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Abstract 

The hyper-star interconnection network was proposed in 2002 to overcome the 

drawbacks of the hypercube and its variations concerning the network cost, which is 

defined by the product of the degree and the diameter. Some properties of the graph 

such as connectivity, symmetry properties, embedding properties have been studied 

by other researchers, routing and broadcasting algorithms have also been designed. 

This thesis studies the hyper-star graph from both the topological and algorithmic 

point of view. For the topological properties, we try to establish relationships between 

hyper-star graphs with other known graphs. We also give a formal equation for the 

surface area of the graph. Another topological property we are interested in is the 

Hamiltonicity problem of this graph. 

For the algorithms, we design an all-port broadcasting algorithm and a single-port 

neighbourhood broadcasting algorithm for the regular form of the hyper-star graphs. 

These algorithms are both optimal time-wise. 

Furthermore, we prove that the folded hyper-star, a variation of the hyper-star, to be 

maixmally fault-tolerant. 
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Chapter 1 

Introduction 

1.1 Parallel Computational Models 

Parallel computing has been studied during the past few decades due to two major 

motivations: 

1. Saving time that needs to be spent on solving one specific problem. Intuitively, 

making multiple computing units to co-operate simultaneously ought to out­

perform a conventional sequential computer. 

2. Some problems can not be solved by a sequential computer however much time 

one is willing to spend. Due to the nature of these problems, they have to be 

dealt with in parallel. 

The- parallel computational model plays a major role in parallel computation. The 

parallel algorithms, without which no problems can be solved in parallel, have to be 

designed specifically for one parallel computational model. The reason for this is, 

unlike the sequential computer, data has to traverse between different processors. So 
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the communication between pr~tessors becomes a new concern in parallel computing. 

Based on how the processors communicate with each other, the parallel computational 

models [5J can be divided into two classes: the shared-memory machines and the 

interconnection networks. These two different models are introduced in the next two 

sections. 

1.2 Shared-Memory Machine 

Before talking about the shared-memory machines, we first introduce a basic classifi­

cation of computer architectures, proposed by Michael J. Flynn [16J. The four classes 

are based upon the number of concurrent instructions and data streams available in 

the architecture: seen by the processor during program execution. Depending on 

whether there is one or several of these streams, computers can be divided into four 

classes: 

.. Single Instruction, Single Data Stream (SISD) 

A SISD computer is a general sequential machine. There is no parallelism in 

either the instruction or data streams in this class of computers . 

.. Multiple Instruction, Single Data Stream (MISD) 

In computing, a MISD computer contains N processors, each has its own control 

unit and all processors share a common memory unit. In this kind of comput­

ers, parallelism is achieved by using many functional units to perform different 

operations on the same data. But in practice, there is no known implementation 

of this class of computers so far. 
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• Single Instruction, Multiple Data Stream (SIMD) 

A SIMD computer consists of N identical processors, each with its own lo­

cal memory to store data. All processors work under the control of a single 

instruction stream issued by a central control unit. The processors operate 

synchronously: at each step, all processors execute the same instruction on a 

different data element. SIMD computers are much more versatile than MISD 

computers. 

• Multiple Instruction, Multiple Data Stream (MIMD) 

In a MIMD computer, multiple autonomous processors simultaneously execut­

ing different instructions on different data, where each processor has its own 

control unit and local memory. Therefore, processors are potentially all execut­

ing different programs on different data while solving different subporblems of a 

single problem. This makes MIMD computers more powerful than other three 

classes of computers. 

In a shared-memory machine, all processors communicate with each other through 

a shared memory. The shared-memory machine, which is also known as Parallel 

Random Access Machine (PRAM), is shown in Figure 1.1. It consists of a bunch 

of identical processors and a common memory which is shared by these processors. 

Depending whether multiple processors can read from or write to the same memory 

location at the same time is allowed or not, the shared-memory machines can be 

divided into four groups: 

• Exclusive Read, Exclusive Write (EREW): 

Only one processor can read from anyone memory location at a time and only 
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SHARED 

PROCESSORS 
MEMORY 

Figure 1.1: Shared-Memory Machine 

one processor can write to anyone memory location at a time. In this scenario, 

no conflict will occur when processors are accessing their data. 

• Exclusive Read, Concurrent Write (ERCW): 

Only one processor can read from a memory location while multiple processors 

can write to a memory location at the same time. This kind of PRAM model 

has very little practicle value. 

• Concurrent Read, Exclusive Write (CREW): 

Multiple processors can read from one memory location at one time but only 

one processor can write to a memory location at one time. 

• Concurrent Read, Concurrent Write (CRCW): 

Multiple processors are allowed to either read from or write into the same lo­

cation at the same time. In theory, this model is the most powerful among the 
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four. 

When concurrent write (CW) instruction is allowed in a PRAM, conflicts are un-

avoidable. In order to decide what ends up in the specific memory location when 

several processors attempt to write into that location simultaneously, some methods 

need to be adopted when executing a CW instruction. These methods include: 

1. Priority CW: Here the processors are assigned certain priorities. Of all the 

processors attempting to write in a memory location, only the one with the 

highest priority is allowed to do so. 

2. Common CW: Here the processors attempting to write in a memory location 

are allowed to do so only if they are trying to write the same value. In this case, 

one processor that is selected arbitrarily succeeds. The instruction is further 

specified as follows: 

(a) Fail Common: If the values to be written by the processors into a memory 

location are not all equal, then the contents of the memory location are 

unchanged. 

(b) Collision Common: This instruction requires a "failure" label to be 

stored in the memory location in case the CW does not succeed. 

( c) Fail-Safe Common: Here failure is not tolerated. The algorithm must 

be designed in such a way that whenever more than one processor wishes 

to write into the same memory location, they must be trying to write the 

same value. 
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3. Arbitrary CW: Of all t:fJ:e processors attempting to write simultaneously in 

a memory location, anyone can succeed without affecting the correctness of 

the algorithm.. However, the algorithm must specify exactly how the successful 

processor is to be selected. 

4. Random CW: Here the processor that succeeds in writing is chosen by a 

random process. 

5. Combining CW: In this model of concurrent writing, all the values that those 

processors wishes to write simultaneously into the same memory location are 

combined into a single value, which is then stored in that location. This in­

struction takes several forms, depending on which function the algorithm needs 

to use to combine the values before storing the result. The following variants 

are available: 

(a) Arithmetic functions: The values to be written are either added up or 

multiplied. 

(b) Logical functions: A set of Boolean values can be combined using AND, 

OR or EXCLUSIVE-OR. The negations of these functions are also avail­

able. 

(c) Selection function: The largest or smallest of the values to be written is 

selected. 
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1.3 Interconnection Network 

Unlike the shared-memory machines, processors in an interconnection network com­

municate with each other via direct links. Each processor has its own local memory, 

and the links between a pair of processors are two-way communication lines, in other 

words, two processors connected by a link can exchange data simultaneously. 

The interconnection network is usually modeled as an undirected graph G = (V, E). 

The vertex set V of G represents the processors of the interconnection network, and 

the edges in E represent the links between pairs of processors. There is an edge 

between two vertices in G if and only if there is a direct link between the two corre­

sponding processors in the interconnection network. Throughout this thesis, we will 

use the terms "interconnection network" and "graph" interchangeably. 

Thus, the criteria used to evaluate an undirected graph are also suitable for the anal­

ysis of the corresponding interconnection network. These criteria are defined formally 

as follows. 

Definition 1 Two processors directly connected by a link are said to be neighbours. 

Definition 2 If an edge e = (u, v) E E, then the nodes u and v are said to be 

adjacent and the edge e is said to be incident on these nodes. 

Definition 3 The degree of a node v E V is equal to the number of edges in G 

which are incident on v. The degree of a graph is the maximum of all node degrees. 

Definition 4 A graph is regular if all its nodes have the same degree. Such a graph 

with degree n is called n-regular. 
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Definition 5 The distance b~ttneen a pair of nodes u and v in G, is equal to the 

length (in the number of edges) of a shortest path joining u and v. The diameter of 

G is the maximum distance between two nodes in G over all pairs of nodes in V. 

Definition 6 The node connectivity of a graph is the minimum number of nodes 

that must be removed to disconnect the graph or reduce it to a solitary point. 

Definition 7 An automorphism of a graph is a mapping from the vertices of the 

given graph G back to vertices of G such that the resulting graph is isomorphic with 

G. 

Definition 8 A graph is said to be vertex symmetric if for every pair of vertices 

u and v, there exists an automorphism of the graph that maps u into v. A graph 

is said to be edge symmetric if for every pair of edges, a and b, there exists an 

automorphism of the graph that maps a into b. 

A special class of graphs, namely the Cayley Graphs are all vertex and edge sym­

metric [3][24][19]. 

Definition 9 A graph G is f-fault tolerant if whenever f or less than f nodes are 

deleted from G, the remaining graph is still connected. The fault tolerance of the 

graph G is said to be the maximum number of f for which it is f-fault tolerant. 

The interconnection networks are further classified into two models based on how 

many neighbours one processor can communicate with at one time. In the weak 

model (also known as the single-port model), a processor can only communicate 

with one of its neighbours at a time. In the strong model (also known as the all­

port model), a processor can communicate with all of its neighbours at the same 
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time. Communication problems''on the interconnection networks are often considered 

separately for these two different models. 

A lot of interconnection networks have been proposed and studied during the last 

few decades [25][34][33], we will introduce some of the most popular ones in the rest 

of this section. 

1.3.1 Linear Array 

In the linear array interconnection network, each processor is connected to two neigh-

bours except for the two end processors, which have only one neighbour. Thus, all the 

processors in this interconnection network form a one-dimensional array. It is easy to 

see that the degree of the linear array of size N is 2 and the diameter is O(N). If the 

two end processors are connected by a direct link, then it forms a special case of the 

linear array, namely the ring interconnection network. A linear array interconnection 

network is shown in Figure 1.2. 

Figure 1.2: A Linear Array with 5 Processors 
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1.3.2 Mesh 

The corresponding undirected graph of the mesh interconnection network is a two-

dimensional array. The processor in row i and column j is denoted by Pi,j, the 

neighbours of [{,j will be [{-i,j, PHi,j, Pi,j-i and [{,j+1 if they exist. Except for the 

processors on the boundary rows and columns, all processors have four neighbours. 

Processors on the boundary rows and columns have less than four neighbours. Thus 

the degree of mesh is 4. It can also be proved easily that the degree of a mesh with m 

rows and n columns is O(m+n). Figure 1.3 shows a 3 x 3 mesh, the row and column 

indices are shown in the graph. 

1, 1 1,2 1,3 

2,1 2, 2 t-------f 2, 3 

3, 1 t-------f 3, 2 t-------f 3,3 

Figure 1.3: A 3 x 3 Mesh 

1.3.3 Hypercube 

An n-dimensional hypercube Qn consists of N = 2n processors interconnected as 

follows. Each processor is labeled by a different n-bit binary number. Two processors 

are connected to each other if and only if their binary labels differ in exactly one bit 
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position. The degree and diameter of an n-dimensional hypercube are both n. The 

left part of Figure 1.4 shows a 3-cube. The hypercube graph is arguably the most 

popular graph ever proposed to be used as a computing network [32], many variations 

of hypercube have been proposed and studied [13J [9J. For the rest of this subsection 

we will give a brief introduction to three of those variations of the hypercube. 

1.3.3.1 Cube-Connected Cycles 

The design of the cube-connected cycles aims at not only implementing algorithms 

efficiently, but also complying with the technological constraints, so that the cube-

connected cycles can actually be used in the layout of many specialized large scale 

integrated circuits (VLSI) [29J. 

To obtain a cube-connected cycles network, we begin with a n-dimensional hypercube 

and then replace each of its 2n corners with a ring of n processors. Each processor in 

a ring is connected to a processor in a neighboring ring in the same dimension. The 

number of processors is N = 2n x n 

1.3.3.2 Twisted Cube 

Let C be any shortest cycle (i.e., a 4-cycle) in Qn. Also, let (u,x) and (v,y) be 

any two independent (do not share an endpoint) edges in C. The twisted n-cube 

graph [15][11 J TQn is then constructed as follows. Delete edges (u, x) and (v, y) from 

Qn. Then, connect, via an edge, vertex u to vertex y, and vertex v to vertex x. That 

is, TQn = Qn - {(u, x), (v, y)} + {(u, y), (v, x)}. TQn is n-regular just as Qn is. Also, 

TQn has two disjoint Qn-l'S as subgraphs. 

The cube can be twisted around any 4-cycle, the canonically twisted Qn is the one 
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whose vertices u,v,x, and y ha;:~'the labels b(u) = 000 ... 0, b(v) = 010 ... 0, b(x) = 

100 ... 0, b(y) = 110 ... O. Q3 and TQ3 are shown in Figure 1.4. 

011 011 

v 010 

101 111 111 

100 x~--~y 110 

Figure 1.4: A 3-Cube and its Corresponding Twisted Cube 

1.3.3.3 Folded Hypercube 

The folded hypercube was proposed to further reduce the diameter and traffic conges­

tion, with little hardware overhead [14]. A folded hypercube of dimension n, F HC(n) 

can be constructed from a standard binary n-cube by connecting each node to the 

unique node that is farthest from it. 

Formally, an n-dimensional folded hypercube can be modeled as a graph F(V, E). It 

has the same set of vertices as in the hypercube with the same dimension, and its 

edge set is a superset of the hypercube's. And the hypercube is a spanning subgraph 

of the corresponding folded hypercube. In addition, an edge (u, v) is in F iff H(u 
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XOR v) = lorn (Hamming weight). In other words, two nodes are connected if and 

only if their binary representation differ in 1 bit or are complement to each other. 

1.3.4 Star 

For a positive integer n > 1, an n-star interconnection network Sn has n! vertices, 

the label v of each processor Pv is a distinct permutation of the symbols {1, 2, ... ,n}. 

Processor Pv is directly connected by an edge to each of n - 1 processors Pu , where 

u is obtained by interchanging the first and ith symbols of v. 

Sn is a regular graph with degree n - 1 and diameter O(n), i.e., sub-logarithmic in 

the number of vertices, while hypercube has a degree and diameter logarithmic in the 

number of vertices. Figure 1.5 shows a 4-star. 

1234 4231 
(~'I-------------' 

3214 ('/ '\.2,134 

1 312~I 
2314> ,". 

~"J------:>~----¥-~-{ 

3142 2143 

Figure 1.5: A 4-Star Graph 
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The star interconnection netwocle is an attractive alternative to the hypercube parallel 

model [1]. The star graphs compare favorably with the hypercube regarding properties 

as symmetry properties, fault tolerance, etc. [2] [12] [31]. Many efficient algorithms 

have been designed for the star graphs as well [30][7][6]. 

1.4 The Hyper-Star Interconnection Network 

For interconnection networks, we prefer small degree and diameter. But there is a 

trade-off between degree, related to hardware cost, and diameter, related to transmis­

sion time of messages. Thus, the network cost, defined as degree x diameter seems to 

be a reasonable measure for interconnection networks. And the hyper-star graph 

was first proposed in 2002 [26] as an interconnection network with small network cost. 

The hyper-star graph is formally defined as follows: 

Definition 10 Let HS(n, k) = (V(HS(n, k)), E(HS(n, k))) be a hyper-star graph, 

where a node is represented by the string of n bits SlS2 ... Si ... Sn, Si E {O, 1}, 

and k (n > k) bits are "1". Two nodes u = SlS2 ... Si-lSiSi+1 . .. Sn and v = 

SiS2 ... Si-1 Sl Si+1 ... Sn are connected by an edge (u, v) E E (H S (n, k)) if and only 

if Si is a complement of Sl, and the bit string of v is obtained by exchanging Sl and 

Si, 2::; i::; n, in the bit string ofu. That is, HS(n,k) is defined as 

V(HS(n, k)) = SlS2 ... Si ... Sn, Si E {O, 1}, where lSi = 11 = k, 

From the above definition, since nodes of H S (n, k) can be represented by k-combinations 

of the set of n bit strings such that the number of l's is k and the number of "0" is 

14 



n - k, the number of nodes in HS(n, k) is (:) n! 
= k!(n _ k)!' Figure 1.6 shows a 

hyper-star with n = 6 and k = 3. 

.---.. ,,_ .. ,'" 

__ e.··· -, .... 

000111 

r 
'100101 '-. .• 10011(1 

.. tJQll)ll Jit (IOlllll 
,.,.-' 

..• 0i(ll](> , I OO,1I0 

101010 erioool 

.-.... -_ .. 

• i'O;;'(JI •. 101100 , 

111000 

Figure 1.6: Hyper-Star Grpah HS(6, 3) 

1.5 Analysis of Parallel Algorithms 

The most important three criteria we use to analyze a parallel algorithm are: running 

time, the number of processors in the computational model and cost [4]. 

The running time of a parallel algorithm is defined as the time taken by this algorithm 

to solve a problem on a parallel computer. Specifically, we are interested in the worst 

time, which means the time required for solving the most difficult instance of the 

problem using this algorithm. Usually, we count how many elementary steps are 
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performed by an algorithm when solving a problem (worst case) as a measure of 

running time. There are two different kinds of elementary steps: 

1. Computational steps: A computational step is an arithmetic or logic operation 

performed on a datum within a processor, like adding two numbers. 

2. Routing steps: A routing step takes place when a datum of constant size is 

transmitted from one processor to another processor via shared memory or an 

interconnection network. 

Each step (computational or routing) takes a constant number of time units, and the 

running time of a parallel algorithm is a function of the size of input. For a problem 

of size N, we use t(N) to denote the worst case number of time units required by the 

parallel algorithm. 

We use p(N) to denote the number of processors used by a parallel algorithm to solve 

a problem of size N. And the cost c(N) of a parallel algorithm for a problem of size 

N is then defined as c(N) = t(N) x p(N). The cost of a parallel algorithm is an 

upper bound on the total number of elementary steps executed. 

1.6 Organization of the Thesis 

This thesis is organized as follows: 

• Chapter 1 gives an overall introduction to parallel computing, including the 

parallel computational models and parallel algorithms . 

• Chapter 2 is the literature review of the interconnection network this thesis 

is focused on, the hyper-star graph. This review is done in two aspects, the 
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topological properties of th'e graph, including degree, diameter, symmetry, scal-

ability, and connectivity. The other aspect is the algorithms designed to run on 

a hyper-star network, which includes a shortest path routing algorithm and a 

broadcasting algorithm on single-port model. 

• Chapter 3 presents several properties of the hyper-star graph, which are the 

relation to other graphs, the surface area of the graph and the Hamiltonicity 

problem of the graph. 

• Chapter 4 focuses on the communication problems of the hyper-star graph. 

We restrict our discussion to the regular hyper-star graph HS(2n, n). Two 

algorithms are designed for HS(2n, n), namely the all-port model broadcasting 

algorithm and the single-port model neighbourhood broadcasting algorithm. 

• Chapter 5 briefly studies a variation of the hyper-star graph, which is called 

the folded hyper-star graph. We first review some work that has been done by 

other researchers, and then prove the maximum fault tolerance of the graph. 

• Chapter 6 concludes the thesis and list future open problems and research 

directions in this network. 
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Chapter 2 

Literature Review of the 

Hyper-Star 

2.1 Introduction 

In this chapter we provide a literature review of the hyper-star graph. This review 

will cover some topological properties of the hyper-star graph, including scalability, 

connectivity, diameter, and symmetry properties. How to embed a ring and hypercube 

into the hyper-star is also reviewed. Then, a broadcasting scheme using a spanning 

tree is introduced. At last, we give a brief introduction to a variation of the hyper-star 

graph, namely the folded hyper-star graph. 

2.2 Topological Properties 

From the definition of the hyper-star graph, we can easily see that in HS(n, k), a 

node has degree n - k if the leftmost bit in its label is "I" and k if the leftmost bit is 
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"0". Thus, the hyper-star graph\s irregular in general and only regular when n = 2k. 

2.2.1 Scalability 

By grouping the nodes in HS(n, k) based on whether the least significant bit of its 

label is "I" or "0", we can decompose HS(n, k) into two subgraphs HS(n-l, k) and 

HS(n - 1, k - 1). It has been proved that: 

Proposition 1 A hyper-star graph HS(n, k) zs isomorphic to a hyper-star graph 

HS(n, n - k) !26j. 

This means if we decompose a regular hyper-star graph HS(2k, k), we can end up 

with two isomorphic subgraphs H S (2k -1, k) and H S (2k -1, k -1). A decomposition 

of HS(6, 3) is shown in Figure 2.1. 

100011 OJ 1010 

Figure 2.1: Decomposing HS(6, 3) into HS(5, 3) and 'HS(5, 2) 

19 



2.2.2 Connectivity 

In interconnection networks, node connectivity or edge connectivity is an important 

measurement to evaluate the network as still functional. For a graph G, let its node 

connectivity, edge connectivity, and degree be K,( G), .\( G), and 8( G), respectively, 

then it has been established that K,(G) ~ .\(G) ~ 8(G). It has been shown that the 

hyper-star graph HS(2k, k) is maximally fault tolerant. 

Proposition 2 For a hyper-star graph HS(2n,n), K,(HS(2n,n)) = .\(HS(2n,n)) = 

n [26]. 

Proof Let P be a set of n - 1 nodes that will be removed from the HS(2n, n). 

Case 1 The leftmost bit Sl of all nodes (E P) is "0" 

If there is a node u in HS(2n, n) that has all n - 1 neighbours in P, there exists at 

least one non-faulty neighbour of u whose Sl is "0". If some neighbours of u are not 

in P, itis easy to see that HS(2n, n) is connected. Similarly, we can show the case 

where the first bit string 81 of all nodes E P is "1". 

Case 2 The leftmost bit Sl of some nodes (E P) is "1" 

The degrees of all nodes in HS(2n, n) are nand n nodes incident on a node u are 

connected to u if their first bit of labels are the complement of the first bit of u. Thus, 

if n - 1 nodes in P are consisting of nodes having their first bit as "1" and nodes 

having their first bit as "0", HS(2n, n) is always connected. 

From the above discussion, we can see that the HS(2n, n) is connected even if we 

remove at most n - 1 nodes from it. It shows that K,(HS(2n, n)) ~ n. Also, 

since HS(2n, n) is a regular graph of degree n, K,(HS(2n, n)) ~ n. Therefore, 

K,(HS(2n, n)) = n. Similarly, '\(HS(2n, n)) = n. 0 
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2.2.3 Diameter 

Let d(HS(n, k)) be the diameter of a hyper-star graph HS(n, k). 

Proposition 3 The diameter of a hyper-star graph HS(n, k) (k < ~) is n - 1 [26]. 

Proof Depending on k, we can have different diameters as follows. 

d(HS(n, k)) = 

2 ifk=l 

n-1 if k = !!. 2 

2k if k < ~ 

All hyper-star graphs HS(n, k) whose k is 1 are single stars. That is, all other nodes 

are incident on one node. Thus the diameter of HS(n, k) is 2. Suppose for two nodes 

u and v in a regular hyper-star graph such that k = ~, the number of bits these two 

nodes are different is at most n. And it takes n - 1 steps to correct all the different 

bits. Thus, the diameter of H S (n, ~) is n - 1. For an irregular hyper-star graph such 

that k < ~, the maximum number of different bits between two nodes is 2k, which 

is less than n - 1. From the above discussion, the diameter of a hyper-star graph 

HS(n, k) is n - 1. D 

2.2.4 Symmetry Properties 

For two nodes u and v in HS(2k, k), a node w on a path from u to v is said to be 

in the level Lm if the distance between u and w is m. One major symmetry property 

has been proved, which is stated as follows. 

Proposition 4 A hyper-star graph HS(2n, n) is node-symmetric [21]. 

Consequently, from a node in HS(2n, n), a subgraph consisting of nodes in L i , 0 ~ 

i ~ n - 1, and a subgraph consisting of nodes in Lj , n ~ j ~ 2n - 1, are symmetric. 
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2.3 Embedding Other Graphs into Hyper-Stars 

Efficient embedding is another favorable property for an interconnection network. If 

a network A can be embedded in a network B, then all the algorithms developed for 

parallel processing with network A can be easily transported onto another network B. 

Definition 11 Let G = (V, E) and G' = (V', E') be graphs and P(G') denote the set 

of paths in G'. We say (¢,p) is an embedding of G into G' if ¢ : V ---+ V' and 

p : E ---+ P( G') are injective functions such that (u, v) E E if and only if p( u, v) is a 

path between ¢( u) and ¢( v), the paths in p( E) (that is, the image of p) are internally 

vertex-disjoint, and the set of internal vertices on paths in p(E) and ¢(V) are disjoint. 

Definition 12 The dilation of edge e in graph G is the length of p( e) and the 

dilation of the embedding is the maximum value among all the dilations of edges. 

Proposition 5 Let n ~ 2. Then hypercube Qn can be embedded into hyper-star 

HS(2n, n) with dilation 2 [23]. 

Proof For each vertex v E V(Qn), define ¢(v) = vv. Then ¢(v) is a binary string of 

length 2n with exactly n l's. Hence ¢ : V(Qn) ---+ V(HS(2n, n)) is an injection. Now 

consider the edges of Qn. Let e E E(Qn). We have two cases: 

The two adjacent vertices differ in the leftmost position. Then we may assume 

that they are of the form Os and 18. Define p(e) to be the path of length 

1: (0818,1808) in HS(2n, n), where 8 is a binary string of length n - 1. 
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The two adjacent vertices do not differ in the first position. Then we may as-

sume that they are of the form aS10s2 and aS11s2, where Sl, S2 are (possi-

bly empty) binary strings. If a = 0, define p( e) to be the path of length 2: 

vertex does not belong to ¢(V(Qn)). 

Then p is the required injective function. By construction, every vertex in Qn is 

mapped to a vertex in HS(2n, n) with the property that the first half of the string 

is the complement of the second half. Moreover, the vertex in the center of a length 

2 path in the image of p has the following property: the first and the second halves 

of the string match up in exactly two positions including the first position. Hence it 

uniquely identifies the preimage of the path. Thus the image of p consists of internally 

vertex-disjoint paths. D 

2.4 Routing Algorithm 

A routing algorithm has been designed for the regular hyper-star graph HS(2n, n) [26]. 

Let a node S be the source node and a node D be the destination node in a hyper-star 

graph HS(2n, n), then the shortest path between Sand D can be regarded as the 

process of changing the bit string of S to that of D. A routing scheme to construct 

the shortest path is as follows. 

bit string obtained by applying the Exclusive - OR operation between Sand D. 
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We use EEl to represent the Exclusive-OR operator. Each i-dimensional edge, which 

leads to two identical ith bits from bits where Ti = 1, belongs to a shortest path. 

A path is continuously extended, provided there is a bit '1' in R. Figure 2.2 shows 

the algorithm that constructs a shortest path between any two nodes. Let Ps be the 

set of nodes on a shortest path from S to D. Initially, Ps = {S}. In each iteration 

ShortesLpatlLl(S", D, Ps) 
begin 

if(.S = D) then 

obtaln H = Fl./"';!···"l'; "'"l'" ,wlwre T'i = S; [.j di' 1::; i::; n: 
let p = {i 11'; = 1.:2 S i::; n} and q = {j i (8, .S') E E(HS(n. k)), 2 S j ::; Il}, 

when' jth bits ill Sand S' complement.: 
if (I p i> 0) then 

find a n.od" S" ;;l1ell that (S. S') is an i-dirlJensiofl.al edge. wl.lPre 
oj = min{p n 'l}: 

[" = P~ u {S'}: 
S= S'; 

caIl ShortesLpaUl-1(S. D, Ps ); 
end 

Figure 2.2: The Shortest Path Routing Algorithm for Hyper-Star 

satisfying the condition Ti = 1, one bit from the source node S is fixed to be identical 

to its corresponding bit in the destination node D, and the number of different bits 

between Sand D is reduced exactly by 1. Thus, it is easy to see that the algorithm 

is optimal in terms of the length of a path. 
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Chapter 3 

Properties of the Hyper-Star 

Graph 

3.1 Relation to Other Graphs 

In this section we introduce two graphs that are closely related to the hyper-star 

graph, namely the odd graphs and the even graphs. We also present their relations 

to the hyper-star graphs. These relation properties were proved by Jong-Seok Kim, 

Eddie Cheng, Laszlo Liptak and Hyeong-Ok Lee in 2008 [23], and then rediscovered 

independently by us in the same year. 

3.1.1 Odd Graph 

3.1.1.1 Introduction 

The class of odd graphs was first introduced in the context of graph theory, and 

then studied as a potential interconncetion network in 1991 [18]. The odd graphs are 
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formally defined as follows: 

Definition 13 Let n be an odd integer and n = 28 - 1, 8 ~ 2. The vertices of odd 

graph 08 are the binary stings of length n with exactly 81's. Two vertices are adjacent 

if and only if their Hamming distance is 28 - 2. 

That is, two vertices are connected if and only if they differ in all but one bit. Fig­

ure 3.1 shows the odd graph 0 3 . Below are some of the important topological prop-

Figure 3.1: Odd Graph with Degree 3 (Petersen Graph) 

erties of these graphs. 

( 
28 ~ 1 ) Proposition 6 An 0 8 graph is regular with N = u nodes, degree 8, and 

diameter 8 - 1. 

Proposition 7 The degree and the diameter of 0 8 are of asymptotic order log2ffi, 

where N is the number of nodes in the network. 
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3.1.1.2 Relation to the Hyper-Star 

Since the odd graph 0 8 has the same number of vertices as the hyper-star graph 

HS(2b - 1, b), and their representation strings for the vertices are all the same, we 

study the two graphs together hoping to establish a relationship between them. 

In the odd graph 0 8 , a vertex u with the first bit being '1' is in the form of 

1bI b2 . .. bi ... b28- 2 • It has only one neighbour whose first bit of its representation 

string is '1', and b - 1 neighbours with '0' as their first bits. These b - 1 neigh-

bours are in the form of ObI b2 .• • bi . .. b28- 2 , where 2 ~ i ~ 2b - 2 and bi = 1. If 

we take the complement of bI b2 . .• bi ... b28- 2 , we get bI b2 • .. bi ... b28- 2 • We observe 

that ObI b2 ••. bi ... b28- 2 , 2 ~ i ~ 2b - 2 and bi = 1 are the b - 1 neighbours of 

1bI b2 ••• bi . .. b28- 2 in the hyper-star graph HS(2b - 1, b). 

A vertex u with the first bit '0' in 0 8 has b neighbours all in the form of 1a. As 

stated above, 1-a is a vertex in HS(2b -1, b), and it is a neighbour of the node in the 

hyper-star graph with the same representation string as vertex u. Thus, we have the 

following theorem: 

Theorem 1 The hyper-star graph HS(2b -1, b), b 2: 1, can be constructed from the 

odd graph 0 8 by removing all the edges between vertices whose first bits are '1 'so 

Immediately we get: 

Theorem 2 The hyper-star graph HS(2b -1, b) is a spanning graph of the odd graph 

0 8, where b 2: 1. 
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3.1.2 Even Graph 

3.1.2.1 Introduction 

The even graph was first introduced as a class of efficient interconnection networks in 

1989 [17]. It possesses some attractive characteristics such as capability of maximal 

fault-tolerance, higher density, admitting simple distributed-routing algorithms both 

for the faulty and fault-free network, and ease of self-diagnosis. The formal definition 

of the even graph is given as follows. 

Definition 14 Let n be an odd integer of the form n = (28 - 3) for 8 > 1. Let 

WI, W2 be two sets of binary strings of length n, such that the Hamming weight 

of every string in WI is 8 - 1 and the Hamming weight of every string in W2 is 

8 - 2. Then the vertex set V of the even graph Eli is V = WI U W2, the edge set 

E = {(x, y) Ix E WI, Y E W2 , h( x, y) = 1 or n}. 

That is, the vertices of an even graph are binary strings of length 28 - 3, all these 

strings have either 8 - 1 1 's or 8 - 21's. Two vertices are connected if they differ 

in one bit or they are complementary to each other. Figure 3.2 shows an even graph 

with 20 vertices. Some topological properties have been studied and proved, which 

are given in the following two propositions. 

Proposition 8 An Eli network is regular with degree 8 and has ( 28 - 2 ) nodes. 
8-1 

Its diameter is 8 - 1. 

Proposition 9 The degree and the diameter of Eli is proportional to log2v'N, where 

N is the number of nodes in the network. 
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10001 

Figure 3.2: An Even Graph E4 with 20 Vertices, Degree 4, and Diameter 3 

3.1.2.2 Relation to the Hyper-Star 

Theorem 3 The even graph E8 , 0 2: 2, is isomorphic to the folded hyper-star graph 

FHS(20 - 2,0 - 1). 

Proof Define a mapping ¢: V(E8) ---+ V(F HS(20 - 2,0 - 1)) as follows. If a is a 

vertex of E8, and a E WI, (the Hamming weight of a is 0 - 1), then define ¢( a) = Oa; 

If /3 is a vertex of E8, and /3 E W2, (the Hamming weight of /3 is 0 - 2), then define 

¢(/3) = 1/3. Now consider a, a vertex of E8, a E WI' Then the neighbour of a must 

be in the form of /3, /3 E W2 · If a and /3 are adjacent, then we have two cases: 

1. The Hamming distance between a ane /3 is 1, they differ in one bit (say position 

p). Furthermore, that different bit is 1 in a, and is 0 in /3. Therefore, Oa and 

1/3 both have 0 - II's and 0 - 1 O's, which means they are both vertices in 
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FHS(26 - 2,6 -1). And\,8 can be obtained from Oa by exchanging the first 

'0' with the p'th bit (1). Thus, Oa and 1,8 are adjacent in F HS(26 - 2,6 - 1); 

2. The Hamming distance between a ane ,8 is 26 - 3, they are complementary 

to each other. Thus Oa and 1,8 are still complementary to each other. Which 

means they are adjacent in FHS(26 - 2,6 - 1). 

Hence the proof is complete. D 

Since the hyper-star graph can be constructed by removing all the edges in the cor­

responding folded hyper-star that connect two vertices whose binary strings are com­

plementary to each other, the theorem below immediately follows. 

Theorem 4 The hyper-star graph HS(26 - 2,6 -1) is a spanning graph of the even 

graph Eo, where 6 ~ 2. 

3.2 Surface Area 

Definition 15 The quantity of I {v Id( u, v) = k} I, where d( u, v) stands for the distance 

between nodes u and v, is referred as Whitney numbers of the second kind of 

the poset [28], or surface area of a node with radius k [20]. 

This quantity of surface area is especially well defined for the node symmetric graphs, 

as the surface area for any node in a node symmetric graph G equals that for any 

other node in G. We can thus discuss the surface area of such a graph G. 

In this section, we derive a formula for the regular hyper-star graph H S (2n, n). Since 

HS(2n, n) is node-symmetric, we focus on the surface area of one specific node, in 
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this case, the identity node, I "'~'bn 1 n . 

A regular hyper-star graph HS(2n, n) is an undirected graph consisting of 
(

2nn) 

nodes, where a node is represented by the string of 2n bits SlS2 . .. S2n such that the 

cardinality of the set {i 11 ~ i ~ 2n, Si = I} is n. 

Definition 16 Let O'i be an operation that exchanges Sl and Si, 2 ~ i ~ 2n, where Si 

is the complement of Sl. Then two nodes u and v are connected when v is obtained 

from the operation O'i (u), 2 ~ i ~ 2n. 

Definition 17 For a node u, we denote by [k1' k2, . .. , kt ] a path obtained by applying 

operations O'kl' O'k2' ... ,O'kt in sequence from the node u. 

For example, there is a path [3,2,4] or [4,2,3] from 0011 to 1100. 

Since a shortest path from I can be constructed by applying unique operations O'i, 

n + 1 ~ i ~ 2n, and O'j, 2 ~ j ~ n, alternately, we have the following lemma. 

Lemma 1 Any shortest path [k1' k2' ... , kt ] from the identity node I to a specific node 

in regular hyper-star graph HS(2n, n) has the same set of numbers (k1' k3 , . .. ,ki, . .. ) (i 

is odd) and (k2' k4 , ... , kj , ... ) (j is even). 

We refer to the set (k1' k3 ,· .. ,ki,· .. ) (i is odd) as Sodd, and the set (k2' k4 , •. . ,kj, ... ) (j 

is even) as Seven. Notice here that every number in set Sodd is between n + 1 and 2n, 

and every number in set Seven is between 2 and n. 

Thus we can see that the number of nodes of a certain distance from I is determined 

by the number of different combinations of Sodd and Seven. This leads us to the 

following theorem. 
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Theorem 5 The surface area "df regular hyper-star HS(2n, n) is: 

where P(n) is the number of permutations on n distinct symbols. 

Table 3.1 shows the surface area of the hyper-star HS(2n, n) for n = 2 to n = 6. 

Table 3.1: Surface Area of Hyper-Star HS(2n, n) 

Radius HS(4, 2) HS(6, 3) HS(8, 4) HS(10, 5) HS(12, 6) 

1 2 3 4 5 6 

2 2 6 12 20 30 

3 1 6 18 40 75 

4 3 18 60 150 

5 1 12 60 200 

6 4 40 200 

7 1 20 150 

8 5 75 

9 1 30 

10 6 

11 1 
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3.3 Hamiltonicity"~': 

The Hamiltonicity problem is yet another important problem often studied for inter­

connection networks. 

Definition 18 Suppose that W is an interconnection network. A path (or cycle) in 

W is called a Hamiltonian path (or Hmiltonian cycle) if it contains every node 

of W exactly once. W is called Hamiltonian if there is a Hamiltonian cycle in W. 

3.3.1 The Middle Cube and the Revolving Door Conjecture 

The interconnection network middle cube is defined as: 

Definition 19 Let Qn be the n-dimensional hypercube. If n = 2k + 1, then the 

subgraph Mn of Qn induced by the nodes having exactly k or k + 1 1 's is called the 

middle cube of dimension n. 

The highlighted part in Figure 3.3 shows a middle cube M3 in the corresponding 

hypercube Q3. The middle cube is first studied as a potential interconnection network 

for parallel computation in 1990 [27], there is one well-known conjecture concerning 

the middle cube, namely the Revolving Door Conjecture, which is stated as 

follows: 

Conjecture 1 All middle cubes M n , n> 1, are Hamiltonian. 

This conjecture has been verified for n :::; 17, but is still open in general. 
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Figure 3.3: Middle Cube M3 in Hypercube Q3 

3.3.2 Middle Cube and Hyper-Star 

In the course of tryng to solve the Hamiltonicity problem of the hyper-star graph, we 

try to establish a relationship between the hyper-star and the middle cube due to the 

resemblance between their representation strings. And this leads us to the following 

theorem: 

Theorem 6 The hyper-star graph H S(2k + 2, k + 1) is isomorphic to the middle cube 

M 2k+1, k;:::: o. 

Proof Define a mapping ¢: V(M2k+1) ---+ V(HS(2k + 2, k + 1)) as follows. If a is a 

vertex of M2k+1, and the Hamming weight of a is k + 1, then define ¢(a) = Oa; If (3 

is a vertex of M(2k + 1), and the Hamming weight of {3 is k, then define ¢((3) = 1{3. 

Now consider a, a vertex of M2k+l, H(a) = k + 1. Then the neighbours of a must be 

in the form of (3, H({3) = k. And a and {3 differ in exactly one bit, say bit position 

p. Futhermore, bit p of a is 1, bit p of {3 is O. Then, Oa and 1{3 differ in two bits, 
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the first bit of course, and the bit at position p + 1. The bit at position p + 1 is 1 in 

Oa and is 0 in 1{3. This means 1{3 can be obtained from Oa by exchanging the first 

bit with the p + 1 'th bit, which implies ¢( a) and ¢((3) are two adjacent nodes in the 

hyper-star graph HS(2k + 2, k + 1). Hence the proof is complete. 0 

By this theorem, we claim the Hamiltonicity problem of the hyper-star graph is as 

hard as the Hamiltonicity problem of the middle cube graph, and hence the following 

conjecture: 

Conjecture 2 All regular hyper-star graphs HS(2k, k), k ~ 1, are Hamiltonian. 

3.3.3 Tracing Hamiltonian Cycles in the Hyper-Star 

As established in the previous subsection, proving the hyper-star graphs are Hamilto-

nian in general is a hard problem despite the fact that several low dimensional regular 

hyper-stars are proved to be Hamiltonian. In this subsection, we provide a stategy 

for finding the Hamiltonian cycles in the hyper-star graphs. This technique was first 

used in 1990 to trace the Hamiltonian cycles in modified even networks [27]. 

Let N be the number of nodes in the hyper-star graph HS(2n, n). Let 'E = {O, 1} 

and 'En denote the set of all binary strings of length n. Define the operation EB to be 

the bitwise OR for two binary strings. Define two sets Wo and Wi as: Wo = {x I x = 

Oa,a E 'E2n-l,H(a) = n}; Wi = {y I y = 1{3,{3 E 'E2n-l,H({3) = n-1}. That 

is, Wo U Wi contains the binary strings of all the nodes in HS(2n, n). Then define 

a traversal Si of the set Wi, i = 0,1 as follows: So = {xo, Xl, ... ,XN/2-2, XN/2-1}, 
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for all 0 ::; i ::; N /2 - 1 and 

and· 

h(Xi' X(i+1) mod N/2) = 2, 0::; i ::; N /2 - 1 

h(Yi' Y(i+1) mod N/2) = 2, 0::; i ::; N /2 - 1 

CYi = f3i EEl f3(i+1) mod N/2, 0::; i ::; N /2 - 1 

(Xi, Yi), (Xi, Y(i+1) mod N/2) E E(HS(2n, n)) 

The Hamiltonian cycle in HS(2n, n) is then given by the sequence 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Because Wo n WI = 0, Wo U WI = V(HS(2n, n)), if condition 3.4 is satisfied, then 

sequence 3.5 is indeed one Hamiltonian cycle in the hyper-star graph HS(2n, n). 

Conditions 3.1 and 3.2 are necessary because the Hamming distance between two 

nodes in a hyper-star graph equals the graphical distance between them. 

For condition 3.3, since h(Yi, Y(i+1) mod N/2) = 2, 0 ::; i ::; N /2 - 1, the Hamming 

distance between f3i and f3(i+1) mod N/2 is also 2, which means two bits are different, 

say bits at position PI and P2. Also, H(f3i) = H(f3(i+1) mod N/2) = n - 1, bits PI and 

P2 in Yi and Y(i+1) mod N/2 have to be (0,1), (1,0) or (1,0), (0,1). Either way, after 

applying bitwise OR for Yi and Y(i+1) mod N/2, PI and P2 in CYi are both 1. And all 

other bits in CYi are equal to those in f3i and f3(i+1) mod N/2, this is necessary for (Xi 

and Yi, Xi and Y(i+l) mod N/2 to be connected (Yi, Y(i+1) mod N/2 can be obtained from 

Xi by exchanging the first bit 0 in Xi with the bit PI or P2). 

This strategy gives us a way of finding Hamiltonian cycles in the hyper-star graph 

HS(2n, n), which is, if we can find the traversal SI that meets condition 3.2, then 
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we can compute the corresponding traversal 8 0 using 3.3, and the resulting 8 0 is 

guaranteed to satisfy condition 3.1, hence we get one Hamiltonian cycle given by 

sequence 3.5. 

Another observation is, all the nodes in the set W1 have '1' as their first bit, so for 

Further, all f3i, for 0 ~ i ~ N /2 - 1 are the nodes of the odd graph On. 

This observation gives us one convenient way of finding the traversal 81 because odd 

graphs O2 and 0 4 to 0 8 are known to be Hamiltonian. If we have a Hamiltonian 

cycle {f3o, 131, ... ,f3Nj2-2, f3Nj2-1} in On, then 8 1 is given by 

What is worth mentioning is that the use of Hamiltonian cycles in the odd graphs 

is only a convenience but not necessary, for example, it is well known that the odd 

graph 0 3 is not Hamiltonian, but the hyper-star graph HS(6, 3) is Hamiltonian. 

The Hamiltonian cycle in hyper-star H8(8,4), using this approach, is given in Ta-

ble 3.2. 
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Table 3.2: One Hamiltonian Cycle in H 8(8,4) 

10000111 01000111 11000110 01001110 

11001010 01101010 11101000 01101001 

10101001 00101101 10001101 01001101 

11000101 01100101 10100101 00100111 

10100011 00110011 10010011 01010011 

11000011 01001011 11001001 01011001 

11010001 01010101 11010100 01110100 

11100100 01100110 11100010 01100011 

11100001 01110001 11110000 01111000 

10111000 00111001 10110001 00110101 

10010101 00010111 10010110 01010110 

11010010 01110010 10110010 00111010 

10011010 01011010 11011000 01011100 

11001100 01101100 10101100 00111100 

10110100 00110110 10100110 00101110 

10101010 00101011 10001011 00011011 

10011001 00011101 10011100 00011110 

10001110 00001111 
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Chapter 4 

Communication Problems on the 

Hyper-Star 

Since the processors in an interconnection network exchange information via direct 

links, the underlying graph of the network plays a major role in the communication 

aspects of the network. Many communication problems have been introduced and 

studied for various interconnection networks, such as routing, neighbourhood broad­

casting, broadcasting, gossiping. .. [8] [22]. 

In this chapter, we design two algorithms for the regular hyper-star graph H S (2n, n), 

the broadcasting algorithm on all-port model, and the neighbourhood broadcasting 

algorithm on single-port model. Our algorithms are both asymptotically optimal. 
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4.1 Broadcasting' 

4.1.1 Introduction 

The broadcasting problem (BP) is the problem of disseminating a message from 

the source node to all the nodes in the network. For a single-port model, the lower 

bound for BP is given in the following theorem. 

Theorem 7 Any broadcasting algorithm of a network on single-port model with N 

nodes must require o'(log N) time. 

Proof. At each time unit, one processor with the message can only send it to one 

of its neighbours, so after every step, the number of nodes which have received the 

message can at most double. There are N nodes in the network, thus the least time 

needed to solve BP is o'(log N). D 

When considering the broadcasting problem of a network on all-port model, the least 

time required is bounded by the diameter of the graph, because that is the least 

time required for the message to traverse from one node to another node that is the 

farthest away from it. 

On all-port model, in addition to the time (the number of communication steps) 

required, one of the other criteria of the algorithm is the traffic, i.e., the total number 

of messages exchanged. This means that it is desirable to minimize both the time 

and traffic. Minimizing the traffic is equivalent to minimizing the redundancy, i.e., 

the number of times a node receives the same message. 
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4.1.2 Broadcasting oU:"-:the All-Port Model HS(2n, n) 

For our all-port broadcasting algorithm on HS(2n, n), we use a greedy approach in 

the sense that at step i, the leftmost node on level i will inform as many nodes as it 

can without introducing redundancy_ And every node to the right will do the same 

thing, which is to inform as many nodes as they can without introducing redundancy. 

This approach will guarantee that every node on the next level will be informed, and 

only informed exactly once. 

Figure 4.1 shows one example of how the all-port broadcasting is done on HS(8, 4). 

All the nodes on the same level are informed in the same step due to the communi­

cation capability of the all-port model. 

The number of steps this algorithm takes is equal to the diameter of the graph, which 

is optimal. 

4.2 Neighbourhood Broadcasting 

4.2.1 Introduction 

The neighborhood broadcasting problem (NBP, for short) is the problem of 

disseminating a message from the source node to all the nodes adjacent to the source 

node. The neighborhood broadcasting problem was first introduced in 1991 [10] as 

a tool to simulate a single step of the all-port model by the single-port model in a 

given network. 

On the all-port model, a node can communicate with all of its neighbours at the same 
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Figure 4.1: All-Port Broadcasting on HS(8, 4) 
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time. In this case, NBP becomes a trivial problem and takes 1 time unit. From now 

on, we consider NBP on single-port model. On the single-port model, a node can 

only communicate with one of its neighbours at a time. The lower bound of NBP is 

stated in the following theorem. 

Theorem 8 Any neighbourhood broadcasting algorithm on a network with degree d 

must require o'(log d) time. 

Proof. At each time unit, one processor with the message can only send it to one of 

its neighbours, so after every step, the number of neighbours which have received the 

message can at most double. The maximum number of neighbours of a node in the 

network is d, thus the least time needed to solve NBP is o'(log d) D. 

4.2.2 Neighbourhood Broadcasting on the Single-Port Model 

HS(2n, n) 

Being a regular graph, HS(2n, n) has a degree of n. Thus the lower bound for NBP 

on HS(2n, n) is o'(log n). Also, as proved in the previous chapter, the regular hyper-

star graphs are node-symmetric. Without loss of generality, we assume the source 

node for NBP is the identity node I = onl n. 

We develop our algorithm for neighbourhood broadcasting problem on HS(2n, n) 

based on several observations. First we give some definitions. 

Definition 20 A bipartite graph (or bigraph) is a graph whose vertices can be 

divided into two disjoint sets U and V such that every edge connects a vertex in U to 
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one in V; that is, U and V are independent sets. Equivalently, a bipartite graph is 

a graph that does not contain any odd-length cycles. If lUI = lVI, then it is called a 

balanced bipartite graph. 

Then we have: 

Theorem 9 The regular hyper-star graph HS(2n, n) is a balanced bipartite graph. 

Proof. We partition the nodes of HS(2n, n) into two sets U and V. U contains 

all the nodes whose first bit is 1, and V contains all the nodes whose first bit is 

O. Apparently every edge of HS(2n, n) connects a node in U to one in V and 

lUI = IVI = ( 2n: 1 ), thus HS(2n, n) is a balanced bipartite graph. D 

Figure 4.2 shows the hyper-star graph HS(6, 3), its nodes are arranged in such a way 

that nodes on the left all have first bit 1 and those on the right all have first bit O. 

We will use the notations introduced in last chapter, which is for a node u, we denote 

by [kl' k2' ... ,ktl a path obtained by applying operations O'kl' O'k2" .• ,O'kt in sequence 

from the node u. 

Theorem 10 The smallest cycle in HS(2n, n) has length 6. 

Proof. Because HS(2n, n) is a bipartite graph, it cannot contain odd cycles. If there 

is a cycle of length 4 in HS(2n,n), then it must be in the form of [i,j,i,jl because 

operation O'i flips the ith bit of the node. Assume the first bit of our source node is 

0, then the ith bit must be 1, the jth bit must be O. After applying operation O'i, O'j 
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1000·11 000111 

101001 001101 

111000 
011100 

101010 010101 

100110 010011 

110010 010110 

110001 001110 

110100 011010 

101100 011001 

100101 001011 

Figure 4.2: HS(2n, n) are Balanced Bipartite Graphs 
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to the source node, we end up with a node with first bit 0, ith bit 0, jth bit 1. So 

for the next operation, we cannot apply (Ji, which is a contradiction. Thus there is 

no cycle of length 4 in HS(2n, n). Our next choice is cycle of length 6, and this kind 

of cycles do exist, for example, in HS(8, 4), we have: 

00001111 f-7 10000111 f-7 01 000 111 f-7 11 000 11 0 

f-7 01001110 f-7 10001110 f-7 00001111 

Thus completes the proof. D 

Our next theorem is crucial to our algorithm. 

Theorem 11 Any pair of neighbours of the source node on1 n is connected by a path 

of length 4, and these paths between different pairs of neighbours are node-disjoint. 

Proof. Any neighbour of the source node on1 n is obtained from exchanging the first 

o of the source node with another 1 of the node. Thus any two neighbours of it are 

different in exactly 2 bits at position p and q, where n + 1 ~ p, q ~. 2n. Then these 

two neighbours are connected by the path [i, q,p, i], where 2 ~ i ~ n. And these 

two neighbours and the source node are on the same cycle [p, i, q,p, i, q], because two 

different pairs of neighbours have different p and q, these cycles are bound to be node-

disjoint except they share the source node on1 n. Thus the 4-length paths connecting 

pairs of neighbours are node-disjoint. D 

The above theorem allows us to view the source node together with its n neighbours 

as a de facto complete graph in the sense that any two nodes are connected by a path 
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of constant length. 

Based on the technique of recursive doubling where at each step, we double the 

number of neighbours with the message by using a set of node-disjoint paths with 

constant length between neighbours, a simple neighbourhood braodcasting algorithm 

for HS(2n, n) can be designed. We denote the neighbour obtained by switching the 

first bit of the source node with the n + i'th bit, 1 :::; i :::; n, the i'th neighbour of the 

source node. 

• Initially, only the source node on 1 n in H S (2n, n) has the message to be sent to 

all of its neighbours. 

• For the first step, the source node sends the message to its first neighbour via 

direct link. 

• At step i, i 2: 2, the source node sends the message to its 2i
-

1'th neighbour. If 

neighbour j has the message, then at this step, it sends the message to neighbour 

j + 2i - 1 via the 4-length path [2, j + 2i - 1, j, 2]. 

• The process continues until all the neighbours of the source node have the 

message. 

For example, in HS(14, 7), the neighbourhood broadcasting is done in the following 

pattern. 

• Step1: 

(S -+ 1)00000001111111 -+ 10000000111111 
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.. Step2: 

.. Step3: 

(8 ---+ 2)00000001111111 ---+ 10000001011111 

(1 ---+ 3) 10000000111111 ---+ 01 000000 111111 ---+ 11 0000001 0 1111 

---+ 010000011 0 1111 ---+ 100000011 0 1111 

(8 ---+ 4)00000001111111 ---+ 10000001110111 

(1 ---+ 5) 10000000111111 ---+ 01 000000 111111 ---+ 11 000000111 0 11 

---+ 01000001111011 ---+ 10000001111 0 11 

(2 ---+ 6)10000001011111 ---+ 01000001011111 ---+ 11000001011101 

---+ 01000001111101 ---+ 100000011111 01 

(3 ---+ 7)10000001101111 ---+ 01000001101111 ---+ 11000001101110 

---+ 01 00000 1111110 ---+ 1000000111110 

48 



Chapter 5 

Folded Hyper-Star 

5.1 Introduction 

The formal definition of the folded hyper-star graph is [26]: 

Definition 21 A folded hyper-star graph F HS(2n, n) is a graph where edges are 

added to connect any two nodes whose bit strings are complements in the hyper-star 

graph HS(2n,n). That is, a folded hyper-star graph FHS(2n,n) is defined as 

where 

V(FHS(2n,n)) = V(HS(2n,n)) 

E(FHS(2n,n)) = E(HS(2n,n)) U e, 

An edge in the set of edges e is called a c-edge. Figure 5.1 shows a folded hyper-star 

graph FHS(4, 2). 

Simillarly, a routing algorithm was designed for the folded hyper-star [26]. Let 
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c-edges 

1001 1010 

0101 0110 

1100 

Figure 5.1: FHS(4, 2) Graph 

R = TIT2 .. . T2n be a bit string obtained by applying Exclusive-OR operations between 

the source node S and the destination node D. Also, let M be the set of nodes whose 

number of 1 's is greater than n. When a node belongs to the set M, the routing 

scheme for a folded hyper-star graph F H S (2n, n) chooses a node first such as to 

utilize c-edges efficiently. The set of nodes Ps on a shortest path from S to D is 

constructed by the algorithm shown in Figure 5.2. Initially, Ps = is}. We can easily 

see that the number of nodes in F HS(2n, n) is the same as that of FS(2n, n), while 

the degree of FHS(2n, n) is n + 1. The diameter of a hyper-star graph HS(2n, n) 

is 2n - 1 if bit strings of two nodes are complement to each other. On the other 

hand, such nodes are connected by an edge in F H S (2n, n). Thus, the diameter of 

F H S (2n, n) is n. Since the network cost is defined as degree x diameter, the network 

cost of a folded hyper-star graph FHS(2n,n) is n 2 + n. Thus, the folded hyper­

star graph is superior to the hypercube and its variations with the same number of 

nodes in terms of the network cost. Comparisons between folded hyper-star and other 
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ShortesLpatlL2(8. D. [-'-.! 

begin 
/;=0: 

if (S' =, D) then 
nA. I !t'll p,.: 

uhta.in .U == rlr'2 ... ri ... r:2n~ \Vhf'rf~ t'i. == 8 1 ~B di . J ~ i ~ 211: 
let p = {i!r; = L '2 ~ i ~ '2n}, (ll = (8, S'L, and '12 = hl(S, S") 

E E(FHS('2n. n))~· (}l}, wlH'l'\' jth bit.~ ill S und sO" eomplpllwnt: 
for i = '2 to 211 do 

if (ri = "1" I then k = k +- I: 
i=i+-l; 

if (I; > n) then 
Pi' = P, u {S"}: 
S :::::.8'; 

else 
if (il'l > 0) then 

lilld n 110d" S" sucb tLat (5, ,'i") is an j-dimcnsiullal erig". where 
j = wiu{p n !j~}: 

F's = p, U {S'''}: 

call ShoI'tesLpatlL2(S, D. P,) 

end 

Figure 5.2: The Shortest Path Routing Algorithm for the F HS(2n, n) 

interconnection networks are presented in Table 5.1. 

Table 5.1: Comparisons Between FHS and Other Networks 

Network Model Size Degree Diameter Network Cost 

Hypercube 2n n n n 2 

Folded Hypercube 2n n+1 r%l ~ O.5n2 

Multiply~ Twisted Cube 2n n rnt1l ~ O.5n2 

Folded HS(2k, k) (~) k+1 k k2 +k 
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5.2 Fault Tolerance 

It is important to have node-disjoint (or parallel) paths between two nodes in an 

interconnection network to speed up transfers of large amounts of data and provide 

alternative route in cases of node failures. In this section we show the maximal 

fault-tolerance capability of the folded hyper-star F HS(2n, n) by enumerating all 

the node-disjoint paths between any two nodes. Recall that we use (Ji to denote the 

operation that exchanges Sl and Si, 2 :::; i :::; 2n, where Si is the complement of Sl in 

a binary string. Also, for a node u, we denote by [kl' k2' ... ,ktl a path obtained by 

applying operations (Jkl' (Jk2' ••• ,(Jkt in sequence from the node u, the edge connecting 

two nodes which are complementary to each other is the c-edge, and the graphical 

distance between two nodes u and v is denoted by dist(u, v). In this way, a path 

between any two nodes in the folded hyper-star graph is representable as a sequence 

of ki's and c's. The enumeration of paths is given in terms of these notations. 

Theorem 12 The number of node-disjoint paths between any two nodes u, v E 

FHS(2n, n) is the maximum possible and is equal to n + 1. The lengths of such 

paths are: 

Case 1: dist( u, v) is even 

Case 1.1: dist(u, v) < n 

There are dist( u, v) /2 paths of length dist( u, v). The remaining paths are of equal 

length, which is dist( u, v) + 2. 

Case 1.2: dist(u, v) = n 

There are n + 1 paths of length n 

Case 2: dist( u, v) is odd 
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Case 2.1: dist(u,v) < n 
.~ .. 

There are (dist( u, v) + 1)/2 paths of length dist( u, v). There is one path of length 

dist( u, v) = 2. The remaining paths are of length dist( u, v) + 4. 

Case 2.2: dist( u, v) = n 

There are n + 1 paths of length n 

Proof We prove the theorem by constructing all the node-disjoint paths for the 

above two cases. Through this construction the lengths and the number of these 

paths can be verified. 

Case 1: dist( u, v) is even. 

Case 1.1: dist( u, v) < n. For the first path between nodes u and v with length 

dist(u, v), we can use the shortest path routing algorithm shown in Figure 5.2 to find 

it. Assume the shortest path found this way is [kl' k2, ... ,kdist(u,v)]. Then the other 

dist( u, v) /2 - 1 node-disjoint paths with length dist( u, v) are listed as follows: 

In other words, these paths are obtained by cyclically shifting the path [kl' k2, ... , kdist(u,v)] 

2i (1 ~ i ~ dist(u, v)/2 - 1) operations to the left. 

Clearly these paths get to the same node because they all have the same set of oper­

ations on odd and even levels. We shall show that all these paths are node-disjoint. 

Consider two paths 
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and 

where Pi can be obtained from PI by cyclically shifting all its operations 2i positions 

to the left. After applying an operation O"j to a node in any path, the bit value at 

position j must remain the same as one moves along the nodes present in a path until 

another operation O"j is carried out. Therefore, nodes in PI are different from nodes 

in Pi at least in the position kI for the first dist( u, v) - 2i + 2 nodes. Furthermore, 

the second to the dist(u, v) - 2i + 3'th node in these two paths are different in at 

least position k2 • A repeated use of this argument will lead us to the conclusion that 

all the nodes in these two paths are disjoint. 

Assume there is another path [PI,P2,'" ,Pdist(u,v)] that is of length dist(u,v) and 

node-disjoint with the dist( u, v) /2 paths listed above. Because every shortest path 

between two nodes must apply the same set of operations at even and odd levels, 

PI E {kI' k3 , .•• , kdist(u,v)-I}, which is a contradiction to the assumption that this 

path is node-disjoint with the above paths. Hence, the number of such shortest node­

disjoint paths cannot exceed dist( u, v) /2. 

The case when a c-edge is involved can be easily proved using the above argument. 

The shortest path distance between node u and v is dist( u, v) and all such paths 

are already chosen, therefore, the alternate paths must be of length greater than 

dist(u,v). The alternate paths cannot be of length dist(u,v) + 1, otherwise it will 

introduce a cycle of length 2dist( u, v) + 1, which is odd. Since the folded hyper-star 

does not admit cycles with odd length, the next choice for the alternate paths is a 

path of length dist( u, v) + 2. 
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To construct the alternate paths "df length dist( u, v) + 2, we have to utilize the other 

neighbours of the source node that have not been used in the dist( u, v) /2 shortest 

paths. Which means the first operation cannot be in the set {kl' k3 ,· .. ,kdist(u,v)-l}. 

Say operation kn will go from the source node to such a neighbour, then the alternate 

paths are all given in the following form. 

Since kn ¢:. {kl' k2' ... ,kdist(u,v)}, bit kn will not be changed until the very last op­

eration, which is O"kn again, and this operation changes bit kn back to the value it 

was in the source node. Because the source and destination nodes only differ in bits 

kl' k2, . .. ,kdist(u,v), this sequence of operations will lead to the destination node v. 

Note the sequence between the two kn on the ends is the reverse of one shortest path, 

this is to ensure the operations are taken on the right kind of levels (odd level or even 

level), the reverse of any shortest path will do, the argument is the same. All these 

paths utilize the same set of operations except the first and the last, thus all these 

paths are node-disjoint. The case when [knl is a c-edge can be proved easily using the 

same argument. 

To this point we have utilized every neighbour of the source node to find a parallel 

path, so the total number of node-disjoints paths between two nodes in this case is 

the degree of the graph, which is n + 1. 

Example: In FHS(8,4), u = 00001111, v = 00010111, dist(u,v) = 2. The 1 path of 

length 2 is (the number in the parenthesis is the position of the bit being changed at 

each step): 

00001111(5) --+ 10000111(4) --+ 00010111 
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The 4 node-disjoint paths of le~gth 4 are: 

00001111 (c) ---t 11110000(5) ---t 01111000(4) ---t 11101000( c) ---t 00010111 

00001111(6) ---t 10001011(4) ---t 00011011(5) ---t 10010011(6) ---t 00010111 

00001111(7) ---t 10001101(4) ---t 00011101(5) ---t 10010101(7) ---t 00010111 

00001111(8) ---t 10001110(4) ---t 00011110(5) ---t 10010110(8) ---t 00010111 

Case 1.2: dist(u,v) = n. For this case, we first get the dist(u,v)/2 = n/2 shortest 

paths as we did in Case 1.1. Assume the bits (excluding the first bit) at positions 

el, e2, . .. ,en-l are the same in u and v. If we exchange the first bit with any of these 

n - 1 bits, we get one bit "further" from the destination node. However, the use 

of c-edge will go from a node at distance d from destination to a node at distance 

2n -1- d from the destination. Thus, we can change bits at positions el, e2, ... ,en-l, 

to make the node of distance n + (n - 1) = 2n - 1 from node v, and then use the 

c-edge, to make the resulting node (2n-l) - (2n-l) = 0 edge from v, which is v. As 

a matter of fact, we can change bits el, e2, . .. , en-l and use the c-edge in any order, 

we still get to v after n edges. 

Example: In FHS(8,4), u = 0000111, v = 00110011, dist(u,v) = 4. The 5 node­

disjoint paths of length 4 are: 

00001111(5) ---t 10000111(3) ---t 00100111(6) ---t 10100011(4) ---t 00110011 

00001111 (6) ---t 10001011 (4) ---t 00011011 (5) ---t 10010011 (3) ---t 00110011 

00001111(c) ---t 11110000(7) ---t 01110010(2) ---t 10110010(8) ---t 00110011 

00001111(7) ---t 10001101(2) ---t 01001101(8) ---t 11001100(c) ---t 00110011 
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00001111(8) ---+ 100011Hj(~) ---+ 01110001(2) ---+ 10110001(7) ---+ 00110011 

Case 2: dist( u, v) is odd. 

Case 2.1: dist(u,v) < n. We still use the shortest path routing algorithm to find 

our first shortest path, say the path is [kl' k2' ... ,kdist(u,v)], then the other shortest 

node-disjoint paths between node u and v are listed as follows: 

That is, we only cyclically shift the operations applied on odd levels to the left, one 

operation per time. The operations applied on the even levels are the same for all 

the paths. 

It is easy to see that they are all of the same length, which is the distance between 

node u and v, and they are all legible paths from u to v. The number of these paths is 

equal to the number of operations applied on odd levels, which is (dist( u, v) + 1) /2 = 

(n + 1)/2. These paths being node-disjoint can be proved by similar argument as 

used in Case l. 

Then one alternate path of length dist( u, v) + 2 is: 

[c, kl' k 2, . .. ,kdist(u,v), c] 
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The justification is the same a~·ln Case 1.1. 

The other n - (dist( u, v) + 1) /2 parallel paths are in the form: 

The edge [PJ connects node u to a neighbour that is not utilized in the above shortest 

paths. Thus changes the bit p that is the same in nodes u and u. But the second 

appearance of p in the sequence changes this bit back. The edge [qJ is one "redundant" 

step to make sure edges [k1], [k2J ... are on the right kind of level (odd or even level). 

Also, if there is no such edge as [q], then it is impossible to make these paths node­

disjoint. And all the bits at positions kl' k 2 , . .. ,kdist(u,v) are changed by this sequence 

of operations. 

Example: In FHS(8,4), u = 00001111, v = 10010011, dist(u,v) = 3. The 2 node­

disjoint paths of length 3 are: 

00001111(5) --+ 10000111 ( 4) --+ 00010111(6) --+ 10010011 

00001111(6) --+ 10001011(4) --+ 00011011(5) --+ 10010011 

The one path using the c-edge is: 

00001111(c) --+ 11110000(5) --+ 01111000(4) --+ 11101000(6) 

--+ 01101100(c) --+ 10010011 

The 2 node-disjoint paths of length 7 are: 

00001111(7) --+ 10001101(2) --+ 01001101(5) --+ 11000101(4) --+ 01010101(6) 

--+ 11010001(7) --+ 01010011(2) --+ 10010011 
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00001111(8) --7 10001110(2r~ 01001110(5) --7 11000110(4) --7 01010110(6) 

--7 11010010(8) --701010011(2) --7 10010011 

Case 2.2: dist(u,v) = n. The first (dist(u,v) + 1)/2 = (n + 1)/2 shortest parallel 

paths are the same as in Case 2.1. The other shortest paths can be constructed in 

the same way as Case 1.2, which is combine changing the bits that are the same in 

u and v and using c-edge, the justification is also the same. 

Example: In FHS(6,3), u = 010101, v = 110010, dist(u,v) = 3. The 4 node-disjoint 

paths of length 3 are: 

D 

010101(4) --7 110001(5) --7010011(6) --7 110010 

010101(6) --7 110100(5) --7010110(4) --7 110010 

010101(2) --7 100101(3) --7 001101(c) --7 110010 

010101(c) --7 101010(2) --7011010(3) --7 110010 
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Chapter 6 

Conclusions 

In this thesis, we have studied the hyper-star graph, especially its regular form 

H S (2n, n). We proved some interesting properties of H S (2n, n), as well as designed 

some communication algorithms for it. In addition, we also studied briefly a variation 

of the hyper-star graph, the folded hyper-star graph. 

Specifically, we have discussed: 

• the relation between odd graphs and hyper-star graphs. This relation is useful 

in tracing the Hamiltonian cycles in hyper-star graphs. 

• the relation between even graphs and hyper-star graphs. This study leads us to 

relating the study of the Hamiltonicity problem of the hyper-star graphs to the 

middle-cubes. 

• the surface area of the regular hyper-star graph. 

• the Hamiltonicity problem of the hyper-star graphs. We proved the regular 

hyper-star graphs are isomorphic to the middle-cubes, and made the conjecture 
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that all regular hyper-star- graphs are Hamiltonian. We also presented one way 

of finding the Hamiltonian cycles in regular hyper-star graphs. 

• the neibourhood broadcasting algorithm on single-port model, our algorithm is 

optimal in view of the lower bound imposed by the communication model. 

• the broadcasting algorithm on all-port model. We used a greedy approach to 

send the information level by level, the algorithm is optimal time-wise and 

creates no redundancy. 

• the fault tolerance of the folded hyper-star graph. We proved that the folded 

hyper-star graphs are maximally fault-tolerant by constructing all the parallel 

paths between any two nodes. 

The hyper-star graph is constructed as a hybrid of the hypercube and the star graph. 

It is thus hoped to possess the merits of both the hypercube and the star graph. 

Despite all the nice properties of the hyper-star graph, a recursive decomposition of 

the hyper-star graphs has yet to be found. As introduced in the thesis, a regular 

hyper-star graph can be easily decomposed to two identical subgraphs. But these 

two subgraphs are irregular hyper-stars, so if we carry the decompositon one more 

step, the subgraphs we end up with will no longer be identical. For this reason, 

we consider the regular hyper-star graphs can not be recursively decomposed using 

the method introduced in this thesis. On the other hand, both the hypercubes and 

the star graphs can be recursively decomposed to several identical subgraphs with a 

smaller scale, and this property makes the design of such algorithms as broadcasting 

and sorting easy and neat. 

The above argument gives rise to two questions: 
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• Does the hyper-star graphs admit recursive characterization? In other words, 

can it be decomposed to several identical copies recursively using some other 

decomposition methods? If so, many algorithms can be designed in an easy and 

intuitive way. 

• Is being recursively decomposable a necessary condition for the design of al­

gorithms such as prefix sums, sorting? The answer is probably no. But the 

reason we focus on this property of a graph is that it makes the design and the 

implementation of many essential algorithms rather easy. 

With all this being said, finding an alternative way of decomposing the hyper-star 

graph and designing algorithm (prefix sums, sorting, ... ) in a non-recursive way 

would be interesting. 
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