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Abstract 

Hub location problem is an NP-hard problem that frequently arises in the 
design of transportation and distribution systems, postal delivery networks, and 
airline passenger flow. This work focuses on the Single Allocation Hub Loca­
tion Problem (SAHLP). Genetic Algorithms (GAs) for the capacitated and unca­
pacitated variants of the SAHLP based on new chromosome representations and 
crossover operators are explored. The GAs is tested on two well-known sets of 
real-world problems with up to 200 nodes. The obtained results are very promis­
ing. For most of the test problems the GA obtains improved or best-known solu­
tions and the computational time remains low. The proposed GAs can easily be 
extended to other variants of location problems arising in network design planning 
in transportation systems. 
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Chapter 1 

Introduction 

Hub Location Problems (HLP) are classical combinatorial optimization problems 
that arise in telecommunication and transportation networks where nodes send and 
receive commodities (Le., data transmissions, passengers, express packages, mail, 
etc.) through special facilities or transhipment points called hubs. Hubs consoli­
date flows from origin nodes and re-route them to destination nodes sometimes via 
other hubs. The sending and receiving nodes in such networks are called spokes. 
The networks are called hub-spoke networks. The assumption in hub-spoke net­
works is that, hubs are fully-connected through low-cost high-volume pathways 
that allow a discount factor to be applied to the transportation cost of the flow 
between a given hub pair. Another assumption in these networks is that, all the 
internodal flow takes place through at least one hub and at most two. Broadly, the 
hub location problem (HLP) is concerned with locating hubs on the network and 
allocating spokes to the hubs so as to minimize total flow cost subject to the above 
assumptions. 

Hub-and-spoke networks have application in many areas. Common examples 
include passenger airlines [14, 15, 16], express package delivery firms [17], mes­
sage delivery networks [18], trucking industry [21], telecommunication systems 
[23], supply-chain of chain stores such as Wallmart [20], and many other areas. 
Many studies have indicated that the implementation of hub-and-spoke network 
has improved the performance of the distribution system. Due to their multiple 
applications and economic value, HLPs have received much attention in literature. 

Hub location problem has many varieties according to the constraints and de­
cision variables involved such as the way of selecting the number of hubs to be 
located, the way the spokes are assigned to hubs, the existence of capacity limits 
on hubs, etc. A comprehensive survey on Hub Location Problems (HLPs) and 
their classification can be found in Kara et. al. [10]. In this thesis, a variant ofthe 
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HLP i.e., the Single Allocation Hub Location Problem (SAHLP), is considered. 

In the Single Allocation Hub Location Problem (SAHLP), a spoke is allocated 
to exactly one hub and the number of hubs to be used is not known in advance. 
Furthermore, hubs are capacitated or uncapacitated. Capacitated hubs can handle 
limited internodal flow whereas uncapacitated hubs can manage any amount of 
flow. Corresponding to these hub types, two variants of SAHLP exist; the Capac­
itated Single Allocation Hub Location Problem (CSAHLP) with capacity limits 
on hubs; the Un-capacitated Single Allocation Hub Location Problem (USAHLP) 
involving hubs with unlimited capacities. An example of the capacitated SAHLP 
application is in postal delivery systems in which a sorting center (or hub) sorts 
and consolidates mail arriving from different postal districts and re-route it to the 
destination [1] usually through other centers. The sorting centers in such systems 
have capacities i.e., they can handle a maximum amount of mail flows from origin­
destination points. Example of the application of the uncapacitated SAHLP is the 
air transportation networks [24]. 

The SAHLP is an NP-hard problem [10]. Additionally, in SAHLP, the num­
ber of hubs is not known a priori and the single assignment constraint i.e., a given 
spoke must be allocated to only one hub, holds. Furthermore, in the capacitated 
version of the SAHLP, hubs have capacity limits to handle the flow between nodes. 
This makes the SAHLP problem more challenging. Due to their usefulness and 
economic importance, both the capacitated and uncapacitated versions of SAHLP 
have received a good amount of research attention and exact and heuristic methods 
have been proposed to tackle them. Some of these methods include a quadratic in­
teger programming formulation [24] and its linearization [10] , Genetic Algorithm 
(GA) [3], hybrid heuristic combining GA and Tabu Search [4], and a Simulated 
Annealing (SA) and Tabu Search (TS) based hybrid solution method [11] for the 
uncapacitated SAHLP. For the capacitated SAHLP, a branch and bound technique 
combined with two heuristic procedures [1], a GA [13], an Ant Colony Optimiza­
tion (ACO) based solution approach [2] have been proposed. These approaches 
have been able to solve the SAHLP problems of up to 50 nodes to optimality [1]. 
Modest results, however, have been achieved for larger SAHLP problems, which 
continue to be computationally intractable. 

Genetic algorithms are biologically inspired heuristic that evolves improved 
solutions to a computationally hard problem through the process of selection and 
recombination. They have been applied, with a good degree of success, to many 
combinatorial optimization problems including the SAHLP as mentioned above. 
Although, the GAs [3][4][13] for the SAHLP were generally successful, they 
couldn't find known-best solutions to some of the SAHLP problems, especially 
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the medium and large-sized capacitated SAHLP problems. Moreover, to the best 
of the author's knowledge, only one GA has been proposed to the capacitated 
SAHLP so far. Furthermore, the existing GA approaches to the SAHLP employ 
conventional GA techniques like one-point crossover etc., which may not be very 
effective for the complex solution structure of the SAHLP. There is thus room for 
further GA-work on the SAHLP. Solutions for the large-sized SAHLP problems 
can be improved by employing different GA techniques e.g. problem-specific 
crossovers and solution representations that suit the structure of the problem. 

In the GA in this work a,GA on problem-specific crossovers has been proposed 
to the SAHLP i.e., the Double-Cluster Exchange Crossover(DCEC) and Multi­
Cluster Exchange Crossovers (MCEC). The approach adopted in these crossovers 
treat clusters i.e., a hub with associated spokes, as units of gene exchange be­
tween the mating parents instead of individual nodes as in the existing GAs for 
the SAHLP. The crossovers also perform partial handling of the hub capacity con­
straint in the capacitated SAHLP. This approach to constraint handling has been 
observed to have good influence on the overall performance of the GA. A third 
crossover used in the proposed GA is the Best Cost Routing Crossover (BCRC) 
[23]. The Best Cost Routing Crossover (BCRC) has been used in routing prob­
lems with good results [23]. 

Two solution encoding schemes, the List-based and Set-based encodings, have 
been employed in the proposed GA. The list-based encoding uses an allocation ar­
ray like structure to represent the location of hubs in the network and allocation of 
spokes to hubs. The Set-based scheme employs sets to encode location-allocation 
information in the hub-spoke network. Besides, the GA incorporates an efficient 
constraint handling procedure to handle the capacity constraint on hubs in the ca­
pacitated SAHLP. The technique attempts to preserve or enhance the fitness of 
an infeasible solution through a process of careful re-assignment of nodes while 
adjusting overflow in a hub. 

Three mutation operators i.e., the shift mutation, the swap mutation, and the 
replace hub mutation have been employed in the proposed GA. The shift and swap 
mutations have been used in previous GA studies on SAHLP and have found to be 
effective. The replace hub mutation has been introduced to change hub location 
during the re-production and so to preserve population diversity. 

Three versions of the proposed GA i.e., GA-I, GA-2, and GA-3, each based 
on one of the aforementioned crossovers, have been implemented. The compu­
tational performance of the GAs has been investigated through extensive experi­
mentation with two sets of standard benchmark problems derived from real-world 
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applications. The CAB (Civil Aviation Board) data is based on air-traffic flows 
between 25 cities of US and has been extensively used as benchmark for the unca­
pacitated hub location problems. It includes problem instances of up to 25 nodes. 
The Australian Post (AP) data has been derived from a postal application in Aus­
tralia and contains problem instances of up to 200 nodes. The AP data set has 
been used for both the capacitated and uncapacitated SAHLP. 

The performance of the GA on both sets of the benchmark problems is very 
good. It finds optimal or known-best solutions for most of the SAHLP problems. 
For some of the large-sized capacitated SAHLP problems, it finds improved so­
lution. Moreover, it outperforms the current GA [l3] for the capacitated SAHLP 
both in terms of solution qUality and number of problems solved to optimality 
or current best values in SAHLP literature. For larger AP problems, it outper­
forms the simulated annealing (SA) and random descent heuristic (RDH) based 
hybrid approach to CSAHLP. For the uncapacitated SAHLP, the performance of 
the proposed GA is better than that of GA [3] and GATS [4] on CAB problems 
and comparable with that of GA [3] and SATLUHLP [11] on AP problems. 

Overall, the proposed GA yields high-quality solutions to most of the bench­
mark problems. The computational time of the GA is also satisfactory on the 
given benchmark and platform. It solves most of the small-sized benchmark (AP 
and CAB) problems i.e., problems with 50 or less nodes, in less than 100 seconds. 
Its computational time for large-sized problems i.e., problems with more than 50 
nodes, is also within reasonable limits not exceeding few hundred seconds. 

The rest of the layout of this work is as follows. 

Chapter 2 provides the background to the problem. Section 2.2 describes the 
problem. Section 2.3 covers present work on the Single Allocation Hub Loca­
tion Problem (SAHLP) and section 2.3. gives a brief overview of the Genetic 
Algorithm (GA). Chapter 3 covers the proposed GA approach. Solution encod­
ing schemes for SAHLP are discussed in section 3.1. Crossovers are explained 
in section 3.2. Section 3.5 presents the constraint handling technique employed 
in the proposed GA approach. Experimental setup and computational results are 
presented in Chapters 4 and 5. Chapter 4 presents computational results for the 
uncapacitated SAHLP and chapter 5 for the capacitated SAHLP. Sections 4.1 de­
scribes experimental setup and parameters, section 4.2 gives a description of the 
AP data set, and section 4.3 discusses computational results and performance of 
the three GA implementations (i.e., GA-l, GA-2, and GA-3). The same structure 
has been retained for chapter 5. The CAB data set is described in detail in section 
5.2 and computational results of three implementations of the GA for the CAB 
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data have been given in section 5.4. Chapter 6 gives statistical analysis of the GA 
performance and Chapter 7 derives conclusions and discusses the scope for future 
work. 
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Chapter 2 

Background 

This chapter provides an overview of the Single Allocation Hub Location Prob­
lem(SAHLP). A summary of the current metaheuristics for the SAHLP is also 
given. Lastly, the basics of genetic algorithms are provided. 

Hub-and-spoke networks are distribution systems in which some nodes, called 
hubs, serve as switching, sorting, or transhipment centers for the flow of com­
modities while the remaining nodes, called spokes, function as the origin or desti­
nation points. The networks seek to reduce the overall transportation cost by con­
solidating traffic flows from different origins but to same destination at a hub-point 
and shipping them to the destination. An example of a hub-and-spoke network is 
shown in Figure 2.1. In this figure, nodes i, j, k, and I are hubs whereas the rest 
of the nodes are spokes. As the figure shows, in a hub-spoke network, the hub 
subnet is a complete graph whereas spokes are connected only to hubs. Thus all 
the internodal flow or communication in the network occurs through hubs. 

The total cost of the commodity flow in a hub-spoke network is determined by 
the cost associated with location of hubs in the network and the cost of allocat­
ing spokes to hubs. Locating hubs and allocating spokes to hubs in a hub-spoke 
network is an NP-hard combinatorial optimization problem called Hub Location 
Problem (HLP). The objective of the hub location problem is to minimize the cost 
of commodity flow or transportation through the network. Hub location problem 
has two main types. In the Single Allocation Hub Location Problem (as shown in 
Figure 2.2) , a node can be assigned to only a single hub whereas in Multiple Al­
location Hub Location Problems (Figure 2.1), it can be assigned to multiple hubs. 
This work focuses on the Single Allocation Hub Location Problem (SAHLP). A 
formal description of the SAHLP is provided in the following sections. 
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Figure 2.1: A hub-spoke network 
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2.1 The Single Allocation Hub Location Problem(SAHLP) 

The single allocation hub location problem is a special type of hub location prob­
lem in which a spoke can be assigned to only a single hub. Moreover, the number 
of hubs is a decision variable in SAHLP and a fixed cost for establishing a hub is 
also included in the overall transportation cost. A single allocation hub-and-spoke 
network is shown in the Figure 2.2. The problem involves the following decisions. 

bxdlj 

,.,.,.,., .. W .. _.- ._.-.- .. 0 
1J 

Figure 2.2: A single allocation hub-spoke network 

• Determining the number of hubs to be used. 

• Location of hubs i.e., where in the network should the hubs be located? 

• Allocation of spokes to hubs i.e., how are spokes to be assigned to hubs? 

The objective in the SAHLP is to minimize the cost of establishing hubs and 
cost of transportation. This is subject to the constraints that a spoke must be as­
signed to only a single hub, flows must be routed through hubs (at least one and 
at most two), and hub capacities must not be exceeded. The transportation cost in 
single allocation hub location problem has the following three components. 
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• The Collection cost, x, is the cost incurred on flow from a given spoke to a 
hub i.e., cost of spoke-to-hub flow. 

• The Transfer cost, a, represents the cost of the flow between hubs i.e., cost 
of hub-to-hub flow. 

• The Distribution cost, 8, denotes the cost of the flow from a hub to a spoke 
i.e., cost of hub-to-spoke flow. 

All the cost types are per unit distance of flow volume between nodes. For 
example, assume that in Figure 2.2, Wij volume of a commodity is sent by node i 
to node j. Wij is first transported from node i to hub k, then from hub k to hub I, 
and finally from hub I to the destination node j. The net transportation cost C jjk1 is, 

Cjjk1 = Wjj (xdik + adk1 + Od1) 

Where dik is the distance between node i and hub k, dk1 is distance between 
hubs k and I, and dlj is the distance between hub I and node j. In order to find the 
transportation cost of the entire network, Cijk1 is calculated for all the node pairs 
in the network. The cost of establishing the required hubs is also included in the 
total cost. 

The SAHLP has two varieties; (1) the uncapacitated Single Allocation Hub 
Location Problem (USAHLP) and (2) the capacitated Single Allocation Hub Lo­
cation Problem (CSAHLP). In the uncapacitated SAHLP, hubs can handle unlim­
ited flow from other nodes whereas in the capacitated SAHLP, hubs have capacity 
limits imposed on them. This work investigates both the capacitated and unca­
pacitated variants of the Single Allocation Hub Location Problem. It uses the 
CSAHLP-C formulation forthe Capacitated Single Allocation Hub location Prob­
lem(CSAHLP) proposed by A. T. Ernst and M. Krishanmoorthy [1]. CSAHLP-C 
is a mixed integer formulation and can be found in Ernst et al. [1]. The formal 
description is given below. 
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Subject to: 

L,jeNN LleNN(WijXjjk1 + WjjXjilk) = (OJ + Di)Zih 

L,jeNN OjZjk ::; fkZkk , 

Where: 

OJ = L,jeNN Wi} 

D j = L,jeNN W ji 

Z;k E {a, l}, 

0::; Xjjkl ::; 1, 

N is the number of nodes. 
NN = {a, 1,2, ... ,N -I} 

Vi,j E NN, 

Vi,k E NN, 

Vi,k E NN, 

Vi,k E NN, 

Vi,k E NN, 

Vi,j,k,l E NN, 

Wi} is the amount of flow between the origin i and destination j. 
X is the collection cost (from origin spoke to hub). 
a is the transfer cost (between hubs). 
6 is the distribution cost (from hub to destination spoke). 
dik represents the distance between nodes i and hub k. 
dkl is the distance between hubs k and I. 
dlj is the distance between hub I and node j. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

X ijk1 is the decision variable that represents the fraction of traffic between origin 
node i to destination node j through hubs k and 1. 
F; is the cost of establishing node i as hub. 
f; is the capacity of hub i. 
Zij is 1 if node i is assigned to hub j, otherwise it is 0. 
Zkk is 1 if node k is also a hub, otherwise it is 0. 

Constraint (1) ensures that all the traffic between an origin-destination pair 
has been routed via the hub sub-network. Constraint (2) prevents non-hub nodes 
from being allocated to other non-hub nodes while Constraints (3) and (4) restrict 
the commodity flow through each hub (i.e., each hub has a limited capacity). For 
some hub-spoke networks e.g., a mail delivery system, the problem may not be 
symmetric i.e., W ij '* W ji . Additionally, it may be the case that W ii > ° so that 
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a node may route commodities to itself. In this work, both symmetric and non­
symmetric flows are employed. The above formulation except for the capacity 
constraints (3) and (4) also applies to the uncapacitated SAHLP. 

2.2 Previous Work 

The Single Allocation Hub Location Problem is NP-hard combinatorial optimiza­
tion problem [10]. Due to this complexity, solving it with exact methods is com­
putationally intractable especially when large problem instances are involved. 
Therefore, in recent years, meta-heuristics such as Genetic Algorithms (GAs) 
[3][4][12][13], Tabu Search(TS) [11], and Ant Colony Optimization (ACO )[2] 
algorithms have been proposed for the SAHLP. A brief overview of the solu­
tion approaches applied to both the capacitated and uncapacitated versions of the 
SAHLP is given next. 

2.2.1 Uncapacitated SAHLP (USAHLP) 

Abdinour-Helm [4] proposed a hybrid approach based on GA and Tabu Search 
to solve the USAHLP. The GA was used to determine the number and loca­
tion of hubs and the Tabu Search(TS), to assign spokes to hubs. They reported 
an improvement over their earlier GA-approach that used distance-based assign­
ment of spokes to hubs. However, their stand-alone GA results are not available. 
Topcuoglo et al. [3] developed a GA-based approach to the USAHLP. They found 
improved solutions to some Civil Aviation Board (CAB) problems. They also 
used Australian Post (AP) data in their experiments that had not been previously 
used in any study on USAHLP. Another GA-based study on the USAHLP cited 
by Kara et al. [10] is a hybrid approach by Cunha and Silva [12] that employed 
GA and Simulated Annealing . 

The non-GA heuristics applied to the USAHLP include two hybrid approaches 
by Chen et al. [11 ] and Silva et. al. [26]. Chen et al. [11 ] combined SA with 
Tabu List(TL) to solve USAHLP. This approach involves applying Simulated An­
nealing to determine an upper-bound for the number of hubs and then using re­
stricted single location exchange procedure to locate the hubs. Non-hub nodes 
are first allocated to nearest hubs followed by an improvement procedure for al­
location that iteratively re-allocates nodes with less flow to other hubs until no 
improvement is possible. 
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2.2.2 Capacitated SAHLP (CSAHLP) 

To the best of the author's knowledge, the only GA-method for the CSAHLP is 
by Stanimirovic et ai. [13]. Stanimirovic e al. [13] improves solutions for some 
of the larger problems for CSAHLP. 

Ernst et al. [1] proposed a mixed integer formulation for the CSAHLP and 
developed two heuristic algorithms for the problem based on simulated annealing 
and random descent. They used the upper bound obtained with SA-RDH to de­
velop an LP-based branch and bound solution method for CSAHLP). Ernst et ai. 
[1] also introduced the AP (Australian Post) benchmark data for the Capacitated 
Single Allocation Hub Location Problem(CSAHLP), which has since been used 
by various research works including the one presented here. Randall et ai. [2] 
applied Ant Colony Optimization (ACO) algorithm to CSAHLP. In their work, 
four variants of ACO algorithm each based on a different construction modeling 
choice and combined with multiple neighbourhood search to solve CSAHLP were 
developed. 

As the above summary reveals, although genetic algorithms have been applied 
to the SAHLP, a narrow range of GA based approaches have been used to tackle 
the SAHLP. Moreover, only one GA has been proposed to CSAHLP. There is thus 
room for further GA contribution to the single allocation hub location problem. 
This work proposes a GA approach to SAHLP based on new solution encodings 
and crossovers as presented in chapter 3. A brief overview of the fundamentals of 
genetic algorithms is given next. 

2.3 Genetic Algorithms 

Genetic Algorithms (GAs), introduced by James Holland in his seminal work 
"Adaptation in natural and artificial systems" in 1975, are a family of popula­
tion based stochastic computational methods inspired by biological evolution. 
These algorithms encode a potential solution to a specific problem on a simple 
chromosome-like data structure and apply recombination operators and selection 
process to these data structures so as to evolve better solutions and preserve criti­
cal information [29]. 

GAs have successfully been applied to a broad range of problems for example 
bin-packing [30], job scheduling [31], vehicle routing [23], location-allocation 
[32], etc. problems. Similar to other metaheuristics, while they are not guar-
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anteed to yield an optimal solution to a given problem, they can provide good 
approximations within acceptable time as opposed to using an exact method for 
an optimal solution, which would be computationally intractable for larger prob­
lem instances. 

GAs operate on a data structure called chromosomes. A chromosome is a 
direct or indirect representation of a solution-entity in the real-world. The config­
uration of attributes that gives rise to a solution-entity is called the phenotype. In 
direct representation, the phenotypic information is directly used in the chromo­
some i.e., each attribute in the phenotype is encoded by a gene. Indirect repre­
sentation involves more complex genotype-to-phenotype mapping but is flexible 
and can be easily processed by recombination and mutation operators. Different 
encoding schemes are used to encode phenotypic information in the genotype. 
These include binary representation, integer representation, tree representation, 
etc. [22] The choice of an encoding scheme for a given problem depends on the 
solution structure of the problem [22]. 

A GA typically starts with an initial population of chromosomes (represent­
ing solutions), which is usually randomly chosen. The quality of the solutions 
is iteratively improved by evaluating the individual fitness of the population and 
stochastically choosing parent solutions from the population to reproduce children 
solutions through a recombination operation. An optional mutation operation is 
also applied to maintain diversity in the population. A description of the GA is 
given in Algorithm 1. Explanation of its different components is given in the sub­
sequent sections. 

Algorithm 1 Genetic Algorithm 

generate initial population 
repeat 

Evaluate the individual fitnesses of the population. 
S elect pairs of individuals from the 
population to reproduce. 
generate a new pool of the population through 
crossover and mutation. 

until terminating - condition 
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2.3.1 Generation of initial population 

Initially, a population of individual solutions is generated to form an initial pop­
ulation. Traditionally, the population is generated randomly. Occasionally, the 
solutions may be "seeded" with solutions biased towards areas where "optimal" 
solutions are likely to be found, but this is not a standard requirement by all GAs. 

2.3.2 Fitness Evaluation 

Each generation of population undergoes fitness evaluation. The fitness of an indi­
vidual is evaluated using some function evaluation. Values of the fitness function 
indicate the cost of the solutions of the population in a generation and provide a 
basis for identifying fitter solutions in the subsequent selection process. 

2.3.3 Selection 

During each successive generation, a proportion of the existing population is se­
lected to breed a new generation. A number of selection methods have been de­
veloped to identify individuals for reproduction. Some selection methods rate 
the fitness of each solution and preferentially select the best solutions for cross­
breeding [28][33]. Other methods rate only a random sample of the population 
and choose the better individuals [28][33]. Sometimes, solutions are stochasti­
cally selected from the sample so that less fit solutions also have the chances of 
selection. This preserves the diversity of the population helps the algorithm avoid 
premature conversion on poor solutions. Popular and well-studied selection meth­
ods include roulette wheel selection [33][35] and tournament selection [33][35]. 

2.3.4 Reproduction 

The next phase is to produce a new population of solutions from the individuals 
selected for cross-breeding. For this purpose a pair of individuals is selected and, 
probabilistic ally, subjected to recombination in the form of crossover and muta­
tion operators. During the recombination operation, the individuals in the selected 
pair mate by exchanging genetic materials and in the mutation operation, a ran­
dom gene of the solution is changed. The resulting offspring are added to the 
next-generation population pool. 
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A variety of recombination operators have been explored in literature. Some 
recombination operators like l -point[27][34] [35], 2-point [27] [34][35], and uniform­
order [27][34][35], PMX[35][38], and Cycle [35][38] crossovers are considered 
general and applicable to a broad range of problems. Other crossovers are de­
signed for specific problem-families taking into account their solution structures 
and may incorporate domain-specific knowledge to build better solutions quickly 
[39][40], 

Like crossover operators, there are also different kinds of mutation operations 
suited to specific problems available [27]. For ordering problems, for examples 
TSP, different mutation operations like inversion [33][35] and exchange [33][35] 
mutations are used. Similar to recombination, choice of mutation operation for a 
problem depends on the nature of the problem. 

2.3.5 Termination Criteria 

Two strategies are employed to terminate the algorithm. More often, the GA is 
terminated after it executes for a specified number of generation span. Sometimes, 
it is terminated when no progress is made in the quality of solutions over a given 
number of successive generations. 
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Chapter 3 

Genetic Algorithm for the Single 
Allocation Hub Location Problem 

In this chapter, a GA approach to the Single Allocation Hub Location Problem 
is proposed. Some new crossover and representation techniques employed in the 
proposed GA are presented. Finally, an efficient technique to handle the capacity 
constraint in the Capacitated Single Allocation Hub Location Problem is provided. 

The GA-approach to the SAHLP proposed in this thesis is based on three 
new crossovers i.e. the Double-Cluster Exchange Crossover (DCEC), the Multi­
Cluster Exchange Crossover (M CEC), and the Best-Cost Routing Crossovers (BCRC). 
It uses two new representations schemes i.e. List-based and Set-based representa­
tions for the SAHLP. The k - 4 Tournament Selection method [28] is used in the 
GA. Moreover, to handle the capacity constraint in the capacitated version of the 
SAHLP, the GA employs the repair technique. 

The GA methodology for the SAHLP is given by Algorithm 2. The GA starts 
by randomly generating an initial population of chromosomes representing poten­
tial solutions. The chromosomes are then subjected to an evolutionary process 
until a minimal cost hub-spoke network is evolved or the termination condition 
is met. The evolutionary process has the same structure as in ordinary GA us­
ing crossover and selection operations on chromosomes. Three problem-specific 
crossovers i.e., MCEC, DCEC, or BCRC based on cluster exchange between the 
mating parents are used in the GA to produce offspring. The GA incorporates 
three mutation operations i.e., shift, exchange, and replace-hub - chosen proba­
bilistically - to maintain population diversity. It employees tournament selection 
with elitism [29] to perform fitness-based selection of individuals for evolutionary 
reproduction. Infeasible solutions are repaired in case of the capacitated SAHLP. 
Each of these GA components is described in the following sections. 
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Algorithm 2 GA for the SAHLP 
1. Generate an initial population 
2. Evaluate the fitness F(x) of each chromosome x of the population and 

calculate the average fitness; 
3. Create a new population by repeating the following steps until the new 

population is complete; 

• Selection Select two chromosomes from the population using tour­
nament selection; 

• Reproduction Apply MCEC, DCEC, or BCRC crossover proba­
bilistically to parents to form new offspring. If crossover is not 
performed, offspring is an exact copy ofparents; 

• Mutation With mutation probabilities, apply shift, swap, and 
replace-hub mutations; 

• Acceptance Place the offspring in the population replacing the 
parents; 

• Elitism Replace 4 randomly-chosen individuals of the population 
with 4 best individuals from the parent population; 

4. Update the old population with the newly generated population; 
5. If the present number of generations is reached, stop, return the average 

fitness, and the fitness of the best chromosome in the current population; 
6. Else go to step 2; 

3.1 Solution Encoding and Initial Population Cre­
ation 

A good solution representation is of critical importance to GA performance. It 
captures and helps propagate the basic building blocks of the solution for the tar­
get problem[22][41]. The proposed GA employees two representation schemes 
i.e., List-based Representation and Set-based Representation, to encode the solu­
tion structure of the SAHLP. Both these schemes use integers to represent nodes in 
a network e.g. an n-nodes network is represented by integers in the range O ... n-l. 
To better capture the location-allocation information in the representations, a hub­
spoke network is considered to be a combination of hub-spoke clusters. An ex­
ample is given in Figure 3.1. In this network, there are 12 nodes organized into 
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one hub-hub subnet comprising nodes 1, 12, and 8, and 3 hub-spoke subnets (here 
called clusters). These clusters are Cl = {l,6,3,4, ll}, C2 = {12,5, 1O,2}, and 

C3 = {~, 7, 9, o} with nodes 1, 12, and 8 as hubs and the remaining nodes as the 
spokes. Standard crossovers don't apply to these representations. The representa­
tions are described next. 

o 

Figure 3.1: A hub-spoke network 
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3.1.1 Set-based Representation 

In the set-based Representation, a chromosome is a collection of sets of numbers 
in which each number represents a node. A set maps a cluster in the network. 
The first number in the set represents a hub and the remaining numbers represent 
the spokes allocated to the hub. An example of this encoding scheme is given in 
Figure 3.2. 

The network in the Figure 3.2 (a) has three clusters i.e., C l = {l2, 5,10, 2}, 
C3 = {l,6,3,4, ll}, and C2 = {S,9,0, 7}. As typed in the boldface, 12,8, and 1 
are hubs in the clusters. Thus, there are three sets, S l, S 2, and S 3, representing 
clusters Cl , C2 , and C3 , respectively as shown in Figure 3.2 (b). The first number 
in each set is a hub and the remaining nodes are spokes associated with the hub. 
For example, in the first set, node 12 is the hub and node 5, 10, and 2 are the spoke 
assigned to hub 12. 

(a) 

(b) 

5 

o 

Spokes 
..,.""/ 

./ 

I 12 I 5 10 2 H 8 I 9 7 0 ~I 1 I 6 3 4 11 
~~--~~ ~ . 

S 1 \ S2 S 3 
\ Hub 

Figure 3.2: Set-based chromosome: (b) represents chromosome with correspond­
ing network shown in (a) 

3.1.2 List-based Representation 

In the list-based encoding, a solution is represented by a list. The list has n hub 
entries where n is the number of nodes in the network. The entries are also implic-
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itly indexed by numbers from 0 to n - 1 that represent spokes. Thus a hub entry 
in the list is indexed by one of the spokes assigned to the hub. This representation 
scheme is illustrated in the Figure 3.3. 

The network in the Figure 3.3 (a) has 13 nodes including pre-designated hubs 
i.e. 1, 8, and 12. Thus its list representation contains 13 entries as shown in Fig­
ure 3.3 (b) . Every list entry is a hub i.e., either 1, 8, or 12. The hub entries are 
numbered 0 to 12, such that 0 serves as an index to the first value in the list, 1 to 
the second value, 2 to the third value, and so on. The hub entry at position 0 of 
the list is 8, which means spoke 0 is assigned to hub 8. Similarly, hub at position 
I is 1 meaning spoke 1 is assigned to hub 1 and at position 2 is 12 indicating that 
spoke 2 is allocated to hub 12, etc. In SAHLP formulation, a hub is considered to 
be assigned to itself. This is indicated by storing values 1, 8, and 12 at positions 
1, 8, and 12 of the list. 

(a) 

(b) 8 1 12 1 1 12 1 8 8 8 12 1 12 

Hub 

Figure 3.3: List-based chromosome 
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3.1.3 Initial Population Creation 

The creation of an individual is performed in three steps. In the first step, the 
number of hubs is determined randomly. The maximum number of hubs in this 
work can be half the number of nodes in the network and the minimum 2. In the 
second stage, i.e., Location Step, m hubs are randomly chosen from n nodes (n is 
the number of nodes in the network). In this way, any node from 1 to n has the 
chance to become a hub. Lastly, i.e., in the Allocation Step, the remaining n - m 
nodes are allocated to the selected hubs using the distance-based assignment rule 
i.e., a given node is assigned to a hub that has the shortest (Euclidean) distance 
from the node. In the final repair step, the solution is repaired if the hub-capacity 
constraint is violated by an assignment. Repair step is required only for the ca­
pacitated SAHLP. Section 3.5 gives a detailed description of the repair procedure. 

The above process is applied iteratively to create the entire population. It is 
given in Algorithm 3.2 and illustrated in Figure 3.4 for the list representation with 
an arbitrarily chosen network of 12 nodes. In the first step, the number of hubs i.e. 
m = 3 is determined using the formula given above. In the location step, 3 random 
nodes i.e. 1, 8, and 12 are selected as hubs and inserted in the list at positions 1, 
8, and 12 .. In the allocation step, the remaining nodes are assigned to 1, 8, and 
12 e.g. the nearest hub to spoke 5 is 12, so 12 is inserted at position 5 in the list. 
Likewise, 3 is assigned to its nearest hub 1 (1 is entered in the list at position 3). 
Other nodes are assigned in the same way. In the last step i.e., the repair step, 
node 7 is shifted from hub 1 to hub 8 to handle capacity overflow for hub 1. 

The process for the set representation is given in Figure 3.5. In the location 
step, three nodes i.e., 1, 8, and 12 are randomly selected as hubs and inserted in 
three sets, one set for each hub. In the allocation step, remaining nodes are in­
serted in the sets according to distance from the hubs e.g. node 5 is placed in the 
first set as in the figure because its nearest hub is 12. In the repair step that is 
required in the capacitated SAHLP, a solution is repaired if a hub overflow occurs 
due to the assignment of nodes to hubs. In the figure, this is depicted through 
shifting node 4 from overflow hub 1 to hub 12. A set with the hub and assigned 
nodes, thus, maps a cluster in the hub-spoke network. 
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Nodes _. + I 1 2 3 4 5 6 7 8 9 10 11 12 I Nodes 1 ,8,12 chosen as 
i hubs and assigned to v 

2 J j 5 fi : 8 9 :Ul . :1:1 :12 themselves. 
Representation - . -> I 1 8 12 I 

v Spoke 5, e.g., assigned to 

1 2 J j 5 fi : a 9 lO 11 12 its closest hub i.e., hub 12 

1 12 8 12 I 
... Remaining spokes assigned 

l 2 J ~ 5 ti f a 9 lO :1:1 12 to their closest hubs 

1 12 1 12 12 1 8 8 12 1 12 I Repair ... spoke 7 
... shifted from hub 1 to 

2 J ~ 5 fi 

~ 
8 9 10 :1:1 :12 hub 8 to adjust 

1 12 1 12 12 1 8 8 12 1 12 overflow in hub 1 

... (CSAHLP) 
Mapping 

6 CD 
/ 

Figure 3.4: Individual creation in initial population generation: list representation 

Algorithm 3 Initial population generation 
1. Select at least 2 and at most n -7 2 hubs from the total n nodes in the 

network; 
2. Locate selected number of nodes to serve as hubs; 
3. Allocate the remaining nodes to the selected hubs using the distance as­

signment rule i.e., assign nodes to their closest hubs; 
4. If the problem type is capacitated SAHLp, invoke the Repair-Module to 

repair the individual if it is infeasible; 
5. If required number of individuals have been created exit otherwise go to 

step 1; 
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Nodes .. .. , 11..-_1 __ 2 __ 3_ 4 __ 5_ 6 __ 7_ 8_ 9 __ 1o_ 1_1_ 1_2_---1 

! 1,8, and 12 selected as hubs 
i . 

H 81 
! Remaining nodes assigned to 12, 1, 8 
i based on shortest distance 

112 I 5 10 2 H 1 I :6 3 4 11 H 8 I 9 7 I 
i Repair ... Node 4 shifted to hub 12 to adjust 
1 overflow in hub 1 (for CSAHLP) 

112 15 10 4 2 H 11 6 3 11 H 8 I 9 7 I 
i Mapping 
.; CD 

/ 
1-------10 

Figure 3.5: Individual creation in initial population generation: set representation 
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3.2 Evaluation of Chromosome Fitness 

The proposed GA uses the objective function in CSAHLP-H formulation [1] given 
below as the fitness f(x) of a chromosome. 

F(x) = L L L L WijC,tdik + adkl + 8dlj)Xijkl + L FkZkk 

iEN lEN kEN jEN kEN 

In the above function, the first term represents the cost incurred on the internodal 
flow and the second term the cost of establishing the selected nodes as hubs. The 
function as a whole represents the total transportation cost of the network. 

To evaluate the fitness of a chromosome, its representation is first mapped into 
an allocation array. For list-based representation, this mapping is not necessary 
because the representation is already in the required form. For the set-based rep­
resentation, the step is shown in the Figure 3.6. Figure 3.6 (a) is the set-based 
representation of a chromosome and Figure 3.6 (b) is its allocation array. After 
mapping into an allocation array, the fitness of a chromosome is evaluated accord­
ing to Algorithm 3.3 

In the algorithm, n is the number of nodes in the network and f is the value 
of the objective function. The symbol hi represents an element of the allocation 
array in Figure 3.6. For example, element ho of allocation array in Figure 3.6 has 
value 0 and hlO has value 12. The notation Wij denotes the flow volume between 
nodes i and j whose value is specified by the flow matrix below. 

WII W12 WIn 

W21 W21 W2n 

Wnl Wn2 .••• Wnn 

The expression dij is the (Euclidean) distance between nodes i and j. Its value 
is given by the distance matrix in figure 3.6. 

Furthermore, eCost, tCost, and dCost are collectionC,t), transfer(a), and dis­
tribution (8) costs respectively and hCost[k] is the cost of hub k. Distance and 
volume matrices, transportation cots (i.e. eCost, tCost, and dCost), and hub costs 
(i.e. hCost[k] ) are specified by the benchmark to test the algorithm. 
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Figure 3.6: Mapping from set-based representation to allocation array 
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d21 d2I d2n 
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Algorithm 4 Evaluation of chromosome fitness 

f f- 0.0 

{Calculation transportation cost of the solution} 

for i = 0 to n - 1 do 

for j = 0 to n - 1 do 

end for 

end for 

{Add hub cost of the solution} 
{A hub is added to the set 80 after its cost has been processed} 

for k = 0 to n - 1 do 

if hk not in 80 then 
f f- f + hCostk 
80 f- hk 

end if 

end for 
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3.3 Reproduction 

Selection of individuals from the population for mating forms an important com­
ponent of the evolutionary process in a genetic algorithm. There are many se­
lection schemes available. Choice of an appropriate selection method is a crucial 
step in the application of genetic algorithms to problems. The proposed GA em­
ployes tournament selection with a tournament size of 4 for selecting the mating 
individuals. Tournament sizes of 2 was also tested but proved to be inefficient. 
The tournament size of 4 on the other hand gave better performance in terms of 
convergece on the SAHLP. 

3.4 Crossovers 

The performance of a crossover for a problem depends on its efficient propagation 
of the building blocks of the solution of the problem. In the Single Allocation 
Hub Location Problem, combinations of hubs and hub-spoke assignment patterns 
constitute the building blocks of the solution. Further, the fitness contribution of a 
cluster in terms of minimizing the objective function depends on the distance and 
flow between spokes and the hub in the cluster. 

Based on the above observations, two problem-specific crossovers were de­
signed for the SAHLP that process clusters instead of individual nodes. A cluster 
in this context is a hub and its allocated spokes (Figure 3.1, section 3.1). In these 
crossovers, one or more clusters are exchanged between the mating parents. Thus 
a cluster forms the unit of gene-exchange in such crossovers. Two crossovers 
i.e., Multi-Cluster Exchange Crossover (MCEC) that exchanges multiple clus­
ters between the mating parents and Double-Cluster Exchange Crossover (DCEC) 
that exchanges two clusters between the mating parents were designed during the 
course of the proposed GA development. Crossovers based on partial and single 
cluster exchange were also implemented but proved inefficient for larger SAHLP 
problems. The third crossover is an adaptation of the Best Cost Routing Crossover 
(BCRC) employed by Ombuki et. al. [23] [42] for Vehicle Routing Problems with 
time windows(VRPTW). These crossovers are described in detail in the following 
sections. 
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3.4.1 Multi-Cluster Exchange Crossover(MCEC) 

In the Multi-Cluster Exchange Crossover, children solutions are produced by 
swapping one or more randomly selected clusters between the mating parents. 
The swapping process is followed by a re-adjustment process in which infeasible 
solutions are corrected. If a hub in a cluster from one parent (i.e., the source par­
ent) is also a hub in a cluster of the other parent (i.e. the destination parent), then 
both clusters are merged. Duplicate or missing nodes in a child solution resulting 
from this process are re-assigned based on distance i.e., a node is assigned to the 
nearest hub. Stand-alone hubs i.e., hubs without spokes, resulting from the recom­
bination operation are assigned to other hubs as spokes. For illustration, consider 
two parent solutions PI and P2 with their respective networks in Figure 3.7 se­
lected for cross-breeding. Multi-Cluster Exchange Crossover (MCEC) is applied 
to PI and P2 to produce two children solutions ChI and Ch2 as described below. 

1. First is the selection step in which two clusters, C IPI = {4, 5, 8, 9} and 
C3PI = {7, 2}, are randomly selected from parent PI and one cluster, C2P2 = 
{2, 7, 6, 5} from parent P2• 

2. Next is the swapping step where clusters CIPI and C3P I are removed from 
PI and added to P2 • Likewise, C2P2 is removed from P2 and added to Pl. 
In this way, offspring ChI and Ch2 are produced as shown in the Figure 3.8. 

3. Then in the merger step, C3 = {4, 3} and C2 = {4, 5, 8, 9} in Ch2 are merged 
into a single cluster because they have the same hub (i.e., hub 4). Result is 
the children solutions as given in Figure 3.9. 

4. Next, in the re-adjustment step, duplicate nodes in an offspring are re­
allocated and missing nodes re-inserted. This is necessary because duplicate 
nodes violate the single-assignment constraint of the network and missing 
nodes violate the network integrity. Ch2 has duplicate nodes 8, 9. They are 
detached from their present hubs and re-assigned to other hubs in Ch2 based 
on distance. Missing node 6 from the child, Ch2 , is re-inserted into it in the 
same way. This step is repeated for ChI. The result is shown in Figure 3.10. 

5. Final step is the removal and re-assignment of stand-alone hubs. This is 
unnecessary in the present example because there is no such hub either in 
Ch l orCh2• 

The minimum number of clusters that can be selected from a parent solution 
to exchange with the other parent can be 1 to k - 1 where k is the number of 
clusters in the solution. If a parent solution has 2 or less clusters, then 1 cluster is 
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Figure 3.7: MCEC: PI and P2 selected for mating 
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Figure 3.8: MCEC: Children solutions after the swapping step 
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Figure 3.9: MCEC: Children solutions after the merger step 
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Figure 3.10: MCEC: Children solutions after the re-adjustment step 
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selected to swap with the other parent. Moreover, while re-inserting a node into 
an offspring, a hub that is the closest to the node and has the required capacity 
is selected. If no such hub is found, then the node is assigned to the closest hub 
regardless of the violation of capacity. 

3.4.2 Double-Cluster Exchange Crossover(DCEC) 

In Double-Cluster Exchange Crossover (DCEC), two random clusters are itera­
tively selected from one parent solution and shifted to the other. The same oper­
ation is repeated for the other parent. Duplicate nodes in the offspring resulting 
from the recombination operation are detached from their present hubs and re­
assigned to other hubs of the same offspring according to distance i.e., a node is 
assigned to the closest hub. Likewise, nodes lost by an offspring due to the swap 
operation are re-inserted in it based on distance. Stand-alone hubs i.e., hubs with­
out spokes, in a child solution are demoted to spokes and re-assigned to other hubs. 

The process is illustrated In Figure 3.11. There are two parent solutions, PI = 
{{3, 1, 2}, {4, 5, 8, 9}, {7, 6}} with hubs 3, 4, 7 and P2 = HI, 9, 8}, {2, 7,6, 5}, {3, 4}} 
with hubs 1,2, and 3 are crossbred using Double-Cluster Exchange Crossover 
(DCEC). The detailed steps are given below. 

1. Two randomly selected clusters, C2PI = {4, 5, 8, 9} from PI and C2P2 = 
{2, 7, 6, 5} from P2 respectively, are swapped between PI and P2 producing 
offspring ChI and Ch2 • 

2. If an incoming cluster has the same hub as a home cluster, both are merged. 
This step doesnt apply in the present case. 

3. Nodes (4,8,9) of the incoming cluster C2PI to Ch2 are also contained in 
other clusters of Ch2 . They are deleted from the rest of the clusters but 
retained in C2PI • If a node in an incoming cluster is a hub in another cluster, 
it is deleted from the incoming cluster but retained in the other cluster. The 
same process is repeated for ChI. 

4. The missing nodes (2,6,7) are re-inserted in Ch2 based on distance. A node 
is assigned to a hub that is the closer and has sufficient capacity to han­
dle the additional flow from the newly added node. If no such hub can be 
found, then it is assigned to the nearest hub regardless of the violation of 
hub capacity. The same step is repeated for ChI. 
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Figure 3,11: Double-Cluster Exchange Crossover 
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5. The stand-alone hub 7 is removed from ChI and re-assigned to hub 2 of ChI 
as a spoke using the distance-based assignment rule i.e., a node is assigned 
to the closest hub. 

6. Steps 1 through 4 are repeated a second time to exchange another cluster 
between the two solutions. 

3.4.3 Best Cost Route Crossover(BCRC) 

Another crossover used in this work is an adaptation of the Best Cost Route 
Crossover (BCRC). This crossover was introduced by Ombuki et al. [23] for 
vehicle routing problems and, subsequently, has been used by many studies on 
similar problems with good results [23 ]. The crossover selects a route from one 
parent and injects elements from it at best possible locations in the opposite parent 
preserving the feasibility of the parent solution. 

The notion of route in a routing problem has close equivalence in a cluster 
in hub location problems. The BCRC for the SAHLP swaps clusters across the 
mating parents. This is done by removing a randomly selected cluster from one 
parent and shifting its contents to the other parent. Same action is performed on 
the second parent. The hubs replace each other in the destination parents and the 
nodes are inserted (in the destination parents) based on distance. 

The BCRC crossover for the single allocation hub location problem is illus­
trated in Figure 3.12. In the figure, two parent solutions PI and P2, based on a 
problem instance of size 9 nodes are selected from the population from which two 
children ChI and Ch2 are produced using BCRC. Parent PI represents a hub-spoke 
network with clusters CIPI = {3, 1, 7} , C2PI = {5, 6, 9} , and C3PI = {4, 2, 8} and 
P2 , CIP2 = {l,4, 5} , C2P2 = {2, 9, 6, 8} ,and C3P2 = {7,3} . The recombination 
operation works as follows. 

1. Two random clusters e.g. C2PI and C2P2 are selected from PI and P2 re­
spectively. The nodes in C2P I are deleted from P2 and, conversely, nodes 
in C2P2 are deleted from PI. 

2. The hub i.e. 5 in cluster C2P I = {5, 6, 9} is inserted in parent solution P2 

as the new hub. The same operation is repeated for C2P2 = {2, 9, 6, 8} and 
parent PI. 

3. Next, nodes from C2PI i.e. 6 and 9 are inserted in P2 in appropriate clus­
ters using distance assignment rule and based on the non-violation of hub 
capacity. If no cluster can be found for a node without violating the hub 
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capacity, then it is assigned to the closest hub. Same operation is repeated 
for C2P2 and Pl. 

4. Stand-alone hubs in the children solution are demoted and assigned to other 
hubs as spokes. 

C1Pl C 2Pt C 3Pl C)PZ C ZP2 C 3P2 

PI I2E2J [EJI 41 8 Z l2ED 1 2
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Figure 3.12: Best-Cost Routing Crossover 
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3.5 Mutation 

The mutation operations employed in the proposed GA are Shift Node [3][4] , Swap 
Nodes[3] [4], and Replace-Hub mutations. The shift and swap mutation operations 
can be performed only for solutions with multiple clusters. In the Shift Node mu­
tation, a node is detached from one cluster of a solution and inserted into another 
cluster of the solution. The node to be shifted is selected randomly. Likewise, 
the source and destination clusters for the node are choosen randomly. The shift 
mutation operation can be performed only for clusters with more than one node.In 
Swap Node mutation, two clusters are randomly selected from the given solu­
tion and one random node from the first cluster is shifted to the second cluster. 
Likewise, from the second cluster, a randomly selected node is shifted to the first 
cluster.In the Replace-Hub mutation, the hub from a randomly selected cluster of 
a solution is demoted as spoke whereas a spoke from the same cluster is promoted 
as hub. The operations are illustrated in the Figure 3. 13. 

Given Solution 
Shift Node Mutation 

Swap Nodes Mutation 
Change Hub Mutation 

Figure 3.13: Mutation Operations 
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3.6 Constraint Handling in GA-SAHLP 

There are six constraints that apply to the Single Allocation Hub Location Prob­
lem as given in the CSAHLP-H formulation in section 2.1. Constraints (1) and 
(2) enforce the single-assignment restriction. Constraints (3) and (4) i.e., capacity 
constraints, put an upper bound on the incoming flow to a hub in the capacitated 
SAHLP. Constraint (5) enforces integrity and constraint (6) ensures that flow from 
a spoke is routed only through a hub. 

In the proposed GA, constraints, (1), (2), (5) and (6) are implicitly handled 
by different components of the GA. For example, during the initial population 
generation and crossover operations, a spoke is assigned only to a single hub and 
duplicate nodes are deleted thus enforcing the single-assignment constraints (1) 
and (2). These measures also enforce the hub-routing constraint (6) and integrity 
constraint (5). 

Implementation of hub-capacity constraints (3) and (4) is more complex and 
requires efficient handling. Hub-capacity constraints make sure that the sum of 
the incoming flow, i.e. the flow from spokes in a cluster to the hub including the 
flow generated by the hub itself, doesn't exceed the hub capacity. Hub-capacity 
constraints are violated by the crossover and mutation operations in the GA. In 
the proposed approach, capacity violation is handled in two ways; through a pro­
active measure and a reactive measure. 

In pro-active measure, a node is assigned in such a way during the initial pop­
ulation generation or crossover that the capacity of the hub is not violated. This is 
done by allocating a node to hub that has the capacity. However, feasible insertion 
of a node sometimes requires reshuffling of clusters, which is computationally ex­
pensive. Therefore, a reactive measure is adopted by including a special repair 
module in the GA. Repair module adjusts capacity overflow in hubs through care­
ful re-assignment of nodes in a solution. 

The repair module is invoked after the creation of a solution during the initial 
population generation or the crossover operation. Crossover operation first at­
tempts to preserve the feasibility of an offspring by assigning nodes to hubs with 
capacity. If feasible assignment of a node is not possible, the node is assigned to 
a hub regardless of the violation of and hub capacity ang a special flag is set. The 
flag serves to activate the repair module. 

An outline of the repair module is given in Algorithm 5. The example in Fig­
ure 3.14 gives its illustration. The figure shows node-flows and hub-capacities in 
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an offspring solution. For example, spoke 9 sends flow of 0.5 units via hub 1, 
which itself generates a flow of 0.3 units. The total incoming flow through hub I 
is the sum of flows from its allocated spokes and the flow it generates itself i.e., 
the total through hub I is 0.5 + 0.4 + 0.2 + 3 = 1.4. As this exceeds the capacity 
of hub 1 i.e., 1.3, so the cluster containing hub 1 has overflow. The other overflow 
cluster in the network is the one with hub 5. 

To repair the network, nodes 4 and 3 are detached from existing hubs and re­
assigned to other hubs in the network. Thus node 3 is re-assigned to hub 11 and 
node 4 to hub 1 as shown in the figure. 

0.2 
--+ 

Figure 3.14: An instance of flow through the network 
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The repair work is carried out in the following steps. 

Algorithm 5 Chromosome Repair 
1. Find an overflow cluster in the given solution. 
2. Keep detaching minimum-flow nodes from the cluster until the overall 

c1uster-flow is within the limits of hUb-capacity. Save the nodes in an 
overflow node list. 

3. Repeat steps 1 and 2 until there is no cluster with overflow. 
4. Retrieve the detached nodes from the overflow node list one at a time and 

assign them to the existing hubs. Repeat this step until all the nodes have 
been assigned or further assignment is not possible without violating the 
capacities of the hubs. 

5. If there are still some un-assigned nodes in the overflow node list, create 
a new hub (from one of the spokes) with sufficient capacity and assign it 
the remaining nodes. 

Detaching nodes with minimum-flow from an overflow hub contributes to the 
fitness of solutions because value of the objective function in the case of SAHLP 
depends on flow-volume and distance between nodes. Assigning nodes with larger 
flows to nearest hubs will minimize the objective function value. Detaching a 
node with larger flow from a hub during the repair process will, therefore, affect 
the quality of the solution. Thus, spokes with minimum flows are detached from 
an overflow hub. 
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Chapter 4 

Computational Results for the 
Capacitated Single Allocation Hub 
Location Problem( CSAHLP) 

4.1 Experimental Parameters and Setup 

The GA proposed in chapter 3 was coded in Java and run on Pentium 4, 1.5 GHz 
PC in a Windows 2007 environment. To evaluate the computational effectiveness 
of the proposed GA, an empirical study with three versions of the GA i.e., GA-l, 
GA-2, and GA-3 was performed. Each version was based on one ofthe crossovers 
introduced in section 3.4 using both List-based and Set-based representations as 
given in section 3.1. The GA versions are given below. 

1. GA -1: Double-Cluster Exchange Crossover (DCEC) based GA. 

2. GA-2: Multi-Cluster Exchange Crossover (MCEC) based GA. 

3. GA-3: Best-Cost Routing Crossover (BCRC) based GA. 

Obtaining good parameter settings for a given problem is a crucial factor in the 
performance of a GA. It is now generally accepted that optimum parameter set­
tings may be problem specific, implying that the GA being designed must first be 
parameterized in the context of a particular problem [23]. The parameter settings 
for the GAs i.e., GA-l, GA-2, and GA-3, shown in Table 4.1 were empirically 
established (Appendix A contains results for crossover rate of 0.80). The exper­
iments were based on 30 runs of each of the above GA versions. The execution 
of the GA was terminated after 1000 generations or when there was no change in 
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fitness for 150 generations. 

Table 4.1: Experimental parameters 
Parameter 
population size 
population 
chromosome initialization 
generational span 
probability of crossover 
probabliity of mutation 

GA-l GA-2 GA-3 
500 500 500 

generational,j ,j 

random ,j ,j 

1000 ,j ,j 

0.55 0.60 0.60 
0.2, 0.4 0.4,0.2 0.4, 0.2 

Furthermore, after a mutation decision was made according to the mutation 
rate in the table above, probabilities of 0.2, 0.6, and 0.2 were used to select one of 
the mutation types i.e., shift, swap, or replace-hub mutation respectively, (Figure 
3.14) to apply. A comparative study between the three versions of the GAs is done 
in terms of solution quality, number of problems solved compared to current best, 
and computational time. Similarly, a comparative study between the GAs and 
other published works using GA-based and non-GA based methods is provided. 

4.2 Data Sets 

Experiments for the CSAHLP were performed using Australian Post (AP) data 
[1], which is described below. 

4.2.1 AP Data 

The AP data set was introduced by Ernst et. al. [1] and is based on a real appli­
cation to postal delivery system in Australia. AP data is the only data benchmark 
data set available for capacitated hub location problems. It has also been used by 
some studies for uncapacited problems [4][11]. 

The set contains problems of up to 200 nodes with each node representing a 
postal district. The problem sizes are 10, 20, 25, 40, 50, 100, and 200 nodes. 
The internodal flows in AP data set are asymmetric i.e., Wij "* Wji . The data set 
contains hub costs and hub capacities for capacitated hub location problems. The 
unit collection and distribution costs i.e., X and 0, in the data set are 3.0 and 2.0 
respectively and the discount factor, a, is 0.75. 
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There are two types of hub costs and capacities i.e., loose (L) and tight (T) 
in AP data set. Loose cost/capacity hubs are assumed to have less variation in 
cost/capacities and tight cost hubs have more variation. By combining these two 
types of hub costs and capacities, 4 types of problems with different complexity 
can be derived for each problem size. Tight costs/capacities problems tend to be 
more difficult than loose cost/capacities problems. 

In this work, the type of an AP problem is specified with the notation nFC 
where n is the number of nodes in the problem, F is the cost type for hub, and 
C, the capacity type for hub. For example 100LL means problem with 100 nodes 
(i.e., n = 100) and loose (L) cost, loose (L) capacity hubs. 

4.3 Experimental Results and Discussions for the Ca­
pacitated SAHLP 

Tables 4.2 and 4.3 together with figures 4.1 and 4.3 present computational results 
for the GAs i.e., GA-l, GA-2, and GA-3, based on List-based and Set-based rep­
resentations respectively. Both tables have the same structure. For example, in 
Table 4.2, the first column gives the name of the problem instance. The column 
labelled known-best value lists the known-best solutions to the problems. For a 
small-sized problem i.e., n = 10,20,25,40, a known-best solution represents the 
optimal cost as established in [1]. For large-sized problems i.e., problems with 
n = 50, 100, 200, the known-best solution represents best cost obtained by current 
methods. The next three columns list the best solutions found by GA-l, GA-2, 
and GA-3 respectively in 30 runs. In the tables and figures, solutions are labelled 
either known-best, new best, or comparable depending on their qUality relative to 
the current best solutions. The same terms and notations have been used through­
out this thesis to designate/denote solutions. These labels and notation have the 
following meaning. 

• A known-best solution is the current best solution for a problem as reported 
in literature on the SAHLP. It is denoted by .y. 

• A new best solution is a new best solution for a problem. It is represented 
by a value in bold text. 

• A inferior solution is a solution that is inferior to the "known-best" solution. 
It is denoted by a non-bold value. 
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The figures in this chapter gives a summary of the performance comparison. 
Detailed comparison can be found in Appendix B. Table D.1, Appendix D give 
averages of the solution values found in 30 runs of the GA. 

4.3.1 Performance Comparison ofGA-l, GA-2, and GA-3 with 
Best Known Solutions using Set-based Representation 

Figure 4.1 gives performance comparison between GA-1, GA-2, and GA-3 in 
terms of known-best or new best solutions found using set representation. As 
can be seen from the figure, GA-1 obtained 26/28 best solutions, which include 
two new best solutions. GA-2 and GA-3 obtained 25/28 and 17/28 best solutions 
respectively including a new best solution for each GA. Thus, GA-1 performed 
better than GA-2 and GA-3 in terms of the number of known or new best solu­
tions found. Performance of GA-2 was comparable with that of GA-1 whereas 
GA -3 was the least successful. 

Table 4.2 compares solutions found by the GAs with known-best solutions. 
For purpose of better comparison, the problems have been assigned three cate­
gories Le., the small-sized problems with 50 or less nodes (n ~ 50), medium-sized 
problems with number of nodes between 50 and 100 (n > 50 and n ~ 100), and 
large-sized problems with more than 100 nodes. 

As can be seen from table 4.2, GA-1 and GA-2 were able to solve all small­
sized problems to optimality as against GA-3, which obtained suboptimal values 
for the lOLL, 25TL, 40TT and 50TT problems. GA-1 and GA-2 were equally 
better than GA-3 on small-sized problems. 

For the medium-sized problems i.e., the 100LL, 100LT, 100TL, and 100TL 
problems, GA-3 found only comparable values except the 100LT case for which 
it obtained a new best solution. GA-1 and GA-2 found two known-best and one 
new best solution each for the medium sized problems. Thus, GA-1 and GA-2 
have comparable performance on the medium-sized problems. 

As for the large-sized 200LL, 200LT, 200TL, and 200TT problems, GA-3 
again failed to find any known-best or new best solution. GA-1 obtained new 
best solution for the 200LT problem and known-best solutions for the 200LL and 
200TL problems. Compared to this, GA-2 found known-best solutions for two of 
the large-sized problems (Le. the 200LL and 200TL cases) and comparable values 
for the remaining two problems. GA-1, therefore, performed better than GA-2 on 
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Figure 4.1: CSAHLP: Comparison in terms of the number of known-best or new 
best solutions using set representation 

large-sized problems. 

It can thus be concluded for the set representation that GA-l based on the 
Double-Cluster Exchange Crossover (DCEC) was the most successful on all types 
of problems. GA-2 with Multi-Cluster Exchange Crossover (MCEC) performed 
better on small as well as medium-sized problems but had modest success on 
large-sized problems. Finally, GA-3, which incorporates the Best-Cost Routing 
Crossover (BCRC), had some modest success only on small-sized problems. Next 
the computational times of the GAs are discussed. 
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Table 4.2: CSAHLP: Computational performance of GA-I, GA-2, and GA-3 us-
ing set-representation 

Problem Known-best GA-I GA-2 GA-3 
SA-RDH [1] 

lOLL 224250.05 V V 224706.29 
lOLT 250992.26 V V V 
lOTL 263399.94 V V V 
lOTT 263399.94 V V V 
20LL 234690.94 V V V 
20LT 253517.40 V V V 
20TL 271128.18 V V V 
20TT 296035.40 V V V 
25LL 238977.95 V V V 
25LT 276372.50 V V V 
25TL 310317.64 V V 310493.20 
25TT 348369.15 V V V 
40LL 241955.71 V V V 
40LT 272218.32 V V 272455.80 
40TL 298919.01 V V V 
40TT 354874.10 V V V 
50LL 238520.59 V V V 
50LT 272897.49 V V V 
50TL 319015.77 V V V 
50TT 417440.99 V V 418269.90 
100LL 246713.97 V V 246755.13 
100LT 256207.52[13] 256250.32 256183.42 256183.43 
100TL 362950.09 V V 365247.39 
100TT 474670.32 474660.51 474667.32 478937.94 
200LL 241992.97 V V 241993.97 
200LT 268894.41 268661.14 269494.09 272089.92 
200TL 273443.81 V V 273502.88 
200TT 291830.66[13] 291969.46 291973.07 292154.47 

No of best solutions found 26/28 25/28 17/28 
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Behaviour of the GAs in terms of computational time versus problem size for 
set-representation is given by Figure 4.2. As the computational times of the GAs 
have the most variation for larger problems, therefore, only problems of sizes 
n ~ 40 have been considered. The computational time (CPU time) of a GA for 
a given problem of size "n" (e.g. 200 nodes) has been obtained by adding its av­
erage computational times [1] for nLL, nLT, nTL, and nTT (e.g. 200LL,200LT, 
200TL, and 200TT) and dividing the sum by 4. 

The figure shows that all the GAs i.e. GA-l, GA-2, and GA-3, have low 
(below 100 seconds) and almost comparable computational times for small-sized 
problems. However, for the medium-sized problems, computational times of GA­
l and GA-2 rise sharply although the increase in the computational time of GA-I 
is relatively larger than that of GA-2. Computational time of GA-3, on the other 
hand, remains low for medium-sized problems. However, for large-sized i.e., 200 
nodes problems its computational time rises steeply. Against this, computational 
times of GA-l and GA-2 remain lower for large-sized problems. On the whole, 
the behaviour of GA-2 in terms of computational time is better than the other two 
GAs. 

The sudden rise in the computational time of GA-3 for large-sized problems 
may be due to the reason that the large-sized problems have larger clusters and 
so GA-3, which is based on the Best-Cost Routing Crossover (BCRC), has to 
re-assign larger number of nodes when clusters are swapped between the mating 
parents. Exacerbating this, may be larger instances of hub capacity violation in 
the case of BCRC due to the re-assignment of large number of nodes, which en­
tails a time-consuming solution-repair work. 

As illustrated by the above comparison, GA-I with Multi-Cluster Exchange 
Crossover (MCEC) and GA-2 with Double-Cluster Exchange Crossover (DCEC) 
are better than GA-3 based on Best-Cost Routing Crossover (BCRC) on set rep­
resentation in terms of the number of problems successfully solved, quality of so­
lutions, and computational time behaviour. Further comparison of the GAs with 
published works, will, thus, focus on GA-l and GA-2 only. 
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Figure 4.2: CSAHLP: Computational times of GA-l, GA-2, and GA-3 versus 
problem-size using set representation 

4.3.2 Performance Comparison ofGA-l, GA-2, and GA-3 with 
Best Known Solutions using List-based Representation 

Figure 4.3 gives performance comparison of the GAs for the list-based represen­
tation in terms of best solutions found. As can be seen from the figure, GA-2 
found 27/28 best solutions of which 3 were new best solutions. This was followed 
by GA-l and GA-2, which obtained best solutions for 23/28 and 17/28 problems 
respectively. Thus GA-2 was the most successful on list representation in terms 
of the number of problems solved successfully. GA-3 on the other hand was the 
least successful. 
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Figure 4.3: CSAHLP: Comparison in terms of the number of known-best or new 
best solutions found using list representation 

50 



Comparison of the solution values obtained by the GAs with the known-best 
solutions is presented using Table 4.3. The same categorization of the problems 
into small-sized, medium-sized and large-sized is used to grade the performance 
of the three GAs on the list representation in terms of solution qUality. 

As can be seen from the table, GA-I and GA-2 found optimal or known-best 
solutions to all the small-sized AP problems. GA-3, on the other hand, failed to 
obtain optimal solutions for the lOLL, 25TL, 40LT, and 50TT problems. Both 
GA-I and GA-2, thus, outperformed GA-3 on the small-sized AP problems and 
the list representation. 

On the medium-sized lOOLL, lOOLT, lOOTL, and lOOTT problems, GA-2 
using list representation performed very well. It found best solutions to all the 
medium-sized problems including the new best solutions for the lOOLT and lOOTT 
instances. GA-I, on the other hand, obtained known-best solutions for two prob­
lems and an improved solution relative to the current-best for the lOOTT problem. 
For the lOOLT problem, its solution is comparable with the known-best. Solutions 
of GA-3 for the medium-sized problems are comparable to the known-best. Thus 
on the medium-sized problems, GA-l had the best performance followed by GA-2. 

On the large-sized 200LL, 200LT, 200TL, and 200TT problems, performance 
of GA-2 was again better. It found a new best solution for the 200LT problem and 
known-best solutions for the 200LL and 200TL problems. For the 200TT prob­
lem, its solution value is comparable with the known-best. Against this, GA-l 
found known-best solution to one problem i.e. the 200LL case. For the 200LT 
problem, its solution value is better compared to the known-best but inferior to 
the solution by GA-2. For the remaining two problems, it obtained comparable 
values. The solutions obtained by the GA-3 for all large-sized problems are infe­
rior compared to the known-best. 

Thus the performance of GA-2 with the Multi-Cluster Exchange Crossover 
(MCEC) performed better for all types of problems while GA-l based on the 
Double-Cluster Exchange Crossover (DCEC) gave comparable performance with 
GA-2 on small and medium-sized problems. Last, GA-3, which incorporates the 
the Best-Cost Routing Crossover (BCRC), showed some modest performance on 
small-sized problems only. GA-2 with MCEC thus had the best performance for 
AP problems on the List representation. Next the behaviour of the GAs in terms 
of computational time is discussed. 

A comparison of the average computational times of the GAs for the list repre­
sentation is given in Figure 4.4. As the figure shows, computational time of GA-3 
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Table 4.3: CSAHLP: Computational performance of GA-l, GA-2, and GA-3 us-
ing list-representation 

Problem Known-best GA-l GA-2 GA-3 
SA-RDH [1] 

lOLL 224250.05 Y Y 224706.29 
lOLT 250992.26 Y Y Y 
lOTL 263399.94 Y Y Y 
lOTT 263399.94 Y Y Y 
20LL 234690.94 Y Y Y 
20LT 253517.40 Y Y Y 
20TL 271128.18 Y Y Y 
20TT 296035.40 Y Y Y 
25LL 238977.95 Y Y Y 
25LT 276372.50 Y Y Y 
25TL 310317.64 Y Y 310493.20 
25TT 348369.15 Y Y Y 
40LL 241955.71 Y Y Y 
40LT 272218.32 Y Y 272455.80 
40TL 298919.01 Y Y Y 
40TT 354874.10 Y Y Y 
50LL 238520.59 Y Y Y 
50LT 272897.49 Y Y Y 
50TL 319015.77 Y Y Y 
50TT 417440.99 Y Y 418269.90 
100LL 246713.97 Y Y 246755.13 
100LT 256207.52[13] 256250.32 256155.33 256455.24 
l00TL 362950.09 Y Y 364515.45 
100TT 474670.32 474287.49 474184.94 476568.42 
200LL 241992.97 Y Y 242776.31 
200LT 268894.41 268487.45 267827.979 269276.97 
200TL 273443.81 273541.82 Y 273502.88 
200TT 291830.66[13] 292237.69 291891.69.07 292528.72 

No of best solutions found 23/28 27/28 16/28 
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remains low for small and medium-sized problems but rises steeply for large-sized 
problems (i.e. problems with more than 100 nodes). There is also a sharp rise in 
the computational time of GA-l for medium-sized problem until the 200 nodes 
problem when its computational time drops slightly. The computational time for 
GA-2 rises comparatively slowly with increase in the problem size. GA-2, thus, 
has better behaviour than either GA-l or GA-3 in terms of computational time. 
GA-3 is better than GA-l and GA-2 for small and medium-sized problems but is 
more expensive for large-sized problems. 

The comparison of GA-l, GA-2, and GA-3 indicates that GA-2 based on the 
Multi-Cluster Exchange Crossover (MCEC) has the best performance on list rep­
resentation. GA -1 incorporating the Double-Cluster Exchange Crossover (DCEC) 
has matching performance with GA-2 in terms of solution quality although it finds 
fewer solutions that are the known or new best. Further comparisons of the GAs 
with published work on list representation, therefore, will focus only on GA-l and 
GA-2. 
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4.3.3 Performance Comparison of GA-! and GA-2 with Pub­
lished GA Approaches 

Performance comparison of GA-l and GA-2 for the two representations i.e., the 
set and the list representations, with published GA approaches in terms of the 
number of known-best or new best solutions found is given in the following sec­
tions. Comparison in terms of individual solution values can be found in Tables 
B.l and B.2, Appendix B. 
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Figure 4.5: CSAHLP: Comparison with published GA approaches using set­
representation 

4.3.3.1 Set-based Representation 

As can be seen from Figure 4.5, both GA-l and GA-2 performed better than GA 
(2008) [13] on the set representation. GA-l obtained 26/28 best solutions includ­
ing two new best solutions compared to the 21/28 best solutions of GA (2008) 
[13]. Likewise, GA-2 with 25/28 known and new best solutions also outperformed 
GA (2008) [13]. Moreover, GA-l and GA-2 found relatively superior solutions 
for many problems as can be known from Table B.l of Appendix B. This includes 
some small AP problems for which GA (2008) [13] has suboptimal solutions. 
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Figure 4.6: CSAHLP: Comparison with published GA approaches using list­
representation 

4.3.3.2 List-based Representation 

The performance comparison of GA-l, GA-2, and GA (2008) [13] for the list rep­
resentation is given in Figure 4.6. As depicted by the figure, GA-l and GA-2 with 
27/28, including 3 new best solutions, and 23/28 best solutions respectively out­
performed GA (2008) [13] with 21/28 best solutions. Moreover, both GA-l and 
GA-2 solved some small-sized AP problems to optimality that GA (2008) [13] 
couldn't solve as can be found from Table B.2, Appendix B. Likewise, for most of 
the medium and large-sized AP problem, performance of GA-I and GA-2 using 
the list representation was significantly better (Table B.2, Appendix B). 

4.3.3.3 Conclusion 

The comparison of GA-l based on the Multi-Cluster Crossover (MCEC) and GA-
2 based on the Double-Cluster Exchange Crossover (DCEC) with GA (2008) [13] 
for the capacitated SAHLP presented in this section show the effectiveness of GA-
1 and GA-2 relative to GA (2008) [13]. The GAs outperformed GA (2008) [13] 
on both representations in terms of the number of problems successfully solved 
and quality of solutions. Next the performance of the GAs is compared with pub-
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Figure 4.7: CSAHLP: Comparison with non-GA approaches using set­
representation 

4.3.4 Comparison of GA-! and GA-2 with Published non-GA 
Approaches 

The next two sections summarise performance comparison of GA-l and GA-2 in 
terms of the number of best solutions found with published non-GA approaches 
to the capacitated SAHLP for both representations. Detailed comparison in terms 
of individual solution values can be found in tables B.3 and BA of Appendix B. 

4.3.4.1 Set-based Representation 

Figure 4.7 gives performance comparison of GA-l and GA-2 with the SA-RDH 
(1998) [1] for set representation. As can be seen from the figure, GA-l with 
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24/28 known-best solutions and 2/28 new best compared to the 24/28 solutions of 
SA-RDH[I] has slightly better performance. Likewise, GA-2, with 25/28 best so­
lutions, including one new best, also outperforms the SA-RDH (1998) [1]. More­
over, whereas performance of GA-l, GA-2, and SA-RDH (1998) [1] is similar on 
the small-sized AP problems, GA-l and GA-2 prove to be better than SA-RDH 
(1998) [1] on some of the medium and large-sized problems, as can be found in 
Table B.3 of Appendix B. 
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Figure 4.8: CSAHLP: Comparison with non-GA approaches using list represen­
tation 

4.3.4.2 List-based Representation 

The performance summary of GA-l, GA-2, and SA-RDH (1998) [1] is given in 
Figure 4.8 for list representation. Again, GA-2 with 27/28 best solutions includ­
ing three new best solutions, as indicated in the figure, outperforms SA-RDH 
[1998] [1], which has 24/28 best solutions. On the other hand performance of GA-
1 and SA-RDH (1998)[1] with 23/28 and 24/28 best solutions respectively is simi­
lar in terms of the number of problems successfully solved. Furthermore, whereas 
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GA-l, GA-2, and SA-RDH (1998) [1] have similar peIfonnance on small-sized 
AP problems, on medium and large-sized problems, GA-l and GA-2 prove to be 
more effective. Comparison of individual solution values for GA-l, GA-2, and 
SA-RDH(1998)[I] is given in Table BA, Appendix B. 

4.3.4.3 Conclusion 

The comparison of GA-l and GA-2 with non-GA approaches to the capacitated 
SAHLP as given above shows the effectiveness of GA-2 based on Multi-Cluster 
Exchange Crossover (MCEC) and GA-l based on the Double-Cluster Exchange 
Crossover (DCEC) relative to the SA-RDH (1998) [1]. PeIfonnance of GA-2 
(MCEC) was better than the SA-RDH (1998)[1] on both representations whereas 
the peIfonnance of GA-l(DCEC) was better than SA-RDH (1998) [1] on the set 
representation only. 

4.3.5 Comparing Best GAs on the Set and List-based Repre-
sentations with the Existing GAs 

Comparisons in the preceding sections have established GA -1 based on the Multi­
Cluster Exchange Crossover (MCEC) and GA-2 based on the Double-Cluster Ex­
change Crossover (DCEC) to be the best GAs on the set representation and the list 
representations respectively. Table 4.4, together with Figure 4.9, compares peIfor­
mance of GA-l using set representation, GA-2 using list representation, and the 
GA (2008) [13]. As can be seen from the table, GA-2 (list representation) has the 
best peIfonnance of all the three GAs. It finds known-best solutions to 24 prob­
lems and new best solutions to 3 of the 28 CSAHLP problems compared to 24/28 
and 21/28 known-best solutions by GA-l (set representation) and GA (2008) [13] 
respectively. Its solution value for the 200TT problem is comparable with that 
of the GA (2008) [13]. The table shows that GA-l (set representation) also has 
better peIfonnance than GA (2008) [13]. Its solution values for the l00TT and 
200LT cases are better than those of GA (2008) [13] and comparable for 100LT 
and 200TT cases with those of GA (2008) [13]. 
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Computational time for GA-l (set) and GA-2 (list) as a function of problem 
size has been shown in the Figure 4.10. As the graph depicts, the behaviour of 
GA-2 (list representation) in terms of computational time is better than that of 
GA-I (set-based representation) showing that there is lower increase in the com­
putational time of GA-2 relative to GA-l with increase in the problem size. 
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Figure 4.10: CSAHLP: Comparison of computational times for GA-l (Set) and 
GA-2 (List) 
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Table 4.4: CSAHLP: Comparing set and list-based representations, AP data set 
Problem GA(2008) GA-l GA-2 

Stanimirovic[13] Set List 
lOLL 224250.05 Y Y 
lOLT 250992.26 Y Y 
lOTL 263399.94 Y Y 
lOTT 263399.94 Y Y 
20LL 234690.94 Y Y 
20LT 253517.40 Y Y 
20TL 271128.18 Y Y 
20TT 296035.40 Y Y 
25LL 238977.95 Y Y 
25LT 276372.50 Y Y 
25TL 310317.64 Y Y 
25TT 348369.15 Y Y 
40LL 241955.71 Y Y 
40LT 272218.32 Y Y 
40TL 298919.01 Y Y 
40TT 356507.86 354874.10 354874.10 
50LL 238520.59 Y Y 
50LT 272897.49 Y Y 
50TL 319015.77 Y Y 
50TT 422794.56 417440.99 417440.99 
100LL Y Y Y 
100LT 256207.52 256250.41 256155.33 
100TL 364515.24 362950.09 362950.09 
100TT 475156.75 474660.51 474184.94 
200LL Y Y Y 
200LT 270202.25 268661.14 267827.97 
200TL 273443.81 Y Y 
200TT 291830.66 291969.46 291891.69 
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4.3.6 Conclusions 

Computational results for the proposed GAs i.e., GA-l, GA-2, and GA-3, based 
on the Double-Cluster Exchange Crossover (DCEC), Multi-Cluster Exchange Crossover 
(MCEC), and Best-Cost Routing Crossover (BCRC) respectively were presented 
in this chapter. The results showed that the Multi-Cluster Exchange Crossover 
(MCEC) employed in GA-2 was effective on the List representation whereas 
the Double-Cluster Exchange Crossover (DCEC) used in GA-l was efficient on 
the Set representation. Furthermore, Multi-Cluster Exchange Crossover (MCEC) 
with the List representation was found to be the most effective of the crossover­
representation combinations investigated in this work for the capacitated SAHLP. 
Comparison with other GA and non-GA methods for the capacitated SAHLP af­
firmed the efficacy of the crossovers. Overall, the proposed approach was efficient 
on the given data and consistently produced good-quality results as can be seen 
from tables 4.5 and 4.6. Investigation with more data may give further insight into 
the capabilities of these crossovers and solution representations. 

New best 
Known-best 
Inferior 
Overall 

New best 
Known-best 
Inferior 
Overall 

Table 4.5: Set representation 
GA-l (DCEC) GA-2 (MCEC) 

2/28 1/28 
24/28 24/28 
2/28 3/28 
26/28 25/28 

Table 4.6: List representation 
GA-l (DCEC) GA-2 (MCEC) 

0/28 3/28 
23/28 24/28 
5/28 1/28 
23/28 27/28 
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Chapter 5 

Computational Results for the 
Uncapacitated Single Allocation 
Hub Location Problem (USAHLP) 

5.1 Experimental Parameters and Setup 

To evaluate the computational effectiveness of the proposed GA approach for the 
uncapacitated SAHLP, experiments involving 30 runs of GA-l, GA-2, and GA-3 
respectively were performed in the same environment as given in 4.1. The GAs 
were run on both set and list representations. The same GA parameters as in Ta­
ble 4.1 were employed. Section 5.2 describes the data sets used in the experiment 
whereas section 5.3 presents the results. 

5.2 Data Sets 

In the experiments for the uncapacitated SAHLP, the two standard data sets i.e., 
Civil Aviation Board (CAB) data set [24] and Australian Post (AP) data set [1] 
for hub location problems were used. The AP data set [l]has been described in 
4.2.1. Section 5.2.1 gives its description for the uncapacitated SAHLP. Section 
5.2.2 describes the CAB [24] data set. 

5.2.1 AP Data Set 

As the hub capacity constraint doesn't hold for the uncapacitated SAHLP, the AP 
data set [1] for the SAHLP involves two types of problems. The loose-cost (L) 
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problems have less variation in the hub-cost whereas the tight-cost (T) problems 
have more variation in the hub-cost. Tight-cost (T) problems tend to be more dif­
ficult than the loose-cost (L) problems. These two types of problems have been 
denoted here by the notation nF where n stands for the number of nodes in the 
problem and F denotes the cost-type i.e., loose, "L" or tight, "T". For example, 
notation "IOL" denotes the loose-cost (L) problem with 10 nodes. 

5.2.2 CAB Data Set 

The CAB benchmark data set by O'Kelley [24] is based on air traffic between 25 
cities in USA. The data set contains test problem instances of 10, 15,20, and 25 
nodes for uncapacitated hub location problems. Unlike the AP data with asymmet­
ric flows between nodes, the internodal flow (Wij ) in CAB data set is symmetric 
i.e., Wi) = Wji and is scaled by division with the total network flow i.e., 

i=n,j=n 

L Wi) 
i=l,j=l 

The unit collection cost X and unit distribution cost 0 in the data set are both fixed 
at 1.0 [3][4][11]. The transfer cost a i.e., the cost for hub-to-hub flow, is varied 
between 0.2 and 1.0 to provide discount factors for bulk transportation between 
hubs [3][4][11]. 

5.3 Experimental Results and Discussions for the Un­
capacitated SAHLP Using AP Data 

The detailed computational results of the proposed GAs for the Uncapacitated Sin­
gle Allocation Hub Location Problem (USAHLP) using AP [1] data set are given 
in tables C.5 and C.6, Appendix C. Means of the best values can be found in Ta­
ble D.2, Appendix D. Here only summaries of the performance comparison of the 
GAs i.e., GA-1, GA-2, and GA-3, for the set and list representation are given. 
Sections 5.3.1 and 5.3.2 give performance comparison between GA-1, GA-2, and 
GA-3. Performance comparison with published GA and non-GA works is given 
in sections 5.3.3 and 5.3.4 respectively. 
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5.3.1 Performance Results for GA-l, GA-2, and GA-3 using 
Set-based Representation 

Figure 5.1 gives the performance comparison of the GAs i.e., GA-1, GA-2, and 
GA-3, using set representation in terms of the number of known-best or new best 
solutions. As can be seen from the figure, GA-1 and GA-2 performed equally 
better by finding 12 known-best solutions each as against 7 known-best solutions 
of GA-3. Comparison in terms of individual solution values can be found in Table 
C.5, Appendix C. 
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Figure 5.1: USAHLP: Performance of GA-1, GA-2, and GA-3 using set repre­
sentation and AP data 
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Figure 5.2 presents average computational time (measured as CPU time) of 
the GAs as a function of the problems size (Le. number of nodes, n, in the prob­
lem). The computational times have been obtained in the same way as for the 
capacitated problems. As variation in computational time with the problem size 
is more apparent in the case of problems with n ~ 40, so only problems with 40 
or more nodes have been considered. Computational times for all the GAs remain 
low for problems with 50 or less nodes. However, there is relatively higher rise 
in the computational time of GA-3 when number of nodes exceeds 50. Computa­
tional times of all the GAs rise sharply for the 200-node problem. However, the 
increase in computational times of GA-2 and GA-3 is relatively low compared to 
the increase in the computational time for GA-l. 
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Figure 5.2: USAHLP: Computational time versus problem size, set representa­
tion, AP problems 
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5.3.2 Performance Results for GA-l, GA-2, and GA-3 using 
List-based Representation 

Figure 5.3 gives the performance comparison of the GAs i.e., GA-1, GA-2, and 
GA-3, using list representation. As in the case of set-representation, GA-1 and 
GA-2 with 12/14 known-best solutions gave comparatively better performance 
than GA-3, which found only 8/12 known-best solutions. The behaviour of GA-1 
and GA-2 relative to GA-3 in terms of computational time was also satisfactory as 
shown by Figure 5.2. GA-3, therefore, will be dropped from further consideration 
in comparisons with other works, henceforth, and only GA-1 and GA-2 will be 
focussed upon. Comparison in terms of individual solution values can be found in 
Table C.6, Appendix C. 
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Figure 5.3: USAHLP: Performance of GA-1, GA-2, and GA-3 using list repre­
sentation and AP data 
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Computational time of the GAs on list representation as a function of problem 
size is shown in Figure 5.4. All the three algorithms showed similar behaviour 
in terms of computational time for both representations i.e., their computational 
times remain low when the problem has 100 or less nodes but rise sharply for the 
200-node problem. Rise in the computational time of GA-3, however, is relatively 
lower compared to the rise in the computational time of GA-I and GA-2 for the 
200-node problem. 
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Figure 5.4: tTSAHLP: Computational time versus problem size using list repre­
sentation, AP data 

69 

- GA-l 

- GA-l 

- GA-3 



5.3.3 Performance Comparison with Published GA Works 

As GA -1 and GA -2 have the same performance in terms of the number of known­
best or new best solutions found for both the representations, their performance 
comparison with published GA works is given by the same figure i.e., Figure 5.5. 
As the figure shows, GA-1 and GA-2 found 12/14 known-best solutions each for 
both set and list representations as against 7/14 known-best solutions of GATS 
(1998) [4] and 13/14 known-best solutions of GA (2005) [3]. GA-1 and GA-
2 thus performed better than GATS (1998) [4] and almost equally good as GA 
(2005) [3]. Comparison with published GA works in terms of individual solutions 
can be found in tables C.1 and C.2, Appendix C. 
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Figure 5.5: USAHLP: Performance comparison of GA-1 and GA-2 using set and 
list representations with published GA works, AP data 
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5.3.4 Performance Comparison with Published non-GA Works 

Performance comparison of GA-l and GA-2 in terms of known-best or new-best 
solutions using both set-based and list-based representations with published non­
GA works is given in Figure 5.6. As can be seen from the figure, GA-l (set and 
list representations) and GA-2 (set and list representations) with 12/14 known best 
solutions each have comparable performance with SATLUHLP (2007) [11] with 
14/14 known-best solutions and SA (2005) [3] with 13/14 known-best solutions 
respectively. Comparison with published non-GA works in terms of individual 
solutions can be found in tables C.3 and C.4, Appendix C. 
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Figure 5.6: USAHLP: Performance comparison of GA-l and GA-2 using set and 
list representations with published non-GA works, AP data 

Results and comparisons in the preceding sections show that while GA-3 
based on Best Cost Routing Crossover (BCRC) was modestly successful on the 
AP data. GA-l based on Double-Cluster Exchange Crossover (DCEC) and GA-2 
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based on Multi-Cluster Exchange Crossover (MCEC) gave same peIionnance on 
both the representations i.e., Set-based representation and List-based representa­
tion. This indicates the effectiveness of both the crossovers i.e., MCEC and DCEC 
on either representation for the uncapacitated SAHLP. Furthennore, the compar­
ison indicate that, although, peIionnance of both GA-1 and GA-2 is comparable 
with other methods, there is room for further development to better compete with 
non-GA methods. 

5.4 Discussion and Experimental Results for the Un­
capacitated SAHLP Using CAB Data 

In the experiments with the CAB data, values of the discount factor (i.e. the trans­
jercost, a) are set to 0.2,0.4,0.6,0.8, and 1.0. Collection cost (x) and distribution 
cost (8) are maintained at 1.0. The fixed costs for establishing hubs are 100, 150, 
200, and 250. In this way, 20 different cases of each problem instance are solved 
by the algorithm. Total cases solved for all problem instances are thus 80. The 
optimal solution value is computed as below. 

Optimal solution value = minp {Optp + F x p} 

where Optp is the optimal solution value for SApHMP given that the number 
of hubs is p and the fixed cost for establishing a hub F. As the expression indi­
cates, the target solution is obtained by first obtaining solution values of a problem 
for different number of hubs (p) and then choosing the best value. For example, 
for problem of size 10 nodes, solution values are obtained for I, 2, and 3 hubs and 
the best value is selected as the final solution. 

The detailed results of the GAs for the CAB data are presented in tables C.7 
through C.14, Appendix C. The first column in each of these tables (ref. Table 
C.7) specifies the discount a (i.e. the transfer cost), the second column gives the 
hub cost, the third column lists the optimal value, and the next column gives the 
optimal hub combination for a given problem. The remaining columns list the so­
lution values for the existing solution approaches and the proposed GAs. Means 
of the best values of 30 runs can be found in tables D.3 through D.6, Appendix D. 
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5.4.1 Computational Results Using Set-based Representation 

Figure 5.7 summarise perfonnance of the GAs for set representation. A total of 
80 CAB problems were studied. GA-2 solved all the 80 CAB problems to op­
timality. Thus, its perfonnance is matching that of SATLUHLP (2007) [11] and 
better than that of the GA (2005) [3] and GATS (1998) [4] as can be seen from the 
figure. GA-I solved 79/80 problems. For the remaining one problem, its solution 
was comparable with the optimal value. GA-3 obtained optimal solutions to 72/80 
problems and comparable solutions to the remaining problems. Detailed results 
are given in tables C.7 through C.10, Appendix C. Mean ofthe best values can be 
found in Table E.3 through E.6, Appendix E 
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Figure 5.7: USAHLP: Perfonnance in tenns of the number of known or new best 
solutions found, set representation, CAB data 
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5.4.2 Computational Results Using List-based Representation 

A summary . of the performance comparison for list representation in terms of 
problems solved is given in Figure 5.8. As the figure shows, GA-2 was also the 
most successful on the list representation. It solved all the CAB problems to opti­
mality. Its performance thus matched that of SATLUHLP (2007) [11]. GA-I gave 
comparable performance by finding optimal solutions to 79 of the 80 CAB prob­
lems. Its performance is thus matching that of GA (2005) [3] and GATS (1998) 
[4]. GA-3 solved 69 of the 80 CAB problems. For the remaining problems, the 
quality of its solutions was comparable with that of the optimal solutions. De­
tailed results are given in tables C.II through C.14, Appendix C. 
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5.4.3 Comparing Performance of the Best GAs with Existing 
GAMethods 

Of all the GAs, GA-2 has the best performance for CAB data on both representa­
tions i.e., set and list representations. The chart in Figure 5.9 gives its performance 
comparison with known GA methods for the uncapacitated SAHLP in terms of 
the number of problems solved and quality of solutions. As the chart shows, it 
solved all the CAB problems to optimality compared to 79 problems solved by 
GA (2005) [3] and GATS (1998) [4] each. Its performance on CAB data is thus 
better than that of GA (2005) [3] and GATS (1998) [4]. 
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5.5 Conclusions 

Tables 5.1 and 5.2 give an overall summary ofthe GAs performance on the unca­
pacitated SAHLP problems in terms of number of problems successfully solved. 
A total of 94 problems were considered, which included 14 problems from AP 
data set and 80 problems from the CAB data set. As can be seen from the tables, 
the proposed GAs were also effective on the uncapacitated problems. Perfor­
mance of GA-1 based on the Double-Cluster Exchange Crossover (DCEC) and 
GA-2 based on the Multi-Cluster Exchange Crossover (MCEC) was similar on 
both the representations i.e., Set and List representations, whereas GA-3 showed 
modest performance relative to GA-1 and GA-2. Comparison with other meth­
ods for the uncapacitated SAHLP as given in the preceding sections indicate the 
effectiveness of the proposed approach for the uncapacitated SAHLP. 

New best 
Known-best 
Inferior 
Overall 

New best 
Known-best 
Inferior 
Overall 

Table 5.1: Set representation 
GA-l (DCEC) GA-2 (MCEC) 

0/94 0/94 
91/94 92/94 
3/94 2/94 

91/94 92/94 

Table 5.2: List representation 
GA-1 (DCEC) GA-2 (MCEC) 

0/94 0/94 
91/94 92/94 
3/94 2/94 

91/94 92/94 
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Chapter 6 

Statistical Analysis of the GAs 
Behaviour 

6.1 Test Parameters 

To measure significance of difference in the means of the solution populations 
of the GAs i.e., GA-I, GA-2, and GA-3 on the two representations i.e., set and 
list representations, two-tailed students t-test for unpaired two-sample data was 
performed on samples of solutions produced by the algorithms. Following param­
eters were used in the test. 

1. Sample size: 30 

2. Degrees of freedom (elf) : 58 

3. Confidence level: 95 

4. Null hypothesis (Ho): The difference between the mean of the solution pop­
ulations that can be produced by the given pair of GAs is statistically in­
significant i.e. III = 112 where III is the population mean of the first GA's 
solutions and 112 is the population mean of the second GA's solution. 

5. Alterante hypothesis (Ha): The difference between the mean ofthe solution 
populations that can be produced by the given pair of algorithm is statisti­
cally significant i.e. III "* 112 

The test was performed for selected AP (Australian Post) problems. Further­
more, two cases were considered; how statistically significant is the difference in 
the means of the solution population produced by a given pairs of the GAs i.e., 
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GA-l, GA-2, and GA-3, with different crossovers but the same representation i.e., 
either set or list representation; how significant is the difference in the means of 
the solution population by a GA with the same crossover but two different repre­
sentations i.e., the set representation and the list representation. 

6.2 Test of Significance for the Representations 

The t-test was performed to measure the significance of difference in the mean of 
the populations produced by the same GA on two different representations. For 
the capacitated SAHLP, 12 problems with nodes more than or equal to 50 were 
considered. For the uncapacitated SAHLP, t-test for all the 14 problems in the AP 
data set was performed. The results for both the capacitated and uncapacitated 
SAHLP are presented in Figure 6.1. 
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Figure 6.1: SAHLP: t-test for representations 
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6.2.1 Uncapacitated SAHLP 

The result for the GA-l shows that difference in the means of the solution pop­
ulation produced by the GA-l on set and list representation was insignificant in 
the case of 10/14 problems and significant for only one i.e., 4/14 problem. For 
the GA-2 and GA-3, the insignificant cases are 10/14 and 9/14 respectively. Thus 
it may be concluded that the statistical behaviour of all the GAs remain the same 
irrespective of which solution representation i.e., set representation or list repre­
sentation, is used. 

6.2.2 Capacitated SAHLP 

For the capacitated SAHLP, the significance in difference of means of the slution 
population produced by GA-1, GA-2, and GA-3 on the two representation i.e., the 
set and the list representations, is insignificant for 9/12, 8/12, and 6/12 problems 
respectively compared to the 3/12,4/12, and 6/12 problems in which it is signif­
icant. This indicates that the statistical behaviur of the three GAs is largely the 
same regardless of the representation used. 

6.3 Test of Significance for the Crossovers 

In this section, the results of the t-test for different GA pairs using the same rep­
resentation are presented. As each of the GA i.e., GA-1 (with Double-Cluster 
Exchange Crossover), GA-2 (with Multi-Cluster Exchange Crossover), and GA-3 
(with Best-Cost Routing Crossover), is based on a different crossover, so the test, 
in effect, measures the statistical behaviour of different crossovers when the rep­
resentation is the same. Given below, is a description of the results. 

6.3.1 Capacitated SAHLP based Test 

The t-test for the capacitated SAHLP was performed for 12 problems with 50 or 
more nodes. Figure 6.2. gives the results. The label "significant" in the figure 
denotes the statistical significance and the label "insignificant" denotes the statis­
tical insignificance of the difference in the means of the solution populations of 
the given GA pairs. The same terms have been used in the remaining figures in 
this chapter to indicate the significance or insignificance of the difference in the 
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statistical behaviour of the GAs. In the first case i.e., GA-1 and GA-2 on set rep­
resentation, the difference in the means for 8/12 problems was found to be statisti­
cally significant whereas that of the remaining 4/12 was found to be insignificant 
Thus overall, the difference in behaviour of GA-1 with Double=Cluster Exchange 
Crossover (DCEC) and GA-2 with Multi-Cluster Exchange Crossover (MCEC) is 
significant. For the rest of the cases, the difference is overwhelmingly significant 
as shown by the diagram. Thus, it can be concluded that the GAs have statistically 
different behaviour for the capacitated SAHLP. 
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Figure 6.2: CSAHLP: t-test for crossovers, no ofproblems=12 

80 



6.3.2 Uncapacitated SAHLP based Test 

The number of problems in the t-test for the uncapacitated SAHLP was 14 (Figure 
6.3). For the GA-I and GA-2 pair, the difference in the means of the solution pop­
ulations was significant for 9/12 problems indicating that GA-l and GA-2 have 
statistically different behaviour on the set representation. On the list representa­
tion on the other hand, the significant cases are 10/14. Similarly, for the case GA-l 
and GA-3 on set representation, the difference in means of the slution population 
produced by the two GAs is significant for 11/14 problems and insignificant for 
the remaining 3/14 problems indicating that GA-l with Double-Cluster Exchange 
Crossover (DCEC) and GA-3 with Best Cost Routing Crossover (BCRC) have 
different behaviour for set representation. The figure shows that the difference 
between GA-l and GA3 and GA-2 and GA-3 is significant for larger number of 
problems. 
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Chapter 7 

Conclusions 

Most practical combinatorial optimization problems are NP-hard. There are no 
polynomial algorithms developed and their non-existence is believed. Research 
on combinatorial optimization based on meta-heuristics is an active current re­
search topic that has gained popUlarity especially since the 90s. Meta-heuristic 
approaches seek approximate solutions in polynomial time instead of exact solu­
tions, which would be at intolerably high cost. Although various meta-heuristics 
have been proposed in the literature for the Single Allocation Hub Location Prob­
lem, work using genetic algorithms is limited especially for the capacitated ver­
sion where only one genetic algorithm approach is currently available. This thesis 
sort to bridge this gap by proposing an application of genetic algorithms for both 
the capacitated and incapacitated versions of the SAHLP. An empirical study for 
the GA based on two different representations and three crossover operators was 
presented. 

Three GAs i.e., GA-I, GA-2, and GA-3, based on the Multi-Cluster Exchange 
(MCEC), Double-Cluster Exchange (DCEC), and Best-Cost Routing Crossover 
(BCRC) respectively were designed and run on both the representations i.e. Set 
and List representations. The effectiveness of the implementations was checked 
with standard benchmark problems from AP and CAB data sets and the results 
were presented in chapter 4 and 5. 

As can be seen from the results the GA-implementations based on the new 
crossover approach i.e., GA-l, GA-2, and GA-3 yielded high-quality solutions to 
both versions of the Single Allocation Hub Location Problem. GA-l and GA-2 
based on the Double-Cluster Exchange and Multiple Cluster Exchange crossovers 
respectively were able to solve small-sized capacitated AP problems to optimal­
ity. Further, they found comparable and in some cases better solutions to the 
large-sized capacitated SAHLP problems. Furthermore, GA-l and GA-2 also ob-
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tained optimal solutions for the CAB problems and comparably better solutions 
for the AP problems. The representations i.e., the Set-based and the List-based 
representations, had significant impact on the performance of the crossovers. The 
performance of GA-l and GA-2 was better for set and list representations respec­
tively. However, the Student's t-test indicates that the average performance of 
each GA was similar for both the representations. 

Although, the proposed GA approach produced good results, there is still room 
for improvement especially in the case of larger SAHLP problems. These obser­
vations indicate that the proposed GA approach has good potential for further 
application and refinement. In future, this research work will be extended in the 
following directions. 

• The proposed GA method will be applied to other hub location problems 
like Multiple Allocation Hub Location Problem (MAHLP), Single and Mul­
tiple Allocation p-Hub Problems, etc., Furthermore, its behaviour will be 
studied for related problems like Facility Location Problems, Bin Packing 
Problem, etc. 

• The efficiency of the technique handling the hub capacity constraint seems 
to have a significant impact on the performance of the GA in the case of 
the capacitated SAHLP. The issue of an efficient technique for handling the 
capacity constraint will be further explored. 

• Although good results were obtained for large problems for the capacitated 
version of the SAHLP, further work is needed in the design of the GA to 
better handle larger problem instances for the uncapacitated version. 

• A Fitness landscape analysis for the Single Allocation Hub Location Prob­
lems should be carried out. Gaining insight into the structure of combi­
natorial optimization problems by employing search space analysis is an 
important step in designing efficient genetic operators for the problem. By 
employing crossover-based and mutation-based landscapes, the efficiency 
of the genetic operators and representation techniques presented in this the­
sis can be shown. Furthermore, a search space analysis can help explain 
what key characteristics make it hard for a certain class of heuristics. Ulti­
mately, the domain-specific knowledge gained from the search space anal­
ysis will aid in the design of more effective genetic algorithms (or other 
meta-heuristics) especially for larger problem instances. 
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Appendix A 

Results for the Crossover Rate of 0.8 
and Mutation Rate of 0.2 
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Table A.I: CSAHLP: AP Data, Crossover = 0.8, Mutation = 0.2 
GA-1 GA-2 GA-3 

Problem Cost Set List Set List Set List 
lOLL 224250.05 -..; -..; -..; -..; 224706.43 224706.44 
lOLT 250992.26 -..; -..; 254112.39 -..; -..; -..; 
10TL 263399.94 -..; -..; -..; -..; 263763.43 263763.43 
lOTT 263399.94 -..; -..; -..; -..; -..; -..; 
20LL 234690.94 -..; -..; -..; -..; -..; -..; 
20LT 253517.40 -..; -..; -..; -..; -..; -..; 
20TL 271128.18 -..; -..; -..; -..; -..; -..; 
20TT 296035.40 -..; 298441.12 298547.09 -..; -..; -..; 
25LL 238977.95 -..; -..; -..; -..; -..; -..; 
25LT 276372.50 -..; -..; -..; -..; -..; -..; 
25TL 310317.64 -..; -..; -..; -..; -..; -..; 
25TT 348369.15 -..; -..; -..; -..; -..; -..; 
40LL 241955.71 -..; -..; -..; -..; -..; -..; 
40LT 272218.32 272455.80 274191.88 -..; -..; 271142.54 -..; 
40TL 298919.01 -..; -..; -..; -..; -..; -..; 
40TT 354874.10 357441.31 359121.07 356873.33 -..; -..; -..; 
50LL 238520.59 -..; -..; -..; -..; -..; -..; 
50LT 272897.49 273159.66 273159.66 273002.02 -..; 274142.54 273155.43 
50TL 319015.77 319375.12 320176.53 -..; -..; 319375.23 319375.23 
50TT 417440.99 423886.89 422671.56 422657.74 422287.75 422345.53 423751.15 
100LL 246713.97 246755.13 246910.54 246755.13 246729.32 246910.37 246755.13 
100LT 256250.41 256987.63 258331.34 257131.31 256784.45 257344.12 257101.12 
100TL 362950.09 364820.15 365401.31 365401.53 364572.12 365333.56 365401.53 
100TT 474680.32 480130.65 481667.45 481334.12 479754.23 482334.75 483432.61 
200LL 241992.97 242910.77 243334.43 242337.22 241997.83 243117.56 242455.76 
200LT 268894.41 271854.34 270334.17 272055.72 269621.45 273155.97 271331.43 
200TL 273443.81 273660.19 273785.45 273538.74 273550.17 273687.12 273602.45 
200TT 292754.97 293241.75 295755.42 294475.19 292245.53 295755.42 294141.66 
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Table A.2: USAHLP: AP Data, Crossover = 0.8, Mutation = 0.2 
GA-l GA-2 GA-3 

Problem Cost Set List Set List Set List 
lOL 224249.82 .y .y .y .y .y 224706.29 
lOT 263402.13 .y .y .y .y 263763.43 263763.43 

20LL 234690.11 .y .y .y .y .y .y 
20LT 271128.41 .y .y .y .y .y .y 

25LL 236649.69 .y .y .y .y 236797.68 .y 
25LT 295670.39 .y .y .y .y .y .y 

40LL 240985.51 .y .y .y .y 241260.20 241260.20 
40LT 293163.38 .y 274191.88 .y .y .y .y 

50LL 237420.69 .y .y 238520.58 .y 237518.79 237518.79 
50LT 300420.87 .y .y .y .y .y .y 

100LL 238017.53 238199.12 238199.12 .y .y 238492.88 238383.20 
100LT 305101.07 .y .y .y .y .y .y 

200LL 228044.77 234109.34 234109.54 234185.89 234052.81 238635.51 238963.80 
200LT 233537.93 272212.8 272982.14 279848.29 272205.32 272757.80 276874.22 
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Table A.3: USAHLP, CAB data, nodes = 10, Crossover = 08, Mutation 0.2 
GA-I GA-1 GA-2 GA-2 GA-3 GA-3 

a f Optimal Hubs Set List Set List Set List 
0.2 100 791.93 4,6,7 V V V V V V 

150 915.99 7,9 V V V V V V 
200 1015.99 7,9 V V V V V V 
250 1115.99 7,9 V V V V V V 

0.4 100 867.91 4,6,7 V V V V V V 
150 974.30 7,9 V V V V V V 
200 1074.30 7,9 V V V V V V 
250 1174.30 7,9 V V V V V V 

0.6 100 932.62 7,9 V V V V V V 
150 1032.62 7,9 V V V V V V 
200 1131.05 9 V V V V V V 
250 1181.05 9 V V V V V V 

0.8 100 999.94 7,9 V V V V V V 
150 1081.05 4 V V V V V V 
200 1131.05 4 V V V V V V 
250 1181.05 4 V V V V V V 

1.0 100 1031.04 4 V V V V V V 
150 1081.05 4 V V V V V V 
200 1131.05 4 V V V V V V 
250 1181.05 4 V V V V V V 
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Table A.4: USAHLP, CAB problems, nodes = 15, Crossover = 0.8, Mutation 0.2 
GA-l GA-l GA-2 GA-2 GA-3 GA-3 

a f Optimal Hubs Set List Set List Set List 

0.2 100 1030.07 3,4,7,12,14 1094.9 V V V 1049.9 1032.60 
150 1239.77 4,7,12,14 V V V V V 1249.97 
200 1381.28 4,12 V V V V V V 
250 1481.28 4,12 V V V V V V 

0.4 100 1179.71 4,7,12,14 V V V V V 1182.70 
150 1355.09 4,7,12 V V V V V 1358.30 
200 1462.62 4,12 V V V V V V 
250 1556.66 4 V V V V V V 

0.6 100 1309.92 4,7,12 1330.33 1330.33 1330.33 V 1330.33 1330.33 
150 1443.97 4,12 1456.66 1456.66 1456.66 V 1456.66 1456.66 
200 1506.66 4 V V V V V V 
250 1556.66 4 V V V V V V 

0.8 100 1390.06 4,11 V V V V V V 
150 1456.66 4 V V V V V V 
200 1506.66 4 V V V V V V 
250 1556.66 4 V V V V V V 

1.0 100 1406.66 4 V V V V V V 
150 1456.66 4 V V V V V V 
200 1506.66 4 V V V V V V 
250 1556.66 4 V V V V V V 
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Table A.5: USAHLP, CAB problems, nodes = 20, Crossover = 0.8, Mutation 0.2 
GA-l GA-l GA-2 GA-2 GA-3 GA-3 

a f Optimal Hubs Set List Set List Set List 

0.2 100 *** 4,7,12,14,17 967.74 967.74 967.74 967.74 967.74 977.21 
150 1174.53 4,12,17 V V V V V V 
200 1324.53 4,12,17 V V V V V V 
250 1474.53 4,12,17 V V V V V V 

0.4 100 1127.09 1,4,12,17 1136.65 V 1136.65 V 1136.65 1136.65 
150 1297.76 4,12,17 V V V V V V 
200 1442.56 4,17 V V V V V V 
250 1542.56 4,17 V V V V V V 

0.6 100 1269.15 1,4,12,17 1270.99 1270.99 1270.99 V 1270.99 1270.99 
150 1406.04 4,17 V V V V V V 
200 1506.04 4,17 V V V V V V 
250 1570.91 6 V V V V V V 

0.8 100 1369.52 4,17 V V V V V V 
150 1469.52 4,17 V V V V V V 
200 1520.91 6 V V V V V V 
250 1570.91 6 V V V V V V 

1.0 100 1410.07 4,20 V V V V V V 
150 1470.91 6 V V V V V V 
200 1520.91 6 V V V V V V 
250 1570.91 6 V V V V V V 
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Table A.6: USAHLP, CAB problems, nodes = 25, set representation 
GA-l GA-l GA-2 GA-2 GA-3 GA-3 

a f Optimal Hubs Set List Set List Set List 

0.2 100 1029.63 4,12,17,24 V V V V V V 
150 1217.34 4,12,17 V V V V V V 
200 1367.34 4,12,17 V V V V V V 
250 1500.90 12,20 V V V V V V 

0.4 100 1187.51 1,4,12,17 1194.49 V 1294.49 V 1200.34 1194.49 
150 1351.69 4,12,18 V V V V V V 
200 1501.62 12,20 V V V V V V 
250 1601.62 12,20 V V V V V V 

0.6 100 1333.56 2,4,12 V V V V V 1333.99 
150 1483.56 2,4,12 V V V V V V 
200 1601.20 12,20 V V V V V V 
250 1701.20 12,20 V V V V V V 

0.8 100 1458.83 24,3,11 V V V V V 1459.74 
150 1594.08 12,20 V V V V V V 
200 1690.57 5 V V V V V V 
250 1740.57 5 V V V V V V 

1.0 100 1556.63 7,19 1562.15 1559.19 V 1559.19 V 1559.19 
150 1640.57 5 V V V V V V 
200 1690.57 5 V V V V V V 
250 1740.57 5 V V V V V V 
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AppendixB 

Detailed Results for the Capacitated 
Single Allocation Hub Location 
Problem 
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Table B.l: CSAHLP: Comparison with current GA approaches, set-
representation, AP Data 

Problem Known-best GA(2008) GA-l GA-2 GA-3 
Emst[l] Stanimirovic[13] 

lOLL 224250.05 Y Y Y 224706.29 
lOLT 250992.26 Y Y Y Y 
lOTL 263399.94 Y Y Y Y 
lOTI 263399.94 Y Y Y Y 
20LL 234690.94 Y Y Y Y 
20LT 253517.40 Y Y Y Y 
20TL 271128.18 Y Y Y Y 
20TI 296035.40 Y Y Y Y 
25LL 238977.95 Y Y Y Y 
25LT 276372.50 Y Y Y Y 
25TL 310317.64 Y Y Y 310493.20 
25TI 348369.15 Y Y Y Y 
40LL 241955.71 Y Y Y Y 
40LT 272218.32 Y Y Y 272455.80 
40TL 298919.01 Y Y Y Y 
40TI 354874.10 356507.86 Y Y Y 
50LL 238520.59 Y Y Y Y 
50LT 272897.49 Y Y Y Y 
50TL 319015.77 Y Y Y Y 
50TT 417440.99 422794.56 Y Y 418269.90 
100LL 2246713.97 Y Y Y 246755.13 
100LT 256639.38 256207.52 256250.32 256183.42 256183.43 
100TL 362950.09 364515.24 Y Y 365247.39 
100TT 474670.32 475156.75 474660.51 474667.32 478937.94 
200LL 241992.97 Y Y Y 241993.97 
200LT 268894.41 270202.25 268661.14 269494.09 272089.92 
200TL 273443.81 Y Y Y 273502.88 
200TT 292734.97 291830.66 291969.46 291973.07 292154.47 
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Table B.2: CSAHLP: Comparison with current GA approaches, list-
representation, AP Data 

Problem Best knownl value GA(2008) GA-l GA-2 GA-3 
Emst[1] Stanimirovic[13] 

lOLL 224250.05 -Y -Y -Y 224706.29 
lOLT 250992.26 -Y -Y -Y -Y 
lOTL 263399.94 -Y -Y -Y -Y 
lOTT 263399.94 -Y -Y -Y -Y 
20LL 234690.94 -Y -Y -Y -Y 
20LT 253517.40 -Y -Y -Y -Y 
20TL 271128.18 -Y -Y -Y -Y 
20TI 296035.40 -Y -Y -Y -Y 
25LL 238977.95 -Y -Y -Y -Y 
25LT 276372.50 -Y -Y -Y -Y 
25TL 310317.64 -Y -Y -Y 310493 
25TT 348369.15 -Y -Y -Y -Y 
40LL 241955.71 -Y -Y -Y -Y 
40LT 272218.32 -Y -Y -Y -Y 
40TL 298919.01 -Y -Y -Y -Y 
40TT 354874.10 356507.86 -Y -Y -Y 
50LL 238520.59 -Y -Y -Y -Y 
50LT 272897.49 -Y -Y -Y -Y 
50TL 319015.77 -Y -Y -Y 319784 
50TT 417440.99 422794.56 -Y -Y 418215.16 
100LL 2246713.97 -Y -Y -Y 246755.13 
100LT 256639.38 256207.52 256250.41 256155.33 256455.24 
l00TL 362950.09 364515.24 -Y -Y 364515.45 
100TT 474670.32 475156.75 474287.49 474184.94 476568.42 
200LL 241992.97 -Y -Y -Y 241992.97 
200LT 268894.41 270202.25 26866l.14 267827.97 269276.34 
200TL 273443.81 -Y 27354l.82 -Y 273502.88 
200TT 292734.97 291830.66 292237.69 29189l.69 292258.72 
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Table B.3: CSAHLP: Comparison with non-GA approaches, set-representation, 
APData 

Problem Best known value SA-RDH(1999) GA-l GA-2 GA-3 
Ernst[l] Ernst[1] 

lOLL 224250.05 -V -V -V 224706.29 
lOLT 250992.26 -V -V -V -V 
lOTL 263399.94 -V -V -V -V 
lOTT 263399.94 -V -V -V -V 
20LL 234690.94 -V -V -V -V 
20LT 253517.40 -V -V -V -V 
20TL 271128.18 -V -V -V -V 
20TT 296035.40 -V -V -V -V 
25LL 238977.95 -V -V -V -V 
25LT 276372.50 -V -V -V -V 
25TL 310317.64 -V -V -V 310493.20 
25TT 348369.15 -V -V -V -V 
40LL 241955.71 -V -V -V -V 
40LT 272218.32 -V -V -V 272455.80 
40TL 298919.01 -V -V -V -V 
40TT 354874.10 -V -V -V -V 
50LL 238520.59 -V -V -V -V 
50LT 272897.49 -V -V -V -V 
50TL 319015.77 -V -V -V -V 
50TT 417440.99 -V -V -V 418269.90 
100LL 246713.97 -V -V -V 246755.13 
l00LT 256639.38 -V 256250.32 256183.42 256183.43 
l00TL 362950.09 -V -V -V 365247.39 
l00TT 474670.32 -V 474660.51 474667.32 478937.94 
200LL 241992.97 -V -V -V 241993.97 
200LT 268894.41 -V 268661.14 269494.09 272089.92 
200TL 273443.81 -V -V -V 273502.88 
200TT 292734.97 -V 291969.46 291973.07 292154.47 
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Table B.4: CSAHLP: Comparison with non-GA approaches, list-representation, 
AP Data 

Problem Best known value SA-RDH(l999) GA-1 GA-2 GA-3 
Emst[l] Emst[l] 

lOLL 224250.05 Y Y Y 224706.29 
lOLT 250992.26 Y V V Y 
lOTL 263399.94 V V V V 
lOTI 263399.94 Y V V Y 
20LL 234690.94 V V V V 
20LT 253517.40 V V V V 
20TL 271128.18 V V V Y 
20TI 296035.40 V V Y V 
25LL 238977.95 Y Y V V 
25LT 276372.50 Y V V V 
25TL 310317.64 Y V Y 310493.26 
25TI 348369.15 V V V Y 
40LL 241955.71 V V V Y 
40LT 272218.32 Y V V V 
40TL 298919.01 Y Y Y Y 
40TI 354874.10 Y Y Y Y 
50LL 238520.59 Y Y V V 
50LT 272897.49 V V V V 
50TL 319015.77 V V V 319784.37 
50TT 417440.99 V Y Y 418215.16 
100LL 2246713.97 Y Y Y 246755.13 
100LT 256639.38 V 256250.41 256155.33 256455.24 
100TL 362950.09 Y V V 364515.45 
100TI 474670.32 Y 474287.94 474184.94 476568.42 
200LL 241992.97 Y Y Y 241992.97 
200LT 268894.41 Y 268661.14 267827.97 269276.34 
200TL 273443.81 V 273541.82 V 273502.88 
200TI 292734.97 V 292237.69 291891.69 292258.72 
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Appendix C 

Detailed Results for the 
Uncapacitated Single Allocation 
Hub Location Problem 

Table C.l: USAHLP: Comparison with current GA methods, set-representation, 
AP data 

Problem GA(2005) GA(1998) GA-l GA-2 
Topcouglo[3] Abdinour-Helm[4] 

lOL 224249.82 V V V 
20L 234690.11 V V V 
25L 236649.69 V V V 
40L 240985.51 V V V 
50L 237420.69 300226.47 V V 
lOOL 238017.53 695705.82 238016.27 238016.27 
200L 228944.77 1967625.73 233802.45 233425.75 
lOT 263402.13 V V V 
20T 271128.41 V V V 
25T 295670.39 V V V 
40T 293163.38 345386.77 V V 
50T 300420.87 411145.42 V V 
lOOT 305101.07 4369213.98 305096.76 305096.76 
200T 233537.93 11911942.30 272516.86 272424.34 

100 

GA-3 

V 
V 

236797.68 
241260.24 
237518.80 
238492.88 
234109.34 

V 
V 
V 
V 
V 

305096.76 
272842.91 



Table C.2: USAHLP: Comparison with current GA methods. list-representation, 
APdata 

Problem GA(2005) GATS(1998) GA-1 GA-2 GA-3 
Topcouglo[3] Abdinour -Helm[ 4] 

lOL 224249.82 Y Y Y 224706.28 
20L 234690.11 Y Y Y Y 
25L 236649.69 Y Y Y Y 
40L 240985.51 Y Y Y Y 
50L 237420.69 300226.47 Y Y 237518.51 
100L 238017.53 695705.82 238016.27 238016.27 238016.27 
200L 228944.77 1967625.73 233802.45 233802.97 234337.21 
lOT 263402.13 Y Y Y 263763.43 
20T 271128.41 Y Y Y Y 
25T 295670.39 Y Y Y Y 
40T 293163.38 345386.77 Y Y Y 
50T 300420.87 411145.42 Y Y Y 
lOOT 305101.07 4369213.98 305096.76 305096.76 305096.76 
200T 233537.93 11911942.30 272168.31 272222.93 273006.21 
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Table C.3: USAHLP: Comparison with non-GA methods, set-representation, AP 
data 

Problem SATLUHLP(2007) SA(2005) GA-1 GA-2 GA-3 
Chen [11] Topcouglo[3] 

lOL 224249.82 ~ ~ V ~ 
20L 234690.11 ~ ~ V ~ 
25L 236649.69 ~ V ~ 236797.68 
40L 240985.51 ~ ~ ~ 241260.24 
50L 237420.69 ~ ~ V 237518.80 
100L 238016.27 ~ ~ ~ 238492.88 
200L 228944.77 ~ 233802.45 233425.75 234109.34 
lOT 263402.13 ~ V ~ ~ 
20T 271128.41 ~ ~ V ~ 
25T 295670.39 V ~ ~ V 
40T 293163.38 ~ V ~ V 
50T 300420.87 V ~ ~ V 
lOOT 305096.76 305101.07 V ~ V 
200T 233537.93 V 272516.86 272424.34 272842.91 
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Table C.4: USAHLP: Comparison with non-GA approaches, list-representation, 
AP data 

Problem SATLUHLP(2007) SA(2005) GA-I GA-2 GA-3 
Chen [11] Topcouglo [3] 

lOL 224249.82 -V .y -V 224706.28 
20L 234690.11 .y -V -V -V 
25L 236649.69 .y .y -V -V 
40L 240985.51 .y .y -V -V 
50L 237420.69 -V -V -V 237518.51 
100L 238016.27 .y .y -V 238016.27 
200L 228944.77 .y 233802.45 233802.97 234337.21 
lOT 263402.13 .y .y -V 263763.43 
20T 271128.41 .y .y -V -V 
25T 295670.39 -V .y .y -V 
40T 293163.38 -V .y .y .y 
50T 300420.87 -V -V .y .y 
lOOT 305096.76 305101.07 .y .y -V 
200T 233537.93 -V 272168.31 272222.93 273006.21 
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Table C.5: USAHLP: Performance comparison of GA-I, GA-2, and GA-3 using 
set-representation, AP data 

Problem known-best[11][4][3] GA-1 GA-2 GA-3 
lOL 224249.82 Y Y Y 
20L 234690.11 Y Y Y 
25L 236649.69 Y Y 236797.68 
40L 240985.51 Y Y 241260.24 
50L 237420.69 Y Y 237518.80 
100L 238016.27 Y Y 238492.88 
200L 228944.77 233802.45 233425.75 234109.34 
lOT 263402.13 Y Y Y 
20T 271128.41 Y Y Y 
25T 295670.39 Y Y Y 
40T 293163.38 Y Y Y 
50T 300420.87 Y Y Y 
lOOT 305096.76 [11] Y Y Y 
200T 233537.93 272516.86 272424.34 272842.91 

Total best solutions 12/14 12/14 7/14 
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Table C.6: USAHLP: Perfonnance comparison of GA-I, GA-2, and GA-3 using 
list-representation, AP data 

Problem known-best[11][4][3] GA-1 GA-2 GA-3 
lOL 224249.82 V V 224706.28 
20L 234690.11 V V V 
25L 236649.69 V V V 
40L 240985.51 V V V 
50L 237420.69 V V 237518.51 
100L 238016.27 V V 238515.92 
200L 228944.77 233802.45 233802.97 234337.21 
lOT 263402.13 V V 263763.43 
20T 271128.41 V V V 
25T 295670.39 V V V 
40T 293163.38 V V V 
50T 300420.87 V V V 
lOOT 305096.76 [11] V V V 
200T 233537.93 272168.31 272222.93 273006.21 

Total best solutions 12/14 12/14 7/14 
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Table C.7: USAHLP: Comparison with other approaches, set representation, 
nodes = 10 CAB data , 

GA GATS SATLUHLP GA-l GA-2 GA-3 
a f Optimal Hubs Topcouglo [3] Abdnour[4] Chen. 1.[11] 

Cost (2005) (1998) (2007) 
0.2 100 791.93 4,6,7 V V V V V V 

150 915.99 7,9 V V V V V V 
200 1015.99 7,9 V V V V V V 
250 1115.99 7,9 V V V V V V 

0.4 100 867.91 4,6,7 V V V V V V 
150 974.30 7,9 V V V V V V 
200 1074.30 7,9 V V V V V V 
250 1174.30 7,9 V V V V V V 

0.6 100 932.62 7,9 V V V V V V 
150 1032.62 7,9 V V V V V V 
200 1131.05 9 V V V V V V 
250 1181.05 9 V V V V V V 

0.8 100 999.94 7,9 V V V V V V 
150 1081.05 4 V V V V V V 
200 1131.05 4 V V V V V V 
250 1181.05 4 V V V V V V 

1.0 100 1031.04 4 V V V V V V 
150 1081.05 4 V V V V V V 
200 1131.05 4 V V V V V V 
250 1181.05 4 V V V V V V 
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Table e.8: USAHLP: Comparison with other approaches, set representation, 
nodes = 15 CAB data , 

GA GATS SATLUHLP GA-l GA-2 GA-3 
a f Optimal Hubs Topcouglo [3] Abdnour[4] Chen. J.[11] 

Cost (2005) (1998) (2007) 
0.2 100 1030.07 3,4,7,12,14 .y .y .y .y .y 1032.60 

150 1239.77 4,7,12,14 .y .y .y .y .y 1249.97 
200 1381.28 4,12 .y .y .y .y .y .y 
250 1481.28 4,12 .y .y .y .y .y .y 

0.4 100 1179.71 4,7,12,14 .y .y .y .y .y 1182.70 
150 1355.09 4,7,12 .y .y .y .y .y 1358.30 
200 1462.62 4,12 .y .y .y .y .y .y 
250 1556.66 4 .y .y .y .y y .y 

0.6 100 1309.92 4,7,12 .y .y y .y y .y 
150 1443.97 4,12 .y .y .y .y y .y 
200 1506.66 4 .y .y y .y .y .y 
250 1556.66 4 .y .y .y .y .y .y 

0.8 100 1390.06 4,11 .y .y .y .y y .y 
150 1456.66 4 .y .y .y .y y .y 
200 1506.66 4 .y .y .y y .y .y 
250 1556.66 4 .y .y .y y .y y 

1.0 100 1406.66 4 .y .y .y .y y .y 
150 1456.66 4 .y .y .y .y y y 
200 1506.66 4 .y .y .y .y y .y 
250 1556.66 4 .y .y .y .y .y .y 

107 



Table C.9: USAHLP: Comparison with other approaches, set representation, 
nodes = 20 CAB data , 

GA GATS SATLUHLP GA-1 GA-2 GA-3 
a f Optimal Hubs Topcoug10 [3] Abdnour[4] Chen. 1. [11] 

Cost (2005) (1998) (2007) 
0.2 100 *** 4,7,12,14,17 967.74 967.74 967.74 967.74 967.74 977.21 

150 1174.53 4,12,17 ..; ..; ..; ..; ..; ..; 
200 1324.53 4,12,17 ..; ..; ..; ..; ..; ..; 
250 1474.53 4,12,17 ..; ..; ..; ..; ..; ..; 

0.4 100 1127.09 1,4,12,17 ..; ..; ..; ..; ..; ..; 
150 1297.76 4,12,17 ..; ..; ..; ..; ..; ..; 
200 1442.56 4,17 ..; ..; ..; ..; ..; ..; 
250 1542.56 4,17 ..; ..; ..; ..; ..; ..; 

0.6 100 1269.15 1,4,12,17 ..; ..; ..; ..; ..; 1270.99 
150 1406.04 4,17 ..; ..; ..; ..; ..; ..; 
200 1506.04 4,17 ..; ..; ..; ..; ..; ..; 
250 1570.91 6 ..; ..; ..; ..; ..; ..; 

0.8 100 1369.52 4,17 ..; ..; ..; ..; ..; ..; 
150 1469.52 4,17 ..; ..; ..; ..; ..; ..; 
200 1520.91 6 ..; ..; ..; ..; ..; ..; 
250 1570.91 6 ..; ..; ..; ..; ..; ..; 

1.0 100 1410.07 4,20 ..; ..; ..; ..; ..; ..; 
150 1470.91 6 ..; ..; ..; ..; ..; ..; 
200 1520.91 6 ..; ..; ..; ..; ..; ..; 
250 1570.91 6 ..; ..; ..; ..; ..; ..; 

108 



Table C.10: USAHLP: Comparison with other approaches, set representation, 
nodes = 25 CAB data , 

GA GATS SATLUHLP GA-I GA-2 GA-3 
a f Optimal Hubs Topcouglo [3] Abdnour[4] Chen. 1.[11] 

Cost (2005) (1998) (2007) 
0.2 100 1029.63 4,12,17,24 -V -V Y -V -V -V 

150 1217.34 4,12,17 -V -V Y -V -V Y 
200 1367.34 4,12,17 -V -V Y Y -V Y 
250 1500.90 12,20 -V -V Y -V -V -V 

0.4 100 1187.51 1,4,12,17 -V -V Y Y -V -V 
150 1351.69 4,12,18 -V -V Y Y -V -V 
200 1501.62 12,20 -V -V -V -V -V -V 
250 1601.62 12,20 -V -V Y -V -V -V 

0.6 100 1333.56 2,4,12 -V -V -V -V -V 1333.99 
150 1483.56 2,4,12 -V -V -V Y -V -V 
200 1601.20 12,20 -V -V -V -V -V -V 
250 1701.20 12,20 -V -V Y -V -V -V 

0.8 100 1458.83 2,4,12 -V -V Y -V -V -V 
150 1594.08 12,20 -V -V Y -V -V -V 
200 1690.57 5 -V -V Y -V -V -V 
250 1740.57 5 -V -V -V -V -V -V 

1.0 100 1556.63 7,19 1559.19 1562.15 -V 1559.19 -V 1559.19 
150 1640.57 5 -V -V -V -V -V -V 
200 1690.57 5 -V -V -V -V -V -V 
250 1740.57 5 -V -V -V -V -V -V 
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Table C.l1: USAHLP: Comparison with other approaches, list representation, 
nodes = 10, CAB data 

GA GATS SATLUHLP GA-l 
a f Optimal Hubs Topcouglo [3] Abdnour[4] Chen. 1. [11 ] 

Cost (2005) (1998) (2007) 
0.2 100 791.93 4,6,7 ...; ...; ...; ...; 

150 915.99 7,9 ...; ...; ...; ...; 
200 1015.99 7,9 ...; ...; ...; ...; 
250 1115.99 7,9 ...; ...; ...; ...; 

0.4 100 867.91 4,6,7 ...; ...; ...; ...; 
150 974.30 7,9 ...; ...; ...; ...; 
200 1074.30 7,9 ...; ...; ...; ...; 
250 1174.30 7,9 ...; ...; ...; ...; 

0.6 100 932.62 7,9 ...; ...; ...; ...; 
150 1032.62 7,9 ...; ...; ...; ...; 
200 1131.05 9 ...; ...; ...; ...; 
250 1181.05 9 ...; ...; ...; ...; 

0.8 100 999.94 7,9 ...; ...; ...; ...; 
150 1081.05 4 ...; ...; ...; ...; 
200 1131.05 4 ...; ...; ...; ...; 
250 1181.05 4 ...; ...; ...; ...; 

1.0 100 1031.04 4 ...; ...; ...; ...; 
150 1081.05 4 ...; ...; ...; ...; 
200 1131.05 4 ...; ...; ...; ...; 
250 1181.05 4 ...; ...; ...; ...; 
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GA-2 GA-3 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 

...; ...; 



Table C.I2: USAHLP: Comparison with other approaches, list representation, 
nodes = 15, CAB data 

GA GATS SATLUHLP GA-l 
a f Optimal Hubs Topcouglo [3] Abdnour[4] Chen. 1.[11] 

Cost (2005) (1998) (2007) 
0.2 100 1030.07 3,4,7,12,14 V V V V 

150 1239.77 4,7,12,14 V V V V 
200 1381.28 4,12 V V V V 
250 1481.28 4,12 V V V V 

0.4 100 1179.71 4,7,12,14 V V V V 
150 1355.09 4,7,12 V V V V 
200 1462.62 4,12 V V V V 
250 1556.66 4 V V V V 

0.6 100 1309.92 4,7,12 V V V V 
150 1443.97 4,12 ...; V V V 
200 1506.66 4 V V V V 
250 1556.66 4 V V V V 

0.8 100 1390.06 4,11 V V V V 
150 1456.66 4 V V V V 
200 1506.66 4 V V V V 
250 1556.66 4 V V V V 

1.0 100 1406.66 4 V V V V 
150 1456.66 4 V V V V 
200 1506.66 4 V V V V 
250 1556.66 4 V V V V 
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GA-2 GA-3 

V 1032.60 
V 1249.97 
V V 
V V 
V 1182.70 

V 1358.30 

V ...; 
...; V 
V V 
V V 
V V 
V V 
V V 
V V 
V V 
V ...; 
V ...; 
V ...; 
V V 
V V 



Table C.13: USAHLP: Comparison with other approaches, list representation, 
nodes = 20 CAB data , 

GA GATS SATLUHLP GA-l GA-2 GA-3 
a f Optimal Hubs Topcouglo [3] Abdnour[4] Chen. 1.[11] 

Cost (2005) (1998) (2007) 
0.2 100 *** 4,7,12,14,17 967.74 967.74 967.74 967.74 967.74 977.21 

150 1174.53 4,12,17 Y Y Y Y Y Y 
200 1324.53 4,12,17 Y Y Y Y Y V 
250 1474.53 4,12,17 Y V V V Y V 

0.4 100 1127.09 1,4,12,17 Y V V Y Y 1142.17 
150 1297.76 4,12,17 V V Y Y Y V 
200 1442.56 4,17 Y Y Y Y Y V 
250 1542.56 4,17 Y Y Y V V V 

0.6 100 1269.15 1,4,12,17 Y V V V Y 1270.99 
150 1406.04 4,17 Y V Y V Y V 
200 1506.04 4,17 Y V V Y Y V 
250 1570.91 6 V V Y V V V 

0.8 100 1369.52 4,17 V Y V V Y V 
150 1469.52 4,17 V V Y V Y V 
200 1520.91 6 Y V V V Y V 
250 1570.91 6 Y V V V Y V 

1.0 100 1410.07 4,20 Y Y Y Y V V 
150 1470.91 6 V Y Y V V V 
200 1520.91 6 V Y Y V Y V 
250 1570.91 6 V Y V V Y V 
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Table C.14: USAHLP: Comparison with other approaches, list representation, 
nodes = 25 CAB data , 

GA GATS SATLUHLP GA-1 GA-2 GA-3 
a f Optimal Hubs Topcouglo [3] Abdnour[4] Chen. 1.[11] 

Cost (2005) (1998) (2007) 
0.2 100 1029.63 4,12,17,24 V V V V V V 

150 1217.34 4,12,17 V V V V V V 
200 1367.34 4,12,17 V V V V V V 
250 1500.90 12,20 V V V V V V 

0.4 100 1187.51 1,4,12,17 V V V V V V 
150 1351.69 4,12,18 V V V V V 1353.45 
200 1501.62 12,20 V V V V V V 
250 1601.62 12,20 V V V V V V 

0.6 100 1333.56 2,4,12 V V V V V 1333.99 
150 1483.56 2,4,12 V V V V V V 
200 1601.20 12,20 V V V V V V 
250 1701.20 12,20 V V V V V V 

0.8 100 1458.83 2,4,12 V V V V V 1459.74 
150 1594.08 12,20 V V V V V V 
200 1690.57 5 V V V V V V 
250 1740.57 5 V V V V V V 

1.0 100 1556.63 7,19 1559.19 1562.15 V 1559.19 V 1559.19 
150 1640.57 5 V V V V V V 
200 1690.57 5 V V V V V V 
250 1740.57 5 V V V V V V 
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AppendixD 

Meall of the Best Fitness Values 

Following tables give the mean of the best solution values of the 30 runs i.e., 
average of 30 values one per run. 
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Table D.l: CSAHLP: AP Data, Mean of the best solution values found in the 30 
runs of the GAs 

GA-l GA-2 GA-3 
Problem Cost Set List Set List Set List 

lOLL 224250.05 224932.34 224884.67 227673.43 226713.42 224706.43 224706.44 
lOLT 250992.26 253443.23 252663.23 254112.39 253221.45 254221.23 255632.45 
lOTL 263399.94 264322.19 263788.56 263675.56 264567.32 263971.43 265763.43 
lOTT 263399.94 263991 .23 264201.35 263998.71 263771.21 264121.83 264536.62 
20LL 234690.94 235663.23 234991.78 235221.45 234978.34 235653.45 235118.34 
20LT 253517.40 254718.55 254667.72 254667.34 254321.52 254667.73 255334.42 
20TL 271128.18 273441.32 272991.56 2728874.35 272887.67 273445.21 273445.66 
20TT 296035.40 299313.67 298441.12 298547.09 297451.34 298434.32 298242.61 
25LL 238977.95 239332.12 239667.45 239121.72 240521.32 241334.54 240332.34 
25LT 276372.50 279432.14 278332.14 277551.23 277432.14 280153.52 279212.23 
25TL 310317.64 315302.53 314453.23 312334.31 311653.23 315321.34 313541.23 
25TT 348369.15 351375.45 352648.56 351241.29 349121.34 353421.45 352332.47 
40LL 241955.71 242991.32 242554.45 244319.23 245321.33 244321.34 244765.52 
40LT 272218.32 291341.76 281334.31 279431.41 274231.45 281164.54 276332.12 
40TL 298919.01 302514.42 305667.31 304651.59 301339.52 302536.42 303426.86 
40TT 354874.10 361311.51 357343.71 356873.33 358773.43 359342.51 360112.34 
50LL 238520.59 240300.21 238919.87 2388000.34 239505.16 241334.65 244536.24 
50LT 272897.49 278311.67 281700.45 27665.74 273979.57 283914.41 280655.31 
50TL 319015.77 320621.41 321878.61 322451.66 323115.67 323321.54 325401.79 
50TT 417440.99 423886.89 422671.56 422657.74 422287.75 422345.53 423751.15 
100LL 246713.97 252800.32 249992.11 251890.39 250000.61 253412.33 253997.23 
l00LT 256250.41 261600.75 259141.41 258131.31 258472.19 258912.20 263439.61 
100TL 362950.09 377571.62 373445.87 3687773.82 366807.31 380817.33 378667.14 
100TT 474680.32 504634.53 500065.34 507644.22 5021432.43 508314.11 507422.32 
200LL 241992.97 246518.43 246451.41 250887.34 252739.64 249661.32 251771.23 
200LT 268894.41 277532.49 275634.12 279631.34 269621.45 276532.19 276332.31 
200TL 273443.81 284305.43 291322.41 288691.52 283121.19 289341.12 28902.41 
200TT 292754.97 322914.71 295755.42 294475.19 314512.67 295755.42 294141.66 
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Table D.2: USAHLP: AP Data, Mean of the best solution values found in 30 runs 
of the GAs 

GA-l GA-2 GA-3 
Problem Cost Set List Set List Set List 

lOL 224249.82 224721.45 224772.32 225432.61 224987.34 224991.23 224706.29 
lOT 263402.13 265434.23 263771.23 264551.23 264331.12 264763.43 265812.31 

20L 234690.11 236771.34 236223.15 235334.31 234987.64 235443.34 235422.34 
20T 271128.41 273443.45 274343.43 274334.56 274776.45 274332.67 275334.45 

25L 236649.69 238443.67 238717.64 238667.43 23743.66 236797.68 237556.51 
25T 295670.39 296332.12 298771.45 297331.23 296556.78 297441.34 297893.45 

40L 240985.51 243112.33 241664.47 241341.45 242334.45 241660.20 242112.20 
40T 293163.38 295332.45 294551.67 294332.67 294556.78 297663.67 295778.34 

50L 237420.69 238667.71 238675.67 238520.58 238997.63 239518.79 238765.79 
50T 300420.87 311230.45 312445.70 310143.31 305674.81 315334.41 314643.51 

100L 238017.53 243199.34 242421.12 242771.34 241815.43 243492.88 244383.20 
lOOT 305101.07 311664.23 312221.45 311332.34 312445.41 314432.45 316334.67 

200L 228044.77 238651.34 236109.54 236850.09 246052.81 242635.59 241332.80 
200T 233537.93 278570.91 279982.45 279848.29 279112.35 278906.80 2798678.22 
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Table D 3· USAHLp· Mean of the best solution values nodes = 10 CAB data .. , , 
GA-l GA-l GA-2 GA-2 GA-3 GA-3 

a f Optimal Set List Set List Set List 
0.2 100 791.93 V V V V V V 

150 915.99 V V V V V V 
200 1015.99 V V V V V V 
250 1115.99 V V V V V V 

40.4 100 867.91 V V V V V V 
150 974.30 V V V V V V 
200 1074.30 V V V V V V 
250 1174.30 V V V V V V 

0.6 100 932.62 V V V V V V 
150 1032.62 V V V V V V 
200 1131.05 V V V V V V 
250 1181.05 V V V V V V 

0.8 100 999.94 V V V V V V 
150 1081.05 V V V V V V 
200 1131.05 V V V V V V 
250 1181.05 V V V V V V 

1.0 100 1031.04 V V V V V V 
150 1081.05 V V V V V V 
200 1131.05 V V V V V V 
250 1181.05 V V V V V V 
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Table D 4: USAHLP: Mean of the best solution values nodes = 15 CAB data , , 
GA-1 GA-1 GA-2 GA-2 GA-3 GA-3 

a f Optimal Set List Set List Set List 
100 1030.07 1033.45 1031.47 1030.95 1034.72 1041.31 1039.90 
150 1239.77 1241.15 1242.73 1241.19 1243.33 1247.00 1249.97 
200 1381.28 -V -V -V -V 1383.21 1385.63 
250 1481.28 -V -V -V -V 1491.99 1489.31 

0.4 100 1179.71 1184.54 1183.27 1180.91 1182.77 1186.33 1183.29 
150 1355.09 1357.91 1356.32 1357.33 1358.77 1363.56 1361.42 
200 1462.62 -V -V -V -V 1474.19 1470.34 
250 1556.66 -V -V -V -V 1559.71 1562.34 

0.6 100 1309.92 1312.51 1315.40 1310.11 1310.99 1311.73 1313.43 
150 1443.97 -V -V -V -V 1351.61 1347.33 
200 1506.66 -V -V -V -V -V -V 
250 1556.66 -V -V -V -V -V -V 

0.8 100 1390.06 -V -V -V -V 1391.19 1393.71 
150 1456.66 -V -V -V -V -V -V 
200 1506.66 -V -V -V -V -V -V 
250 1556.66 -V -V -V -V -V -V 

1.0 100 1406.66 -V -V -V -V -V -V 
150 1456.66 -V -V -V -V -V -V 
200 1506.66 -V -V -V -V -V -V 
250 1556.66 -V -V -V -V -V -V 
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Table D 5: USAHLP: Mean of the best solution values nodes = 20 CAB data , , 
GA-l GA-l GA-2 GA-2 GA-3 GA-3 

a f Optimal Set List Set List Set List 
0.2 100 *** 967.74 967.74 967.74 967.74 967.74 985.11 

150 1174.53 Y Y Y Y 1178.39 1184.54 
200 1324.53 1327.11 1325.08 1325.77 1324.54 1331.10 1330.34 
250 1474.53 1478.65 1478.18 1476.01 1474.79 1478.92 1481.32 

0.4 100 1127.09 1130.59 1130.59 1127.72 1131.73 1136.11 1142.10 
150 1297.76 Y Y Y Y 1305.11 1311.33 
200 1442.56 Y Y Y Y 1447.33 1456.66 
250 1542.56 Y Y Y Y Y Y 

0.6 100 1269.15 1272.83 1272.09 1270.34 1269.70 Y 1273.01 
150 1406.04 Y Y Y Y Y 1406.71 
200 1506.04 Y Y Y Y Y Y 
250 1570.91 Y Y Y Y Y Y 

0.8 100 1369.52 Y Y Y Y 1371.11 1373.71 
150 1469.52 Y Y Y Y Y Y 
200 1520.91 Y Y Y Y Y Y 
250 1570.91 Y Y Y Y Y Y 

1.0 100 1410.07 1415.78 1415.99 1412.43 1415.41 1417.34 1417.32 
150 1470.91 Y Y Y Y Y Y 
200 1520.91 Y Y Y Y Y Y 
250 1570.91 Y Y Y Y Y Y 
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Table D 6' USAHLP' Mean of the best solution values nodes = 25 CAB data .. , , 
GA-l GA-l GA-2 GA-2 GA-3 GA-3 

a f Optimal Set List Set List Set List 
0.2 100 1029.63 1041.34 1030.04 1030.67 1031.72 1042.79 1036.71 

150 1217.34 1219.44 1217.35 1217.35 1217.35 1221.33 1227.45 
200 1367.34 1371.29 1368.15 1370.61 1368.05 1371.45 1373.44 
250 1500.90 V V V V 1505.61 1509.33 

0.4 100 1187.51 V 1191.73 V 1491.33 V V 
150 1351.69 1360.66 1353.87 1353.51 1361.87 1365.11 13560.29 
200 1501.62 V V V V V V 
250 1601.62 V V V V V V 

0.6 100 1333.56 1442.56 1334.54 1436.12 1333.66 1342.56 1333.99 
150 1483.56 1486.45 1486.04 1494.21 1486.91 1487.88 1490.03 
200 1601.20 V V V V 1621.44 1610.99 
250 1701.20 V V V V V V 

0.8 100 1458.83 1478.29 1461.58 1473.41 1471.29 V 1474.08 
150 1594.08 V V V V V V 
200 1690.57 V V V V V V 
250 1740.57 V V V V V V 

1.0 100 1556.63 1562.67 1561.78 152.79 1561.78 V 1559.19 
150 1640.57 V V V V V V 
200 1690.57 V V V V V V 
250 1740.57 V V V V V V 
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