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Abstract

Abstract

Our objective is to develop a diffusion Monte Carlo (DMC) algorithm to estimate

the exact expectation values, ($o|^|^o), of multiplicative operators, such as polar-

izabilities and high-order hyperpolarizabilities, for isolated atoms and molecules.

The existing forward-walking pure diffusion Monte Carlo (FW-PDMC) algo-

rithm which attempts this has a serious bias. On the other hand, the DMC

algorithm with minimal stochastic reconfiguration provides unbiased estimates of

the energies, but the expectation values ($o|^|^) are contaminated by ^, an user

specified, approximate wave function, when A does not commute with the Hamil-

tonian. We modified the latter algorithm to obtain the exact expectation values

for these operators, while at the same time eliminating the bias.

To compare the efficiency of FW-PDMC and the modified DMC algorithms

we calculated simple properties of the H atom, such as various functions of coordi-

nates and polarizabilities. Using three non-exact wave functions, one of moderate

quality and the others very crude, in each case the results are within statistical

error of the exact values.
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Chapter 1. Introduction

Chapter 1

Introduction

Quantum Monte Caxlo (QMC) methods are powerful techniques used to solve the

Shrodinger equation for atoms or molecules, specially suitable to calculate the

ground-state energy and energy related properties.

Importance sampling in diffusion Monte Carlo (DMC) generates configurations

distributed according to the mixed distribution $o^ rather than the exact one

$0) where $o is the unknown exact wave function, and ^ is an user specified

guiding wave function. Therefore, the outputs axe expectation values which are

contaminated by ^: ($o|A|^). Exact expectation values (within the fixed-node

approximation) are obtained only if A is the Hamiltonian or commutes with it.

However, it is desirable to compute expectation values for operators which do not

commute with Hamiltonian, i.e. those that are functions of coordinates or static

moments of the charge distribution.

One of the widely-used methods to calculate expectation values for operators

not commuting with Hamiltonian is the extrapolation method, [1]:

This rests on the approximation that the mixed distribution is "half-way" between

the exact and variational one:

2$o* - ^' « 2$o(*o + ex) - ($0 + ^X? ~ *o + ^(e^)

The accmracy of this approach is highly related to the quality of the trial wave

function, and its bias is hard to assess. These uncertainties can be eliminated
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by using truly piure estimators, such as provided by the forward walking method

[2, 3, 4, 5]; the bihnear samphng [6, 7]; and the path integral method [8].

The most-explored algorithms are different implementations of the forward

walking method. In general, forward walking methods estimate the ratio $o/^

to convert the mixed distribution to the exact one. The ratio can be obtained

from the number of asymptotic offspring of a walker [9]. This requires a tagging

algorithm to determine at any time during the calculation which walker from a

preceding configuration originated a present walker [3]. Alternatively the tagging

process can be eliminated from the simulation by evaluation of weight proportional

to the futinre progeny of every walker after each iteration [2, 4, 5].

Barnett et al. [3] describe two QMC algorithms to calculate exactexpectation

values for coordinate operators. The first algorithm combines forward-walking

with diffusion Monte Carlo. The configurations are drawn from the mixed dis-

tribution, and the estimated $o/^ ratio converts the distribution to the exact

one.

The second algorithm uses variational Monte Carlo (VMC) with DMC "side

walks" . Configurations axe distributed according to the variational distribution ^^

rather than the mixed one $o^- The configurations drawn from ^^ are then initial

points for DMC side walks. After reaching the mixed distribution, the number of

descendents is counted to estimate $o/^- Since the initial distribution of walkers

is variational, the factor |$o/^P is necessary to obtain exact expectation values.

This is accomplished by two independent samplings performed from each starting

coordinate. The initial coordinates axe stored and after the DMC side walk is

finished the variational sampling may continue.

A different forward-walking procedure to obtain the exact expectation values

is suggested by CasuUeras and co-workers [4, 5]. Their method works only with

the value of A{Ili,j) in the present iteration. To sample the exact estimator of





Chapter 1. Introduction

A, they introduce an aiixiliary variable Pj associated with each walker j. The

simulation starts with DMC sampHng giving as a result the mixed distribution

of configurations: $o^- At this point Pj is set to zero. As the walker evolves

further, the variable Pj cumulates values of yl(Rt_j). If the walker is replicated

the variable Pj is replicated as many times as the walker, without any changes.

If the walker disappears the former contribution, stored in variable Pj, also does.

After / iterations we have with M walkers, and the exact estimator of A is given

by:
M

Recently Saavedra and Kalos [6] reported bilinear diffusion quantum Monte

Carlo a new method to calculate expectation values of the non-differential oper-

ators. Instead of sampling a function linear in the unknown exact wave function

^$0, the Schrodinger equation is transformed into a pair of integral equations

whose solutions are bilinear, $o- The random walk samples the ground state of

the solution directly.

In this work we examine a new QMC algorithm of Dr. Caffarel [10] to test his

claim that it improves the estimate of ground-state energy. His minimal stochastic

reconfiguration method used for branching the walkers maximizes the efficiency of

DMC with the absence of bias due population control as in Pure DMC [19]. We

will extend its application by appending forward-walking to it to calculate exact

non-differential properties of atoms, in particular, moments of electron-nucleus

distance as well as the electrostatic properties for the H atom. To gauge the

performance of the new algorithm we use three non-exact trial wave functions to

complete this task, two very crude ones, although the exact solution is well known.

Previous work done in Dr.Rothstein's lab. [11, 12] using the exact wave func-

tion for H atom calculating the same quantities as we do gives us the possibility

to compare previous simulation results with the new ones. Showing that the al-
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gorithm is sufficiently robust to improve the calculations of the various properties

would give us a tool for calculating properties of systems where the exact wave

function is not known.

The following chapter provides the background of the DMC theory and the

algorithms used for calculating the properties of isolated atoms and molecules.

Therein also is given the description of the Dr. Caffarel's improved algorithm which

we will adopt to calculate polarizabilities and high-order hyperpolarizabilities for

H atom using a non-exact guiding wave function. In the third chapter appears

a brief description of electrostatic theory relevant to this work. Our results and

technical details of calculations are presented in fourth chapter. The last chapter

contains a discussion of these results and conclusions.
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Diffusion Quantum Monte Carlo

2.1 Basic Theory

Diffusion Monte Carlo (DMC) is the simplest of the various quantum Monte Carlo

(QMC) techniques available to solve the Schrodinger equation. The main idea

behind DMC is similarity of time-dependent Schrodinger equation in imaginary

time with a diffusion equation. The detail introduction to DMC can be found in

a monograph [13] and a several reviews [14, 17].

The time-dependent Schrodinger equation can be written in atomic units {h =

e = TUe = I) as:

i^^^ = -^VV(R,0 + {Vm - ETmR,t) (2.1)

where R represents a 3N-dimensional configuration vector, N is the number of

electrons, and corresponding Laplacian V is in the form: V = [g|-, . .
. , g^— ]. Er

is an arbitrary energy shift.

Its solution can be written as:

.^(R, t) = Y, Ci$i(R)e-"(^*-^^) (2.2)

t

where $t and Ei are the eigenstates and eigenvalues of the Hamiltonian, respec-

tively, and the coefficients Ci are defined as overlap of <?!)(R, 0) with $i(R).

This is a sum of exponentially decaying terms. Instead of a time-dependent

superposition of oscillating states, imaginary time t = it acts as a projector that
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at large time extracts the lowest energy state.

<^(R, T-^oo)^ Co$o(R)e-^(^°-^^^ (2.3)

If we chose the trial energy Ex to be equal Eq the time independence of (2.3)

is achieved and the asymptotic form of (/)(R, r) will be a steady-state form.

By substituting imaginary time into equation (2.1) we can arrive at the imaginary-

time Schrodinger equation:

a</>(R, r) _ 1
v2^(j^^ ^) ^ (^(R) _ £;^)^(R_^ ^) (2.4)

dr 2

This equation without the second term on the right hand side describes the

diffusion process of particles in the space driven by the density differences in the

regions. Ignoring the first term on the right hand side, the second term results

in a first-order rate equation with rate constant {Et — F(R)). This describes

a situation when a source function is defined in the space, and the density of

particles at given point R depends on the value of V(R). In the region with

y(R) < Et the new particles are created; in the region with V(R) > Et the

particles are destroyed. Therefore equation (2.4) describes a diffusion process with

time-dependent number of particles. In the Monte Carlo method we simulate both

diffusion and the rate processes sepaxately.

The imaginary time Schrodinger equation time can be written in the integral

form

0(R',T-fr„)= /'^(R^R',r<,)</.(R,T)d^^R, (2.5)

using the Green's function ^(R —^ R,ra), which obeys the same Schrodinger

equation (2.4) as 0(R, r) with the boundary condition:

^(R^R',0) = 5(R-R').

The Green's function consists of two parts, simulated by diffusion and branch-
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ing:

^(R - R', r„) = '^P^~g^~3^,^J/^^°^ exp[-r.(V^(R) - E^)] (2.6)

The first part of Green's function is a multidimensional Gaussian spreading in

time which represents diffusion of the configiuations in configuration space. It

can be simulated by random walk:

R^R + V^77 (2.7)

where r] are random numbers drawn from a 3N-dimensional standard normal dis-

tribution with zero mean and unit variance. The second term is a branching term

representing a source or sink of configurations. The branching process is simulated

by creations and annihilations of the particles.

The process described above is inefficient due to the singularity in the potential

energy which leads to large fluctuations in the population and large statistical

uncertainties in expectation values. Importance sampling is used to reduce these

fluctuations. Multiplying the equation (2.4) by trial fimction ^(R), after some

manipulations [11] we obtain the following equation:

^^ = ivV(a,.) - V(/(K,.)^) . [^ - ^1/(K..) (2.S)

where

/(R,r) = </.(R,r)'I'(R). (2.9)

^ is a good approximation to $o, such as SCF, or small CI expansion, etc. This

improves the efficiency (see below) of the simulation, but with the cost of biasing

the random walk to produce the steady-state distribution /(R, oo) rather than

(^(R, oo).

/(R, oo) is a probability density; i.e., it must be normalizable and everywhere

positive. This requires ^(R, oo) (= $o(R)) and ^(R) to have the same nodes; that

is, they have the same sign everywhere. DMC rests in this so-called "fixed-node"

approximation [16, 18].
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Eq. (2.8) describes the motion of particles in the external field with a time-

dependent number of particles. The first term is a diffusion term. The second

term is a term for drift, caused by an external field:

''(-) = 15i. ,,0)

The drift moves particles from regions where ^^ is small to the regions with large

^^, improving the eflaciency of the simulation. The third term is branching, with

{E^°^(R) - Et) in Eq. (2.8) replacing {Et - V{K)) in Eq. (2.4).

The local energy:

^"(^'
=w ('")

is much smoother than the potential energy itself, which decreases the fluctuations

in population. Again this improves the efficiency of the simulation.

Diffusion distributes the particles randomly in configuration space. The pur-

pose of drift and branching is to give this random distribution the shape of the

probability distribution function of the studied system.

The integral form of the imaginary time Schrodinger equation (2.8) can be

rewritten as:

/(R',r-hTj = ||&l^(R^R',r„)/(R,r)d^^R

G(R^R',Ta)/(R,r)(i^^R (2.12)/'

The Green's function for equation (2.8) has the form [15, 16, 17]:

G(R -. R',x„) . -P'-"^'
^atja^/^"""'^'''' ^M-r.(B^m-Br)] (2.13)

This Green's function is exact only in the limit Ta ^^ 0. This is a result of two

approximations: First, we assume that one can separate the processes: diffusion,

drift and branching in equation (2.8) and simulate these independently. Second,

we assume that the magnitude and direction of drift during the move remains the
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same, which, of course, is not the case. In order to ameliorate this time step bias,

the calculation is performed using several different time steps, and the values are

extrapolated to Tq = 0.

The Green's function (2.13) is simulated in DMC as follows:

• Distribute randomly a finite number of the walkers in the configuration

space, each represents one copy of studied system (e.g. atom or molecule).

• Move each walker j at each iteration i through configuration space according

to:

where rj are random numbers drawn from a 3N-dimensional normal distri-

bution with zero mean and unit variance.

• Evaluate the branching factors:

bij = exp[-Ta{E'"'{Rij) - Et)], (2.15)

and make int(6jj + ^) copies of walker at the same position, where ^ is

random number uniformly generated from interval (0,1). If the number of

copies is zero the walker is deleted.

After achieving a steady-state, the walkers are distributed according to the

product of the trial function and the exact unknown function: ^$o, the so-called

mixed distribution. The expectation value is calculated as the average value over

each configuration through the iterations:

{Ri,j}*0*

and
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where 'm' denotes the mixed distribution. Note that in contrast to the energy, the

expectation value of A, an operator that does not commute with Hamiltonian, is

not exact.

2.2 Forward-Walking in Pure Diffusion Monte

Carlo

In diffusion Monte Carlo the number of walkers can fluctuate due to the branching

process. The population can either grow to infinity or entirely vanish; therefore,

some population control is needed.

To simplify the computer codes by dealing with a fixed-size ensemble, the so-

called pure diffusion Monte Carlo (PDMC) method was developed [19]. If we omit

the branching part in the equation(2.3) we get a diffusion equation in the form:

^£|^ = 1VV(R,.)-V(/(R,.)^) (2.18)

which describes the diffusion and drift of a constant number of particles. As

branching is absent, the PDMC algorithm samples from the variational distri-

bution ^^. By introducing weights for each walker j at each step of simulation

i:

i-L+l ,

w^\B,j)=w^j= n b.jcx-^ (2.19)

k=i

we convert the variational distribution ^^ to the mixed one <E>o^. The weight of

each walker represents its importance in the ensemble.

It is inefficient to cumulate the weights for the walkers for all past iterations,

as the cumulative weights can become either very large or very small. Potentially

only one walker can dominate the ensemble, which will give us a meaningless

estimate for the ground-state properties. Therefore one truncates the number of

weights in the past and uses only L previous values, and deals with this bias later.
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The estimated ground-state energy is now a weighted average over the varia-

tional distribution of walkers:

J
y/'^oii

(2.20)

This algorithm does not provide estimators of exact ground-state expectation

values of operators which do not commute with Hamiltonian. To achieve the

exact distribution of configurations we need to in eflFect "square" the weights for

each walker. But to simply square the past weight is not correct. One needs two

independent estimates of the weight at point R for each walker [2, 20]. This can

be done by using a so-called "forward-walking algorithm"

.

For each configuration Rij and for each iteration we assign a "past" and a

"future" weight using the previous L branching factors, as well as those L in the

future. The future weight for jf-th walker at i-th iteration is given by:

w^f\lUj) = w\;^=l[b,,cK^ (2.21)

and the "past-future" weights are given by:

»('./)(R..) = n,?f = ™g'«,« oc {^^y (2.22)

The simulated distribution of configurations is the variational one, ^^(Rjj),

but the "past-future" weights effectively convert this distribution to the exact one:

Expectation values for a non-differential property represented by operator A,

which does not commute with H, are estimated by the "past-future" weighted

averages:

(A)e = ($o|A|$o) =

(2.23)

Ein.,U.^^''K^j)
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The reason for truncation of the number of weights cumulated in the future is

the same as of those in the past. Large values of L lead to an increase of variance

of the weights as a function of the L stack-size. Unfortunately, as will be seen

below, there is also a bias, most readily seen for crude trial functions.

2.3 Forward-Walking in Diffusion Monte Carlo

The variant of DMC with stochastic reconfigm"ation is presented by Assaraf, Caf-

farel and Khelif [10]. Their work contains a rigorous proof that any PDMC method

is expected to diverge as the simulation time and the number of iterations increase,

provided that ^ is not exact.

The algorithm presented combined advantages of DMC's high efficiency with-

out the bias in PDMC method. The reconfiguration process, which replaces the

physical branching of the ensemble after drift and diffusion has been performed, is

designed to minimize as much as possible the fluctuations of the weights at each

step in the simulation.

For the i-th iteration of simulation process:

• A global weight associated with the entire population is calculated:

1 ^
^^=mE^m, (2.24)

and the relative weight for the j-th. walker is introduced:

Wi,j = ^, (2.25)

where M is the number of walkers, and bij is branching factor for the j-th

walker at the i-th iteration.

• The total population of M walkers is "reconfigured" by selecting with prob-

ability proportional to Wij the same number M of walkers. One divides the
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population of walkers into two different sets: so-called "positive walkers"

with Wij > 1, which can be potentially duplicated, and "negative walkers"

with < Wij < 1, which can be potentially destroyed.

• The number of reconfigurations is defined as:

A^Reconf = J^ \Wij - l| = J^ \Wi,j " l| (2.26)

j+ j-

where we sum over the set of positive {j+) walkers or negative {j—) walkers.

To obtain the integer number of reconfigurations one computes int(A^Reconf+

^) where ^ is uniform random number drawn from the interval (0,1) Once

the number of reconfigurations is known, NReconf walkers are removed from

negative set of walkers and replaced by the same number of walkers from

the positive set to keep the population constant.

The simulated distribution of configurations is the mixed one: $o^- The

ground-state energy is estimated by the weighted average of the local energy:

where
i-L+l

u^\lU,j) = uf^ = n ^^ (2-28)

fc=t

corrects the bias arising from maintaining the fixed ensemble size at each step

of simulation. When the number of walkers goes to infinity the usual DMC and

DMC with fixed number of walkers become equivalent due to constant average

weight over an infinite population [21].

To sample an exact distribution of configurations we need to find an estimator

for the "future" weights. Liu, Kalos and Chester [9] showed that the number of

"descendents" of each configuration Rj^-, "many" iterations later, is proportional

to $o(Rnj)/^(Ri,j)- Thus by counting the number of "descendents" rijj = n(Rij)
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many iterations in future (L) and using them as a weights, in effect we can convert

the mixed distribution of configurations to the exact one.

The expectation value of property A taken over the exact distribution of con-

figurations will be estimated as follows:

M^ ;f lilt ;
J '^o^^^dU ,

. E,R,,,,„, A(IU,)u,^-'\Iu,HIU,)

(2.29)

where now
i-L+l i+L-1

u^'f\R,j) = u'f'^^ = llWkYlW, (2.30)

fc=t k=i

is correction factor for fixed size of ensemble in past and future.

2.4 Design of Simulation

In each of the algorithms described above rest on an approximate Green's function

that becomes exact as Tq approaches zero. This time step bias is ameliorated by

extrapolating to zero from several runs performed at different time steps. Vrbik et

al. [22] recommended equidistantly spaced time-step values. To obtain the most

efficient fit the ensemble size is made proportional to l/r^ as follows:

Number of walkers:

Number of iterations:

M„ = Mo- (2.31)
In

la = h- (2.32)

where tq refers to a largest time step, the values of Mq and /q are for the largest

time step, and Tq refers to a specific time step as well as the values of Ma and Ia-

in addition, we choose a time-step dependent stack size:

La = U-f\ (2.33)
To.
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Since we don't know the reasonable value of Lq in advance, we perform the sim-

ulation using several initial values Lq.

The trial energy Et is usually an estimate of the exact energy. The value of

Et doesn't affect the simulation process. Its only purpose is to avoid the problem

with over- or underfiowing range when calculating the branching factors.

2.4.1 Pure Diffusion Monte Carlo with Forward-Walking

• Initialize parameters:

Choose n equidistantly distributed time steps (usually 6), with reasonable

maximum time-step value, tq [22]. Also choose values of Mo, /o and a set of

Lo values. The simulation is performed for each time-step separately, for aJl

sets of Lq.

• For each time step:

1. Update the values of Ma, la and La and initialize the position of walkers

in configuration spa^e.

2. Equilibrate the ensemble, which means complete a sufficient number of

iterations simulating the Green's function (2.13) by drift and diffusion

of walkers to produce a variational distribution of walkers.

3. Perform 2La — 1 iterations, carrying out drift and diffusion of walkers.

Calculate the local energy and branching factors for each walker at each

iteration, as well as other properties of interest. Put 2La — 1 values of

branching factors and La values of energy and other properties into a

stack.

4. Perform the next la iterations, simulating the Green's function (2.13).

At each iteration:
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Calculate values of branching factors, local energy Ekj = E^°'^{'Rk,j)

and the properties of interest Akj = A(Ilkj) for each walker j at

each iteration k. Put these values at top of the stack.

Calculate the weights for the set of walkers at the "present" it-

eration (the La-th most recent one) and the weighted averages of

energy and the properties:

Sr^Ma jp (p)

E< =krP^ (2.34)EMa (p)

and repeat for all /„ iterations and each property.

5. Estimate the ground-state energy:

1 ^"

Eo^-^Ei (2.36)
'a

and the ground-state expectation value of all sampled properties:

(^)e^7-E^i (2-37)

2.4.2 Fixed Number of Walkers Diffusion Monte Carlo

with Forward-Walking

• Initialize parameters:

Choose n equidistantly distributed time steps (usually 6), with reasonable

maximum time-step value, tq [22]. Choose values of Mo, /o and a set of Lq

values. The simulation is performed for each time-step separately, for all

sets of Lq.

• For each time step:
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1. Update the values of Mq, 4 and La and initialize the position of walkers

in the configuration space.

2. Equilibrate the ensemble, which means complete a sufficient number of

iterations simulating the Green's function (2.13) by drift, diffusion and

reconfiguration of walkers at each iteration base on the relative weights

eq. (2.25) of eeich walker, to produce a mixed distribution of walkers.

3. Perform 2La — 1 iterations, carrying out drift, diffusion and reconfigu-

ration of walkers. Calculate the local energy and properties of interest

for each walker at each iteration. Store the 2La — 1 global weights and

La values of energy and other properties into a stack.

4. Perform the next /„ iterations, simulating the Green's (2.13) function

and at each iteration:

- Calculate the global weights values of local energy £^fcj = £^''"^(Rfcj)

and properties A^j = A(Rfcj) for eax:h walker j at each iteration

k and put these values at top of the stack.

- Count the number of descendents rijj for each walker in the z-th

iteration, backtracking fi-om the most recent iteration. This is done

using a tagging procedure, described in the Appendix A.

- Calculate the average energy:

. Ma

i

and the weighted-average of property A

A =C^ (2-39)

for each of the /„ iterations.

5. Estimate the ground-state energy:

Eo « ^r/i^ (2-40)
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and the ground-state value of all sampled properties:

{A).
la

,
,(p,f)

H"-^^
(2.41)
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Chapter 3

Charged Particles in Electrostatic Field

3.1 Multipole Moments Expansion

The purpose of this work is to test the performance of forward-walking DMC

with minimal stochastic reconfiguration by doing calculations similar to those

done previously in Dr.Rothstein's lab [11]. Therefore more details on calculating

the atomic polarizabilties expectation values can be found elsewhere [11, 12]. Here

we will give only a brief description of the theory relevant to this work.

When an atom, a molecule or a system of charged particles is placed in an

electric field, the field distorts the electronic structure of the system. In classical

electrodynamics the energy of such system E is given by:

E = Eo + ^qi(p{Ti) (3.1)

i

where Eq is the energy of system without applied electric field, qi represents

charges placed at positions Tj, and (/»(r) is the potential of the external electrostatic

field. The vector electric field generated by its potential <p is defined as follows:

E(r) = -V</)(r) (3.2)

The potential (p can be expanded into Taylor series in terms of spatial coordi-

nates around the coordinate center using Einstein's summation convention:

^(r) =m + r^l-HO) + ^r^r.^m + k'^.r^s^^/iO) + . .

.

(3.3)

where the Greek suffixes run through Cartesian coordinates x,y,z.
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Now, using the components of electric field:

E. = -^^{01 (3.4)

the electric field gradient:

Ea^ =^ = -^^<f>(0\ (3.5)

and the electric field hyper-gradient:

and introducing the multipole moments of the system:

? = E^i (3-7)

t

/ia = ^QiTia (3.8)

i

Qafi = ^qiTiaTip (3.9)

i

Roc^f = 2J ^»'"'"'"»^'"»'T (3.10)

we can rewrite the equation (3.3) in the multipole expansion of classical energy of

the system

E = Eq — q(j}Q — flaEa — -r-^QapEap — —^Ral3-fEa0y — . . . (3-11)

The components of the electric field gradient, hyper-gradient, or higher order

derivative of the electric field as well as the multipole moments tensors are sym-

metric with respect to interchange of any two suffixes.

We have many ways of expressing the multipole moments in the energy ex-

pansion without changing the physics of the interaction.

Using Laplace's theorem :

V(V(/.) = (3.12)
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the traceless form of the multipole moments can be introduced:

Qap = 2X^^»(^^»«^'/3~^^<^"/3) (3.13)

i

^a/3y =
2 X/ ?i(5''i«'''y3^t7 " '^1 {'''iochi + '^i/3^a7 + '^il^ocp)) (3-14)

i

or, in the general case

where m is the rank of the multipole tensor Ma^p...^ [23]. The dipole moment is

tensor of rank one; therefore the definition remains the same as in traced Cartesian

form (3.8).

The multipole expansion in terms of the traceless multipole moments slightly

diflFers from its traced Cartesian form

E = Eq — flaEa — -QapEap — —^aP-yEafi-y — ... (3.16)

We also omitted the monopole moment term q(p{r), because this vanishes for a

neutral atom or molecule in their ground-state. Even for a non-neutral system

this term is redundant due to gauge invariance of the electrostatic potential 0.

Summary of properties of traceless multipole moments and field tensors is as

follows:

1. 0a/3) ^a^7, Eaj3, Eafiy, . . . 3X6 Symmetric in aJl their indices

2. V(V0) = O^Eaa-^0, ^aa... =

3.2 Perturbed Hamiltonian

The quantum system such as an atom or molecule has to be treated in the frame-

work of quantiun mechanics. The first step is replacing the classical Hamiltonian
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with its operator version:

1 1H = Hq — HaEa — -QapEap — —^°'P'r^°'P'y

105 "^^""^^ 945

~
10395 ^°'3756C-^a/3756C - •

• (3.17)

where the dipole, quadrupole, octupole, hexadecapole, dotriacontapole and tetra-

hexadecapole moments, respectively, axe operators.

By solving the Shrodinger equation

H^ = E^ (3.18)

one can obtain the ground-state energy for such a system.

The perturbed ground-state energy of a general system with no symmetry

can be Taylor-expanded in the electric field tensor components. There are two

different notations used in the literature. Bishop and Pipin suggested notation in

terms of X symbols [24]. We chose Buckingham's [25] instead:

E{E^, E^^, ...) = Eo- t^^^E^ - le^^^E^^ - 3^^S,£^a/3.

--jOCapEaEp - —PaPjEaE/sE^ - —^a^^sEaEpE^Es

— ^Aa,l3'yEaE/3y — -Ba^p^yiEaEpE.^5 — -Ca/3,y5Eai3EjS

—J^Ea,i3y6EaE^yS — --- (3.19)

Here Eq is the unperturbed ground-state energy, /x" , 6°^, 0°^^ are the components

of permanent dipole, quadrupole and octupole of the system, respectively.

The polarizabilities satisfy several symmetry relationship due to the fact that

each electric field tensor of rank larger than 2 is totally symmetric. Polarizabilities

tensors of any system are required to be traceless in order to be defined in unique

way.
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Due to spherical symmetry of the atom all polarizabilities tensors with an

odd nimiber of suffixes are identically zero. The other polarizability tensors have

symmetry relations between their diflPerent components as follows [11]:

otxx = Oiyy = a^z (3.20)

Ifxxxx lyyyy ^^ Izzzz ^ 'J'Jxxyy ^^ •J'Jyyzz ^^ '^Ifxxzz {'^^^J

Dxx,xx ^yy,yy ^zz,zz — ^iJxx,yy — ^J^xx,zz

^^yy,zz ^^ '^i^xy,xy ^ '^tjxz,xz '^
'^'^yz,yz \0.22)

'^xx,xx ^yy,yy ^2^,22 — 2Uxx,yy — ^^xi,22

^^yy,zz 3^xj/,iy ^^ '^^xz,xz ^^ '^^yz,yz \o.Zo)

Rothstein and co-workers [12] derived Monte Carlo estimators for these prop-

erties. They considered the electric field and field gradients as infinitesimal per-

tmrbations of the energy without correspondingly modifying the wave function,

^, which is considered fixed. Their formulas are the zero field and/or field gradi-

ents Umits of Eq.(2.23), where from the Hellmann-Feynman theorem, A is equal

to derivatives of the perturbed energy, E — Eq, with respect to the electric field

and/or field gradients. The formulas were derived in the context of PDMC with

forward-walking, but they are valid also for the fixed-ensemble-size DMC with

forward-walking algorithm.

In the case of the a-polarizability:

d'^E
OCxx = --g^\Ec=^0,E^^=0,... = r{{{flx}fix)e " {{^x})eM e) (3-24)

where we have the dipole moment operator for a single electron,

^a(Ri,j) = -Ta i,j (3.25)
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and

La-l

{^J-a}(Ri,j) = - X^ (r-a i-kj + r^ i+kj) (3.26)

k=0

in obvious notation. Eq.(3.24) is formally the covariance of {/x^;} and ij,^. It,

and the others which follow below, involves only the serial correlation of known

quantities, accumulated from iterations in the distant past through to the far

future.

The second term vanishes for an atomic system, and finally the polarizability

reduces to

Oixx = T{fla:{lJ-x})e (3.27)

Estimators for the hyperpolarizabilities of atoms through the fourth power in

the electric field are given as follows:

7xxxx= -r'((Atx{Atxr)e-3({Aij2^e(MxK})e) (3.28)

7xxyj/= -r^((AixW}K}^)e - ({/iy}^)e(//xK})e) (3.29)

Sxx,xx = r^{f^x{l^x}{Qxx})e (3.30)

= r2{ex:,K}2), (3.31)

Bxx,yy= r\fXy{ijLy}{e^^})^ (3.32)

= T^e^,{ny}^)e (3.33)

Bxz,xz= r^{l^x{t^z}{Qx.})e (3.34)

= T^e^z{fJ'x}{flz})e (3.35)

Cxx,xx= r(exx{0xx})e (3.36)

Cxx,zz= r(exx{e,J)e (3.37)

Cxz,xz= r(0:,,{exz})e (3.38)
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where for a single electron

ea/3 = --(3r„r;3-rX^) (3.39)

There axe three estimators for aap and nine for ^ap^s'- by permuting the x,

y, and z indices one arrives at three of the form given in Eqs.(3.27) and (3.28),

and six from Eq.(3.29). Similarly, there are twelve for Cap^-^s and twenty seven for

It is important to note that these estimators avoid the well-used finite field

approximation; for example [26].
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Chapter 4

Technical Details

In this work we examine DMC with minimal stochastic reconfiguration by calcula-

tions of the ground-state energy for an atom, and later we extend this algorithm by

introducing forward-walking to calculate non-differential properties: (r)e, {r~^)e

and (r^)e. Then we apply this new algorithm to calculate more complex electronic

properties of the atoms, such as static polarizabilities.

The best way to test a new algorithm is to choose the simplest system; there-

fore, we choose the hydrogen atom, where

• the exact wave function is known:

$o(r) = —^exp{-r) (4.1)

• the exact ground-state energy is known:

^» "^ = -°-5 ("-2)

• and, being the simplest atomic system, using the DMC technique is very

fast

Using the exact wave function makes weights Eq.(2.25) equal to one, and

therefore the reconfiguration process is omitted. This is not an ideal situation,

because ovir aim is to test the algorithm for an approximate guiding wave fimction,

^, where weights do not equal to one. Therefore we chose a non-exact trial wave

function:
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^3/2

^(r) = ^ea;p(-Cr) (4.3)

and now the local energy has the form:

The difference between exact and non-exact wave function will, introduce re-

configurations into the calculations.

To test the algorithm's sensitivity to the quality of the wave function, we use

three orbital exponents, C- 0.9, which quality is typical of those routinely used in

DMC simulations, and 0.4 and 0.1, which are very crude choices.

The local energy of this trial function has a singularity for an electron close to

the nucleus. This will yield to a large branching factor for the walker and it will

adversely affect the reconfiguration process. Thus a truncation of the exponent of

the branching factor is used as foUows:

-..(B- -^)J -^'^ - ^' " l^"<^'" - ^'1 ^ ''
(4.5)

I -\.Qsign[{E^^9 - Et)] otherwise

Furthermore, for some configurations the drift vector can be inappropriately too

large. This will move the electron far from the region of reasonable probability.

Therefore we choose for the drift the following truncation:

I
TaF ff Ir^Fl < 1.0

ra^={ (4.6)

I 1.0si^n[F] otherwise

The bias introduced by these schemes vanishes as Tq —> 0.

4.1 Design of Simulation for Polarizabilities

To calculate the polarizabilities we start with the multipole moments in their trace-

less form (Eq.3.8,3.13). There are 8 unique ones: n^,yiy, fx^, 6:,^, Byy, 0^j„ O^^, 0,,^.
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Now Q^z can be computed using Q^x and Qyy. Values of the 2La — 1 recent ones

axe saved in the stack so the cumulative values (3.26) for each of those moments

for each walker at the La-th most recent iteration can be calculated.

These cumulative values represent the past and the future for the set of walk-

ers at the La-th most recent iteration. Therefore, it is very important when we

reconfigure the walker at the recent iteration to reconfigure also its stack of mul-

tipole moments. This means, if the walker is deleted and replaced by another v/e

insert the position of the walker and as well all previous values of its multipole

moments.

The simulations otherwise follow the description given in Chapter 2 for fixed

number of walkers DMC with forward-walking. Except for the jap-yS hyperpolariz-

abihty the expectation values are estimated directly (Eq.3.27 and 3.30 - 3.38). For

7a/37(5 we have to first evaluate the estimators: (/Xx{Atx})e, (My{Aty})e, (Mz{A*z})e, • • •

,

{A*x{A*x}{A*j/}^)e, {fJ'y{l^y}{f^zy)e, (/iz{/X2}{/ii}^)e; and after finishing the time step

we combine them according to the Eqs.(3.28 and 3.29).

Up to the fourth-order there are four non-zero polarizabilities, each having

one specifying constant [11]. In principle, only one polaxizability component has

to be evaluated to know all others components Eqs.(3.20) - (3.23). To decrease

the statistical error and exploit the efficiency of doing so we evaluate in a single

run all 51 polarizability components estimators Eqs.(3.27) - (3.38). The data for

given polarizability with the same value of Lq from all simulations were combined

together and then extrapolated to zero time step (see Section 4.3).

4.2 Initial Values of Simulation Parameters

The first step of a DMC simulation is initialization of parameters such as number

of walkers Mo, iterations /q, values of time-steps and length of the stack Lq. In
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our case these numbers are chosen base on the previous experience [11] and on

the several preliminary runs.

We use six different time steps. This number allows us to explore the suitabihty

of a different Tq —> extrapolation models to our data. To decide upon the smallest

and largest time step, we have to take in account that with increasing time step

we increase the bias, but with decreasing time step we increase the variance of

the final estimate. Therefore, with decreasing time step we have to increase the

CPU time used to complete the simulation. This and the increasing ensemble size

Eq.(2.31) - (2.33) are designed to maintain approximately equal variance for all

time steps with the same value of Lq. The Lq value has to be large enough to

see vanishing L-bias of the estimates. The CPU time required for the simulation

depends linearly on the number of particles Na and the number of iterations la-

The dependence on Lq is also roughly linear.

The simulation is dependent on an initial random number generator seed;

therefore to obtain uncorrelated estimates the simulation is run with several (ten)

different values of seed. Simulation parameter values in table 4.1 are for one

independent run. These take into account the hardware resources available and

desired accuracy of the results.

4.3 Estimating the Ground-state Property

As the Green's function at the heaxt of DMC is exact only in the zero time-step

limit [27, 28, 29], the simulated properties have a substantial time-step bias over

the range of time steps employed here. It is particularly severe for the crude wave

functions employed here.

To ameliorate this we extrapolate the simulated quantities to zero time-step,

employing a quadratic- and, when the Ta = intercept is consistent with it.
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I

weighted mean of the remaining, nominally unbiased data.

All used models for all data are shown in Appendix B.

I
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Table 4.2: Regression models used to fit time-step biased (r^) diffusion Monte

Carlo data for the ground state of the hydrogen atom. The guiding

functions are Is STOs. All entries are in atomic units.

c
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Table 4.3: Estimates of (r^)^ based on the data appearing in Table 4.2.

0.1 20 2.879(41)

30 2.979(43)

40 2.974(49)

50 2.968(49)

final 30-50 2.974(27)

0.4 20 2.993(27)

30 2.981(30)

40 2.973(43)

50 2.972(52)

final 20-50 2.984(17)

0.9 20 2.992(12)

30 3.003(14)

40 2.994(15)

50 2.995(14)

final 20-50 2.996(7)
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Chapter 5

Results and Conclusions

Our aim is to explore property estimation utilizing a DMC algorithm with a fixed

number of walkers recently published by Caffarel et at. [10]. We compare this

algorithm with the PDMC algorithm used previously in Dr.Rothstein lab. to

calculate various non-differential properties of atoms [2, 12].

On graphs 5.1 we can see a dramatic failmre of Rothstein's PDMC estimator

Eq.(2.20) using as a guiding function a crude Is STO with orbital exponent 0.1.

For the more representative wave function with orbital exponent 0.9 the bias

is barely visible. On the other hand, the DMC algorithm with fixed number

of walkers shows no bias regardless of the wave function quality. These results

suggest that his DMC algorithm with a fixed number of walkers improves the

calculated energy as claimed by Caffarel et al. [10].

Extending the DMC algorithm to estimate non-differential properties we ap-

pend the forward-walking to the existing algorithm. The graphs 5.2 - 5.4 show

results from calculations of simple properties such as moments of electron-nucleus

distance. Here we can see again that the PDMC algorithm for the crude wave

function shows strong bias, whereas the DMC algorithm gives unbiased results for

both wave functions.

Employing these approximate wave functions for for hydrogen, the simulated

moments of electron-nuclear distance and the polarizabilities up to fourth order

using the forward-walking DMC with fixed number of walkers are shown in table

5.1.
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The Monte Carlo estimates agree with the analytical values, with a statistical

error which increases substantially with decreasing overlap of the guiding function

with the exact wave function. Naturally, our most precise results were obtained

by employing the most accurate wave function, orbital exponent equal to 0.9.

As measured by its overlap with the exact wave function, its quality is typical

of those routinely used in DMC simulations; for example, an energy-optimized

H2 trial function, consisting of a linear combination of two STOs and a simple

Jastrow-Pade electron correlation function [32].

Our other trial functions are much too crude to be representative of what is

typically employed in the field. Nevertheless, the results suggest that the algo-

rithm performs well, even for these cases.

In table 5.2 we now relate some of our results to those obtained from competing

algorithms described in Chapter 1.

CasuUeras and Boronat [4] use two wave functions for their simulations: a Is

STO with orbital exponent 0.9, and the product of the exact wave function with

a Gaussian. The quality of the latter is worse than the first, and the results have

larger statistical error. To compare the accuracy of these results with ours we

have to take in account that CasuUeras and Boronat [4] ran their simulation using

only a single time step (r = 0.05), and the simulation was approximately 20 times

longer then ours at the same time step. Each would reduce the variance relative

to ours.

Barnett et al. [3] use for their calculations a Is STO wave function with

orbital exponent 0.95, a considerably better choice than ours. They explored

the sensitivity of their algorithm to the time step used for the simulation and

the convergence length when calculating the number of walkers. All of their

results show high accuracy. We chose to display the one firom DMC with forward-

walking, albeit at a single time step without extrapolating to an infinite number
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of iterations in the future.

The paper of Arias de Saavedra et al. [6], pubHshed last year, reports results

from bilinear diffusion QMC. Their calculations are done for two cases. The first

one is when no guiding function is used. The second uses as a guiding function

one which obeys the cusp condition for all C:

^(r) = exp(--^)

where C = 0.1. The results of both cases axe very similar.

All simulation results reported in the table 5.2 are within statistical error of

the analytical. We see no obvious advantage of our algorithm over those which

use DMC, other than ours has been verified as unbiased, even when crude wave

functions are employed.

In summary, we presented a forward-walking version of Caffarel et aVs [10]

DMC algorithm to provide unbiased estimates of expectation values of multiphca-

tive operators. The algorithm combines the advantages of minimizing the variance

arising from physically branching the walkers with the convenience of program-

ming with a fixed-ensemble. We exploited the latter feature to estimate electrical

properties, without recourse to the finite field approximation.

We tested the algorithm for the ground state of hydrogen atom using three

guiding functions, two very crude. In each case we found satisfactory agreement

with the analytical values of the moments of the electron-nuclear distance and for

static polarizabihties and hyperpolarizabilities.
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Table 5.2: Expectation values from quantum Monte Carlo simulations for hy-

drogen atom ground state. All values are in atomic units.

^
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Appendix A

Tagging Algorithm

We need to count the number of descendents n^j oc $o(Rij)/^(Ri,j) "many" (L)

iterations in "future" for each configuration sampled from $o(Rij)^(Rij) in the

"present" . In another words, for an arbitrary walker at time it, we need to know

which of the walkers at time (i + L)t are its descendents. This information can

be stored in a "family tree" . As the walk progresses each walker is labeled, so its

location in the tree is specified.

One way of tagging walkers during a DMC simulation was described previously

by Lester Jr. and co-workers [38, 3]. Instead, we employ Vrbik's [39] tagging

algorithm, which is tailored for simulations with a fixed ensemble of walkers and

for applications where the walkers are branched with a high probability, as when

crude guiding functions axe employed. His algorithm is described as follows:

Each walker is labeled with the ensemble position number of its immediate

"parent" . This is illustrated by Fig. A.l Here each column represents the ensemble

positions of the walkers after one iteration. The position j of a walker in a given

iteration is unique. Therefore, if this walker has offsprings in the succeeding

iteration we can label them by its parent's position, j. The number in right upper

corner is the walker's tag number, the position number of its parent from the

preceding iteration. By knowing the parent from preceding iteration we can back-

track a particular walker at the {i + L)-th iteration to its ancestor at the i-th

iteration.

The whole process of calculation number of descendents can be illustrated by
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example of L = 4. Say we have six walkers, and we want to know how many

descendents they will have three iterations later. For simplicity, we can assume

that at each iteration there is only one reconfiguration: one walker is replaced by

another, as we see in Fig. A.l

After the first iteration, the (i + l)-st one, walker number two was replaced by

walker number one. Its position in the ensemble is again two, but its tag number is

one. After the second iteration walker number three was replaced by walker two.

Its position number again is three, but tag number is two. (Its direct ancestor has

position number two at previous iteration). The same is repeated for next two

iterations.

Now, we need to calculate the number of descendents at the {i+ 3)-rd iteration

of walkers at the i-th iteration. To do this, we follow the tag numbers for each

walker at the {i + 3)-rd iteration back to the i-th one. This is shown on Fig. A.l

for walker number 4. Its tag number is 3, so its ancestor at the {i+ 2)-nd iteration

was walker number 3. In turn, this walker has tag number 2, so its ancestor at

the (z + l)-st iteration was walker number two. Similarly, this ancestor has tag

number one. Thus the walker with position number one at i-th. iteration will have

increased its number of descendents by one.

We repeat this for all walkers at iteration (2 + 3). Our example will give us for

walkers at iteration i the following numbers of descendents three iterations in the

future: rii = 4, n2 = 0, n^ = 0, n4 = 1, ns = 1 and uq = 1.

We proceed in exactly the same manner when we move the "present" itera-

tion to the next iteration, the {i + l)-st one. For this iteration, the numbers of

descendents, three iterations in the futiure, (i + 4), are rii = 1, n2 = 3, na = 0,

724 = 0, 715 = 1 and Tie = 1.

Of course, in practice the number of walkers at each iteration is larger, and

the number of reconfigurations at each iteration will be more than one. Also, the
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L = 4

Figure A.l: Illustration of the tagging procedure for forward-walking algorithm

with stack-size equal to 4.

replaced and duphcated walkers don't necessarily occupy ensemble positions next

to each other, which we assumed for illustrative purposes. These don't present

difficulties, as the key to the tagging algorithm is knowing a walker's parent from

the preceding iteration, regardless of their mutual positions in the ensemble.
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Appendix B

Extrapolation Models Used

Table B.l: Regression models used to fit the {r) data. All entries in atomic

units.

c





Appendix B. Extrapolation Models Used 47

Table B.2: Regression models used to fit the (r ^) data. All entries in atomic

units.

c
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Table B.3: Regression models used to fit the (r^) data. All entries in atomic

units.

C Lo
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Table B.4: Regression models used to fit the a polarizability data. All entries

in atomic units.

c
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Table B.5: Regression models used to fit the 7 hyperpolarizability data. All

entries in atomic units.

c





Appendix B. Extrapolation Models Used 51

Table B.6: Regression models used to fit the C hyperpolarizability data. All

entries in atomic xmits.

c
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Table B.7: Regression models used to fit the B hyperpolaxizability data. All

entries in atomic units.

c
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