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ABSTRACT

The anharmonic contributions of order A6 to the Helmholtz free

energy for a crystal in which every atom is on a site of inversion

symmetry, have been evaluated The cor~esponding diagrams in the

various orders of the perturbation theory have been presented The

validity of the expressions given is for high temperatures. Numerical

calculations for the diagrams which contribute to the free energy have

been worked out for a nearest-n~ighbour central-force model of a face

centered cubic lattice in the high-temperature limit and in the leading

term and the Ludwig approximations. The accuracy of the Ludwig approx

imation in evaluating the Brillouin-zone sums has been investigated.

Expansion for all diagrams in the high-temperature limit has been

carried out The contribution to the specific heat involves a linear

as well as cubic term~ We have applied Lennard-Jones, Morse and

Exponential 6 types of potentials. A comparison between the contribu

tion to the free energy of order A6 to that of order A4 has been made.
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I. Introduction

The total potential energy of a crystal, which is a function of

the atomic positions, 'can be expanded in powers of the displacements of

the atoms from their equilibrium positions. Retaining the terms up to

the quadratic (this is called the harmonic approximation) in the expan-

sion, the motion of the atoms can be expressed as the vibration of

independent harmonic oscillators, equal to the number of the degrees of

freedom in the crystal. Each of these independent modes of vibration is

1

characterized by a wave-vector

~(Kj).

a polarization index j and a frequency

Many properties of crystals cannot be described within the harmonic

approximation. When the calculations are carried out, the crystal shows

no thermal expansion and thermal conductivity. The specific heat at

constant volume C becomes constant 3R, at high temperatures but exper
v

imentally [1,2], C departs from 3R limit at high temperatures.
v

These properties can only be explained by the anharmonic theory

which takes into account the terms higher than the quadratic in the

expansion of the potential energy of a crystal.

Peierls [3] has discussed the anharmonic effect on the specific

heat and has shown its deviation from the Dulong-Petit limit. He has

also found that the thermal expansion is proportional to T4 at low-

temperatures and becomes linear in T at high-temperatures

Van Hove [4] has introduced an ordering parameter, , equal

in magnitude to a typical atomic displacement divided by the nearest

neighbour distance The lowest-order anharmonic contribution to the

free energy are found to be of 0rder involving expressions which



was good up to

consist of sums over three or less wave-vectors and a like number of

polarization indices.

Ludwig [5] has given explicit expressions for the lowest-order

contributions to the Helmholtz free energy in terms of sums over wave-

vectors and polarizations for all temperatures. His calculations have

involved the approximation of taking functions of the normal mode

frequencies outside the summations and replacing them by some sort of

averages.

Maradudin et al. [6] have calculated these contributions in the

leading term approximation in which the highest ordered radial derivative

of the interatomic potential is retained.

Klein et al. [7] have applied the lowest order perturbation theory

to the calculation of the thermal properties of all rare gas solids

except He. The agreement between the calculated and experimental values

T< 1
3
. T (T is the melting temperature of a crystal).

m m

2

The contribution to the specific heat from terms is found to be

linear at high temperatures. Brooks [1] and Leadbetter [2] have exper-

imentally found the presence of both linear and quadratic terms in the

specific heat expression suggesting contributions from the anharmonic

terms in higher orders.

The diagrammatic method has been applied in the calculation of

the varions thermodynamic properties of an anharmonic crystal. Van Have

[4] and Cowley [8] have applied it in calculating the lowest order terms

of the anharmonic Helmholtz energy. Shukla and Cowley [9] have extended

the calculations to the next higher order, , of perturbation theory.

They have shown that this order is responsible for 'the quadratic term in
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the specific heat. Recently Wilk [10] and Aggrawal and Pathak [11] have

analytically worked out the previous calculations using Ludwig's approximation(LA)

It has been found that LA gives exact result for some simple sums, however

most of the sums are underestimated by about 18% and the remaining sums

are overestimated by about 20%.

Choquard [12] has introduced anew method called the self-consistent

phonon theory. This method is based upon obtaining closed-form expressions

for the free energies arising from different orders of perturbation theory

(PT) The sum of the infinite series arising from the first order of PT

is called the first order self.... consistent field (SCI). All ring diagrams

have been summed in this order. In the second order self-consistent

equations (SC2), the first and second ord~r contributions of PT are

summed. The first calculation using SCI theory has been done by Gillis

et ale [13] on Ne. Goldman et ale [14] have carried out similar calcu

lations for other rare gas crystals using SCI theory and the cubic

correction to the free energy missed out in the SCI theory. This is called

the improved self-consistent (ISC). Koehler [15] has carried out the

calculation for another diagram which arises in SC2 theory from the quartic

term. In the language of the PT, there are three other diagrams of this

order [9] and it is unreasonable to add such diagram and neglect more

important diagrams [9] in the same order.

An examination of the agreement between the ISC theory and the

experiment appears to be poor beyond one-half of the melting temperature.

It would be worth while going to the next higher order of PT, i.e

to give light to some other important diagrams to be included in the

free energy calculations. It is the aim of the present thesis to study

Explicit expressions for the diagrams contributing to the

this point

generated

All diagrams arising from this order, have been



Helmholtz free energy have been worked out. The high-temperature expan

sions for these diagrams have been carried out. Numerical calculations

have been performed for all the diagrams for a nearest-neighbour central

force model of a face-centered-cubic lattice in the high-temperature

limit and in the leading-term and the Ludwig approximation (LA). We

have applied three different types of potentials: Lennard~Jones, Morse)

and Buckingham (Exp. 6). A comparison between the contribution to the

4

free energy of order to that of order has been made. We have

been able to carry out the calculations for twenty-four out of the

forty-three diagrams contributing to the free energy without using the

LA and found that in LA most diagrams were underestimated by about 20%;

one gave exact result and the rest were overestimated by about 37%.

In grouping the diagrams according to SCI, ISC and SC2, we have found

that F(ISC) to did not agree with the final F( ) in contrast

to the findings of Shukla and Cowley [9] which probably may be due to the

inaccuracies in using LA to ( The plan of this thesis is as

follows. The derivation of the anharmonic hamiltonian is presented in

section (II) followed by the diagrammatic method and the high-temperature

expansion in sections(III) and (IV) respectively. In section (V) we have

outlined the numerical calculations,followed by the discussion and the

conclusion in sections (VI) and (VII) respectively.
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II. The Anharmonic Hamiltonian

The equilibrium position of the eth unit cell in a crystal is

defined by

( + (2 1)

where ~l' "e2' ~3 are three non-coplaner vectors called the primitive

translation vectors of the lattice. are any three

integers called the cell indices.

The displacement from equilibrium of the th atom in a monatomic

crystal is denoted by ~( The total kinetic energy of the lattice

is given by:

I
2

(2.2)

where M is the mass of the atom and denotes the cartesian coordinates

x, y, z

The total potential energy of the crystal is a function of the

instantaneous atomic positions of the atoms. It can be expanded in a

Taylor's series in powers of the displacement to give:

(2.3)

th
The n force

e,

)

2(
(

G,
iV!~11

is the static potential energy of the crystal.where

constant represents the force exerted on the atom at

)direction when the atoms) in thex(
r

are displaced by unit distances in the directions

respectively. It is given by:

(

( )
? " • - -' d UD( ( I!, J ... d

denoting the negative force adting in

(2.4)

the atom



at ( at equilibrium. The net force on any particle vanishes at

6

equilibrium , thus

(2.5)

The Hamiltonian of the system is given by:

(2 6)

In order to diagonalize the harmonic part of the hamiltonian, a transform~

ation can be generated in the form: Born and Huang [16], Maradudin [17]

( (2 7a)

unit cells in the lattice. The wave vector K
-",..,..;

where N is

( (2.7b)

is equal in magnitude to the reciprocal of the wavelength of the lattice-

wave. The allowed values of K depend on the boundary conditions of the

lattice. These values are uniformly distributed throughout one unit

cell of the reciprocal lattice.

For each value of K, there are 3r eigenvalues w ( '5, ; and 3r
li""~~""

eigenvectors ) where J I) L) .3y- y is the number of

atoms per unit cell. For monatomic crystal r

the eigenvector are defined by

1. The eigenvalue and

(~ ) ( ) (2 It 8)

where,

(I?- )

(5
The eigenvectors can always be chosen to satisfy the conditions:

(2.9)

)) ( /
(2.l0a)

( ) =-
(2.l0b)

The reality condition on this transformation requires that:
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( ) - (,.-- cJ) (2.lla)

/) (= )
(2.llb)

-- tA,.)

in eq. (2.7) are the usual annihilation and creation

operators

Van Hove [4] has introduced the idea that in general the expecta

tion value of the nth order potential energy term in the anharmonic

crystal hamiltonian is of the order of magnitude of

per unit volume, where is the mean vibrational frequency of the

crystal, ~ is a root mean square atomic displacement and is the

nearest neighbour distance in the crystal. We denote ~I by in

the Hamiltonian. This is mainly because of the relation between the

force constants

) ~.
/

) .~ ••• etc. which gives

~ (2 12)) ~ e. I
~0!1-c(

where ao the lattice parameter.
Since the lattice is periodic, then, adding the same set of

th
integers to all the cell indices in the n force constant keeps the

value of this force-constant unchanged. In other words

ceJ - (0)
( ) -. c. 0

( ) t .. ,-
I (2.13)

It is reasonable to make use of the transformation given by eq.

(2.7) in the anharmonic hamiltonian as well as the harmonic part since,

to our knowledge, there is no transformation diagonalizing the whole
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hamiltonian.

The hamiltonian can then be written as

(2.14)

where,

(2.16)

(2.15)t-J ) c +
pO

n -2..
J." ... )

where,

Substituting,

(2.17)

and knowing that

c ) ( ) (2.18)

The sum over can then be carried out with the aid of the fact that:

( (2.19)

where if K = vector of reciprocal lattice

otherwise



Eq. (2 16) can be written as

9

V(
)

where,

(2.20)

( ):::. )

)
2

e. (2.21)

The translational invariance of the crystal leads to the condition

that (Leibfried and Ludwig [18])

eq. (2.20) in all possible ways (i.e.

and

Separating

) ::: --

(2.22a)

(2.22b)

when all t 's are zeros and when one of the t 's is not zero, two of the

's are not zeros and so on, making use of eq. (2.22), and assuming the

two body interactions (i.e. 's take the value zero or all equal to each

other) we can rewrite eq. (2.21) in the following form: (Appendix A)



) .. ) --
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where the prime on the summation excludes e= a

(
)

(2.23)

Assuming central force-potential (i.e the interaction energy is

a function of the distance between two atoms) we can write the coefficients

( )
t

)
(2.24)

(2.25)

where the subscript q denotes that the derivatives are evaluated in the

equilibrium configuration of the lattice. If we consider only the highest

ordered radial derivative, we are dealing with the leading term approx-

imation.

In general we can write the derivatives as:

( J
o (2 26)

For the nearest neighbour of a face-centered cubic lattice, we have

( ) ::: ,r? (2.27a)2.- ~

zt
(2.27b)

2-



/ (2.27c)

11

where, is tIle lattice parameter.

Making use of the relation,

) -- (2 28)

In the light of equations (2.23), (2.26), (2.27) and (2.28) we can write,

( )

[

)-

(2.29)
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III. The Diagrammatic Method

The Helmholtz free energy is given in terms of the partition

function z by

where

z (3.1)

(3.2)

H has been defined by equation (2.14) and .=, is the

Boltzmann constant. Tr denotes the trace of the operator inside the

braces

Substituting + in equation (3.1) we find

( (3.3)

The exponential operator cannot be factorized since the operators H and V
o

do not commute. However, it can be expanded in powers of the interaction

V (Rickayzen [19] and Shukla and Muller [20])

Therefore, the partition function can be written in the form:

t
< 1 (3.4)

where

.,
T is Dyson ordering operator which acts on the arguments of functions

) and in the following manner:

:= if >
(3.5)

if <

is defined by

)
(3.6)



The angular brackets <1 represent the thermal average for an operator 0
~

defined by:

13

< (3 7)

The difficulty in evaluating expression (3.4) is that it involves an

infinite series in the perturbing potential while the perturbation is

itself an infinite series expansion of the cubic, quartic and higher

order terms in the Taylor expansion of the potential energy of the

crystal. The expression is most easily evaluated by means of diagrams.

In order to show the procedure used,
I

. fi are to be expressed in

terms of by substituting for V from eq. (2.16) and then making

use of the Wick's theorem [21] which states that "The average of an

ordered product is equal to the sum of the products of all possible

contractions." A contraction means the unperturbed thermal average of

the ordered product of two operators and it can be defined as:

(3.8)

If the two operators are of the same type, the contraction is zero.

From equation (2.16) we can write as

where

(3.9)

) (3.10)
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Substituting for and

-{

in equation (3.8) and using the

cyclic property of trace, it can be shown that (Appendix B)

/
.G( at· ) ~<o

~ fl - -' (3.11)

Therefore Green's function (contraction) can be expanded in a Fourier

series with period p The Fourier coefficients can be expressed in

the following form (Appendix B)

2 I
(3.12)

where
(3.13)

(3/f,
l

In expression (3 4), the phonon interactions V ~ can be represented by a

dot. A contraction, equation (3.8), is represented by a solid phonon line

joining two dots.

There are two types of diagrams: connected and disconnected. A

diagram is connected if it has this property: one must be able to get from

any vertex to any other vertex by staying on the line of the diagram;

otherwise it is disconnected.

There is no contribution to the partition function from the odd

powers of since the matrix elements always contain an odd number of

operators i e. in pairing such operators we are to be left with

an unpaired operator which produces orthogonal states.

The contributions to the partition function can be evaluated follow-

ing certain rules given by Cowley [8], Shukla and Muller [20] and

Rickayzen [19].

These rules are:

1. Draw all topologically distinct diagrams with n vertices and the

appropriate phonon lines.



2. Associate a factor with each phonon lines where!, j are

15

the wave vector and the branch indices.

3 Conserve energy and momentum at each vertex and sum over all indepen-

dent .4 and

4. Multiply by the number of pairing schemes and the topologically

equivalent factors.

5. Insert a factor

6. Insert the appropriate interaction coefficients at each vertex.

The contribution to Helmholtz free energy is given by [8], [19] and

[20].

where F represents the free energy of the non-interacting system
o
c

and represents the contribution from all connected diagrams

i.e. only the connected diagrams contribute to the free energy

[Appendix B].
7

(i) Di~g-ra~s of order ~ :

Peierls [3], Ludwig [5], Maradudin [6] and Cowley [8] have derived

and evaluated the diagrmas which contribute to the free energy of

this order. All diagrams are presented in Fig. (1).

(ii) Di~~rams ~f order

All of the diagrams contributing to the Helmholtz free energy to

have been evaluated by Shukla and Cowley [9]. In Fig. (2),

we have presented all diagrams of this order along with the

corresponding pairing schemes and topologically equivalent diagrams
6

(iii) Dia8rams of order l~ :

The first contribution to the partition function can be derived

from expression (3.4) by putting t = 1, thus



< ( (3.14)

16

Substituting for from eq (3.9), retaining the term, making use

of Wick's theorem and the following relation

) (3 15)

Eq. (3.14) becomes:

J x i

(3.16)

This equation is represented by diagram F(3 1) in Fig. (3). The vertex

corresponds to the eight phonon interactions

V( f j, ) ,
The factor, 105, represents the pairing scheme and refers to the number of

equivalent ways of pairing the operators. The constant, 1, is the topol-

ogically equivalent diagram (referring to the number of ways we can permute

the vertices to get different shapes of a diagram).

As an example, the number of ways of pairing the eight lines in

diagram (3.1)

x )( o

where,

11

There is only one way of drawing diagram F(3.1), i.e. the number of topolog-

ically equivalent diagram is 1.

Generally, the pairing schemes arising from pairing 2Vmodes into

2 independent modes is equal to



------x (3 16)
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The second contribution can be worked out by putting, t = 2, in

expression (3.4) All diagrams arise from three different terms in this

All diagrams are

order each of which involves ten modes, i.e. the total number of pairing

schemes is 945.

a. Diagrams from V
3

- V
7

term.

This term gives rise to two diagrams presented in Fig. (3). The

second diagram does not contribute to the free energy since the coefficient

V involves delta function, ) , which implies that K is zero or a

vector of reciprocal lattice and in either case, the anharmonic coefficient

V is zero [22]. All such diagrams give zero contribution for the same

reason.

b Diagrams from V
4

- V6 term.

The three diagrams arising from this term are presented in Fig. (3)

along with the corresponding pairing schemes and topologically equivalent

diagrams.

c. Diagrams from V
5

- Vs term.

One diagram does not contribute to the partition function for the

reason mentioned above. The remaining two contribute

presented in Fig. (3)

The third contribution to the partition function can be obtained

by substituting, t = 3, in expression (3.4). There are three different

terms arising from this

order. The total number of pairing schemes (for each term) is 10,395.



In Fig. [3], we have presented the corresponding diagrams

18

Two terms arise from the fourth

order contribution; the equivalent diagrams are presented in Fig. (3).

There is one term arising from the

fifth order. Forty eight diagrams correspond to this term; all of them

have been presented in Fig. (3).

The last contribution of can be obtained by substituting

t 6 in expression (3.4). This gives rise to one term

We have considered diagram F(3 39) in order to illustrate the

method used in finding the pairing schemes and topologically equivalent

diagrams.

The pairing scheme

The topologically equivalent diagrams

permuting the other five].

Ljoining the vertices 1 and 2

and 3 and 4, and 5 and 6] x

[joining the

vertices 2 and 3/and 4 and 5,and

6 and 1].

5832

5! = 120 [fiXing a vertex and



IV. The High-Temperature Limit

The computation of those diagrams that contribute to the free

energy can be considerably simplified if the high-temperature limit is

19

considered Maradudin et a1. [6] have worked out the expansion to the

lowest order contribution. Maradudin and Melngailis [23] have used the

high temperature expansion of the propagator in obtaining expressions

for the mean-square velocity and mean-square amplitude of an atom in

the surface layers of a crystal They have expanded the Green function

-1in powers of T Shukla and Cowley [9] have worked out the high

temperature expansion for the var·ious contributions of order in

the leading term of temperature. Our aim is to derive the high temp-

erature expressions for all diagrams contributing to the free energy to

order in order to examine the convergence of the temperature-

expansion and to compare the coefficient of T2 term with that of order

We have considered the following two examples to illustrate the

technique used in deriving the high-temperature expressions.

The free energy expression of diagram (1.1) is given by:

I

V==_J X3 x I L -) (i(/) ~ )
// ,)

P /2
)

)
(4.1)

where the factors 3 and 1 are respectively the pairing schemes and the

topologically equivalent diagrams. For simplicity of notation, the

following convention will be made unless otherwise specified that:

I

The propagator is defined by:

where

( )

J

(4.2)
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__ 2 I and is an integer number.

Equations (4 1) and (4.2) lead to:

I

(4.3)

or both equal to zero and using the symmetryPutting ,or

(interchanging

(4 3) becomes:

I)

by _ will not change the expression), expression

(4.4)

Assuming that
./

we can apply the binomial series

to give:

1-

(

We have used the symmetry of

same expression.

J
I

, i.e. by changing by we get the
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Substituting for we get:

+ . ~

2..

It has been shown by Reif [24] Morse and Feshbach [25] that:

=-

(4.5)

Making use of these facts and equation (2.20)

)



( I

2..

22

( 2....

7

(4.6)

We have considered diagram (1.2) as the second example

is given by:

Its expression

-3

) ) (4.7)

The factors 6 and 1 are the pairing schemes and topologically equivalent

diagrams respectively.
I

Substituting for the propagators and

respectively, putting each of the

from eq (4.2) and (2.20),

equal to zero, using the symmetry

and expanding the expression using the binomial series we get:

( ) (-



-(-

23

( + ) (
( I .. )

and making use of the relations (4.5), we can get

( 1-

Substituting for

------- -r . , (4.8)

the following (we have carried out the calculation for the last term in

expression (4.8) as an example in Appendix D)

+ .9)

Following the same procedure, the high temperature expressions for

all diagrams which contribute to the free energy of order can be worked

out The general corresponding expressions have been given by Shukla and

Cowley [9]. These expressions are:

2. .1
2..

)
(4.10)

where, (2.1) is the next order in the expression (4.10). Its full

expression has been given in appendix E along with all the following
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i -f X
(4 11)

)

(4.12)

(4.13)

X( (4.14)

( ) (4.15)



( )

) )

(4.16)

25

(4.17)

For all diagrams of order contributing to the free energy, we

have set up the corresponding expressions from which we have substituted

for the propagators and performed the summation over applying the

previous technique. There is only one diagram of first-order perturbation

(3.1) and its contribution to the free energy is:

The factors 105 and 1 are the pairing schemes and the topologically

equivalent diagrams respectively. Substituting for the propagators,



26

expanding and performing the summations over we get

)

2.

)

(4 18)

Corresponding to the second order, there are five diagrams. The contri-

bution from diagram (3.2) is given by:

(-.----- X

)

where the factors 630 and 2 are the pairing schemes and the topologically

equivalent factor.

Performing the summations we find

t (4.19)

Diagram (3.3) has the same structure as diagram (3.2). The general

expression is:

I 2 ( J -) -:; ;J



Making use of eq. (4.2), binomial series and performing the summations

over ;0 we get:

27

2.
(4.20)

The contribution of the third diagram containing two vertex is given by:

I

f
)

)

'1

I

Where wave-vector conservation has been satisfied. The expansion for

diagram (3.4) is given by:

2
f (4.21)

There are two diagrams of two vertices each containing five phonons.

The expression of Diagram (3.5) is

<i ( I) z~ ) )



The high temperature limit expression is:

28

(4.22)

The contribution of the last of the two vertex diagrams (3.6) is given by:

'2..

X 60CJx I
f 2.!

{

The high temperature limit is:

x
(4.23)

The eleven diagrams which contribute to the third order can be evaluated

similarly. There are four of the three-vertex diagrams each containing

four phonons. The contribution of diagram (3 7) is:

X 172.&' "

~

J,) I( J,.) - 5" )

( )
) i -'3 ;>
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( ) ) ) rr (

?
) ( ) )

After substituting for the propagators, expanding the result and performing

the summations of we find

(4 24)

From diagram (3 8), its contribution has been found as:

,

3

'1
j ) )

) {

( ;-.1. ) J'" )

The factors 864 and 3 denote the number of pairing schemes and the topol-

ogically equivalent diagrams. Substituting for the propagators and

performing the summations in exactly the same manner as in the previous

diagrams, we find:
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J;) X

(4.25)

The corresponding contribution to the free energy for diagram (3.9) is:

2.

(~ )

Following the same procedure, we can write the high temperature expression

as:

)

(4.26)

The contribution from the fourth of the three-vertex diagram is:
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;(/72~xl
~
)

~ C)

:\ if) .) 6)

) )

The factors 1728 and 1 are the pairing schemes and topologically

equivalent factor. Performing the summations over

we find

rrz
3 I

(3. IQ) (4.27)

There are four diagrams from the V3 - V
4

- Vs term contribute to the

free energy. The contribution from diagram (3 11) is given by:

I) ::: :x 'l.oxh :J

~f
)J,

/

~" ~ ) )

) )



The pairing schemes and the topologically equivalent diagrams are 720

and 6, respectively. Substituting fro the Fourier coefficients and
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expanding the series performing the summations over
I
jJ we get:

i + _._----
I

+ (4.28)

Evaluating the contributions coming from diagram (3.12) we find

::: ,

f 3

;>- )

) 1 )

3

i
1 ( )

We can perform the summations as before and the result is:

x
(4.29)
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It can be shown that the contribution for diagram (3.13) is:

x6

( )

( )

Performing the summations over~ we find:

x
(4.30)

The expression corresponding to diagram (3.14) can be worked out to give:
3

X J

) ) ) ) ?

) )

Substituting for Green's functions, expanding the resultant series and

summing ove'r we find:
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)
(4.31)

Each of the remaining three-vertex diagrams contains 'two' vertices with

three phonons each and one with six phonons. The contribution to the

free energy of the first diagram of these is given by:

1 X. 2.t'

_.""l )

( _.'l W )

The factors 720 and 3 are as usual the pairing schemes and the topological

factor Performing the summations, we get:

The contributions from diagram (3.16) can be carried out to give the

following expression:

(4 32)
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)
)20

)
~

}:>"l ;J~
J

Carrying out the summations over we get:

)

)
(4.33)

The contribution of the last of the three~vertex diagrams is given by:

,
p

) ) )

)

Substituting for the various propagators appearing in the above equation,

expanding the expression and performing the summations over we get:
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f

(4 34)

There are thirteen diagrams of the fourth order. Four of them contain

three vertices each with three phonons and one vertex with five phonons.

The contribution of the first diagram is given by:

J

f

)

) ..., ,_ "t )-."

:1 1..-
.3

) ( - P1 --"2-. )./

Where the factors 3240 and 24 are the pairing schemes and the topologically

equivalent factor. When eq. (4.2) is substituted for the various propa-

gators appearing in the above equation with different arguments and the

product is resolved into partial fractions, a total of thirty terms have

Expanding each term andandto be summed over
;J 1

I ')..

performing the summations we find:
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;;) X ~ 1 -+ ~-
)

(4 35)

The contribution from the second four-vertex diagrams is:

f
J- )

.:J

)

)

)

_1

:J - '})) ?

Performing the summations over //0 we find:

::

(4.36)

The contribution from diagram (3.20) is given by:

)

~) 2..
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( )

The high temperature expansion is:

J + X

1-;)

0) + (4.37)

For diagram (3.21), the contribution is:

) )

{;(i;-z _'t'w~) ~{'l 1-'1- )
+

Substituting for the propagators and performing the summations we get:

t
I

'2.. (4.38)
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Nine diagrams from V3 - V
3

- V4 - V4 term contribute

from diagram F(3 22) is given by:

The contribution

---x

J

, )
j

) J

The pairing schemes and the topologically equivalent factors are 2592

and 12 respectively. Resolving the product into partial functions, we

find a total of twenty terms which can be expanded and summed over all

Finally we find:

) '7

+ ) x
(4.39)



The contribution from diagram (3.23) is given by:
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,

.;
)
7

The high temperature expansion has been derived in the following form:

)
)

-t ...

(4.40)

The general expression for the contribution to the free energy from

diagram (3 24) can be written as:
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)
)

Working out the

)

)

)

Similarly, the contribution from diagram (3.25) is:

(4.41)

I

f
) .J

Performing the summations we get:

-1
.)
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)
I

(4.42)

The contribution from diagram (3 26) is given by:

12

~\
),

( / )

) J - '1

Substituting for the propagators and performing the summations we find:
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)) eX
I·, t (4.43)

The free energy expression arising from diagram (3.27) is:

\I
) ) )

} - ?
-1 ) }

( )~

)
"L..

Making use of the propagators and performing the summations over we get:

(4.44)



The contribution from diagram (3.28) is:

44

I,

t ) )

Performing the summations over we find:

(4.45)

The contribution from the eighth of the four-vertex diagrams is given by:

---1\ 3
)
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(-

(4.46)

The last of the four-vertex diagrams gives the following contribution to

the free energy:

----)(

J '1. )

-'2

)

Substituting for the propagators and performing the summations over

we find:

--

(.3.3 (4.47)

There are eight diagrams of the fifth order perturbation. The contribution

from the first one of them takes the form:
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F ~3
) )

I

V ~)
J- ) ;J

)

dl , q ) -'1 )-

z...

J "2 ) 1. ))

Making use of eq. (4.2), expanding the result and performing the summations

over we find:

(4.48 )

The contribution to the second of the five-vertex diagrams can be written

as follows:

7

J ) )

, 7 '7 )

-'] )



We have substituted for the propagators and resolved the product into

partial fractions. We have obtained a total of nineteen terms. Expand-

ing each term using the binomial series and performing the summations

over p we find:

47

J

Diagram (3.33) gives:

X .3 (~.• 49)

L
f

)

)

)

) ~. )
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The factors 15552 and 30 are the pairing schemes and the topologically

equivalent diagrams Performing the summations over we get:

=----

)

(4.50)

The contribution from the fourth of the five-vertex diagrams is:

)

J

) ,

) /~ ( )1
r

'L

-t JCf
q )

1

J -1..



Performing the sums we get:

49

.3

(4.51)

We can write the contribution from diagram (3.35) in the form:

)

) }

) 1, )'1 )
1

-1"u-
J

( / _."1

3



Carrying out the summations over we find:

50

The contribution from diagram (3.36) is:

(4.52)

1
P

3

Performing theL. summations we find

)

,
0)
r

(4.53)



Similarly, the contribution from diagram (3.37) is:

51

3
-) -

)

The high temperature expression is:

1..

_'1.-

)

)

)

(4 54)

The contribution from the last of the five-vertex diagrams is given by:

3
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Performing the summations over we find:

)

(4.55)

There are five diagrams of the six order. The contribution from the first

is given by:

))
))

)

)

:= 1 f.,

f 6. J<
r J,
~

V

II ~

I, ) t1
-1

2...

( ........,.1,. J
(k .1-

)
,....

( ) (,

Substituting for the propagators and resolving the product, we get a total

of ten terms which can be expanded. Performing the summations over

we get:



,
)
1

53

(4.56)

From the second of the six-vertex diagrams, the contribution is:

)

3

_1.

)

Following the procedure used in deriving the high temperature limit for the

previous diagrams, we find:
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) )

(4.57)

The contribution from diagram (3.41) is:

,
f b.

)(

(I.; ~ ) _1. )q "1 )
1-

-1.

( )
I

) ..- '1..

J -I- ~

The high temperature expression of this diagram is

(4.58)



Diagram (3 42) gives the contribution as follows:
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x.1
pc,.

( J )

J )
)

Performing the summations over we find:

~ )

) ) ,- ) )

+ -- (4.59)



The contribution from the last of the six vertex diagrams is given by:
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~ ) I -)

)

)

)
I

Substituting for the propagators and performing the summations we find:

I

x
(4.60)



V. Numerical Calculations

The numerical work presented in this thesis has been done using

the following four approximations.

1 High-temperature limit.

2. Central-force model.

These two assumptions have been discussed in the previous sections.

3. Leading-term approximation.

In this approximation only the highest ordered radial derivative of

the interatomic potential is retained. Feldman and Horton [26] have eval-

uated the lowest-order contribution to the Helmholtz free energy without

making this approximation. They have concluded that the leading-term

approximation is unreliable. Leech and Reissland [27] have shown that

the error for diagram F(1.2) is about 4% whereas for diagram F(l.l) the

error is about 32%. Wilk [10] has carried out the calculations of free
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energy to without making the leading term approximation. He has

found that the variation in numbers from the leading-term approximation range

from 0 3% to 47% However, the ratio of the total contributions to

and have yielded same value as obtained by Shukla and Cowley [9]

in the leading term approximation,showing that this approximation is not

too bad.

4. The Ludwig Approximation.

In this approximation, Ludwig [5] has replaced each factor !

appearing in the free energy sums by a kind of averageU/< independent

of K and j. Such factors can be taken outside the summations ~J
r

is defined by

j )
(5.1)



It can be shown (for the model we have used here) that
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> - (5.2)

The physical idea behind the Ludwig approximation is essentially the same

as in Einstein model of a solid.

The diagrams containing closed loops can be evaluated with the help

of the following expression [6]

---""""'-----_............_-----=
) (5.3)

where (

nearest neighbours.

is a vector separating an atom from one of its

In order to carry out the sums over ~ and j which appear in the

different expressions of the free energy, it is convenient to introduce

the dimensionless frequencies defined by

2 )
(5.4)

< (5.5)

Substituting eq. (5.4) in eq. (5.3) we get:

There are three diagrams which contain only closed loops.

(5.6)

These are F(l.l), F(2.1) and F(3.l). All of them can be evaluated using

eq. (5.6), and we illustrate the calculation for diagram F(3.1) whose

expression can be written in the following form if we consider the leading

term of temperature in eq. (4.18) and substitute from eqs. (2.29)and (5.4)



--_--......-_---
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2 /0 (5. 7)

where in obtaining (5 7), we have made use of (5.6) and the factor 12 comes

from the summation over nearest neighbours.

Shukla and Cowley [9] have presented another sum rule which allows

us to carry out certain sums analytically. This sum rule is given by

)
/ (5.8)

where the sum over is over nearest neighbours.

As an example of applying this formula, let us consider the expression for

diagram F(2.2) which can be obtained from eq. (4.12) by retaining only the

first term in the expansion. Substituting eqs. (2.29) and (5.3) and

arranging the terms,F(2.2) becomes
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Making use of eqs. (5.6) and (5 8), exact result is given by

(5.9)

3
(5.10)

Applying Ludwig's approximation to the same diagram, we get

.. e(

...~
I

'»'L .. e (
r\

.e-(

( )(/- ) (5.11)



We can evaluate the sum over in equation (5.11) as follows:
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:: ( ) (5 12)

where in obtaining eq. (5.12) we have made use of the relation (2.10).

Making use of eqs. (5.5), (5.6), (5.11), (5.12) and the following delta

function relation

)

we get

-- .------

f

- -
:5

We have also evaluated this diagram using Ludwig's approximation and the

sum rule (5 8) which can be written on this basis as:

.. e (J - g
(5.14)

from eqs. (5.4), (5.6), (5.9) and (5.14) the free energy expression for

diagram F(2.2)becomes:



This result is the same as that of the exact result (eq. (5.10)).

For those diagrams which cannot be evaluated analytically, we use

the plane-wave expansion to eliminate the delta functions which expresses

the wave-vector conservation at each vertex. The expression is
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+ --- +
(5 .15)

(5.16)

Now, let us consider the diagram F(1.2). Its expression can be obtained

from eq. (4.9) by retaining only the first term. Making use of Eqs. (2.29),

(5 4), (5.15) and the symmetry between K's and j's, we get [6]
.~

Using eq (5.5)and (5.12), we get

rJ (5.17 )

where

I

The structure of this function appears in most diagrams of different order.

zero,

From the properties of delta function,

and (
r

takes only four values

runs over the twelve nearest

neighbour positions

We have followed the same procedure for computing the rest of the

diagrams of order and The corresponding formulas for diagrams

F(2.3) and F(2.4) are given by

(5.19)
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+ )- ,

) ) ) (5 20)

If we use the sum rule (5.14), the last expression becomes:

)
(5 ,. 21)

For diagram (2.5), the expression turns out to be:

(5.22)

The free energy expression for diagram (2.6) in high temperature limit and

using Ludwig approximation can be derived with the aid of eqs. (2.29),

(4.15), (5.4), (5 5) and (5.18). It finally becomes:

) > ),-

) 1 ,~, r) ")

(5. 23)

This diagram and a similar diagram in

the following matrix

can be easily evaluated using

)

(5.24)

Substituting from eqs. (2.29), (5.4), (5.5) and (5.18) we get



e
" _.. 7r""
(I e
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t< .
r

(5.25)

Cl and C2 are constants to be found for different diagrams. The contribu

tion from diagram (2.6) can be written as follows:

(5.26)

The summations over Khave been carried out for 32, 108, 256, and 500 wave
./'11I

vectors in the whole zone. We have also evaluated diagram F(1.2) using the

same method. Its expression is given by:

(5.27)

In Ludwig's approximation, the remaining diagrams of

The expressions are:

can be evaluated.

::: ~---- ~------

) (5 28)

)

) )

) ) (5 29)



Diagrams of order

We have only considered the leading term of temperatures given in

section 4. Similar procedures have been followed in deriving the corres

ponding expansion to all diagrams.

We can use the exact result of diagram F(l 2) in evaluating exactly

diagram FC3 2) after making use of the sum rule in eq. (5.6).

The expression of this diagram is given by:

3

(5.30)

In Ludwig's approximation the expression becomes:
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~)
,

(5.31)

Making use of the exact value of diagram F(2.5) given by Shukla and Cowley

[19] we can evaluate diagram F(3 3)

In Ludwig approximation, its expression is:

) )
(5.32)

Diagram F(3.4) can be evaluated in the same manner as diagram F(2.2). The

remaining two of the two vertex diagrams can be worked out to give:



c)
r J

)
(5 33)

(5.34)
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The first of the three vertex diagram gives the following expression

(5.35)

Using the sum rules given by eqs. (5 6) and (5.8), it is straightforward

calculation for this diagram

becomes:

In LUdwig's approximation the expression

)



which can be done analytically.

We have also evaluated this diagram in Ludwig's approximation using the

sum rules. The numerical answer comes out different from the one given

byeq (5.36). Diagram F(3.8) can be evaluated exactly. The expression

can be derived from eq. (4.25). In Ludwig's approximation the expression

is:

67

(5.37)

Diagram F(3.9) has been calculated in Ludwig approximation using the sum

rule as well as without using it. The expressions respectively are:

) 7

) - (5.38)

In Ludwig approximation, the corresponding expression from diagram F(3.10)

is:

-:.:--~--

.7 /

)

(5 .39)



The expression arising from diagram F(3.11) and F(3.12) can be evaluated
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exactly using the sum rules In the case of Ludwig approximation we have

carried out the calculations using the sum rules and without using them,

the expressions~respectivelyare:

3

(5.40)

.+

) 6 ~ t

V\
(5.41)

v

) (5.42)

I )

(5.43)

For diagrams F(3.13) and F(3.14) the expressions are:

F
(5 44)

F
(5.45)

The same expression arises in both cases with the use of the sum rules or

without it



In the same manner we can write the corresponding expression for~ diagram

F(3 15) as

69

(5.46)

The contribution from diagram F(3.l6) can be evaluated exactly with the

same method used in evaluating diagrams F(l.2) using the sum rules. In

Ludwig's approximation we have obtained the following two expressions:

i) using the sum rule:

(5.47)

ii) without using the sum rule:

J (5.48 )

Exact calculations can be worked out for diagram F(3.l7) using the exact

result of diagram F(2 7) Making use of Ludwig's approximation and the

first sum rule we can evaluate diagram F(3.l7) whose expression can be

worked out to give:

) (5.49)

With the aid of the result of diagram F(2.6) we can evaluate the contribu-

tion from the first of the four vertex diagrams. It is also possible to

calculate this diagram in Ludwig's approximation with the expression:



.J -- ._--~-

") J) )

(5.50)
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Ludwig's approximation expression in the case of diagram F(3 19) and

F(3.20) are given in the following:

) ~ \ ')

) (5.51)

,.)

) ) J
(5.52)

Diagram F(3.2l) is similar to diagram F(2.8) since we can evaluate exactly

the contribution from the loop. In Ludwig's approximation the expression

becomes:

,

J Y1 i) ) )

) ) (5.53)

The corresponding expressions to the next five diagrams can be evaluated

with or without using the sum rules in Ludwig's approximation. Their

expressionsrespe(:tively ,are:



2 I I
) (5.54)
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(5.55)

- .,- --- ------

(5.56)

} r-. J )

(5.57)

(5.58)
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(5.59)

3( I ) ) (5.60)

,_ 2- J _2- (
" '1'

+ )
fA

"- L. -~\ , 1I1'J- ) J,.. ')

F(M-~7 ..-

~.3 (5.61)/'" 1"" )

) J
r

t ') )

n., _ ?
r

) f 1 r I
(5 . 63)
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The remaining four of the four-vertex diagram can be evaluated in Ludwig's

approximation. Their expressions are:

, ) ) r't) (5.64)

- - ----- ------

F ) )F (5.65)

( ) ) Yl

) ,..,. ) ) / ) )

, ) 2.~ (
J ) (5.66)

-._----- } )

) r 1 J > )
J r J

) (5.67)



So far, it was possible to execute all contributions to the free energy in

reasonable computational time. In the fifth order contributions the compu-

tational time is almost exceeding fifty times the previous calculations.

We have tried to use the symmetry in the arguments whenever possible.

However, the computational time for diagrams F(3 36) and F(3 37) exceeds

an hour.

The contribution from diagram F(3.3l) can be written in the form
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.31) n
I

)
(5.68)

The next three of the five-vertex diagram can be evaluated exactly using

the result of the contributions from diagrams F(2.6) and F(2 8) and also

the sum rules. Their expressions can easily be derived from eqs. (4.49),

(4 50), and (4.51). In Ludwig approximation we have executed these

diagrams with and without the sum rules. Their expressions respectively

are:

=:._--- F

1..'
(w;.1-1 )

(5.69)

)

}
,

(5.70)
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J ) )

(

(5.71)

, ) J J J

( ,

~3 =----

(5.72)

) ~ )

) F r 1,,- I (5 73)
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)

- F( +

) ~, )

(5 74)

The time of computation for the contribution from diagram F(3 35) in

Ludwig approximation was 29 minutes on Burroughs 5500

The expression is given by:

,f , ) J

(
) ) ) (5.75)

Time of executions for diagrams F(3.36) and F(3.37) are 72 and 100

minutes, respectively. Their expressions are:

) ~ )

) r J

t

1

(5 76)
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) r' f)

) }
2

(5.77)

Making use of the symmetry of the sums over

corresponds to diagram F(3.38) reduced to:

, the expression which

:: ) ,

)

(5.78)

Time of execution for the last expression was 188 seconds. There are

five diagrams in the sixth order each of them involves summations over

five ."')Yl IIf) and six
r In other words the computational time is

exceeding once more by a factor of fifty. However, we have succeeded in

using the symmetry for two diagrams F(3.44) and F(3 45). In the case of

diagram F(3.39) we have used the method discussed in evaluating diagram

F(2 6) Its expression is given by:

(5.79)



where is given by eq. (5.24)
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Time of execution was 168 seconds. We have found that the value converges

after the fifth mesh size Diagram F(3.40) is one of the most difficult

diagrams. It has taken nine hours on Burroughs 5500.

Its expression is:

) -}VlLf J ) ) J )

J ) )

),r

)

(
r

J +
(5.80)

Diagram F(3.4l) has been executed on CDC6600 in Chalk River in ten minutes

Its expression is:

-------

) , )
~

)
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( f
I" r / r

(5.8l)

The contributions from diagrams F(3.42) and F(3.43)is reduced to:

(
J r )

T, (5.82)

,)

)

(5.83)



VI. Discussion

The knowledge of a two-body potential function is essential to

obtain the different order derivatives and to make a direct comparison

of the magnitude of the various contributions to Helmholtz free energy.

We have first assumed the Lennard-Jones form for the two-body potential

which is defined by:

80

(6.1)

where in eq. (6.1) is the well depth and r is the nearest neighbour
o

distance corresponding to the minimum in the potential for the nearest

neighbour face-centered cubic crystal model. These parameters can be

obtained from the review by Horton [26]. The I :A If and contribu-

tions to the free energy in the high temperature limit are expressed in

the uni ts of N

respectively.

J
3 and f\1

Maradudin et ale [6] have worked out the contributions of order

to the Helmholtz free energy in Ludwig's approximation (LA) as well

as the exact calculation The contributions from the diagrams of order

have been presented, along with the corresponding totals, in table

(1), where the first column gives the tables of the diagrams presented

in Fig. (1), the second gives the exact values, the third gives the

results using LA and the fourth gives the percentage deviation of the

results using LA from the exact ones. It is found that LA gives an

exact result for diagram F(l.l) whereas it is about 16% low in the case

of diagram F(1.2).

We have presented the individual as well as final total contribu-

tion from all diagrams of order in table (2). The first four

columns have the same structure as table (1); the fifth column gives the
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contribution from each diagram in Ludwig's approximation using the sum

rule (LAUS) mentioned in eq. (5.8) and the sixth column gives the percent-

age deviation of the results applying LAUS from the exact calculations

which has been carried out by Shukla and Cowley [9]. Wilk [10] and

Aggarwal and Pathak [11] have worked out the contributions of order ~ 1

to the free energy using LA. Our calculations are in agreement with

theirs. LA is found to give exact result for diagram F(Z.l); it under-

estimates most of the diagrams by about 18% and overestimates diagrams

F(2.3) and F(2.4) by about 20% We have obtained exact results using LAUS for

diagrams F(2 1) and F(2.3); one diagram is overestimated by about 14%

and the rest of the diagrams are underestimated by about 18%. The

total free energy in all cases is of negative signs. There are signif-

icant differences between the exact results and those obtained in LA

which indicates that this approximation is not very good. The ratio of

the total contribution of order
1...

to that of order <'). in the exact

calculation (FE)' LA(FLA) and LAUS (FLAUS ) are respectively given by

(6.2)

A
_ o~ (6 3)

us
o. (6.4)

For the inert-gas crystals, the potential well depth corresponds to a

temperature of approximately twice the melting temperature. In view of

the exact ratio discussed by Shukla and Cowley [9] the convergence of the



perturbation expansion, in LA and LADS cannot be relied upon. Shukla

and Cowley [9] have also grouped the diagrams according to the set of

diagrams summed in the SCI theory, the ISC and SC2. We have followed

the same set of grouping the diagrams, in LA and LADS as presented in

table (5). In all calculations, only ISC gives a subtotal which is

close to the complete value. This suggests that ISC is a reliable

theory. In the case of SCI and SC2, the numbers have the same sign

but differ in magnitude from the final total

Explicit expressions for the forty three diagrams contributing
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to the free energy in have been derived. The calculation for

some diagrams in this order are quite complicated The difficulty is a

computational one since they involve summations over the Brillouin zone

and these take considerable time even on a fast modern computer. For

twenty four diagrams we have been able to carry out exact calculations.

In table (3) we have presented the contributions from all diagrams of

order LA gives exact result for diagram F(3 1). In comparison

with the exact results where we have been able to perform the calculations,

we have found that LA overestimates some diagrams by about 34% and under

estimates some diagrams by about 20%. LADS gives exact results for diagrams

F(3.1), F(3.4), F(3 7} and F(3.8). It underestimates most of the diagrams

by about 15% and overestimates diagrams F(3.3), F(3.S) and F(3.9) by about

11% i.e. using the sum rule has given more reasonable estimates for most

diagrams.

The ratio of the total contribution of order

in LA and LADS are respectively given by

to that of order

(6.5)



(
US

/ (
(6.6)
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The ratio in each case is negative and that is the same as the ratio in

eqs. (6.2), (6.3) and (6.4). The totals also turn out to be opposite in

sign than that of order whereas we did expect the sign to be the same

since the lowest order perturbation theory (PT) is inadequate and we are

adding corrections to it. This indicates that probably LA is not a very

good approximation.

As it has been mentioned by Maradudin et al. [6] that the main

usefulness of LA liesin the evaluation of the more complex diagrams.

We have presented in table (5) the numbers for SCI and ISC in all

calculations of order We have also given the SC2 in LA and LAUS.

All numbers in SCI and ISC have the same negative sign LAUS has given.

the same value as that of exact calculation. The number in LA is close.

ISC gives for all calculations a close negative value which we may rely

upon more than the total value The ratios of the total of ISC of order

to that of order in the exact calculation and LA and LAUS in units

of are: 2 782, 1.472 and 1.828. Although the sigmin all ratios

are the same and as we expect, LA and LAUS are 47% and 34% low respectively.

SC2 is positive in LA. Three diagrams remaining in the exact calculation,

all of them negative in sign when added to the numbe~may change the final

number and its sign which will indicate that LA is unreliable.

All diagrams containing a loop (or loops) give rise to T
2 coefficient

to the free energy and hence T in the specific heat at high-temperatures

We have worked out the contributions from all diagrams and the results have



been presented in table (4) The ratio of the total contribution of
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order T4 coefficient, to that of the same order, T2 coefficient is

73.64 in the unit of Ii 2. G which is very small, i.e. the leading

term of temperature is sufficient to deal with As shown experimentally

(Brooks [1] and Leadbetter [2]), the terms up to include linear and

quadratic terms in the specific heat at high temperatures. Order

gives rise to a cubic term of temperature in specific. heat at high temp-

eratures Also all'powers of temperatures descending and ascending will

be included as we procede to higher order PT

We have repeated the previous calculations using Morse potential

which is given by:

J
where ~ and r are parameters carrying the same meaning as those in

a

Lennard-Jones potential. is an additional parameter. These param-

eters are given in the review paper of Horton [26] and more recently

they have been determined by Glyde [27] for rare gas crystals. The

individual diagrams gave the same percentage deviation as previously

discussed. The total contribution in the case of using LA and LAUS

are respectively 0.162 and 0.647 which is again positive indicating

that LA is doubtful.

Exponential six (Buckingham) potential has also been used fairly

widely in rare gas crystals, Horton [26]. It takes the form:

) ~
-11.

e

The total results in using Ludwig's approximations with and without

the use of the sum rule are respectively 0@577 and 1.032. In both



potentials Morse and Exp. 6 the convergence of the perturbation theory

is better than that of Lennard-Jones.
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Table 1

The Free Energy for an Anharmonic Crystal of c Applying Lennard-Jones

86

Potential in units of N

Diagram

(1.1)

(1.2)

Total

Sum
E

0.966

-0 344

0.622

s
Approximation

(LA)

0.966

-0.287

0.679

% Deviation

0%

.... 16%



Table 2

The Free Energy for an Anharmonic Crystal of

Potential in units of

Applying Lennard-Jones

87

Diagram E LA % Deviation sum rule between LAUS
(LAUS) and E

(2.1) 0.345 0.345 0% 0.345 0%
(2.2) -1.245 -1.556 25% -1.245 0%
(2.3) -0.732 -0.611 -16% -0.611 -16%
(2.4) 1.328 1 3176 -0.78% 1.110 -16%
(2.5) -0 216 -0.246 14% -0.246 14%
(2.6) -0.359 -0.293 -18% -0.293 -18%
(2.7) 0.619 0.491 -20% 0 491 -20%
(2.8) -0.086 -0.0687 -20% -0.0687 -20%

Total -0 346 -0.621 -0.518



88

Table 3

The Free Energy for an Anharmonic Crystal of O(A7using the Lennard-

Jones Potential in units of rJ

Diagram E LA % Deviation LADS between LADS
and E

(3.1) 0.107 0.107 0% 0.107 0%
(3.2) -0.417 -0 349 -16.3% -0.349 -16.3%
(3.3) -0.463 -0 528 14% -0 528 14%
(3.4) -1.334 -1.667 20% -1 334 0%
(3.5) -0.086 -0.081 5% -0.081 5%
(3.6) -0.389 -0.326 -19% -0 3255 -19%
(3.7) 1.0688 1.336 25% 1.0688 0%
(3.8) 1.603 2.505 56% 1.603 0%
(3.9) 1.112 1.641 47% 1.269 14%
(3.10) o 435 0.435
(3.11) o 942 0.788 -16% 0.788 -16%
(3.12) 2.827 2.806 -0.74% 2 363 -16%
(3.13) 1.317 1.046 -20% 1.046 -20%
(3.14) 0.905 0.905
(3.15) 0.0991 0.0991
(3.16) 0.711 0.706 -0.70% 0.595 -16%
(3.17) 0.663 0.526 -20% o 526 -20%
(3.18) -1.528 -1.249 -18% -1.249 -18%
(3.19) -0.417 -0.417
(3.20) -0.525 -0.525
(3.21) -0.368 -0.293 -20% -0 293 -20%
(3.22) -1.71 -2.121 24% -1.429 -16%
(3.23) -0.797 -0.71 -11% -0.633 -20%
(3.24) -1.71 -1.029 -40% -1 429 -16%
(3.25) -1.71 -2.326 36% -1.43 -16%
(3 26) -3.187 -3.138 1.5% -2.53 -20%
(3.27) -0.258 -0.258
(3.28) -0.252 -0 252
(3 29) -0.477 -0.477
(3.30) -0.535 -0.5346
(3 31) 0.0112 0.0112
(3.32) 1 848 1.215 -34% 1.511 -18%
(3.33) 0.667 1.585 137% 0.531 -20%
(3.34) 0.924 0.987 6.8% 0.756 -18%
(3 35) 1 366 1.366
(3.36) 0.336 0.336
(3.37) o 419 0.419
(3.38) 0.380 0.3803
(3.39) -0.147 -0.147
(3.40) -0.290 -0.290
(3.41) -0.113 -0.0113
(3.42) -0.4027 -0.4027
(3.43) -0.0086 -0.0086

Total 2.058 1.1797



Table 4

T2 Coefficient for An Anharmonic Crystal of Applying Lennard-Jones
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Potential

Diagram LADS LA

(3.1) 0~071 0.071
(3.2) -0 116 .....0.116
(3.3) .....0.088 .....0.088
(3 4) -0 .• 667 -0.834
(3.5) 0.000 0
(3.6) -0.1085 -0.1085
(3.7) 0.534 0.668
(3.8) 0.534 0.835
(3.9) 0.212 0.273
(3.10) 0.000 0
(3.11) 0.131 o 131
(3 12) 0.788 0.935
(3.13) 0.174 0.174
(3.14 ) o 000 0
(3.15) 0.000 0
(3 16) 0.198 0.235
(3 17) 0.088 0.088
(3.18) ....0.208 -0 208
(3.19) 0 0
(3.20) 0 0
(3.21) -0.049 .....0.049
(3.22) -0 238 .....0.354
(3.23) -0 105 -0.118
(3.24) -0.476 .....0.343
(3.25) .....0.476 -0.775
(3.26) -0.422 -0.523
(3.27) a 0
(3.28) 0 0
(3.29) 0 0
(3.30) 0 0
(3.31) 0 0
(3.32) 0.252 0.202
(3 33) 0.885 0.264
(3.34) 0.126 0.165
(3.35) 0 0
(3.36) 0 0
(3 37) a 0
(3.38) 0 0
(3.39) a 0
(3.40) 0 0
(3 41) 0 0
(3.42) 0 0
(3.43) 0 0

Total 0.242 0.526



Table 5

Grouping the diagrams of a(A 6 )

according to SCI, ISC and SC2 theories

Diagram E LA LAUS

(3.1) 0.107 0.107 0.107
(3.4) -1.334 -1.667 -1.334
(3.7) 1.069 1.336 1.069

SCI -0.158 -0.224 -0.158

(3.2) -0.417 -0.349 -().349
(3.6) -0.389 ~0.326 -0.326
(3.12) 2.827 2.806 2.363
(3.16) 0.711 0.706 0.595
(3.24) -1.710 -1.029 -1.429
(3 25) -1.710 -2.326 -1.429

ISC -0.846 -0.742 -0.733

(3.3) -0.463 .....0.528 -0.528
(3.5) -0.086 -0.081 -0.081
(3.9) 1.112 1.641 1 269
(3.11) 0.942 0.788 0.788
(3.18) -1.528 -1.249 -1.249
(3.19) -0.417 -0 417
(3.27) -0.258 -0.258
(3.32 1.848 1.215 1.511
(3.34) 0.924 0.987 0.755
(3.39) -0.147 -0.147

SC2 1.209 0.916
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VII Conclusion

In this thesis we have evaluated the anharmonic contribution of

order A6 to the free energy of a face-centered~cubic lattice with nearest

neighbour central-force interactions in the high-temperature limit using

91

the leading term and the Ludwig approximations As has been shown,

Ludwig's approximation has given a considerable simplification in the

computation of various summations which arise in the free energy expressions.

One diagram has given exact value, some diagrams are overestimated by about

34% and some are underestimated by about 20%. Using the sum rule in eq.

(5.8) have offered more reliable results. This procedure has given exact

results for four diagrams; it overestimates three diagrams by about 11%,

and underestimates some by about 15%. The most highly connected diagrams,

such as F(3.5), F(3.3l), F(3.4l) and F(3.43) give the smallest contribu

tions of all diagrams confirming Choquard's prediction [12]. We have

also derived the next higher terms in the high temperature limit. T2

coefficients have been evaluated for all diagrams of order A6 • The ratio

of the T2 coefficients of order A6 to that of order A2 is negligible

indicating that the linear term contribution to anharmonic

mainly from the A2 term in free energy

V comes
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Appendix A

Regarding equations (2.20) and (2.21) we can write the cubic

term in the following form:

)

where,

3! (2A)

) ::. (3A)

Applying the two body forces (i.e. -1 and L take the values zero or
-L

)

we can write eq. (IA) as:

;; )

(0 0
0(

(0 c»~,

a(

J

e

The prime on the summation excludes - 0

from equation (2.22) we get the following relations:

(~ 0 ) ( (SA)
0(
~

( (() 0 e (6A)

2- ]



In the second and third terms of equation (4A) we shall change the

sign of t. In order to satisfy the delta function we have:
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We also have that:

= 27\#'7
1

'r ,J<'
,- "...

(l '00)
01 or!

1.. ]

Equation (4A) can then be written as:

eo}

v ( +,....
I)
I

e 0

f) -2
- e.

)

(7A.)

In eq. (7A) the factor half appeared because the first four terms are the

same as the last four.

Eq. (7A) can be written as:

1-
)

)



where,

J ~ )
I

)
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Appendix B

From the definition of Green's function we have:

/

J (IB)

which can be written in the form:

(2B)
/. I<

.= ~;;.---..c...:;... ~ _

Equations (2.16) and (3 6) give:

The creation

) - e

+
. and annihilation

) e

, operators satisfy the

(3B)

following commutation relations:

( ~ , /

o (4B)

where, -. 0 or a reciprocal lattice vector

otherwise

and if /

otherwise

The creation and annihilation operators also have the property that

applied to the3n

quantum numbers

particles eigenstate

t1 .5; they yield:

specified by the "3" IV

J

.... ?'1....

; ._-)=

.._-)

J - - .

) -..

J + J --)

'-1 .. -)
(5B)
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We also have:

(6B)

e >"""". - e I (7B)

Making use of the above relations, we can write the Green's function as:

)
+1 e,/'

r tJ

/' '/'

,.... JJ<
!

e

Substituting,

(8B)

= · + l.-) )
(9B)

,/

(lOB)

/

e

in equation (8B) we get:

Consider,



1
2.
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(lIB)

where,

I

J
(12B)

r

is the phonon's occupation number.

Therefore

f
? (13B)

In order to prove the periodicity of Green's function, consider the

following:

,,6(0

<e e

Using the cyclic property of the trace
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,/

<
+ )

(
(14B)

Applying Fourier expansion, we can write:

~

1'"-/ / )
.."'l,

; .-
'1 (15B)

:::-uO
-I

where,

VV.vt. - 2--
The Fourier coefficients in equation (15B) are given by:

,/

;1

I '

/

/

e (16B)

From equations (13B) and (16B) and integrate, we get

./
,/ "'l, r '/ (17B)
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Appendix C

The Hamiltonian of interacting Einstein oscillators is given by (Shukla

and Muller [20]):

o (IC)

vlhere,

(2C)

(3C)

We can follow the same procedure presented in section [3] to reach to

a similar equation as (3.4).

The first order contribution to the partition function can be

then obtained by putting n = 1 to give:

...., <, J>- ~

I I
Ie-

I ) I
k (

t( )

k
k

I '

Substituting from eqs (3.8) and (15B), we get

(4C)

(5C)

)

which can be represented by diagram

-
I

-.-

which can be rewritten as:

.,JC
I !

where X .:: I "/ )

(Fig. 4).
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The second order contribution to the partition function can be derived

by putting n = 2

,21

(

I

2-!
Applying Wick's Theorem, we get:

2'
(

<-I +
( )> <

(:J

)

) < )
t

(6C)

The third term vanishes because the two operators are of the same type.

Put .rt~ in equation (6C) we get:

V
Ie

(7C)

Substituting from eq. (15B) and making use of

(BC)

we find:

n
I

2 )+

which gives:

where
(9C)



The factor 2 appears because of the existence of the two equal terms

arising in the integration. It corresponds to the pairing schemes

factors for this diagram. Similarly, the third, fourth, fifth and

sixth contribution to the partition function can be derived to give:
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where, means the sum over all connected diagrams. Taking the
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logarithm of eq (14C) and dividing by

or

we get

(lSe)
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Connected Diagrams) (x) first order, (y)second order,

etc.. · . · .( n ) nth order.

Fig. (4)
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Appendix D

Evaluation of the sum:

(lD)

This can be evaluated by the contour integration in the complex plane.

The sum of residues at all integral values gives the value of this sum.

The function cot has simple poles at all integral values. Thus,

we can write the sum in the form:

: ,

Since the resulting enclosed area contains no singularities except at

~o ,we have then shrunk this contour down to the infinitesmal
~,

circle C J surrounding the origin.

Expanding the integrand in powers of about =0, only the terms
2

involving contribute to the integral while the other powers of

do not. Thus:

2.-
7r

~
~

1.- .-4 J
~

The contour is shown in the Fig. (5b)

Expanding cot , we get



J

I
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2 J
-) -

(2D)

Thus, from eq. (lD) we get:

(3D)



(0 )
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The contour C' closed by the semicircle at infinity

(b)

The contour C,

Fig. (5)



APPENDIX E

The analytical expressions for the XiS which are tabulated in section 4

are given by
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