculated for [CI6H12N2St: 

264.70212, found 264.07204. FT-IR (NaCl): 3435 (br, m), 3065 (w), 2920 (w), 1622 (br, 

m), 1472 (m), 1423 (m), 1350 (w), 1261 (m), 1202 (m), 1101 (br, m), 1034 (m), 833 (w), 

783 (s), 538 (m) em-I. Elemental analysis: calculated (found)% for CI6H12N2S; C, 72.71 

(71.94); H, 4.58 (4.72); N, 10.60 (9.89). 

iv) Complex synthesis 

(3.23): [Fe(3.18)2(NCS)21 

Figure 8.43: (3.23) 

A solution of KSCN (201 mg, 2.06 mmol) in MeOH (50 mL) is sparged with N2 gas for 

0.5 hours, combined with Fe(II)S04·7H20 (81 mg, 0.29 mmol). The mixture was stirred 

for an additional 0.5 hours and then combined with (3.18) (190 mg, 0.57 mmol). The 

solution was stirred under an atmosphere of nitrogen for 3 days, concentrated to 20 mL 

and cooled in an ice bath. The resulting blue precipitate was collected by vacuum 

filtration and washed with water, pentane and then dried. Yield: 210 mg (85 %). MS 

(FAB +): mlz 840 [(Mt, 3.0 %], 782 [(M - SCNt, 24 %], 448 [(M - C25HISN3St, 
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100 %]. FT-IR (NaCl): 2963 (m), 2918 (m), 2850 (m), 2060 (s), 1591 (hr, m), 1471 (m), 

1440 (w), 1261 (s), 1098 (s), 1020 (s), 800 (s), 700 (m) em-I. Elemental analysis: 

calculated (found)% for CSIH37N6S2FeCl; C, 68.67 (68.93); H, 4.22 (4.68); N, 9.51 

(9.34). Note: residual crystallization solvent in the sample analyzed. UV-Vis (DCM): 

Amax (E (M-I em-I)) = 621 nm (1510). 

(3.24): [Fe(3.20)2(NCS)2] 

Figure 8.44: (3.24) 

A solution of KSCN (73 mg, 0.75 mmol) in H20 (10 mL) is sparged with N2 gas for 0.5 

hours, combined with Fe(II)S04·7H20 (69 mg, 0.25 mmol). The mixture was stirred for 

an additional 0.5 hours and then added to a flask containing (3.20) (170 mg, 0.50 mmol) 

in MeOH (50 mL), which was also sparged with N2 gas for 0.5 hours. The solution was 

stirred under an atmosphere of nitrogen for 3 days, concentrated to 20 mL and cooled in 

an ice bath. The resulting green-blue precipitate was collected by vacuum filtration and 

washed with water, pentane and then dried. Yield: 220 mg (65 %). MS (FAB +): mlz 

864 [(Mt, 2.8 %], 806 [(M - SCNt, 27 %],460 [(M - C21H14N3S3t, 100 %]. FT-IR 

(NaCI): 3400 (hr, w), 3066 (w), 2924 (w), 2852 (w), 2054 (s), 1625 (hr, m), 1593 (s), 
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1483 (m), 1439 (m), 1301 (w), 1211 (w), 1120 (w), 955 (w), 910 (w), 817 (m), 773 (w), 

698 (s) em-I. Elemental analysis: calculated (found)% for C57~6S5FeClz; C, 60.38 

(60.41); H, 3.72 (3.46); N, 7.41 (7.48). Note: residual crystallization solvent in the 

sample analyzed. UV-Vis (DCM): Amax (c (~I em-I») = 560 nm (1850). 

(3.25): [Fe(3.22h(NCS)2] 

Figure 8.45: (3.25) 

A solution of KSCN (93 mg, 0.96 mmol) in MeOH (50 mL) was sparged with N2 gas for 

0.5 hours, combined with Fe(Il)S04'7H20 (130 mg, 0.47 mmol). The mixture was 

stirred for an additional 0.5 hours and then combined with (3.22) (250 mg, 0.95 mmol. 

The solution was stirred under an atmosphere of nitrogen for 3 days, concentrated to 20 

mL and cooled in an ice bath. The resulting green precipitate was collected by vacuum 

filtration and washed with water, pentane and then dried. Yield: 310 mg (94 %). MS 

(FAB +): mlz 700 [(Mt, 10 %], 642 [(M - SCNt, 60 %], 378 [(M - CI7H12N3S2t, 

100 %]. FT-IR (NaC1): 3092 (w), 2064 (s), 2037 (s), 1589 (br, m), 1487 (w), 1433 (w), 

1354 (w), 1300 (w), 1258 (w), 1200 (m), 1150 (w), 1105 (w), 1015 (w), 962 (w), 904 

(w), 853 (w), 785 (m), 731 (w), 689 (w), 629 (w), 554 (w) em-I. Elemental analysis: 
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calculated (found)% for C34H24N6SsFe; C, 58.29 (58.31); H, 3.45 (3.12); N, 12.00 

(11.92). UV-Vis (DCM): Amax (E (~I em-I» = 630 run (1690). 

8.10 Experimental for Chapter 4t 

1. A thienyl-substituted valence tautomer 

i) Ligand synthesis 

(4.01): 5-bromo-2,2'-bipyridine 

Figure 8.46: (4.01) 

(4.01) was prepared following the procedure reported by Fang and Hanan. 2,5-

dibromopyridine (1.95 g, 0.00830 mol) and Pd(PPh3)4 (0.27 g, 0.25 mmol) were added 

successively to a flask which was flushed with N2 gas. A solution of 0.5 M pyridyl zinc 

bromide in THF (25 mL) was syringed into the flask, and the mixture was stirred for 24 

hours. The reaction mixture was added to a solution of 0.2 M EDTA and 1 M Na2C03 to 

extract the product from its zinc ion. Organics were extracted using EtzO (50mL), dried 

with Na2S04, and concentrated by rotary evaporation. The fmal product was eluted from 

an alumina column using 10: I hexanes:EtOAc and once concentrated was a white 

crystalline solid. Yield: 1.8 g (94 %). IH-NMR (300 MHz, CDCb): 0 8.75 (d, IH, J = 
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2.2), 8.70 (d, IH, J = 5.5), 8.41 (d, IH, J = 8.0), 8.36 (d, IH, J = 8.4), 7.98 (dd, IH, J 

= 8.5, 2.4), 7.87 (td, IH, J = 7.7, 1.74), 7.37 (m, IH) ppm. MS (FAB +): mlz 235 

[(MC9Brt, 100 %], 237 [(M(8IBrt, 100 %].[194] 

(4.02): 5-( trimethylsilylethynyl)bipyridine 

S
./ 

/' \ 

Figure 8.47: (4.02) 

The following is a modified version of the procedure reported by Ziessel and co-workers. 

(4.01) (1.00 g, 4.39 mmol), PdCh(PPh3)2 (92 mg, 0.13 mmol), PPh3 (69 mg, 0.26 mmol), 

and CuI (83 mg, 0.48 mmol) were added successively to a flask which was flushed with 

N2 gas. Anhydrous N,N-diisopropylamine (90 mL) was syringed into the flask, and the 

mixture was stirred while sparging for 0.5 hours. Ethynyltrimethylsilane (0.579 g, 6.58 

mmol) was then added and the reaction mixture was refluxed for 20 hours. The solvent 

was evaporated and the residue was dissolved in chloroform and combined with pentane, 

precipitating impurities that were removed by gravity filtration. The filtrate was passed 

through a Celite pad and concentrated. The residue was dissolved in acetone, filtered and 

concentrated to afford (4.02). Yield: 1.1 g (96 %). IH-NMR (300 MHz, CDCh): 0 8.75 

(d, IH, J = 2 Hz), 8.70 (d, IH, J = 5 Hz), 8.40 (m, 2H), 7.84 (m, 2H), 7.33 (m, IH), 0.29 

(s, 9H) ppm. MS (EI +): mlz 252 [M+, 100 %].[195] 
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(4.03): 5-ethynyl-2,2'-bipyridine 

Figure 8.48: (4.03) 

Deprotection of (4.02) (1.891g, 7.492 mmol) was accomplished by stirring it in MeOH 

(120 mL) containing KF (0.870 g, 15.0 mmol) at RT overnight. Crude (4.03) was purified 

by flash chromatography (Si02) eluting with DCMlMeOH to give a dark brown solid. 

Yield: 1.32 g (98 %). IH-NMR (300 MHz, CDCh): 88.79 (s, IH), 8.71 (d, 1H, J = 3.3 

Hz), 8.42 (m, 2H), 7.94 (m, 2H), 7.33 (m, 1H), 3.30 (s, 1H) ppm. MS (EI +): mlz 180 

[M\ 100 %].[195] 

(4.04): 5-(3'-ethynylthienyl)bipyridine (thebipy) 

v 
s 

Figure 8.49: (4.04) 

A solution of 3-bromothiophene (0.100 mL, 1.06 mmol) in anhydrous N,N­

diisopropylamine (20 mL) was deaerated by sparging with N2 gas for 0.5 hours. 

PdCh(PPh3)2 (37 mg, 0.053 mmol) , PPh3 (14 mg, 0.053 mmol), CuI (10 mg, 0.053 

mmol) and (4.03) (0.230 g, 1.28 mmol) were added successively. The mixture was 
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refluxed overnight until the starting materials were consumed, as verified by TLC. The 

crude product was passed through a pad of Celite, and the filtrate was washed with brine 

(3 x 50 mL), and then dried with sodium sulfate. After concentration, the crude product 

was recrystallized from warm acetone/water (5:1) to provide a yellow solid. Yield: 0.26 

g (92 %). Mp: 141°C. IH_NMR (300 MHz, CDCb): 08.82 (s, 1H), 8.71 (d, IH, J = 2 

Hz), 8.43 (t, 2H, J =3.4 Hz), 7.94 (dd, 1H, J = 4, 1Hz), 7.85 (td, IH, J = 4, 1 HZ),7.62 

(d, 1H, J = 1 Hz), 7.35 (m, 2H), 7.26 (d, 1H, J = 2Hz) ppm. 13C-NMR (600 MHz, 

CDCb): 0 155.5, 154.7, 151.5, 149.3, 139.2, 137.0, 129.8, 129.4, 125.6, 123.9, 121.7, 

121.3, 120.3, 120.3,88.6,85.9 ppm. MS (FAB +): m/z 262 [~, 100 %]. FT-IR (KBr): 

3405 (hr, m), 3702 (m), 2920 (w), 2205 (m), 1717 (w), 1586 (m), 1541 (m), 1457 (s), 

1433 (m), 1366 (m), 1126 (w), 1090 (w), 1019 (m), 854 (m), 784 (s), 739 (w), 623 (m) 

cm-I
• Elemental analysis: calculated (found)% for C16HlON2S; C, 73.27 (72.96); H, 3.85 

(4.07); 10.69 (10.35). 

ii) Complex synthesis 

(4.05): [Co(dbsqh(4.04)] 

t-Bu 

t-B~ 
Q- 0 

f/ ~ " 
N···-·::~O(II)( dbsq) -- :' 

f/ N~ 

r , 
S 

t-Bu 

t-B~ =dbsq 

0- 0 

Figure 8.50: (4.05) 
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(4.04) (0.0600 g, 0.229 mmol) was added to a solution of C04(dbsq)g (0.11 g; 0.057 

mmol) in anhydrous and deaerated toluene (20 mL) and the mixture was stirred for 5 

hours at room temperature while under nitrogen. The solution was concentrated by half, 

and cooled in ice-water producing a precipitate that was isolated by vacuum filtration, 

washed with cold toluene, and dried to afford purple crystals. Yield: 0.13 g (71 %). MS 

(FAB +): mlz 541 [(M-C6H502t, 100 %], 321 [(M-CI2HlO04t, 55 %]. FT-IR (KBr): 

3447 (hr, m), 3042(w), 2955(s), 2902(m), 2864(m), 2361(w), 221O(m), 1570(m), 1464(s), 

1440(s), 1356(m), 1283(s), 1242(s), 1204(w), 984(m), 841(m), 791(m) em-I. Elemental 

analysis: calculated (found)% for C44H50N2S04CO; C, 67.44 (67.14); H, 3.03 (5.64); N, 

10.39 (10.15); S, 4.20 (3.95). UV-Vis (MeOH): Amax = 389 nm. 

2. A terthienyl-substituted valence tautomer 

i) Ligand synthesis 

(4.06): 3'-(S-ethynylbipyridine)-2,2':S',2"-terthiophene 

Figure 8.S1: (4.06) 
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(4.03) (0.681 g, 3.78 mmol) and (2.14) (0.825 g, 2.52 mmol) were dissolved in deaerated 

and anhydrous N,N-diisopropylamine (65 mL). PdCh(PPh3)2 (0.053 g, 0.076 mmol) and 

CuI (0.014 g, 0.074 mmol) were added to the reaction mixture, which was refluxed for 60 

h. The reaction mixture was concentrated and passed through a pad of Celite. The filtrate 

was then extracted into CHCh (3 x 60 mL), washed with brine, dried over magnesium 

sulfate, filtered, and concentrated to dryness. The crude product was flash 

chromatographed over neutral alumina using 10: 1 hexanes:EtOAc as the eluent to 

provide a brilliant yellow solid. Yield: 0.64 g (59 %). Mp: 143-145 DC. IH-NMR (300 

MHz, CDCh) = d 8.90 (d, 1H, J = 3 Hz), 8.72 (dd, 1H, J = 6, 3 Hz), 8.48 (dd, 2H, J = 9, 

3 Hz), 7.98 (dd, 1H ,J = 9,3 Hz), 7.85 (td, 1H, J = 9, 3 Hz), 7.52 (dd, 1H, J = 6, 3 Hz), 

7.34 (m, 5H), 7.10 (dd, 1H, J = 9, 3 Hz), 7.06 (dd, 1H, J = 9, 3 Hz) ppm. 13C-NMR 

(CDCh) = d 155.4, 154.9, 151.4, 149.3, 139.2, 139.0, 137.0, 136.0, 135.5, 134.4, 128.0, 

127.3,126.7, 126.1, 125.8, 125.2, 124.3, 124.0, 121.3, 120.4, 120.2, 117.1, 91.2, 89.3 

ppm. MS (EI +): mlz 426 [M+, 100 %]. FT-IR (KBr) = 3425 (hr, s), 3061 (w), 2922 (m), 

2853 (w), 2201 (w), 1637 (w), 1588 (m), 1541 (w), 1452 (s), 1432 (m), 1364 (w), 1228 

(w), 1089 (w), 1022 (w), 859 (w), 805 (m), 792 (m), 742 (m), 684 (s), 649 (w), 458 (w) 

cm-I. Elemental analysis: calculated (found)% for C2.JIl~2S3; C: 67.58 (67.91); H, 3.31 

(3.55); N, 6.57 (6.22). 
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ii) Complex synthesis 

(4.07): [Co(dbsq)2(4.06)] 

t-su 

t-BU-Q 
, q p 

(j N······::~O(II)(dbsq) -- ..-

r.-I.-su 

t-su-Q = dbsq 

0- 0 

(j ~ 

Figure 8.52: (4.07) 

(4.06) (0.150 g, 0~469 mmol) was added to a solution of Co4(dbsq)8 (0.175 g, 0.0880 

mmol) in anhydrous and deaerated toluene (15 mL) and the mixture was stirred overnight 

at room temperature while under nitrogen. The solution was concentrated by half, and 

cooled in ice-water producing a precipitate that was isolated by vacuum filtration, washed 

with cold toluene, and dried to afford a dark green solid. Yield: 0.160 g (43 %). MS 

(FAB +): mlz 926 [M\ 50 %], 911 [(M - CH3t, 100 %]. FT-IR (KBr): 3448 (br, m), 

3071 (m), 2952 (s), 2902 (m), 2862 (m), 2202 (m), 1577 (m), 1490 (s), 1467 (s), 1355 

(m), 1281 (w), 1243 (s), 1157 (w), 1093 (w), 1028 (w), 983 (m), 903 (w), 844 (w), 826 

(w), 694 (m), 494 (w) em-I. Elemental analysis: calculated (found)% for 

CS2Hs4N2S304CO; C, 67.44 (67.14); H, 5.88 (5.64); N, 3.03 (3.00); S, 10.39 (10.15). 

UV-Vis (MeOH): Amax = 450 nm. 

256 



8.11 Experimental for Chapter 5§ 

1. Bimetallic qsal complexes 

i) Ligand synthesis 

(5.01): 3,3' ,5,5'-tetrabromo-2,2'-bithiophene 

Figure 8.53: (5.01) 

Bromine (19.6 g, 123 mmol) was added dropwise over 1.5 h to a solution of 2,2'-

bithiophene (5.57, 33.5 mmol) in glacial acetic acid (20 mL) and chloroform (45 mL) 

while maintaining a temperature of 5-15 dc. The mixture was stirred at room 

temperature for 5 h and then refluxed for 24 h. The reaction was then cooled, quenched 

by the addition of an aqueous 10 % KOH solution (50 mL), extracted with CHCh and 

then dried with MgS04. Recrystallization from ethanol provided off white crystals. 

Yield: 15.3 g (95 %). IH_NMR (CDCh): 7.07 (s, 2H) ppm. MS (EI +): mlz 481 
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(5.02): 3,3'-dibromothiophene 

~
'---I Br 

Br S 
...."" 

Figure 8.54: (5.02) 

(5.01) (12.5 g , 25.9 mmol) was added over a period of 0.5 h to a refluxing dispersion of 

anhydrous zinc powder (6.5 g, 0.1 mol) in 130 mL of ethanol containing 13 mL H20, 31 

mL glacial acetic acid and 2.6 mL concentrated hydrochloric acid. After refluxing for an 

additional 2 h, the mixture was cooled to room temperature, filtered, and washed with 

ethanol. The filtrate was collected and the solvent was removed. The residue was 

dissolved in Et20, extracted with an aqueous 5 % sodium bicarbonate solution, and dried 

over MgS04. The solvent was removed and the product was recrystallized from hexanes 

to give colourless crystals. Yield 6.7 g (79 %). IH_NMR (CDCh): 7.44 (d, 2H, J = 5.2 

Hz), 7.11 (d, 2H, J = 5.2 Hz) ppm. MS (EI +): mlz 324 [(Me9Br81Brt, 100 %].[195-196] 

(5.03): 3,3 '-his(trimethyJsilyJethynyJ)-2,2' -bithiophene 

.-- I 
S -I = Si­

I 
I 

-Si = I' S 
I --::: 

Figure 8.55: (5.03) 

(5.02) (2.405 g, 7.400 mmol), PPh3 (0.117 g, 0.447 mmol), Pd(PPh3)2Ch (0.313 g, 0.447 

mmol) , and CuI (0.085 g, 0.45 mmol) were combined with deaerated anhydrous 

diisopropylamine (50 mL). Ethynyltrimethylsilane (2.23 g, 22.7 mmol) was then added to 
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the mixture which was then heated to 95°C for 20 h. The reaction was concentrated 

under reduced pressure, combined with pentane (300 mL), and filtered through a Celite 

pad. The filtrate was washed with distilled water, and the organic phase was dried with 

MgS04 and filtered. The solvent was removed by rotary evaporation to afford a 

crystalline yellow solid. Yield: 2.62 g (98 %). Mp: 84-85 °C. IH-NMR (CDCh): 7.17 

(d, 2H, J = 5 Hz), 7.06 (d, 2H, J = 5 Hz), 0.25 (s, 18H) ppm. 13C-NMR (CDCh): () 

139.0, 130.6, 123.8, 119.3, 101.5, 100.7, -0.4 ppm. MS (EI +): mlz 358 [~, 36 %], 73 

[(M - C15H13S2Sit, 100 %]. FT-IR (KBr): 3087 (w), 2954 (m), 2897 (w), 2147 (s), 1493 

(w), 1359 (w), 1239 (m), 1081 (w), 950 (m), 886 (m), 844 (s), 756 (m), 712 (s), 634 (m), 

433 (w) cm -1. Elemental analysis: calculated (found)% for C12H1402Si; C, 60.32 (59.96); 

H, 6.20 (6.19). 

(5.04): 3,3 '-dithienyl-2,2 '-bithiophene 

Figure 8.56: (5.04) 

(5.03) (1.00 g, 2.79 mmol) was dissolved in a deaerated mixture of dry tetrahydrofuran 

and EtOH (100 mL). Potassium hydroxide (0.328 g, 5.86 mmol) was added to the 

solution. The reaction mixture was stirred at room temperature overnight, H20 (20 mL) 

was added, and the solvent was concentrated under reduced pressure. The residue was 

dissolved in DCM and washed with distilled water (300 mL). The organic phase was 

dried over MgS04, filtered, and the solvent was removed by rotary evaporation to obtain 
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a brown oil that was sufficiently pure to proceed immediately with the next step. IH_ 

NMR (CDCh): () 7.23 (~ 1H, J = 5 Hz), 7.12 (d, 1H, J = 5 Hz), 3.35 (s, 1H) ppm. MS 

(EI +): mlz 214 [M+, 100 %]. HRMS (EI +) calculated for [CI2H6S2t: 213.99110 

found 213.99102. 

(5.05): 3,3' -his(5-etbynylsalicylaldebyde )-2,2' -hitbopbene 

Figure 8.57: (5.05) 

(5.04) (0.597 g, 2.79 mmol), (2.17) (1.52 g, 6.14 mmol), PPh3 (0.073 g, 0.28 mmol) , 

Pd(pPh3hCh (0.196 g, 0.280 mmol) , and CuI (0.053 g, 0.28 mmol) were added to 

anhydrous and deaerated THF (100 mL) containing diisopropylamine (0.9 mL). The 

reaction was stirred at 43°C for 20 h, cooled to room temperature, and concentrated 

under reduced pressure. The residue was combined with CHCh (100 mL), filtered 

through a Celite pad with DCM (400 mL), and washed with 0.5 M HCl (400 mL). The 

organic phase was dried over MgS04, filtered, and the solvent was removed by rotary 

evaporation. The solution was concentrated (25 mL) and added dropwise to pentane (500 

mL), resulting in a precipitate that was collected by vacuum filtration. The precipitate 

was washed with pentane (25 mL), ice cold methanol (15 mL), and dried to afford a 

yellow powder. Yield: 1.84 g (77 %). Mp: >200 DC. IH-NMR (CDCh): () 11.13 (br s, 
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2H), 9.89 (s, 2H), 7.77 (d, 2H, J = 2 Hz), 7.72 (dd, 2H, J = 9, 2 Hz), 7.28 (d, 2H, J = 5 

Hz), 7.26 (d, 2H, J = 5 Hz), 7.01 (d, 2H, J = 9 Hz) ppm. 13C-NMR (CDCh): 6·196.1, 

161.6, 139.5, 138.1, 136.7, 130.4, 124.4, 120.6, 119.2, 118.3, 115.3,93.6,85.2 ppm. MS 

(EI +): mlz 452 [M+, 100 %]. HRMS (EI +) calculated for [C26HI404S2t: 454.03335 

found 454.03347. FT-IR (KBr): 3424 (w). 3080 (w), 2924 (w), 2852 (w), 1655 (s), 1614 

(w), 1580 (w), 1503 (m), 1476 (m), 1372 (w), 1282 (m), 1261 (m), 1222 (w), 1186 (w), 

1137 (w), 906 (w), 879 (w), 844 (w), 766 (w), 723 (w), 705 (w), 684 (w), 636 (w) cm -I. 

Elemental analysis: calculated (found)% for C26HI404S2.H20; C, 66~1O (65.94); H, 3.42 

(3.38). 

(5.06)H2: bis-qsalH 

Figure 8.58: (5.06)H2 

(5.05) (0.150 g, 0.330 mmol) was dissolved in a THF (15 mL) and added to a solution of 

8-aminoquinoline (0.185 g, 1.29 mmol) in ethanol (15 mL). The solution was deaerated 

and stirred at room temperature for 24 h. The mixture was then concentrated under 
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reduced pressure and dissolved in CHCh (1.0 mL) and precipitated into warm hexane (15 

mL). The solid was collected by vacuum filtration, washed with hexanes, and dried to 

give an orange solid. Yield: 0.166 g (71 %). Mp: >200 cC. IH-NMR (CDCh): 8 14.66 

(hr, 2H), 9.21 (s, 2H), 9.01 (d, 2H, J = 3 Hz), 8.48 (dd, 2H, J = 8.5, 1.5 Hz), 7.98 (m, 

4H), 7.85 (d, 2H, J = 7 Hz), 7.75 (m, 8H), 7.31 (d, 2H, J = 5 Hz), 7.08 (d, 2H, J = 8.5 

Hz) ppm. 13C-NMR: The instability of (S.06)H2 prevented the acquisition of a 

publishable 13C-NMR spectrum. MS (FAB +): mlz 707 [(M + Ht, 8.8 %]. HRMS 

(FAB +) calculated for [C44H2702N4S2t: 707.15755 found 707.13532. FT-IR (KBr): 

3449 (w), 3096 (w), 2925 (w), 2853 (w), 1620 (s), 1482 (w), 1385 (w), 1285 (w), 1121 

(w), 1083 (w), 886 (w), 826 (w), 792 (w), 716 (w), 635 (w), 595 (w) em-I. Elemental 

analysis: calculated (found)% for C44H2602N4S2; C, 74.77 (74.50); H, 3.71 (3.62); N, 

7.93 % (7.69). 
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ii) complex syntheses 

(5.07): [(Fe(2.01»2(5.06)]Ch 

OJ -p' - A :.0 
" # N.......... . ... // -

'··,..-:' 3+ " N .. --........... re -·· .. ·····tiJ 

" / ···· tP _ ....... / ·······N'" 
d. '1-

" # -

OJ " - A .:0 
" # N.... // -

....•.... '/3' + " 
~ .. · .. ·-.. ···· .. ·Fe .. · .. ·· .. ·N 

d- ... /// ·········tP·N , , 
.' '1-

" # 0- _ 
2cr 

Figure 8.59: (5.07) 

(5.05) (0.681 g, 1.50 mmol) was dissolved in deaerated THF (30 mL), combined with 8-

aminoquinoline (0.432 g, 3.00 mmol), and stirred for 24 h. FeCh·6H20 (0.810 g, 3.00 

mmol) was added to the mixture, and the solution was stirred for 2 h. The resulting 

precipitate was washed with water, pentane, dried and suspended in MeOH (20 mL). 8-

aminoquinoline (0.389 g, 2.70 mmol) and salicylaldehyde (0.329 g, 2.70 mmol) in MeOH 

(10 mL) were added to the suspension. The mixture was stirred overnight, washed with 

water, pentane, and dried, affording a brown powder. Yield: 1.62 g (78 %). MS (MALDI 

+): mlz 1310 [(M - 2Clt, 0.8 %], 1063 [(M - C16H llN20Cht, 1.6 %], 550 [(M -

C44H24N402S2FeCht, 27 %], 303 [(M - C6oH3SN603S2FeCht, 100 %]. FT-IR (KBr): 

3421 (w), 3049 (w), 2924 (w), 2856 (w), 2191 (w), 1603 (s), 1574 (s), 1525 (s), 1504 (s), 

1456 (m), 1396 (w), 1375 (m), 1307 (m), 1240 (w), 1194 (w), 1147 (w), 1130 (w), 1086 

(w), 972 (w), 930 (w), 883 (w), 829 (m), 760 (w), 708 (w), 633 (w), 542 (w), 511 (m), 
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457 (w) cm -1. Elemental analysis: calculated (found)% for C76H46Ns04S2Fe2Clz; C, 

65.83 (66.04); H, 2.99 (3.36); N, 8.00 (8.11). 

(5.08): [(Fe(2.01)h(5.06)](SCN)2·2KCl 

OJ '" - A P 
" # N .................... / -

' . . 3+ II 
~---····-- · ··· .. ·Fe ----------N 

d-//"'tP 2SCN-'2KCI 

Figure 8.60: (5.08) 

(5.07) (0.150 g, 0.109 mmol) was suspended in MeOH (30 mL), and an excess of KSCN 

(0.042 g, 0.43 mmol), was added. The mixture was stirred overnight and then combined 

with distilled water (250 mL), which resulted in a brown precipitate that was filtered, 

washed with water, pentane, and dried. Yield 0.13 g (85 %). MS (FAB +): mlz 1368 [(M 

- SCNt, 1.2 %], 1310 [(M - S2C2N2t, 4.8 %], 1063 [(M - (CIsHl1N40S2t, 8.7 %], 550 

[(M-C46H24N602S4Fet, 100 %]. FT-IR (KBr): 3410 (w), 3051 (w), 2924 (w), 2852 (w), 

2195(w), 2038 (s), 1602 (s), 1574 (s), 1525 (s), 1504 (s), 1458 (s), 1429 (w), 1396 (w), 

1377 (m), 1308 (m), 1240 (w), 1194 (w), 1147 (w), 1068 (w), 972 (w), 931 (w), 883 (w), 

829 (m), 785 (w), 758 (w), 719 (w), 634 (w), 542 (w), 511 (w), 463 (w), 414 (w) cm-I. 

Elemental analysis: calculated (found)% for C7S~6N1004S4Fe2'2KCI; C, 60.49 (60.49); 

H, 3.25 (2.96); N, 7.24 (7.99). 
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Figure 8.61: (5.09) 

(5.07) (0.150 g, 0.109 mmol) was suspended in MeOH (30 mL), and an excess ofNaPF6 

(0.073 g, 0.43 mmol) was added. The mixture was stirred overnight and then combined 

with distilled water (250 mL), which resulted in a brown precipitate that was filtered, 

washed with water, pentane, and dried. Yield 0.16 g (89 %). MS (FAB +): mlz 1455 [(M 

- PF6t, 1.6 %], 1310 [(M - P2F12t, 4.1 %], 1063 [(M - C16HllN20P2F12t, 6.5 %], 550 

[(M - C4JI24N402S2FeP2F12t, 100 %]. FT-IR (KBr): 3419 (w), 3066 (w), 2924 (w), 

2852 (w), 2193 (w), 1604 (s), 1576 (s), 1525 (s), 1504 (s), 1458 (s), 1398 (w), 1377 (m), 

1309 (m), 1242 (w), 1194 (w), 1149 (w), 1088 (w), 972 (w), 931 (w), 843 (s), 787 (w), 

760 (w), 721 (w), 634 (w), 557 (m), 512 (w), 463 (w) cm -1. Elemental analysis: 

calculated (found)% for C76~6N804S2Fe2P2F12; C, 57.00 (57.34); H, 2.90 (2.66); N, 7.00 

(6.69). 
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Figure 8.62: (5.10) 

(5.05) (0.274 g, 0.604 mmol) was dissolved in de aerated THF (60 mL), combined with 8-

aminoquinoline (0.174 g, 1.21 mmol), and stirred for 24 h. Fe(CI04)2·6H20 (429 g, 1.21 

mmol) was added, and the solution was stirred for 2 h. The resulting precipitate was 

washed with water, pentane, dried, and then suspended in MeOH (30 L). 8-

aminoquinoline (0.115 g, 0.799 mmol) and salicylaldehyde (0.097 g, 0.80 mmol) in 

MeOH (10 mL) were added to the suspension. The mixture was stirred overnight, washed 

with water, pentane, and dried to give a brown powder. Yield: 0.36 g (39 %). MS 

(MALDI +): mlz 1410 [(M - CI04t, 0.5 %], 1008 [(M - CI6HllN20sFeCht, 6.6 %] 550 

[(M - C44H24N40IOS2FeCht ,97 %]. FT-IR (KBr): 3447 (br w), 3071 (w), 2923 (w), 

2851 (w), 2195 (w), 1603 (s), 1574 (s), 1525 (s), 1505 (s), 1457 (s), 1397 (m), 1378 (m), 

1308 (m), 1242 (w), 1194 (w), 1089 (s), 973 (w), 884 (w), 832 (m), 790 (w), 760 (w), 

729 (w), 622 (m), 547 (w), 512 (w), 460 (w), 415 (w) em-I. Elemental analysis: 

calculated (found)% for C76~6N8012S2Fe2Ch; C, 60.44 (60.30); H, 3.07 (2.91); N, 7.42 

(7.10). 
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8.12 Experimental for Chapter 611 

1. Chemical polymerization 

i) Iron(III) micro spheres 

(6.11): poly(2.10) 

* 

* 

* 

Figure 8.63: (6.11) 

An acetonitrile solution containing (2.10) and excess CI04- was left open to air at room 

temperature and purple micro spheres of (6.11) were deposited after nearly 2 months. FT-

IR (KBr): 3423 (br, m), 2921 (w), 2854 (w), 1607 (s), 1574 (m), 1529 (m), 1455 (m), 

1397 (w), 1378 (w), 1317 (w), 1166 (w), 1090 (s), 926 (w), 832 (w), 784 (w), 623 (m), 

C, 61.58 (61.16); H, 2.59 (3.04); N, 6.53 (6.28); S, 7.46 (7.07); Fe, 6.51 (7.00). UV-Vis 

(BaS04): Amax = 470 nm, >775 nm. 
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2. Electrochemical polymerization 

i) Iron(III) spin-crossover related polymers 

(6.12): poly(2.21) 

* OJ f" - b P 
" j N....... ..// 

...... / + II 
N-----------------Fe3 --------- --ril 

II .. ·· cP .. /// ·········N f " 
0'- r-

Figure 8.64: (6.12) 

Monomer (2.21) was dried under vacuum at 55°C for 72 h before use. (2.21) (25 mg, 

0.020 mmol) was combined with anhydrous CH3CN (20 mL) containing approximately 

0.7 M B14NPF6• The solution was stirred, while sparging with Nz (0.5 h), to generate a 

saturated solution of (2.21) (the solubility of (2.21) in CH3CN is poor). A small quantity 

of the solution (2 mL) was carefully filtered into a sealed, Nz purged electrochemical cell. 

The electropolymerization of (2.21) was carried out at a scan rate of 100 mV/s, over a 

potential range of -0.5 to +1.0 V (vs. fc); 10 scans over this potential window were 

performed. A brilliant red film was deposited on an indium tin oxide (ITO) coated glass 

slide (or a platinum button in some instances). FT-IR (KBr): 3435 (m), 2922 (w), 2853 
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(w), 1604 (s), 1574 (s), 1523 (m), 1503 (m), 1449 (m), 1374 (m), 1305 (m), 1189 (w), 

1087 (w), 842 (s), 691 (m), 556 (m), 512 (w) em-I. UV-Vis (ITO): Amax = 510 ntn. 

Table 8.01: EDX analysis for (6.12) 

Iron to sulfur ratio (Featom % / Satom %) 

(6.12): polymer (0.151) 

(2.21): monomer (0.152) 

Theoretical (0.167) 

Compound: (6.12) 

Element Fe S P 

Weight(%) 10.49 71.72 17.69 

Atom(%) 11.68 77.29 11.03 

Apparent concentration (%) 13.61 73.64 14.24 

ZAF factor 1.08 0.96 0.75 

3 sigma standard deviation 3.05 4.36 3.85 

Compound: (2.21) 

Element Fe S P 

Weight(%) 19.95 64.59 9.49 

Atom(%) 10.76 70.77 12.55 

Apparent concentration (%) 10.68 66.27 19.34 

ZAF factor 1.54 1.40 1.32 

3 sigma standard deviation 1.53 2.13 1.87 
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(6.13): poly(2.20) 

Figure 8.65: (6.13) 

(2.19) (0.0015 g, 3.8 Ilmol) was dissolved in DCM (2 mL) previously purged with N2 for 

0.5 h. 8-aminoquinoline (0.0006 g, 4 Ilmol) was added, and the mixture was stirred at 

room temperature under N2 for I hour (generating ligand (2.20) in situ). The supporting 

electrolyte B14NPF6 (0.554 g, 1.41 mmol) was added and the sample was SUbjected to 

four oxidative sweeps at a scan rate of 100 mV/s over a potential range of -0.5 to +1.0 V 

(vs. fc). An orange film was collected on the surface of an ITO electrode with a thickness 

of 150 nm. UV-Vis (ITO): Arnax = 510 nm. 
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(6.14): poly(2.22) 

Figure 8.66: (6.14) 

Monomer (2.22) was dried under vacuum at 55°C for 72 h before use. (2.22) (1.0 mg, 

0.92 Jlmol) was dissolved in anhydrous DCM (1 mL) containing 0.7 M supporting 

electrolyte (Bll4NPF6) and subjected to four oxidative sweeps at a scan rate of 100 mV/s 

over a potential range of -0.5 to +1.0 V (vs. fc). An orange film was collected on the 

surface of the ITO electrode with a thickness of 250 nm. FT-IR (KBr): 3350 (br, s), 

2968 (m), 2938 (w), 2881 (w), 1645 (hr, m), 1475 (m), 1387 (w), 1108 (br, m), 1070 (br, 

m), 1037 (hr, m), 839 (s), 738 (w), 670 (w), 626 (w), 558 (m) em-I. 
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ii) Iron(II) spin-crossover conjugated polymer 

(6.15): poly(3.24) 

* 

s ~ 

* 

Figure 8.67: (6.15) 

Monomer (3.24) was dried under vacuum at room temperature for 72 h before use. (3.24) 

(0.004 g, 5 !lmol) was dissolved in anhydrous DCM (2 mL) containing 0.5 M supporting 

electrolyte (B14NPF6) and sparged with N2 gas for 20 minutes. The solution was then 

subjected to successive oxidative sweeps at a scan rate of 100 mV/s over a potential 

range of -0.5 to +1.0 V (vs. fc). An orange film was collected on the surface of the ITO 

(or Platnium) electrode. IR (KBr): 3449 (hr, s), 2961 (w), 2924 (w), 2855 (w), 3667 (m), 

1630 (hr, s), 1464 (w), 1400 (w), 1261 (w), 1099 (hr, w), 1024 (hr, w), 845 (hr, m), 804 

(w), 673 (w), 559 (w) cm-I
. UV-Vis (ITO): Arnax = 410 nm. 
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Table 8.02: EDX analysis for (6.15) 

Iron to sulfur ratio (Featom %: Satom %) 

(6.15): polymer 

(3.24): monomer 

Theoretical 

Compound: polymer (6.16) 

Element 

Weight(%) 

Atom(%) 

Apparent concentration (%) 

ZAF factor 

3 sigma standard deviation 

Compound: monomer (4.07) 

Element 

Weight (%) 

Atom(%) 

Apparent concentration (%) 

ZAF factor 

3 sigma standard deviation 

Fe 

22.50 

13.76 

16.83 

0.75 

4.02 

Fe 

23.73 

15.15 

22.42 

0.75 

3.05 

(0.179) 

(0.160) 

(0.167) 

S 

78.25 

86.24 

83.17 

1.03 

4.22 

S 

76.27 

84.85 

77.58 

0.81 

3.42 
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iii) Coba1t(II) valence tautomer related polymers 

(6.16): poly(4.07) 

t-Bu 

t~~ 
Q- 0 , .' 

f N'-"--::~O(II)(dbsq) 

~ f N~ 

t-Bu 

t-BU-Q = dbsq 
0- 0 

* 

Figure 8.68: (6.16) 

Monomer (4.07) was dried under vacuum at room temperature for 72 h before use. (4.07) 

(0.003 g, 3 ~mol) was dissolved in anhydrous DCM (3 mL) containing 0.7 M supporting 

electrolyte (B14NPF6) and sparged with N2 gas for 20 minutes. The solution was then 

subjected to successive oxidative sweeps at a scan rate of 100 mV/s over a potential 

range of -0.5 to +1.0 V (vs. ferrocene). A red film was collected on the surface of the 

ITO (or platnium) electrode. NIR (ITO): Arnax = 1000 run. UV-Vis (ITO): Arnax = 450 

run. 
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Table 8.03: EDX analysis for (6.16) 

Cobalt to sulfur ratio (Coatom % / Satom %) 

(6.16): polymer (0.363) 

(4.07): monomer (0.343) 

Theoretical (0.333) 

Compound: polymer (6.16) 

Element Co S P 

Weight(%) 12.47 18.71 5.23 

Atom(%) 3.75 10.34 2.99 

Apparent concentration (%) 22.08 44.94 12.78 

ZAF factor 0.667 0.904 0.920 

3 sigma standard deviation 1.5776 0.9849 0.4995 

Compound: monomer (4.07) 

Element Co S 

Weight (%) 20.49 32.52 

Atom (%) 7.13 20.80 

Apparent concentration (%) 28.02 61.30 

ZAF factor 0.685 0.944 

3 sigma standard deviation 2.7615 1.7592 
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(6.17): poly(4.06) 

Figure 8.69: (6.17) 

Monomer (4.06) was dried under vacuum at room temperature for 72 h before use. (4.03) 

(0.001 g,3 /lmo1) was dissolved in anhydrous DCM (2 mL) containing 0.7 M supporting 

electrolyte (Bu~PF6) and sparged with N2 gas for 20 minutes. The solution was then 

subjected to successive oxidative sweeps at a scan rate of 100 mV/s over a potential 

range of -0.5 to +1.0 V (vs. fc). A purple film was collected on the surface of the ITO 

electrode. NIR (ITO): Arnax = 950 run. UV-Vis (ITO): Arnax = 450 run. 

Notes: 

A version of this chapter has been published. 

* (a) Djukic, B.; Dube, P. A.; Razavi, F.; Seda, T.; Jenkins, H. A.; Britten, J. F.; 
Lemaire, M. T. Inorg. Chem. 2009,48,699-707. 
(b) Djukic, B.; Lemaire, M. T. Inorg. Chem. 2009,48, 10489-10491. 

t (a) O'Sullivan, T. J.; Djukic, B.; Dube, P. A.; Lemaire M. T. Can. J. Chem. 2009, 87, 
533-538. 

(b) O'Sullivan, T. J.; Djukic, B.; Dube, P. A.; Lemaire M. T. Chem. Commun., 2009, 
1903-1905. 

§ Djukic, B.; Poddutoori, P. K.; Dube, P. A.; Seda, T.; Jenkins, H. A.; Lemaire, M. T. 
Inorg. Chem. 2009,48,6109-6116. 

II (a) Djukic, B.; Singh, M. A.; Lemaire, M. T. Synth. Met. 2010,160,825-828. 
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(b) Djukic, B.; Lemaire, M. T. Inorg. Chem. 2009,48, 10489-10491. 

(c) O'Sullivan, T. J.; Djukic, B.; Dube, P. A.; Lemaire M. T. Chem. Commun., 2009, 
1903-1905. 

A version of this chapter has been accepted for publication. 

t Cheng, H.; Djukic, B.; Jenkins, H. A.; Gorelsky, S. I.; Lemaire, M. T. Can. J. Chem. 
2010, submitted for publication. 
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Appendix A: Crystallographic parameters 

Table A.l: Crystal data and structure refinement for (2.03) 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

Z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 26.48° 

Absorption correction 

Max. and min. transmission 

Refmement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)] 

R indices ( all data) 

Largest diff. peak and hole 

C32H22FeIN402 

677.29 

296(2) K 

0.71073 A 

Orthorhombic 

Pnna 

a = 13.044(2) A 

b = 16.405(3) A 

c = 12.652(2) A 

2707.4(8) A3 

4 

1.662 Mg/m3 

1.735 mm- l 

1348 

0.24 x 0.18 x 0.12 mm3 

2.03 to 26.48°. 

-16<=h<=16, -20<=k<=20, -15<=1<=15 

18971 

2797 [R(int) = 0.0876] 

99.7% 

Numerical 

0.8241 and 0.6808 

Full-matrix least-squares on F2 

2797/0/226 

1.000 

Rl = 0.0438, wR2 = 0.0859 

Rl = 0.0874, wR2 = 0.1014 

0.595 and -0.346 e.A-3 
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Table A.3: Crystal data and structure refinement for (2.11) 

Empirical formula 

Pormula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

Z 

Density (calculated) 

Absorption coefficient 

P(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 25.00° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on p2 

Pinal R indices [I>2sigma(I)] 

R indices (all data) 

Largest diff. peak and hole 

C44H26MnN402S2 

761.75 

173(2) K 

0.71073 A 

Monoclinic 

P211c 

a= 14.516(5) A 

b = 19.636(8) A 

c = 12.673(4) A 

3509(2) A3 

f3 = 103.766(6)°. 

4 

1.442 Mg/m3 

0.541 mm- l 

1564 

0.15 x 0.11 x 0.02 mm3 

2.18 to 25.00°. 

-17<=h<=17, -14<=k<=23, -15<=1<=14 

23226 

6165 [R(int) = 0.2018] 

99.9% 

None 

0.9893 and 0.9242 

Pull-matrix least-squares on p2 

6165/0/479 

0.956 

Rl = 0.0678, wR2 = 0.1145 

Rl = 0.2103, wR2 = 0.1685 

0.352 and -0.348 e.A-3 
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Table A.2: Crystal data and structure refinement for (2.12) 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

Z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 25.38° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints I parameters 

Goodness-of-fit on p2 

Final R indices [I>2sigma(I)] 

R indices ( all data) 

Largest diff. peak and hole 

C47H32FeN404.5S2 

844.74 

296(2) K 

0.71073 A 

Monoclinic 

P21/n 

a = 14.504(6) A 

b = 17.778(7) A 

c = 16.911(8) A 

4113(3) A3 

4 

1.364 Mglm3 

0.519 mm- l 

1744 

0.32 x 0.23 x 0.06 mm3 

2.26 to 25.38°. 

-17<=h<= 17, -19<=k<=21, -14<=1<=20 

26788 

7527 [R(int) = 0.0656] 

99.4% 

None 

0.9695 and 0.8515 

Full-matrix least-squares on F2 

7527 12/529 

1.024 

Rl = 0.0683, wR2 = 0.1884 

Rl = 0.1178, wR2 = 0.2228 

0.730 and -0.520 e.A-3 
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Table A.4: Crystal data and structure refinement for (3.14) 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

Z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 26.00° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on p2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Largest diff. peak and hole 

CS8H4oPeN IOS4 

1061.09 

173(2) K 

0.71073 A 

Monoclinic 

C2/c 

a = 17.343(4) A 

b= 17.136(4) A 

c = 17.227(4) A 

4860(2) A3 

p = 108.315(5)°. 

4 

1.450 Mglm3 

0.535 mm-1 

2192 

0.37 x 0.13 x 0.10 mm3 

1.88 to 26.00°. 

-16<=h<=21, -16<=k<=21, -21 <=1<=20 

26762 

4768 [R(int) = 0.0713] 

99.9% 

Numerical 

0.9509 and 0.8253 

Pull-matrix least-squares on F2 

4768/0/391 

1.028 

Rl = 0.0617, wR2 = 0.1539 

Rl = 0.1098, wR2 = 0.1838 

0.841 and -0.468 e.A-3 
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Table A.5: Crystal data and structure refinement for (3.20) 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

Z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.50° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Largest diff. peak and hole 

C2oHl4N2S2 

346.45 

293(2) K 

0.71073 A 

Tric1inic 

P -1 

a = 5.7605(4) A 

b = 16.4249(13)A 

c = 18.2271(14)A 

1687.3(2) A3 

a = 80.7610(10)°. 

B = 85.089(2)°. 

. Y = 83.5010(10)°. 

4 

1.364 Mg/m3 

0.318 mm- 1 

720 

0.77 x 0.25 x 0.20 mm3 

1.13 to 27.50°. 

-4<=h<=7, -20<=k<=21, -23<=1<=23 

21401 

7685 [R(int) = 0.0282] 

0.988 % 

None 

0.9649 and 0.8745 

Full-matrix least-squares on F2 

7685/0/425 

1.030 

R1 = 0.0714, wR2 = 0.1932 

R1 = 0.1000, wR2 = 0.2277 

1.537 and -0.917 e.A-3 

294 



Table A.6: Crystal data and structure refinement for (3.23) 

Empirical formula 

Pormula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

Z 

Density (calculated) 

Absorption coefficient 

P(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 25.00° 

Absorption correction 

Max. and min. transmission 

Refmement method 

Data / restraints / parameters 

Goodness-of-fit on p2 

Pinal R indices [1>2sigma(I)] 

R indices ( all data) 

Largest diff. peak and hole 

Cso.sH37CIP eN 6S2 

883.28 

150(1) K 

0.71073 A 

Monoclinic 

P 211n 

a = 17.3899(11) A 

b = 9.6294(6) A p = 105.551(3)°. 

c = 26.6152(17) A 

4293.7(5) A3 

4 

1.366 Mg/m3 

0.555 mm-1 

1828 

0.60 x 0.20 x 0.08 mm3 

2.65 to 25.00°. 

-20<=h<=20, -l1<=k<=l1, -28<=1<=31 

29494 

7436 [R(int) = 0.1196] 

98.2% 

Semi-empirical from equivalents 

1.048 and 0.362 

Pull-matrix least-squares on p2 

7436/7/564 

1.123 

Rl = 0.0923, wR2 = 0.2001 

Rl = 0.1846, wR2 = 0.2482 

0.381 and -0.527 e.A-3 
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Table A.7: Crystal data and structure refinement for (3.24) 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

Z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 25.07° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)] 

R indices ( all data) 

Largest diff. peak and hole 

C49H36FeN6S6 

957.05 

150(2) K 

0.71073 A 

Triclinic 

P -1 

a = 10.1613(5) A 

b= 15.1701(9) A 

c = 16.5684(10) A 

2384.1(2) A3 

(l = 102.549(3)°. 

f3 = 91.113(4)°. 

. y = 106.291(3)°. 

2 

1.333 Mg/m3 

0.620 mm-1 

988 

0.20 x 0.08 x 0.02 mm3 

2.59 to 25.07°. 

-12<=h<=12, -18<=k<=17, -19<=1<=19 

8363 

8363 [R(int) = 0.102] 

99.0% 

Semi-empirical from equivalents 

0.978 and 0.687 

Full-matrix least-squares on F2 

8363/37/570 

0.989 

Rl = 0.0706, wR2 = 0.1639 

Rl = 0.1430, wR2 = 0.1906 

0.517 and -0.439 e.A-3 
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Table A.8: Crystal data and structure refinement for (5.05) 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

Z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 26.50° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on p2 

Final R indices [I>2sigma(I)] 

R indices ( all data) 

Largest diff peak and hole 

C26H1404S2 

454.49 

295(2) K 

0.71073 A 

Monoclinic 

C2/c 

a = 16.404(2) A 

b = 11.7203(16) A 

c = 12.1821(17) A 

2093.6(5) A3 

p = 116.637(3)°. 

4 

1.442 Mglm3 

0.287 mm- l 

936 

0.60 x 0.20 x 0.06 mm3 

2.22 to 26.50°. 

-20<=h<=IO, -14<=k<=14, -13<=1<=15 

12036 

2174 [R(int) = 0.0283] 

100.0 % 

None 

0.9830 and 0.8467 

Full-matrix least-squares on F2 

2174/0/173 

1.036 

Rl = 0.0396, wR2 = 0.1044 

Rl = 0.0568, wR2 = 0.1161 

0.217 and -0.145 e.A-3 
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Appendix B: Polymer images 

(a) (b) 

(c) (d) 

(e) (t) 

Figure A-I: SEM images of (5.07) [with NaB(Ph)4] precipitates at (a) 50X (b) 
150X (c) 200X (d) 200X (e) 250X (f) 400X magnification 
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(a) (b) 

(e) (t) 

Figure A-2: SEM images of(5.10) precipitates at (a) 90X (b) 300X (c) 500X (d) 
1500X magnification 
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(a) (b) 

(c) 

Figure A-3: SEM images of (6.12) at (a) 50X (b) 250X (c) 1250X magnification 
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(a) (b) 

(c) 

Figure A-4: SEM images of (6.15) at (a) 406X (b) 10 lOX (c) 5000X 
magnification 

Figure A-5: Electropolymerization of (4.06) (left) and (6.15) connected to the 
variable temperature resistivity apparatus (right) 
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