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ABSTRACT 

The high sugar concentration in Icewine juice exerts hyperosmotic stress in the 

wine yeast causing water loss and cell shrinkage. To counteract the dehydration, 

yeast synthesize and accumulate glycerol as an internal osmolyte. In a laboratory 

strain of S. cerevisiae, STLl encodes for Stllp, an H+ /glycerol symporter that is 

glucose inactivated, but induced upon hyperosmotic stress. 

STLl, was found to be a highly upregulated gene in Icewine fermenting cells 

and its expression was 25-fold greater than in yeast cells fermenting diluted Icewine 

juice, making it one of the most differentially expressed genes between the two 

fermentation conditions. In addition, Icewine fermenting cells showed a two-fold 

higher glycerol production in the wine compared to yeast fermenting diluted 

Icewine juice. 

We proposed that Stllp is (1) active during Icewine fermentation and is not 

glucose inactivated and (2) its activity contributes to the limited cell growth 

observed during Icewine fermentation as a result of the dissipation of the plasma 

membrane proton gradient. 

To measure the contribution ofStl1p in active glycerol transport (energy 

dependent) during Icewine fermentation, we first developed an Stllp-dependent 

(14C]glycerol uptake assay using a laboratory strain of S. cerevisiae (BY 4742 and 

LiSTLl) that was dependent on the plasma membrane proton gradient and therefore 

energy-dependent. Wine yeast K1-Vll16 was also shown to have this energy 

dependent glycerol uptake induced under salt stress. 
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The expression of STLl and Stllp activity were compared between yeast cells 

harvested from Icewine and diluted Icewine fermentations. Northern blot analysis 

revealed that STLl was expressed in cells fermenting Icewine juice but not 

expressed under the diluted juice conditions. Glycerol uptake by cells fermenting 

Icewine juice was not significantly different than cells fermenting diluted Icewine 

juice on day 4 and day 7 of Vidal and Riesling fermentations respectively, despite 

encountering greater hyperosmotic stress. Furthermore, energy- dependent 

glycerol uptake was not detected under either fermentation conditions. 

Because our findings show that active glycerol uptake was not detected in 

yeast cells harvested from Icewine fermentation, it is likely that Stllp was glucose 

inactivated despite the hyperosmotic stress induced by the Icewine juice and 

therefore did not playa role in active glycerol uptake during Icewine fermentation. 
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1 INTRODUCTION 

1.1 INTRODUCTION TO THE PROBLEM 

Production of glycerol by yeast in response to hyperosmotic stress is an 

important adaptation mechanism during Icewine fermentation. Glycerol is an 

important osmolyte that allows yeast cells to adapt to the hyperosmotic stress. 

Glycerol concentration has been reported to be 4.85 giL in Riesling Icewine juice 

and 1.9 giL in Vidallcewine juice (Pigeau and Inglis, 2005; Pigeau and Inglis, 2007; 

Pigeua, et al., 2007; Martin, 2008). In addition, wine yeast cells synthesize glycerol 

during Icewine fermentation to act as an internal osmolyte. Surprisingly, the cells 

release the glycerol early in the fermentation (Pigeau and Inglis, 2005; Martin, 

2008). 

Interestingly, STL1 encoding Stllp, an active glycerol transporter (energy 

dependent), was found to be a highly upregulated gene in Icewine fermenting cells 

and its expression was 25-fold greater than in yeast cells fermenting diluted Icewine 

juice, making it one of the most differentially expressed genes between the two 

fermentation conditions (Martin, 2008). 

STLl encodes for the sugar-like transport protein (Stl1p) and was recently 

characterized as an H+ Iglycerol membrane symporter in laboratory yeast strains 

(Ferreria et al., 2005). It is one of the most highly induced genes during the response 

to hyperosmotic stress (Rep et al., 2000; Posas and Saito, 1997; Yale and Bohnert, 

2001). Under non-hyperosmotic stress conditions Stllp is glucose inactivated, 
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however this inactivation is overcome upon exposure to saline hyperosmotic stress 

(Ferreria et al., 2005). 

Because STLl expression is a dynamic process that depends on the yeast strain 

and the environmental conditions the cells are exposed to, it is possible that Stl1p is 

induced in Icewine fermenting cells to actively uptake glycerol from the fermenting 

media. If this is true, increased active transport of glycerol into the yeast cell by 

Stl1p may lead to the dissipation of the proton gradient across the plasma 

membrane and thus eliminate the driving force of nutrient entry into the cell 

(reviewed by Boulton et al., 1998; Horak, 1986). These events may direct ATP 

utilization within the yeast cell toward reestablishment of the proton gradient, 

rather than cell growth. Thus, the limited cell growth observed during Icewine 

fermentation may be a result of reduced nutrient uptake due to high induction of 

Stl1p. 

Analysis of Icewine juices from the Niagara Region of Ontario, Canada shows an 

average assimilable nitrogen content of 555 mg NjL for 297 Vidal Icewine juices and 

461 mg NjL for 24 Riesling Icewine juices (Ziraldo and Kaiser, 2007). Even though a 

sufficient amount of nitrogen is present in the Icewine juice, still nitrogen uptake is 

reduced during Icewine fermentation (Martin, 2008) 

In previous studies, wine yeast only used 112 mg jL of nitrogen during Icewine 

fermentation, even though 389 mgjL was available in the initial juice (Pigeau and 

Inglis, 2005). Despite the fact that nitrogen and sugar concentrations are not 

limiting in Icewine fermentation, cells were only reported to double 2-3 times 
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during fermentation as opposed to 7-8 times during a table wine fermentation 

(Kontkanen et al., 2004). 

The role that Stl1p plays in wine yeast during Icewine fermentation is still 

unknown. Thus, the goal of this research is to characterize the function of Stl1 p in 

hyperosmotically stressed Icewine fermenting cells and determine if Stl1 P actively 

uptakes glycerol into the cell during Icewine fermentation. 

IfStllp indeed contributes to the limited cell growth observed during Icewine 

fermentation, the induction of this protein in wine yeast may not be desirable given 

that it slows down the fermentation process. However, active Stl1p may provide an 

advantage to wine yeast fermenting Icewine if it is found to be active during 

fermentation and assisting the yeast to overcome the stress of the environment. 

Since there is no commercial yeast strain that has been specifically selected for 

Icewine fermentation in the wine industry, the expression of STU could be used as a 

biomarker for strain screening purposes depending on its contribution to wine 

yeast during Icewine fermentation. The findings of this project may assist in this 

selection process for strains that may potentially ferment Icewine juice with 

improved efficiency. 
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1.2 OBJECTIVES 

The goal of this project was to investigate if Stl1p H+ jglycerol symporter 

actively transports glycerol into wine yeast cells in response to hyperosmotic stress 

induced by Icewine fermentation. To pursue this goal, first it was necessary to 

design a glycerol uptake assay that measures energy dependent glycerol transport 

specific for Stl1 p, often referred to in this thesis as "Stl1 p-dependent active glycerol 

uptake" and second, to use this assay to compare Stl1p-dependent glycerol uptake in 

wine yeast fermenting Icewine and diluted Icewine juice. 
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1.3 EXPERIMENTAL DESIGN 

To investigate if Stll P H + / glycerol symporter actively uptakes glycerol into wine 

yeast during Icewine fermentation, it was necessary to design a glycerol uptake 

assay specific for Stllp. For this purpose, two laboratory S. cerevisiae strains were 

used: the laboratory mutant strain L1STLl where the STLl gene is not expressed and 

its parental strain BY 4742. Both strains were subjected to salt stress and STLl 

induction was confirmed in the parent strain using Northern blot analysis. Under 

the same induction conditions, cells of both parent and mutant yeast strains were 

harvested to measure glycerol uptake in response to hyperosmotic stress. To follow 

the level of glycerol uptake and accumulation in the cell, radiolabeled glycerol 

([14C]glycerol) was used. 

In order to determine the optimal ([14C]glycerol assay conditions that show 

specificity for Stllp activity, [14C]glycerol uptake was compared under three 

different glycerol concentrations (4, 10 and 65 mM). The low glycerol 

concentrations are published concentratios under which Stllp activity was 

measured (Ferreria, et al., 2005). The 65 mM glycerol concentration was chosen to 

determine if Stllp activity is measurable using the glycerol assay in the presence of 

higher glycerol concentration. Martin (2008) showed that at day 4 of Icewine 

fermentation, the glycerol concentration in the Icewine juice reached 65 mM, and at 

the same timepoint, STLl expression peaked. 

To determine if glycerol uptake depends on the presence of Stllp, glycerol initial 

uptake rates were compared between L1STLl and its parent strain. To investigate if 
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Stl1p glycerol uptake is energy dependent, glycerol uptake was measured in the 

presence of carbonylcyanide-m-chlorophenylhydrazone (CCCP). This uncharged 

lipid-soluble weak acid is able to cross the yeast membrane and release a proton in 

the cytosol, thus leading to the dissipation of the proton gradient across the plasma 

membrane (reviewed in Spencer and Spencer, 1997; Figure 1.3.1 C). If glycerol 

transport by the Stl1p depends on the proton motive force, then in the presence of 

CCCP, Stllp-dependent glycerol uptake should be inhibited in the parent strain. To 

investigate if wine yeast displays Stllp-dependent glycerol uptake, cells were 

subjected to the same saline stress conditions in order to induce Stllp and 

harvested to measure glycerol accumulation in the presence and absence of CCCP 

(Figure 1.3.1 A). 

Once the optimal assay conditions were determined to show Stll p-dependent 

active glycerol uptake in wine yeast, Stl1p activity was compared between yeast 

cells fermenting Icewine and cells fermenting diluted Icewine juice in the presence 

and absence of the protonophore (Figure 1.3.1 B). 
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Laboratory strain ,1STL 1 knockout Wine strain 
(BY4742) (control) (K1N1116) 

i 
Grow cells and Induce Stl1 p by 

Salt stress 

! 
Harvest cells 

~ 
Measure 14C-glycerol 

accumulation 
+/ -CCCp 

I 

"l)'''"=C:' 
(eep 

Icewine 
37 °Brix 

I 

dilute Ice wine 
18.5 °Br ix 

Harvest wine yeast (Kl-V1116) at the peak 
of STLl differential expression between the 

two fermentation conditions 

Measure 14C-glycerol 
accumulation 
+ /- CCCP 

Figure 1.3.1: Experimental design of [14C]glycerol uptake assays. (A) [14C]glycerol 
uptake by BY4742, L!STLl knockout and wine yeast K1-Vll16 was measured upon 
exposure to saline stress in the presence and absence of CCCP. (B) Stllp-dependent 
[14C]glycerol uptake was measured in wine yeast during Icewine and dilute Icewine 
fermentations in the presence and absence of CCCP.(C) CCCP as indicator for 
glycerol active uptake. CCCP dissipates the yeast plasma membrane proton gradient 
by crossing the membrane and releasing a proton in the cytosol, thus inhibiting 
active glycerol uptake via Stllp. 
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2 LITERATURE REVIEW 

2.1 Icewine: Production and challenges 

Icewine (Eiswein in German) is a sweet dessert wine made from the juice of 

naturally frozen grapes. In Canada, the wine is named Icewine only if the grapes are 

picked and immediately pressed at temperatures lower than -8°C (VQA, 1999). 

During the pressing, water ice crystals are trapped in the grape and therefore not 

transferred to the extracted juice. The substantial reduction in water content results 

in juice that is highly concentrated with soluble solids such as sugars, acids and 

nitrogenous compounds. The concentration of soluble solids in Canadian Icewine 

juice commonly falls within the range of 38°Brix to 42°Brix with a minimum allowed 

limit of 35°Brix (VQA, 1999). 

Canada is the world's largest producer of Icewine, with the majority of 

production originating from the Niagara Peninsula region in the southern portion of 

the province of Ontario. In 2007, it was reported that Ontario produced 

approximately 1.25 million liters, an increase of 123% in volume produced from the 

previous year (VQA, 2008). 

Icewine producers face different challenges throughout the production process 

of Icewine. Annual yields of Icewine may vary each year depending on the weather 

conditions, a factor which eventually determines the time point of grape harvest. 

The longer the grapes are left on the vine, the more they are susceptible to damage 

by bird feeding on the crop and continued dehydration (VQA, 2008). More 

challenges are introduced during the fermentation process. Because of the 
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concentrated nature of the Icewine juice, fermentations are often sluggish, taking 

months to reach the desired ethanol levels (10% v/v) and usually end with high 

levels of residual sugar with an average of 214.7 g L-l (Nurgel et aI., 2004). 

The complex composition of the Icewine must is the major contributor to the 

lengthy fermentation and the lower levels of ethanol. Wine yeast fermenting Icewine 

juice experiences hyperosmotic stress induced by the high concentration of soluble 

solids found in the must. Once inoculated to the hypertonic environment of the 

Icewine must, yeast cells loose water content due to osmosis and therefore shrink. 

Within minutes yeast cells activate an initial stress response to counteract the 

dehydration effect of the hyperosmotic stress. Within hours, yeast cells activate the 

high osmolarity glycerol (HOG) pathway, a signaling pathway that eventually leads 

to the upregulation of glycerol synthesis genes (Erasmus et aI., 2003). Following the 

initial response, cells turn on an adaptive response that requires changes in sugar 

metabolism. Cells fermenting Icewine experience reduced growth rates and 

therefore only double 2-3 times throughout the course of the fermentation in 

comparison to table wine where cells double at least 7 -8 times (Pigeau and Inglis, 

2005). Studies show that during Icewine fermentation, a higher portion of sugar 

energy is directed towards the production of glycerol and acetic acid rather than cell 

growth (Pigeau and Inglis, 2005; Pigeau et aI., 2007; Martin, 2008). 

The production and accumulation of glycerol during the yeast response to 

hyperosmotic stress is an important adaptation mechanism against the dehydration 

effect of Icewine juice on wine yeast. The accumulation of glycerol is necessary for 

18 



the continuation of biochemical processes in the cell, even when water content in 

the cell is low, and thereby allowing the cell to survive (Reviewed by Hohmann et al., 

2007). A survey of 50 Canadian Icewines reported that the average concentration of 

glycerol in Canadian Icewines is 12.4 g L-l, where as reported values of table wine 

ranges from 1.4 to 10.6 g L-l (Nurgel et al., 2004). 

Commercial yeast strains were selectively chosen to ferment wine due to their 

tolerance to different stresses introduced during fermentation. It is possible that 

some of these strains are better suited to ferment Icewine juice with greater 

efficiency, however no biomarkers have been identified to select for these strains. It 

is essential to investigate the role of Stl1 p in commercial wine yeast strains during 

Icewine fermentation to better understand yeast adaptation mechanisms and 

perhaps use STLl as a biomarker to select for strains that can manage Icewine 

fermentation processes more efficiently and consequently increase Icewine quality. 
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2.2 Yeast response to hyperosmotic stress 

An increase in environmental osmolarity evokes different response mechanisms 

in S. cerev;s;ae to adapt to the hyperosmotic stress. This response has been 

extensively studied in laboratory yeast strains of S. cerev;s;ae (reviewed by 

Hohmann, 2009). Due to excessive water efflux, yeast lose membrane turgor 

pressure and therefore the cells shrink. As a result, cells will increase glycerol 

retention due to its role as an internal osmolyte. Within minutes, the glycerol 

diffusion rate decreases in yeast cells and they shut down the glycerol efflux channel 

Fps1p to prevent glycerol loss from the cell (Figure 2.2.1.a and .b, Tamas et al., 

1999). 

At the same time yeast activates the high osmolarity glycerol (HOG) pathway 

(Figure 2.2.1.c) (reviewed by Hohmann, 2009). This MAP kinase mediated signaling 

transduction pathway controls the expression of many stress responsive genes, 

among them GPD1, to control glycerol synthesis and STL1, to control glycerol uptake 

(Figure 2.2.1.c, Ferreria et al., 2005). After approximately 15 minutes, cells initiate 

energy dependent uptake of extracellular glycerol through the induction of Stl1p, an 

H+jglycerol symporter (Ferreri a et al., 2005). All of these events lead to the cells 

adaptation and survival. 
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CIa Reduction In glycerol 
passive diffusion rate 

E·.OH 
OH 
OH 

e Shut down of 
glycerol channel 

[Ht-] high 

lHyperosmotic stress 

Glycerol production 
and accumulation 

Figure 2.2.1: Yeast response to hyperosmotic stress in S. cerevisiae. Hyperosmotic 
stress results in ( a) the reduction of glycerol passive diffusion out of the cell, (b) 
shut down ofFps1p glycerol channel and (c) activation of the high osmolarity 
glycerol (HOG) pathway to upregulate the expression of glycerol synthesis genes. At 
the same time, yeast induces active glycerol uptake ofStllp (d). (Hohmann, 2009). 
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2.2.1 The effect of changes in environment osmolarity on yeast turgor pressure and 

water potential 

The semipermeable membrane of yeast allows water molecules to freely flow 

into or out of the cell in order to reach water equilibrium with the environment 

(reviewed by Blomberg and Adler, 1992). Besides passive diffusion, water can also 

cross the membrane via facilitated diffusion mediated by different aquaporins 

(Pettersson et al., 2005) which act as regulators for water movement across the 

plasma membrane. This water flow phenomena, named osmosis, directly depends 

on the solute concentrations the cells are exposed to. Since active cellular processes 

occur in aqueous solutions, changes in the cellular osmotic balance must trigger 

changes in cell physiology. These changes are critical for cell survival and growth in 

the new environmental conditions. 

Water will always flow across the semi-permeable membrane towards the 

higher solute concentration, where the potential of water is lower (Hohmann and 

Mager, 2003). At hypertonic conditions (low water potential in environment), where 

the concentration of solutes in the surrounding media is higher than the 

intracellular concentration, water flows out of the yeast cell to reach 

thermodynamic water equilibrium. As a result, the cells dehydrate and shrink 

(Figure 2.2.1.1). Conversely, at hypotonic conditions (high water potential in 

environment), when the concentration of solutes in the outside environment is 

lower than the intracellular concentration, water flows into the cell and therefore 

the cells swell. 
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Water potential not only depends on the concentration of solutes (osmotic 

potential) in the cell but also on the turgor pressure of the cell (Blomberg and Adler, 

1992). Under non-stressed conditions, yeast cells keep a slightly higher internal 

osmotic pressure than that of the surrounding medium. The pressure difference is 

counteracted by cell wall resistance and is referred to as cell turgor pressure 

(Hohmann and Mager, 2003). 

Hyperosmotic stress causes yeast to lose water content and therefore turgor 

pressure. These events eventually lead to structural changes in the membrane of S. 

cerevisiae. In response to these changes, the yeast activates different mechanisms 

that lead to the synthesis, accumulation and retention of glycerol, an important 

compatible solute that allows the yeast to adapt and survive the effects of 

hyperosmotic stress. These mechanisms are discussed in detail in sections 2.2.2.3 

and 2.2.2.4. 

Adaptation leading to 
passive water efflux and 
reduced turgor pressure 

Rapid water inflow 
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Figure 2.2.1.1: A schematic representation ofthe effect of changes in environmental 
osmolarity on budding yeast size and turgor pressure. 
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2.2.2 The role of glycerol as an internal osmolyte in s. cerevisiae 

In order to understand yeast response to hyperosmoticstress, it is necessary to 

investigate the role glycerol plays as an internal osmolyte when yeast is exposed to 

hypertonic environments such as Icewine juice. 

A general mechanism by which microorganisms counteract the dehydration 

effects of hyperosmotic stress is through the uptake and production of one or more 

specific solutes called osmolytes or osmoprotectants (Yancey et al., 1982). 

Osmolytes are accumulated in microorganisms in order to control and balance 

water levels in the cell. These solutes are also referred to as compatible solutes 

because cells can accumulate osmolytes in high concentration without giving rise to 

appreciable enzyme inhibition or inactivation, thus allowing cellular processes to 

continue even though water availability is low in the cell. Osmolytes can be 

accumulated in a microorganism either through synthesis or through uptake from 

the surrounding medium (Pollard and Wyn Jones, 1979). 

Glycerol is the main compatible solute of fungi among other polyhydroxy 

alcohols such as arabinitol and erythritol (Blomberg and Adler, 1992) and the sole 

compatible solute in S. cerevisiae during response to hyperosmotic stress (Hohmann 

and Mager, 2003). 

What is the role that glycerol plays during response to hyperosmotic stress? 

Glycerol is accumulated in the yeast cell to increase the internal osmolarity and 

induce water flow back into the shrunken cells. The increase in water content 
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reestablishes turgor pressure, which is required for normal membrane function 

(Hohmann and Mager, 2003; Blomberg and Adler, 1992). 

2.2.2.1 Glycerol synthesis during hyperosmotic stress 

Blomberg and Adler (1989) demonstrated that S. cerevisiae cells accumulated 

higher levels of glycerol with increased saline osmolarity (up to 1.4 M NaCI) and that 

increase was directly related to enhanced activity of the enzyme responsible for 

glycerol synthesis under hyperosmotic stress, Gpd1p. In addition, GPD1.1 mutants 

were shown to produce less than half of the glycerol produced by their wild type 

counterparts, and were shown to be sensitive to high saline osmolarity (Ansell et al., 

1997; Albertyn et al., 1994). This evidence suggests that glycerol is an important 

metabolite for yeast to survive hypertonic environments, and therefore yeast induce 

specific glycerol synthesis genes to increase intracellular levels of glycerol to 

survive. 
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2.2.2.2 Glycerol synthesis pathways under different environmental conditions 

In S. cerevisiae, glycerol is synthesized from the glycolytic intermediate 

dihydroxyacetone phosphate in two steps (Figure 2.2.2.2.1): Reduction of 

dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate (G3P) by glycerol-3-

phosphate dehydrogenase and dephosphorylation of glycerol-3-phosphate to yield 

glycerol by glycerol-3-phosphate phosphatase. The reduction of DHAP to glycerol-3-

phosphate is the rate-limiting step in osmotically induced glycerol formation 

(Remize, et al. 2003). It is catalyzed by two NAD-dependent enzymes encoded by 

two isogenes: GPDl and GPD2. The hydrolysis of glycerol-3-phosphate to glycerol is 

catalyzed by two phosphatases encoded by two isogenes: GPPl and GPP2 (Larsson 

et al., 1993; Albertyn et al., 1994; Ansell et al., 1997; Pahlman et al., 2001). Each of 

these dehydrogenases and phosphatases are differentially expressed depending on 

the metabolic state of the cell. 

The expression of GPDl is stimulated under hyperosmotic stress and considered 

to be the major isoform responsible for glycerol production during hyperosmotic 

stress (Larsson et al., 1993; Albertyn et al., 1994). Contrary to GPD1, the expression 

of GPD2 is not upregulated in response to hyperosmotic stress and its mRNA levels 

actually drops (Ansell et al., 1997). GPD2 is expressed in yeast for the purpose of 

maintaining intracellular redox balance for the NAD+ jNADH co-factor system. Even 

though only GPDl was found to be the isoform responsible for glycerol production 

in response to hyperosmotic stress, mutations in either GPDl or GPD2 results in 
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sensitivity to hyperosmotic stress, indicating that both isoforms are required for the 

yeast to survive a hypertonic environment. 

The second reaction of glycerol synthesis involves two phosphatases encoded by 

GPPl and GPP2. The expression of both isoforms is induced under hyperosmotic 

stress conditions, however, GPP2 is expressed to a greater degree than GPPl 

(Pahlman et al., 2001; Hirayama et al., 1995; Norbeck et al., 1996). 

It appears that the Gpd1p-Gpp2p pair forms the major pathway for glycerol 

production in S. cerevisiae during response to hyperosmotic stress under aerobic 

conditions. 

When yeast is grown under anaerobic and hyperosmotic stress conditions, the 

production of glycerol is required not only to increase intracellular glycerol 

concentration but also to maintain redox balance. The reoxidization of nicotinamide 

adenine dinucleotide (NADH) during glycerol synthesis allows the cell to balance the 

redox potential and inorganic phosphate recycling (Ansell et al., 1997). Unlike 

aerobic conditions where Gpd1p-Gpp2p forms the major pathway for glycerol 

production in S. cerevisiae (Pahlman et al., 2001), under anaerobic conditions 

glycerol production is prominently controlled by the Gpd2p-Gpp1p isoforms (Ansell 

et al., 1997). 

During wine fermentation, wine yeast is exposed to osmotic stress under 

anaerobic conditions. In contrast to previous findings where anaerobic conditions 

induced the expression of GPD2, in wine fermentation GPDl plays a major role in 

glycerol formation, specifically during the first few hours of exposure to high sugar 
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concentration (Remize et al., 2003). Similarly, Pigeau and Inglis (2005) showed that 

the elevated production of glycerol in Icewine fermenting yeast cells corresponds to 

an increase in expression of GPDl but not GPD2. Therefore, during Icewine 

fermentation glycerol production appears to be mainly controlled by Gpdlp-Gpp2p 

isoforms (Martin, 2008; Pigeau and Inglis, 2007). 
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Figure 2.2.2.2.1: Glycerol synthesis and ethanol production pathway 
during alcoholic fermentation. Glucose is oxidized through glycolysis 
into two intermediates, glycerol-3-phosphate that is further oxidized 
to ethanol and dihydroxyacetone phosphate that is eventually 
converted to glycerol. Glycerol synthesis from DHAP is a two-step 
process that involves two pair of enzymes: Glycerol-3-phosphate 
dehydrogenase 1 or 2 (encoded by GPDl or GPD2) and glycerol-3-
phosphatase 1 or 2 (encoded by GPPl or GPP2). (Nevoigt and Stahl, 
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2.2.2.3 Activation of the HOG pathway for glycerol synthesis 

The high osmolarity glycerol (HOG) mitogen activated protein kinase (MAPK) 

pathway mediates the immediate transcriptional response to hyperosmotic stress in 

S. cerevisiae to allow cell adaptation and survival under high osmolarity conditions. 

The architecture of the MAPK signaling pathway is conserved in eukaryotes and is 

based on the sequential phosphorylation of three levels of mitogen activated protein 

kinases: a MAP kinase kinase kinase (MAPKKK), a MAP kinase kinase (MAPKK) and 

a MAP kinase (MAPK) (Figure 2.2.2.3.1, reviewed in Hohmann, 2007). 
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Hotlp --~.~ 
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Figure 2.2.2.3.1: The HOG pathway in S. cerevisiae controls glycerol 
homeostasis. The activation of Hotl p transcription factor initiates the 
transcription of osmotolerant related gene, GPD1/GPP2 that control glycerol 
synthesis and STL1 that is responsible for glycerol uptake. (Hohmann, 2009). 
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The MAPKs are important signal transduction protein kinases that are involved 

in many facets of cellular regulation such as cell proliferation, cell differentiation, 

cell movement and cell death. 

The presence of the appropriate stimuli will induce the phosphorylation of the 

MAP KKK which phosphorylates the MAPKK on its serine and threonine residues 

and that in turn phosphorylates the threonine/serine and tyrosine residues of the 

terminal kinase, the MAPK. The latter is translocated into the nucleus to activate 

gene expression in response to the stimuli. The Hog1p is the ultimate MAPK of the 

Hog1 pathway in S. cerevisiae (reviewed by Hohmann, 2007). 

The activation of the HOG pathway in response to hyperosmotic stress is 

initiated by special proteins embedded in the plasma membrane of S. cerevisiae that 

are able to sense changes in osmolarity. Also known as osmosensors, Sho1p and 

Sln1p control the two parallel branches of the HOG pathway that converge on the 

MAPKK Pbs2p. The activation of the Sho1 branch is not fully understood, but it has 

been suggested that changes in the cell shape and/or cell surface conditions may be 

sensed by Sho1p, which in turn activates the MAPK signaling cascade. Sho1p can 

interact with downstream signaling elements in the HOG pathway through its C

terminal SH3 domain that can bind and activate Pbs2p (Raitt et al., 2000; Maeda et 

al.,1995). 

In response to osmotic stress, Sho1p forms a transient protein complex at the 

yeast plasma membrane. Sho1p recruits Pbs2p to the cell surface together with its 

regulators Ste20p, Ste50p and Cdc42p proteins (Maeda et al., 1995; Posas and Saito 
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1997; Raitt et al., 2000; Reiser et al., 2000). Ste20p activates the first kinase in line, 

Stellp (MAPKKK), and the latter phosphorylates Pbs2p MAPK. Pbs2p 

phosphorylates the ultimate MAPK Hoglp on both Thr174 and Tyr176 residues. 

Once in the nucleus, Hoglp is recruited to target promoters by Hotlp, Skolp, and 

Msn2pjMsn4p transcription factors (Alepuz et al., 2004; de Nadal et al., 2004; 

Pokholok et al., 2006). 

The Slnl branch negatively controls the HOG pathway. The SLNl gene encodes 

an enzyme with histidine kinase and aspartate phosphotransferase activities and 

functions as a plasma membrane sensor. Under non-stressed conditions, Slnlp 

actively transfers a phosphate to Ypdlp, which in turn phosphorylates Ssklp (Darin 

and Gorman, 1999). This phosphorylation inactivates Ssklp and therefore inhibits 

the downstream activation of elements in the HOG pathway. Under hyperosmotic 

stress, Ssklp is dephosphorylated and therefore can activate the Ssk22p and Ssk2p. 

These MAPKKK's phosphorylates Pbs2 MAPK to induce the osmoadaptation 

response through the HOG pathway. The MAPK signaling pathway is also negatively 

controlled by additional phosphotransferases such as Ptp and Ptc which can 

deactivate Hoglp (Young et al., 2002). 

The expression of STL1 in response to hyperosmotic stress was shown to be 

strictly Hoglp-dependent (Westfall et al., 2008). STLl encodes for a membrane 

H+ jglycerol symporter that actively uptakes glycerol into the cell during response to 

hyperosmotic stress (Ferreria et al., 2005). Alepuz et al. (2001) showed that when S. 

cerevisiae cells were exposed to 0.4 M NaCI, Hoglp kinase was delocalized to the 
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nucleus to interact with Hotl p transcription factor on the promoter region of the 

STLl gene (Figure 2.2.2.3.1). This association occurs only under hyperosmotic stress 

conditions (Alepuz et al., 2001). Hotlp is a nuclear protein that seems to control a 

set of less than 10 genes, including the glycerol synthesis gene, GPDl and glycerol 

transport gene, STL1. Deletion of HOTl completely abolishes the induction of STL1 

and therefore STLl expression directly depends on the activation of the HOG 

pathway and Hoglp MAPK (Rep et al., 2000; Westfall et al., 2008). 

2.2.2.4 Glycerol uptake during hyperosmotic stress 

In addition to glycerol synthesis, yeast can also modulate the transport of 

glycerol across the membrane to increase the level of intracellular glycerol. 

Evidence shows that hyperosmotic stress results in a decreased rate of glycerol 

passive diffusion across the plasma membrane, to increase glycerol retention. In 

addition, yeast can control glycerol transport proteins located in the yeast plasma 

membrane, Fpslp and Stllp (Figure 2.2.2.2.5.1) to regulate glycerol efflux and 

uptake. Fpslp is an aquaporin channel that transports glycerol into or out of the cell 

via facilitated diffusion. This channel is mainly responsible for the regulation of 

glycerol efflux and is controlled by gating mechanism and also directly involves the 

regulation of the N loop which keeps Fpslp in a conformation that allows it to 

readily restrict glycerol transport in the presence and absence of osmotic stress. In 

the absence of this domain, transmembrane glycerol flux is too high to allow 
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efficient accumulation of glycerol by the cell, hence sensitivity to high hyperosmotic 

stress (Tamas et al., 1999; Tamas et al.,2003). 

Under hyperosmotic stress conditions, this channel is shut down within minutes 

to prevent glycerol leakage (Tamas et al., 1999). In parallel to that, the Stl1 p 

H+jglycerol symporter is induced, to uptake glycerol in an energy dependent 

manner, by using the proton gradient across the plasma membrane (Ferreria et al., 

2005). 

2.2.2.5 Controlling the activity of glycerol transport proteins Fpslp and Stllp 

Glycerol can enter S. cerevisiae cells using three known mechanisms: passive 

diffusion, facilitated diffusion via the Fps1p channel and active transport by Stl1p 

H+jglycerol symporter (Figure 2.2.2.2.5.1). Each of these mechanisms is used 

depending on the environmental conditions the cells are exposed to. 

Glycerol is an uncharged small molecule with a liposoluble nature that can 

readily cross the plasma membrane of S. cerevisiae via passive diffusion (Blomberg 

and Adler,1992). Glycerol transport studies with hyperosmotically stressed yeast 

show a reduction in glycerol simple diffusion rate out of the cell (Sutherland et al., 

1997). It appears that yeast limits glycerol permeability across the plasma 

membrane to facilitate glycerol retention. 

In addition to passive diffusion, S. cerevisiae uses two membrane transporters to 

control the glycerol transmembrane flux. These are the Fps1p aquaglyceroporin 

channel and Stl1p H+ jglycerol symporter. Both of these proteins play an important 
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role in glycerol accumulation and retention in yeast during response to 

hyperosmotic stress. 
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Figure 2.2.2.5.1: Glycerol transport mechanisms in S. cerevisiae. Glycerol can enter yeast 
cell by either (1) passive diffusion, (2) facilitated diffusion mediated by the Fps1p channel 
and (3) through Stllp H+jglycerol symporter. (Hohmann, 2009). 
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Fps1p aquaglyceroporin, encoded by FPSl gene, belongs to the Major Intrinsic 

Protein (MIP) family, which comprise water channels and glycerol facilitators. It is 

required for glycerol uptake by facilitated diffusion but the major role of Fps1 p is 

controlling glycerol efflux in response to hypo-osmotic shock (Luyten et al., 1995; 

Tamas et al., 1999). During hypo-osmotic shock, water flows into the yeast cell and 

causes the cells to swell. Within seconds, cells open the Fps1p channel to allow the 

release of glycerol. The majority of glycerol accumulated in laboratory strains of S. 

cerevisiae during hyperosmotic shock (80%) is later exported from the cell through 

Fps1p (Tamas et al., 1999). Conversely, during hyperosmotic stress, the Fps1p 

channel closes within seconds, to allow glycerol retention (Tamas et al., 2003). The 

cytosolic N-terminal extension of Fps1p is required for channel closure and its 

deletion results in unregulated glycerol transport activity (Karlgren et al., 2005). 

Studies have shown that strains lacking FPSl can retain more glycerol than their 

wild-type counterparts upon salt induced osmotic stress (Luyten et al., 1995; Tamas 

et al., 2003). Unlike STL1, the expression of FPSl is not in-fluenced by hyperosmotic 

stress and therefore is not controlled by the HOG signaling pathway. It is still not 

clear how FPSl transcription is regulated. 

STLl is one of the most upregulated genes in S. cerevisiae during response to 

hyperosmotic stress (Rep et al., 2000; Yale and Bohnert 2001; Posas et al., 2000; 

Erasmus et al., 2003; Melamed et al., 2008; Martin, 2008). The product ofthis gene, 

Stl1p, is an H+ jglycerol symporter that actively uptakes glycerol into the cell during 

hyperosmotic stress in laboratory strains of S. cerevisiae (Ferreria et al., 2005). In 
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the glycerol-proton symport uptake system, one glycerol molecule is co-transported 

against its concentration gradient with one proton into the cell. Therefore, glycerol 

active uptake in yeast will occur only if the proton gradient across the plasma 

membrane is established. 

This symport activity is inhibited in the presence of chemical protonophores 

such as carbonylcyanide-m-chlorophenylhydrazone (CCCP) and carbonyl cyanide p 

(trifluoromethoxy) phenylhydrazone (FCCP). These are uncharged lipid-soluble 

weak acids that can cross the yeast membrane, release a proton in the cytosol, and 

thereby dissipate the proton gradient across the plasma membrane (van Zyl et aI., 

1990; Lages and Lucas, 1995) 

Induction of Stllp depends on the transcriptional state of STL1. Expression of 

STLl is not only induced by hyperosmotic stress in a Hotl p-dependent manner, but 

also by non-fermentative carbon sources such as glycerol, ethanol and acetate. Yeast 

can alternate between metabolic pathways in order to utilize these carbon sources 

when glucose is exhausted in the cell. This phenomenon is also referred to as diauxic 

shift. Under non-stressed aerobic conditions, glucose represses the expression of 

STLl at the RNA level along with 36 other genes related to ethanol utilization. When 

glucose is exhausted, cells enter diauxic shift and STLl is de-repressed and induced 

in a Cat8p transcription factor dependent manner (Haurie et aI., 2001). 

Ferreira et al (2005) were the first to show that Stl1p H+ jglycerol symporter was 

induced in response to hyperosmotic stress in the aerobically glucose-grown 

laboratory strain of S. cerevisiae. These cells were first grown to the exponential 
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phase and right after incubated with 0.7 M NaCl. Stllp induction was detected 30 

min after incubation with the salt and peaked after 1.5 hours. Interestingly, Stl1p 

induction time-line was directly correlated with the level of glycerol uptake rate and 

accumulation, which also peaked after 1.5 hours of salt stress. 

Unlike the rapid induction of Stl1p observed in exponentially grown cells in 

response to abrupt hyperosmotic stress conditions, cells grown aerobically on 

glucose and at the same time continually subjected to salt stress (0.7 M NaCI) did 

not present a rapid induction of Stll p. Stll P was detected only after 25.5 hours, at 

the time point of diauxic shift where glucose was almost exhausted (Ferreria et al., 

2005). Therefore, It appears that induction of Stllp by hyperosmotic stress is 

detected only when the stress is introduced abruptly after the cells have reached the 

exponential growth phase (Ferreria et al., 2005). 

Interestingly, cells subjected to hyperosmotic stress induced by the high sugar 

concentration during Icewine fermentation upregulated STLl between days 2 to 4 of 

the fermentation, when glucose levels remain high, yet it is not known what is the 

role of the product ofthis gene, Stl1p, in glycerol transport under these anaerobic 

hyperosmotic stress conditions (Martin, 2008). 
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2.3 Yeast response to hyperosmotic stress during Icewine fermentation 

2.3.1 The effect of Icewine juice on wine yeast K1-V1116 glycerol production and cell 
growth 

Wine yeast fermenting Icewine juice is subjected to hyperosmotic stress due to 

the high concentration of soluble solids found in the Icewine must. Similar to 

previous studies with laboratory S. cerevisiae strains subjected to salt and sugar 

stress, Icewine fermenting yeast experiences rapid dehydration, lose membrane 

turgor pressure and shrink within a few hours upon inoculation. These events 

eventually lead to slow fermentations and thereby limited cell growth (Kontkanen 

et al., 2004; Pigeau and Inglis, 2005). 

Pigeau and Inglis (2005) studied the response of the wine yeast Kl-Vll16 to 

hyperosmotic stress during Vidal Icewine fermentations. To that end, two 

fermentation conditions were set up, one with Icewine juice containing 400Brix of 

soluble solids and the other with diluted Icewine juice containing 200Brix of soluble 

solids, comparable to juice used for table wine production. Yeast fermenting Icewine 

juice experienced greater hyperosmotic stress compared to cells fermenting diluted 

Icewine juice. This stress resulted in an extended lag phase and a reduced growth 

rate. Through the course of Icewine fermentation cells doubled only 2-3 times and 

exhibited a delay in budding. After 48 hours from the time point of inoculation, the 

cell number in Icewine fermentation media was 3-times lower than the cell number 

measured in diluted Icewine juice which had already reached mid-exponential 

growth phase (Pigeau and Inglis, 2005; Martin, 2008). Cells fermenting Icewine juice 
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accumulated only half of the biomass accumulated by diluted Icewine fermenting 

cells, even though both cells consumed approximately the same amount of glucose. 

It appears that during Icewine fermentation, yeast cells are required to re-direct 

sugar energy towards adaptation to high osmotic stress, rather than utilizing this 

energy for cell division and growth. 

One of the first lines of defense against the dehydration effect of hyperosmotic 

stress in S. cerevisiae is the accumulation and production of glycerol. Yeast cells 

subjected to hyperosmotic stress can produce glycerol by re-directing a portion of 

glucose energy from ethanol production to glycerol synthesis. This is also observed 

during Icewine fermentation. For the same amount of sugar consumed, Icewine cells 

produce approximately twice as much glycerol compared to cells in the diluted juice 

fermentations (Pigeau and Inglis, 2005, Pigeau and Inglis, 2007). Interestingly, both 

Icewine and diluted Icewine fermenting cells release the glycerol to the 

fermentation media at the onset of fermentation, as observed through monitoring 

the increase in glycerol concentration in the fermentation media. These results are 

in contrast to laboratory yeast strain under hyperosmotic stress conditions (Tamas 

et al., 1999). 
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2.3.1.1 Transcriptional response of wine yeast K1-V1116 to hyperosmotic stress and 
the STU gene 

When wine yeast is inoculated into Icewine juice, it remains in lag phase for 

more than 48 hours. This extended lag phase is required for the yeast to change its 

metabolism in order to adapt to the hyperosmotic stress through modulating the 

transcriptional state of osmotolerant related genes. Microarrayanalysis of the 

transcriptional response of wine yeast K1-Vll16, during Icewine and diluted 

Icewine fermentation revealed that 2-5% of the genes in the yeast genome were 

differentially expressed between days 2-5 of the fermentation (Martin, 2008). These 

include genes that are induced during osmotic stress, among them glycerol 

synthesis and transport related genes. 

Surprisingly, FPS1, the gene that encodes for glycerol export protein channel, 

Fps1p, was not differentially expressed at day 2 of either Icewine or diluted Icewine 

fermentations and its mRNA transcript could not be detected following that day 

(Martin, 2008). These results are in contrast with Tamas et al. (1999) who showed 

that FPSl is continually expressed in either saline stressed or non-stressed 

laboratory yeast cells, thus, its expression is not hyperosmotically stress dependent. 

It is also interesting to note that when FPSl was not expressed, cells were better 

able to respond to hyperosmotic stress. The same study also found that even though 

FPSl expression is not controlled or induced by hyperosmotic stress, the product of 

this gene, Fps1p, closes immediately upon exposure to hyperosmotic stress to 

prevent glycerol leakage from the cell (Tamas et al., 1999). 
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In the Icewine versus dilute juice fermentation study, STU, the gene that 

encodes for Stl1p H+ /glycerol symport was found to be the most highly differentially 

expressed gene between the two fermentation conditions, showing a 25.6 fold 

difference in expression by day five (Martin, 2008). Furthermore, Northern analysis 

of STLl expression supported micro array results and further revealed that STU 

was up regulated during the first five days of Icewine fermentation, and its 

expression peaked on day four for both fermentation conditions (Martin, 2008). 

Interestingly, STLl appeared in global expression analysis as the most strongly 

osmostress-induced gene in S. cerev;s;ae when laboratory and wine strains were 

subjected to different hyperosmotic stress conditions (Rep et aL, 2000; Yale and 

Bohnert, 2001; Posas et aL, 2000; Erasmus et aL, 2003; Melamed et aL, 2008). Sugar

induced osmotic stress upregulated wine yeast STU expression by approximately 

87-fold after two hours of exposure to the stress (Erasmus et aL, 2003). In 

laboratory strains of S. cerev;s;ae, STLl was the most or one of the most strongly 

upregulated genes in response to salt-induced osmotic stress showing 89-fold 

increase after 10 minutes of treatment with 0.4 M NaCI (Posas et aL, 2000). In 

addition, global analysis of yeast translational response to high salinity revealed that 

salt stress induced STLl mRNA translation (Melamed et aL, 2008). 

Why do wine yeast fermenting Icewine induce the expression of STL1? It is 

possible that the product of STL1, Stl1p H+ /glycerol symporter, has a role in the 

uptake of glycerol that was present in Icewine juice and continually released to the 

Icewine fermentation media throughout the fermentation. 
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2.4 St/lp H+/glycerol symporter 

STL1 is predicted to encode a protein (63.5 kDa) comprised of 569 amino acids 

with 11 transmembrane domains (SGD). It was first predicted to encode a putative 

sugar transport-like protein since it displays greatest homology (28% identity) to 

the products of other sugar transport genes in S. cerev;s;ae such as HXT2 and GAL2 

(Zhao et al., 1994). The 34 members of this sugar permease protein family include 

hexose and inositol transporters that transport these metabolites via facilitated 

diffusion, and members that transport maltose and glycerol using a symport system 

(Nelissen et al., 1997; Ferreria et al., 2005). 

The sugar permease family is part of the Major Facilitator Superfamily (MFS) 

that include membrane transport proteins with a length of 500-600 amino acids and 

predicted to comprise 12 transmembrane spanning segments (Nelissen et al., 1997). 

Stl1p acts as a H+jglycerol symporter. In this transport system, glycerol uptake 

completely depends on the proton gradient across the plasma membrane. Glycerol 

is transported into the cell against its concentration gradient along with one proton 

molecule. This co-transport system eventually requires the cell to pump protons out 

of the cell through a membrane ATPase in order to maintain the proton gradient and 

is therefore considered to be energy consuming. This transport system operates 

independently of the Fpslp-mediated diffusion (Sutherland et al., 1997). 

Active glycerol uptake is differentiated from passive diffusion using a group of 

chemicals called protonophores. Protonophores, also known as uncouplers, are 

weak acids that can cross the yeast plasma membrane due to their lipophilic nature 
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and release a proton in the cytosol (Figure 1.3.1.C). Therefore, chemicals uncouplers 

such as CCCP can dissipate the proton gradient, and therefore eliminate the energy 

dependent glycerol entry into the cell. 

Lages and Lucas (1997) were first to detect active glycerol uptake in S. cerevisiae 

cells grown on non-fermentative carbon sources such as glycerol, acetate and 

ethanol. In contrast, fermentative carbon sources such as glucose inhibits active 

glycerol uptake. Ethanol grown cells shifted to glucose-based media lost their ability 

to actively uptake glycerol, therefore glucose repressed H+ Jglycerol uptake in S. 

cerevisiae, however, only under non-hyperosmotically stressed conditions (Lages 

and Lucas, 1997). Interestingly, Ferreira et al. (2005) showed that inhibition of 

active glycerol uptake by glucose is overcome once cells are exposed to 

hyperosmotic stress. It is not known if cells fermenting Icewine juice induce active 

glycerol uptake due to the extreme hyperosmotic stress conditions, despite the high 

concentration of glucose found in the fermentation media. 

Kinetic studies of glycerol transport in S. cerevisiae revealed that glycerol 

transport involves two different systems that differ kinetically, one with a high and 

one with a low Michaelis-Menten values (Km). Glycerol transport measured in cells 

exposed to concentrations below 10 mM produce low Km values, indicating high 

affinity to glycerol. This type of saturated kinetics represents the active glycerol 

transport system. On the other hand, cells suspended in glycerol concentrations 

higher than 10 mM did not follow saturation kinetics, characteristics of simple 

diffusion (Lages and Lucas, 1997). 
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STL1 shows high homology to other proton symporter proteins of the MFS in 

plant and yeast. These include mannitol symporter in Apium graveolans (N oiraud et 

al., 2001) and sorbitol proton symporter in Prunus cerasus (Gao et al., 2003). 

Homologues to STL1 were also found in other yeast species with proton symport 

activity, these include: Debaryomces hansenii (Lucas et al., 1990), the osmotolerant 

yeast Zygosaccharomyces rouxii (van Zyl et al., 1990), Candida versatilis (syn. 

Candida halophila) (Silva-Gra~aa and Lucasa, 2006), and the halotolerant yeast 

Pichia sorbitophila (Lages and Lucas, 1997). What is the role of these Stl1p-like 

proteins in these strains? 

Recently, Kayingo et al. (2009) demonstrated that a homologue of STLl in 

Candida albicans is required for active glycerol uptake. Unlike glucose-inactivated 

Stl1p of S. cerevisiae, the activity of C. albicans glycerol symporter is unaffected by 

carbon source (Kayingo et al., 2009). Furthermore, STL1 deletion mutant of C. 

albicans was no more sensitive to salt stress than wild type controls when they were 

grown in the presence of 1 M NaCl. It is possible that active glycerol transport in C. 

albicans is not the major mechanism used during hyperosmotic stress for glycerol 

accumulation (Kayingo et al., 2009). 
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2.4.1 Stl1p glucose inactivation 

Under non-hyperosmotically stressed conditions, glucose inhibits active glycerol 

uptake in S. cerevisiae cells. Accordingly, the glycerol symport activity has been 

described to be under glucose inactivation and can be re-activated when cells are 

grown on non-fermentable carbon sources (Lages and Lucas, 1997). A study with 

Stl1p-GFP fusion protein shows that when ethanol-grown cells were shifted to 

glucose-based medium, plasma membrane Stl1p-GFP was endocytosed and 

translocated into the vacuole for degradation. The fluorescent signal was no longer 

detected 1.5 hours after the addition of glucose. Therefore, in the absence of 

hyperosmotic stress, fermentative carbon source such as glucose activates the 

degradation of Stl1 p, since glycerol is no longer required to be used as a carbon 

source. This process is achieved by ubiquitination of Stl1P in an END3 dependent 

manner (Ferreria et al., 2005). END3 gene encodes for a protein that is required for 

the internalization step of proteins during endocytosis. Mutation in the N-terminus 

of end3p eliminates Stl1p degradation. On the other hand, Stl1p inactivation was not 

observed in cells grown on glucose and subjected to saline stress. On the contrary, 

exponentially growing cells induced Stl1p in response to abrupt exposure to 0.7 M 

NaCI, despite the presence of glucose (Ferreira et al., 2005). It appears that glucose 

inactivation of Stl1p is overcome when exponentially growing cells are exposed to 

hyperosmotic stress (Ferreria et al., 2005). 

High temperatures also overcome Stl1p-glucose inactivation in S. cerevisiae. 

Ferreira et al (2007) measured active glycerol uptake in yeast grown on glucose at 
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37°C and 30°C. Even though cells were grown on glucose-based media, active 

glycerol uptake was still measurable in cells grown at 3rC but not in cells grown on 

30°C. Accordingly, Stllp was not induced at 30°C and was only induced at 37°C. 

These findings further emphasize that the regulation of Stllp -dependent active 

glycerol uptake in yeast is a dynamic process that depends on the environmental 

conditions the cells are exposed to. Although cells fermenting Icewine are grown in 

high glucose and fructose concentration, STL1 is highly expressed. This expression 

may lead to Stllp induction to actively uptake glycerol into the hyperosmotically 

stressed cells. Therefore we hypothesized that Stllp glucose inactivation is 

overcome by the hyperosmotic stress of Icewine fermentation to induce active 

glycerol uptake. 
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2.5 Differences in osmotic stress response are strainl solute and time 

dependent 

Yeast stress responses are strain specific and may vary under different types of 

hyperosmotic stress, therefore leading to different metabolic responses (Borneman 

et al., 2008). These strain differences may influence the response to hyperosmotic 

stress, specifically in relation to the induction of glycerol transport systems. 

The majority of osmotic stress research in yeast has focused on the response of 

laboratory strains to salt-induced osmotic stress. Laboratory yeast strains exhibit 

differences in their ability to cope with osmotic stress. Differences are observed in 

the ability ofthese strains to ferment sugar. Generally, laboratory strains are unable 

to effectively ferment wine, in contrast, commercial wine strains are known for their 

tolerance to ethanol and osmotic stress induced by high sugar concentration 
I 

(Carrasco et al., 2001). The efficiency to utilize sugar and metabolite production 
I 

during wine fermentation also varies between commercial strains depending on the 

level of osmotic stress the cells are exposed to (Carrasco et al., 2001). 

Response may also vary depending on the type of solute used to induce the 

stress. Albertyn et al. (1994) reported that the activity of the glycerol synthesis 

enzyme Gpdlp in yeast containing the cloned version of GPDl was lower in 

response to salt stress compared to the same level of sugar stress. After three hours 

of stress, yeast exposed to salt stress produced twice as much glycerol compared to 

sugar stressed yeast. 
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Differences in response to hyperosmotic stress are also time-dependent. That is 

to say, there is variation between short-term and long-term responses. Global 

transcriptional analysis of a laboratory strain exposed to salt stress show differing 

expression profiles during the first 10 min, 30 minutes and 90 min of the stress 

(Yale and Bohnert, 2001). Here, the number of induced genes increased with time 

from 107 at 10 minutes, to 243 at 30 minutes, then 354 at 90 minutes. Another 

study shows different results, instead of correlated increase between gene 

expression and time, the mRNA level of 7% ofthe upregulated genes in the first 10 

minutes of the stress decreased after 20 minutes (Posas et al., 2000). These 

differences emphasize that gene regulation during early response to hyperosmotic 

stress is different from that of an adapted response. 

The majority of research related to yeast response to hyperosmotic stress has 

focused on the response oflaboratory strains, since their genome has been fully 

sequenced and knock-out mutants are readily available. Few studies have 

investigated the transcriptional response of wine yeast during wine fermentation 

since the genome of a wine yeast strain was not fully sequenced up until 2008 

(Borneman et al., 2008), and therefore knockout strains were not available. 

Martin (2008) studied the transcriptional response of the wine yeast (K1-

Vll16) in Icewine and diluted Icewine fermentations. They found that only 28 out 

of the 186 genes induced in laboratory yeast strain briefly exposed (30-45 minutes) 

to aerobic salt and sorbitol stress (Rep et al., 2000) were found to be similarly 
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induced in wine yeast during the first five days of Icewine juice fermentation 

relative to table wine fermentation. 

In 2008, the complete genome of the wine yeast, AWRI1631, was sequenced and 

compared to the laboratory strain (S288c) (Borneman et al., 2008). It was found 

that 0.6% of the whole genome and 0.4% of predicted proteome differ between the 

two studied strains. More specifically, a higher mutation rate was found in 

sequences coding for proteins that are predicted to be part of the cell wall or 

signaling transduction pathways (Borneman et al., 2008). Yeast transcriptional 

response to hyperosmotic stress is mainly regulated through the HOG signaling 

pathway that upregulates the expression of osmoresponsive genes. Variation in 

genes related to this pathway may result in different transcriptional response to 

hyperosmotic stress in wine and lab strains. 

These differences may lead to variation between the response of wine yeast and 

laboratory strains in the glucose repression and inactivation of active glycerol 

uptake. 
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2.6 The interest in Stllp H+/glycerol symporter in relation to glycerol uptake 

during /cewine fermentation 

STLl is highly expressed in wine yeast during Icewine fermentation, however, it 

is still not known ifthe product of this gene, the Stllp H+ jglycerolsymporter is 

active during Icewine fermentation or subjected to glucose inactivation as 

previously observed in laboratory strains (Ferreria et al., 2005). Because response 

to hyperosmotic stress may differ depending on yeast strain, solute and duration of 

the stress, we hypothesize in this project that that wine yeast Stl1p possibly 

overcomes glucose inactivation during Icewine fermentation. This may be 

advantageous for yeast adaptation to hyperosmotic stress, since Stllp may be used 

to uptake glycerol in order to increase intracellular glycerol levels. 

Assuming that Stll p is not inactivated during Icewine fermentation and actively 

uptakes glycerol into the cell, can this symport activity lead to the dissipation of the 

proton gradient across the plasma membrane? Many amino acid transport systems 

found in yeast are proton symporters, therefore any dissipation of the proton 

gradient across the cell membrane may reduce amino acid uptake. If this is true, 

yeast will have to invest energy in order to re-establish the proton gradient and this 

may lead to limited cell growth. Therefore, the goal of this project is to investigate if 

Stllp transports glycerol into the yeast cell during Icewine fermentation in an 

energy dependent manner. A schematic represenation of the thesis hypothesis is 

presented in figure 2.6.1. 
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o Hyperosmotic stress 

Icewine fermentation media 

Cytosol 

Active glycerol uptake 

Figure 2.6.1: A schematic representation of thesis hypothesis. (1) Wine yeast 
inoculated into Icewine juice experiences hyperosmotic stress, which triggers the 
HOG signaling pathway (2). Activation of the HOG signaling pathway leads to the 
upregulation of STLl and Stl1p induction. (4) Stl1p H+ /glycerol symporter transports 
glycerol from the fermentation medium into the cell in an energy dependent manner 
and thereby contributes to the dissipation of the proton gradient across the yeast 
plasma membrane. (5) Yeast invests energy to restore proton gradient rather than 
investing it in growth. These events eventually may contribute to the limited cell 
growth observed during Icewine fermentation. (Hohmann, 2002). 
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3 MATERIALS AND METHODS 

3.1 Yeast Strains 

Three yeast strains of Saccharomyces cerevisiae were used in this project. The 

laboratory mutant strain L!STLl and its parental strain S228C BY4742 (MATa: 

his3Dl1eu2DO lys2DO ura3DO) obtained from Open Biosystems (Huntsville, AL, 

USA). The commercial wine yeast strain KI-Vll16 was provided by Lallemand Inc. 

(Montreal, QC, Canada). 

3.2 Yeast media for maintaining cultures 

S. cerevisiae strains were grown on YPD (2% peptone, 1% yeast extract and 2% 

dextrose) agar for 3 days at 30°C. The deletion mutant strain, L!STLl was grown on 

YPD agar supplemented with 200 ~g/mL geneticin (G418) for screening purposes 

(Sigma; Oakville, ON, Canada). A single colony was inoculated into 3 mL YPD liquid 

media and grown aerobically for 24 hours at 30°C, 150 rpm to develop the starter 

cultures for each strain. 

3.3 Yeast media and stress conditions for STL1 induction 

The starter culture of each strain (300 ~L) was inoculated into 100 mL ofYEPE 

medium (2% peptone, 1% yeast extract, 2% ethanol, w Iv) supplemented with 0.5% 

of dextrose. Cells were grown aerobically for 13 hours at 30°C, 150 rpm to an O.D600 

of 1.5. Hyperosmotic stress was induced by the addition of 25 mL of 5M NaCI to 
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reach a final concentration of 1M NaCI in the growth media. After 1.5 hours of salt 

stress, cells were harvested for either Northern analysis or for [14C]glycerol uptake 

assay. 

3.4 Optimizing the conditions for glycerol uptake assay 

Throughout the design of glycerol uptake assay different variables had to be 

adjusted in order to achieve an assay that could produce accurate and reproducible 

results. 

The cell concentration in the reaction mixture was set to 60 mg cells jml (dry 

weight) for each reaction. The specific activity (hot glycerol to cold glycerol ratio) 

for glycerol stock solutions was set to 900, 300 and 53.5 dpmjnmol at 4, 10 and 65 

mM glycerol respectively. 

The temperature of the reaction was set to 30°C with slow speed stirring to 

prevent cells from precipitating to the bottom of the reaction tube. In addition, 

filters were pre-wet to improve water flow during the washing procedure. 

A volume of 10 uL of the reaction mixture was removed at specific time points 

throughout the assay for filtration and the residual extracellular [14C]glycerol was 

removed by washing the filter with 5 mL of Ice-cold water. 

To make certain that the [14C]glycerol was not stuck on the membrane due to its 

liposoluble nature, the wash step was also tested with a glycerol solution as opposed 

to water. Results for this optimization procedure appear in appendix 9.2. 
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3.5 Preparation of cells for [14Clglycerol uptake assay 

Cells from the salt induced cultures were collected (125 mL) after 90 minutes of 

stress and pelleted at 3800 g for 5 min at 4°C using Sorvall RC 5C plus centrifuge 

with SS-34 rotor (Sorvall; Newtown, CT, USA). Pelleted cells were then washed twice 

with 5 mL of ice-cold 100 mM Tris-citrate buffer (pH 5.0) to remove residual growth 

media and salt. Cells were harvested in a pre-weighed 2 mL eppendorf tube by 

centrifugation at 16000 g for 5 min at 4°C using Sorvall RMC-14 centrifuge. The 

pellet was suspended in 100 mM ice-cold Tris-citrate buffer to a final wet weight 

concentration of 675 mg of cellsjmL (150 mg cellsjmL dry weight) and kept on ice 

until it was used for the [14C]glycerol uptake assay. A volume of 110 ul of this cell 

suspension was used in the reaction mixture of [14C]glycerol uptake asay to reach a 

final concentration of 60 mg cellsjmL (dry weight). 

3.6 [14Clglycerol stock solutions 

[14C]glycerol uptake was measured using three different glycerol stock solutions: 

80 mM (900 dpmjnmol), 200 mM (300 dpmjnmol) and 1.3 M (53.5 dpmjnmol). 

[14C]glycerol stock solutions were prepared by mixing [14C]glycerol (145 

mCijmmol, GE healthcare, Buckinghamshire, England) and non labeled glycerol 

(cold glycerol). The volume ratio oflabeled and non-labeled glycerol was 

determined according to the desired specific activity and glycerol concentration of 

the stock solution. 
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3.7 [14Cjglycerol uptake assays 

To measure glycerol uptake in hyperosmotically stressed cells, 80 ilL of stock 

cell suspension was mixed with 110 ilL of 100 mM Tris-citrate buffer (pH 5) in a 2 

mL eppendorf tube to reach a final concentration of 60 mg cells/mL (dry weight) in 

the final reaction mixtures. A special temperature controlled chamber was designed 

(Figure 3.7.1) to hold the tubes above a stirring plate in order to control the speed of 

stirring. The mixture was incubated at 30°C with gentle magnetic stirring for 2 

minutes (Figure 3.7.2). Cells were then incubated with either 1 % ethanol (control) 

or 25 11M of carbonyl cyanide m-chlorophenylhydrazone (CCCP, 1.25 mM stock 

solution, 50% ethanol) to prevent accumulation of glycerol through glycerol/proton 

symport activity (Figure 1.3.1 C). After 1 minute [14C]glycerol assay was started by 

the addition of 10 ilL [14C]glycerol of either 80 mM (900 dpm/nmol), 200 mM (300 

dpm/nmol) or 1.3 M (53.5 dpm/nmol) stock solutions to reach a final glycerol 

concentration of 4 mM, 10 mM or 65 mM respectively in the final reaction mixture 

(200 ilL final volume). At specific time intervals, 10 ilL aliquots were removed and 

filtered through Whatman GF /C filters (25 mm diameter). The cells were then 

washed twice while still on the filter with 5 ml ice-cold water to remove residual 

extracellular glycerol and then the filters were transferred to glass vials containing 5 

ml scintillation fluid (Econo Safe, Fisher). [14C]glycerol was counted using a 

Beckman Coulter scintillation system (LS 6500) and the level of glycerol taken up by 

the cells was inferred from the amount of [14C]glycerol retained on the filter. Counts 
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of [14C]glycerol were converted to umoles of glycerol using the next equation: 

(Counter efficiency (92%) * Counts per minute) / Specific activity. 

Figure 3.7.1: Temperature-regulated chamber that was designed 
for [14C]glycerol assay in order to hold the reaction tubes. 

Figure 3.7.2: A schematic representation of [14C]-glycerol uptake assay. (1) 
Hyperosmotically stressed cells were washed twice and resuspended in 100 mM 
Tris-citrate buffer to a final concentration of 60 mg cells/ml (dry weight) in 
reaction mixture and stirred for 2 min at at 30°C. (2) cells were incubated with 
either 1 % ethanol (control) or 25uM CCCP for 1 minute. (3) The reaction was 
started by the addition of 10 ilL of the 14C-glycerol stock solution. (4) At specific 
time points 10 ilL of reaction mixture was aliquoted out and diluted in 5 mL ice
cold water to stop the reaction. (5) Cells were immediately filtered and washed 
twice with 5 mL ice-cold water to wash off excess [14C]-glycerol. (6) The 
radioactive glycerol retained on the membrane was counted using scintillation 
counter. The amount of glycerol up-taken by the cells was inferred from the 
level of radioactivity retained on the filter. 
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3.8 Data analysis of [14Cjglycerol uptake assays 

Glycerol initial uptake rate was determined by calculation of the initial slope of 

glycerol uptake curve using the first three data points. The level of glycerol 

accumulation was determined at the time point where the glycerol uptake curve 

begun to plateau. The % decrease in glycerol accumulation was determined using 

the following equation: 

% decrease = 
Glycerol-<:ccp - GlyceroLcccp 

GlyceroLcccp 

Each assay was done in triplicate or more and subjected to two-tailed unpaired 

t-test to determine statistical significant differences in glycerol initial uptake rates 

and glycerol accumulation (Prism v.3, GraphPad; CA, USA). The results oft-test 

analysis were presented as either extremely significant (***, P<O.OOl), very 

significant (**, O.OOl<P<O.Ol), significant (*, O.Ol<P<O.05) or not significant (NS, 

P>O.05), at the 95% confidence interval. 
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3.9 Ice wine juice preparation 

Riesling Icewine was kindly provided by Niagara Vintage Harvesters (Virgil, ON. 

Canada). The juice was filtered through a series of coarse, medium and fine pore-

size pads using a Bueno Vino Mini Jet Filter system (Vineco; St. Catharines, ON, 

Canada). The juice was then sterile-filtered through a 0.22 !lm membrane cartridge 

filter (Millipore; Etobicoke, ON, Canada) into sterile lL bottles. The sterile juice was 

stored at -40°C prior to the fermentation experiments. 

Table 3.9.1: The initial concentrations of sugars and glycerol in Riesling and 
Vidal Icewine juice 

Parameter Vidal 38°Brix Riesling 37°Brix 

~ h 
.. _' Icewine Juice Dilute Juice 

Glycerol (gIL) 2.201 ± 0.05 1.031 ± 0.023 
92.45 ± 0.89 Glucose (gIL) 

Fructose (gIL) 

= Icewine Juice 
1.75 ± 0.10 

172.03 ± 4.62 
214 ± 3.3 

. Dilute Il,lice 
1.102 ± 0.02 

· 81.70 ± 3.201 
108.5 ± 4. 702 

198.67 ± 2.65 
255.12 ± 4.51 

~'~ .• __ -i 

130.05 ± 3.75 

3.10 Perpetration of starter culture for Ice wine and dilute Icewine 

fermentations 

Starter cultures were prepared with the commercial wine yeast Saccharomyces 

cerevisiae Kl-Vll16 by using a step-wise acclimatization method. In a sterile 250 

mL Erlenmeyer flask, 5.0 g of dehydrated yeast was rehydrated with 50 mL of sterile 

distilled water, at 40°C for 15 min with gentle swirling every 5 min to encourage 

aeration. Then after, 50 mL of sterile diluted Icewine juice (18.5°Brix Riesling or 

19°Brix Vidal) was added aseptically to the rehydrated yeast and the starter culture 

was incubated at 25°C for 1 hour in a water bath, swirling every 30 min. Next, 50 mL 
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of undiluted Icewine juice (37 °Brix Riesling or 38°Brix Vidal) was introduced to the 

starter culture to reach a final concentration of approximately 18.5°Brix (150 mL). 

The starter culture was incubated at 20°C for 2 h and the culture was aerated by 

periodically swirling the flask every 30 min. A sample of the starter culture was 

examined for actively budding yeast cells under 40x magnification using a light 

microscope prior to inoculation. 

To measure the activity of Stl1p in hyperosmotically stressed Icewine cells, two 

fermentations were set up: one with undiluted Icewine juice of (37 °Brix Riesling or 

38°Brix Vidal), and the control fermentation of diluted Icewine juice (18.5°Brix 

Riesling or 19°Brix Vidal). The starter culture (7.5 mL) of the starter culture was 

used to inoculate 0.5 L each of Icewine juice and diluted juice reaching a final yeast 

inoculation rate of 0.5 g (dry weight) L-l. Fermentations were carried out in sterile 

fermentation vessels that were fitted with air locks at 1 rc. Icewine and diluted 

Icewine juice fermentations were performed in triplicate. 

3.11 Stl1p [14C]glycerol uptake assay of K1-Vll16 fermenting Icewine and 

diluted Ice wine juice 

Wine yeast cells (Kl-Vll16) from both fermentation conditions were harvested 

for Stl1p [14C]glycerol uptake assay at the peak of STLl expression in Icewine 

fermenting cells, as previously determined by northern analysis (Martin, 2008). 

Fermentation medias were pelleted at 3800 g for 5 min at 4°C using Sorvall RC 5C 
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plus centrifuge with SS-34 rotor (Sorvall; Newtown, CT, USA). Cells were washed 

twice with 5 mL of Ice-cold 100 mM tris-cirtrate buffer (pH 5) to remove 

fermentation media. Cells were then concentrated to 126 mg cellsjmL in 100 mM 

ice-cold Tris-citrate buffer (pH 5.0). 190 ~L of cell suspension were incubated at 

30°C for two min with stirring and the assay continued as described in section 2.6 at 

4 mM glycerol (900 dpmjnmol) in the final reaction mixture. Each assay was 

performed in triplicate. 

3.12 STU expression analysis using Northern blots 

The expression of STLl was analyzed using northern analysis under different 

stress conditions: (1) in BY4742 and L!STLllaboratory strains and wine yeast 

K1Vll16 grown on 2% ethanol based media and stressed with 1M NaCI for 1.5 

hours, and in (2) Kl-Vll16 fermenting Icewine and diluted Icewine juice. 

Expression of STLl in Kl-Vll16 fermenting Riesling juice was analyzed from 

days 4 to day 7 and cells fermenting Vidal juice from days 2 to 5. 

3.12.1 STL1 Probe amplification and purification for Northern analysis 

The forward and reverse primers of the STLl DNA probe were designed by 

Martin (2008). The forward primer, 5'-TCAAAGGCAAATTTATAAGCAGAAC-3' and 

reverse primer, 5'-CCAAAATCAATCCAATAAGCAATCA-3' were used to amplify a 550 

pb fragment of the STLl gene using polymerase chain reaction (PCR). PCR was 
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carried out in PTC-200 DNAEngine thermocycler (MJ Research; Waltham, MA, USA) 

using the following parameters: 30 cycles of94QC for 40 s, 55QC for 60 sand 72QC 

for 90 s. The PCR product was run on 1 % (w Iv) agarose gelto verify probe size and 

was visualized under UV light using BioRad Gel-doc 1000 system. The probe was 

then purified with a Qiagen QIAquick (Mississauga, ON, Canada) gel extraction kit. 

3.12.2 RNA extraction 

The RNA of BY 4742, ASTLl and Kl-V1116 were extracted using the method of 

Pigeau and Inglis (2005). RNA was extracted from BY4742, ASTLl and KI-Vll16 

grown on ethanol based media (YEP supplemented with 2% ethanol) and from Kl

Vll16 fermenting Icewine and diluted Icewine juice. 

Approximately 50 mL of yeast cells grown on ethanol-based media were 

removed for RNA extraction. Volumes of 20 to 80 mL were removed from Icewine 

fermentation media and diluted Icewine fermentation media for RNA extraction of 

wine yeast KI-V1116. 

Removed volumes of both fermentation media and ethanol-based media were 

supplemented with 0.01 mg mL-l cycJohexamide. Cells were immediately pelleted at 

3800 9 for 5 min at 4°C using a Sorvall RC 5C plus centrifuge (Sorvall; Newtown, CT, 

USA). The cells were resuspended in 10 mL of cold Diethylpyrocarbonate (DEPC)

treated distilled water and were pelleted as before. While still on ice, cells were 

resuspended in 375 ~L of extraction buffer (0.1 M NaCl, 10 mM Tris-Cl (pH 8.0), 1 

mM EDTA (pH 8.0) and 5% Triton X-I00) and 250 ~L phenol/chloroform/isoamyl 
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alcohol (PCI, 25:24:1). Following the addition of 300 mg of glass beads, the 

suspension was vortexed at 2500 rpm for 6 min to lyse the cells. After vortexing, 6 

~L of 20% SDS was added and the mixture was left to stand on ice for 1 h. The 

mixture was centrifuged at 16000 g in a Sorvall RMC-14 centrifuge for 20 min at 

4QC. To precipitate the RNA, 15 ~L of 5 M NaCI and 1250 ~L absolute ethanol was 

added to the supernatant. The solution was allowed to sit at -30QC for 2 h prior to 

centrifugation at 16000 g for 20 min at 4°C. The resulting RNA pellet was 

resuspended in 50 ~L of DEPC-treated distilled water and stored at-80QC until use. 

RNA concentration was determined spectrophotometrically at 260 nm. 

3.12.3 Membrane preparation for northern hybridization 

Extracted RNA samples (30 ~g) were separated on 1.25 % agarose gel 

containing 18% (vjv) formaldehyde and blotted onto positively charged nylon 

membrane (Roche; Basel, Switzerland) using capillary transfer. The RNA was cross

linked to the membrane using Hoefer UVC 500 crosslinker for 4 min, for each side of 

the membrane (Hoefer, Inc.; CA, USA). 

3.12.4 STL1 probe labeling and hybridization 

The STLl probe was labeled with [a32P]-ATP (perkin Elmer) using a Roche 

random primed labeling kit (Roche; Basel, Switzerland) and 20 ng of the labeled 

probe was hybridized to the bound RNA following an overnight incubation at 42°C 
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in 50 mL of hybridization solution containing 5X SSC, 5X Denhardfs solution, 1% 

SDS, 50% (v/v) formamide and 0.1 mg mL-l sheared salmon sperm DNA (Ambion). 

The membrane was washed twice with 50 mL 2X SSC containing 0.1 % (v Iv) SDS for 

20 min at room temperature and then washed twice with 50 mL 0.2X SSC, also 

containing 0.1 % (v Iv) SDS, for 15 min at 50°C. The probe membrane was exposed to 

a Fujifilm phosphorimaging screen for up to seven days and the screen was scanned 

with Fujifilm FLA-3000 phosphorimager (663 nm helium-neon laser) and personal 

molecular imagerTM (PMFM, 635 nm). The subsequent images were quantified with 

Fujifilm Image Gauge software (v.4.0) and Quantity One software (v.4.6.7). Gene 

expression levels were normalized to the signal intensities derived from a rDNA 

region spanning the 5.8S rRNA gene and flanking internal transcribed spacers (ITS) 

1 and 2. 

3.13 Sequencing the STU gene in S. cerevisiae strains 

The STLl encoding region of BY4742 and Kl-Vll16 was amplified by PCR using 

forward 5'-ATGAAGGATTTAAAATTATCGAATT-3' and reverse primer 5'

TCAACCCTCAAAATTTGCTTTATCG-3' and carried out as described in section 2.10.1. 

The PCR product was run on 1 % (w Iv) agarose gel to verify gene size and was 

visualized under UV light using BioRad Gel-doc 1000 system. Amplification products 

were then purified with a Qiagen QIAquick PCR purification kit. 

The purified STLl PCR (approximately 1700 pb) product was run on 1% agarose 

gel and quantified using HighRanger 1 kb DNA Ladder (Norgen Biotek, St. 
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Catharines. ON., Canada) and sent to Genome Quebec Innovation Centre (McGill 

University) for DNA sequencing. Primers for STLl were designed by the author and 

obtained from Sigma Genosys (Oakville, ON., Canada). Two ofthe designed primers 

flanktheSTLl (Forward [1-25] and Reverse [1685-1710]) and the other two 

primers are located at the center region of the gene (Forward [905-930] and 

Reverse [526-551]). Primer sequences are listed in table 3.12.1. DNA sequences 

were manually edited and were submitted to ClustalW2 (EMBL-EBI) for alignment. 

The genes were annotated using CLC Main Workbench v.5. 

Table 3.12.1: The Primer sequences used for STL1 sequencing designed using the 

laboratory strain of S. cerevisiae 

Forward [1-25] 

Forward [905-930] 

Reverse [1685-1710] 

Reverse [526-551] 

1-ATGAAGGATTT AAAATTATCGAATT -25 

905-AGCAA TTTACTGGTTGT AACGCTGC-930 

1685-TCAACCCTCAAAA TTTGCTTT ATCG-171 0 

526-CCAAAA TCAA TCCAA T AAGCAA TCA-551 
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4 RESULTS 

Part i-Development of Stlip-dependent glycerol uptake assay 

To develop a glycerol uptake assay that is specifically dependent on Stl1p 

activity it was first necessary to determine the induction conditions under which 

STLl gene is expressed in parent and wine strain of S. cerevisiae. To do that, the 

expression of STLl was investigated under saline stress using Northern blot analysis 

(section 4.1). Once STLl gene expression was confirmed, the same stress conditions 

were used to induce StIlp and measure the level of [14C] glycerol uptake in wine and 

laboratory yeast strains (Section 4.2). Glycerol uptake was measured in saline 

stressed cells incubated with either 4 mM, 10 mM or 65 mM glycerol in the reaction 

mixture. The first two concentrations were adapted from a previously published 

study (Ferreria, et al., 2005) and the latter is the glycerol concentration that was 

found in Icewine fermentation media at the time point when STL1 expression 

peaked. After completing the design of the assay, the assay was applied to measure 

glycerol uptake in hyperosmotically stressed wine yeast cells, harvested from 

Icewine fermentation. 
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4.1 Stl1p induction in wine and laboratory yeast strains 

To induce Stllp in laboratory and wine yeast strain, cells were grown on 2% 

ethanol (Section 3.2) since it was previouslydemonstrated that active glycerol 

uptake is highly induced in S. cerevisiae by non-fermentative carbon sources such as 

ethanol (Lages & Lucas, 1997). 

Exponentially growing cells were subjected to 1 M salt stress for 1.5 hours 

(Section 3.2) and the level of STLl expression was compared between 

hyperosmotically stressed and non-stressed cells using Northern blot analysis 

(Section 3.11). 

Northern blots of STL1 revealed that the gene was slightly expressed in wine and 

laboratory yeast strains under non-stressed conditions when grown on 2% ethanol 

(Figure 4. loLA). Upon incubation with 1M NaCl, STLl was induced in both parent 

and wine strains however at different expression levels. 
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Figure 4.1.1: (A) Northern analysis of STLl expression in ethanol grown wine 
(K1Vll16) and laboratory yeast strains (BY4742 and ASTL1) before and after 1.5 
hours of hyper osmotic stress using 1 M NaCl. (B) Relative expression of STL1. 
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The laboratory strain showed an approximately l1.7-fold increase in STLl 

expression compared to a 3.4 fold increase in the wine strain (Figure 4.4.1.B). As 

expected, STLl was not expressed in L1STLl knockout under either stressed or non

stressed conditions. 

These results first confirm that the Northern blot expression signal is specific for 

STLl since a signal is only present in the parent strain and lacking in the L1STL1. 

Secondly, the chosen hyperosmotic stress conditions are adequate to induce STLl 

and therefore could be used for (14C]glycerol uptake assay. 
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4.2 [14Cjglycerol uptake at 4 mM glycerol 

Glycerol uptake by parent and L1STLl strains was first measured at 4 mM 

glycerol concentration in the reaction mixture using the assay outlined in section 

3.7, over a 10 minutes time course (Figure 4.2.1). 
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Figure 4.2.1: [14C]glycerol uptake at 4 mM glycerol by BY 4742 and L1STLl 
from three different cell preparations (A, Band C). Cells were grown on 2% 
ethanol and stressed for 1.5 hours with 1 M NaCl. 
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All three separate experiments under 4 mM glycerol conditions presented 

similar glycerol uptake trends. The parent strain accumulated higher levels of 

glycerol compared to the .t1STLl knockout. In addition, the kinetics of glycerol 

uptake by the parent strain was different than that of the knockout strain (Figure 

4.2.1). The initial glycerol uptake rate in the parent strain plateaued after 

approximately 7 minutes. Therefore, glycerol accumulation in parent strains follows 

a biphasic kinetics. 

On the contrary, .t1STLl did not display changes in glycerol transport rate over 

the 10 minutes of the assay and presented rather a constant glycerol uptake rate, 

hence, the knockout strain displayed a monophasic kinetics of glycerol uptake. 

Comparison between the initial uptake rates of glycerol transport between the 

two strains revealed that the parent strain was able to transport glycerol into the 

cell at an initial rate that was 2.6-fold greater than that of .t1STLl (Figure 4.2.2.B). 
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Figure 4.2.2: (14C]glycerol uptake and initial glycerol uptake rate at 4 mM 
glycerol in BY4742 and .t1STL1. (A) Average of (14C]glycerol uptake (n=3). (B) 
Comparison of initial glycerol uptake rate. *** The difference between the means 
was extremely significant at the 95% confidence interval determined by unpaired t
test (n=5, P=O.00041. 
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These results suggest that the absence of STLl reduces the rate of glycerol 

uptake and therefore the expression of this gene positively contributed to rapid 

glycerol uptake in hyperosmotically stressed cells. 

To examine if glycerol uptake depends on the proton gradient across the yeast 

plasma membrane, the assay was repeated in the presence of the protonophore 

CCCP. 

Figure 4.2.3: [14C]glycerol accumulation in BY4742 and LlSTLl at 4 mM 
glycerol after 7 minutes with and without the incubation with CCCP. * The 
difference between the means was significant at the 95% confidence interval as 
determined by unpaired t-test (n=3, P=O.018). NS- means are not significantly different 
as determined bv unpaired t-test. 
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Incubation with CCCP significantly lowered glycerol accumulation in the parent 

strain compared to control conditions where no CCCP was added (Figure 4.2.3), 

indicating the glycerol accumulation in the presence of CCCP was not significantly 

different to than that measured in the STLl strain. Therefore, CCCP inhibited 

energy-dependent glycerol uptake through Stl1p. In contrast, the level of glycerol 

accumulation in t1STLl cells did not significantly change in the presence of CCCP 

compared to control conditions and therefore did not show energy dependency. 

The decrease in glycerol accumulation in the parent strain with CCCP constitutes 

about 50% of the glycerol that was accumulated under control conditions for the 

parent strain and therefore represents the contribution of Stl1p in glycerol 

accumulation in hyperosmotically stressed cells (Figure 4.2.4). 

BY4742 t1STL1 

Figure 4.2.4: The % decrease from control in [14C]glycerol accumulation at 4 
mM glycerol following the incubation with CCCP after 7 minutes. * % decrease 
in glycerol accumulation was significantly different than parent strain at 95% confidence 
interval as determined by unpaired t-test (n=3, P=O.0459). 
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Since the parent strain exhibited a significantly greater reduction in glycerol 

accumulation in the presence of CCCP compared to L1STL1, it is inferred that Stl1p 

positively contributes to energy dependent glycerol uptake in hyperosmotically 

stressed cells at 4 mM glycerol. 
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4.3 [14Cjglycerol uptake 10 mM glycerol 

The second [14C]glycerol uptake assay was carried out at 10 mM glycerol 

(Ferreria, et al., 2005) in the reaction mixture, for 60 minutes (section 3.7). 

At 10 mM glycerol, the parent strain and the LlSTLl knockout presented glycerol 

uptake trends that were similar to the 4 mM glycerol assay results. The parent strain 

exhibited fast glycerol uptake for the first 10 minutes of the assay that begun to 

decrease after approximately 15 minutes. On the other hand, glycerol uptake by 

LlSTLl knockout maintained the same rate throughout the course of the assay and 

therefore represents the passive diffusion rate (Figure 4.3.1.A). 
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Figure 4.3.1: [14C]glycerol uptake and initial glycerol uptake rate at 10 
mM glycerol in BY4742 and .t1STL1. (A) Average [14C]glycerol uptake 
(n=3). (B) Comparison of initial glycerol uptake rate. ** The difference 
between the means was very significant at the 95% confidence interval as 
determined by unpaired t-test (n=5, P=O.0066). 
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Incubation with CCCP significantly reduced the level of glycerol accumulation after 

10 minutes in the parent strain (Figure 4.3.2) thereby inhibiting active glycerol 

uptake, however CCCP also significantly reduced glycerol accumulation in the 

knockout strain, suggesting that active glycerol uptake was inhibited in a strain 

lacking the Stl1p symporter. These results may imply the existence of other 

potential glycerol symporters in S. cerev;s;ae that have yet to be discovered in the 

known genome. 

** 

Figure 4.3.2: (14C]glycerol accumulation in BY4742 and J1STLl cells at 10 mM 
glycerol after 10 minutes with and without the incubation with CCCP. *** The 
difference between the means was extremely significant at the 95% confidence interval as 
determined by unpaired t-test (n=5, P<O.OOOl). ** The difference between the means was very 
significant at the 95% confidence interval as determined by unpaired t-test (n=5, P=O.0065). 
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It is induced from these results that glycerol accumulated in ASTLl represents 

background levels of glycerol, that is to say, glycerol that entered the cell through 

passive diffusion or other unidentified glycerol transport proteins and therefore 

could not be attributed to Stl1p activity. 

Both parent and ASTLl displayed the same % of glycerol reduction upon 

incubation with CCCP, hence, sharing similar sensitivity to the protonophore at 10 

mM glycerol (Figure 4.3.3). It appears that at concentrations higher than 4 mM 

glycerol, uptake becomes less Stllp specific due to increased background levels of 

glycerol. 

BY4742 ~STL1 

Figure 4.3.3: The % decrease from control in (14C]glycerol accumulation at 
10 mM glycerol following the incubation with CCCP after 10 minutes. 
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To further investigate the degree of Stl1p contribution to glycerol accumulation 

during the yeast response to hyperosmotic stress, glycerol accumulation was 

compared between stressed and non-stressed parent strain cells (Figure 4.3.4). 

BY4742 Stressed 

1 Stressed 

Figure 4.3.4: Induction of (14C]glycerol uptake in BY 4742 following 
saline stress at 10 mM glycerol. BY 4742 were either stressed by 1 M 
NaCI for 1.5 hours or not subjected to saline stress (n=I). 

Parent strain cells showed an increase in glycerol accumulation upon exposure 

to saline stress. This increase was directly correlated to the increase in STLl 

expression as shown in figure 4.1.1. Saline-stressed parent yeast cells accumulated 

about 2.3 times more than non-stressed parent cells and twice as much glycerol 

compared to the knockout strain. Once again, it appears that the background levels 

of non Stl1p-specific glycerol entry into the cell constitute approximately half of the 

glycerol measured in the hyperosmotically stressed parent cells under the 10 mM 

glycerol conditions, similar to the results observed under the 4 mM glycerol assay. 
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These results put further emphasis on the degree of Stl1p contribution for 

glycerol accumulation in hyperosmotically stressed cells. Stllp induction by saline 

stress increases glycerol accumulation by approximately 2-fold. 

4.4 [14Cjglycerol uptake at 65 mM glycerol 

To be able to measure the activity of Stl1 p in cells suspended in Icewine 

fermentation media, it was first necessary to test if the designed (14C]glycerol 

uptake assay still shows specificity for Stllp at higher glycerol concentrations as 

observed in the starting glycerol concentration in Icewine juice and throughout the 

fermentation. Therefore, the competency of glycerol uptake assay to measure Stl1p

dependent uptake at 65 mM was investigated under the same growth and stress 

conditions as 4 and 10 mM glycerol assays (section 3.7). 

At 65 mM, glycerol uptake by parent strain cells grown on ethanol-based media 

and exposed to saline stress was fairly constant throughout the course of the assay 

and actually resembled ASTLl glycerol uptake trend (Figure 4.4.1.A). The difference 

in the initial glycerol uptake rate that was previously observed under 4 and 10 mM 

glycerol concentrations was no longer detected at 65 mM. It is possible that when 

the reaction mixture contains high glycerol concentration, the contribution ofStllp 

to the total intracellular glycerol accumulation is masked by high background 

uptake, probably due to passive diffusion and/or other uncharacterized glycerol 

transport systems. 
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Figure 4.4.1: (14C]glycerol uptake and initial glycerol uptake 
rate at 65 mM glycerol in BY4742 and A.STL1. (A) Average 
(14C]glycerol uptake (n=6). (B) Comparison of initial glycerol 

In contrast to the 4 mM and 10 mM glycerol assays, glycerol initial uptake rate 

was not significantly different between parent and A.STLl under the 65 mM 

conditions (Figure 4.4.2). Furthermore, the addition of CCCP only significantly 

reduced glycerol accumulation in L1STLl and did not significantly affect the parent 

strain. Even though Stl1p may actively transport glycerol into the cell under 65 mM 

glycerol conditions, this transport cannot be accurately measured due to the high 

levels of non Stl1 p-specific uptake of glycerol. 
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Figure 4.4.2: (14C]glycerol accumulation in BY4742 and J1STLl at 65 mM 
glycerol after 7 minutes with and without the incubation with CCCP. * Glycerol 
accumulation was significantly different than control at 95% confidence interval as 
determined by unpaired t-test (n=4, P=0.028). NS- means are not significantly different as 
determined by unpaired t-test (P= 0.053). 

All six repeats of 65 mM assay were done from six different cell preparations 

from six different growth experiments. These six repeats showed variability in 

glycerol uptake rate and in the level of glycerol accumulation. It was necessary to 

determine why the difference in initial uptake rate between parent strain and 

knockout was observed only at lower glycerol concentrations (4 mM and 10 mM) 

but not at 65 mM glycerol. Did it arise from the high glycerol concentration found in 

the reaction mixture or due to the high variability among the different growth 

batches? To investigate this question [14C]glycerol uptake was compared between 4 
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mM and 65 mM assays in hyperosmotically stressed cells that were harvested from 

the same growth batch. Results show that glycerol uptake curve of parent strain was 

almost identical to i!STLl at 65 mM glycerol (Figure 4.4.4). 
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Figure 4.4.4: Comparison of [14C]glycerol uptake of BY 4742 and 
ASTLl under (A) 65 mM and (B) 4 mM in cells harvested from the 
same growth batch (n=2). 

On the other hand, under 4 mM glycerol, parent strain harvested from the same 

growth batch presented a faster uptake rate of glycerol compared to i!STLl as 

previously presented in section 5.2. 

Despite the fact that both 4 and 65 mM assays were performed with cells 

collected from the same growth batch, the glycerol uptake rate and accumulation by 

parent strain was only higher and significantly different from the i!STLl strain at the 

4 mM glycerol assay condition. 
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It is implied from these results that the glycerol concentration in the reaction 

mixture greatly influences the competence ofthe assay to measure Stl1p-dependent 

glycerol uptake, rather than the variability among the different cell growth batches. 

The reason why Stllp-dependent glycerol uptake was not detected at 65 mM 

could be related to the high background levels of glycerol that perhaps eliminated 

the difference in glycerol uptake rate and accumulation. Hence, at 65 mM Stllp

dependent glycerol uptake could not be accurately measured under these assay 

conditions. 

Comparison between the initial uptake rates measured at 4, 10 and 65 mM 

revealed that glycerol uptake rate increased with glycerol concentration for both 

parent and knockout strain (Figure 4.4.5). However the initial uptake rate was no 

longer significantly different between the strains at 65 mM. This demonstrates that 

under higher glycerol concentrations, the assay cannot display the contribution of 

Stl1p to the measured glycerol uptake, since it cannot be distinguished from the 

background glycerol uptake in the .t1STLl strain. 
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Figure 4.4.5: The effect of glycerol concentration on glycerol initial 
uptake rate in BY 4742 and ASTLl cells. *** The difference between the means 
was extremely significant at the 95% confidence interval (n=5, P=O.0004). ** The 
difference between the means was very significant at the 95% confidence interval 
(n=5, P=O.0066). NS- No significant difference between the means. 

4.5 t 4Cjglyceroi uptake by wine yeast strain at 4 and 65 mM glycerol 

Under 4 mM assay conditions the incubation of salt stressed wine yeast with 

CCCP resulted in a significant reduction in glycerol accumulation as previously 

observed for parent strain (Figure 4.5.1). On the contrary, at 65 mM glycerol, the 

addition of CCCP did not significantly effect glycerol accumulation in wine yeast as 

observed for parent strain. Similar to parent strain, at high glycerol concentration, 
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Stllp-dependent active glycerol transport could not be measured in wine yeast 

using the conditions of the designed assay. 

65 mM glycerol 
(A) (B) 

4 mM glycerol 

Figure 4.5.1: (14C]glycerol accumulation in wine yeast (K1-Vll16) and 
laboratory strain (BY 4742) after 7 minutes with and without the incubation 
with CCCP at (A) 65 mM and at (B) 4 mM glycerol. *** The difference between the 
means was extremely significant at the 95% confidence interval as determined by unpaired t
test (n=3, P<O.OOOl). * The difference between the means was significant at the 95% 
confidence interval as determined by unpaired t-test (n=3, P=O.018). NS- No significant 
difference between the means. 

At 4 and 65 mM glycerol using Stllp salt induction conditions, initial uptake 

rates were not significantly different between parent and wine strains (Figure 

4.5.2). It appears that laboratory and wine strain of S. cerevisiae behave similarly in 

relation to glycerol uptake under either higher or lower glycerol concentrations. 
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(A) 
65 mM glycerol . (B) 4 mM glycerol 

BY4742 K1-V1H6 
BY4742 K1·V1116 

Figure 4.5.2: comparison of (14C]glycerol initial uptake rate in wine yeast (Kl
Vl116) and laboratory strain (BY4742) at (A) 4 mM and (B) 65 mM glycerol. 

To evaluate the contribution of Stl1p in glycerol accumulation in 

hyperosmotically stressed wine yeast, glycerol accumulation was compared under 

stressed and non-stressed conditions. Stressed conditions induced glycerol uptake 

in wine yeast that was correlated to the increase in STLl expression upon exposure 

to the saline stress (Figure 4.1.1). 
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Figure 4.5.3: Comparison of glycerol uptake in stressed and non .. stressed wine yeast. 
(A) glycerol uptake (8) initial glycerol uptake rate and (C) comparison of [14C]glycerol 
accumulation after 7 minutes in stressed cells with and without the addition of CCCP and 
non stressed cells. *** The difference between the means was extremely significant at the 95% 
confidence interval (n=3, P=O.OOOl). ** The difference between the means was very significant at 
the 95% confidence interval (n=3, P=O.0015). NS- no significant difference between the means. 
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Wine yeast cells presented an approximately two-fold increase in the glycerol 

initial uptake rate and accumulation compared to non-stressed cells (Figure 4.S.3.A 

and H). Furthermore, the level of glycerol accumulated by non-stressed cells was 

comparable to the level of glycerol accumulated when stressed cells were incubated 

with CCCP (Figure 4.S.3.A and H, C). This means that the background level of glycerol 

entering the cell through mechanisms other than Stl1p constitute approximately 

half of the glycerol accumulated in stressed wine yeast cells, as observed for 

laboratory parent strain. 
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Part 2- Stllp activity in Icewine and dilute Icewine juice fermentations 

To investigate if Stl1p has a role in glycerol uptake in hyperosmotically stressed 

yeast cells fermenting Icewine, two fermentations were set up (section 3.9-3.10). 

One with Icewine juice and the second with diluted Icewine juice, containing half of 

the concentration of soluble solids found in the Icewine juice. The latter 

fermentation represents conditions at which yeast is exposed to mild hyperosmotic 

stress and therefore acts as the control condition of table wine fermentation. 

The role of Stl1p in wine yeast was investigated first at the RNA level using 

Northern analysis (section 3.12) and second at the protein level using (14C]glycerol 

uptake assay (section 3.11). 

4.6 STL1 expression in wine yeast fermenting Riesling and Vidal Ice wine juices 

To investigate the role of Stl1p in hyperosmotically stressed Icewine yeast cells 

at the gene level, STLl expression was compared between cells fermenting Icewine 

and diluted Icewine (section 3.11). This was done using two different types of 

Icewine juices, Vidal and Riesling. 

Northern analysis of STL1 expression showed that the gene is not expressed 

under dilute conditions in wine yeast fermenting either Vidal or Riesling juice, 

however it is expressed under Icewine conditions (Figure 4.6.1). 
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Figure 4.6.1: Expression of STLl in wine yeast during Riesling/Vidal Icewine 
and dilute Icewine fermentations using Northern analysis. RNA of salt 
stressed BY 4742 yeast cells was used as control. 

Under Riesling Icewine fermentation STLl was expressed in days 4-7, increasing 

in expression during that period based on signal intensity. Surprisingly, STLl was 

weakly expressed in cells fermenting the Vidallcewine juice at days 4 and 5 of the 

fermentation. These results were unexpected since Martin (2008) found that STLl 

was strongly expressed in cells fermenting Vidallcewine juice by using both 

Northern analysis and microarray analysis. However, in this experiment a different 

lot of Vidallcewine juice was used. 

Despite the fact that STL1 was differentially expressed in this study, the degree 

of STLl differential expression could not be accurately quantified within the 

timeframe of this thesis study due to technical complications with the breakdown of 

the phosphoimager machine. 
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4.7 Stllp activity in wine yeast during Icewine fermentation 

Stl1p activity was compared between cells fermenting Icewine and diluted 

Icewine that were harvested at day 7 of Riesling fermentation and day 4 of Vidal 

fermentation (section 3.11). 

It appears that glycerol concentration in the fermentation media was correlated 

to the degree ofhyperosmotic stress. Cells fermenting Icewine juice produced 

significantly greater levels of glycerol compared to dilute Icewine fermenting cells at 

the day the cells were harvested for glycerol uptake assay (Table 4.7.1). This 

glycerol was measured in the fermentation media rather than inside the cells, 

indicating that the cells released the glycerol that was produced in response to 

hyperosmotic stress. 

Interestingly, the level of glycerol concentration measured in Riesling and Vidal 

Icewine fermentation media was comparable, despite the fact that there was a 

difference of two days between the fermentations. Also, the concentration of 

glycerol in the fermentation media was quite similar between the Icewine and the 

diluted juice media despite the different osmotoic stress the cells were under and 

their different rates of sugar consumption. 

Even though yeast fermenting Riesling Icewine juice were (1) subjected to 

greater degree of hyperosmotic stress, (2) induced STLl and (3) produced higher 

levels of glycerol at the day the cells were harvested for [14C]glycerol assay, glycerol 

uptake levels were not significantly different than cells fermenting diluted Icewine 

juice (Figure 4.7.1). Similarly, no difference in glycerol uptake was detected between 
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the Vidal Icewine and diluted Icewine fermenting cells, despite the difference in the 

degree of hyperosmotic stress between the two fermentation conditions. 

Table 4.7.1: Glycerol concentration in Riesling and Vidal fermentation media 
measured on the day the cells were harvested for (14C]glycerol uptake assay 

Vidal day 5 Riesling day 7 
Icewine 

Glycerol (g/L) 4.53 ± 0.00 
Glycerol produced (g/L) 2.78 ± 0.00 
Glucose (g/L) 149.4 ± 1.51 
Fructose (g/L) 205.3 ± 6.70 

Total sugar consumed (g/L) 31.66 ± 2.60 

Glycerol produced/sugar 0.0879 ± 0.005 
consumed 
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Figure 4.7.1: (14C]glycerol uptake at 4 mM glycerol in wine yeast K1-Vll16 
fermenting (A) Riesling and (8) Vidal Icewine and diluted Icewine juices. 

To better understand whether Stllp has any contribution to active glycerol 

uptake during Icewine fermentation, the cells were incubated with CCCP to dissipate 
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the proton gradient across the plasma membrane and thereby inhibit potential 

activity of Stl1p (Figure 4.7.2). 
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Figure 4.7.2: [14C]glycerol uptake in wine yeast (K1-Vll16) during Riesling (A, B) 
and Vidal (C, D) Icewine and diluted Icewine fermentations in the presence and 
absence of CCCP. 

If Stl1p is present in the Icewine fermenting cells, active glycerol uptake should 

show sensitivity to CCCP. 
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Results show that glycerol accumulation in the presence of CCCP was not 

significantly different than control conditions, where no CCCP was added, under 

either Icewine or diluted Icewine fermentations for both Riesling and Vidal juices 

(Figure 4.7.2). These results suggest that wine yeast did not use StUp for active 

glycerol uptake on the day the cells were harvested during Icewine fermentations 

and StU p was perhaps glucose inactivated. It is most likely that this glucose 

inactivation is not specific for day five of fermentation, however to confirm that, 

Stllp activity should be measured throughout the course of the fermentation. 
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Part 3-STLl sequencing 

4.8 STU sequence alignment 

STLl sequence alignment scored 99% similarity and 99.5% identity between 

sequences of wine and laboratory strains (Appendix. Figure I). Out of 1710 

sequenced base pairs of STLl gene (section 3.13) there were 7 codon variations 

(Table 4.8.2). Four of the codon variations encoded for the same amino acid, 

therefore, these were silent mutations and the other three variations encoded for an 

amino acid with the same biochemical properties, hence synonymous mutations. 

Substitution in the predicted amino acid sequence occurred in the center of Stl1p 

within the predicted transmembrane domain (TM) 6 (beta-sheet), between the fifth 

and the sixth TM (beta-sheet), and between sixth and the seventh TM (a-helix). 

These mutations did not affect the predicted secondary structures that constitute 

these domains since they are favored substitution in membrane proteins, according 

to predicted computational structure analysis. 

Figure 4.8.1: The predicted 3D structure of Stl1p. 
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Table 4.8.2: Codon variations in STLl sequence oflaboratory and wine 
yeast strains. Grey background represents silent mutations and white 
background represents synonymous mutations. 

Nucleotide K1Vll16 BY4742 

position 
Codon Amino Codon Amino 

TM Domain 

acid acid 
(Figure 4.8.1) 

579 TIT Phe(193} TIG Leu (193) Between 5 and 6 

640 TIC Phe(214} eTC Leu (214) 6 

836 AAT Asn (279) AGT Ser (279) Between 6 and 7 
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5 DISCUSSION 

The purpose of this study was to investigate the role of Stl1p in glycerol uptake 

in wine yeast cells during Icewine fermentation. In order to accomplish this goal, 

first, a glycerol uptake assay dependent on Stl1p had to be developed, and then 

applied to wine yeast fermenting Icewine juice. After successfully developing this 

assay, our results show that even though STLl was expressed in Icewine fermenting 

cells, there was no measurable activity of Stll p using the developed assay on the day 

the cells were harvested from the Icewine fermentations. 

Part i-Development of Stlip-dependent glycerol uptake assay 

5.1 STL1 is induced in response to saline stress in wine and laboratory yeast 

strains but not in control strain L1STLl 

The development of an Stl1p-dependent glycerol uptake assay involved two 

major steps: first, determination of conditions that stimulated STLl expression in 

the laboratory yeast strain BY 4742 where no expression was detected in the 

negative control.t1STL1; and second, developing an Stl1p activity assay using cells 

that express STLl and using the L1STLl strain as a negative control to test the 

specificity of the assay. 

In the first step of this project, it was necessary to determine the hyperosmotic 

stress conditions that resulted in STLl induction. This step was important in the 

development of the Stl1 p-dependent glycerol uptake assay to better understand the 
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relationship between STLl expression and Stl1p activity in hyperosmotically 

stressed cells. To that end, K1-Vl116, BY 4742 and LlSTLl cells were subjected to 1 

M saline stress for the duration of 90 minutes. Results show that under these 

hyperosmotic stress conditions, K1-Vll16 and BY4742 induced STLl upon 

exposure to hyperosmotic stress (Figure 4.1.1) and therefore Stl1p is most likely 

present in these cells. The absence of STL1 mRNA signal in ASTL1 cells under either 

stressed or non-stressed conditions confirmed that this strain did not express STL1 

and therefore, could act as a negative control during the [14C]glycerol uptake assay. 

These results also indicated that harvesting the stressed cells at that time point 

(after 90 minutes of saline stress) should provide the conditions to assay Stl1p 

activity, since the protein is likely to be present in K1-Vll16 and BY 4742 however 

absent in the control strain ASTL1 . 

5.2 The effect 0/ glycerol concentration on Stllp-dependent active 

[14Cjglycerol uptake measurements 

In the second step of [14C]glycerol uptake assay design, it was necessary to 

determine the concentration at which glycerol uptake by yeast cells presents both 

specificity to Stl1p and energy dependency. Yeast cells were exposed to three 

different glycerol concentrations in the reaction mixture, 4, 10 and 65 mM and 

glycerol uptake rate and accumulation were compared (Sections 4.2-4.4). In the 

development of this assay, the commercially available yeast strain iJSTL1 developed 

from the parent strain BY 4742 where STL1 was knocked out of the genome, was 
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used to assess the background level of glycerol uptake that was not Stl1 p

dependent. 

Under 4 mM glycerol, STL1 expression positively contributed to glycerol uptake 

in hyperosmotically stressed cells. Several pieces of evidence support this 

conclusion. First, there was a clear difference in the kinetics of glycerol uptake 

between parent and L1STLl cells . .t1STLl cells followed monophasic kinetics, where 

no changes in glycerol uptake rates were detected throughout the course of the 

assay (Figure 4.2.1). This type of kinetics represents glycerol that entered the cell 

via passive diffusion (Mattews, 1993; Petty, 1993). Conversely, the parent strain 

followed biphasic glycerol uptake kinetics, starting with a high initial rate of glycerol 

uptake that readily declined with time until reaching a steady state rate (Figure 

4.2.1). This type of kinetics insinuates a presence of a carrier-mediated glycerol 

transport, in addition to simple diffusion. Thus, STL1 deletion eliminated this carrier 

mediated glycerol uptake observed in parent strain. 

Second, deletion of STLl significantly reduced the initial rate of glycerol uptake 

(Figure 4.2.2) suggesting that STL1 expression is essential to induce rapid glycerol 

transport into hyperosmotically stressed cells. And third, incubation with the 

un coupler CCCP led to approximately 50% reduction in glycerol accumulation 

(Figure 4.2.3) in the parent strain over the 7 min timecourse experiment, indicating 

that active glycerol uptake was exclusively inhibited in cells expressing STL1 and 

not in L1STLl cells, thus, the deletion of STL1 eliminated energy dependent glycerol 

accumulation. 
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It is inferred from these results that under the 4 mM glycerol concentration, the 

expression of STLl increases the velocity of glycerol uptake and positively 

influenced energy dependent glycerol accumulation. 

It also appears that at 4 mM glycerol, the glycerol uptake assay can accurately 

measure Stl1p-depedent active glycerol uptake and accumulation. 

The assay was also tested at the higher glycerol concentrations of 10 mM and 65 

mM glycerol concentrations that would be encountered by wine yeast fermenting 

Icewine (Sections 4.3-4.4). These higher glycerol concentrations did not allow 

accurate measurements of an Stl1p-dependent glycerol uptake as observed by the 

lack of an energy dependent glycerol uptake in the parent strain and the non

significant difference in glycerol initial uptake rate between the parent strain and its 

knockout counterpart. 

Other than Stl1p, glycerol can enter the cell through facilitated diffusion 

mediated by the glyceroporin Fps1p, however previously published research 

showed that under hyperosmotic stress, the Fps1p channel is shut down in order to 

prevent glycerol loss from the cell and increase glycerol retention (Tamas, et aI., 

2003). Therefore, the glycerol that was accumulated in L1STLl cells should not have 

entered the cells via the Fsp1p channel. Alternatively, glycerol can easily cross the 

yeast plasma membrane due to its lipophilic nature. That means that the measured 

experimental velocity of glycerol uptake is encompassing both the contribution of 

active uptake by Stl1p and passive diffusion. 

98 



Oliveira et al (2003) demonstrated that the higher the glycerol concentration 

used to measure uptake, the higher the contribution of passive diffusion to uptake. 

This was also observed in our results. Both parental and L1STLl cells presented 

higher glycerol uptake rates at 10 mM glycerol compared to 4 mM, and these rates 

further increased at 65 mM (Figure 4.4.5). In addition, the 65mM high glycerol 

concentration abolished the biphasic kinetics formerly observed at 4 mM glycerol 

and eliminated the difference in glycerol uptake rate between parent strain and 

MTLl cells (Figure 4.4.1). 

Enhanced passive diffusion not only influenced glycerol uptake rate but also the 

uncoupling effect of CCCP. MTLl did not display sensitivity to the uncoupler at 4 

mM, in opposition to the glycerol transport measured at higher glycerol 

concentrations. These results are in contrast to Oliveira et al (2003) who 

demonstrated that the CCCP inhibitory effect declines with glycerol concentration. 

In addition, it is not clear why cells lacking the STLl gene would present energy 

dependent glycerol uptake. These results suggest that Stl1p may not be the only 

protein responsible for glycerol active uptake in S. cerevisiae. Yet, no other genes 

that code for glycerol symporters have been reported in the literature to date that 

would suport this hypothesis. 

Even though Stl1p may actively transport glycerol into the cell under the 65 mM 

glycerol conditions, this transport cannot be accurately measured due to the high 

levels of non Stl1 p-dependent uptake of glycerol. This conclusion also holds true for 

the wine yeast strain tested since it appeared to behave similarly to the parental 
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strain in relation to glycerol uptake rate and sensitivity to CCCP, under either high 

or low glycerol concentrations. 

Another limiting factor that can influence Stl1p-depenent glycerol uptake is the 

degree of Stll p induction upon exposure of the parent cells to hyperosmotic stress. 

Stllp induction could be optimized in order to increase the glycerol uptake rate and 

accumulation in the parent strain, further away from background glycerol uptake. 

Optimization of Stl1p induction may be advantageous since it can improve the 

specificity of Stll p-dependent glycerol uptake at 65 mM glycerol, where background 

glycerol uptake was shown to be too high, and resulted in non-specific glycerol 

uptake. 

What is the contribution of Stl1p to glycerol accumulation in response to 

hyperosmotic stress? Salt induction of STLl by 3.4 fold in wine yeast led to a two

fold increase in the glycerol uptake rate (Figures 4.1.1 and 4.1.2). This suggests that 

glycerol uptake rate is STL1-dose-dependent. The higher the expression of STL1, the 

greater the effect on glycerol uptake rate in the wine yeast. Interestingly, glycerol 

accumulation increased by 2-fold as well and this increase was eliminated by CCCP 

to the same level of glycerol that was accumulated under non-stressed conditions 

(Figure 4.5.3.B). It appears that the contribution of Stl1p to glycerol accumulation 

constitute roughly half of the glycerol accumulated in the cell in response to 

hyperosmotic stress. Therefore, the other half of glycerol accumulated represents 

glycerol that entered the cell via other transport mechanism such as passive 

diffusion. 
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Even though both wine and laboratory yeast strains were exposed to the same 

conditions of salt stress, STLl expression was higher in laboratory yeast strain. 

However, Stl1p activity was comparable between the two strains. These results 

further demonstrates that laboratory yeast strain response to hyperosmotic stress 

differ than wine yeast strain at the level of Stl1p-depenedent glycerol uptake, in 

addition to the differences that are were previously presented in the gene 

expression (Borneman et al., 2008). 

All these evidence indicate that in wine yeast at 4 mM glycerol (1) glycerol 

uptake measured in the assay is Stl1 p-dependent and (2) glycerol accumulation is 

energy dependent. On the contrary at 65 mM glycerol, neither Stl1p-dependant 

uptake nor energy dependent glycerol accumulation could be accurately measured. 
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Part 2- Stllp activity in cells fermenting Icewine and dilute Icewine juice 

5.3 STLl was expressed in yeast during Icewine fermentation 

STLl was weakly expressed in cells fermenting Vidal Icewine juice but clearly 

induced in cells fermenting Riesling Icewine juice over the first 7 days of 

fermentation (Figure 4.6.1). In the fermentations, day 4 was chosen as the harvest 

day for the Vidal fermentations and day 7 was chosen for the Riesling fermentations, 

timepoints where a differential expression of STLl was evident at the day the cells 

were harvested for the [14C]glycerol uptake assay. Surprisingly, a signal for STLl 

expression in was not evident in cells fermenting either Vidal or Riesling diluted 

Icewine juice. This lack of expression signal for STLl in the dilute juice 

fermentations was surprising based on previous results in Vidal fermentations 

(Martin, 2008). Martin (2008) demonstrated that STLl expression was upregulated 

in cells fermenting diluted Vidal Icewine during days 2-4 of the fermentation, 

showing a strong expression on day 4. 

More surprising was the weak STLl expression during Vidal Icewine 

fermentation, which once again is in contrast to the findings of Martin (2008) who 

showed a strong expression of the gene in cells fermenting the same juice type. 

It is not clear why cells fermenting Vidal Icewine juice exhibited low STLl 

expression. These results could not have been derived from STLl glucose repression 

where STLl transcription is inhibited by glucose, since it was previously shown that 

STLl was expressed despite the presence of high glucose concentration in the juice 

(Martin, 2008; Erasmus et al, 2003) and STLl was expressed in cells fermenting 
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Riesling Icewine juice. It is probable that this discrepancy resulted from variability 

among the different Vidal Icewine juice lots. Even though the degree of 

hyperosmotic stress was comparable to the previous study (Martin, 2008), the 

chemical composition of the Icewine juice may still differ. The composition of the 

Icewine juice changes from harvest to harvest depending on different factors such 

as the environmental conditions the grapes are exposed to, grape ripeness, humidity 

and more. These factors influence the chemical composition of the grape, and 

thereby the initial Icewine juice parameters. Vidal Icewine juice parameters that 

include the initial concentrations of titratable acidity, assimilable amino acid 

nitrogen, reducing sugars and pH, appear to differ depending on the year of harvest 

(Kontkanen et aI, 2004; Pigeau and Inglis, 2005; Martin, 2008). For instance, the pH 

of Vidal Icewine juice used by Kontkanen et al (2004) was 0.6 pH units lower than 

the Vidal Icewine juice used by Martin (2008) and Pigeau and Inglis (2005). It is not 

known how or if this difference in juice acidity influences the transcriptional 

regulation of STLl. 

Alternatively, the low induction of STLl during Vidal Icewine fermentation may 

be a result of experimental error. This potential error could not have resulted from 

weak binding of the STLl probe to the membrane bound mRNA during the 

hybridization procedure, since the same probe demonstrated a strong hybridization 

signal with a positive control mRNA (Figure 4.6.1). Furthermore, no visible evidence 

for experimental error was detected during RNA isolation procedure, besides 

relatively low RNA yields. 
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Since Northern blot analysis methods exhibits relatively low sensitivity and 

requires large amounts of mRNA to accurately quantify gene expression, an 

alternative method should be used. Real time polymerase chain reaction is a 

relatively new method that allows rapid and sensitive quantification of gene 

expression levels (Jiirgen & Maurizio, 2005) and requires about 20 times less RNA 

for a single test than Northern blot hybridization as used in our study. In addition, 

this method allows a faster quantification ofthe mRNA fraction, using the internal 

transcribed spacers ITSl as an internal control gene for the normalization 

procedure. 

These advantages will allow enhanced accuracy in RNA quantification when 

isolation procedure fails to extract satisfactory quantities for Northern analysis. 

5.4 Hyperosmotically stressed cells fermenting Icewine did not present active 
glycerol uptake 

Wine yeast fermenting Icewine juice did not show a significant difference in 

glycerol uptake compared to diluted Icewine juice in either Vidal or Riesling juice, 

even though Icewine fermenting cells were exposed to greater hyperosmotic stress 

(Figure 4.7.1). Furthermore, no evidence for active glycerol uptake was detected 

upon the addition of the uncoupler under either Icewine or diluted Icewine 

fermentations (Figure 4.7.2). 
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The glycerol concentration in the Icewine fermentation media was significantly 

greater than the glycerol concentration found in the diluted Icewine fermentation as 

observed in previous studies (Martin, 2008; Pigeau and Inglis, 2005). 

Furthermore, Icewine fermenting cells produced more than twice of the glycerol 

produced by diluted Icewine fermenting cells, for the same amount of sugar 

consumed for both juice types (Table 4.7.1) as previously observed by Martin 

(2008) and Pigeau and Inglis (2005). It was hypothesized in this project that Stllp 

has a role in the uptake of the glycerol that was initially present in the fermentation 

media and subsequently released during fermentation, to increase the level of 

intracellular glycerol and counteract the dehydration effect of the Icewine juice. 

However, hyperosmotically stressed cells harvested from Vidal and Riesling Icewine 

fermentations on day 4 and 7 respectively did not show energy dependent glycerol 

uptake activity that differed between cells in the Icewine or diluted Icewine 

conditions (Figure 4.7.2.A and C). 

Even more surprising was the absence of active glycerol uptake specifically in 

the cells fermenting Riesling Icewine juice, since these cells induced STLl at the day 

of their harvest (Figure 4.6.1.A). 

Why did hyperosmotically stressed cells not show an energy depended glycerol 

uptake however still expressed STLl during Riesling Icewine fermentation? 

The fact that active glycerol uptake was not detected in hyperosmotically stressed 

wine yeast cells despite the increase in glycerol concentration in the fermentation 

media suggests that Stl1p was probably glucose inactivated in wine yeast. These 
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results are in contrast to the findings of Ferreira et al (2005), who showed that Stl1p 

glucose inactivation was overcome by saline hyperosmotic stress in laboratory yeast 

cells grown on glucose based media (Ferreria, et al., 2005). 

These results may imply that overcoming Stll p glucose inactivation in S. 

cerev;s;ae depends on the type of stressor used to induce the hyperosmotic stress. 

Salt induces Stllp active glycerol uptake whereas the high concentration of soluble 

solids in the Icewine juice most likely leads to Stl1p glucose inactivation and 

subsequent inhibition of active glycerol uptake. 

In addition to the type of stressor, overcoming Stl1p glucose inactivation may 

also depend on the yeast strains. Studies have shown that response of laboratory 

yeast strain to hyperosmotic stress differs from commercial yeast strain at the 

transcriptional level (Rep, et al, 2000; Pigeau and Inglis, 2005, Erasmus et al, 2003; 

Martin, 2008). In addition, Kayingo et al (2009) demonstrated that unlike glucose

inactivated Stl1p oflaboratory strain of S. cerev;s;ae under non-stressed conditions, 

the activity of C. albicans glycerol symporter is unaffected by carbon source 

(Kayingo, et al. 2009). Borneman at al. (2008) demomstrated that 0.6% of the whole 

genome and 0.4% of predicted proteome differ between the laboratory and wine 

yeast strains. These genomic variations may lead to Stl1p glucose inactivation in 

wine strain, but not in laboratory strain during hyperosmotic stress. 

Therefore, it is likely that overcoming Stllp glucose inactivation by 

hyperosmotic stress may be a strain-dependent event in addition to the type of 

solute used to stress the cells. 
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The absence of energy dependent glycerol uptake measured in cells fermenting 

Icewine could also have resulted from low sensitivity ofthe designed [14C]glycerol 

assay. The sensitivity of glycerol uptake assay was initially fixed to allow 

measurements of energy dependent glycerol uptake of salt stressed wine yeast 

grown on ethanol-based media. Taking into account the degree of STLl expression 

in wine yeast under these conditions, it was determined that the designed assay 

showed competency to measure Stl1p active glycerol uptake. However, this degree 

of sensitivity was not sufficient to measure glycerol uptake in Icewine and diluted 

Icewine fermenting cells. For that reason, the cell concentration in the reaction 

mixture had to be increased by 1.5-fold in order to increase the assay sensitivity. 

Still, the maximum level of glycerol accumulation in cells fermenting Icewine juice 

(Figure 4.7.1) was four times lower than the level of glycerol accumulated in wine 

yeast grown on ethanol and stressed with salt (Figure 4.5.3.A). It appears that the 

designed assay may present sensitivity limitations for measuring Stll p in wine yeast 

during fermentation and therefore may not be suitable in its present form to detect 

differences in glycerol uptake between cells that were harvested from Icewine and 

diluted Icewine fermentations. 
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Part 3-STLl sequencing 

5.5 Glucose inactivation and Stllp activity in wine and laboratory yeast 

strains 

Our results suggest that overcoming Stllp glucose inactivation by yeast under 

hyperosmotic stress conditions is either solute dependent or strain-dependent. 

Therefore, a third objective was set to compare the coding sequence of STLl 

between laboratory and wine yeast strains of S. cerevisiae in order to evaluate for 

potential variability in the predicted amino acid sequence and consequently the 

predicted 3 D structure of Stl1 p of the two strains. These differences may lead to 

changes in the tertiary structure of Stl1p and thereby affect the process of glucose 

inactivation. 

STLl coding sequence alignment of wine and laboratory yeast strains revealed 

thatSTLl coding sequence was 99.5% identical between the two strains. The seven

codon variations resulted in four silent and three synonymous mutations (Figure 

4.8.1). Since silent mutations do not result in amino acid substitution, these 

mutations cannot influence the secondary or tertiary structure of Stl1p. On the other 

hand, the synonymous mutations may affect the tertiary structure ofStl1p, even 

though these are favorable amino acid substitutions for membrane proteins. It is 

difficult to predict this effect without the crystal structure of Stllp, which has yet to 

be investigated. 

Stl1p glucose inactivation occurs through the ubiquitination of Stllp. The 

addition of this short peptide targets Stllp for degradation in the vacuole. However, 

108 



the chemical nature of the signal targeting Stl1p glucose-induced degradation is 

unknown. 

Glucose inactivation of fructose-1,6-bisphosphate (FBPase) has been extensively 

studied. The enzyme is first reversibly inactivated by phosphorylation on a serine 

residue and then irreversibly inactivated by proteolysis (Miiller and Holzer 1981). 

Mutations of Serine 289 resulted in the decrease of glucose induced FBPase 

inactivation (Hung et al. 2004). Interestingly our results suggest that the expected 

amino acid sequence of Stl1p wine and laboratory yeast strain differs at the 279 

position located between transmembranes domains six and seven. This substitution 

of serine to aspargine in wine yeast strain can possibly influence the inactivation of 

Stl1p in the presence of glucose, since this amino acid residue appears to be 

important for the phosphorylation of proteins during glucose inactivation event. If 

this is true, this substitution may eliminate Stl1p glucose inactivation in wine yeast. 

However, this assumption does not agree with our conclusions that Stl1p was most 

likely glucose inactivated in wine yeast during Icewine fermentation. 
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6 FUTURE DIRECTIONS 

6.1 Optimization of Stl1p induction 

The designed glycerol uptake assay could measure Stllp activity at 4 mM 

glycerol, however, failed to do so at higher glycerol concentration such as 65 mM. 

Even though Stll p may actively transport glycerol into the cell at 65 mM glycerol, 

this transport cannot be accurately measured due to the high levels of background 

glycerol uptake that represent the non Stllp-dependent uptake of glycerol. 

In order to reduce the effect of background glycerol uptake at 65 mM glycerol, 

Stllp-dependent glycerol uptake should be optimized in parent strain (BY 4742) . 

Greater induction of Stllp may increase the glycerol uptake in parent strain above 

background levels. 

In this study, the expression of STLl was measured only at one timepoint, 

after 90 minutes of 1 M NaCI hyperosmotic stress. However, it is not known at which 

time cells present the peak expression of STLl, and how this expression correlates 

the induction of Stllp. Therefore correlating the degree of STLl expression and the 

activity of Stll p will create a dose-response curve. To that end, STLl expression 

should be measured at 30, 60, 90 and 120 minutes upon exposure to 1 M NaCI 

hyperosmotic stress, and at the same timepoints, the initial glycerol uptake rate 

should also be measured to in laboratory strain. The relationship between the 

degree of STLl expression and Stllp-dependent glycerol uptake will present the 

dose-response curve of Stllp. This curve will allow to determine (1) if glycerol 
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uptake in parent strain cells depends on the concentration of Stll p in the cell 

membrane, and (2) the timepoint at which Stl1 p induction peaks throughout the 

time course of hyperosmotic stress. Harvesting the cells at the timepoint of Stll p 

peak activity will potentially increase the levels of glycerol uptake, above 

background glycerol uptake, at 65 mM glycerol. 

6.2 Further investigation 0/ wine yeast Stllp glucose inactivation 

The fact that active glycerol uptake was not detected in hyperosmotically 

stressed wine yeast cells despite the high concentration of soluble solids in the 

Icewine juice suggests that Stl1p was glucose inactivated in KI-Vll16 strain cells. 

Because Icewine juice is a complex media that comprises different metabolites and 

chemicals, it is important to make certain that the absence of active glycerol uptake 

in Icewine fermenting cells directly resulted from Stllp glucose inactivation, rather 

than inhibition by the components in the Icewine juice. 

To that end, it is necessary to provide further supporting evidence for Stl1p 

glucose inactivation in wine yeast harvested from Icewine fermentation. In order to 

confirm that glucose is the component in the Icewine juice that is responsible for the 

inhibition of energy dependent glycerol uptake in wine yeast cells fermenting 

Icewine juice, the activity of Stl1p should be explored in wine yeast cells in the 

presence and absence of glucose. Stl1p activity will be measured in cells suspended 

in a buffer media containing glucose concentrations that are normally found in 

Icewine juice (200 gjL). 
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To show that Stllp in wine yeast is glucose inactivated as previously 

demonstrated in laboratory yeast strain (Ferreira, et aI, 2005), Stllp-dependent 

glycerol uptake assay used in this project will be adjusted to measure Stllp activity 

in the presence of glucose. 

In the first step, the inhibition of active glycerol uptake in parent strain due to 

Stllp glucose inactivation will be validated in laboratory strain of S. cerevisiae, and 

therefore will act as control for Stllp inhibition in wine yeast. Kl-Vll16, BY4742 

and L1STLl cells will be grown on ethanol-based media and stressed with 1 M NaCI 

to induce STLl. The induction of STLl in parent and wine yeast strains and the lack 

of STLl expression in the control strain L1STLl will be confirmed using Northern 

analysis, as it was done for this project. 

The cells will then be harvested for [14C]glycerol uptake assay to measure Stllp

dependent active glycerol uptake using the same STLl induction conditions. 

Following that, cells harvested from the same experiment will be suspended in a 

buffer solution containing 2 giL of glucose (11 mM) for 30 minutes. Ferreira et al. 

(2005) demonstrated that when laboratory strain cells grown on non-fermentative 

carbon source were shifted to media containing 2 giL of glucose, Stll p was 

completely glucose inactivated after 30 minutes of exposure to glucose, however it 

is not known if Stllp is glucose inactivated in wine yeast under the same conditions. 

After validating that STLl was induced and Stll p activity is present in ethanol 

grown laboratory yeast cells, Stllp-dependent glycerol uptake will be measured 

once again, following the incubation with glucose and compared between the two 
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conditions. If the difference in the initial glycerol uptake rate between parent strain 

and LlSTLl is eliminated in the presence of glucose, it is possible to infer that active 

glycerol uptake was inhibited in laboratory yeast strain due to glucose addition, as 

observed by Ferreria et al (2005). To test if this glycerol uptake is an energy 

dependent process, the % reduction in glycerol accumulation will be compared 

before and after the addition of glucose, in the presence and absence of CCCP. If 

parent strain cells incubated with glucose does not present a significant difference 

in glycerol reduction upon incubation with CCCP compared to LlSTLl cells, it is 

possible to conclude that active glycerol uptake is inhibited in parent strain cells due 

to StUp glucose inactivation. The same procedure will be used to test Stllp glucose 

inactivation for laboratory yeast cells suspended in 200 gIL of glucose, a 

concentration of glucose that is often present in the Icewine juice. 

Upon validation of StU p-glucose inactivation using the control assay with 

laboratory yeast strain, the assay will be applied to measure Stll p activity in wine 

yeast strain in the presence of glucose. 

Using the same procedure as determined for the control assay, the initial 

glycerol uptake rate will be compared before and after incubation with glucose. To 

test for active glycerol uptake, glycerol accumulation will be compared in the 

presence and absence of CCCP with and without the 30 minutes incaution with 2 gIL 

of glucose. Reduction in the initial rate of glycerol uptake upon exposing the cells to 

glucose will indicate that glycerol uptake is partially inhibited in the presence of 

glucose. If the level of glycerol accumulation in wine cells will not be affected by the 
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addition of CCCP in the presence of glucose, it will indicate that active glycerol 

uptake was inhibited due to Stllp glucose inactivation. 

Salt-induced hyperosmotic stress was previously shown to overcome glucose 

inactivation in laboratory yeast strain, however it is not known if sugar-induced 

hyperosmotic stress results in the same outcome. Therefore, in the last step, Stllp

glucose inactivation will be evaluated in wine yeast using the same approach except 

the cells will be exposed to 200 giL glucose solution (1.1 M), a concentration of 

glucose that is often encountered by yeast during Icewine fermentation. If Stllp 

glucose inactivation can overcome by glucose-induced hyperosmotic stress, the 

glycerol initial uptake rate will not change upon exposure to glucose stress, and the 

cells should experience sensitivity to CCCP, indicating of energy dependent glycerol 

transport. 

7 CONCLUSIONS 

We concluded that active glycerol uptake is not detected in wine yeast during 

Icewine fermentation, most likely due to Stllp glucose inactivation, Therefore, Stllp 

cannot contribute to the dissipation of the proton gradient and the limited cell 

growth observed during the process of Icewine fermentation. 
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9 APPENDIX 

9.1 STL1 sequence alignment 

u _ w 
I I I 

STU KIV1l16 ATGAAGGATT TAAAATTATC GAATTTCAAA GGCAAATTTA TAAGCAGAAC CAGTCACTGG 60 

STLl SY4742 .......... 60 H _ = 
I I I 

STU KIVl1l6 GGACTTACGG GTAAGAAGTT GCGGTATTTC ATCACTATCG CATCTATGAC GGGCTTCTCC 120 

STU BY4742 120 - ~ ~ I I I 
~LIKWI1W CTGTTTGGAT ACGACCAAGG GTTGATGGCA AGTCTAATTA CTGGTAAACA GTTCAACTAT 180 

STU BY4742 180 
200 220 240 

I I I 
STU K1V1116 GAATTTCCAG CAACCAAAGA AAATGGCGAT CATGACAGAC ACGCAACTGT AGTGCAGGGC 240 

STU BY4742 240 

- = -I I I 
STU KIV1116 GCTACAACCT CCTGTTATGA ATTAGGTTGT TTCGCAGGTT CTCTATTCGT TATGTTCTGC 300 

STU BY4742 300 

= - -I I I 
~UKWI1W GGTGAAAGAA TTGGTAGAAA ACCATTAATC CTGATGGGTT CCGTAATAAC CATCATTGGT 360 

STU BY4742 360 
= ~ ~ 

I I I 
STU K1V1l16 GCCGTTATTT CTACATGCGC ATTTCGTGGT TACTGGGCAT TAGGCCAGTT TATCATCGGA 420 

STLl BY4742 420 - - -I I I 
STU KIV1116 AGAGTCGTCA CCGGTGTTGG AACAGGGTTA AATACATCTA CTATTCCCGT TTGGCAATCA 480 

STU BY4742 ....... G 480 

- = ~ , I I 
STLl KIVl116 GAAATGTCAA AAGCTGAAAA TAGAGGGTTG CTGGTCAATT TAGAAGGTTC CACAATTGCT 540 

STU BY4742 540 - - -I I I 
S~lKWIIW TTTGGCACTA TGATTGCTTA TTGGATTGAT TTTGGGTTTT CTTATACCAA CAGTTCTGTT 600 

STLl BY4742 ..... T .... .... G. 600 

~ - -I I I 
STU KIVll16 CAGTGGAGAT TCCCCGTGTC AATGCAAATC GTTTTTGCTT TCTTCCTGCT TGCTTTCATG 660 

STU BY4742 660 

- - = I I I 
~LlKWIIW ATTAAACTAC CTGAATCGCC ACGTTGGCTG ATTTCTCAAA GTCGAACAGA AGAAGCTCGC no 

STU BY4742 720 - - -I I I 
STU KIVl116 TACTTGGTAG GAACACTAGA CGACGCGGAT CCAAATGATG AGGAAGTTAT AACAGAAGTT 780 

STLl BY4742 780 - ~ -I I I 
STU K1V1l16 GCTATGCTTC ACGATGCTGT TAACAGGACC AAACACGAGA AACATTCACT GTCAAATTTG 840 

STU BY4742 ..... G •... 840 - - -I I I 
STU KIVl116 TTCTCCAGAG GCAGGTCCCA AAATCTTCAG AGGGCTTTGA TTGCAGCTTC AACGCAATTT 900 

STLl BY4742 900 

= - -I I I 

STU K1V1116 TTCCAGCAAT TTACTGGTTG TAACGCTGCC ATATACTACT CTACTGTATT ATTCAACAAA 960 

STLl BY4742 960 
980 1,000 1,020 

I I I 
STLl KIVl1l6 ACAATTAAAT TAGACTATAG ATTATCAATG ATCATAGGTG GGGTGTTCGC AACAATCTAC 1020 

STU BY4742 .... C ..... 1020 
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1.040 1,060 1,080 
I I I 

STLl K1Vl116 GCCTTATCTA CTATTGGTTC ATTTTTTCTA ATTGAAAAGC TAGGTAGACG TAAGCTGTTT 1080 

STLl BY4742 . . . .. .. ... ........ . . .. ... . . .. . . . . . . ~ .... ...... . .. . . . . . . . . . . . 1080 
1.100 1.120 1,140 

I I I 
STLl K1V1116 TTATTAGGTG CCACAGGTCA AGCAGTTTCA TTCACAATTA CATTTGCATG CTTGGTCAAA 1140 

STLl BY4742 ......... . ....... . . . . .. . ...... ... .. ..... . . ........ . . . . . . . . . . 1140 
1.160 1,180 1.200 

I I I 
STLl K1V1116 GAAAATAAAG AAAACGCAAG AGGTGCTGCC GTCGGCTTAT TTTTGTTCAT TACATTCTTT 1200 

STU BY4742 ......... . ... . ..... . . . ....... . ... . . ..... . . . . ... . .. .. . ...... . 1200 
1,220 1.240 1,260 

I I I 
STU K1V1116 GGTTTGTCTT TGCTATCATT ACCATGGATA TACCCACCAG AAATTGCATC AATGAAAGTT 1260 

STLl BY4742 ...... . ... . .. ...... . .. . . . .... . .. . ...... . ..... . . . . . . . ..... . . . 1260 
1,280 1,300 1,320 

I I I 
STU KIVll16 CGTGCATCAA CAAACGCTTT CTCCACATGT ACTAA CTGGT TGTGTAACTT TGCGGTTGTC 1320 

STU BY4 742 . .. . ..... . ... . . ... . . . . .. ...... ... .. T .... . .... . . . .. . . . ....... 1320 
1.340 1,360 1,380 

I I I 
STU KIVll16 ATGTTCACCC CAATATTTAT TGGACAGTCC GGTTGGGGTT GCTACTTATT TTTTGCTGTT l380 

STU BY4742 ...... .. . . · . . . . . . . . . .. . . .. ... . .... . . .. . . . ......... . ......... 1380 
1.400 1,420 1,440 

I I I 
STU K1 V1116 ATGAATTATT TATACATTCC AGTTATCTTC TTTTTCTACC CTGAAACCGC CGGAAGAAGT 1440 

STLl BY4742 ......... . . ..... .. . . . .. .. ..... ......... . ... .. .. .. . .. ....... . 1440 
1.460 1,480 1,500 

I I I 
"j STU KIVll16 TT GGAGGAAA TCGACATCAT CTTTGCTAAA GCATACGAGG ATGGCACTCA ACCATGGAGA 1500 

STLl BY4742 . . . . . . . . . . · . . . . . . . . . ... . . . . . . . . ..... . .. . .. ..... .. . . ........ . 1500 
1.520 1,540 1,560 

I I I 
STU KIVll16 GTTGCTAACC ATTTGCCCAA GTTATCCCTA CAAGAAGTCG AAGATCATGC CAATGCATTG 1560 

STLl BY4742 . . ... .... . .. .. .. . ... . .. . ...... ........ . . . ..... . ... . . .. .. . .. . 1560 
1,580 1,600 1.620 

I I I 
STll K1V1l16 GGCTCTTATG ACGACGAAAT GGAAAAAGAG GACTTTGGTG AAGATAGAGT AGAAGACACC 1620 

STLl BY4 742 . . . . .. . .. . · . . . . . . . . . . . .. .. . .. . ... . ... . . . .... .. ... . . ......... 1620 
1,640 1,660 1,680 

I I I 
STU Kl Vll16 TATAACCAAA TTAACGGCGA TAATTCGTCT AGTTCTTCAA ACATCAAAAA TGAAGATACA 1680 

STU BY4742 .... ... . . . ......... . . . . .... .. . ... ... ... . . ......... . . . . ... . . . 1680 
1,700 

I 
STU KIV1116 GTGAACGATA AAGCAAATTT TGAGGGTTGA 1710 

STLl BY4742 .... .. . . . . ..... .. . . . ..... . ... . 1710 

Figure 9.1.1: Sequence alignmentofK1-V1116 and BY4742 STL1 gene. Figure 
created using CLC main Workbench V 4.2.0. 
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9.2 Optimization of glycerol uptake assay 

In the designed glycerol uptake assay, hyperosmotically stressed cell were 

incubated with (14C]glycerol and 10 uL of stock cell suspension was filtered at 

specific time points and washed with Ice-cold water to remove excess extracellular 

glycerol and allow accurate measurements of the level of intracellular [14C]glycerol. 

The level of glycerol accumulated by the cells was inferred from the amount of 

radioactivity that was left on the filter. Because glycerol has a lipophilic nature there 

was a concern that the radioactivity that remained on the filter represents 

extracellular glycerol that was bound to the cell membrane rather than intracellular 

glycerol. That means that washing the cells with water may not be sufficient to 

remove extracellular glycerol and therefore hinder the accuracy of the results. 

To make certain that the radioactivity retained on the filter represents only 

intracellular glycerol, cells were washed with either Ice-cold water or 1 M cold 

glycerol solution. Ifradiolabeled glycerol was indeed stuck in the cell membrane, 

washing the cells with cold glycerol should reduce the radioactivity on the filter 

since the cold glycerol molecules will compete and therefore substitute for the 

membrane-bound radiolabeled glycerol. 

Washing .t1STLl or parent strain cells with glycerol did not decrease the level of 

radioactive glycerol throughout the course of the assay (Figure 4.2), indicating that 

glycerol was not bound to the cell membrane and therefore washing with water is 

sufficient to remove extracellular glycerol from the filter. 
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Figure 9.2.1: The effect of washing solution on the level of radio labeled 
glycerol retained on the filter. Parent strain and L!STLl cells were washed 
twice with either 5 mL of Ice-cold water or 5 mL of cold glycerol solution 
(1M) at the specified time-points. 
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