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Abstract 

The Two-Connected Network with Bounded Ring (2CNBR) problem is a network de-

sign problem addressing the connection of servers to create a survivable network with 

limited redirections in the event of failures. Particle Swarm Optimization (PSO) is a 

stochastic population-based optimization technique modeled on the social behaviour 

of flocking birds or schooling fish. This thesis applies PSO to the 2CNBR problem. 

As PSO is originally designed to handle a continuous solution space, modification 

of the algorithm was necessary in order to adapt it for such a highly constrained 

discrete combinatorial optimization problem. Presented are an indirect transcription 

scheme for applying PSO to such discrete optimization problems and an oscillating 

mechanism for averting stagnation. 
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Chapter 1 

Introd uction 

This thesis undertakes the design of survivable and efficient networks using Particle 
Swarm Optimization (PSO). 

1.1 Network Design 

f This thesis addresses a classic network design problem: determining the most effec­
tive and efficient connections to make between servers in a network. That is, if the 
locations of servers in a network are already known, then the goal is to make connec­
tions between those servers such that they can intercommunicate, with a design that 
affords both efficiency of resources and reliability of communication. Naturally, the 
most reliable network design, and the design with the shortest distances for signals to 
travel, would be to have all servers directly connected to all other servers, for point­
to-point communications. However, in addition to being prohibitively expensive, it 
would also be impractical in terms of the high degree of intersecting cables, and the 
need to cut through numerous geographical and municipal boundaries repeatedly. 
Rather, it is more appropriate to intelligently select connections in a way that is both 
cost-efficient, and still reasonably reliable and resistant to failures. 

The suggested use of the network design considered for this thesis is Wide Area 
Networks (WANs), which typically span very large areas, sometimes even continents, 
and often connect other networks together. Additionally, the designs are also suitable 
for Metropolitan Area Networks (MANs) and Campus Area Networks (CANs), which 
may be used for interconnecting several public or commercial networks together across 
a city, between several buildings within a financial district, or for connecting Local 
Area Networks (LANs) across a large campus or other similar institution. A common 
connection type is optical fibre, either entirely buried underground, or laid along the 
ground, sometimes in trenches, in the case of some underwater cabling connecting 
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landmasses. However, this class of problem abstracts many real-world applications, 
such as logistics and transportation, computer networking [8], telecommunications 
[9], oil and gas lines [10], hospitals, universities, water and sewage systems. 

1.2 Survivability 

There are times when part of a network may cease functioning. This could be due to 
a server going offline, or it could be a result of a cable being broken. For example, 
trawling fishing vessels may damage an exposed submarine cable. If that were the 
only physical line of communication between two landmasses, then the only means of 
maintaining communication between the bodies would be to redirect traffic through 
satellites. However, as the volume of traffic increases, this becomes an increasingly 
infeasible solution [27]. Rather, it is a clear necessity to have a more survivable 
network; one that can retain the capacity to communicate with the other servers 
in the network, even in the event of a failure. There are different ways to judge 
survivability, but an accepted way is to gauge the connectedness of the network. 
That is, by examining the number of links or servers that can be removed without 
the remaining servers losing the ability to intercommunicate, the survivability of the 
network can be judged. Since the loss of a vertex (or server) is more disruptive than 
the loss of a link!, this thesis only addresses vertex-connectivity. 

If a network is sufficiently connected, then it may reroute communication through 
an alternate path. This is an underlying principle of modern network technologies 
such as self-healing rings [28]. So long as alternate paths exist, communication may 
be slowed, but will still be possible amongst the unaffected servers. 

The design of survivable cost-effective networks is a hugely difficult problem since 
the number of potential topologies for even small networks is extremely large [1]. Fur­
thermore, inefficient designs can fail to meet customer demands and inadequate ser­
vice performance [21]. The Two-Connected Networks with Bounded Rings (2CNBR) 
problem [2][3][4][5] was examined. The 2CNBR problem is an NP-Hard combinato­
rial optimization problem that was first studied by Fortz et al. [2] [3] and it involves 
designing a minimum cost network T satisfying two conditions: 

1. T contains at least two node-disjoint paths between every pair of nodes. This 
is the connectivity constraint [6]. 

IThe loss of a link can, at most, prohibit communication that would be routed between a pair 
of two vertices. The loss of a vertex prohibits all communication that would be routed through one 
of those vertices, including any coming from the other in that pair. Thus, it is equivalent to losing 
that link, as well as potentially several more. 
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2. Each edge of T belongs to at least one cycle whose length is bounded by a given 
constant K. This is the ring constraint [2]. 

The first condition defines 2-vertex-connectivity, henceforth referred to as biconnec­
tivity or two-connectivity. As a general rule of thumb, a biconnected network is 
reasonably survivable. The second condition ensures that a rerouted communication 
will not be diverted through an unacceptably long path, wherein the network designer 
may choose the threshold of what constitutes a reasonable ring. Additionally, it adds 
a new dimension to the problem. Two-connected networks have already been studied 
at great lengths in the past, but the addition of the ring constraint is relatively new, 
and has still received insufficient attention. Two flavours of 2CNBR have been iden­
tified. The first defines the ring constraint in terms of Euclidean edge lengths, and 
the second requires that each edge belongs to a cycle using at most K edges. This 
thesis focuses on the former flavour. 

1.3 Particle Swarm Optimization 

Since finding the optimal solutions for such NP-Hard problems is computationally 
f intractable [7], brute-force and other exact methods are not a realistic choice as 

the problem size increases. Instead, rather than pursuing optimal solutions, the 
goal becomes to find 'good' solutions within reasonable time. Such approximations 
are a natural application of metaheuristics. As Tabu[15] and Genetic Algorithms 
[16] [17] have been applied to 2CNBR in the past, this thesis focuses on Particle 
Swarm Optimization. 

Particle Swarm Optimization is a population-based metaheuristic inspired by 
flocking birds and schooling fish. Each particle continuously flies through some nth_ 

dimensional space, and the position in each of those n dimensions represents part of a 
complete solution. Over several iterations, the particles typically have some tendency 
to stay near to their individual best results, and some desire to move towards the best 
results found by other particles within the swarm. In general, the search is best used 
for problems that can be represented as vectors of floating point values, where there 
are no 'gaps' or other illegal values within the overall bounds of a dimension. They 
are also similarly not suited for problems where the value in one dimension constrains 
the legal values within other dimensions. Refer to section 2.3 for a more complete 
explanation of Particle Swarm Optimization, and Chapter 3 for a description of how 
it was applied to 2CNBR. 
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1.4 Objectives and Contributions 

This thesis has three primary objectives. First and foremost, it aims to add to the 
body of work dedicated to the 2CNBR problem; to supplement the metaheuristic work 
previously done [15][16][17]. Furthermore, it devises methodologies for applying PSO 
to such highly-constrained problems as the 2CNBR by use of an indirect transcription 
scheme and introduces novel techniques for avoiding stagnation and improving upon 
the initial results. Finally, it attempts to combine elements of pheromones from Ant 
Colony Optimization with PSO. 

Though network design, and even specifically the design of survivable networks, 
has already been explored in great depth, the addition of bounded rings introduced 
a new area of research for investigation, and this area has yet to receive sufficient 
attention. This thesis contributes to the relatively limited body of work devoted 
to the exploration of the Two-Connected Networks with Bounded Rings (2CNBR) 
problem. More specifically, this thesis expands upon the metaheuristic work on the 
2CNBR problem, which has previously only consisted of Tabu search and Genetic 
Algorithms (refer to Chapter 2). 

As such, this thesis, and its preliminary work published in [25], represent the first 
time that Particle Swarm Optimization (PSO) has been applied to this problem. PSO 
is normally suited for continuous spaces, not discrete optimization and the constraints 
and discrete nature of this problem would normally preclude the use of a traditional 
PSO. As explained in Chapters 2 and 3, this necessitated the implementation of a 
novel indirect transcription scheme to get past the natural limitations of PSO, as 
well as introducing oscillation to stave off stagnation. These innovations upon the 
standard PSO represent a significant contribution in and of themselves. 

1.5 Overview 

Chapter 2 provides a formal definition of the 2CNBR problem, as well as background 
information on particle swarms. Chapter 3 details the design and experiments of one 
application of PSO to 2CNBR, as well as an improved form thereof. Chapter 4 details 
the design and experiments of another variation that incorporates some qualities of 
ant colony optimization. Chapter 5 contains the final conclusions and discussions, as 
well as possible future work. 



Chapter 2 

Background 

This chapter formally defines the Two-Connected Network with Bounded Rings prob­
lem, including the identification of solutions of its component constraints that are 
independent of this thesis's contribution. It then provides background information 
on particle swarms in general, again separate from the specific contributions of this 
thesis. 

2.1 2CNBR Defined 

We provide a mathematical formulation of the 2CNBR based on that derived and 
used by Fortz et al. [3]. Let G = (V, E) be an undirected graph, where V represents 
a set of vertices, and E is the set of edges that represent possible pairs of vertices 
between which a direct link can be made. Each edge e = (i,j) E E (where i and j are 
any two vertices), has a non negative cost Ce = Cij , and a length dij . The constant 
K defines the size of shortest cycle (ring) to which each edge belongs. Let the cost 
of a network T = (V, ET) (where ET ~ E is a subset of possible edges) be denoted 
by C(ET) = EeEET Ceo 

Given graph and V' ~ V, the edge set 8G (V') = Hi,j} E Eli E V',j E V\V'} is 
called the cut induced by V'. Let V - w = V\ { w} and E - e = E\ { e} be the subsets 
as a result of removing one vertex or one edge from the set of vertices or edges. Thus, 
G - w represents the graph (V - w, E\8( {w}), as a result of removing a vertex wand 
its incident edges from G [6]. 

Each subset ET ~ E is associated with an incidence vector, defined as y = 

(Xe)eEEE{O,l}IEI by setting Xe = 1 if e E ET, or Xe = ° otherwise. On the other 
hand, each vector y E {a, 1 }IEI induces a subset ET = {e E Elxe = I} of the edge set 
E. For any subset of edges ET ~ E, X(ET) = EeEET Xe is defined. 

Next, for each edge e E E, ~e is defined as the set of cycles in G that includes 

5 
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edge e whose length is less or equal to the constant K. To differentiate which cycles 
are used in imposing ring constraints for a given edge, a new variable is introduced 
for each feasible network containing a given edge for all edges in the network. Hence, 
new binary variables ~c, c E ~e, e E E, such that 

if cycle c is in the solution ET 
and covers edge e 
otherwise 

Now the 2CNBR can be mathematically formulated as follows [3]: 

(1) min ~eEE Cexe 

s.t 

(2) x( 8(V')) :2: 2, V' c V, 0 i- V' i- V 

x(8a - w(V')) :2: 1,w E V, V' c V\{w}, 
(3) 0 i- V' i- V\{w} 

(6) X e , ~c E {O, 1}, c E ~e, e E E 

where inequalities (2) are called cut inequalities and they ensure that removing an 
edge preserves connectivity. Inequalities (3) are called node cut inequalities and they 
ensure that the resulting graph has no articulation vertex. Using inequalities (2) 
and (3) together with Xe E {O, 1}, e E E based on (6), we obtain the formulation 
of the minimum 2-connected network problem as studied by Grotschel et al. [35]. 
In addition (4) and (5) are the ring constraints that extend the 2-connected network 
problem into the 2CNBR. Constraint (5) restricts the contribution of cycles that share 
some edges. Further details of this mathematical formulation of the 2CNBR problem 
is found in work done by Fortz et al. [3]. 

Some assumptions are made in dealing with this problem: each node location is 
given; bidirectional links are allowed, but no parallel edges are allowed; no link repair 
is considered, and each link cost is fixed and known. According to graph theory [6], 
for any graph representing a network to be termed as having two node-disjoint paths 
between every pair of nodes, the feasible condition must hold: for any two nodes in a 
network topology, there exists a cycle containing both of them. 
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2.1.1 Testing for Two-Connectivity 

As previously mentioned, the first constraint in the 2CNBR problem is that there must 
be two node-disjoint paths between every pair of vertices within the network. This 
means that, for any candidate solution to the problem, there must be a reasonable 
way of testing if this property is present within a graph. 

Actually doing a full search to find each separate path between each pair of vertices 
would be computationally prohibitive, not to mention logically unnecessary. Rather, 
it is preferable to address the problem in terms of articulation points. 

Articulation Points 

When considering biconnected graphs, one might also consider biconnected compo­
nents [26]. Specifically, a biconnected component is an equivalence class of edges 
that lie within common cycles. However, what is important is that two biconnected 
components may have at most one common vertex, which is an articulation point, 
also known as a cut-vertex. 

Aho et al. [26] describe an articulation point thus: Let G = (V, E) be a connected, 
undirected graph. A vertex a is said to be an articulation point of G if there exist 

j' vertices v and w such that v, w, and a are distinct, and every path between v and W 

contains the vertex a. 
That is to say, if a is removed from G, then G will be split into at least two 

separate subgraphs. This means that, since a biconnected graph must possess at 
least two node-disjoint paths between every pair of vertices, a biconnected graph 
must possess no articulation points. 

This means that there are two approaches that one may take to verifying that a 
graph is biconnected. One could find the biconnected components of a graph, and 
know that, if there is only one such component, then it is biconnected. Or, one could 
search for articulation points, verifying that it is biconnected if no such points exist. 
As it so happens, the methodologies for both techniques are virtually identical. For 
this work the algorithm used was a modification of Aho et al. [26] (ch. 5) 's algorithm, 
which originally found biconnected components, identified by their articulation points. 

Identifying the Existence of Articulation Points 

The graph seen in Figure 2.1a is biconnected, as it is identical to its biconnected 
component. However, the graph seen in Figure 2.1b is not biconnected, as it has two 
biconnected components. Alternatively, one can say that the graph in Figure 2.1 b is 
not biconnected because it has a vertex, E, which is an articulation point. 

Conceptually, the method proposed by Aho et al. [26] was to create a depth-first 
spanning tree of the graph. A vertex, a, is an articulation point if and only if [26]: 
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F 

(a) one biconnected component 

----I •• ~ 
F 

(b) two biconnected components 

Figure 2.1: Two Graphs and Their Biconnected Components 

1. a is the root and a has more than one son, or 

2. a is not the root, and for some son s of a, there is no back edge between any 
descendent of s (including s itself) and a proper ancestor of a 

This effectively means that a vertex is an articulation point if its removal would 
separate the tree into two components, which is analogous to the original problem. 
It is worth noting that it does not matter how the root is chosen for the tree. As the 
goal is to locate cycles, the end result will be the same irrespective of which vertex 
is chosen. Figure 2.2 depicts the depth-first spanning trees of the graphs shown in 
Figure 2.1. Again, we can see that, in Figure 2.2a, there is no vertex that would 
separate any son or descendent from its proper ancestors. We also see that, in Figure 
2.2b, the removal of vertex E would separate D and F from their ancestors. 

As stated, the purpose of Aho's algorithm was to actually produce the edge lists 
of biconnected components, identified by finding these articulation points. However, 
the only concern for this thesis was to identify two-connected networks, and thus 
actually locating the individual biconnected components of an incomplete network 
is of no use. As such, the algorithm was somewhat simplified to merely test for the 
existence of articulation points. The actual method used is shown in algorithm 1. 

Note that the algorithm starts by assuming that the network is biconnected, until 
proved otherwise. This is because the graph is biconnected unless an articulation 
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Algorithm 1 Two-Connectivity Test 
function checkTwoConnectivity 
Input: A network (graph) to be tested 
Output: A boolean, indicating if the biconnectivity constraint is satisfied 
begin 

biconnectedFlag+-true 
count+-l 
for each vertex in vertices do 

vertex.flag+- false Ilmark vertex as unvisited 
end for 
twoConnectivity D FS (root Vertex) 
for each vertex in vertices do I I special case for disconnected vertices 

if vertex.flag= false then 
return false 

end if 
end for 
return biconnectedFlag 

end 

procedure twoConnectivityDFS 
Input: A vertex, vertex 
begin 

vertex.flag+-true Ilmark vertex as visited 
vertex.dfn+-count Ilassign an ID to this vertex in the tree 
vertex.low+-count Ilidentifies highest ancestor in this component 
count+-count+ 1 
for each n in vertex.neighbours do Ilfor each connected vertex ... 

if n.flag= false then Ilif n is unvisited ... 
n.father+-vertex 
twoConnectivityDFS( n) 
if n.low~ vertex.dfn then Ilif vertex is an articulation point ... 

biconnectedFlag+- false 
end if 
vertex.low+-min( vertex.low,n.low) 

else if vertex .fatheryf n then 
vertex.low=min( vertex.low,n.dfn) 

end if 
end for 

end 

9 
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(a) (b) 

Figure 2.2: Depth-First Spanning Trees of Figure 2.1 Graphs 

point is present (and eventually found) within it. The rootVertex is simply whichever 
vertex is chosen for the root of the tree. As mentioned earlier, it does not matter 
which vertex is chosen; in the examples shown in Figure 2.2, it was simply A. 

I The final implemented algorithm was, of course, slightly different, as it needed to 
include minor improvements for overall efficiency. For example, if the network being 
tested had not yet assigned at least two edges to each vertex, then there would be no 
possibility of the network being biconnected; as such, it would be pointless to bother 
with such a search. Similarly, if a network were to pass the two-connectivity test, but 
fail the bounded ring test (explained below), then, upon simply adding,more edges, 
there would be no need to retest the biconnectivity constraint l . And, finally, when the 
algorithm found an articulation point, it did not actually continue running, but rather 
immediately returned false, as continuing to search for more articulation points, when 
only one is needed to declare the network invalid, would only have wasted computing 
time. However, none of these modifications change the actual functionality of the 
algorithm, merely the speed of execution, so, for the sake of clarity, they are not 
included in algorithm 1. 

2.1.2 Testing for Bounded Rings 

As previously mentioned, the second constraint in the 2CNBR problem is that every 
edge present must be part of some ring whose cost does not exceed the specified 
bound. It may, of course, also be present in other rings that exceed that upper 

lSimply put, if a network is biconnected, then adding more edges cannot decrease the number of 
node-disjoint paths between vertices. 
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bound, as this will often be unavoidable. There are different approaches to testing 
this constraint. One na"ive approach is shown in algorithm 2. 

Algorithm 2 N a"ive Bounded Ring Test 
Input: A network (graph) to be tested 
Output: A boolean, indicating if the ring constraint is satisfied 
for each edgel in edges do 

for each edge2 in edges do 
for each edge3 in edges do 

if edgel' edge2 and edge3 are all different then 
if (Iedgell + ledge21 + ledge3!) :S K - bound then 

Flag edgel' edge2 and edge3 as verified 
end if 

end if 
end for 

end for 
end for 
for each edge in edges do 

ir' if edge is not flagged as verified then 
'. return false 

end if 
end for 
return true 

However, this would be far too computationally expensive, considering how many 
times it would need to be run in an algorithm. The na"ive approach is just that: na"ive. 
An alternative approach would be to first test only edge triangles (as they seem to 
be most common for rings), and then only further test those edges that are not part 
of ring-satisfying triangles. However, in the event that a network were to consist of a 
large number of quadrilateral rings, it would devolve into the original problem with 
a na"ive approach. 

Another approach would be to first remove the edge to be tested, and then attempt 
to find an alternate path between the tested edge's vertices, wherein the cost of the 
new path plus the cost of the removed edge do not collectively exceed the specified 
bound. See Figure 2.3 for an illustration. The dashed lines represent edges present in 
the network being tested. The solid line represents the specific edge currently being 
tested. In the second halves of each subdiagram, the bold lines represent alternate 
paths to connect the vertices of the edge being tested. That is, if edge B D is being 
tested, then each sub diagram shows an alternate path from vertex B to vertex D. 
Since edge BD has a cost of 8, and the k-bound is 25, the alternate path must have a 



CHAPTER 2. BACKGROUND 12 

cost not exceeding 17 (25-8 = 17) if the network is to be verified as legal. However, in 
Figure 2.3b, there does not exist an alternate path that does not exceed the remaining 
allowable cost. 

:8 

® 5® 5 F k-bound: 15 

(a) legal alternate path exists 

5®5 IB .•. 6 @ 

:8 

D·(j···® 
5®5 

(b) no legal alternate path exists 

Figure 2.3: Finding an Alternate Path When There Is and Is Not a Legal Ring 
Containing the Edge 

The alternate path could be found using Dijkstra's algorithm [36]. Certainly, 
if the shortest alternate path between the two vertices yielded a cost which did not 
violate the ring constraint, then the ring constraint would be valid for that edge. And, 
similarly, if even the shortest alternate path between the vertices was still insufficient 
to satisfy the ring constraint, then the network could not be validated as a 2CNBR­
compliant network. However, going so far as to find the shortest alternate path may 
be excessive. For example, if there are multiple alternate paths between the vertices 
that all satisfy the constraint, then it does not matter which of those paths is the 
shortest. It is the mere existence of any of them that contributes towards validating 
the network. Similarly, if no such alternate paths at all exist, then it is a fool's errand 
to continue trying to find the shortest path once it is apparent that any such path 
will violate the constraint anyway. 
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A Simple Depth-First Search 

An alternative is to simply use a basic depth-first search algorithm to locate alternate 
paths between the vertices of the removed edge. Such an algorithm would merely 
return a true if it found an alternate path that did not violate the constraint, return 
a false if it could not find any alternate paths at all, and halt prematurely and return 
a false if it was not done searching but had already exceeded the allowable upper 
bound. This way, it does not invest unnecessary computation time into finding the 
shortest path when numerous other paths would do just as well. It also does not 
waste time pursuing paths after the bound is exceeded. In short, it acknowledges 
that it isn't the actual alternate path itself that matters, but simply the existence of 
such an alternate path. 

Algorithm 3 shows how the depth-first search works. Note that it has a conditional 
before testing each edge, to check if that edge has already been verified. The reason 
this situation could arise is because of an efficiency trick. The basic methodology is to 
verify each edge in the network one-by-one. However, if an edge is verified by showing 
that it is part of some ring that doesn't exceed the k-bound, then-that means that, 
naturally, all the other edges in that ring must also be part of such a ring. As such, 
they can all be marked as verified, thus eliminating the need to separately verify them 

j later on. As with the case of the biconnectivity test, the actual implemented algorithm 
had other efficiency-increasing measures not shown in algorithm 3. For example, the 
edge verification flags are not actually set within the bounded-ring test's function. 
Rather, they are set externally. The reason is that, for algorithms that progressively 
add more edges and retest, there is no need to repeatedly re-test edges that have 
already been verified. If an edge is part of a bounded ring, then adding more edges 
to the network cannot change that quality. Additionally, code was added to prevent 
backtracking within the DFS, simply to encourage the algorithm to spread out to find 
the other vertex. 

2.1.3 Evaluation 

The actual goal of the algorithms, beyond simply satisfying the biconnectivity and 
bounded ring constraints, is to minimize the total cost of the network. As mentioned 
earlier, that cost can either be taken as the total Euclidean distances of all of the 
included edges, or it can simply be the total number of edges. For this thesis, the 
former was chosen. However, to allow direct comparison with the works of Ombuki, 
Ventresca and Fortz, it is necessary to use the precise same method of evaluation. 

Specifically, the length of each edge is calculated, and then rounded to the nearest 
integer value. It is those integer lengths that are then summed for the total network 
cost. As such, all network costs listed and compared will always be integers. The 
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Algorithm 3 Bounded Ring Test Using Depth-First Search (DFS) 
function checkKBound 
Input: A network (graph) to be tested 
Output: A boolean, indicating if the bounded-ring constraint is satisfied 
begin 
kBoundFlag~true 

for each edge in edges do 
edge.flag~ false Ilmark edge as unverified 

end for 
for each edge in edges do Ilfor each edge in the network. .. 

if edge.flag=false then Ilif this edge has not been verified ... 
from=edge.from I lone vertex of edge 
to=edge.to lithe other vertex of edge 
remove edge from edges 
if boundedRingDFS(jrom,to,edge.length) then 

add edge back to edges 
mark edge as verified 

else 
f add edge back to edges 

kBoundFlag~ false 
break 

end if 
end if 

end for 
end 

function boundedRingDFS 
Input: Vertex from, vertex to, cost so far 
Output: A boolean, indicating if an edge is verified 
begin 

if from=to then Iia stopping condition 
return true 

end if 
for each e in from.edges do 

if e.length+cost =:;kbound then 
if boundedRingDFS( e.other,to,e.length+cost) then 

e.flag=true 
return true 

end if 
end if 

end for 
end 

14 
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lower the cost, the better the algorithm performed. 

2.2 Previous Work 

Although designing a survivable two-connected network at minimum cost (so called 
low-connectivity) has been widely studied [8][9][10][12], and efficient methods for solv­
ing it are already available [13] (for a comprehensive survey of network design prob­
lems and their applications, see [14]), the extension of two-connected networks to 
include bounded rings was recently introduced by Fortz et al. [2][3]. Fortz et al. 
[2] [3] proposed adding ring constraints to the two-connected network such that the 
shortest cycle to which each edge belongs does not exceed a given maximum length 
K. This is a relevant extension since the ring constraints limit the region of influence 
of the traffic which necessarily needs to be re-routed. Furthermore, a minimum cost 
two-connected network is often found to be a Hamiltonian Cycle. This means that if 
a connection is broken, the flow which was routed using such connection needs to be 
re-routed using all the edges of the network; this is an undesirable effect. 

Fortz et al. [3] applied a branch and cut method for the two-connected network 
$ with bounded rings problem, and showed that the algorithm is only effective for small 

instances.Thus he presents a set of constructive heuristics and a Tabu search approach 
to solve this problem [2][15]. Ombuki et al. [16] introduced a genetic algorithm using 
permutation representation with a problem-specific crossover operator used to gener­
ate feasible solutions for to the 2CN BR. Ventresca et al. [17] further expanded on 
the work in [16] by using a binary representation and incorporating a non-problem 
specific crossover operator. They demonstrate the GA's effectiveness with a compar­
ative study with published Tabu search [15]. This thesis seeks to further contribute 
to the use of metaheuristics for 2CNBR by investigating the applicability of a simple 
particle swarm optimization algorithm for the problem. 

Despite various literature reporting meta-heuristics applications to network de­
sign and optimization issues ([8][9][10][13], among others) the problem of designing 
two-connected network topologies with bounded rings using metaheuristics has not 
been fully investigated. The following are examples of previous work using population 
based meta-heuristics for related ring-based design problems. He et al. [18] intro­
duced an evolutionary algorithm for ring-based SHD optical core networks. White et 
al. [1] introduced an efficient GA (for large problem spaces) with a hybrid bit and 
permutation representation for designing a ring based network. Armony et al. [19] 
present a genetic algorithm for solving SONET ring structure design problems. Chen 
and Zheng [20] present a GA for ring networks in order to balance the traffic loads 
on ATM rings and minimize the overall capacity requirement of the rings. 
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2.3 Particle Swarm Optimization 

In this section we provide a brief overview of the general concept of particle swarm 
optimization. PSO [29][30][31] is a metaheuristic that was inspired by flocking birds. 
As birds scavenge for food, they fly over an area. Sometimes they will follow their 
own sense of smell, but they will also tend to follow other birds in the flock. This 
duality defines the balance that particle swarms attempt to strike between a particle 
doing its own thing, and it collaborating with the rest of the swarm. 

PSO has been used for numerous types of optimization, including camera control 
[22], Job Shop Scheduling [23], and the training of Artificial Neural Networks [24]. In 
fact, by suitably modifying the PSO implementation, and choosing ideal parameters 
for the task, particle swarms can be applied to a wealth of different applications. 

In normal Particle Swarm Optimization, a particle contains a complete solution 
to the problem being optimized. More specifically, the position of the particle in 
nth-dimensional space represents a complete solution to the problem, where n reflects 
the number of values necessary to create a feasible solution to that problem2. 

A swarm, analogous to a population in Genetic Algorithms or other similar 
population-based search techniques, is the collection of all particles within the sys­

f tem. Thus, a swarm contains multiple candidate solutions to the problem being 
solved. Though each member particle within a swarm is an independent entity, there 
still may be some interaction between the particles within a swarm. 

The particles are constantly moving through the nth-dimensional space, with some 
velocity vector. This means that the candidate solutions are being continuously up­
dated. It is by choosing a suitable mechanism to modify the velocities that the 
positions may approach 'good' solutions. Specifically, the velocity update rule should 
typically promote exploration and also afford the particles some degree of cooperation 
with the other particles within the swarm, to achieve a common goal. 

As previously mentioned, particle swarms are suitable for a wide range of prob­
lems. However, there are certain qualities that will be present in problems for which 
particle swarms are suitable. First, for a given problem instance, the particle position 
will be of a fixed number of dimensions3 . Additionally, since the particle's position 
is typically a vector of floating point values, appropriate problems will have solutions 

2Compare this concept to chromosomes in Genetic Algorithms, wherein a chromosome represents 
a complete solution. In an example such as the weights of an Artificial Neural Network, a chromosome 
could be identical to a particle's position if both vectors contained floating point values representing 
the same solution. 

3That is, if there are 100 dimensions at the beginning of a run, then each particle position will 
still have precisely 100 dimensions at the end of computation. However, there is no requirement that 
each dimension have influence over the transcribed solution, as such behaviour is strictly within the 
realm of the fitness evaluation function. 
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that can somehow be created from such vectors. Of course, even problems requiring 
integers can at least sometimes still be solved, by either truncating or rounding the 
decimals. However, an additional requirement is that the particles be permitted to 
move freely throughout the search space. That is, though there may be some upper 
and lower bound on each dimension, they must be continuous, with no 'holes' or 
'gaps' within. Furthermore, the position of a particle within one dimension cannot 
limit the allowable positions within other dimensions. That is, it must be possible 
for the change in position within each dimension to be handled independently. This 
implies difficulty when attempting to use PSO for certain combinatorial optimization 
problems. 

Though Particle Swarm implementations vary greatly from instance to instance, 
there are some basic commonalities nearly always found. First, there is typically some 
notion of inertia, such that a particle's velocity will tend to maintain some portion of 
that velocity across multiple iterations. Second, there is a cognitive aspect, such that 
a particle will tend to drift towards solutions that it has personally identified as being 
'good'4. The third, and final, standard quality of Particle Swarms is the concept 
of social interaction; that is, the tendency to drift towards the best solution found 
by some other particle within the swarm5 . Oftentimes [22], there is an additional 

I explorative factor, which prompts the particle to accelerate independently of any past 
knowledge at all. 

2.3.1 Basic PSO Algorithm 

The basic particle swarm algorithm is fairly simple, and typically independent of the 
problem being solved. It is shown in algorithm 4. 

Looking at the algorithm, one can see that there are two key points where inno­
vation can be introduced. The fitness evaluation function, particularly by virtue of 
the mechanism by which the position is transcribed into a working solution, will have 
a great influence on the overall effectiveness and viability of the algorithm. And the 
manner in which the velocity and velocity update are handled will directly control the 
movement of the particles, and thus by extension the progress through the solution 
space. The velocity update rule is further explained later in this chapter. 

4That is, a particle will tend to be attracted to the best solution it has personally found so far 
in that run. 

5The particles may drift towards the best solution found by the entire swarm, or towards the 
best solution found by some neighbour, wherein that neighbour can be chosen in numerous different 
ways. 
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Algorithm 4 Basic PSO Skeleton 
Randomize positions and velocities of particles 
for iteration = 1 to MAXGEN do 

for all particles in swarm do 
Evaluate particle fitness 

end for 
for all particles in swarm do 

Calculate new velocity 
Update position based on velocity 

end for 
end for 

2.3.2 Canonical Particle Swarms 

The original, canonical Particle Swarm velocity update mechanism is as follows: 

-+ I -+ -+ ( =!b -+) -+ ( -+gb -+) V = W . v + Cl . rl' x - x + C2 . r2' x - x 

where: 

.. w is inertia. 

• V f is updated velocity vector for the next iteration. 

.. v is the current velocity vector. 

CD 1 is the particle's current position. 

.. ifb is the position of the best solution this particle has found. 

e 19b is the position of the best solution the system has found. 

• Cl is a multiplier representing the particle's cognitive aspect. 

• C2 is a multiplier representing the particle's social aspect. 

18 

• rl and r2 are random multipliers, with component values ranging from [0 .. 1].6 

To include the additional explorative factor, which has become common (and practical 
for avoiding premature convergence and stagnation), it becomes: 

-+ f -+ -+ ( =!b -+) -+ ( -+gb -+) -+--+ V = W . v + Cl • rl' x - x + C2 . r2' x - x + C3 • r3 . Z 

where: 

6Note that Tl and TZ are vectors here, but many will choose to use scalar random multipliers 
instead. 
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• z is a random vector. 

• C3 is a multiplier representing the particle's explorative aspect. 

• r"3 is a random multiplier, with component values ranging from [0 .. 1]. 

For the rest of this thesis, whenever a 'canonical' particle swarm is mentioned, it will 
assume the presence of this explorative aspect. 

As can be seen in the mechanism for the velocity update rule, the particles are 
intended to be able to float wherever they wish. As such, PSO is particularly well­
suited for problems for which solutions can be translated from multiple floating point 
values, and where the positions of the particles in each dimension are not subject to 
specific constraints.7 

2.3.3 Neighbours and Neighbourhoods in Particle Swarms 

Since a major factor in PSO is the influence of social interactions, it begs the question 
of how the system chooses which other particles a given particle may interact with 
for social collaboration. The two issues that need to be defined are the number of 

I other particles with which a particle may interact, and the method by which those 
other particles are selected. Though there are several options, there are two primary 
social mechanisms for dealing with particle cooperation. 

Global social behaviour 

The global social behaviour, used in the canonical PSO algorithm, is good for coop­
eration and quick convergence. It is seen in the canonical PSO velocity update rule 
as the term, C2 • r2 . (x9b - x), where x9b is the position corresponding to the 'best' 
solution found thus far by any particle in the system. It can be considered a special 
case of the neighbourhood behaviour, where the neighbourhood size is taken to be 
equal to the size of the swarm. That is, the global social behaviour can be replicated 
by implementing the neighbourhood social behaviour and simply ensuring that every 
particle lies within the neighbourhoods of all other particles within the swarm. 

Neighbourhoods 

With the neighbourhood behaviour, each particle is drawn towards the best solutions 
found by any of its neighbours. There are two factors which can determine how a 
particle's neighbours are chosen. The first is the size of the neighbourhood chosen. 

7That is, one should assume that a particle will not have to 'skip' over any portions of a dimension; 
or have one dimension's position constricted dependent on the position in another dimension. 
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The second is the actual mechanism by which neighbours are identified, and there are 
two choices for this as welL The first choice is to use the proximity8 of other particles 
to the particle being considered. If a particle is within a specified radius of the target 
particle, then it is considered to be a neighbour. The second option is to predefine 
each particle's neighbours before optimization even begins. Since the particles will 
naturally drift towards their neighbours, it can normally be expected that a particle 
will end up physically close to its neighbours anyways. 

2.4 Preprocessing 

In a simple approach to 2CNBR, the algorithm would assume that connections are 
permissible between any and all pairs of vertices, as this is part of the original problem 
definition. However, in practice, such an approach could present problems almost 
immediately, when one considers the K-bound. Recall that any edge included must 
be part of at least one ring wherein the ring's cost does not exceed a bound K. There 
are conceivably some problems where the length of some potential connections would 
negate the possibility of belonging to such a ring. In the (trivial case/worst-case 

f scenario), a potential connection between two vertices could, by its own cost alone, 
be enough to violate the ring constraint. 

Refer to Figure 2.4 for an example showing all of the possible connections between 
the vertices of a network. In this example, edge AF has a length of 16. The smallest 
ring that can include edge AF would have a total cost of 34. If the K-bound was 25 
for this problem, then the decision to include edge AF would automatically guarantee 
that no subsequent network, irrespective of how many more edges were added, could 
ever be considered legal9 until that edge was removed. 

Figure 2.4: Example Depicting Mandatory Violation of the Ring Constraint 

8In this case, there are different ways to determine the 'distance' between two particles, including 
the Euclidean distance or edit metrics across the dimensions of each particle. 

gIn this context, and for the remainder of this thesis, the term legal will be used to describe the 
quality of satisfying both the two-connectivity and ring constraints. 
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All such edges, wherein their inclusion would guarantee an illegal network, can 
be deemed illegal edges. This does not mean to say that the original problem defini­
tion explicitly forbids their inclusion, but rather that there is no possibility of their 
belonging to any legal solution. Algorithm 5 depicts a simple method of identifying 
edges as being either legal or illegal. 

Algorithm 5 Illegal Edge Removal 
Input: A set of all possible edges in a fully-connected graph 
Output: A set of all legal edges in a graph 
for each edgel in edges do 

for each edge2 in edges do 
for each edge3 in edges do 

if edgel' edge2 and edge3 are all different then 
if (Iedgell + ledge21 + ledge31) ~K - bound then 

Flag edgel' edge2 and edge3 as verified 
end if 

end if 
end for 

j end for 
end for 
for each edge in edges do 

if edge is not flagged as verified then 
Remove edge from the set 

end if 
end for 

In order to do this preprocessing, the set of all edges in a fully-connected graph is 
the starting point. The illegal edges are then removed from that set, resulting in a set 
consisting solely of legal edges, which may be considered when creating the network. 
It should be noted that this algorithm is very similar to the naIve bounded ring test, 
algorithm 2. That algorithm was rejected for being computationally infeasible, but 
this algorithm is still computationally reasonable. The bounded ring test, for many 
algorithms, would need to be performed numerous times. It may need to be performed 
multiple times during the construction of a feasible solution, for subsequent evolved 
networks, and in the case of population-based algorithms, the number of tests would 
also be multiplied by the population size. As such, it the concern became the growing 
computational cost from multiplying an inefficiency several times over. On the other 
hand, this preprocessing need only be performed a single time prior to the application 
of a network construction algorithm. This is true even if multiple runs need to be 
performed on the same problem. A single application of this algorithm takes less than 
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one second to perform for even the most difficult problems attempted in this thesis. 
As such, even though a comparable algorithm was rejected for use millions of times, 
this one has a negligible impact on total computation time. , 



Chapter 3 

Priority .... Based PSO 

This chapter details the techniques by which PSO was used for the 2CNBR problem. 
It defines the initial issues that had to be resolved, and the results of preliminary 
experiments. Since those early results were unacceptable, it then continues to explore 
a modification to the original design that vastly improved the system's effectiveness, 
and includes experimental parameters and a more complete listing of results. Those 

f results are then compared against past metaheuristic work. 

3.1 Applying PSO to 2CNBR 

The first and foremost problem with trying to use PSO for 2CNBR was in deciding 
how to represent a network in a particle's position. That is, how can one transcribe a 
vector of continuous floating point values into a legal network? The first representa­
tion considered was using the position in each dimension as a decision for including a 
corresponding edge. If x ~ 0.5, then the edge would be included, otherwise it would 
not. However, the first problem with this is that it could allow for illegal networks. 
Additionally, it did not seem as though the swarm would have had a good chance 
at improving solutions, as the positions would strictly define 'on' or 'off', and the 
velocities would not be expected to train positions that happened to remove costly 
edges while adding better edges simultaneously. To understand this idea, consider 
a genetic algorithm(GA). A GA can have two particularly useful strengths. First, 
it can use operators which ensure that the solutions are always legal. For example, 
crossover operators can have built-in mechanisms for ensuring that the child chromo­
somes also have feasible transcribed solutions. Mutation operators can remove one 
edge, but also add others, to guarantee that the constraints are still satisfied. Second, 
and similarly, it can connect the acts of addition or removal of some edges with the 
addition or removal of other edges. This may not sound like a significant quality, but 

23 
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it can be essential to an algorithm's ability to improve upon a solution. Oftentimes, 
for this type of problem, the only way that a network can have its cost reduced is if 
one or more edges are removed, and better edges are added in their place. 

Compare this to the previous description of PSO. The position in one dimension 
should not have any direct impact on the position in another dimension. This means 
that the first considered methodology would not be appropriate, as it would almost 
certainly need to rely primarily on random chance to improve results. i.e. one edge 
drifts towards off while another edge, that happens to be able to satisfy the con­
straints, coincidentally drifts towards on. Indeed, this became as large a concern 
as the more basic problem of ensuring legal networks from each particle position. 
The solution to one turned out being the solution to both: use an indirect encoding 
scheme that both guarantees legal networks and allows edges to be able to 'swap' 
with each other, all without impeding the particle's ability to float freely without 
special restrictions. 

Algorithm 6 Priority-Based Particle Transcription and Evaluation 
for aU particles in swarm do 

QuickSort positions, from lowest to highest 
i while Feasible network not yet constructed do 

Add edge with next lowest position 
Check two-connectivity and k-bound constraints 

end while 
end for 

In the simplest of terms, the solution was to create a priority list. Each dimen­
sion in a particle's position corresponds to the priority or desirability of a potential 
edgel. The closer the particle's position is to the origin (i.e. to zero) within a given 
dimension, the more desirable the corresponding edge is. That is, if a particle's posi­
tion in two dimensions, i and j, have values of, for example, 23.1 and 13.2, then the 
edge corresponding to dimension j would be added before the edge corresponding to 
dimension i. 

The entirety of the transcription is shown in Algorithm 6. Note that, for a given 
position transcription, the constraints will be checked multiple times. This is why 
the bounded-ring test needed to be more efficient than the naIve approach. A simple 
transcription can be seen for two particle positions in Figure 3.1. Each ray in the 
figure represents one dimension. The black dot indicates the particle's position within 
that dimension. In this example, no numbers are provided. This is because it is only 

lA potential edge is an edge that would be in a fully-connected network, but which has not 
already been precluded during the preprocessing stage. Refer to section 2.4 to see how these edges 
are identified. 
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Figure 3.1: Particle Transcription Illustration 
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the relative distances from the origin that matter. In Figure 3.1a, the edges are added 
in the order [7,2,4,3,5,0,6,1]' resulting in a network containing all allowable edges. In 
Figure 3.1b, however, the algorithm stops after edge 1. 

In general, there are two observations worth noting about this algorithm: 

1. Since it stops once both constraints are satisfied, not all edges will necessarily 
be included. 

2. If the position in one dimension increases, or the position in another decreases, 
then the effective priorities of two edges will be 'swapped'. 

Of course, the former is an obviously desirable scenario. If the best solutions always 
included all edges, then there would be nothing to optimize. The important points 
are that the algorithm terminates at a reasonable time, and that it is a reasonable 
way to use a fixed number of dimensions to represent a variable number of edges. 
The latter is arguably far more significant. It provides a mechanism by which the 
status of one edge's dimension actually can affect the status of another edge in the 
transcribed solution. That is, it reclaims at least a portion of the flexibility of genetic 
operators. As such, a basic limitation of particle swarms with direct transcriptions 
can be avoided. 
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3.2 Preliminary Experiments 

A first set of experiments was run to gauge the efficacy of the basic system. Since 
the results were to be compared against previous work by Fortz [15], Ventresca and 
Ombuki [17], the same datasets used in their work were also used here. Specifically, 
they were sets originally randomly generated by Bernard Fortz for his PhD thesis [2]. 
They all consist of some number of points (vertices) distributed in a two-dimensional 
plane, with coordinates in each axis ranging from 1 to 250. They are organized 
according to the numbers of vertices used (10, 20, 30, 40, or 50), with five instances 
of each vertex size classification. Furthermore, each dataset can be solved with more 
than one k-bound. Different datasets have different allowable k-bounds, which are 
included in the tables in Section 3.3 below. All of the k-bounds provided allow for at 
least one legal solution, so this system is guaranteed to find some solution2 , however 
efficient or inefficient it may be. 

Problems with 10 vertices, particularly with the smallest k-bound, can be consid­
ered 'easy', since they are small enough to even be solved optimally by any number 
of different heuristics in reasonable time. Once the problem size grows to 30 vertices, 
particularly with larger k-bounds, it becomes substantially more difficult for the PSO. 

j Such a problem may have up to 435 allowable edges, and well over 8 x 10130 possible 
networks through which to search. This was the target level of difficulty for making 
PSO competitive with other metaheuristics. 

Problems with 40 or 50 vertices are extremely challenging, and represent an im­
mense search space. Since they represent a new plateau of difficulty, and take sub­
stantially longer to process, these problems were included in a more limited form in 
the preliminary experiments, in that only ten runs were performed per experiment. 

When initializing a particle swarm optimization system, there are some essential 
parameters and behavioural decisions which must be defined prior to starting. These 
include: 

.. Maximum per-dimension position (Xrax): Each particle may only travel up to 
a certain distance within a dimension. If this value is exceeded, the particle 
simply reflects back within that dimension, with equal speed, in the opposite 
direction . 

.. Maximum per-dimension velocity (Vimax): The velocity of a particle within any 
given dimension is capped, so that the rate of change (i.e. learning) may be 
controlled. 

2Since only inherently illegal edges are dismissed, and since the problem itself is legal, the worst­
case scenario is to simply accept all allowable edges, which is the guaranteed behaviour of the PSO 
transcription mechanism if it does not first find a 'better' solution. 
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.. # of iterations: The higher this number, the more likely the system is to find 
a 'good' result. However, increasing it also increases computation time. 

• # of runs: In order to know if the results from an experiment were reliable, 
it must be repeated for some number of runs. Thus, after some reasonable 
number of executions, both the best and average results can give insight into 
the system's efficacy . 

.. Swarm Size: A particle swarm consists of multiple particles, each with its 
own solution. A large swarm requires more computing time, but also may 
take longer to converge, and can potentially explore a wider range of solutions 
simultaneously . 

.. Momentum: Each iteration, some portion of a particle's velocity is retained 
from the previous iteration. The momentum reflects this portion, with values 
approaching 1 indicating that more of the velocity will be kept . 

• Cognitive Multiplier (CI): This influences the tendency of a particle to drift 
back towards its personal best solution found. Refer to section 2.3.2 for details. 

f • Social Behaviour: For the social component (refer to section 2.3.2), a particle 
may be attracted to the position corresponding to the best solution found by 
the entire swarm, or by its neighbours. As such, the system may use a global 
social component, or a neighbourhood function, respectively. 

It Social Multiplier (C2): This influences the tendency of a particle to drift towards 
the best solution found by some other particle, defined by the social component . 

.. Explorative Multiplier (C3): The tendency to follow a random vector, when 
included at all. 

The best parameters for a vanilla PSO were determined empirically, and Table 
3.1 reflects the experimental parameters for the best results obtained. 

The maximum position (Xrax) was set at 100,000, but this was somewhat arbi­
trary. Early tests showed that different values had little effect on the results. This is 
also to be expected, since it is only the relative per-dimension positions of a particle 
that influence the transcribed solution. 

3.3 Results and Discussion 

The results of the performed experiments are listed in tables 3.2 and 3.4. For each 
k-bound of each dataset, the best solution found in any run of that experiment is 



CHAPTER 3. PRIORITY-BASED PSO 28 

Table 3.1: Parameters for Preliminary Experiments 

Parameter Value Notes 

X:nax 
t 

100,000 Different values had little effect 
v;max 

t 
5,000 

# of iterations 2,000 A traditionally common value and 'reasonable' 
# of runs 20,10 20 for 10-30 vertex problems; 10 for 40-50 vertices 
Swarm Size 200 
Momentum 0.3 This was the hardest to establish reliably 
C! 2 Traditional value, but also worked best 
Social Behaviour Global Best for testing standard 'vanilla' system 
C2 2 Traditional value, but also worked best 
C3 1 Needed to be used sparingly 

listed, as well as the average of the best results of each run. Tables 3.3 and 3.5 
show how the particle swarm fared when compared to past works3 . Values that are 
italicized indicate that the PSO matched or beat the results of the Stingy algorithm. 

I Figure 3.2 shows the best solution costs and swarm average costs for the best run, for 
the 30-1 dataset with a k-bound of 200. A plot of that same best solution found by 
the algorithm for the same problem is shown in Figure 3.3a, and a plot of the worst 
solution found in the same experiment for the same problem is shown in Figure 3.3b. 
Notice that, in Figure 3.3a, there is quite a bit of 'overlapping' of rings. That is, 
if such a network were to be constructed with, say, cables, then those cables would 
crisscross each other several times. This would also intuitively be a sign of inefficiency. 
Of course, this pattern is far more prevalent in Figure 3.3b, which also clearly shows 
a great deal of redundancy. 

Figure 3.4 consolidates the average performance of the PSO compared to the other 
techniques. The datasets and bounds were organized according to their numbers 
of allowable edges. Since the dimensionality of the problem dictates a problem's 
difficulty for this PSO algorithm, that was a more fair criteria for division than the 
number of vertices. Specifically, the sets were divided into four classes: 1 - 125edges 
(containing 32 instances), 126 - 300edges (containing 35 instances), 301 - 450edges 
(containing 31 instances), and the remainders (containing 30 instances). For each 
class, the performance was measured by comparing the best results found by each 

3Note: the values included are for a Stingy and Tabu search from Bernard Fortz's work [2][15], 
as well as for a GA from Mario Ventresca and Beatrice Ombuki-Berman's work [11]. However, this 
particular listing of values is taken from the latter, as it also included comparisons against Fortz's 
work. 
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technique against the PSO 's best result. More precisely, the difference between the 
PSO 's best result and another technique's result was then converted to a percentage. 
These percentages were averaged across all instances in that class. 

2:n_ P SOfest - technique~est . 
score = 2-1 X 100, wheren = # of 'Instances 

n 

As such, the lower the calculated value, the better the PSO performed (plotted values 
below 0% would indicate that, on average, the PSO beat another technique for that 
class of problems). 

It is readily apparent that this technique was certainly not competitive with past 
metaheuristic results , or even the Stingy algorithm. It was not able to solve the sim­
plest (IO-vertex) problems reliably enough, and fared far too poorly for the moderate 
to hard (30-vertex) problems. Indeed, it could arguably be considered a failure. The 
results were examined to identify flaws with the system, in the hope of exploring how 
the results could be improved. 
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Figure 3.2: Preliminary Result: Training Curve for Best 30-1(200) Solution 
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Figure 3.4: Preliminary Results: Comparison of Averages of Best Costs (continued) 
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Table 3.2: Preliminary Results: Best and Average Cost Lengths 

Data K Best Average Std. Dev. Data K Best Average Std. Dev. 

10-1 350 906 987.4 70.5 20-4 200 1971 2329 269.6 
400 934 1013.4 50.3 250 1822 2263.4 363.3 
450 896 1021.1 100.7 300 1822 2274.9 370.3 
500 919 1003.6 77.9 350 1653 2062.3 190.7 

10-2 400 1146 1211 54.5 400 1682 2124 323.2 
450 1086 1251.2 117.9 450 1749 2106.2 230 
500 1093 1188.1 61.7 500 1737 2127.4 235.9 

10-3 300 1269 1329.3 56.1 20-5 300 1612 2089.7 285.1 
350 1018 1113.1 89.9 350 1631 2168 399.2 
400 1058 1153 66 400 1673 2157.5 253.3 
450 952 1163.2 101 450 1640 2082.6 259.8 
500 988 1130.6 92 500 1676 2153.1 255 

10-4 300 1391 1409.5 22.7 30-1 200 2502 3150.5 813.9 
350 1205 1323.8 91.8 250 2350 3422.8 711.6 
400 1135 1234.4 74.8 300 2357 3190.3 481.1 
450 980 1192.2 129.1 350 2400 3211.7 465 
500 1031 1121.4 87.6 400 2500 3196.9 404 

10-5 350 1383 1431.7 54.3 450 2803 3303.1 346.8 

t 400 1260 1370.6 94.7 500 2416 3199.3 430.1 
450 1158 1281.9 72.3 30-2 300 2047 2783.6 365.9 
500 1106 1260.4 99.9 350 2225 2812.3 314.8 

20-1 200 1645 1842 138.4 400 2601 3131.3 385 
250 1631 2111.2 424 450 2523 3115.4 385.9 
300 1786 2125.6 218.7 500 2671 3071.7 288.9 
350 1629 2195.4 424.8 30-3 250 2153 2901.1 464.1 
400 1714 2163.7 247 300 2266 2977.1 311.3 
450 1686 2189.2 215.1 350 2225 2964.4 536.1 
500 1541 2118.3 284.9 400 2173 2689.4 337.2 

20-2 200 1646 1928 235 450 2457 2852.7 285.2 
250 1383 1769.1 272 500 2292 2733.5 320.9 
300 1422 1795 273.3 30-4 200 1962 2522.5 284.3 
350 1347 1813.3 272.1 250 2232 2779.9 285.1 
400 1351 1814.2 260.8 300 2082 2760.2 335.4 
450 1304 1645.4 249.2 350 2113 2851.8 401 
500 1375 1776.1 228.5 400 2225 2682.3 300.5 

20-3 200 1716 1920.8 165 450 1825 2759 439.8 
250 1402 1636.3 160.2 500 2017 2669.4 346.2 
350 1414 1957.8 366.9 30-5 200 2677 3115.4 464.1 
400 1553 1967.6 266.4 250 2869 3507.3 400.6 
450 1413 2022.9 350.8 300 2671 3394 478.5 
500 1456 1828.9 248.3 350 2534 3335.9 370.7 

400 3000 3538.5 359.8 
450 2716 3688.9 557.3 
500 2853 3585.9 356.7 
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Table 3.3: Preliminary Results: Comparisons of Cost Lengths 

Data K BB Stingy Tabu GA PSO Data K BB Stingy Tabu GA PSO 

10-1 350 906 906 906 906 906 
400 898 976 898 898 934 
450 896 955 898 896 896 
500 854 880 854 854 919 

10-2 400 1140 1154 1140 1140 1146 
450 1062 1062 1062 1062 1086 
500 1031 1062 1031 1031 1093 

10-3 300 1269 1433 1269 1269 1269 
350 1018 1089 1018 1018 1018 
400 954 1025 954 954 1058 
450 952 1025 952 952 952 
500 952 1007 952 952 988 

10-4 300 1391 1445 1391 1391 1391 
350 1205 1256 1205 1205 1205 
400 1117 1186 1117 1117 1135 
450 980 1149 980 980 980 
500 980 1142 980 980 1031 

10-5 350 1383 1457 1383 1383 1383 
400 1238 1456 1238 1238 1260 
450 1143 1292 1143 1143 1158 
500 1072 1213 1072 1072 1106 

20-1 200 1577 1859 1819 1577 1645 
250 1445 1501 1455 1445 1631 
300 1376 1430 1376 1383 1786 
350 1253 1459 1253 1253 1629 
400 1183 1416 1183 1183 1714 
450 1144 1266 1144 1144 1686 
500 1111 1185 1111 1111 1541 

20-2 200 1325 1360 1329 1390 1646 
250 1094 1166 1098 1104 1383 
300 984 1065 990 996 1422 
350 953 974 953 953 1347 
400 940 974 946 940 1351 
450 919 959 932 929 1304 
500 900 925 900 917 1375 

20-3 200 1449 1512 1449 1610 1716 
250 1218 1272 1218 1218 1402 
350 1100 1266 1100 1138 1414 
400 1100 1239 1100 1103 1553 
450 1100 1228 1101 1104 1413 
500 1011 1219 1011 1011 1456 

20-4 200 1958 1962 1958 1958 1971 
250 1454 1524 1460 1460 1822 
300 1286 1442 1286 1286 1822 
350 1235 1334 1235 1235 1653 
400 1190 1259 1190 1205 1682 
450 1164 1213 1164 1164 1749 
500 1149 1213 1174 1164 1737 

20-5 300 1324 1419 1339 1332 1612 
350 1251 1355 1251 1251 1631 
400 1211 1300 1213 1239 1673 
450 1119 1162 1125 1119 1640 
500 1082 1125 1082 1082 1676 

30-1 200 1726 1963 1898 1853 2502 
250 1477 1689 1612 1655 2350 
300 1413 1657 1474 1557 2357 
350 1328 1622 1366 1406 2400 
400 1295 1464 1358 1333 2500 
450 1240 1382 1240 1248 2803 
500 1213 1322 1221 1213 2416 

30-2 300 1477 1607 1507 1488 2047 
350 1381 1461 1386 1386 2225 
400 1319 1425 1322 1319 2601 
450 1319 1386 1347 1319 2523 
500 1295 1386 1302 1302 2671 

30-3 250 1411 1711 1574 1613 2153 
300 1325 1526 1329 1325 2266 
350 1239 1250 1239 1239 2225 
400 1198 1349 1198 1198 2173 
450 1152 1160 1152 1152 2457 
500 1128 1151 1128 1128 2292 

30-4 200 1448 1612 1549 1577 1962 
250 1250 1547 1327 1382 2232 
300 1164 1484 1316 1391 2082 
350 1134 1470 1143 1152 2113 
400 1050 1215 1068 1068 2225 
450 1044 1206 1044 1097 1825 
500 1044 1223 1079 1064 2017 

30-5 200 2056 2282 2156 2080 2677 
250 1759 2195 1915 1915 2869 
300 1635 2097 1750 1742 2671 
350 1562 1668 1562 1562 2534 
400 1493 1578 1497 1497 3000 
450 1452 1510 1459 1452 2716 
500 1424 1498 1425 1424 2853 

34 



CHAPTER 3. PRIORITY-BASED PSO 35 

Table 3.4: Additional Preliminary Results: Best and Average Cost Lengths 

Data K Best Average Std. Dev. Instance K Best Average Std. Dev. 

40-1 200 3339 3958.3 673.1 40-4 200 3240 4203.9 824.2 
250 3763 4511.8 421.5 250 3268 4001.9 410.6 
300 3860 4501.4 421 300 3360 4030.8 469.8 
350 3678 4565 665.3 350 3655 4203.9 309.4 
400 4135 4913.7 526.7 400 4113 4714 515.6 
450 3602 4573.8 500.2 450 3514 4580.9 692 
500 3628 4670 644.9 500 3431 4350.8 559.2 

40-2 300 3530 3903.4 324 40-5 200 2847 3336.5 386.9 

j 350 3592 4520.4 598.5 250 2850 3427.7 381.8 
~ 400 3681 4542.2 549.2 300 3572 4006.2 363.9 

450 3315 4275.9 523.3 350 3101 3956.4 572.8 
500 3318 4358.1 729.2 400 3227 4032.4 498 

40-3 200 3477 4557.5 1110.3 450 3177 4084.3 720.7 
250 3597 4203.6 532 500 3551 4113.8 379.5 
300 3617 4355.4 690.3 50-1 150 3584 3869.5 264.7 
350 4407 4823.4 352.6 200 3261 4369.6 547 
400 4046 4873.1 603.5 50-2 250 4434 5187 419.9 
450 4048 4818.7 594.6 300 4324 5217.4 611.9 
500 4245 5023.7 450.3 50-3 200 3898 4625 470.7 

250 4351 4945.9 272.3 
50-4 200 3743 4327.3 392.9 

250 4564 5291.6 668.2 
50-5 200 3667 4418.4 750.5 

250 3925 5075.3 667.1 
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Table 3.5: Additional Preliminary Results: Comparisons of Cost Lengths 

Data K BB Stingy Tabu GA PSO Data K BB Stingy Tabu GA PSO 

40-1 200 2067 2549 2232 2320 3339 40-4 200 1894 2159 2069 2163 3240 
250 1800 2261 2031 2030 3763 250 1718 1877 1791 1795 3268 
300 1687 2213 1947 1854 3860 300 1610 1768 1706 1688 3360 
350 1616 1998 1691 1733 3678 350 1551 1664 1616 1616 3655 
400 1558 1699 1609 1627 4135 400 1503 1603 1552 1572 4113 
450 1533 1767 1571 1697 3602 450 1476 1590 1524 1536 3514 
500 1520 1751 1537 1589 3628 500 1458 1511 1492 1475 3431 

40-2 300 1558 1737 1621 1617 3530 40-5 200 1626 1747 1720 1703 2847 

f 
350 1496 1592 1514 1527 3592 250 1455 1727 1657 1676 2850 
400 1459 1544 1477 1535 3681 300 1393 1712 1607 1544 3572 
450 1434 1540 1462 1462 3315 350 1356 1699 1575 1607 3101 
500 1416 1505 1422 1416 3318 400 1315 1699 1546 1546 3227 

40-3 200 2031 2421 2317 2355 3477 450 1266 1699 1422 1438 3177 
250 1821 2146 2077 2077 3597 500 1246 1699 1291 1246 3551 
300 1688 1897 1815 1815 3617 50-1 150 2165 2367 2250 2286 3584 
350 1620 1747 1654 1694 4407 200 1776 2036 1968 1968 3261 
400 1582 1649 1611 1649 4046 50-2 250 1884 2267 2200 2194 4434 
450 1561 1622 1575 1561 4048 300 1772 1914 1869 1881 4324 
500 1539 1622 1576 1539 4245 50-3 200 1877 2236 2053 2116 3898 

250 1777 2073 1896 1957 4351 
50-4 200 1852 2183 2090 2105 3743 

250 1709 2105 1822 1822 4564 
50-5 200 1777 2155 1960 2084 3667 

250 1650 1890 1835 1835 3925 
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3.4 Improving Effectiveness 

The initial results were carefully studied, as was the actual particle swarm system 
itself, in the hope of finding areas for improvement. After some of those areas were 
found, modifications were made to the design in order to improve the capabilities of 
the system. 

3.4.1 Analysis of Shortcomings 

When examining the raw data, certain trends became apparent. The recurrent theme 
was premature convergence. The solutions tended to settle into local minima too 
quickly, and were then hesitant to explore new solutions. As part of this, the par­
ticles seemed to cluster together into the same solution. This was taken to be an 
indication of both excessive exploitation of individual past results, as well as exces­
sive exploitation of swarm knowledge. As such, the solution would need to address 
how to limit both of these forms of exploitation. 

Additionally, it seemed difficult to pin down a momentum (w) that was 'best'. 
Numerous values were attempted, but none seemed to offer a consistent advantage. 

j Additional consideration was given to this problem as well, as shown below. 

3.4.2 Supersocial Particles 

The first problem to address was the tendency to excessively exploit individual best 
past results. This behaviour is represented by the cognitive function of the veloc­
ity update rule. One option considered was reducing the cognitive parameter, the 
multiplier Cl. This improved results slightly, but what seemed to work better was to 
take this approach to its ultimate extent: to set it to 0, thus removing the cognitive 
function entirely. This means that, in the absence of a cognitive function, the only 
past knowledge that the particles would only be able to rely on would be that of 
neighbours. In theory, it likely would have been an option to reduce either form of 
exploitation, but some social behaviour was deemed necessary to prevent the algo­
rithm from turning into nothing more than a parallel hill-climber. By removing the 
cognitive function, the particles are forced to rely primarily on social interaction, and 

. are thus deemed supersocial in this thesis. 

3.4.3 Neighbourhoods 

Though it was decided that supersocial particles might be a good choice for the 
velocity update rule, that fact still did not change the concern over the particles 
clustering to each other (i.e. grouping to the same solution) too quickly. It was 
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necessary to strike a balance between reducing the level of exploitation of swarm 
knowledge, but still retaining some component of the behaviour. The solution to this 
problem is far easier, as it is very common. As explained in chapter 2, section 2.3.3, 
a particle is not obligated to gravitate towards the position corresponding to the best 
solution found in the swarm. That is, the global social mechanism is not the only 
one available. Rather, it is permissible to use a neighbourhood, a smaller subset of 
the entire swarm that is associated with the particle being considered. 

The idea is that, rather than having all the particles become immediately drawn 
towards a single globally-best solution, each particle will tend to be drawn towards a 
locally-best solution. The complementary explanation is that multiple different 'good' 
solutions will be attracting particles at the same time. Eventually, clustering will still 
occur. However, by distributing that attraction, it can prolong how long clustering 
will take, and in the meantime give the particles more opportunities to find different 
solutions before doing so. 

3.4.4 Selecting a Momentum 

As stated above, it was difficult to pinpoint an ideal momentum (w) parameter. When 
f the momentum was set very high, the particles were able to retain more of their 

velocities and avoid settling on solutions so quickly. However, this tended to prevent 
the ability to fine-tune solutions. On the other hand, a low momentum was very good 
for fine-tuning solutions, but tended to favour local minima. This is an example of 
the classic problem of exploitation vs. exploration. Should a system be permitted 
to coast broadly throughout the search space, in the hope of happening to stumble 
upon a good solution, or should it be forced to scrounge about within a smaller area, 
finding the best possible results within a smaller space? Obviously, neither solution 
was a reasonable option. The final decision was to attempt to somehow achieve both. 

3.4.5 Variable Momentum 

A technique that has been used with PSO for other problems in the past[22] is to 
simply have w begin with a very high value, and slowly reduce over several iterations. 
The idea is to permit a period of vast, unfettered exploration, followed by a period of 
fine-tuning. This is very much analogous to Simulated Annealing, which is founded 
on this concept4 . 

4In Simulated Annealing, the system starts with a high temperature, indicating that it is more 
prone to adopting other solutions that actually appear to be worse. Over time (iterations), the 
temperature cools, and the system becomes less and less likely to accept changes that appear 'bad' 
[37]. 
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The only problem with implementing this type of behaviour is that, within a 
given run, there is only a single period of exploration and a single period of solution 
refinement. The obvious question is, what happens if it still has not found a decent 
solution? To address this solution, rather than implementing a momentum curve, I 
implemented a momentum oscillation. 

a) 

Figure 3.5: W Scaling for Continuous Oscillation ( a) and Pulsed Oscillation (b) 

Continuous Momentum Oscillation 

f To allow for a behaviour that sometimes permitted the particles to accelerate, and 
sometimes forced them to decelerate, the momentum was patterned on a continuous 
cosine wave (refer to Figure 3.5a). The goal was to allow for multiple periods of 
alternating exploration and refinement. A new user-specified parameter was added: 
the wave's period. In doing so, I was able to choose the duration of the acceleration 
and deceleration phases. Similarly, I was able to implicitly choose how many such 
sessions would occur within a run. 

The system's iteration (akin to a generation in several other techniques) is used 
as the 'time' unit for the progression of the wave. The wave is shifted and scaled to 
oscillate between zero and some user-defined maximum value (inclusive). The precise 
formula is: 

(cosinee·t) + 1) 
Wi = . Wb 

2 
where 

1, is the current iteration 

Wi is the momentum in iteration i 

Wb is the maximum momentum to reach 

L is the period of the cosine wave 



t 
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The maximum momentum value (Wb) was always 1 for this thesis, since a value 
greater than 1 would artificially super-accelerate the particles independent of swarm 
knowledge, and also tend to be far too disruptive to the corresponding solutions. 

By continuously changing the momentum, the result was to continuously change 
the potential for velocity. The hope was that the velocity would make minor correc­
tions when the momentum was very low, and have the ability to build up great speed 
when the momentum was high. 

Pulsed Momentum Oscillation 

The primary concern with the continuous momentum oscillation approach was that, 
while although the top of the w arc allows the velocity to build up very quickly, there 
is nothing guaranteeing that this will actually happen. If the particle's position is 
mired in what is believed to correspond to a 'good' solution, then it is only the random 
component of the velocity update rule that might pull the particle out for the purpose 
of exploration. I decided to also implement an alternate oscillation mechanism to allay 
this concern, and then to compare and see how each performed. 

For the alternate mechanism, pulsed w oscillation, only a portion of the cosine 
wave was used. Specifically, the descending portion was repeated. Furthermore, at 
the initial peak of each cycle, the velocities of the particles are reset; thus affording 
them an opportunity to explore new venues. It is important to note that it was 
the velocities that were repeatedly reset. If, instead, the particle positions had been 
constantly reset, then all of the progress achieved in each cycle would have been lost. 
However, by resetting only the velocities, the states of the solutions were retained; 
and it was only their directions and inclination to move which were affected. 

3.5 Oscillating PSO Experimental Setups 

The new experimental setups incorporated all of the changes detailed above. The 
swarms were switched to a cognitive-free, or supersocial, velocity update rule. The 
global social function was replaced with a neighbourhood function. And, both ver­
sions of oscillating momentum were attempted. After several preliminary runs, it was 
discovered that the two oscillation behaviours performed best with identical param­
eters, which are detailed below. However, there were first some basic elements that 
had to be defined even before anything else was empirically derived. 

The datasets used were the same as those referred to in section 3.2, created by 
Bernard Fortz in his PhD thesis work[2J. For the same datasets used in the non­
oscillating setup-lO, 20, and 30 vertices-20 runs were performed for each experi­
ment, for each oscillation style. As with the preliminary experiments, an additional 
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batch of 10-run experiments were performed on the 40-vertex and 50-vertex datasets. 
The number of iterations was again set at 2,000 for all experiments, to allow di­
rect comparison with the non-oscillating version. Additional parameters are found in 
Table 3.6. 

Table 3.6: Parameters for Oscillating Experiments 

Parameter 

x max 
2 

v,max 
2 

Swarm Size 
Period 

Value 

100,000 
5,000 
200 
200 

Notes 

200 iterations per full oscillation 
Cl 0 No cognitive behaviour 
Social Behaviour Neighbourhood 
Neighbourhood Size 12 
C2 3 

2 

3.6 Oscillating PSO Results 

Detailed below are the results of both experiment-sets. Some of these results have also 
been published in a paper co-authored by Dr. Beatrice Ombuki-Berman[25]. Tables 
3.8, 3.10, 3.12, and 3.14 show the best (lowest) costs obtained by any particle in any 
run in the experiment, the average of the best cost per run for each experiment, and 
the sample standard deviation for each experiment. 

Tables 3.9, 3.11, 3.13, and 3.15 show how the best results obtained by the PSO 
compare to the best results found by Fortz's Stingy algorithm, his Tabu search, and 
Ombuki and Ventresca's Genetic Algorithm. Values that are italicized indicate that 
the PSO matched or beat the results of the Stingy algorithm. Values that are bold 
indicate that the PSO matched or beat at least one metaheuristic (Tabu, GA, or 
both). 

Figures 3.6a and 3.6b depict the optimum networks obtained for the 20-1 problem 
instance, with 20 vertices, using pulsed momentum oscillation. Figure 3.6a is for the 
problem using a k-bound of 200, and the network in Figure 3.6b has a k-bound of 
500. As one would expect, as the bound increases, so does the flexibility for forming 
rmgs. 

Figures 3.7 a and 3.7b depict the results of using continuous and pulsed oscillation, 
respsectively, to solve problem instance 30-1, with 30 vertices, and a k-bound of 200. 
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Figure 3.6: Optimal Solutions for 20-1 
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Figure 3.7: Best Solutions Found for 30-1(200) with Both Oscillations 

Both networks represent new solutions to that problem, as far as metaheuristics are 
concerned, but they clearly ended up with significantly different solutions. 

Similarly, 3.8a and 3.8b depict the results of using continuous and pulsed oscilla­
tion, but to solve the much more difficult problem instance of 50-1, with 50 vertices, 
and a k-bound of 150. 
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Figure 3.8: Best Solutions Found for 50-1(150) with Both Oscillations 
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Figure 3.9: Comparison of Cumulative Performance for Problem 20-3 
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Comparison of Results for Problem Set 30·1 
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Figure 3.10: Comparison of Cumulative Performance for Problem 30-1 



CHAPTER 3. PRIORITY-BASED PSO 45 

Figures 3.13 and 3.14 each consolidate the performances of the continuous and 
pulse oscillating PSOs, respectively, against the previously published results, and 
also against the non-oscillating PSO model. They were created in the same method 
as those found in section 3.3, and should be read in the same way. However, note 
that both oscillating models performed drastically better than the non-oscillating 
algorithm. While although both techniques performed the best overall for the first 
class (corresponding to the lowest numbers of edges), they were not able to beat Tabu 
or GA for the other three classes. Note, however, that the continuous oscillation model 
performed noticeably better than pulsed oscillation for the third and fourth classes. 
This implies that continuous oscillation is better suited to more difficult problems 
(or, at least, problems with higher dimensionality) than pulsed. 

To further test this theory, statistical analysis was performed on the results of all 
continuously oscillating and pulse oscillating PSO results. An analysis of the data 
showed that, across all experiments performed, not all results conformed to a normal 
distribution. This was actually to be expected for at least some instances, as the 
oscillating PSO tended to frequently solve several of the simpler problems optimally. 
Since no results can be better than optimal, this meant that no results could fall 
below the optimality threshold. As such, symmetry of distribution was impossible 

jr for those instances, so long as the algorithm continued to perform well. Because the 
results could not be guaranteed to fall within a normal distribution, a nonparametric 
test was used instead. Specifically, a Rank-sum test [38] (also known as a Wilcoxon 
Rank-sum test, Mann- Whitney U test, or simply a U test) was used to determine if 
results from different oscillation models were actually from different populations. A 
confidence level of 95% was used for all tests. 

Table 3.7: Statistical Comparison of Continuous and Pulsed Oscillation 

Tie Cont. Won Pulse Won 

10's 20 0 1 
20's 13 0 19 
30's 10 20 2 
40's 0 33 0 
50's 1 9 0 

Total 44 62 22 

The first set of statistical tests performed compared oscillating particle swarms of 
both flavours against the non-oscillating version. In all 128 instances (25 datasets, 
with various different k-bounds), the improvement for oscillation was determined to 
be statistically significant. That is, within a 95% confidence level, the new supersocial, 
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oscillating particle swarms (whether using continuous or pulsed oscillation) performed 
significantly better than the non-oscillating model. 

The next set of tests were chosen to compare the two oscillation techniques against 
each other, to prove or disprove the previous theory. Table 3.7 confirms the suspicion 
that the continuous oscillation worked best overall. In particular, it showed that 
pulsed oscillation fared better primarily for relatively easy problems, and continuous 
oscillation performed better for harder problems. 

The charts shown in Figures 3.9 and 3.10 represent the cumulative performances 
of the metaheuristics used. They graphically depict the costs of the best networks 
found for a given problem instance, across all supplied k-bounds. An interesting trend 
starts to become evident as the problem instances get more difficult. 

Figure 3.9 shows the particle swarms (with both types of oscillation) performing 
comparably to Ombuki and Ventresca's Genetic Algorithm. However, even though 
the particle swarms did the best of all for the 30-1 dataset with the smallest k-bound, 
once the performance across all bounds were considered, it did not fare as well. 
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Figure 3.11: Continuous Oscillation: Training Curve for Best 30-1(200) Solution 
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Figure 3.12: Pulsed Oscillation: Training Curve for Best 30-1(200) Solution 



CHAPTER 3. PRIORITY-BASED PSO 

~ 
u 

~ -2 {jO'a - ---

is 
~-30%-

" ~ 
W-40%-

1: 

~ -50% _._--... 
Q 

'" 

Average Relative Performance 
1-125 Edges 

f-----------------------------------

c 
f: 60°0 -~-~ ~f----------------------j r-----: 
~ -6.7% I ~ 

" " c 
~ 
~ 
is 
;; 
0 

" " w 

~ 

-70'>.,+--------------------------------

80% j 

00% 

-5 O~'" 

100% 

Compared Technique 

(a) 1-125 Edges 

Average Relative Performance 
126-30{) Edges 

___ ---'-~-2--0-%-1-~-,_ __ ,----< 
GA NOllOSC 

i -150% 

~ 
<>. 

~ -200% +---------------------

~ 
-250% +----------------------------1 

-27.9'>;0 

Compared Technique 

(b) 126-300 Edges 

48 

Figure 3.13: Continuous Oscillation Results: Comparison of Averages of Best Costs 
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Figure 3.13: Continuous Oscillation Results: Comparison of Averages of Best Costs 
( continued) 
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Figure 3.14: Pulsed Oscillation Results: Comparison of Averages of Best Costs (con­
tinued) 

3.7 Oscillating PSO Discussion 

The first thing that should be evident from the results shown in the tables above is 
that the modifications resulted in a drastic improvement. 

Figures 3.11 and 3.12 show the training curves for the global best and swarm 
averages across their respective runs. Notice that the goal identified in section 3.4.5 
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Table 3.8: Continuous Oscillation Results: Best and Average Cost Lengths 

Data K Best Average Std. Dev. Data K Best Average Std. Dev. 

10-1 350 906 907.3 4 20-4 200 1958 1961.5 4.1 
400 898 911.8 11.6 250 1454 1579.7 70.3 
450 896 _910.5 15.4 300 1286 1372.4 55.6 
500 854 879.1 17 350 1248 1337.5 63.7 

10-2 400 1140 1142.8 4.3 400 1233 1309.6 53.3 
450 1062 1070.4 18.3 450 1164 1262.5 56.5 
500 1031 1049.9 17.3 500 1208 1259.1 41.5 

10-3 300 1269 1287.6 29.6 20-5 300 1331 1443.1 94.1 
350 1018 1021.5 15.7 350 1260 1361.4 93.1 
400 954 965.5 17.4 400 1214 1306.8 56.8 
450 952 974 32 450 1189 1269.8 58.6 
500 952 963.8 12.7 500 1088 1212.8 60.2 

10-4 300 1391 1391 0 30-1 200 1791 1897.5 77.3 
350 1205 1216.4 18.3 250 1708 1830.8 104 
400 1117 1132.3 19.2 300 1618 1803.9 140.6 
450 980 999.7 35.2 350 1432 1644.2 121.7 
500 980 1007 28.2 400 1405 1586.8 116.2 

10-5 350 1383 1386.8 5.6 450 1354 1503.5 74.7 

I 400 1238 1267.7 30.5 500 1421 1559.5 92.3 
450 1143 1158.8 17.3 30-2 300 1533 1643.1 90.4 
500 1072 1093.2 26 350 1470 1606 102.9 

20-1 200 1577 1602.2 40.2 400 1515 1607.7 70.4 
250 1451 1489.3 34.7 450 1450 1570.2 93.5 
300 1416 1478.4 48.1 500 1414 1562.7 114.3 
350 1299 1397.5 68 30-3 250 1573 1735 117.8 
400 1183 1346.7 120.4 300 1554 1684.1 65.9 
450 1192 1266.7 53.2 350 1311 1422.2 77.1 
500 1111 1232.4 82.5 400 1315 1477.2 94.4 

20-2 200 1329 1393.6 61.2 450 1218 1429.7 112.7 
250 1108 1145 38.8 500 1195 1366 107.4 
300 987 1024.5 23.4 30-4 200 1568 1663.9 54.1 
350 967 1015.1 38.3 250 1359 1560.8 74.7 
400 958 1017.9 45.4 300 1285 1423.3 114.3 
450 926 1002.7 43.1 350 1246 1328.1 67.7 
500 930 993.2 44.9 400 1159 1281.6 61.6 

20-3 200 1474 1605.7 90.4 450 1123 1271.4 91.6 
250 1240 1285 58.1 500 1113 1263.3 79.1 
350 1138 1248.8 89.1 30-5 200 2216 2296.3 57.1 
400 1119 1222.4 64.8 250 1990 2109 103.2 
450 1125 1194.8 48.8 300 1790 1942.7 68.4 
500 1011 1129.2 47.6 350 1663 1834.7 107.7 

400 1578 1763.9 119.5 
450 1564 1723.3 101.1 
500 1509 1692.8 106 
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Table 3.9: Continuous Oscillation Results: Comparisons of Cost Lengths 

Data K BB Stingy Tabu GA PSO Data K BB Stingy Tabu G A PSO 

10-1 350 906 906 906 906 906 20-4 200 1958 1962 1958 1958 1958 
400 898 976 898 898 898 250 1454 1524 1460 1460 1454 
450 896 955 898 896 896 300 1286 1442 1286 1286 1286 
500 854 880 854 854 854 350 1235 1334 1235 1235 1248 

10-2 400 1140 1154 1140 1140 1140 400 1190 1259 1190 1205 1233 
450 1062 1062 1062 1062 1062 450 1164 1213 1164 1164 1164 
500 1031 1062 1031 1031 1031 500 1149 1213 1174 1164 1208 

10-3 300 1269 1433 1269 1269 1269 20-5 300 1324 1419 1339 1332 1331 
350 1018 1089 1018 1018 1018 350 1251 1355 1251 1251 1260 
400 954 1025 954 954 954 400 1211 1300 1213 1239 1214 
450 952 1025 952 952 952 450 1119 1162 1125 1119 1189 
500 952 1007 952 952 952 500 1082 1125 1082 1082 1088 

10-4 300 1391 1445 1391 1391 1391 30-1 200 1726 1963 1898 1853 1791 
350 1205 1256 1205 1205 1205 250 1477 1689 1612 1655 1708 
400 1117 1186 1117 1117 1117 300 1413 1657 1474 1557 1618 
450 980 1149 980 980 980 350 1328 1622 1366 1406 1432 
500 980 1142 980 980 980 400 1295 1464 1358 1333 1405 

10-5 350 1383 1457 1383 1383 1383 450 1240 1382 1240 1248 1354 
f 400 1238 1456 1238 1238 1238 500 1213 1322 1221 1213 1421 

450 1143 1292 1143 1143 1143 30-2 300 1477 1607 1507 1488 1533 
500 1072 1213 1072 1072 1072 350 1381 1461 1386 1386 1470 

20-1 200 1577 1859 1819 1577 1577 400 1319 1425 1322 1319 1515 
250 1445 1501 1455 1445 1451 450 1319 1386 1347 1319 1450 
300 1376 1430 1376 1383 1416 500 1295 1386 1302 1302 1414 
350 1253 1459 1253 1253 1299 30-3 250 1411 1711 1574 1613 1573 
400 1183 1416 1183 1183 1183 300 1325 1526 1329 1325 1554 
450 1144 1266 1144 1144 1192 350 1239 1250 1239 1239 1311 
500 1111 1185 1111 1111 1111 400 1198 1349 1198 1198 1315 

20-2 200 1325 1360 1329 1390 1329 450 1152 1160 1152 1152 1218 
250 1094 1166 1098 1104 1108 500 1128 1151 1128 1128 1195 
300 984 1065 990 996 987 30-4 200 1448 1612 1549 1577 1568 
350 953 974 953 953 967 250 1250 1547 1327 1382 1359 
400 940 974 946 940 958 300 1164 1484 1316 1391 1285 
450 919 959 932 929 926 350 1134 1470 1143 1152 1246 
500 900 925 900 917 930 400 1050 1215 1068 1068 1159 

20-3 200 1449 1512 1449 1610 1474 450 1044 1206 1044 1097 1123 
250 1218 1272 1218 1218 1240 500 1044 1223 1079 1064 1113 
350 1100 1266 1100 1138 1138 30-5 200 2056 2282 2156 2080 2216 
400 1100 1239 1100 1103 1119 250 1759 2195 1915 1915 1990 
450 1100 1228 1101 1104 1125 300 1635 2097 1750 1742 1790 
500 1011 1219 1011 1011 1011 350 1562 1668 1562 1562 1663 

400 1493 1578 1497 1497 1578 
450 1452 1510 1459 1452 1564 
500 1424 1498 1425 1424 1509 
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Table 3.10: Additional Continuous Oscillation Results: Best and Average Cost 
Lengths 

Data K Best Average Std. Dev. Data K Best Average Std. Dev. 

40-1 200 2492 2592.4 70 40-4 200 2254 2363.4 78.3 
250 2280 2423.4 100.3 250 2140 2299 95.8 
300 2071 2181.1 80.9 300 1872 1984.3 116.6 
350 1911 2058.7 83 350 1866 1973.6 97.8 
400 1749 2007.3 126.5 400 1800 1951.2 120.4 
450 1837 1993.1 94.2 450 1675 1909.9 144.8 
500 1865 2013.6 88.3 500 1811 1950.9 87 

40-2 300 1855 2013.3 114.4 40-5 200 1850 1905.6 41.9 

i 350 1867 2010.5 134.4 250 1826 1943.9 92.8 
400 1686 1848.2 101 300 1651 1955.7 154 
450 1763 1877.7 105.9 350 1733 1895.1 147.4 
500 1763 1878.3 84.8 400 1667 1811 103.2 

40-3 200 2528 2596.7 39.7 450 1656 1784.2 110.2 
250 2375 2562.5 148.4 500 1589 1725.7 125.9 
300 1974 2263.6 177.5 50-1 150 2498 2626.7 105.3 
350 1983 2054.1 67.4 200 2247 2409.9 139.7 
400 1864 1993.9 92.2 50-2 250 2375 2583.1 127.7 
450 1771 1985.8 111.1 300 2312 2461.2 135 
500 1747 2043.3 144.7 50-3 200 2386 2566.5 101.8 

250 2344 2569.7 147.1 
50-4 200 2293 2475.8 172.2 

250 2184 2331.6 128.7 
50-5 200 2292 2428.7 134.6 

250 2194 2359.6 148.9 
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Table 3.11: Additional Continuous Oscillation Results: Comparisons of Cost Lengths 

Data K BB Stingy Tabu GA PSO Data K BB Stingy Tabu GA PSO 

40-1 200 2067 2549 2232 2320 2492 40-4 200 1894 2159 2069 2163 2254 
250 1800 2261 2031 2030 2280 250 1718 1877 1791 1795 2140 
300 1687 2213 1947 1854 2071 300 1610 1768 1706 1688 1872 
350 1616 1998 1691 1733 1911 350 1551 1664 1616 1616 1866 
400 1558 1699 1609 1627 1749 400 1503 1603 1552 1572 1800 
450 1533 1767 1571 1697 1837 450 1476 1590 1524 1536 1675 
500 1520 1751 1537 1589 1865 500 1458 1511 1492 1475 1811 

40-2 300 1558 1737 1621 1617 1855 40-5 200 1626 1747 1720 1703 1850 
350 1496 1592 1514 1527 1867 250 1455 1727 1657 1676 1826 

f 400 1459 1544 1477 1535 1686 300 1393 1712 1607 1544 1651 
450 1434 1540 1462 1462 1763 350 1356 1699 1575 1607 1733 
500 1416 1505 1422 1416 1763 400 1315 1699 1546 1546 1667 

40-3 200 2031 2421 2317 2355 2528 450 1266 1699 1422 1438 1656 
250 1821 2146 2077 2077 2375 500 1246 1699 1291 1246 1589 
300 1688 1897 1815 1815 1974 50-1 150 2165 2367 2250 2286 2498 
350 1620 1747 1654 1694 1983 200 1776 2036 1968 1968 2247 
400 1582 1649 1611 1649 1864 50-2 250 1884 2267 2200 2194 2375 
450 1561 1622 1575 1561 1771 300 1772 1914 1869 1881 2312 
500 1539 1622 1576 1539 1747 50-3 200 1877 2236 2053 2116 2386 

250 1777 2073 1896 1957 2344 
50-4 200 1852 2183 2090 2105 2293 

250 1709 2105 1822 1822 2184 
50-5 200 1777 2155 1960 2084 2292 

250 1650 1890 1835 1835 2194 
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Table 3.12: Pulsed Oscillation Results: Best and Average Cost Lengths 

Data K Best Average Std. Dev. Data K Best Average Std. Dev. 

10-1 350 906 906.7 2.9 20-4 200 1958 1962.6 5 
400 898 909.8 16.6 250 1454 1542.5 75.6 
450 896 906.8 18.2 300 1286 1342.5 34.4 
500 854 867.2 10.9 350 1248 1299.8 38.6 

10-2 400 1140 1142.7 4.7 400 1200 1272 39.9 
450 1062 1069.2 8.7 450 1164 1208.9 26.4 
500 1031 1048.9 20.3 500 1170 1237.1 42.9 

10-3 300 1269 1275.1 12.6 20-5 300 1324 1446.6 106.6 
350 1018 1018 0 350 1254 1317.4 58.4 
400 954 974.4 31.7 400 1214 1278.7 31.2 
450 952 954.2 5 450 1190 1226.6 31.8 
500 952 957.7 11.5 500 1128 1189.4 46 

10-4 300 1391 1391 0 30-1 200 1751 1844.8 55.9 
350 1205 1211.5 10.7 250 1646 1814.1 100.4 
400 1117 1140.9 26.7 300 1494 1787.9 107.4 
450 980 994.7 25.6 350 1519 1686.5 80 
500 980 1000.6 23.9 400 1474 1673.3 100.4 

10-5 350 1383 1384.6 3.2 450 1544 1697.8 77 

i' 400 1238 1264.9 22.9 500 1487 1651.7 118.8 
450 1143 1160.1 19.3 30-2 300 1535 1652.9 66 
500 1072 1101.8 27.8 350 1530 1700.3 84.7 

20-1 200 1577 1587.3 14.2 400 1589 1708.6 62.3 
250 1451 1484.6 38.8 450 1579 1765.2 86.5 
300 1389 1448.2 39.6 500 1598 1762.8 69.7 
350 1273 1329 51.6 30-3 250 1667 1792.7 68.1 
400 1183 1244.6 46.3 300 1537 1718.2 114.2 
450 1150 1221.9 41.3 350 1504 1624.3 87.3 
500 1111 1153.5 47 400 1476 1611.8 97.3 

20-2 200 1325 1356.9 42.3 450 1358 1655.7 119.1 
250 1107 1140.2 26.5 500 1443 1624.9 88.7 
300 997 1034.7 31.6 30-4 200 1568 1627.5 29.6 
350 953 981.1 21.9 250 1384 1536.2 73.8 
400 949 982.3 24.1 300 1416 1522.1 71.2 
450 933 969.2 29.2 350 1308 1467.9 80.4 
500 910 951.8 27.9 400 1276 1475.1 87.9 

20-3 200 1453 1530.4 79.6 450 1277 1473.3 105 
250 1242 1298 77.9 500 1243 1510.1 91.9 
350 1122 1183.4 52.7 30-5 200 2104 2266.4 61.3 
400 1109 1143.8 25.9 250 1967 2109.1 84.6 
450 1107 1146.1 29 300 1827 2003.7 100.4 
500 1057 1102.2 39 350 1762 1923.5 109.9 

400 1677 1889.9 127.7 
450 1756 1925.2 95.9 
500 1694 1930.9 132.4 
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Table 3.13: Pulsed Oscillation Results: Comparisons of Cost Lengths 

Data K BB Stingy Tabu GA PSO Data K BB Stingy Tabu GA PSO 

10-1 350 906 906 906 906 906 
400 898 976 898 898 898 
450 896 955 898 896 896 
500 854 880 854 854 854 

10-2 400 1140 1154 1140 1140 1140 
450 1062 1062 1062 1062 1062 
500 1031 1062 1031 1031 1031 

10-3 300 1269 1433 1269 1269 1269 
350 1018 1089 1018 1018 1018 
400 954 1025 954 954 954 
450 952 1025 952 952 952 
500 952 1007 952 952 952 

10-4 300 1391 1445 1391 1391 1391 
350 1205 1256 1205 1205 1205 
400 1117 1186 1117 1117 1117 
450 980 1149 980 980 980 
500 980 1142 980 980 980 

10-5 350 1383 1457 1383 1383 1383 
400 1238 1456 1238 1238 1238 
450 1143 1292 1143 1143 1143 
500 1072 1213 1072 1072 1072 

20-1 200 1577 1859 1819 1577 1577 
250 1445 1501 1455 1445 1451 
300 1376 1430 1376 1383 1389 
350 1253 1459 1253 1253 1273 
400 1183 1416 1183 1183 1183 
450 1144 1266 1144 1144 1150 
500 1111 1185 1111 1111 1111 

20-2 200 1325 1360 1329 1390 1325 
250 1094 1166 1098 1104 1107 
300 984 1065 990 996 997 
350 953 974 953 953 953 
400 940 974 946 940 949 
450 919 959 932 929 933 
500 900 925 900 917 910 

20-3 200 1449 1512 1449 1610 1453 
250 1218 1272 1218 1218 1242 
350 1100 1266 1100 1138 1122 
400 1100 1239 1100 1103 1109 
450 1100 1228 1101 1104 1107 
500 1011 1219 1011 1011 1057 

20-4 200 1958 1962 1958 1958 1958 
250 1454 1524 1460 1460 1454 
300 1286 1442 1286 1286 1286 
350 1235 1334 1235 1235 1248 
400 1190 1259 1190 1205 1200 
450 1164 1213 1164 1164 1164 
500 1149 1213 1174 1164 1170 

20-5 300 1324 1419 1339 1332 1324 
350 1251 1355 1251 1251 1254 
400 1211 1300 1213 1239 1214 
450 1119 1162 1125 1119 1190 
500 1082 1125 1082 1082 1128 

30-1 200 1726 1963 1898 1853 1751 
250 1477 1689 1612 1655 1646 
300 1413 1657 1474 1557 1494 
350 1328 1622 1366 1406 1519 
400 1295 1464 1358 1333 1474 
450 1240 1382 1240 1248 1544 
500 1213 1322 1221 1213 1487 

30-2 300 1477 1607 1507 1488 1535 
350 1381 1461 1386 1386 1530 
400 1319 1425 1322 1319 1589 
450 1319 1386 1347 1319 1579 
500 1295 1386 1302 1302 1598 

30-3 250 1411 1711 1574 1613 1667 
300 1325 1526 1329 1325 1537 
350 1239 1250 1239 1239 1504 
400 1198 1349 1198 1198 1476 
450 1152 1160 1152 1152 1358 
500 1128 1151 1128 1128 1443 

30-4 200 1448 1612 1549 1577 1568 
250 1250 1547 1327 1382 1384 
300 1164 1484 1316 1391 1416 
350 1134 1470 1143 1152 1308 
400 1050 1215 1068 1068 1276 
450 1044 1206 1044 1097 1277 
500 1044 1223 1079 1064 1243 

30-5 200 2056 2282 2156 2080 2104 
250 1759 2195 1915 1915 1967 
300 1635 2097 1750 1742 1827 
350 1562 1668 1562 1562 1762 
400 1493 1578 1497 1497 1677 
450 1452 1510 1459 1452 1756 
500 1424 1498 1425 1424 1694 

57 
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Table 3.14: Additional Pulsed Oscillation Results: Best and Average Cost Lengths 

Data K Best Average Std. Dev. Data K Best Average Std. Dev. 

40-1 200 2658 2757.8 75.8 40-4 200 2250 2497.4 146.8 
250 2447 2745.9 189.1 250 2445 2651.1 193 
300 2516 2729.5 131.5 300 2453 2662.1 143.4 
350 2463 2764.6 178.6 350 2563 2833 209.7 
400 2653 3041.1 230.5 400 2579 2809.7 147.5 
450 2935 3198.4 175 450 2818 3107.7 216.6 
500 2716 3111.6 195.9 500 2775 3070.2 160.7 

40-2 300 2286 2465.8 143.5 40-5 200 1870 1961.7 60.6 

I 
350 2385 2590.1 97.8 250 1977 2238 134.7 
400 2441 2695 190.1 300 2381 2554 115.3 
450 2809 3032.2 170.3 350 2477 2662.7 148.9 
500 2636 2988.4 201.1 400 2450 2792.2 166.6 

40-3 200 2569 2727.7 131.6 450 2464 2735.1 196.7 
250 2515 2731.4 154.4 500 2403 2700.2 144.7 
300 2299 2612.8 188.4 50-1 150 2483 2647.3 116 
350 2611 2880.9 148.7 200 2713 3075.2 228 
400 2712 3109.9 238 50-2 250 3508 3906.5 289.5 
450 2679 3145.9 284.7 300 3715 4393.8 546.4 
500 2964 3237.5 168.7 50-3 200 3072 3437.5 250.4 

250 3384 4205.4 469.5 
50-4 200 2972 3205 142.7 

250 3476 3799.8 190.5 
50-5 200 2996 3486.1 242.5 

250 3600 3968.6 284.1 
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Table 3.15: Additional Pulsed Oscillation Results: Comparisons of Cost Lengths 

Data K BB Stingy Tabu GA PSO Data K BB Stingy Tabu GA PSO 

40-1 200 2067 2549 2232 2320 2658 40-4 200 1894 2159 2069 2163 2250 
250 1800 2261 2031 2030 2447 250 1718 1877 1791 1795 2445 
300 1687 2213 1947 1854 2516 300 1610 1768 1706 1688 2453 
350 1616 1998 1691 1733 2463 350 1551 1664 1616 1616 2563 
400 1558 1699 1609 1627 2653 400 1503 1603 1552 1572 2579 
450 1533 1767 1571 1697 2935 450 1476 1590 1524 1536 2818 
500 1520 1751 1537 1589 2716 500 1458 1511 1492 1475 2775 

40-2 300 1558 1737 1621 1617 2286 40-5 200 1626 1747 1720 1703 1870 

" 
350 1496 1592 1514 1527 2385 250 1455 1727 1657 1676 1977 
400 1459 1544 1477 1535 2441 300 1393 1712 1607 1544 2381 
450 1434 1540 1462 1462 2809 350 1356 1699 1575 1607 2477 
500 1416 1505 1422 1416 2636 400 1315 1699 1546 1546 2450 

40-3 200 2031 2421 2317 2355 2569 450 1266 1699 1422 1438 2464 
250 1821 2146 2077 2077 2515 500 1246 1699 1291 1246 2403 
300 1688 1897 1815 1815 2299 50-1 150 2165 2367 2250 2286 2483 
350 1620 1747 1654 1694 2611 200 1776 2036 1968 1968 2713 
400 1582 1649 1611 1649 2712 50-2 250 1884 2267 2200 2194 3508 
450 1561 1622 1575 1561 2679 300 1772 1914 1869 1881 3715 
500 1539 1622 1576 1539 2964 50-3 200 1877 2236 2053 2116 3072 

250 1777 2073 1896 1957 3384 
50-4 200 1852 2183 2090 2105 2972 

250 1709 2105 1822 1822 3476 
50-5 200 1777 2155 1960 2084 2996 

250 1650 1890 1835 1835 3600 
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appears to have been met. The average fitness of the swarm starts off very poor, and 
settles into a better result as the momentum decreases. As it increases, the average 
cost rises again as the particles build up more velocity and somewhat randomize. 
However, as the momentum decreases again, the swarm tends to find a newer best 
solution upon which to settle. This trend can be easily identified in both charts as 
repeating approximately every 200 iterations, which is identical to the period used 
for the oscillation waves. 

As mentioned above, the cumulative results tend to highlight the deficiency in 
this system. As the k-bound increases, so too does the dimensionality of the problem. 
This is because the relaxed bounds lead to fewer potential edges being excluded in 
the preprocessing stage (refer to Section 2.4 for more information). This leads to 
particles with a larger number of dimensions, which may tend to decrease the chance 
of a single (potentially valuable) dimension asserting itself. Refer to Table 3.16 for the 
numbers of allowable edges for each dataset, with each provided k-bound. It still may 
yet be possible to improve upon these results if some mechanism could be introduced 
to give ignored edges a chance to be included. Further discussion on this subject is 
mentioned in Chapter 5. 

In spite of having found a few new best metaheuristic results, the system can still 
~.. not be considered truly competitive with Tabu or Genetic Algorithms. However, the 

results were still very promising, particularly when the dimensionality was lower. If 
this issue can be overcome, then this system could have great potential. Additionally, 
the oscillating momentum can have future application to entirely unrelated problems 
when there is a similar concern of balancing between fine-tuning and exploration. 
And, the priority-based transcription mechanism can also be applied to other similarly 
restricted problems that would otherwise be a challenge for PSO use. 
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Table 3.16: Number of Allowable Edges for Each Instance and k-Bound 

Data K Edges K BB Edges K BB Edges 

10-1 350 27 20-4 200 59 40-1 200 237 
400 36 250 97 250 348 
450 41 300 124 300 458 
500 45 350 146 350 556 

10-2 400 30 400 169 400 628 
450 39 450 177 450 715 
500 43 500 186 500 752 

10-3 300 25 20-5 300 109 40-2 300 464 
350 32 350 137 350 549 
400 38 400 164 400 638 
450 39 450 178 450 719 
500 44 500 185 500 752 

10-4 300 21 30-1 200 133 40-3 200 220 
350 31 250 207 250 328 
400 34 300 276 300 421 
450 41 350 332 350 521 
500 42 400 373 400 621 

10-5 350 25 450 409 450 694 

:' 400 35 500 423 500 738 
450 40 30-2 300 284 40-4 200 268 
500 42 350 342 250 382 

20-1 200 52 400 379 300 478 
250 83 450 415 350 569 
300 112 500 427 400 644 
350 144 30-3 250 241 450 714 
400 160 300 306 500 749 
450 183 350 362 40-5 200 307 
500 187 400 394 250 411 

20-2 200 82 450 422 300 512 
250 117 500 431 350 613 
300 146 30-4 200 170 400 697 
350 170 250 259 450 757 
400 181 300 318 500 777 
450 189 350 374 50-1 150 243 
500 190 400 410 200 394 

20-3 200 70 450 427 50-2 250 553 
250 89 500 434 300 712 
350- 151 30-5 200 134 50-3 200 440 
400 177 250 198 250 621 
450 185 300 260 50-4 200 435 
500 188 350 319 250 608 

400 352 50-5 200 500 
450 401 250 703 
500 419 



Chapter 4 

Pheromone .... Driven PSO 

Priority-Based PSO was not the only technique attempted. After two unsuccessful 
attempts at applying Ant Colony Optimization (ACO)-a metaheuristic created by 
Marco Dorigo [32]-an alternate approach, primarily founded in PSO but with ele­
ments inspired by ACO was also attempted. The technique used was still a particle 
swarm, but the transcription mechanism was supplemented with characteristics of 

j ACO. 
This chapter provides a brief background of ACO, describes initial attempts to 

apply an ant-style algorithm to 2CNBR, and then goes on to detail the new particle 
system and lists the results. 

4.1 Preliminary ACO Work 

An ant-inspired particle swarm was eventually used for the 2CNBR problem. How­
ever, in order to fully understand the methodology, and how it came to be, it is first 
necessary to understand Ant Colony Optimization, and the first modifications to it 
which eventually lead to the new particle system. 

4.1.1 Background on Ant Colony Optimization 

Ant Colony Optimization (ACO), first created by Mark Dorigo for his PhD thesis 
[32], is a metaheuristic inspired by the foraging behaviour of ants. It is typically 
used for certain graph-based problems, like the traveling salesman problem (TSP) 
[33] among others [34]. Each edge in the graph contains some level of pheromone. 
Ants find these pheromones attractive, and are more likely to select an edge if it has 
a higher concentration of pheromones. The ants probabilistically select edges, one at 

62 
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a time, based on the level of pheromones and the perceived cost of the edge1. 

After ants have chosen their complete paths, all pheromone levels are partially 
evaporated. New pheromones are then added to the remaining levels on those edges 
that were selected by the ants. Since ants are more likely to follow higher pheromones 
levels, large pheromone deposits tend to self-reinforce. As such, while although one 
or two ants may take a 'good' path initially, by the end of an experiment, most will 
be taking that same path, or a better one if one has been found. 

4.1.2 Application of ACO to 2CNBR 

Consider the case of applying ACO to the traveling salesman problem. An ant starts 
at some city, and then progressively selects one city after another, stochastically 
selecting them based on the pheromone levels and edge costs. To conform with 
the definition of a TSP, at each city, it may only consider those cities that are still 
unvisited. After it has visited them all, the algorithm is done. 

Typically, a taboo list is maintained for each ant, to guarantee that they will not 
revisit an old city. However, in the case of 2CNBR, revisitation is expected. Indeed, it 
is even necessary. It is true that the biconnectivity constraint can be satisfied with a 

t Hamiltonian cycle (as seen in the TSP), but there is no way to ensure bounded rings 
without permitting revisitation. This means that the algorithm must permit an ant 
to return to old vertices. 

However, this introduces a new question. How can one ensure that the algorithm 
will end? What is to stop an ant from choosing a ring of particularly high pheromones, 
and then continuously cycling through that ring? Statistically speaking, the ant will 
most likely leave eventually, but that is a poor guarantee for computational efficiency. 
Rather, some addition was necessary that would both allow the ants to return to old 
vertices as often as necessary, but also eventually discourage that behaviour. 

The original plan to allow this was to develop a sort of antipheromone. Whenever 
an ant would traverse an edge, it would lay down some anti pheromone, which would 
partially cancel the strength of the regular pheromone. As such, the next time an ant 
considered that edge, it would be slightly less attractive. 

To get the same effect, but save slightly on both calculations and complexity, 
a second set of regular pheromones was used instead. For each transcription, the 
second set of pheromones would be initialized to having the same values as the first 
set. As the ant traveled, it would evaporate some of those pheromones using the 
normal algorithm. This still had the effect of making edges less and less attractive 

IThere are different ways to define the 'cost' of an edge for an ant algorithm, but a common 
choice is to use the reciprocal of the length, with an ant being more likely to edges with higher 
'costs', which correspond to shorter lengths. 
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each time they were selected. The first set of pheromones was not disrupted by the 
transcription, and was trained as normal. 

However, the results were very poor. Even the easiest of problems (only ten 
vertices, and with the smallest bounds) could not be reliably solved optimally2. It 
was clear that a better solution was necessary, but it was important to first identify 
any inherent flaws with the design. 

B c D 

A E 

H G F 
(a) incomplete network 

B c D 

A E 

H G F 
(b) complete network 

Figure 4.1: Inefficient Path Taken by Ant Through Network 

Consider the scenario depicted in Figure 4.1a. In this case, there is only one 
edge missing (edge DE) from a legal network, but the ant is at the other end of the 
network, at vertex A. In order to be able to add that final remaining edge, it will 
need to get to either D or E. In order to get there, it will have to traverse the rest 
of the network. If it happens to only select previously visited edges, then this is not 
a problem. However, if it happens to select unvisited edges, then it will result in a 
network which has a higher cost than is necessary, as shown in 4.1b. The fact that 
the network can only grow from one point at a time, when trying to find solutions 

2Finding networks with optimal answers is not normally the purpose of this work. However, for 
such trivial problems, even finding optimal answers by hand is relatively easy. They are essentially 
'toy problems'. 
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that contain the equivalent of choosing multiple paths from each vertex, appeared to 
be the biggest problem. 

4.1.3 Spill System 

If the dilemma with attempting to apply ant colony optimization to the 2GNBR 
problem was related to the fact that the ants could only grow the network from one 
vertex at a time, then the logical solution to attempt was to lift this restriction. 

In a new algorithm, called a spill system, the spill started at some randomly 
chosen point, just as with the ant colony. And, the spill would then select the first 
edge, also identical to how AGO behaves. However, once more than one vertex is 
selected, the difference is readily apparent. As illustrated in Figure 4.2, the spill is 
permitted to consider any edges connected to any vertex already included. Thus, once 
the algorithm has visited all of the vertices, it is allowed to select whatever edges it 
likes to complete the network. This algorithm has the benefit of being freed of the 
AGO's limitation of growing only from a single point at a time. The actual edge 
selection is decided using the same math as the regular AGO, and is detailed in the 
next section. It continuously alternates between selecting an edge, and then checking 

" if the constraints are satisfied. Once they are both satisfied, the algorithm is finished. 
Though the spill system still did not perform to satisfaction, it too needed to be 

analyzed for flaws and either improved upon or replaced. However, as it performed 
better than the modified AGO, more trial runs were performed. 10 runs of 5,000 
epochs each were conducted for each experiment. The best behaviour was that which 
most closely resembled a plain Ant System (AS). That is, there was no intra-epoch 
pheromone evaporation, and all ants (or spill agents) were included in the pheromone 
update rule. The empirically derived parameters which yielded the best results are 
as follows: 

• # ants: Equal to the # of vertices (10 ants for 10 vertices, etc.). 

• p: 0.2. 

• a: 2.0 . 

.. j3 2.0 . 

.. Initial pheromone level (TO): 0.001. 

An excerpt of the best obtained results is shown in table 4.1. 
When attempting to determine the source of the performance problem, it was 

decided that more information was necessary. As such, the ability to track pheromone 
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Figure 4.2: Spill System Demonstrated Across First Three Steps 

Table 4.1: Preliminary Spill System Results 

Spill System 
Data K BB Stingy Tabu GA I Best Average Std. Dev. 

10-1 350 906 906 906 906 906 950.0 37.2 
20-1 200 1577 1859 1819 1577 1924 2013.9 50.3 
30-1 200 1726 1963 1898 1853 3211 3750 233.6 
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Figure 4.3: Plot of Spill System Pheromone Levels After Each Hundred Iterations 

levels across set intervals was added. The change in pheromone levels across all edges 
was studied and a trend became readily apparent. 

As it turns out, the edges were receiving pheromone deposits. The problem was 
with a tendency to deposit pheromones on the same edges evenly and repeatedly. This 
meant that any given preliminary solution was quickly settled upon, and no edges were 
able to further distinguish themselves as being more valuable. Stagnation was nearly 
immediate as evaporation and the introduction of new pheromones quickly found 
equilibrium. In essence, even though pheromones were being added and evaporated, 
the system was not actually training. The next step was to determine why this was 
happening, and a likely explanation was soon found. 

The original formulas provided by Dorigo were intended for ACO, not a spill 
system. They assume that pheromones will be applied conservatively to a small 
subset of the totality of the edges. What ended up happening with the spill system, 
however, was that each spill was picking a wide assortment of edges. So wide, in fact , 
that the majority of the network ended up being repeatedly selected, when considered 
across all spills. As such, the system understandably failed to properly train. This 
introduced a new question: is there any other way to train the pheromone levels? 

Considering the fact that the pheromone levels are continuous floating point val­
ues, particle swarms were reexamined. 



CHAPTER 4. PHEROMONE-DRIVEN PSO 68 

4.2 Pheromone-Driven PSO 

As stated in chapter 2, particle swarms are ideally suited for training vectors of 
continuous floating-point values. This suggests that it might be very effective for 
training the pheromone levels of a spill-style system. Some sort of a system combining 
elements of PSO and ACO was decided upon as being the final solution. 

The basic approach is simple. As with the priority-based PSO, each dimension 
in a particle's position corresponds to a potential edge in the network. However, the 
actual position within each dimension corresponds to the amount of pheromone on 
that edge. As such, the PSO side of the system is relatively simple, as shown in 
algorithm 7. 

Algorithm 7 Pheromone-Driven Particle Transcription and Evaluation 
for each particle p in swarm do 

for each dimension i do 
edgei. pherorrione=p.positioni 

end for 
while Feasible network not yet constructed do 

Select edge based on pheromones 
Check two-connectivity and k-bound constraints 

end while 
end for 

Before actually implementing the system though, there were some fundamental 
questions that needed to be answered. The first was whether or not any element of 
the pheromone update rule should be included. Since the reason this system was 
necessary in the first place was the poor performance of the pheromone-training, 
it was easily decided to not include the pheromone update rule. The second issue 
to decide was how many ants/spills to use per particle. Eventually, it was decided 
to not use multiple ants per particle for two reasons. First, computation time was 
a concern. Second, the particle swarm already introduces its own sense of parallel 
search. Furthermore, as the swarm will always tend to cluster eventually, very similar 
networks would be tested anyways, so it seemed as though it would be somewhat 
redundant to also add multiple ants per particle. 

The system devised is another particle swarm, but one with a unique transcription 
scheme. In contrast to the ant or spill systems, this system is allowed to consider 
all edges, even before spreading out. This was decided mostly for practical reasons. 
Since there were no longer ants or spills to represent, there was no reason to artificially 
limit the edges to be considered. 

The probability of selecting each edge is as follows: 
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'£eiENTivf ' 

o 
where: 

if ei is already in the network 

otherwise 

• Pi is the probability of selecting edge ei' 

II Ti is the pheromone level of edge ei . 

• Vi is the 'cost' of the edge ei, defined as the reciprocal of its length. 

II a is the user-set parameter that determines the significance of pheromones. 

41 (3 is the user-set parameter that determines the significance of 'cost'. 
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Note that this is identical to a traditional ACO. Also note that a and (3 are 
user-defined parameters, and they needed to be experimentally determined for this 
thesis. 

It is important to emphasize the fact that there is no pheromone update rule. 
This is because the PSO becomes the sole entity modifying the pheromone levels. As 

j such, a particle swarm actually represents a collection of multiple pheromone layouts 
for the problem. 

4.3 Experimental Setup 

Once again, the final experimental parameters needed to be determined empirically. 
This included discovering the best parameters for both the pheromone-based edge se­
lection mechanism, as well as the traditional particle swarm parameters. Once again, 
an iteration-span of 2,000 and a swarm size of 200 were used, to allow comparison 
with the other PSO results. 

The same datasets were used as with the priority-based PSO work. As with that 
previous work, 20 runs were conducted for all 10, 20, and 30-vertex problems, with 
extra 10-run experiments conducted on the 40 and 50-vertex problems. 

The final setup is shown in Table 4.2. 
Note that the Xiax and Vimax are substantially different from the previous PSO 

work. This is not surprising as the it was merely the relative values that mattered 
for the priority-based system; while as the position vector values of the pheromone­
based system are used directly in the pheromone-based edge-selection formula. A 
particularly high pheromone level would render the cost (v) of the edge moot. 

Also note that, even though they were developed for a priority-based transcription 
mechanism, the oscillation and supersocial behaviours were still present in the final 
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Table 4.2: Parameters for Pheromone-Based Experiments 

Parameter Value Notes 

X?1tax 
~ 

100.0 
v.;max 

~ 
5.0 

Period 200 Continuous Oscillation 
Cl 0 No cognitive behaviour 
Social Behaviour Neighbourhood 
Neighbourhood Size 12 
C2 3.0 
C3 2.0 
a 4 
(3 1 

best setup. This may be due to the fact that they were both applied to problems with 
identical dimensionality, or the fact that they are still similarly-themed techniques. 

4.4 Results 

Detailed below are the results of the experiments. Tables 4.5 and 4.7 show the best 
(lowest) costs obtained by any particle in any run in the experiment, the average of 
the best cost per run for each experiment, and the sample standard deviation for each 
experiment. 

Figure 4.4 depicts the consolidated performance of the pheromone-driven PSO 
against the other published techniques, as well as against non-oscillating PSO and 
continuously oscillating PSO from Chapter 3. They were created in the same way 
as those found in sections 3.3 and 3.6, and once again should be read in the same 
fashion. Recall that lower values indicate better performance relative the compared 
techniques. It is easy to see that the pheromone-driven PSO did not perform as well 
as oscillating priority-driven PSO. For the most difficult of problems, it did not even 
perform as well, on average, as the non-oscillating priority-based PSO. This implies 
that, at least in this form, a simple priority list is a better transcription mechanism 
for this problem than the more elaborate pheromone mechanism. 

To gauge the performance of the pheromone-driven PSO with more statistical 
significance, a nonparametric Mann-Whitney test was again used. As with the pre­
vious tests, populations are tested within a 95% confidence level. This time, the 
pheromone-driven results were compared against the most vanilla system (i.e. the 
non-oscillating priority-based PSO), and against the continuously oscillating priority-
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based PSO. The results of the former are shown in Table 4.3. The results of the latter 
can be found in Table 4.4. 

The results of the first test are somewhat mixed. The pheromone-driven PSO 
wins or ties 123 out of 128 times. However, at the 40-vertex level, it ties more often 
than it wins. At the 50-vertex level, it loses 5 out of 10 times, and only wins once. As 
such, it won or tied the vast majority of the time, but it was not terribly competitive 
with non-oscillating priority-based PSO within the scope of 'very difficult' problems. 

The results of the second test are noticeably more definitive. The pheromone­
driven PSO only won with statistical significance 8 out of 128 times, and was beaten 
92 out of 128 times. Clearly, the pheromone-driven model requires more work before 
it can match the performance of the priority-based system. 

Tables 4.6 and 4.8 show how the best results obtained by the pheromone-driven 
PSO compare to the best results found by Fortz's Stingy algorithm, his Tabu search, 
and Ombuki and Ventresca's Genetic Algorithm. Values that are italicized indicate 
that the pheromone-driven PSO matched or beat the results of the Stingy algorithm. 
Values that are bold indicate that the pheromone-driven PSO matched or beat at 
least one metaheuristic (Tabu, GA, or both). 
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Figure 4.4: Pheromone-Driven Results: Comparison of Averages of Best Costs 
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Figure 4.4: Pheromone-Driven Results: Comparison of Averages of Best Costs (con­
tinued) 
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Table 4.3: Statistical Comparison of Pheromone-Driven and Non-Oscillating Priority­
Based Results 

Tie N.O. Priority Won Pheromones Won 

1O's 0 0 21 
20's 0 0 32 
30's 0 0 32 
40's 20 0 13 
50's 4 5 1 

Total 24 5 99 

Table 4.4: Statistical Comparison of Pheromone-Driven and Continuously Oscillating 
Priority-Based Results 

Tie Cont. Priority Pheromones Won 

1O's 15 0 6 
20's 12 18 2 
30's 1 31 0 
40's 0 33 0 
50's 0 10 0 

Total 28 92 8 
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4.5 Discussion 

Some of the results were encouraging, though less-so than with the priority-based 
PSO. 

Figures 4.5 and 4.6 depict the best solutions found for the 30-1 dataset, with 
k-bounds of 200 and 500, respectively. Notice that the solution quality actually 
degraded after the k-bound was relaxed. In theory, one should expect solutions with 
lower costs as the k-bound is raised3 . However, once again, the particle swarm seemed 
to have increasing difficulty as the dimensionality of the problems grew. 

250 

200 

150 

100 

50 

i 
50 100 150 

, 
200 

Figure 4.5: Pheromone-Driven Result: Solution for 30-1(200) Plotted 

Additionally, the pheromone-driven PSO clearly did not perform as well as the 
priority-based PSO. While although it still managed to meet or beat at least one 
previous metaheuristic result on numerous occasions, it hit its ceiling of effectiveness 
even earlier than the priority-based PSO did. 

3 At the very least, the cost should not increase, as any solution possible with a more restrictive 
k-bound is still possible with a less restrictive k-bound. 
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Table 4.5: Pheromone-Driven Results: Best and Average Cost Lengths 

Data K Best Average Std. Dev. Data K Best Average Std. Dev. 

10-1 350 906 906 0 20-4 200 1958 1964.2 7.1 
400 898 898.8 2.5 250 1460 1550.1 43.1 
450 896 898.8 4.7 300 1301 1381.8 61.7 
500 854 862.6 11.7 350 1285 1405.6 75.5 

10-2 400 1140 1144.7 5 400 1309 1459.4 69.1 
450 1062 1064.3 4.7 450 1405 1466.2 49.6 
500 1031 1048.9 15.8 500 1330 1464.6 71.5 

10-3 300 1269 1279.8 22.9 20-5 300 1346 1394.7 43.8 
350 1018 1018 0 350 1286 1370 50.4 
400 954 960.9 16.7 400 1340 1445.1 52.6 
450 952 952.1 0.4 450 1317 1444.7 54.9 
500 952 952.6 2.5 500 1293 1393 56 

10-4 300 1391 1391 0 30-1 200 1800 1943.7 80 
350 1205 1212.8 12.7 250 2195 2340 91 
400 1117 1133.3 22.8 300 2269 2458.3 116.9 
450 980 984.6 14.9 350 2118 2449.9 132.5 
500 980 987.8 18 400 2328 2469.7 99.6 

10-5 350 1383 1385.1 3.1 450 2137 2448.2 108.1 

f 400 1238 1258.5 9.7 500 2135 2343.5 109.1 
450 1143 1165.7 29.2 30-2 300 2220 2431 96 
500 1072 1083 17.9 350 2260 2450.1 91.6 

20-1 200 1577 1592.9 23.5 400 2273 2562.3 154.6 
250 1448 1487 29.4 450 2174 2610.9 159 
300 1383 1429 33.4 500 2191 2547.4 149.8 
350 1313 1424.6 68.9 30-3 250 2189 2382.1 76.6 
400 1285 1389.4 64.1 300 2185 2348.7 81.2 
450 1368 1464.7 54.9 350 1900 2296.1 127.1 
500 1285 1383.5 56.6 400 2098 2324.3 117.9 

20-2 200 1331 1364.9 18.7 450 2171 2321.1 86.9 
250 1104 1137.9 25.9 500 1981 2266.9 146.1 
300 1027 1111.8 51.4 30-4 200 1683 1876.9 79.1 
350 1063 1174.2 42.1 250 1747 2133.3 130.2 
400 1090 1164 43.5 300 1765 2074.3 118.6 
450 1078 1170.9 42.7 350 1919 2117.9 116.4 
500 1040 1136.7 42.4 400 1834 2099.8 122 

20-3 200 1502 1654.6 70.7 450 1966 2069.9 76 
250 1225 1277.2 40.9 500 1828 2050.2 92.7 
350 1269 1360 58.7 30-5 200 2284 2391.6 52.9 
400 1286 1380.8 49.6 250 2339 2593.4 121.5 
450 1264 1344.8 45.3 300 2538 2678 86.2 
500 1232 1307.4 45.4 350 2570 2742.8 110 

400 2482 2706.7 121.6 
450 2630 2885.6 123.8 
500 2482 2822.9 129.1 
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Table 4.6: Pheromone-Driven Results: Comparisons of Cost Lengths 

Data K BB Stingy Tabu GA PSO Data K BB Stingy Tabu GA PSO 

10-1 350 906 906 906 906 906 
400 898 976 898 898 898 
450 896 955 898 896 896 
500 854 880 854 854 854 

10-2 400 1140 1154 1140 1140 1140 
450 1062 1062 1062 1062 1062 
500 1031 1062 1031 1031 1031 

10-3 300 1269 1433 1269 1269 1269 
350 1018 1089 1018 1018 1018 
400 954 1025 954 954 954 
450 952 1025 952 952 952 
500 952 1007 952 952 952 

10-4 300 1391 1445 1391 1391 1391 
350 1205 1256 1205 1205 1205 
400 1117 1186 1117 1117 1117 
450 980 1149 980 980 980 
500 980 1142 980 980 980 

10-5 350 1383 1457 1383 1383 1383 
400 1238 1456 1238 1238 1238 
450 1143 1292 1143 1143 1143 
500 1072 1213 1072 1072 1072 

20-1 200 1577 1859 1819 1577 1577 
250 1445 1501 1455 1445 1448 
300 1376 1430 1376 1383 1383 
350 1253 1459 1253 1253 1313 
400 1183 1416 1183 1183 1285 
450 1144 1266 1144 1144 1368 
500 1111 1185 1111 1111 1285 

20-2 200 1325 1360 1329 1390 1331 
250 1094 1166 1098 1104 1104 
300 984 1065 990 996 1027 
350 953 974 953 953 1063 
400 940 974 946 940 1090 
450 919 959 932 929 1078 
500 900 925 900 917 1040 

20-3 200 1449 1512 1449 1610 1502 
250 1218 1272 1218 1218 1225 
350 1100 1266 1100 1138 1269 
400 1100 1239 1100 1103 1286 
450 1100 1228 1101 1104 1264 
500 1011 1219 1011 1011 1232 

20-4 200 1958 1962 1958 1958 1958 
250 1454 1524 1460 1460 1460 
300 1286 1442 1286 1286 1301 
350 1235 1334 1235 1235 1285 
400 1190 1259 1190 1205 1309 
450 1164 1213 1164 1164 1405 
500 1149 1213 1174 1164 1330 

20-5 300 1324 1419 1339 1332 1346 
350 1251 1355 1251 1251 1286 
400 1211 1300 1213 1239 1340 
450 1119 1162 1125 1119 1317 
500 1082 1125 1082 1082 1293 

30-1 200 1726 1963 1898 1853 1800 
250 1477 1689 1612 1655 2195 
300 1413 1657 1474 1557 2269 
350 1328 1622 1366 1406 2118 
400 1295 1464 1358 1333 2328 
450 1240 1382 1240 1248 2137 
500 1213 1322 1221 1213 2135 

30-2 300 1477 1607 1507 1488 2220 
350 1381 1461 1386 1386 2260 
400 1319 1425 1322 1319 2273 
450 1319 1386 1347 1319 2174 
500 1295 1386 1302 1302 2191 

30-3 250 1411 1711 1574 1613 2189 
300 1325 1526 1329 1325 2185 
350 1239 1250 1239 1239 1900 
400 1198 1349 1198 1198 2098 
450 1152 1160 1152 1152 2171 
500 1128 1151 1128 1128 1981 

30-4 200 1448 1612 1549 1577 1683 
250 1250 1547 1327 1382 1747 
300 1164 1484 1316 1391 1765 
350 1134 1470 1143 1152 1919 
400 1050 1215 1068 1068 1834 
450 1044 1206 1044 1097 1966 
500 1044 1223 1079 1064 1828 

30-5 200 2056 2282 2156 2080 2284 
250 1759 2195 1915 1915 2339 
300 1635 2097 1750 1742 2538 
350 1562 1668 1562 1562 2570 
400 1493 1578 1497 1497 2482 
450 1452 1510 1459 1452 2630 
500 1424 1498 1425 1424 2482 
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Table 4.7: Additional Pheromone-Driven Results: Best and Average Cost Lengths 

Data K Best Average Std. Dev. Data K Best Average Std. Dev. 

40-1 200 3212 3368 78.6 40-4 200 3168 3393.9 98.2 
250 3720 4048.6 237.8 250 3614 3903.5 217.6 
300 3699 3943.6 165.3 300 3709 4023.2 201.2 
350 3919 4246 213.4 350 3829 4008.6 153 
400 4116 4363.1 142.5 400 3800 4128.2 225 
450 4091 4574.2 213.5 450 3984 4328.3 210 
500 3769 4367.2 234.9 500 3602 4096.7 217.5 

40-2 300 3157 3824.3 294.2 40-5 200 2640 2781.4 84.4 
350 3839 4093.4 190.2 250 3415 3622.2 174.5 

t 400 3881 4228.4 148.1 300 3543 3674.7 129.9 
450 3780 4365.1 338.6 350 3562 3897.8 234.2 
500 3793 4086.7 246.8 400 3550 3923.2 146.9 

40-3 200 3187 3310.6 77.4 450 3314 3938.9 325.4 
250 3333 3623.1 178.2 500 3911 3987 152 
300 3423 3780.1 209.9 50-1 150 3103 3242.4 99.5 
350 4106 4333.1 157.6 200 3857 4286.8 203.8 
400 4183 4481.1 233.5 50-2 250 5176 5636.9 323.4 
450 4350 4637.2 156.7 300 5738 6068.2 249.2 
500 4267 4550 148.6 50-3 200 4655 4962.9 184.7 

250 5451 6499.2 619.3 
50-4 200 4308 4460 152.1 

250 5123 5426.9 218.8 
50-5 200 4655 5034.2 289.9 

250 5466 5873.8 260.7 
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Table 4.8: Additional Pheromone-Driven Results: Comparisons of Cost Lengths 

Data K BB Stingy Tabu GA PSO Data K BB Stingy Tabu GA PSO 

40-1 200 2067 2549 2232 2320 3212 40-4 200 1894 2159 2069 2163 3168 
250 1800 2261 2031 2030 3720 250 1718 1877 1791 1795 3614 
300 1687 2213 1947 1854 3699 300 1610 1768 1706 1688 3709 
350 1616 1998 1691 1733 3919 350 1551 1664 1616 1616 3829 
400 1558 1699 1609 1627 4116 400 1503 1603 1552 1572 3800 
450 1533 1767 1571 1697 4091 450 1476 1590 1524 1536 3984 
500 1520 1751 1537 1589 3769 500 1458 1511 1492 1475 3602 

40-2 300 1558 1737 1621 1617 3157 40-5 200 1626 1747 1720 1703 2640 

i 
350 1496 1592 1514 1527 3839 250 1455 1727 1657 1676 3415 
400 1459 1544 1477 1535 3881 300 1393 1712 1607 1544 3543 
450 1434 1540 1462 1462 3780 350 1356 1699 1575 1607 3562 
500 1416 1505 1422 1416 3793 400 1315 1699 1546 1546 3550 

40-3 200 2031 2421 2317 2355 3187 450 1266 1699 1422 1438 3314 
250 1821 2146 2077 2077 3333 500 1246 1699 1291 1246 3911 
300 1688 1897 1815 1815 3423 50-1 150 2165 2367 2250 2286 3103 
350 1620 1747 1654 1694 4106 200 1776 2036 1968 1968 3857 
400 1582 1649 1611 1649 4183 50-2 250 1884 2267 2200 2194 5176 
450 1561 1622 1575 1561 4350 300 1772 1914 1869 1881 5738 
500 1539 1622 1576 1539 4267 50-3 200 1877 2236 2053 2116 4655 

250 1777 2073 1896 1957 5451 
50-4 200 1852 2183 2090 2105 4308 

250 1709 2105 1822 1822 5123 
50-5 200 1777 2155 1960 2084 4655 

250 1650 1890 1835 1835 5466 
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Figure 4.6: Pheromone-Driven Result: Solution for 30-1(500) Plotted 
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Chapter 5 

Conclusions and Future Work 

This chapter sums up the final thoughts on using Particle Swarm Optimization for the 
Two-Connected Networks with Bounded Rings problem, including strengths, weak­
nesses, and potential room for future improvements. 

Overall, the priority-based PSO had encouraging results. Though higher dimen­
sional problems (whether from higher numbers of vertices, or simply more relaxed 
k-bounds) started to become a more noticeable challenge, the performance for lower-
dimensional problems was admirable, and reasonable for moderately difficult prob-
lems. Furthermore, it shows great promise for the possible future use of PSO for this 
style of problem in general. 

In spite of the highly-constrained nature of the problem, and the interdependency 
of edges and associated rings, it was still possible to apply particle swarms (which 
typically do not permit additional constraints) and obtain reasonable results. This 
shows the value of using an indirect transcription scheme (in this case, a priority 
listing) as a means of circumventing a natural limitation of PSG, which represents a 
significant contribution in and of itself. 

The oscillation, as a means of avoiding stagnation, was also a novel method for 
giving the system sufficient flexibility to both explore and refine solutions. Though 
other techniques exist for changing the behaviour of metaheuristics over time [22], and 
for intentionally disrupting a system when it reaches stagnation (as is common for 
Ant Colony Optimization), this simple function allows a repeating behaviour lacking 
from simulated annealing or the comparable technique used for PSO by Urfalioglu 
[22], that also does not require a supervising mechanism as in the case of ACO. Thus, 
it is effective, but also very efficient. 

The pheromone-driven particle swarm did not fare as well, but still represents 
a unique alternate approach to enabling particle swarm positions to be transcribed 
into working legal networks. Additionally, it represents an interesting technique for 
combining facets of ant colony and particle swarm behaviours. 
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Refer to Appendix A for listings of the results of all the techniques used in this 
thesis. Tables A.l, A.2 and A.3 show the complete final tally of all results, compared 
against the previous works of Fortz, Ombuki and Ventresca. Again, italicized values 
represent results that matched or beat the Stingy results, and bolded values represent 
results that matched or beat at least one metaheuristic (Tabu, GA, or both). 

There still remains a great potential for improving upon these results in the future. 
First and foremost, it may still be possible to alleviate some of the difficulty associated 
with the dimensionality issue. Since it is believed that the key impediment is that 
apparently 'undesirable' edges lack the means to assert themselves1 , it is theorized 
that some mechanism which tended to punish 'desirable' edges or give 'undesirable' 
edges a chance might improve results. Since actually modifying the positions of the 
particles within dimensions corresponding to those undesirable edges would likely be 
too disruptive, it is logical to suspect that an addition to the velocity update rule may 
be best. For example, the concept of entropy might be a good addition. Entropy is 
the tendency of organized or clustered items to become disorganized or 'spread out'. 
Relying upon that general concept, the suggestion is that-either every iteration, or 
every x iterations-dimensional velocities corresponding to edges could be 'pushed' 
outwards (i.e. away from the origin) inversely proportional to their dimensional dis-

1 tance from the origin. That is, a very desirable edge would have a force added to its 
velocity to give it a chance at being shifted past another edge that may otherwise 
have never had a chance to assert itself in the network. 

Additionally, the Spill System may yet still have potential, even if not necessarily 
for this specific problem. It may, however, require a new function or mechanism for 
pheromone updates. 

In conclusion, being the first use of particle swarms for this largely unexplored 
problem is not the only contribution of this thesis. The oscillating momentum and 
indirect transcription schemes introduced in this work have great potential for nu­
merous other combinatorial optimization problems. 

1 In the case of priority-based PSO, this may be because the edges at the least-desirable end of 
the priority listing actually have no effect at all upon the evaluation of the network. In the case of 
pheromone-driven PSO, this may similarly be the result of a few edges achieving a very high level 
of pheromone, stifling the potential of low-pheromone edges to ever compete. 
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Appendix A 

Comparison of all Results 

Below are tables representing the best results of all the techniques used in this thesis, 
compared against the best results obtained by Fortz, Ombuki, and Ventresca. 
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Table A.l: Final Results: Comparison for 10 and 20 Vertices 

Data K BB Stingy Tabu GA NonOsc ContOsc PulOsc Pher 

10-1 350 906 906 906 906 906 906 906 906 
400 898 976 898 898 934 898 898 898 
450 896 955 898 896 896 896 896 896 
500 854 880 854 854 919 854 854 854 

10-2 400 1140 1154 1140 1140 1146 1140 1140 1140 
450 1062 1062 1062 1062 1086 1062 1062 1062 
500 1031 1062 1031 1031 1093 1031 1031 1031 

10-3 300 1269 1433 1269 1269 1269 1269 1269 1269 
350 1018 1089 1018 1018 1018 1018 1018 1018 
400 954 1025 954 954 1058 954 954 954 
450 952 1025 952 952 952 952 952 952 
500 952 1007 952 952 988 952 952 952 

10-4 300 1391 1445 1391 1391 1391 1391 1391 1391 
350 1205 1256 1205 1205 1205 1205 1205 1205 
400 1117 1186 1117 1117 1135 1117 1117 1117 
450 980 1149 980 980 980 980 980 980 
500 980 1142 980 980 1031 980 980 980 

10-5 350 1383 1457 1383 1383 1383 1383 1383 1383 
400 1238 1456 1238 1238 1260 1238 1238 1298 
450 1143 1292 1143 1143 1158 1149 1143 1149 
500 1072 1213 1072 1072 1106 1072 1072 1072 

20-1 200 1577 1859 1819 1577 1645 1577 1577 1577 

t 250 1445 1501 1455 1445 1631 1451 1451 1448 
300 1376 1430 1376 1383 1786 1416 1389 1989 
350 1253 1459 1253 1253 1629 1299 1273 1313 
400 1183 1416 1183 1183 1714 1183 1183 1285 
450 1144 1266 1144 1144 1686 1192 1150 1368 
500 1111 1185 1111 1111 1541 1111 1111 1285 

20-2 200 1325 1360 1329 1390 1646 1329 1325 1391 
250 1094 1166 1098 1104 1383 1108 1107 1104 
300 984 1065 990 996 1422 987 997 1027 
350 953 974 953 953 1347 967 953 1063 
400 940 974 946 940 1351 958 949 1090 
450 919 959 932 929 1304 926 933 1078 
500 900 925 900 917 1375 930 910 1040 

20-3 200 1449 1512 1449 1610 1716 1474 1459 1502 
250 1218 1272 1218 1218 1402 1240 1242 1225 
350 1100 1266 1100 1138 1414 1138 1122 1269 
400 1100 1239 1100 1103 1553 1119 1109 1286 
450 1100 1228 1101 1104 1413 1125 1107 1264 
500 1011 1219 1011 1011 1456 1011 1057 1232 

20-4 200 1958 1962 1958 1958 1971 1958 1958 1958 
250 1454 1524 1460 1460 1822 1454 1454 1460 
300 1286 1442 1286 1286 1822 1286 1286 1301 
350 1235 1334 1235 1235 1653 1248 1248 1285 
400 1190 1259 1190 1205 1682 1233 1200 1309 
450 1164 1213 1164 1164 1749 1164 1164 1405 
500 1149 1213 1174 1164 1737 1208 1170 1330 

20-5 300 1324 1419 1339 1332 1612 1991 1924 1346 
350 1251 1355 1251 1251 1631 1260 1254 1286 
400 1211 1300 1213 1239 1673 1214 1214 1340 
450 1119 1162 1125 1119 1640 1189 1190 1317 
500 1082 1125 1082 1082 1676 1088 1128 1293 
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Table A.2: Final Results: Comparison for 30 Vertices 

Data K BB Stingy Tabu GA NonOsc ContOsc PulOsc Pher 

30-1 200 1726 1963 1898 1853 2502 1791 1751 1800 
250 1477 1689 1612 1655 2350 1708 164-6 2195 
300 1413 1657 1474 1557 2357 1618 14-94- 2269 
350 1328 1622 1366 1406 2400 14-32 1519 2118 
400 1295 1464 1358 1333 2500 14-05 1474 2328 
450 1240 1382 1240 1248 2803 1354- 1544 2137 
500 1213 1322 1221 1213 2416 1421 1487 2135 

30-2 300 1477 1607 1507 1488 2047 1533 1535 2220 
350 1381 1461 1386 1386 2225 1470 1530 2260 
400 1319 1425 1322 1319 2601 1515 1589 2273 
450 1319 1386 1347 1319 2523 1450 1579 2174 
500 1295 1386 1302 1302 2671 1414 1598 2191 

t 30-3 250 1411 1711 1574 1613 2153 1573 1667 2189 
300 1325 1526 1329 1325 2266 1554 1537 2185 
350 1239 1250 1239 1239 2225 1311 1504 1900 
400 1198 1349 1198 1198 2173 1315 1476 2098 
450 1152 1160 1152 1152 2457 1218 1358 2171 
500 1128 1151 1128 1128 2292 1195 1443 1981 

30-4 200 1448 1612 1549 1577 1962 1568 1568 1683 
250 1250 1547 1327 1382 2232 1359 1384 1747 
300 1164 1484 1316 1391 2082 1285 1416 1765 
350 1134 1470 1143 1152 2113 1246 1308 1919 
400 1050 1215 1068 1068 2225 1159 1276 1834 
450 1044 1206 1044 1097 1825 1123 1277 1966 
500 1044 1223 1079 1064 2017 1113 1243 1828 

30-5 200 2056 2282 2156 2080 2677 2216 2104- 2284 
250 1759 2195 1915 1915 2869 1990 1967 2339 
300 1635 2097 1750 1742 2671 1790 1827 2538 
350 1562 1668 1562 1562 2534 1663 1762 2570 
400 1493 1578 1497 1497 3000 1578 1677 2482 
450 1452 1510 1459 1452 2716 1564 1756 2630 
500 1424 1498 1425 1424 2853 1509 1694 2482 
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Table A.3: Final Results: Comparison for 40 and 50 Vertices 

Data K BB Stingy Tabu GA NonOsc ContOsc PulOsc Pher 

40-1 200 2067 2549 2232 2320 3339 2492 2658 3212 
250 1800 2261 2031 2030 3763 2280 2447 3720 
300 1687 2213 1947 1854 3860 2071 2516 3699 
350 1616 1998 1691 1733 3678 1911 2463 3919 
400 1558 1699 1609 1627 4135 1749 2653 4116 
450 1533 1767 1571 1697 3602 1837 2935 4091 
500 1520 1751 1537 1589 3628 1865 2716 3769 

40-2 300 1558 1737 1621 1617 3530 1855 2286 3157 
350 1496 1592 1514 1527 3592 1867 2385 3839 
400 1459 1544 1477 1535 3681 1686 2441 3881 
450 1434 1540 1462 1462 3315 1763 2809 3780 
500 1416 1505 1422 1416 3318 1763 2636 3793 

40-3 200 2031 2421 2317 2355 3477 2528 2569 3187 
250 1821 2146 2077 2077 3597 2375 2515 3333 
300 1688 1897 1815 1815 3617 1974 2299 3423 
350 1620 1747 1654 1694 4407 1983 2611 4106 
400 1582 1649 1611 1649 4046 1864 2712 4183 

t 450 1561 1622 1575 1561 4048 1771 2679 4350 
500 1539 1622 1576 1539 4245 1747 2964 4267 

40-4 200 1894 2159 2069 2163 3240 2254 2250 3168 
250 1718 1877 1791 1795 3268 2140 2445 3614 
300 1610 1768 1706 1688 3360 1872 2453 3709 
350 1551 1664 1616 1616 3655 1866 2563 3829 
400 1503 1603 1552 1572 4113 1800 2579 3800 
450 1476 1590 1524 1536 3514 1675 2818 3984 
500 1458 1511 1492 1475 3431 1811 2775 3602 

40-5 200 1626 1747 1720 1703 2847 1850 1870 2640 
250 1455 1727 1657 1676 2850 1826 1977 3415 
300 1393 1712 1607 1544 3572 1651 2381 3543 
350 1356 1699 1575 1607 3101 1733 2477 3562 
400 1315 1699 1546 1546 3227 1667 2450 3550 
450 1266 1699 1422 1438 3177 1656 2464 3314 
500 1246 1699 1291 1246 3551 1589 2403 3911 

50-1 150 2165 2367 2250 2286 3584 2498 2483 3103 
200 1776 2036 1968 1968 3261 2247 2713 3857 

50-2 250 1884 2267 2200 2194 4434 2375 3508 5176 
300 1772 1914 1869 1881 4324 2312 3715 5738 

50-3 200 1877 2236 2053 2116 3898 2386 3072 4655 
250 1777 2073 1896 1957 4351 2344 3384 5451 

50-4 200 1852 2183 2090 2105 3743 2293 2972 4308 
250 1709 2105 1822 1822 4564 2184 3476 5123 

50-5 200 1777 2155 1960 2084 3667 2292 2996 4655 
250 1650 1890 1835 1835 3925 2194 3600 5466 



Appendix B 

Priority-Based PSO Solution Plots 

This appendix contains plots of the best solutions found by priority-based particle 
swarms for each k-bound of each problem instance. 
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Appendix C 

Graphical Comparisons of All 
Techniques 

This appendix contains additional graphs comparing the cumulative effectiveness 
of the techniques previously used by Fortz, Ombuki, and Ventresca against the 
non-oscillating, continuously oscillating, and pulse oscillating priority-based parti-

'I cle swarms and the pheromone-driven particle swarm explored in this thesis. Each 
chart shows the cumulative network costs of the solutions found across all provided 
k-bounds for a problem instance. 
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Figure C.1: Comparison of cumulative performance for problem 10-1 
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Figure C.2: Comparison of cumulative performance for problem 10-2 
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Figure C.3: Comparison of cumulative performance for problem 10-3 



APPENDIX C. GRAPHICAL COMPARISONS OF ALL TECHNIQUES 133 

Comparison of Results for 104 

7000 

6000 

5001) 

4000 

3000 

2000 

1000 

Figure C.4: Comparison of cumulative performance for problem 10-4 
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Figure C.5: Comparison of cumulative performance for problem 10-5 
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Figure C.6: Comparison of cumulative performance for problem 20-1 
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Figure C.7: Comparison of cumulative performance for problem 20-2 
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Figure C.S: Comparison of cumulative performance for problem 20-3 
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Figure C.g: Comparison of cumulative performance for problem 20-4 
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Figure C.10: Comparison of cumulative performance for problem 20-5 
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Figure C.ll: Comparison of cumulative performance for problem 30-1 
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Figure C.12: Comparison of cumulative performance for problem 30-2 
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Figure C.13: Comparison of cumulative performance for problem 30-3 
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Figure C.14: Comparison of cumulative performance for problem 30-4 
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Comparison of R.esults for 30-5 
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Figure C.15: Comparison of cumulative performance for problem 30-5 
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Figure C.16: Comparison of cumulative performance for problem 40-1 
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Figure C.17: Comparison of cumulative performance for problem 40-2 
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Figure C.18: Comparison of cumulative performance for problem 40-3 
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Figure C.19: Comparison of cumulative performance for problem 40-4 
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Figure C.20: Comparison of cumulative performance for problem 40-5 
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Figure C.2l: Comparison of cumulative performance for problem 50-1 
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Figure C.22: Comparison of cumulative performance for problem 50-2 
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Figure C.23: Comparison of cumulative performance for problem 50-3 
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Figure C.24: Comparison of cumulative performance for problem 50-4 



APPENDIX C. GRAPHICAL COMPARISONS OF ALL TECHNIQUES 145 

Comparison of Results for 50·5 

12000 

10000 

Figure C.25: Comparison of cumulative performance for problem 50-5 


