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Abstract 

Given a heterogeneous relation algebra R, it is well known that the algebra of ma­

trices with coefficient from R is relation algebra with relational sums that is not 

necessarily finite. When a relational product exists or the point axiom is given, we 

can represent the relation algebra by concrete binary relations between sets, which 

means the algebra may be seen as an algebra of Boolean matrices. However, it is 

not possible to represent every relation algebra. It is well known that the smallest 

relation algebra that is not representable has only 16 elements. Such an algebra can 

not be put in a Boolean matrix form.[15] 

In [15, 16] it was shown that every relation algebra R with relational sums and 

sub-objects is equivalent to an algebra of matrices over a suitable basis. This basis is 

given by the integral objects of R, and is, compared to R, much smaller. 

Aim of my thesis is to develop a system called ReAlM - Relation Algebra Ma­

nipulator - that is capable of visualizing computations in arbitrary relation algebras 

using the matrix approach. 

IV 



Chapter 1 

ReAlM ... A System to Manipulate 
Relations 

1.1 Introduction 

The calculus of relation algebra traces back its origin all the way to the second half 

of the last century with the pioneering work on binary relations of G. Boole, A. de 

Morgan, C.S. Peirce, and E. Schroder. Tarski and his co-workers also have been con­

tributed significantly toward the present day axiomatic development [13]. Relation 

algebra is a fruitful base for describing fundamental concepts such as graphs, com­

binatorics, orders, lattices and games in mathematics as well as relational databases 

and program correctness and verification in computer science. This has been widely 

accepted by mathematicians and computer scientists over the past two decades. 

Under certain circumstances, i.e. relational products exist or the point axiom is given, 

a relation algebra may be represented by concrete relations between sets [8, 14]. Any 

concrete relation can be visualized by a Boolean matrix. The rows of the matrix 

correspond to elements of the source and the columns to the elements of the target 

of the relation. A 'true' (or '1') entry in the i-th row and j-th column indicates that 

1 
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the elements i and j are in relation. Similarly, a 'false' (or '0') entry means that the 

corresponding elements are not in relation. 

Even though the set of operations in a relation algebra is quite large, most of those 

operations can be defined in terms of a small set of basic operations. This set of 

basic operations may include operations such as union, intersection and composition. 

Furthermore, these operations can easily be implemented on Boolean matrices in a 

similar way to the operations on linear maps in linear algebra. It is also possible 

to graphically represent concrete relations over finite sets using directed graphs in 

a computer system. With the currently available programming technologies and in­

terfacing techniques, it is possible to build a computer system capable of computing 

relational programs and relations. 

One such system, which is already available with the capability of calculating rela­

tional programs, is RELVIEW. This system is written in C programming language 

and runs under the X Windows System and makes full use of the graphical user inter­

face. The first version of the RELVIEW was written at the University of the German 

Forces Munich and later redesigned and extended at Kiel University. RELVIEW can 

be used to solve many different tasks while working with relational algebra, concrete 

relations, relations based on discrete structures and relational programs. For further 

details and some examples using RELVIEW in applications we refer to [2, 3]. 

As known, not every relation algebra is representable [9] and therefore is not an al­

gebra of Boolean matrices. The currently available RELVIEW system works with 
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Boolean matrices, and can, therefore, be used to work only within the class of rep­

resentable relation algebras. In [16] it was shown that in every relation algebra R 

with relational sums and subobjects it is possible to characterize a full subalgebra B, 

called the basis of R, such that the matrix algebra B+ with the coefficients from B is 

equivalent to R. The objects of B are the integral objects of R. Integral objects are 

defined similar to integral domains in algebra, i.e. the endorelations of an integral 

objects permit no zero divisors. This property can equivalently be characterized by 

the fact that the identity morphism is an atom. 

In my thesis, I want to develop a system called ReAlM (Relation Algebra Manipula­

tor) similar to RELVIEW but based on the theory above. With the ReAlM system 

it would be possible to work with arbitrary heterogeneous relation algebras. The 

high interactive nature of ReAlM allows the users to formulate the proof of relational 

theorems and to visualize the computations. 

1.2 Heterogeneous Relation Algebras 

Relation algebras were originally introduced as homogeneous structures, i.e. every 

relation was supposed to be defined on the same global universe U [13, 14]. A vari­

ation of this theory has evolved where relations are considered as heterogeneous or 

rectangular from the beginning, i.e. relations where the normal case is that they are 

relations between two different sets. In this chapter, we provide the basic definitions 

of the theory of heterogeneous relation algebras [5, 11, 12]. We assume that the reader 

is familiar with the basic notions of category and lattice theory. For any notion not 

defined here we refer to [1, 4, 7, 10]. 
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Definition 1.2.1. A (heterogeneous abstract) relatio~ algebra is a locally small cat­

egory n consisting of a class ObjR of objects and a set n [A,Bj of morphisms for 

all A, BE ObjR. The morphisms are usually called relations. Composition is denoted 

by";" and identities are denoted by II E n[ A, A]. In addition, there is a totally de­

fined unary operation ~ AB: n[ A, B] ~ n[ B, A] between the set of morphisms, called 

conversion. The operations satisfy the following rules: 

1. Every set n[A,Bj carries the structure of a complete atomic boolean algebra 

with operations U A,B, n A,B, - A,B, order relation ~, zero element liA,B, universal 

element Tr A B . , 

2. For all relations Q, Rand S the Schroder equivalence holds: 

The category ReI with sets as objects and binary relations as morphisms is the stan-

dard example of a heterogeneous relation algebra. As already mentioned in the in-

troduction, relations in that category can be visualized by Boolean matrices. 

The Schroder equivalences can be easily memorized by the following: converse the 

first (or second), then complement and permute the other two. 

In the following example, we will be using kinship or family relation and demonstrate 

how Schroder equivalences can be applied. 

Example 1.2.1 Let the following relations be given: 

1. B for the relation "is Brother of' , 

2. F for the relation "is Father of', 
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3. M for the relation" is Mother of' . 

In addition, let G denote the relation "is Godfather of'. Then, P := FuM means 

"is Parent of' and B ; P means "is Uncle of'. Now, let's assume that uncles in our 

family traditionally become godfathers. So we have B; P ~ G. If we apply Schroder 

equivalence to the family relation above, we will see that both formula B~; G ~ P and 

G; P~ ~ B holds. 

B~; G ~ P can be read as : If a family member x has a brother z, who is not a 

godfather of y, then x can not be a parent of y. The latter statement must be true 

because, otherwise, contrary to family tradition, x would be an uncle of y without 

being y's godfather. 

We want to illustrate this situation even further using a concrete family and their 

relationships visualized by the following diagram and Boolean matrcies. 

Ralph ................. > Emily Clara 

~ 

B ob =========~> Kate Alex 

1~ I .=-7 1 ... , " ->I. 

Matthew··········> Stephan ........... > Thomas 



Legend: 

Brother 

Father ........... -> 

Mother -----~ 

Uncle (B; P ) 

R B M E K S CAT 

R000100000 

BOOOOOOOOO 

MOO 0 0 1 o 0 0 

R B M E K S CAT 

ROOOOOOOOO 

BOOOOOOOOO 

MOOOOOOOOO 

F= E 
00000000 o M= E 00000001 

KOOOOOOOOO 

S 000000011 

COOOOOOOOO 

AOOOOOOOOO 

TOOOOOOOOO 

R B M E K S CAT 

ROOOOOOOOO 

BOO 0 0 1 o 0 0 

MOOOOOOOOO 

K000000100 

S 000000000 

COOOOOOOOO 

AOOOOOOOOO 

TOOOOOOOOO 

R B M E K S CAT 

ROOOOOOOOO 

B001000000 

M010000000 

E 
B;P= 

00000000 o B = E o 0 o 0 0 0 0 0 o 
KOOOOOOOOO 

S 000000100 

COOOOOOOOO 

AOOOOOOOOO 

TOOOOOOOOO 

KOOOOOOOOO 

S 000010000 

COOOOOOOOO 

AOOOOOOOOI 

T000000010 

6 
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R B M E K S C A T R B M E K S C A T 

R 0 0 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 0 0 

B 0 0 0 0 1 1 0 0 0 B 1 1 1 1 1 1 1 1 

M 0 0 0 0 0 0 0 0 0 M 1 1 1 1 0 0 1 1 

G= 
E 0 0 0 0 0 0 0 0 0 

B~;G= 
E 0 0 0 0 0 0 0 0 0 

K 0 0 0 0 0 0 0 0 0 K 1 1 1 1 1 1 0 1 1 

S 0 0 0 0 0 0 1 0 0 S 0 0 0 0 0 0 0 0 0 

C 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 

A 0 0 0 0 0 0 0 0 0 A 1 1 1 1 1 1 1 1 

T 0 0 0 0 0 0 0 0 0 T 1 1 1 1 1 1 1 1 

Now, we would like to ~se the relation matrices and try to explain the Schroder equiv­

alence using relations between certain family members. 

For example, Bob is a godfather of Stephan. This follows from the fact that Bob is 

a brother of Matthew and Matthew is the father of Stephan, i.e. Bob is an uncle of 

Stephan, and the fact that according to the tradition an uncle becomes a godfather, 

B; p ~ G as a formula. 

As a second example we have that Bob is not a brother of Stephan. In fact, Bob is not 

a godfather of Thomas who is a son of Stephan. According to the formula G; p~ ~ B, 

which is equivalent to B; P ~ G using the Schroder equivalences, we obtain that Bob 

is not a brother of Stephan. 

As a last example, we know that Bob is not a parent of Stephan. Using the third 

inclusion B~; G ~ P obtained from the Schroder equivalences this follows from the 

fact that Bob has a brother Matthew who is not a godfather of Stephan .• 
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1.3 Matrix Algebras 

Given a heterogeneous relation algebra n, we can define an algebra of matrices n+ 

with coefficients from n. 

Definition 1.3.1. Let n be a relation algebra. The algebra n+ of matrices with 

coefficients from n is defined by: 

1. The class of objects ofn+ is the collection of all functions from an arbitrary set 

I to ObjR. 

2. For every pair f : I ~ ObjR, 9 : J ~ ObjR of objects from n+ , the set of 

morphisms n+[j,g] is the set of all functions R : I x J ~ MorR such that 

R(i,j) E n[j(i),g(j)] holds. 

3. For R E n+ [j, g] and 8 E n+ [g, h] composition is defined by 

(R;S)(i,k):= U R(i,j); S(j,k). 
jeJ 

4. For R E n+ [j, g] conversion and negation is defined by 

R~(j,i):= (R(i,j))~ and R(i,j):= R(i,j) 

5. For R, S E n+[j,g] union and intersection are defined by 

(RuS)(i,j) :=R(i,j)uS(i,j) 

and 

(R n S)(i,j) :=R(i,j) n S(i,j) 

6. Identity, empty and universal elements are defined by : 

.. { lif(il) 
li/(zl, Z2) := 

li/Ch)/C i 2) 

li/,g (i,j) :=li/Ci)g(j), If/,g (i,j) :=If/Ci)g(j)' 
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In the following examples we want to demonstrate the definition above. 

Example 1.3.1 [Objects and Relations] 

f .. 9 .. h 

I ---+ Obi-I? J ---+ Objn K ---+ Objn 
In the diagram above, f, g and h are the objects of n+ which are themselves (infinite) 

lists of objects of relation algebra n. If that list of objects is finite, we write the 

object as a list. e.g. as [A,B,A,C]. Now, we can visualize the concept as follows: 

Assume that we are given the following relations from a relation algebra n (besides 

the constant relations ll, 1f, II) : 
S N 

() () 
A~C~E o 
B 

Then we can define a relation Q in n+ with source [A,B,C] and target [A,C,E] using 

the coefficients from n above: 

ACE 

A S T II 

Q B II L M 

C II N Pt 

Example 1.3.2 [Composition] 

Let n be the relation algebra with one object A and the following 4 relations: 

1. 1f for the universal relation, 

2. II for the empty relation, 
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3. II for the identity relation, 

4. If for the complement of the identity. 

The order structure of the relations above is given by the following diagram: 

"If 

/~ 
II If 

~/ 
II 

The composition table for those relations is: 

, II II II "If 

II II II II II 

II II II II "If 

II II II II or "If "If 

"If II "If "If "If 

As we can see from the table above, that composition of identity complement with 

itself could be the II or "If (universal relation), which means we have actually specified 

two relation algebras. 
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If [ll uU lfII Uu IIllJ]-_ [II 0lfr If] .• ~ . Then R; S = If 

II 

In the second computation we can see that the composition of I and I could result in 

identity or If depending of the composition table in R. 

Example 1.3.3 [Conversion and Complement] 

If S is a matrix with source [A, B] and target [B, A] given by [ : : J where A and B 

are : d[~:;:nt (:~=e]cts [:th II e]xisting relations, then S' would be: 

(II)~ (If)~ II If 

The complement of S can be computed as R(i,j) := R(i,j) 

Example 1.3.4 [Union and Intersection] 

If we have a IDatru X ~[: : J and matrix Y ~[: ! 1 
then X n Y ~[: : J and X u Y ~[: :1. 
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Example 1.3.5 [Identity, Empty and Universal relation] 

For the object [A, B] we obtain the identity, the empty and the universal relation as [: ; l [: :] and [: :] respectively. Notice that the coefficients of the previous 

matrices denote relations between (or on) different objects. For example, the identity 

at position (1,1) of the first matrix is the identity on A whereas the one at position 

(2,2) is defined on B .• 

1.4 Integral Objects and the Basis of R 

As we have stated in the introduction, it is possible to characterize a full subalgebra 

Bn which is the basis of R. This basis Bn is constructed by using the integral objects 

of the relation algebra R. An integral object is defined similar to an integral domain 

in abstract algebra [6] as an object that does not have zero devisors. It turns out 

that in a relation algebra this can equivalently be characterized by the property that 

the identity is an atom. Normally, the basis Bn is much smaller than the original 

relation algebra R, i.e. Bn and R are not isomorphic. In this section, we will look at 

the characteristics of the integral objects which are the building blocks of the basis 

Bn for the relation algebra R. 

Definition 1.4.1. An object A of a relation algebra is called integral iff llAA*lfAA 

and for all Q, R E R[A, A] the equation Q;R =llAA implies either Q =llAA or R =llAA. 

The basis of R is the full subcategory induced by the integral objects of R. 

Suppose we have a basis that has one object A and two relations 0,1 on A with 0 

being the zero or empty relation and 1 being the identity and universal relation. This 

basis can be seen as the Boolean values, O=false, l=true. In this sense, the algebra 
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of Boolean matrices is the matrix algebra over this particular basis. 

Example 1.4.1 

Let us assume that the source (and the target) [A,A] of Q and R are integral objects. 

According to the definition of integral objects, either Q or R must be equal to zero. 

But this is not the case here. As we can see both Q tJl and R tJl therefore the object 

[A,A] is not integral. • 

Lemma 1.4.2. The following properties are equivalent: 

1. A is an integral object. 

2. Every non-empty relation R: A ~ A is total, i. e. TIA ~ R; R~. 

3. TIA is an atom. 

A proof can be found in [3]. 

Being integral depends on the relations that are available. 

Example 1.4.3 In the preceding example the object [A,A] was not integral. In 

total there are 24 = 16 relations with source and target [A, A]. If we consider fewer 
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relations, i.e. a different relation algebra that contains only ll, IT, JI and 1[, then [A, A] 

becomes integral. 

For example, IT A ; llA is llAA , when llA is llA, which satisfies the definition .• 

1.5 Subobjects 

In order to show that the matrix algebra over the basis of a relation algebra R is 

equivalent to R we need the concepts of subobjects and relational sums. In this 

section we want to start with subobjects [5, 12]. 

Definition 1.5.1. Let e E R[A,A] be a partial identity, z.e. l £; JIA . An object B 

together with a relation 'ljJ E R[B, A] is called a subobject of A induced bye iff 

A relation algebra has subobjects iff for each partial identity, a subobject exists. 

We can visualize the definition from the following diagram: 
1,;IlA 

Example 1.5.1 

() 
A 

~r 
B 

Here we would like to use the diagram above to formulate a 

concrete example to explain the concept of subobjects. Let's assume that we have a 

relation A given by a set of colours and that A has partial identity. 

A = {red, green, blue, yellow, violet, orange, white, black} 

e = {(red, red), (green, green), (black, black)} 

B = {red, green, black} 
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'IjJ:B---'>-A 

Red Green Blue Yellow Violet Orange White Black 

Red 1 0 0 0 0 0 0 0 

Green 0 1 0 0 0 0 0 0 

Blue 0 0 0 0 0 0 0 0 

Yellow 0 0 0 0 0 0 0 0 

Violet 0 0 0 0 0 0 0 0 

Orange 0 0 0 0 0 0 0 0 

White 0 0 0 0 0 0 0 0 

Black 0 0 0 0 0 0 0 1 

Now, set B = {red, green, black} and 'IjJ : B ---'>- A 

Red Green Blue Yellow Violet Orange White Black 

Red 1 0 0 0 0 0 0 0 

Green 0 1 0 0 0 0 0 0 

Black 0 0 0 0 0 0 0 1 

In the preceding example, if we take i as an atom then we get an integral object. For 

example, we may take fi = {(red, red) }. 

Red Green Blue Yellow Violet Orange White Black 

Red 1 0 0 0 0 0 0 0 

Green 0 0 0 0 0 0 0 0 

Blue 0 0 0 0 0 0 0 0 

Yellow 0 0 0 0 0 0 0 0 

Violet 0 0 0 0 0 0 0 0 

Orange 0 0 0 0 0 0 0 0 

White 0 0 0 0 0 0 0 0 

Black 0 0 0 0 0 0 0 0 •• 
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1.6 Relational Sum 

The relational sum corresponds to a disjoint union of sets. This construction actually 

establishes a categorical product in a relation algebra [5, 12]. In this section we define 

sums and provide some examples. We also define some derived operations on relations 

called sum, co-sum and disjoint union. 

Definition 1.6.1. Let A and B be objects of a relation algebra n. An object A + B 

together with two relations t : A ---)- A + Band 11, : B ---)- A + B is called a relational 

sum of A and B iff 

n is said to have binary (or finite) sums if a relational sum exists for every pair of 

objects. 

If M : C ~ A and N : C ~ B are arbitrary relations, then the sum M + N is defined 

by M; tuN; 11,. This construction is visualized in the following diagram. 

A Xl, 
c·····>A+B 

~1' 
B 
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The co-sum of M : A --+ C and N : B --+ C is simply defined as the converse of the 

sum of M~ and N~, i.e. it is the expression L~;MuK,~;N. 

If M : A --+ Band N : C --+ D are arbitrary relations, then the disjoint union is defined 

by L~; M; L U K,~; N; K,. This construction is visualized in the following diagram. 

M A------»-.,B 

~ 1 ~~.M.~uK,~.N.K, 1 ~ 
A + C .... ~ ..... : ......... : ... > B + D 

K,! !K, 
C-----~ .. D 

N 

Example 1.6.1 We can demonstrate the construction of sum and disjoint union 

UBffig concrete Boolean matrices. Let Q~[ ~ :] and R ~[~ ~ l then as a result of 

[
1 0 1 1] sum we get Q + R = . 
101 1 

Disjoint union using the A and B above would look like: 

1 000 

1 000 

o 0 1 1 

o 0 1 1 

.t 

A generalization of binary sums to arbitrary (not necessarily finite) sums is straight­

forward. Since this concept is not used in this thesis we refer for further details to 

[15, 16]. Consequently, we say that a relation algebra has arbitrary sums if a relational 
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sum exists for every set of objects. 

1.7 Theorem 

Now that we have defined and explained relational sums, subobjects and integral 

objects B, we are ready to present the main theorem upon which this paper is based. 

Theorem 1. 7.1. Let n be a relation algebra with arbitrary relational sums and sub­

objects, and B be the basis of the n. Then nand B+ are equivalent. 

This theorem states that nand B+ are equivalent in the sense of category theory 

[1, 10]. The two structures, in general, are not isomorphic since the functor from n 
to B+ may identify isomorphic objects. 

1.8 Splitting 

An important additional construction in relation algebras is splittings. They combine 

subobjects as defined earlier and the process of computing equivalence classes of an 

equivalence relation into one basic concept [5, 12]. 

Definition 1.8.1. Let Q : A --+ A be a partial equivalence relation, z. e. Q~ = Q and 

Q;Q = Q. An object B together with a relation S: B --+ A is called a splitting of Q 

(or S splits Q) iff S; S~ = liB and S~; S = Q. 

We can explain the splitting with the following sequences of examples: 

Example 1.8.1 Let A be the set of persons where 

A = {Charles, James, David, Chris, Keith, Derek, Barb} 
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and let Q be the partial equivalence on persons where two persons are equivalent if 

their age is in the same decade. Lets also assume that ages of Charles and James are 

25 and 29 respectively, ages of David, Chris and Keith are 36, 38 and 29 respectively, 

age of Derek is 45 and age of Barb is 55. Consequently, Q is a homogenous relation 

on A, i.e. Q: A ~ A, with equivalence classes of persons with age in the same decade. 

As a Boolean matrix we get: 

Charles James David Chris Keith Derek Barb 

Charles 1 1 0 0 0 0 0 

James 1 1 0 0 0 0 0 

David 0 0 1 1 1 0 0 

Chris 0 0 1 1 1 0 0 

Keith 0 0 1 1 1 0 0 

Derek 0 0 0 0 0 1 0 

Barb 0 0 0 0 0 0 1 

If we denote the set of equivalence classes with B then, the splitting R of Q is a 

relation from the set B of equivalence classes of Q to A. Using Q we get the following 

4 equivalence classes [Charles], [David], [Derek] and [Barb]. R relates each equivalence 

class of B with the elements of A. As a Boolean matrix we obtain R as: 
Charles James David Chris Keith Derek Barb 

[Charles] 1 1 0 0 0 0 0 

[James] 0 0 1 1 1 0 0 

[David] 0 0 0 0 0 1 0 

[Chris] 0 0 0 0 0 0 1 

Now, if we compute R; R~ we get the following matrix which is the identity of B: 
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[Charles] [James] [David] [Chris] 

[Charles] 1 0 0 0 

[James] 0 1 0 0 

[David] 0 0 1 0 

[Chris] 0 0 0 1 

And if we compute R-; R we get the following relation which is Q. 

Charles James David Chris Keith Derek Barb 

Charles 1 1 0 0 0 0 0 

James 1 1 0 0 0 0 0 

David 0 0 1 1 1 0 0 

Chris 0 0 1 1 1 0 0 

Keith 0 0 1 1 1 0 0 

Derek 0 0 0 0 0 1 0 

Barb 0 0 0 0 0 0 1 

R satisfies both properties of the definition above so that R is indeed a splitting 

of Q in this example. • 

Example 1.8.2 As a second example we would like to use a partial identity of 

Q, i.e. a subset of the equivalence relation Q. Let A={1,2,3,4,5,6,7,8,9,10} and Q be 

the partial identity generating the subset of prime numbers. In this case there will 
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be only one number in each equivalence class at most. As a Boolean matrix we get: 

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 1 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 1 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 

The splitting R of Q relates every (non empty) equivalence class B to its elements. 

In this example every equivalence class has at most one element which are [2], [3], 

[5], and [7] and some elements such as 1, 4, 6, 8, 9, and 10 do not belong to any 

equivalence class. If we represent the splitting R as a matrix, we get the following: 

1 2 3 4 5 6 7 8 9 10 

[2] 0 1 0 0 0 0 0 0 0 0 

[3] 0 0 1 0 0 0 0 0 0 0 

[5] 0 0 0 0 1 0 0 0 0 0 

[7] 0 0 0 0 0 0 1 0 0 0 

This example also shows that the concept of subobjects is just a special case of a 

splitting .• 

Example 1.8.3 As a final example we would like to combine both situations, 
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i.e. equivalence classes with one or more elements and elements that do not belong 

to any class. 

Let A be again the set of persons where 

A = {Charles, James, David, Chris, Keith, Derek, Barb}. 

Now, let Q be the partial equivalence relation on those persons having studied the 

same topic at the university. In this example, let's assume Charles and Chris did not 

go to university so that they did not study any topic. Let's also assume that James 

and Barb studied computer science and David and Derek studied History. Keith 

studied Physics. We obtain the following Boolean matrix for Q: 

Charles James David Chris Keith Derek Barb 

Charles 0 0 0 0 0 0 0 

James 0 1 0 0 0 0 1 

David 0 0 1 0 0 1 0 

Chris 0 0 0 0 0 0 0 

Keith 0 0 0 0 1 0 0 

Derek 0 0 1 0 0 1 0 

Barb 0 1 0 0 0 0 1 

Let B be given by the set of (existing) equivalence classes for this example. There are 

exactly three such equivalence classes, namely: [James], [David] and [Keith]. Since 

James and Barb studied Computer Science, Derek and David studied History and 

Keith studied Physics. So the elements of each equivalence class are related to each 

other within that class by Q. Now, Let R be the splitting of Q which should relate 

each of the equivalence classes to its elements ie. R: BQ -+ A. Then we will have R: 



[James] 

[David] 

[Keith] 

Charles James David Chris Keith Derek Barb 

o 

o 

o 

1 

o 
o 

o 

1 

o 

o 

o 
o 

o 

o 

1 

o 

1 

o 

1 

o 
o . • 
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Chapter 2 

ReAlM - Design Specifications 

This section of the ReAlM documentation contains the technical details of the system, 

the design description, platform and system requirements. The Design Overview Sec­

tion provides a high level overview of the system and the Detail Design Specification 

Section describes the major components of ReAlM in more detail. 

2.1 Scope 

Scope of this document is to provide a detail description of the ReAlM system. The 

system architecture, the software components, the user interface, and the basis files 

syntax are described in the remaining sections of this chapter. 

2.2 Java Platform 

The Java platform targeted here is JDK 1.6 mainly because of its support of generic 

types which made it much easier to implement RelAlg, Fini teRelAlg, MatrixAlg as 

well as Matrix. 

24 



25 

2.3 Naming Convension 

In general, to name the package, class, attributes and methods we have followed 

standard Java naming convension. In case of class names, first alphabet of each word 

has been capitalized and spaces between the words have been removed. Camel case 

is used in naming the methods and attributes. 

2.4 Design Overview 

In the system ReAlm, the abstract class RelAlg implements a heterogeneous relation 

algebra. The class has two generic type parameters 0 and M for the type of objects 

and the type of the relations. It has several accessor methods for performing binary 

and unary operations between objects. It defines abstract methods for performing 

standard operations and the abstract methods source and target for getting the 

source and target objects of a relation. 

The class Fini teRelAlg extends from the RelAlg and is itself an abstract class. 

This class contains inherited abstract accessor methods from RelAlg to get relations 

between two objects of the relation algebra, a hashmap of all relations for each pair 

of objects in the algebra and two abstract methods for retrieving the list of objects 

and the list of relations from the basis. 

The class MatrixAlg is a sub-class of RelAlg. This class is not a sub-class of 

Fini teRelAlg because the set of objects of a matrix algebra is not finite. This class 

provides implementation of all inherited abstract methods from class RelAlg specific 

to matrices. This class also provides implementation of operations like sum, co-sum, 

disjoint union. 

The class Basis represents a basis of a matrix algebra. In order to be able to 
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handle such a structure on a computer this class is a sub-class of Fini teRelAlg. 

This class is initialized by reading / parsing the XML file with a set of objects, 

relations between them as well as operations available. 

2.5 Component Details 

2.5.1 Basis File Structure 

A potential basis for the relation algebras in ReAlM is stored in XML format for ease 

of representation extensibility purpose. Basis files including their associated schema 

definition (.xsd) are stored in "Basis" subdirectory of the project. The XML schema 

file is also used to validate the contents of a basis file. 

A basis file starts with the root element "FiniteReIAlg" where the name of the basis 

is specified in the attribute name. The comment element <comment> ... </comment> 

can be used to provide a brief description of the basis. 

The relations tag is used to specify the number of relations between two objects. 

An example might be like 

<relations source="A" target="A" number="2"/>. 

This tag indicates that there are four relations between the objects A and A. These 

relations will be represented later in the system by the numbers 0,1,2, and 3. 

The identity, top, and bottom tags are used to specify relations between objects 

using decimal values. Sample usage of these tags might be: 

<identity object="A" relation="P/> 

<bottom source="A" target="A" relation="O"/> 

<top source="A" target="A" relation="3"/>. 
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The identity tag indicates that identity relation of an object A is represented by 

value 1, the bottom tag indicates that bottom relation between A and A is represented 

by value 0 and the top tag indicates that top relation between A and A is represented 

by value 3. 

Having defined the relations, we define operations between pair of objects for all com­

binations. Basis file only defines the standard relational operations. We use union, 

intersection, composition, transposition and complement tags to define the op­

eration between objects. For example, union can be used in the following way to 

define a union operation between two objects A and B, i.e. 

<union source=IIAII target= IIB II > 0,1,1; 1,0,1; 0,0,0; 1,1,1 </union>. 

The union tag uses";" as a delimiter among different union operations. The above 

union tag specifies four different union operation. If we look at the first union op­

eration, it states - union operation between relation "0" having source A and target 

B, and relation" 1" having source A and target B would result in relation" 1" having 

source A and target B. 

For a detailed structure of the basis and XML schema file, we refer to the appendix 

A. 

2.5.2 Loading and Saving 

ReAlM starts with an empty state, ie. no basis and no relations. It provides options 

through its interface to load basis, relations and to save relations. The method 

private void load(File fileName) is used to load a previously serialized data as 

a HashMap into the variable relationMap object, then to add all relation names to 
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the display list on left of the PaneL While loading a saved relation list from file, 

it also verifies that the relation list indeed belongs to the currently selected basis, 

otherwise it generates an error message to the user for unsuccessful operation. 

The method public void ini tializeBasis (String filename) method is used for 

loading the Basis file into the ReAlM system. It takes the name of the basis file as an 

argument and does not return any value. Once the basis file is parsed, the method 

checks if the basis is already loaded into the system. If the basis is not currently 

loaded, the method adds the basis into variable rlMap which is an HashMap storing 

all the loaded basis. This method also adds the name of the basis to current display 

list and updates the display information. 

The method private void save(File fileName) is used to save the list of relations 

to a file so that it can be later loaded and reused. While saving a relation list, it also 

indicates the basis name to which this list belongs so that it can be verified during 

the load process at later time. The method generates an error message if the relation 

list is empty while the save command is executing an9 also handles unexpected fail 

exceptions. 

2.5.3 XML Parsing 

Since the basis information is stored as an XML file, XML processing is a significant 

part of ReAlM. Most of the XML parsing takes place in the class Basis where the 

basis gets initialized after parsing. This class defines several member variables to 

store the name, description, object list, relation list, relations between objects and 

operations between objects. Relations are stored in a HashMap where a RelType 

object is used as a key for the value of a BasisMorphs object. Operations are also 



29 

stored as HashMap. 

The constructor public Basis (Node node) in the class Basis takes a single param­

eter which is the root of the XML document and then it traverses all the nested child 

elements. The method getChildNodes is called upon the argument node to get a 

complete list of the child nodes in the XML document. After that the program loops 

through list and tries to identify each element by performing a string match on the 

name attribute of those elements to initialize appropriate member variables. During 

this process the method getLocalName 0 is used to retrieve the name attribute of 

the node elements. 

For parsing the XML file, ReAlM uses class XMLReader<E> from COSC3P40 package 

which uses the Dom parser for parsing the XML document. COSC3P40 package is 

available at the course website of" Advanced Object-Oriented Programming (COSC 

3P40)" of Brock University and accessible to all students for use. 

2.5.4 Operations 

The private class newMatrixHandler is used to generate the standard relations such 

as identity relation, universal relation, empty relation and diversity relations. This 

private class is primarily responsible for error checking and input validation such 

as relation names, empty parameters and duplicate relation names. It also updates 

the display of the ReAlM interface according to the requested operation. Once a 

valid request has been made, this class calls the method createMatrix to handle 

the actual relation generation process. The method createMatrix based on the 

type of operation, uses the class Basis member variables and operations to generate 

the requested relation. Once the relation has been computed, the method adds the 
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relation to the relation list and updates the display of the list on the interface. 

The private class newMatrixlnjectionHandler handles the creation of non-standard 

relations using left injection and right injection. This private class plays the same 

role as the the class newMatrixHandler does above. On execution this class calls the 

method createlnj ectedMatrix with appropriate parameters for actual formation 

of the relations. The method createlnj ectedMatrix performs a general validation 

of the input and ensures the condition for injection are satisfied such as for right 

injection, source objects must correspond to target objects in last half and for left 

injection, source objects must correspond to target objects in the first half. If the 

requirements are met, this function then uses methods defined in the class Basis to 

formulate the injected relation. 

The private class operationMatrixHandler is used to handle requests related to 

standard matrix operations which include union, intersection, complement, composi­

tion and conversion. Upon basic input validation and pre-requisites being checked, 

this class calls the method performStdOperation with appropriate parameters to 

perform the actual operation. The Method performStdOperation calls appropriate 

function from the class Basis based on the type of operation is requested. All func­

tions take either one or two relations as an input and return one relation as an output. 

If the operation is successful, the new relation is added to the relation list. If the 

operation did not succeed, this method produces meaning full error messages for the 

users. 

In the class hierarchy of ReAlM, we have the class RelAlg at the top leveL This is an 

abstract class representing behavior of general relation algebra. It has a specialized 
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version which is called Fini teRelAlg outlining the behavior of a finite relation alge­

bra. This class is also abstract. The class MatrixAlg which extends the Fini teRelAlg 

is a concrete implementation of the class Fini teRelAlg representing a matrix algebra 

in ReAlM system. To perform any operation on relation matrices, ReAlM uses an in­

stance of the class MatrixAlg to call functions implemented in it which are inherited 

from its parent abstract classes. Most functions take one or two matrices as an input 

and produce one matrix as an output. Functions in this class use the input matrices 

to call appropriate functions defined in class Matrix. The class Matrix provides the 

detailed implementation of relational operations such as union, intersection, compo­

sition, conversion, complement, sum, co-sum and disjoint union for matrices. Inputs 

for these methods are usually a relation matrix and/or an operation object, which are 

implemented in the class RelAlg. Methods that handle the binary and unary tests 

on the relations in ReAlM are also defined in the class MatrixAlg. This class also 

implements the method split which computes the splitting of a given relation of the 

algebra. 

2.5.5 Interface and Display 

ReAlM has several methods for generating the easy to use and interactive inter­

face. Most of these methods are located in class applicationlnterface. The public 

constructor applicationlnterface 0 generates the overall display of the ReAlM 

which uses gridbag layout to divide the display in to various panels such as relations 

lists display, basis information display, operation tabs, new relation generation tabs 

etc. Tabbed display for generating new relations section is handled by the method 

buildNewMatrixPanel and tabbed display for various operations on the relations is 
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handled by the method buildOperationPanel. 

The other major component of the ReAlM interface is the center panel where a 

relation is displayed and altered interactively. The method drawMatrix generates a 

Panel which contains the display of a relation. Each cell of the relation matrix is 

constructed using an instance of a private class called square. This private class 

uses standard graphics methods drawRect and drawString in its paintComponent 

method to draw the relation symbols on the JPanel. The class square also has a 

mouse listener that adds appropriate pop-up menu that should be displayed to user 

when a given cell of the relation matrix is clicked from the display panel. 

2.6 Component Details 

Class ReAlM This class contains the static main method where the execution begins. 

This class instantiate the Applicationlnterface.java which generates 

the GUI for ReAlM system. 

Attributes None 

Constructor None 

Methods public static void main(String[] args) 



Class RelAlg < This is an abstract class which represents the relation algebra. This 

O,M> 

Attributes 

Constructor 

Methods 

Class 

FiniteRelAlg 

Attributes 

Constructor 

Methods 

class defines a set of abstract methods specific to relation algebra. 

None 

None 

public abstract 0 source(M r); 

public abstract 0 target(M r); 

public abstract M getldentityRelation(O src); 

public abstract M getUniversalRelation(O src, 0 trg); 

public abstract M getEmptyRelation(O src, 0 trg); 

public abstract M union(M r, M s); 

public abstract M intersection(M r, M s); 

public abstract M composition(M r, M s); 

public abstract M complement(M r); 

public abstract M transposition(M r); 

public abstract M split(M r); 

public BinOperation< M > getUnionOpO 

public BinOperation< M > getlntersectionOpO 

public BinOperation < M > getCompositionOpO 

public UnarOperation< M > getComplementOp() / / returns unary 

operation 

This is a subclass of RelAlg which is also an abstract class. This class 

defines methods related to finite relation algebra. 

private Map< RelType < 0 >, List < M » objectRelationMap 

None 

public abstract List< 0 > getObjListO; 

public abstract List< M > getRelListO; 

public abstract M getIdentityRelation(O src); 

public abstract M getUniversalRelation(O src, 0 trg); 

public abstract M getEmptyRelation(O src, 0 trg); 

public abstract M getRelation(O src, 0 trg, 0 type); 

public abstract List< M > getRelation(O src, 0 trg); 

public abstract Map< RelType < 0 >, List < M » getObjectRelation­

MapO; 

public List< M > getRelList( 0 source, 0 target); 
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Class Matrix- This class represents the Matrix algebra and provides all the necessary 

AIg methods for matrix operations. 

Attributes private FiniteRelAIg< 0, M > alg; 

Constructor public MatrixAIg(FiniteReIAIg< 0, M > reI) 

Methods public List< 0 > source(Matrix< M > mat) 

public List< 0 > target(Matrix< M > mat) 

public Matrix< M > getEmptyRelation(List< 0 > src,List< 0 > trg) 

public Matrix< M > getldentityRelation(List< 0 > src) 

public Matrix< M > getUniversaIRelation(List< 0 > src,List< 0> trg) 

public Matrix< M > union(Matrix< M > ml, Matrix< M > m2) 

public Matrix< M > intersection(Matrix< M> ml, Matrix< M > m2) 

public Matrix< M > complement(Matrix< M > ml) 

public Matrix< M > composition(Matrix< M > ml, Matrix< M > m2) 

public Matrix< M > transposition(Matrix< M > ml) 

public Matrix< M > sum(Matrix< M > ml, Matrix< M > m2) 

public Matrix< M > coSum(Matrix< M > ml, Matrix< M > m2) 

public Matrix< M > disjointUnion(Matrix< M > ml, Matrix< M > 

m2, 0 abRO, 0 abeD) 

public boolean binaryEqual(Matrix< M > ml, Matrix< M > m2) 

public boolean unaryTest(Matrix< M> ml,Matrix< M > orig, String 

typ) 

public Matrix< M > split(Matrix< M > ml) 



Class Matrix 

Attributes 

Constructor 

Methods 

This is a Matrix object in the ReAlM system. It provides related 

accessor methods to manipulate the matrix and also provides methods 

to perform on the elements of matrices. 

private int i; / / ROW length 

private int j; / /column length 

private String sourceD; / / source objects of Matrix 

private String target[]; / / target objects of Matrix 

private XD D mat; 

public Matrix(int i, int j) 

public int getRowDimO 

public int getColDimO 

public X[]D getMatO 

public X get(int x, int y) 

public void set(int x, int y, X v) 

public Matrix< X > addBy(Matrix< X > m, BinOperation< X > op) 

public Matrix< X > complementBy(UnarOperation< X > op) 

public Matrix< X > composeBy(Matrix< X > m, BinOperation< X > 

op, BinOperation< X > op2) 

public Matrix< X > transposeBy(UnarOperation< X > op) 

public Matrix< X > sumBy(Matrix< X > m) 

public Matrix< X > coSumBy(Matrix< X > m) 

public Matrix< X > disjointUnionBy(Matrix< X> m) 

public String toStringO 
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Class BoolAlg This is a subclass of FiniteRelAlg and represents Boolean algebra. 

It provides methods related to Boolean algebra which operated on 

Boolean values 1 and o. 
Attributes private List< String> objList; 

private List< Boolean> relList; 

private MapiRelType< String >, List < Boolean» objectRelation-

Map 

Constructor public BoolAlg(String s) 

Methods public Boolean getIdentityRelation(String src) 

public Boolean getUniversalRelation(String src, String trg) 

public Boolean getEmptyRelation(String src, String trg) 

public Boolean getRelation(String src, String trg, String type) 

public List< Boolean> getRelation(String src, String trg) 

public Map< RelType < String >,List < Boolean» getObjectRela-

tionMapO / / returns the relationMAP between objects 

public List< String> getObjListO 

public List< Boolean> getRelListO 

public String source(Boolean b) 

public String target(Boolean b) 

public Boolean union(Boolean bI, Boolean b2) 

public Boolean transposition(Boolean bI) 

public Boolean composition(Boolean bI, Boolean b2) 

public Boolean intersection(Boolean bI, Boolean b2) 

public Boolean complement(Boolean bI) 

public Boolean split(Boolean r) 



Class Basis 

Attributes 

Constructor 

Methods 

This class represents the basis in the ReAlM system. It contains the 

objects of the algebra, all the relations between the objects and op­

erations among them. This class is instantiated by parsing the basis 

information stored in an xml file. 

private String basisName; 

private String basisDescription; 

private List< String> objList; 

private List< BasisM orphs > relList; 

private Map < RelType < String>, BasisM orphs > identity; 

private Map < RelType < String >,BasisMorphs > top; 

private Map < RelType < String >,BasisMorphs > bottom; 

private Map< Pair < BasisM orphs, BasisM orphs > 

,BasisM orphs >union; 

private Map < Pair < BasisM orphs, BasisM orphs > 

, BasisM orphs >intersection; 

private Map < Pair < BasisMorphs, BasisMorphs > 

, BasisM orphs >composition; 

private Map < BasisM orphs, BasisM orphs >transposition; 

private Map < BasisMorphs,BasisMorphs >complement; 

private Map< RelType < String >,List < BasisMorphs» objectRe­

lationMap; 

private RelType < String> tempRel; 

public Basis(Node node) 

public BasisO 

public static Basis load(String fileName) 

public void parseObjects(String objects) 

public void parseOperation(String src, String trg,String ops, String 

opType) 

public void parseCompOperation(String src, String intm, String 

trg,String ops, String opType) 

public BasisMorphs getldentityRelation(String src) 

public BasisMorphs getUniversalRelation(String src, String trg) 

public BasisMorphs getEmptyRelation(String src, String trg) 

public BasisMorphs getRelation(String src, String trg, String type) 

public ListiBasisMorphsL getRelation(String src, String trg) 

public String getBasisN ameO 
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Methods public String getBasisDescriptionO 

public Map< RelType < String >, List < BasisM orphs » getObjec­

tRelationMapO 

public List< String> getObjListO 

public List< BasisM orphs > getRelListO 

public int getldentity(String src, String trg) 

public int getTop(String src, String trg) 

public int getBottom(String src, String trg) 

public Map< RelType < String >,BasisMorphs > getBottomMapO 

public Map < RelType < String >, BasisM orphs > getTopMapO 

public String source(BasisMorphs r) 

public String target(BasisMorphs r) 

public BasisMorphs split(BasisMorphs r) 

public BasisMorphs union(BasisMorphs rl, BasisMorphs r2) 

public BasisMorphs intersection(BasisMorphs r1, BasisMorphs r2) 

public BasisMorphs complement(BasisMorphs r) 

public BasisMorphs transposition(BasisMorphs r) 

public BasisMorphs composition(BasisMorphs rl,BasisMorphs r2) 
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Class Applica- This class is responsible for generating the main display panel as well 

tionInterface 

Attributes 

Constructor 

Methods 

as creating instances of other classes that generates parts of the display 

panel in ReAlM. This class also provides the handler functions for 

various events. 

private FiniteRelAlg< String, BasisM orphs > rl; 

private JComboBox comboBoxBasis; 

private ArrayList< String> basisList; 

private MatrixAlg< String, BasisM orphs, Basis> r2; 

private Map< String, Matrix > relationMap; / / HASH MAP for MA­

TRIX 

private Map< String, Map < String, Matrix> > basisMap; 

private Map< String, MatrixAlg > basisInstanceMap ; 

private Map< String, FiniteRelAlg > rlMap; 

public applicationInterfaceO 

private void addComponents(Component component, int row, int col­

umn,int width, int height) 

private JPanel buildCenterPanel(String layoutTitle, JList parsed) 

private JTabbedPane buildOperationPanel(String layoutTitle) 

private void performStdOperation( String outpt, String inl, String 

in2) 

private void performRelOperation( String outpt, String inl, String 

in2) 

private JTabbedPane buildNewMatrixPanel(String layoutTitle) 

private void createInjectedMatrix(String rw, String cl, String type, 

String name ) 

private void createMatrix(String rw, String cl, String type, String 

name) 

private JPanel drawMatrix(Matrix< BasisMorphs > mat) 

private void load(File fileName) 

private void save(File fileName) 

private void performDeleteO 

public void initializeBasis(String filename) 

public boolean getEqualTest(String rell, String rel2) 

public boolean getlncludeTest(String rell, String rel2) 

public boolean getUnary(String rell, String type) 

private boolean checkIdentity(Matrix< BasisMorphs > matI) 

public void testRelationSplit(String reI, String newRel) throws NoS­

plitException 
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Chapter 3 

ReAlM - Users Manual 

3.1 System Initialization 

Loading a basis 

Initially, when the system starts up, ReAlM has no basis loaded. Therefore, first and 

only allowable action after the system starts up is to load a basis. The user is allowed 

to load a basis from the local file system, mapped network drive, and storage media. 

The "Load Basis" button is located at the top right corner of the screen with a 

image of a floppy disk. Hovering the mouse over it, a tooltip appears showing the 

40 
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message "Load Basis from File System". Clicking on this button opens up a file 

browser window. To load the basis into the ReAlM system, the user should browse 

to the appropriate location and select the desired basis file which must be an XML 

file and then click open button on the file browser. It will initiate the basis loading 

process. 

Switching Basis 

The" Change Basis" drop-down menu is located immediate to the" Load Basis" but­

ton. It is possible to load several basis into ReAlM to work with different algebras. 

The drop-down menu labelled as "Change Basis", located at top-right corner of the 

interface is used for this purpose. If multiple basises are loaded into the system, 

clicking on the drop-down arrow will show the list of currently loaded basises in the 

system. A user can choose any of the available basis from the list. Once selected, if 

the selection is different from currently working basis, it will prompt the user with a 

pop-up dialog to confirm this action. 

If the basis is changed without saving the current relation list, the relations will be 

lost. If the user selects "Yes", then ReAlM will discard the relation list and clean up 

the display on main window as well as basis information window which is located on 

the right side. The system will then update the basis information window with the 

information from the newly selected basis as well as the name of the basis will appear 

on the "Change basis" down-down selection menu. If the user chooses "No" on the 



42 

popup dialogue box, the system will keep the currently working basis without taking 

any further action. 

Basis Information Window 

Immediately bellow the Basis Load/Basis Change section, located is the "Basis In-

formation Window". This leftmost section of the ReAlM interface shows general 

information about current working basis in the system. It displays the name, descrip­

tion, available objects, number of relations between those objects, and constants of 

the basis. 

When the user switches to a different basis, this window is refreshed with the infor-

mation from newly selected basis. 

3.2 Load / Save and Delete Relations to Relation 
List 

Relation List Window/View Relation Properties 

The List box located on leftmost side of the interface marked "Relation List" is used 

to display the list of relations currently used in the system. A relation appears in this 
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area in one of the two ways: 

1. An action performed by the user on the system which generates a new relation. 

2. Loading a previously saved relation list from a file. 

The display structure on the window is - Name of the relation followed by a colon 

then all the source objects followed by a right arrow and them all the target objects 

of that relation. Any given relation can be deleted from this list simply by selecting 

the relation and clicking the delete button bellow. Once a relation is selected from 

this list, the matrix representation of the relation appears on the main display area 

of the system. 

Loading a Relations List 

In ReAlM, it allows the user to save a working relation list in the event where a user 

wants to switch basis or to exit the system. This saved relation list can later be 

loaded into the system. To load a previously saved relation list into the system, the 

"Load Relations" button is used which is located immediately bellow the "Relation 

List" window. It is the first of the three buttons. Hovering the mouse over the button 

shows a tooltip message" Load a previously saved relation list" . 
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Once clicked, it will open a file browser thus giving the user the option to select the 

desired file. After the relation list file is selected and opened, the system parses the file 

and loads all existing relations found in that file. A list of relations will be displayed 

in the" Relation List" window and we can examine the properties by clicking on them. 

Preconditions 

A file containing a relation list also has the information about the basis used to define 

the relations within the list. If the current basis of the system is different from that 

basis, the loading process will fail and the following error message will be displayed: 

Saving Relation List 

Bellow the "Relation List", second button, with image where an arrow is pointing 

to the floppy disk, is used to save a relation list to file. Mouse over action shows a 

tooltip message" Save current relation list to a file" . 

- -, 
.- ~..., - - - -, 

Clicking on this button will present the user a file save dialogue box where the user 

is required to type a name for the file and choose a location in the file system to save 
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the file containing relations. This file is saved with a ".rel" extension. This option 

prevents the user from losing all the relations in the event of a basis change or system 

exit. 

Delete Relations 

The rightmost button, with an image of a red cross bellow the "relation list" window, 

is the" Delete Relations" button. 

To delete a desired relation from the current relation list, the user must select the 

relation that needs to be deleted and then click the" Delete Relation" button. On a 

mouse over action on this button shows the tooltip message" Delete Selected Relation 

from current list" . 

3.3 Displaying and Modifying a Relation 

Visually Display a Relation 

The main display area of ReAlM, the rectangular area central to the system, is initially 

empty. This display panel is used to present a visual representation of any relation in 

the system. To display a relation, the user needs to select the desired relation from 

relation list located on the left side of the interface. Once clicked, the relation matrix 

is presented on the display window. 
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Source objects of a relation are displayed as row label of the left and target objects 

are displayed as column label on the top of the matrix. This main display area is 

scrollable vertically and horizontally in the event that when a relation requires bigger 

display area then the normally visible rectangular area. If a different relation is 

selected while a relation is displayed on this area, this center panel is re-drawn with 

the newly selected relation. 

Editing/Modifying a Relation visually 

All cells of the relation matrix, which are displayed on the center display panel, are 

clickable. This feature allows the user to change the properties of a relation visually 

and in an interactive way. Once a cell on the relation matrix is clicked, it presents the 

user a popup display menu close to the cell that has been clicked. This popup menu 

shows all the available relations between source and target objects corresponding to 

that cell. 
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As an example, from the basis description on the right, it can be seen that there are 

four relations with source and target A. When the last cell on the diagonal is clicked 

where source and target both are A, the popup menu allows the user to choose from 

four relations for that cell, i.e. from 0,1,2 and 3. One can choose any ofthe 4 relations 

from the menu and it will change the relation in the system. 

In the second example above the user wants to modify the second cell of the last row. 

The source of a relation in this cell has to be A, and its target has to be B. The current 
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basis has two relations between those objects; the relations 0 and 1. Therefore the 

system allows to select from exactly those two relations. 

3.4 Creating Relations 

Creating a Standard relation 

Once a basis is loaded into the system, the user has the option to create constants 

using the objects of that basis. Under the standard relations, we can create identity, 

universal, empty and diversity identity relations. Options to create a relation are 

located at the bottom right corner of the system's interface. To create any of the 

standard relations, we have to use the first tab labelled as "Standard". Bellow we 

briefly describe each type of action required to create relations using the panel. 

Source or Target objects must be comma separated and from the current basis. Any 

target name or source name that is not from current basis will produce an error 

message such as: 
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Identity Relation 

To create an identity relation, the user needs to choose the radio button option labelled 

as "Identity Relation". Then he has to provide a name for this new relation in the 

text box "New Relation Name" and a list of objects from current basis in the text box 

named "Source Names". Relation name is case sensitive. So the user needs to type 

it exactly as it appears on the relation list display. Once these required parameters 

are provided, clicking on the "Create Relation" will create the relation and add it to 

the relation list of the system. 

Since the identity relation has same source and target, once this option is selected -

the input box for target names is disabled. All three parameters are required for this 

operation and missing any of these will display an error message. 

Universal Relation: 

Creating an universal relation is similar to creating an identity relation. However in 
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this case, source and target objects can be different. So the user needs to provide 

both source names and target names in a separate input box. Also the user needs to 

select appropriate radio option. Any missing argument will produce the error message 

previously shown. 

Empty Relation 

Creating an empty relation is similar to creating a universal relation. The user needs 

to select "Empty Relation" from the radio button options and then provide a name, 

source names and target names since they can be different. 

Diverse Identity Relation 

Creating a diverse identity relation is similar to creating an identity relation. For a 

diverse identity relation, the user only needs to provide the source names since the 

source and target are the same for this kind of relation. 

Creating Relations related to Relational Sums 

Non standard relations are created using the input form located under the tab "ReI. 

Sum" or relational sum. 

Left Injection 

To create a left injection, the user first needs to select the radio option marked" Left 

Injection" and then provide the name of new relation, a left and a right component. 
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Suppose the left component is A,B,A and the right component is B,B. The source 

of the left injection is the left component A,B,A (for the right injection the right 

component) and the target is the concatenation of left and right components in that 

order A,B,A,B,B. The matrix is 

Right Injection To create a right injection, the user first needs to select the 

radio option marked "Right Injection" and then provide the name of new relation, a 

left and a right component. 

Suppose the left component is A, B, A and the right component is B, B. The source 

of the right injection is the left component B,B and the target is the concatenation 

of right and left components in that order A,B,A,B,B. The matrix is 
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3.5 Standard Operations 

Standard operations are located in the bottom right part of the application, imme­

diately bellow the main display area, on the first tab marked "Standard Operation" 

provides the facility to perform standard operations on relations. Among the standard 

operations, ReAlM has: union, intersection, complement, composition, and conver­

sion. 

Union 

To perform an union operation, the user needs to select the radio option marked 

"Union" and then provide a name for the resulting relation and two relations as the 

first and second input of the operation. Both inputs must be names of relations 

that are already defined in the system. After providing all the parameters clicking 

on "Execute" button will perform the union operation and add the newly created 

relation to relation list. 
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For union operation, both relations must have identical source and target objects. If 

the source and target do not match, the operation will fail and the user is notified of 

this fact by a pop up message. 

Intersection 

To perform an intersection operation, the user needs to select radio option marked 

"Intersection" . Required parameters, actions and constraints are identical to the 

union operation. 

Complement 

To perform a complement operation, the user needs to select radio option marked 

" Complement". This operation is similar to the union and the intersection except 

that it takes only one relation as its input. 
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Composition 

To perform a composition operation, the user needs to select radio option marked 

" Composition". This operation is similar to the union and intersection described 

above. 

In case of composition, target objects of first relation must be identical to the source 

objects of the second relation. If this condition is not satisfied the operation will fail 

and a warning is shown to the user. 
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Conversion 

To perform a conversion operation, the user needs to select radio option marked 

" Conversion". Everything else is identical to the complement operation. 

3.6 Relational Sum 

Operations of relational sum are performed using the tab marked as "ReI. Sum" 

bellow the main display area of the relations. In this tab we can perform three 

different operations; sum, co-sum and disjoint union. 

Sum 

To perform a sum operation, the user needs to select the radio option marked" Sum" 

and then provide a name for the newly created relation as a result of the operation, 

left and right input which both have to be names of relation already defined in the 

system. After providing all the parameters, clicking on the execute button will create 

the new relation and add it to relation list of the current basis. 
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For the" Sum" operation both left input and right input relations must have identical 

source objects, but the targets could be different. If the sources are not same, the 

operation will fail and user is notified of the event. 

Example 

If the left input Rl is : 

And the right input R3 is: 
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Then the result of the Sum would be : 

Co-Sum 

To perform a co-sum operation, the user needs to select the radio option marked 

"Co-sum" and rest of the input requirements are identical to that in creating the sum 

operation described above. 

For the "Co-sum" operation both left input and right input relations must have 

identical target objects, but the sources could be different. If the targets are not 

same, the operation will fail and user is notified of the event. 
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Example 

If the left input Rl is : 

And the right input R4 is: 

Then the result of the Co-sum would be : 

Disjoint Union 

To perform a disjoint-union operation, the user needs to select the radio option marked 
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"Disjoint-Union". All other input requirements are similar to those in the sum oper­

ation described above. 

Example 

If the left input R3 is : 

And the right input R4 is: 

Then the result of the disjoint would be : 
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3.7 Test Operations 

This feature of the ReAlM allows the user to perform unary and binary tests on the 

available relations of the system. Unary test includes: Equal bottom, equal top, 

univalent, total, injective, surjective, symmetric, transitive, reflexive, idempotent. 

Binary test includes: included and equal. 

For unary test, only one relation is required. The user needs to enter the rela­

tion name in the box marked as "Unary Relation" and click "Test Unary". ReAlM 

will then test the specified relation and put check marks in the checkboxes for the 

properties that holds for this relation. 

To perform a binary test, the user needs to enter two relation names, one in the 

"Relation I" and the other in " Relation 2" then click " Test Binary". ReAlM will put 
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a check mark in "included" if the second relation is included in the first one and it 

will put a check mark in the" equal" if both relations are equal. 

3.8 Splitting 

Splitting Tab of the operations sections allows the user to compute the splitting of 

a relation from the relation list. To compute the splitting, the basis must contain 

splitting. 

To perform splitting operation, the user is required to enter the name of the 

relation for which the splitting will be computed and the name of the target relation 

which will be used to store calculated result from the operation in the fields that are 

labeled as "Input Relation" and" Output Relation" respectively. 



Chapter 4 

Appendix A 

4.1 Schema File 

<?xmlversion = "1.0" encoding = "UT F - 8"? > 

< xs: schema xmlns: xs =" http://www.w3.org/200l/XMLSchema''elementFormDefault = 

"qualified" > 

< xs : element name = " FiniteRelAlg" > 

< xs: complexType > 

< xs : sequence> 

< xs : element ref = "comment" / > 

< xs : element ref =" objects" / > 

< xs: element ref = "relations" maxOccurs = "unbounded" / > 

< xs: element ref = "identity" maxOccurs = "unbounded" / > 

< xs: element ref = "bottom" maxOccurs = "unbounded" / > 

< xs: element ref = "top" maxOccurs = "unbounded" / > 

< xs: element ref = "union" maxOccurs = "unbounded}' / > 

< xs : element ref = "intersection" maxOccurs = "unbounded" / > 

< xs : element ref = "composition" maxOccur s = "unbounded" / > 
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< xs : element ref = "transposition" maxOccur s = "unbounded" / > 

< xs: element ref = "complement" maxOccurs = "unbounded" / > 

< /xs : sequence> 

< xs : attribute name = "name" use = "required" / > 

< /xs : complexType > 

< /xs : element 

< xs : element name = "comment" type = "xs : string" / > 

< xs : element name =" objects" / > 

< xs : element name = "relations" > 

< xs: complexType > 
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< xs : attribute name = "number" use = "required" type = "xs : positiveJ nteger" / > 

< xs: attribute name =" source" use = "required" type = "xs: NCName" / > 

< xs: attribute name = "target" use = "required" type = "xs: NCName" / > 

< /xs: complexType > 

< /xs : element 

< xs : element name = "identity" > 

< xs : complexType > 

< xs : attribute name = " obj ect" use = "required" type = "xs : N C Name" / > 

< xs : attribute name = "relation" use = "required" type = "xs : nonN egativeJ nteger" / > 

< /xs: complexType > 

< /xs : element 

< xs : element name = "bottom" > 

< xs : complexType > 
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< xs : attribute name = "relation" use = "required" type = "xs : nanN egativeJ nteger" / > 

< xs: attribute name =" source" use = "required" type = "xs: NCName" / > 

< xs: attribute name = "target" use = "required" type = "xs: NCName" / > 

< /xs: complexType > 

< /xs: element 

< xs: element name = "top" > 

< xs : complexType > 

< xs : attribute name = "relation" use = "required" type = "xs : nanN egativeJ nteger" / > 

< xs : attribute name = "source" use = "required" type = "xs : N C Name" / > 

< xs: attribute name = "target" use = "required" type = "xs: NCName" / > 

< /xs : complexType > 

< /xs : element 

< xs : element name = "union" > 

< xs : complexType mixed = "true" > 

< xs: attribute name =" source" use = "required" type = "xs: NCName" / > 

< xs: attribute name = "target" use = "required" type = "xs: NCName" / > 

< /xs: complexType > 

< /xs : element 

< xs : element name = "inter section" > 

< xs : complexType mixed = "true" > 

< xs : attribute name = "source" use = "required" type = " xs : N C Name" / > 

< xs: attribute name = "target" use = "required" type = "xs: NCName" / > 



< /xs : complexType > 

< /xs : element 

< xs : element name = "composition" > 

< xs: complexType mixed = "true" > 

65 

< xs: attribute name = "intermediate" use = "required" type = "xs: NCName" / > 

< xs : attribute name = "source" use = "required" type = "xs : N C Name" / > 

< xs : attribute name = "target" use = "required" type = "xs : NC Name" / > 

< /xs: complexType > 

< /xs: element 

< xs : element name = "transposition" > 

< xs : complexType mixed = "true" > 

< xs: attribute name =" source" use = "required" type = "xs: NCName" / > 

< xs: attribute name = "target" use = "required" type = "xs: NCName" / > 

< /xs : complexType > 

< /xs : element 

< xs : element name = "complement" > 

< xs : complexType mixed = "true" > 

< xs: attribute name =" source" use = "required" type = "xs: NCName" / > 

< xs: attribute name = "target" use = "required" type = "xs: NCName" / > 

< /xs : complexType > 

< /xs : element 

< /xs: schema> 



4.2 Sample Basis File 

<7xmlversion =" 1.0" encoding = "uti - 8"7 > 

< FiniteRelAlg name = "twoObjectBasis" > 

< comment> Fir stexample. < / comment> 

< objects> A, B < /objects > 

< relations source = "A" target = "A" number = "4" / > 

< relations source = "A" target = "B" number = "2" / > 

< relations source = "B" target = "B" number = " 4" / > 

< relations source = "B" target = "A" number = "2" / > 

< identity object = "A" relation =" 1" / > 

< identity object = "B" relation = "1" / > 

< bottom source = "A" target = "A" relation = "0" / > 

< bottom source = "A" target = "B" relation = "0" / > 

< bottom source = "B" target = "A" relation = "0" / > 

< bottom source = "B" target = "B" relation = "0" / > 

< top source = "A" target = "A" relation = "3" / > 

< top source = "A" target = "B" relation = "1" / > 

< top source = "B" target = "A" relation = "1" / > 

< top source = "B" target = "B" relation = "3" / > 

< union source = "A" target = "B" > 

0,1,1; 

1,0,1; 

0,0,0; 

1,1,1 
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< /union > 

< union source = "E" target = "A" > 

0,1,1; 

1,0,1; 

0,0,0; 

1,1,1 

< /union > 

< union source = "A" target = "A" > 

0,0,0; 

0,1,1; 

0,2,2; 

0,3,3; 

1,0,1; 

1,1,1; 

1,2,3; 

1,3,3; 

2,0,0; 

2,1,3; 

2,2,2; 

2,3,3; 

3,0,3; 

3,1,3; 

3,2,3; 

3,3,3 
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< /union > 

< union source = "E" target = "E" > 

0,0,0; 

0,1,1; 

0,2,2; 

0,3,3; 

1,0,1; 

1,1,1; 

1,2,3; 

1,3,3; 

2,0,0; 

2,1,3; 

2,2,2; 

2,3,3; 

3,0,3; 

3,1,3; 

3,2,3; 

3,3,3 

< /union > 

< intersection source =" A" target = "E" > 

0,1,0; 

1,0,0; 

0,0,0; 

1,1,1 
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< /intersection > 

< intersection source =" E" target =" A" > 

0,1,0; 

1,0,0; 

0,0,0; 

1,1,1 

< /intersection > 

< intersection source = "A" target = "A" > 

0,0,0; 

0,1,0; 

0,2,0; 

0,3,0; 

1,0,0; 

1,1,1; 

1,2,0; 

1,3,1; 

2,0,0; 

2,1,0; 

2,2,2; 

2,3,2; 

3,0,0; 

3,1,1; 

3,2,2; 

3,3,3 
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< /intersection > 

< intersection source =" E" target = "E" > 

0,0,0; 

0,1,0; 

0,2,0; 

0,3,0; 

1,0,0; 

1,1,1; 

1,2,0; 

1,3,1; 

2,0,0; 

2,1,0; 

2,2,2; 

2,3,2; 

3,0,0; 

3,1,1; 

3,2,2; 

3,3,3 

< /intersection > 

< composition source = "A" intermediate = "E" target = "A" > 

0,0,0; 

0,1,0; 

1,0,0; 

1,1,1 
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< / composition> 

< composition source = "B" intermediate = "A" target = "B" > 

0,0,0; 

0,1,0; 

1,0,0; 

1,1,1 

< / composition> 

< composition source =" A" intermediate =" A" target =" A" > 

0,0,0; 

0,1,0; 

0,2,0; 

0,3,0; 

1,0,0; 

1,1,1; 

1,2,2; 

1,3,3; 

2,0,0; 

2,1,2; 

2,2,1; 

2,3,3; 

3,0,0; 

3,1,3; 

3,2,3; 

3,3,3 
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< / composition> 

< composition source =" A" intermediate =" A" target =" E" > 

0,0,0; 

0,1,0; 

1,0,0; 

1,1,1 

< /composition > 

< composition source = "A" intermediate = "E" target = "E" > 

0,0,0; 

0,1,0; 

1,0,0; 

1,1,1 

< /composition > 

< composition source = "E" intermediate = "A" target = "A" > 

0,0,0; 

0,1,0; 

1,0,0; 

1,1,1 

< / composition> 

< composition source = "E" intermediate = "E" target = "A" > 

0,0,0; 

0,1,0; 

1,0,0; 

1,1,1 
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< j composition> 

< composition source = "E" intermediate = "E" target = "E" > 

0,0,0; 

0,1,0; 

0,2,0; 

0,3,0; 

1,0,0; 

1,1,1; 

1,2,2; 

1,3,3; 

2,0,0; 

2,1,2; 

2,2,1; 

2,3,3; 

3,0,0; 

3,1,3; 

3,2,3; 

3,3,3 

< jcomposition > 

< transposition source =" A" target =" E" > 

0,0; 

1,1 

< jtransposition > 

< transposition source = "E" target = "A" > 

73 



0,0; 

1,1 

< /transposition > 

< transposition source = "A" target = "A" > 

0,0; 

1,1; 

2,2; 

3,3 

< /transposition > 

< transposition source = "B" target = " B" > 

0,0; 

1,1; 

2,2; 

3,3 

< /transposition > 

< complement source = "A" target = "B" > 

0,1; 

1,0 

< / complement> 

< complement source = "B" target = "A" > 

0,1; 

1,0 

< / complement> 

< complement source = "A" target = "A" > 
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0,1; 

1,2; 

2,1; 

3,0 

< / complement> 

< complement source = "B" target = "B" > 

0,1; 

1,2; 

2,1; 

3,0 

< /complement > 

< / FiniteRelAlg > 
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