
The importance of hydrogen bonding

in the alkylation of phenols

by

M, M. Alauddin, M.Sc. (Rajshahi)

A Thesis

submitted to the Department of Chemistry

in partial fulfilment of the requirements

for the degree of

Master of Science

August 1982

Brock University

St. Catharines, Ontario, Canada

© M.M. Alaudd~~', 1982



To my father

without .whose encouragement ,.

I would not have entered graduate studies

nor completed this research work.



iii

Abstract

Hydrogen bond assisted alkylation of phenols is compared

with the classical base assisted reactions. The influence of solvents on

the fluoride assisted reactions is discussed,· with emphasis on the

localization of hydrogen bond charge density. Polar aprotic solvents

such as DMF favour a-alkylation, and nonpolar aprotic solvents such as

toluene favourC-alkylation of phenol. For more reactive and soluble

fluorides, such as tetrabu~ylammoniumfluoride, the polar aprotic solvent

favours a-alkylation and nonpolar aprotic solvent favours fluorination.

Freeze-dried potassium fluoride is a better catalytic agent in hydrogen

bond assisted alkylation reactions of phenol than the oven-dried fluoride.

The presence of water in the alkylation reactions reduces the expected

yield drastically. The tolerance of the reaction to water has also been

studied. The use ofa phase transfer catalyst such as tetrabutylammonium

bromide in the alkylation reactions of phenol in the presence of potassium

fluoride is very effective under anhydrous conditions. Sterically

hindered phenols such as 2,6-ditertiarybutyl-4-methyl phenol could not be

alkylated even by using the more reactive fluorides, such as tetrabutyl­

ammonium fluoride in either polar or nonpolar aprotic solvents. Attempts

were also made to alkylate phenols in the presence of triphenylphosphine

oxide.
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CHAPTER 1

Introduction

1.1 Definition and classification of hydrogen bonding:

Hydrogen bonding is defined as an attraction between a hydrogen

covalently bonded to a hetero-atom and another molecule (with its unshared

1 ) · 1e ectrons or anlon@

8- 8+ o-
J

''"'''''--1''1---:0 :

f

hydrogen bond

8- 0+
.. ..

-O-H---:F:.. ..

hydrogen bond

Thus protic compounds such as alcohols, carboxylic acids, amines, phenols,

naphthols, thiophenols

electron donors.

can form hydrogen bonds with hydrogen bond

There is considerable spectroscopic and non-spectroscopic evidence to

suggest that the fluoride ion is capable of forming strong hydrogen bonds

-J 2 3 4 5
to a variety of protic compounds.' Clark and Miller reported hydrogen

bonding of cyclic organic compounds, e benzoic acid, phenol,

1,2-dihydroxybenzene, N-methylaniline aniline, piperidine, pyrrolidine,

phthalimide and benzene thiol with fluoride anion@ Large shifts in the

fundamental stretching vibration of the electron acceptor group have been

reported, and values for the hydrogen bond enthalpy of fluoride-benzoic

acid, fluoride-phenol and fluoride-l,2-dihydroxybenzene (113 ± 5, 60 ± 5



bonding

2

-1and 63 ± 7 kJ mol respectively) have been predicted on the basis of

correlations between the hydrogen-bond enthalpy and IR shift on hydrogen­

6In a review, Emsley has classified hydrogen bonding into three

6classes, on the basis of IR spectroscopy (stretching mode of O-H bond)

(i) weak hydrogen bonds having their IR peaks not-far from the non

hydrogen bonding mode.

(ii) strong hydrogen bonds having broad bands absorbing in the range

3000-1600 em-I.

(iii) very strong hydrogen bonds giving avery broad b~d below 1600 cm-l

A few systems give spectra intermediate between (ii) and (iii), such as

chloroacetic acid with strong oxygen bases like pyridine N-oxide, alkyl

sulphoxides and phosphine oxides. 7 The formation of a hydrogen bond between

an anion and an organic compound will result in the transfer of electJt.on

density from the anion to the organic moiety, thus enhancing the nucleo-

philicity of the organic species while at the same time reducing the

nucleophilicity of the anion. This premise has been used to explain a

e £ £1 ed d e 5,8-14 R l' b···varlety .0 uorl e-promate, reactlons. ecent y, ~~~lt~o

LCAO-MO-SCF calculations have been performed by Emsley et al.,15 on amide-

fluoride complexes to determine their equilibrium structures and strength

of the amide-fluoride hydrogen bond. -1
At .c~._ 148 kJ mol ,it is the second

strongest hydrogen bond known. They supported the findings by IR, IN and~

19E NMR spectroscopic studies.



3

1 2 Alkylation of ambident anions:

Certain nucleophiles contain more than one atom bearing active

electron pairs and so can react at either site and produce more than one

16product. Such molecules or ions are called ambident nucleophiles. They

are of two kinds:

(i) those in which resonance affords electron density from the active

electron pair at either of the two (or more) sites

(X-y=Z"+----+ X=y-Z). Enolate anion is a fundamental example,

o
II

------>..... C/ '<t-R
J

C-alkylation

... .-

:0:

Enolate

~
+ R-L

)

O-R
I
C

/~..---

O-al~Ylation

(ii) Those with two different nucleophilic sites of similar reactivity.

Nitrite anion is an example of this type
.. ..

O=N--O-R (O-alkylation)
.. .....

:0 :

I ~
N: + R-L

II
0:

- +
:Q-N--R
.. 11

: 0:

(N-alkylation)

When attention is focussed on the nucleophile only in an alkyl substitution

reaction, it is an alkylation reaction implying attachment of an

group.R (fromR-L) .. to the nucleophile of interest. The atom of
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attachment on the nucleophile is specified (C-, 0-, N- S-alkylation)

and is important in clarifying ambident alkylations.

The most important feature, controlling the alkylation site with

ambident nucleophiles is the relative electronegativity of the possible

sitestt ThemoreelectroD.eg~tivethesite ,0 > N > ,where the major electron

density is' ,available, is alkylated with the SN1 character of the reactions

and the less electrone8a.tivesite is alkylatedwith the SN2 character-.

In the case of phenolate anion, most of the charge will reside on oxygen,

and in many reactions with electrophiles, this is exclusively the site of

attack There is still a possibility of the reaction at carbons, though

these atoms carry a minor part of charge density. In this respect, the

theoretical calculation of TI electron density is as shown in the

d - 17lagram:
1.... ~
7

(charge distribution of phenolate anion calculated by molecular

orbital theory neglecting electronegativity of oxygen atom)

In the studies of alkylation of sodium phenoxide and other phenol salts,

Claisen and co-workers concluded that carbon alkylation occurs only at

_. 18___ posltlon lJ

When an amb,ldent anion is alkylated, a mixture of products is obtained

This problem was first noticed by Meyer and Stuber,19 in 1872 By

refluxing a mixture of amyl iodide and silver nitrite, they obtained the
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corresponding nitrite ester and nitroparaffin. The general reaction was

RX + AgNOZ ----+ R-NOZ + R-ONO. This reaction has been employed by

· · f h·· fl· h·· d 20numerous lnvestlgators or t e preparatlon 0 a lp atlc ultro compouns

but until 1954, it was not clear how pure nitro-paraffins could be

prepared. Kornblum and co-workers2l first suggested a simple procedure to

get pure nitroparaffins by the action of alkyl halide and silver nitrite. 2l

Through a series of works, Kornblum et 22 generalised about the alkylation

of ambident anions, which was applicable even in the absence of silver, to

solve the problem of C-
--~

~~~~~~~; 0- ve~su~ N-alkylation

in anions derived from acetoacetic ester, phenols, nitroparaffins,

a-pyridon~acid amides, thioamides The greater theSNI character

of the transition state, the greater is the preference for covalent bond

formation with the atom of higher electronegativity and the greater the

SN2 contribution to the transition state the greater the preference for

bond formation to the less electronegative atoms. They also reported that

the reaction of silver nitrite with alkyl halides proceeds a transition

formation

state which has both SNI ~and SNZ character in proportions that vary

gradually with the structure of halides. The tendency for alkyl nitrite

O-alkylation can be promoted by using AgN02 , because Ag+

promotes carbonium ion formation by precipitating the halide as AgX, ~.g!,

+ -- + - +R-Br + Ag (NO
Z

) ----+ AgBr+ R + N0
2

----+ RONO. In the absence of Ag

the resulting reaction was found to proceed by SNZ mechanism with

preferential attack on the more polarizable atom of the nucleophi1e,

resulting in the formation of nitro-alkane.



-8 -8
NO ---R----Br

2
--""""----..,..j R-NO

Z
+ Br-

6

Kornblum and his associates reported that treatment of nitroparaffin salts

with alkyl halides gave O-alkylation by an SN2 mechanism, a one-step

process which is kinetically controlled. However, in Michael additions,

they give C-alkylation, which is a multistage process and thermodynamically

controlled. They proposed the electron transfer chain for the

23latter. The principle of hard and soft acids and bases also explains

the idea of ambident reactivity.Z4 For example, a cyanide ion can react

with alkyl~halide to give either nitrile or an isonitrile:

KCN + EtI --)a.. Et-CE:N

AgCN + EtI --~iialPEt-N=C:

The hard and soft acid base principle tells us that a carbon atom

is softer than a nitrogen atom of the nucleophile. So, for simple SN2

reactions, alkyl halides act as soft electrophiles and as a result the

soft atom is alkylated.

-~ ~rCN+
When Ag+ is present, the ~alide ion is assisted in leaving the carbon,

producing carbonium ion which is a hard electrophile, therefore the hard

nucleophile is alkylated.

-;~ 0+
CN rcJ---Ag ----r rN=C:+AgI

The reaction of enolate ion at carbon and oxygen has also been explained

on Coulombic and frontier orbital terms.



enolate ion 1fJ2HOMO

7

The lowest energy orbital, WI, is strongly polarized towards oxygen which

has a largee (the co-efficients of the ati,omic orbitals) value. In the £01v10

the c-values are ~he other way around, though not so strongly. Thus with

charged electrophiles, the site of attack will be oxygen, kinetically with

protons and carbonium ions. With electrophiles having little charge and

relatively low lying LUMas the reaction will take place at carbon.

1.3 Factors affecting the position of alkylation:

. 25 26Work has been done by Curtin and h1S co-workers ' and C. F. Hobbs

et 27 d · h f h· h 1 h·· f lk 1 ·to etermlne t e actors w lC contro t e pos1tlon 0 a y atlon

of ~n amibdent anion.
28

In 1926, Ingold suggested tl~,at Claisen s ~=-......

C-alkylation reaction of phenol salts with allyl and benzyl halides in

non-polar solventsi~vo1ve the reaction of alkyl halide with associated

sodium phenoxide, whereas the oxygen alkylation in polar solvents was

attributed to the reaction of dissociated phenoxide ion: 28

+RX >
a-alkylation

+
C-alkylation

Curtin 25 reported that in the reaction of alkali metal salts of

phenols, C-alkylation was increased at the expense of a-alkylation by

using the following:
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(i) nonpolar solvents

(ii) salts of less acidic phenols

(iii) higher salt concentration

(iv) salts of less electropositive alkali metals

(v) more reactive halides (allylic rather than saturated halides)

These factors were explained on the basis of suggestions of Ingold~

29Kornblum pointed out that the position of alkylation of phenolic salts

may depend to a large extent upon homogeneity and heterogeneity of the

reaction mixture, C-alkylation is favoured by heterogeneous conditions

and a-alkylation is favoured by homogeneous conditions

factors are discussed briefly as follows.

Some of these

alkylation of an ambident anion. Hobbs

(i) Solvent effects: Much work has been done demonstrating that the

medium in which the reaction is conducted may influence the mode of

27 reported in an alkylation

-of metal salts of pyrrole that the most polar solvent gives the highest

percentage of l-alkylatio~, the more electronegative atom is

lk 1 d b h d h d h d o ° . 27a y ate ot un er eterogeneous anomogeneous con ltl0ns It has

also been reported that a good ionizing solvent (aprotic) leads to

O-alkylation. 30 The activity of the carbanion is increased by cQ-ordination

of the solvent with the cation 30 In p~otic solvents the more electro-

negative atom of the anion is solvated by hydrogen bonding with the solvent~,

As a result, the nucleophilicity of the electronegative atom is decreased,

and a considerable amount of the less electronegative atom alkylated
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31product results (Table 1). In polar aprotic solvents the cation is

solvated, more effectively than the anion. So the more electronegative

atom of the nucle()~phile is freer from both solvent and, cation. Therefore

the change from nonpolar aprotic to polar aprotic solv,entoften increases

the O-alkylation.

Another report' was published by Kornblum in 1963 32 Reactions

of sodium-S-naphthoxide with benzyl bromide gave 95% O-alkylation in

dimethyl sulphoxide and 85% C-alkylation in 2,2,2-trifluoroethanol.

Finally they mentioned two properties of the solvent to account for the

. 32 33ability to control the course of ambident anion alkylatlon.

(i) Their capacity for solvating ions, and (ii) their dielectric constants.

Solvation depends in part upon hydrogen bonding between the solvents and

the unshared electrons of the anions of the salt. The phenoxide ion is

capable of bond formation at oxygen and at ortho and p~ra ring carbons.

o o

(

o

"

o

They found that in certain solvents, solutions of phenolic salts react to

29
give much C-alkylation which is in contrast to the heterogeneous process,

and also C-alkylation takes place in both ortho and para position, which

is again in contrast to the fact that only .or~ho alkylation was suggested

by Kremer and his co-workers.
18

The reaction of sodium-B-naphthoxide in

THF gave 36% C-alkylation. This is due to the dielectric effect; a measure

of which is the dielectric constant. Aprotic solvents of lower dielectric



Table 1. Nature of reaction of allyl and benzyl halide with solution of
sodium phenoxide at 27°C.

10

Solvent

DMF

dioxane

ethanol

ethyleneglycol dimethyl ether

methanol

I-propanol

THF

water

phenol

2,2',3,3'-tetrafluoropropanol-l

Percent of
O-alkylation

100

100

100

100

100

100

100

55

25

45

50

Percent of
C-alkylation

a

o

o

o

o

o

o

45

75

55

50
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constant favour C-alkylation. Thus in pratic solvents, hydrogen bonding

capacity of the solvent controls the position of alkylation and in the

aprotic solvents dielectric constant controls the position of alkylation,

more polar solvents favouring a-alkylation, less polar solvents favouring

C-alkylation.

(ii) Cation effects: In search of the factors controlling the position

of alkylation, importance has also been given to the cations, as was first

25pointed out by Curtin and h~s associates Hobbs et 27
reported that

for a given medium, both homogeneous and heterogeneous conditions, the

relative percentage of more electronegative atom alkylated product

increases with decreasing co-ordinating ability of the cation in the order

32Kornblum reported that in aprotic solvents

of low dielectric constant, e~g~, THF, the anion is likely to be a part of

an ion aggregate, when it reacts. With small cation 'the ,ion pairs will be

+ Na+. K+. R
4
N+.relatively tight. As we pass through Li, ? ~ ? the ion pairs

become progressively looser and the electrostatic constraint· to ether .

formation gradually falls off. Thus the larger cation favours the more

electronegative a.toms to be alkylated, i.e., favours a-alkylation.

(iii) Steric effects: The structure of the ambident anion also controls

the position of alkylation. 34 In the phenoxide ion, if the two ortho

positions are substituted by large groups, then the ion becomes sterically

hindered. 35 Unsubstituted phenoxide ion gives a-alkylation with methyl,

ethyl and isopropyl iodide 29,32 but 2,6-ditertiary butyl phenoxide ion
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gave 88% O-alkylationa and 6.9% C-alkylation with methyl iodide,

11% O-alkylation and 59% C-alkylation with ethyl iodide, and 100%

C lk 1 - · h - 1 · d-d 34-a y at10n W1t 1sopropy 10 1 e.

(iv) Effects of alkylating agents: The effect of alkylating agents was

d b K d h · k 36reporte yurts an 1S co-war ers. The ratio of 0 versus C alkylation

depends on (i) polar effect of the substituent.in the alkylating agent,

(ii) steric effect of the alkyl groups, and (iii) the symbiotic effect

of the leaving group. The contributions from the first two depend on

the nature of the leaving group. For halides R-X, an increase in the electron

withdrawing ability of the X makes the carbon atom more partially positively

charged, where the more electronegative atom of the anion can attack. Thus

the ratio of ole alkylation is increased in the order ROTs> RCI > RBr > RI.

This has been explained as the positive inductive effect of the alkyl

substituent at the reaction site of the a1ky1ating agent depending on the

nature of the leaving group and decreases in the order OTs- > cf > Br > I ~

1.4 Action of the fluoride ion:

Alkali metal fluorides and quaternary ammonium fluorides are useful

reagents in organic synthesis. They have been used in the past for mare -than

two decades, as fluorinating agents and bases. Many organic fluorine

compounds are useful in organic synthesis. For example, CF2=CF2' CF2:;'CFCl

and CF2=CH
2

react readily with alcohols, amines, mercaptans and with

themselves to give other compounds containing functional groups such as

h -d 37et ers, am1 es etc.
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(i) Asa fluorinating agent: To introduce fluorine into organic compounds,

elemental fluorine, halogenated fluorine, hydrogen fluoride, metallic

38
fluorides and organic fluorine compounds are used. For example:

I I
(a) F2 + )c=c(-->... -c-c-

I I
F F

I I
(b) HF + )c=c(-~~ -C--C-

I I
F H

I I
(c) MFn + )c=c(...-..-.---...> -I-I-

F F

Among the metallic fluorides, high valency metallic fluorides have the

capability of oxidative fluorination of alkanes alkenes and ability of

substituting fluorine for other halogens., e

M,F I
~-x n_,.,>.... -r-F + MF (n-I) + ~2

Group I and II fluorides, of which potassium fluoride is the most important,

are used effectively to replace one or two halogens or. an oxygenated group,

such as an ester,with fluorine. Caesium and rubidium fluoride are more active

than potassium fluoride, but they are very expensive and very hygroscopic

Sodium and lithium fluorides are almost ineffective in fluorinations.
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Potassium fluoride substitutes fluorine for halogen in carboxylic acid

halides aromatic and alkyl sulphonyl halides, a-haloesters, amides and

nitriles, primary alkyl halides, w-halo alcohols esters

KF, 70% aqu
--------------~>~ CH3SOZF (65%)

steam distillation

100°C
distill)

°II
CH -(CH ) -C-F3 Z 4

Now extensive work on potassium fluoride is being carried by a group of

Japanese chemists. Reactivity of the fluoride in KF depends on the means

of drying calcined, freeze-dried and spray-dried KF are now well

known.
39Ishikawa and his co-workers reported that organic compounds

having activated halogen atoms can be readily fluorinated in acetonitrile

with spray dried potassium fluoride. Freeze dried potassium fluoride was

found to be much more effective as a hydrogen-bond forming catalytic

reagent for alkylation of protic compounds than usual calcine-dried

- £1 -d 40potassIum . uorl e. l8-Crown-6 is an effective agent for the

solubilization of KF in polar and non-polar aprotic solvents, to produce

the so called naked fluoride ion. These naked fluoride ions are good

41 42fluorinating agents$ , Kitazume and Ishikawa43 reported one pot

KF , _
If 1 ~ RR C-CFCOOEtsu. 0 ane

synthesis of ct-fluoro~,S-unsaturatedesters from chloromalonic ester and

carbonyl compounds using spray dried KF

o
II

CICH(COOEt)2 + R-C-R'

They also reported polyethylene glycol as an effective phase transfer catalyst

in the fluorination of activated halogen compounds with KF in MeCN. 44
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(ii) As a base: The potential ability of the fluoride anion to act as a

base might be predicted on considering the strength of the H-F bond

-1 . -1' -1 1
(~569 kJ mol ), cf H-Cl ~432 kJ mol O-H ~428 kJ mol ,N-H ~3l4 kJ mol-

On this bas±s, nucleophilic attack by fluoride towards other nuclei

-1including silicon (E(Si-F) = 540 ± 13 kJ mol ), phosphorus (E(P-F)

-1 -1= 439 ± 96 kJ mol ) and carbon (E(C-F) = 536 ± 21 kJ mol ) might be

expected to be of possible synthetic va1ue. 45 The basic character of

fluoride ion was first reported by Nesmeyanov et in 1948. 46 • In the

reaction of trichl.oroacetic acid and potassium fluoride, they got

chloroform instead of the expected trifluoroacetic acido In organic chen.istry

there are many reactions which take place in the presence of base. Aldol

condensation, Perkin condensation, Michael addition, Knoevenagel

condensation a.re examples of those reactions. After Nesmeyanov,

Baba 47 first tried fluoride ion as a base in 1958. They condensed

active methylene compounds such as ethyl cyanoacetate, and diethyl malonate

with aldehydes in the presence of potassium fluoride. They extended their

48work up to ketones.

One of the first examples of a fluoride promoted a-alkylation was

reported in 1957 by Kitano Fukui reported C-alkylation

of active methylene compounds, and N-alkylation of aniline and nuclear

substituted anilines by alkyl halides, using potassium fluoride as

50 51condensing agent Kuo and co-workers reported one step synthesis of
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naphtho[Z,3-b]-furan-4,9-diones directly from Z,3-dichloro-l,4-naphtho-

quinone and an active methylene compound in DMF in the presence of

excess potassium fluoride

R'

R'

Cl R'
°tRtlKF/DMF>

+ 60-65°C
Cl R'

R'·Y;'!

R"

R" = Ph

Rift = CN

O k e d he e 5Z d e f1 ed 1 t fstaszyns 1 an lS assoc1ates use potass1um uorl eas cata ys or

Michael addition of nitromethane to chalcone.

Patterson and Barnes53 extended the potassium fluoride-catalyzed method to

the reactions of a series of nitroalkanes with acrylamide and acrylonitrile

using ethanol as solvent in excess Sen and Sarma54 found that in the

presence of potassium fluoride, the alkylations are quite effective. A

mixture of diethyl malonate and benzyl chloride in the presence of

potassium fluoride in et4anol gave 68% diethylbenzyl malonate.

(CZHS)OZCCHCOZ(CZHS)
I
CHZI
C

6
H

5

The use of potassium fluoride in aldol condensation between aldehydes and

e 55 56 57nitroalkanes has been described by several chemlsts. ' ,
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KF
6 h :> RCH(OH)CH(R t )N0

2

Other condensation reactions, elimination reactions of different type,

intramolecular c.yclization, heterocyclic.,:; ring formation oxidation

reactions

1 . 45lterature.

using potassium fluoride have been reported in the

(iii) As a hydrogen bond electron donor: The hydrogen bond forming

ability of fluoride ion with the carboxylic acid was first discovered by

58Emsley. The unexpected solubility of some alkali metal fluorides in

acetic acid led him to conclude the hydrogen bonding between fluoride ion

and acid hydroxyl hydrogen. This was supported by spectroscopic studies

such as IR and lH NMR, as well as thermodynamic studies. 59 Other halides

such as chloride and bromide have also been reported to form hydrogen

b d · h · ·d 50on s wltacetlc ac~ In the IR spectra of potassium fluoride-acetic

acid monosolvate and cesium fluoride-acetic acid monosolvate, the OR

-1stretching frequency was~shifted about 2200 em from that of the acetic

-1 1acid monomer at 3600 cm and in the H NMR, the chemical shift of the

hydroxyl proton 8(OH), of these monoso1vates, was found at 17 39 ppm.

Thermodynamically, the bond enthalpy was calculated as 120 kJ mol-l •6l ,62

63When Clark and Emsley tried to prepare fluoroacetic acid from chloroacetic

acid using potassium fluoride, they got polymerization, lactonization and

elimination reactions.

Cl-.CH2-COZH + KF :i)ClCHZCOZCHZCOZH

Cl-CH2CH2CH2C02H + KF!CH3C02H > b-CH
2

CH2CH
2
l=o
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CH3CHClCH2COZH + KF!CH3COZH ------~.CH3CH=CHCOZH + CH3-fH-CHZ-COZH

°ZC-CH3

In these reactions, they did not consider fluoride ion as a base, they

considered fluoride ion as a hydrogen bond electron donor. The fluoride

ion transfers the electrons to the organic part of the complex, as a result

the nucleophilicity of the organic part is increased and the course of

reaction changes. This discovery provided a way to enhance the reactivity

of some organic molecules capable of acting as hydrogen bond electron

acceptor.

Clark and Millerl3 found a number of aromatic compounds, e phenols,

aniline and benzene thiol, can form strong hydrogen bonds with fluoride ion

and react rapidly with alkyl halides, producing condensation products.

The general reaction was

R 'YH + ZKF +R"X )-R'YR"+ KX + KHF
Z

where R'Y = PhCO
Z
-' PhO-, PhS- and PhN-(Me)

The hydrogen bond was explained as

R'YH---F-

They also reported that S-diketones may be totally enolised in the

64S-diketone-tetraethylammonium fluoride monosolvate Treatment of this

monosolvate with alkyl halides gave a high yield of mono C-alkyl product.

They extended the work to prepare a-thio-8-dicarbonyl,65 and to methylenation

of .13 It is believed that the condensation or addition reactions

are hydrogen bond assisted. The hydrogen bond between fluoride ion and

methanol has been reported by Schleyer and Allerhand. 66 Bacelon

67 found hydrogen bonding between fluoride ion and phenol
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1.5 Other hydrogen bond electron donors:

Like fluoride anion, there are several other bases which have the

ability to form hydrogen bonds with phenols. aurka and Taft68 studied

19hydrogen bonding with p-fluoropheno1 by F NMR and calorimetric methods

The Jb.ases like triphenylphosphine oXide, dimethyl su1phoxide, dipheny1

68 69
ether etc~ can form hydrogen bonds with protic compounds. Taft _et ale

established a free energy relationship in the formation of hydrogen bonded

complexes of various hydroxyl reference acids with a wide variety of

proton acceptors.

1.6 Other recent methods of alkylation of phenols:

70Minoda . reported a-alkylation of substituted phenols in the

presence of dichlorocarbene in a two phase system.
OR OR

+ R
3

N + CRCl
3

1. NaOH> R NCRO +
2. RCI' 2

The tertiary amine was used as alkylating agent and phase transfer catalyst

as well. Tributyl phosphonium methylated polystyrene resin (phosphonium

resin catalyst) has been used under triphasic reaction conditions for

71a-alkylation of phenols. Phenols in raw coal naphtha were etherified

by treatment with butyl bromide or butyl iodide in the presence of BaO

72
or Ca(OR)2 and DMF.



Pasquini ~t
73 reported alkylation of phenoxide ion generated by

20

potassium hydride in THF in the presence of a catalytic amount of

[2:2:2]-cryptand. Alkylations of phenols, alcohols, amides and acids have

been reported by using potassium hydroxide in DMF. 74 Recently phenols

have been etherified by using ethyl fluorosulfonate (36-69% yields have

been claimed).75 Alekperov and Gasanov76 reported the O-alkylation of

substituted phenols by using aqueous sodium hydroxide. Diaryl ethers were

prepared by the reaction of a halobenzene and alkali metal phenoxide in the

presence of a corresponding phenol and a copper compound. 77 The synthesis

of trifluoroethyl phenyl ether has been reported by reacting phenol with

sodium hydroxide and MeS0
3

CH
2

CF
3

at l40 o c. 78 Koki and Taketoshi79

prepared mono-, di- and trialkyl phenols by heating alkali metal salts of

phenols with aliphatic alcohols and phenols with alkali metal carbonates

and aliphatic alcohols. 79 Treatment of aminophenols with alkyl or benzyl

halide in MeCN in the presence of benzyl trialkyl ammonium salts and

alkali metal hydroxides produced aminophenyl alkyl or aminophenyl benzyl

80ether.
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Chapter 2

Aim of This Work

From the literature survey, ·it is observed that fluoride ion assisted

alkylation of phenols is the most efficient of the methods, considering the

reaction conditions, yield, ease of workup and commercial availability of

the chemicals, as well as the recovery of catalyst. The fluoride ion

assisted alkylations are thought to be hydrogen bond assisted reactions. A

recent study has emphasized how important hydrogen bonding is, in determining

the course and rate of alkylation reactions of naphthols and phenols. 81 As

a part of these studies, the present work considers the influence of solvent

in the fluoride assisted reactions, particularly with regard to the local­

ization of the hydrogen bond charge density. To account for the importance

of hydrogen bonding, various solvents, ~, toluene, benzene, hexane and

DMF, various catalytic agents, e.g., potassium t-butoxide, various

fluorides and triphenylphosphine oxide; and various phenols have been used

in this research. The presence of water in these reactions is a very important

factor to be considered, one which can decrease the yield drastically. A

measure of the tolerance to water in the alkylation reaction of phenol has

been carried In addition, the action of fluoride ion with phase

transfer catalysts has also been studied.
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Chapter 3

Experimental Work

3.1 Instrumentation:

1Proton nuclear magnetic resonance spectra ( H NMR) were recorded on a

Varian A-60 CW spectrometer operating at 60 MHz a Bruker WP-60 FT spectro-

meter operating at 60 MHz and a Bruker WP-80 CW spectrometer operating at

80 MHz with tetramethy1silane as an internal reference.

Infrared spectra were recorded on a Perkin-Elmer l'1odel 237B grating

infrared spectrophotometer using standard liquid film and potassium bromide

pellet techniques.

Mass spectra were recorded on an AEI MS-30 double beam, double focussing

mass spectrometer, interfaced to a Kratos DS55 data system. Gas liquid

chromatography/mass spectrometry analyses were carried out with a 3% SE30

Chrom W (80-200 mesh) column in a Pye 104 GC interfaced to the MS 30 double

beam mass spectrometeryi'aa Bieman-Watson interface.

Melting points were determined on a Kofler hot stage microscope

apparatus and are uncorrected.

3 2 Chemicals used:

For this work, phenols of interest were phenol, p~nitropheno1 and

2,6-di-,tert-butyl-4-methylphenol. The alkylating agents were benzyl

bromide and benzyl chloride. Solvents of interest were non polar aprotic

~,toluene benzene, hexane, then polar aprotic, N,N'-dimethyl
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formamide and dimethyl sulfoxide. The catalysts were potassium

t--butoxide" fluaride, anion and triI),henyl phosphi~e ~xide-. Their sources

and purification are described below.

Analytical reagent grade phenol (BDH) was used after drying in a vacuum

li~e for about 36 hours. Laboratory reagent grade p-nitrophenol (BDH) was

re-crystallized in water and dried in a vacuum line for. 36 'hours

Laboratory grade J,6~di-tert-butyl-4-methylphenol(Aldrich) was used

without further purification and drying. General purpose reagent grade

benzyl bromide (BDH) and reagent grade benzyl chloride (Fisher Scientific

Company) were used without further purification.

Laboratory reagent grade (BDH) toluene and laboratory reagent grade

benzene were used after distillation and drying over molecular sieves of

type 5A (BDH). Laboratory reagent grade hexane (BDH) was used without

distillation, but dried over sodium wire. Laboratory reagent grade (BDH)

DMF was used either with or without distillation. but dried over molecular

sieves of type 5A. Potassium t-butoxide was a commercial sample, laboratory

grade (Aldrich) used without further purification or drying. Potassium

fluoride was a commercial (Aldrich, anhydrous KF) dried either in the oven

at ~250°C for several hours or by freeze drying For £reeze drying, a

saturated aqueous solution of KF was 'kept in.; the refrigerator until

solidified completely. The solid potassium fluoride hydrate was put into

the vacuum line at room temperature for several days until dried completely

Tetrabutylammonium fluoride was prepared in aqueous solution by

neutralisation of tetrabutylammonium hydroxide (a.queous commercial sample
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The aqueous solution was evaporated

in a rotary evaporator until some solids appeared. Then acetonitrile was

added and evaporated again; the process of washing with acetonitrile was

repeated several times and the sample was finally put o~ the vacuum line

for several days until it solidified.

Triphenylphosphine oxide was a commercial sample (Aldrich) and was used

without purification and/or drying. Tetrabutylammonium bromide was a

commercial sample (Eastman-Kodak) used without purification and/or d-rying.

l8-Crown-6 was a commercial sample (Aldrich) and dried as follows:

about 5 mL of nitromethane was added to 3.5 g of 18-crown-6 the mixture

was cooled to about -IO°C, then the nitromethane was evaporated by rotary

evaporator. The process was repeated three times, and the 18-crown-6 was

put on the vacuum line for 48 hours

3.3 Typica,l reactions:

All the reactions were monitored by IH NMR spectroscopy, specifically

the chemical shift change of benzylic protons of the benzyl halide The

other techniques were almost same for phenols in various
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Phenol (0.01 mole) was dissolved in 20 mL toluene,- then potassium

t-butoxide (0.63 g, OOS7 mole) was added to followed by the

addition of 18-crown-6 (1.18 g 0.0068 mole). The mixture was well stirred

by magnetic stirrer and made a homogeneous solution. To this solution,

benzyl bromide (0.01 mole) was added, and the solution was stirred again.

After 10 minutes, the 1H NMR spectrum showed about 46% conversion of the

starting material (benzyl bromide). After 10 hours, the reaction mixture

was heated for about 10 hours at ~70°C, but no remarkable change in the

amount of conversion was noticed The reaction mixture was extracted with

ether washed three times with water, dried (magnesium sulphate) and

the ether evaporated A light brown coloured liquid was obtained. IH NMR

spectrum of this solution showed 48% benzyl bromide had been consumed.

GC/mass spectra showed only one product. This was chromatographed on a

column of neutral alumina using pentane as eluent. After evaporation of

the eluent, the product was crystallised from 60% ethanol. The product was

benzyl phenyl ether (0 52 g, 28%). The melting point was 38-39°C,

consistent with the literature m.p. (39°C) 82 TheidentiJ:y (9f the product

was established by IH NMR, IR and mass spectrometry

1Benzyl phenyl ether: H NMR: 8 = 5,1 (s, 2H), centered at 7 1 (m, 5H),

7.4 (s, 5H).

IR: 1250 cm-1 (Ar-O-C asymmetric stretching),

1220 cm-1 (Ar-O-C symmetric stretching).

, +
Mass spectrum: m/z = 184 (M ), m/z = 91 (base peak).
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In DMF, potassium t-butoxide was readily soluble and hence no crown

ether was used. Potassium t-butoxide was used as a 1:1 mole ratio with

phenol. The other techniques were the same as described earlier. Fifteen

minutes after the addition of benzyl bromide, the lH NMR spectrum showed

no starting material. The reaction mixture was extracted with ether, dried

and chromatographed. After crystallisation, 62% benzyl phenyl ether

was obtained.

p-Nitrophenol was not soluble in toluene, but when potassium t-butoxide

with 18-crown-6 was added to the mixture of nitrophenol in toluene, a

homogeneous solution, was produced. Thus, potassium t-butoxide (0.63 g,

0.0057 mole), 18-crown-6 (1.82 g, 0.0069 mole) and 0.01 mole of p-nitropheno1

were dissolved in 20 TIlL toluene. To this homogeneous solution, 0.01 mole

benzyl bromide was added and well stirred. After 15 minutes, the lH NMR

spectrum showed about 50% conversion of the benzylic peak. The reaction

mixture was heated at about 70°C up to 12 hours, but no remarkable change

was noticed. The reaction mixture was extracted with ether, washed with

water, dried (Il1:agnesium &u1phate) and evaporated. A solid product was

obtained. GC/mass spectrometry showed only one product. The product was

crystallised from 60% ethanol. Benzyl-4-nitropheny1 ether (0.75 g; 33~1,

1was obtained. The product was analysed by H NMR, IR and mass spectrometry.

lH NMR; 0 = 5.2 ppm (s, 2H), 7.45 (s, 5H), centered at 7.65 (AA', BB',

4H).

IR: 1500 -1 ' (NQ2 stretching),em

1250 -1 (Ar-O-C, asymmetric stretching)em

1005 -1 (Ar-O-C, symmetric stretching).em
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+Mass spectrometry: m/z = 229 (M). The m.p.was 105-l06°C, consistent

with the literature m.p (106°C).83

In DMF, both p-nitrophenol and potassium t-butoxide were soluble,

therefore potassium and nitrophenol were used in 1:1 mole ratio

and the rest of the techniques were the same as described earlier In DMF,

the isolated yield was 71%. benzyl-4-nitrophenyl ether. Similar techniques

were used to alkylate 2,6-di-tert~butyl-4-methylphenoliIi

DMF, but no alkylated product was obtained

tolt.tene and

(ii) Reactions of phenols with benzyl bromide in the presence of fluoride

anion: These reactions were divided into two classes: (A) heterogeneous

reactions, (B) homogeneo,us reactions" In heterogeneous reactions,.

potassium fluoride was used as the source of fluoride ions, dried either by

hea'ting '"in the oven ·or by freeze-drying. In homogeneous reactions,

tetrabutylammonium fl~oridewas used as the source of fluoride ions.

(A) Heterogeneous reactions: The techniques used in each case were the

same, unless specified. Details of a representative preparation are

described below: Reaction of phenol with benzyl bromide in DMF: Benzyl

bromide (0.01 mole), phenol (0.01 mole) and potassium fluoride oven dr~ed

(0.02 mole) in 20 mL DMF were heated to about 60°C with constant stirring.

The reaction was stopped after 24 hours, when the IH NMR spectrum showed

no starting material (benzyl bromide) remaining. The reaction mixture was

extracted with diethyl ether, washed with water at least three times, then

dried over magnesium sulphate. The ether was evaporated by rotary

evaporator, when a brown coloured liquid (with some s.olids also) was
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obtained. GC/mass spectrometry of this product showed benzyl fluoride and

benzyl phenyl ether. The product was chromatographed using a column of

neutral alumina and pentane as eluent. After crystallisation from 60%

alcohol, benzyl phenyl ether (1 23 g, 67%) was obtained.

When toluene was used as solvent in the reaction of phenol and benzyl

bromide, the conversion was small, therefore the products were analysed

by GC/mass spectrometry only.

(B) Homogeneous reactions: The techniques used for all phenols in various

solvents were the same; a representative description is given below:

Reaction of phenol with benzyl bromide in DMF in the presence of tetrabutyl-

ammonium fluoride: Phenol (0.01 mole) was mixed with tetrabuty1ammonium

fluoride (0.02 mole) and the mixture was dried again by rotary evaporator

at about 60°C for 20 minutes and finally in vacuum line for about 12 hours.

To this mixture, 20 mL DMFwas added, followed by addition of benzyl

bromide (0.01 mole). The mixture was stirred at room temperature. After

75 hours
, 1

the, H NMR'spectrum showed no starting material. The r'eaction

mixture was extracted witn ether, washed with water, dried (magnesium

sulphate) and evaporated. The product was analysed by GC/mass spectrometry.

A mixture of products was obtained, cf. Table V.

(iii) Reactions of phenols i~ the preseneeof triphenylphosphine oxdide:

Alkyla.tions were attempted only for phenol and' p-n-itrophenol. p-Nitroj:)henol

(0.01 mole, triphenylpllosphineoxide (0.04 mole) ~nd benzyl bromide

(0,-01 mole) in -20 mLDMF was heated at about 70°C up .to seven days, but

1the' H"NMR' spectrum' shGwed'the starting- materia~' remaining unchanged.
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The reaction mixture was extracted with ether, washed with water, dried

(magnesium sulphate) and after the solvent was evaporated, analysed by

GC/mass spectrometry, which showed the starting materials only. Similar

techniques were used for the attempted alkylation of phenol.

3.4 lR NMR studies of hydrogen bonding between phenol and triphenylphosphine

oxide:

1 M solution of phenol in CDC1
3

was prepared separately in nine vials.

The chemical shift <S(OR) of the phenol of one of these solutions was

measured at ambient temperature (36°C). To the rest of the solutions,

triphenylphosphine oxide was added in various mole ratios: 1:0.125,

1:0.25, 1:0.5, 1:1, 1:2, 1:3, 1:4, 1:5 (pheno1:tripheny1phosphine oxide).

The chemical shifts <S(OR) of these solutions were measured at 36°C. The

chemical shifts were plotted against the mole ratio of triphenylphosphine

oxide. All the chemical shifts downfield of the reference compound were

assigned as positive shifts.
-J

The chemical shifts o(OR) of phenol in carbon tetrachloride and hexane

were measured at the same temperature. For this purpose, 0.05 M, 0.1 M,

0.25 M, 0.5 M and 1.0 M solutions in carbon tetrachloride and hexane were

prepared separately and the chemical shifts of the OR proton of phenol of

these solutions were measured. The chemical shifts downfield of the

reference compound were assigned as positive shifts, and plotted against

the molarity of the phenol.
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3.5 Use of fluoride ion (potassium fluoride) with phase transfer catalysts:

Tetrabutylammonium bromide was used as the phase transfer catalyst and

benzyl chloride was used as the alkylating agent. Phenol (0.01 mole),

benzyl chloride (0.01 mole), potassium fluoride (0.02 mole) and tetrabutyl-

ammonium bromide (0.02 mole) in 20 mL DMF was heated at about lGO°C.

1After 5~ hours, the H NMR spectrum showed no starting material remained.

The reaction mixture was extracted with ether, washed with water, dried

(magnesium sulphate), the solvent evaporated and the residue chromatographed.

The product was benzyl phenyl ether (1.08 g, 59%). The amount of

tetrabutylammonium bromide was decreased gradually down to 0.0002 mole,

Table VIII.

3.6 Study of the influence of water in the alkylation reactions of phenol:

Phenol (0.01 mole), benzyl bromide (0.01 mole), potassium fluoride

(0.02 mole) and water (0.01 mole) in 20 roL DMF was heated at about BO°C.

1
After two hours, the H NMR spectrum showed no starting material remained.

The reaction mixture was~extracted with ether, washed with water, dried

(magnesium sulphate) and chromatographed. The isolated yield of ether

was 0.6 g (33%). The amount of water was increased gradually up to

0.1 mole, when no appreciable amount of benzyl phenyl ether _was obtained,

cf. Table IX.
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Chapter 4

RESULTS AND DISCUSSION

4.1 It has been mentioned that phenol has two sites for alkylation.

C-a1kylation is important in synthetic chemistry because increases

the carbon chain. The a-alkylation reaction is important in the synthesis

of ethers. The common conventional method for the preparation of ethers is

the Williamson synthesis •. Several modifications of the Williamson

synthesis have been developed,84 including those employing diazomethane

(for methylation) ,85,86 phase transfer catalysis,87 tetraalkylammonium

h -d 88 d- h d -d 89 - h · 90 d fl -dp enOXl es, so lum y rl e, anlon exc ange reSlns an uorle

anions. 91 Among all these methods, the fluoride ion method has been

reported to be the best and most efficient, v~a what has been described as

a hydrogen bond assisted reaction. There are several factors to be

25considered for the conventional methods of alkylation of phenols, among

them the solvent effect ±s one of the most important. In the present work,

the influence of solvent in hydrogen bond assisted alkylation reactions of

phenols is discussed. The localization of the hydrogen bond charge

density, the influence of water in the reaction and the use of fluoride

with a phase transfer catalyst have also been considered during these

alkylation reactions.
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4.2 Alkylation reactions of phenols in the presence of strong base:

Toluene and DMF were used as solvents in these reactions. In toluene,

the products were the ether for both phenol and p-nitrophenol alkylations.

No C-alkylated product was obtained (~f. Table II). The conversion

(benzyl bromide consumed) was about 48% and 50% for phenol and p-nitrophenol,

respectively. 32It has already been reported that sodium-S.....naphthoxide

reacts with benzyl bromide in a nonpolar aprotic solvent such as

tetrahydrofuran to produce a substantial amount of the C-alkylated product.

To account for the effect of aprotic solvent of low dielectric constant,

it was suggested that the sodium-S ....naphthoxide exists as contact ion pairs

and as higher aggregates. The a-alkylation is disfavoured in the non-polar

aprotic solvent by the large separation of the sodium cation and the

developing halide ion in the transition state [A] as shown below. On the

ot.her hand the C-alkylation is favoured in the transition state [B] ..

NCl,,

(}
'J!

"Br

[AJ [B]



Table II. Reactions of various phenols with benzyl bromide in the presence of potassium t-butoxide,
in toluene and DMF as solvents.

Phenols used Catalyst Solvent Temperature Time Conversion* Product Isolated Yield

phenol potassium toluene 70°C 14 h 48% ether 28%
t ......butoxide +
crown ether

phenol potassium I. DMF 23°C 'VIO 100% ether 61%
t-butoxide min

p-nitrophenol potassium toluene 70°C 3 h 50% ether 31%
t .....butoxide +
crown ether

p-nitrophenol potassium DMF 23°C 'VIO 100% ether 71%
t .....butoxide min

2,6-ditertiarybutyl- potassium toluene 70°C 24 h 46% mixture
4-methyl phenol t .....butoxide +

crown ether

2,6-ditertiarybutyI..... potassium DMF 70°C 12 h 100% mixture
4....methyl phenol t-butoxide

*The percent of conversion was based on the percentage of benzyl halide consumed.

w
w
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a-alkylation involves the transfer of charge from oxygen to bromine, and

since bromine is relatively remote from the sodium, this must be

accomplished against the attractive force exerted by the sodium ion. The

attractive force exerted by the sodium ion on the departing bromide ion is

greatest in nonpolar aprotic solvents e In contrast to the linear oxygen­

carbon-bromine disposition which characterizes a-alkylation, the C-alkylation

proceeds through a non-linear arrangement which suggests that the developing

bromide ion is relatively close to the sodium ion.

In the case of the alkylation of phenol and p-nitrophenol using

potassium t-butoxide and a crown ether such as l8-crown-6 in toluene, the

potassium cation forms a complex with the crown ether, and as a result the

phenoxide ion and the potassium ion may not be present as contact ion pairs.

They could exist as solvent separated ion pairs or dissociated ion pairs.

Therefore the phenoxide anion and the p-nitrophenoxide anion may be less

shielded by the cation and by the solvent. They act as nucleophiles when

they react with benzyl bromide to produce an ether according to the

following reaction:

+ Br-
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A similar mechanism applies to the alkylation of p-nitrophenol. From these

results, it may be suggested that the negative charge of the phenoxide ions

was not'delocalised into the ring. The low conversion to the product was

due to the low solubility of potassium t-butoxide. The conversion yield

might be increased by using a dilute solution and an excess of the

potassium t-butoxide and the crown ether.

The alkylation of 2,6-di-tert-butyl-4-methylphenol did not give any

0- or C-alkylated product, rather gave a mixture of various products. The

mixture could not be well separated and remained unidentified.

In DMF, the reactions were carried out without crown ether, because

the use of crown ether in DMF is not effective. 45 The amount of potassium

t-butoxide was used as a 1:1 mole ratio with phenols. The products were

O-a1ky1ated compounds. The reaction conditions were found to be different

from those in toluene (cf. Table II). At room temperature, the reactions

were found to be completed within about 10 minutes. From these reactions,

it appeared that in polar aprotic such as DMF, phenoxide ion can

be rather easily generate-'d by a strong base such as potassium t-butoxide.

In DMF, the cations and the phenoxide anions exist as solvated ions

(separated). 32It was suggested that in polar aprotic solvents such as

DMF, the cation is relatively more solvated than the anions. Thus in DMF,

the anion has not only got away from the cation, but has something

approaching the character of a "free" anion including a high degree of

reactivity. Therefore it may be observed that the rate of O-alkylation in

phenols has increased significantly in the polar aprotic solvent as
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compared to the nonpolar one. The above ohservations were found in quite

good agreement with the results reported by Kornblum. 32 In the case of

2,6-di-tert~butyl-4-methylphenol,no alkylated product was produced even

at higher temperature in DMF.

Attempts to alkylate phenol using catalytic amounts of the base

(about 0.0004 mole) in DMFwere made, but no significant amount of ether

was produced. From this observation, it may be suggested that generation

of the phenoxide ion was essential for the alkylation reaction in the

presence of the base. In the Williamson synthesis,92 the sodium salts

of phenols produce sodium ion and phenoxide ion in solution. Thus in the

alkylation reaction of phenols, the amount of the base used is very

important. The base reacts with phenols producing phenoxide ion and the

cation of the base in solution. Therefore in the base assisted reactions,

it may be suggested that the rate of alkylation of phenols depends on the

concentration of the phenoxide ion. This observation was found in good

agreement with the result obtained by Kornblum. 33

4.3 Alkylation reactions of phenols in the presence of fluoride ion:

(A) Hete~ogeneous reactions; These reactions were tried in nonpolar

aprotic solvents as well as in polar aprotic solvents. In toluene, phenol

gave only C-alkylated products whe.n potassium fluoride (oven dried) was

used in the reaction. The conversion was low, about 20%. The product was

analysed by GC/mass Hpectrometry. Two fractions from GC/mass spectrometry

gave a mol,ecular ion (M+) of m/z 184, consistent with the a1ky1ated product
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of phenol, b~t their fragmentation patterns were found to be different

(cf. mass spectra in the Appendix). One compound gave the fragmentation

as m/z 184, 106, 183, 91, 176, 78 in the decreasing order of intensity,

which is consistent with the orth~-benzyl phe'nol. The molecular ion can

rearrange by losing 78 mass units of benzene, giving the odd electron ion

of m/z 106, as shown in the mechanism below.

m/z 106 m/z 78

The peak at m/z 106 was observed to be more prominent in this compound.

The other compound had the fragmentation pattern, m/z 184, 183, 107, 106,

165, 91, 77, consistent with p-benzyl phenol. For the p-benzy1 phenol, the

92loss of 77 mass units by simple benzylic cleavage was predominant, giving

rise to the even electron ion of m/z 107, as shown below.

OH OH +OH

-C
6
H5

)Po

CH2-C
6

H
5

+CH CHZ2

m/z 184 (M+) m/zl07

These compounds were further confirmed as C-alky1ated phenol by treatment

with t-butyldimethy1silyl chloride. The silyl derivatives were analysed
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by GC/mass spectrometry. Both the compounds gave the same molecular weight,

(M+) of 298 m/z (silyl derivative of phenols). The loss of 57 mass units

(t-butyl) and 28 mass units (silicon) was common in both the compounds.

The peak at m/z 91 was 100% and m/'z: 241 (M+-57) was also very intense.

The lHNMR spectrum of the reaction mixture after extraction with ether

showed the chemical shift of the benzylic protons at 0 = 3.9 ppm (singlet)

which was also consistent with the literature value93 (0 = 3.9 ppm) of

p-benzyl phenol cf. Figure A6 in the Appendix.

In this alkylation reaction of phenol in toluene, two other byproducts

were observed. One compound was identified from the mass spectral data and

literature search to be 2,2'-dimethylbiphenyl or 2,4'-dimethylbiphenyl.

or

2,2'-dimethylbiphenyl 2,4'-dimethylbiphenyl

The molecular ion of the-Jcompound was 182 (M+); the spectrum is shown in

the Appendix. The origin of these compounds was not clear. Wibent

94et reported ·that diphenyl compounds can be formed in small quantities

from benzene heated to about 400°C in the presence of iodine or hydrogen

iodide. Therefore, as the reaction was done in toluene, it could be

possible to form the 2,2'- or 2,3'-dimethy1biphenyl compound from toluene,

though here the conditions observed were much different. The solvent,

toluene, was analysed by GC/mass spectrometry, which showed no trace of



Table III.
solvents.

Reactions of various phenols with benzyl bromide in the presence of fluoride in various
Heterogeneous reactions.

Phenols used Catalyst Solvent Temperature Time Conversion* Product Isolated Yield

phenol potassium toluene 60°C 77 h 20% C....alkylated
fluoride product

phenol potassium DMF 60°C 24 h 100% ether 67%
fluoride

p.....nitropheno1 potassium toluene 82°C 72 h 0
fluoride

p.....nitrophenol potassium benzene 60°C 32 h 100 ether 1'5%
fluoride + 5% DMF

p.....nitropheno1 potassium DMF 60°C 19 h 100 ether 76%
fluoride

2,6-ditertiarybutyl- potassium toluene 82°C 72 h a
4-methyl phenol fluoride

2,6-ditertiarybuty1..... potassium DMF 82°C 24 h 0
4.....methy1 phenol fluoride

*The percent of conversion was based on the percentage of benzyl hal~de consumed.

W
\D
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such compounds in the solvent. The other compound was observed on the

gas chromatograph as a tail of p-benzyl phenol. The compound was not well

separated from p-benzyl phenol; it was a very small fraction and remained

unidentified. The potassium fluoride/toluene system was exceptional only

where C-alkylated products were obtained. Potassium fluoride was much

less soluble in toluene, essentially insoluble. So and Miller95 have

suggested that in the KF/DMF method in the hydrogen bond assisted reactions,

the reaction might be occurring in part on the surface of the suspended

fluoride. In comparison with the potassium fluoride/toluene system, it

appeared that, in KF/DMF the reaction occurred at least in part, in solution,

whereas in the potassium fluoride/toluene system, the reaction occurred

entirely on the surface of the suspended fluoride. From these C-alkylated

products, it may be suggested that the charge density was completely

delocalised into the ring during the alkylation reaction of phenol.

In DMF, the main product was found to be the benzyl phenyl ether.

When oven-dried potassium fluoride was used in the reaction, benzyl fluoride
-.#

was obtained as a byproduct. The reaction time observed was significantly

less as compared to when toluene was used as a solvent. In these hydrogen

bond assisted reactions, it was also observed that the solvent played a

'very important role. The nonpolar ?protic solvents like toluene gave

C-alkylation whereas the polar aprotic solvents, such as DMF, changed the

course of the reaction and produced the O-alkylated products. The rate of

alkylation was also changed and increased with the change of the solvent

from nonpolar aprotic to polar aprotic.



p-Nitrophenol was found to be insoluble in toluene and benzene. When

a reaction was tried in toluene, no alkylation took place, only starting

materials were found after extraction. Therefore the reaction of

p-nitrophenol was run in the mixed solvent, benzene with 5% DMF. The

product was identified as the O-alkylated compound.only, benzyl

4-nitrophenyl ether. In the reactions of p-nitrophenol, it was difficult

to infer much about the solvent activity, as mixed solvents were used, but

considering the reaction time, it may be suggested that the rate of

alkylation increased with the increase of solvent polarity. No byproduct

such as benzyl fluoride was formed in the alkylation of p-nitrophenol,

though the same potassium fluoride (oven dried) and solvent DMF were used.

The alkylation of 2,6-di-tert-butyl-4-methylphenol was attempted

in both toluene and DMF using potassium fluoride, but no a1kylated product

was obtained. After extraction of the reaction mixture, GC/mass spectrometry

40showed only starting materials to be present. Ishikawa et reported

the different activities of oven-dried and freeze-dried potassium fluoride.

The fluorinating ability~of potassium fluoride and caesium fluoride, which

can generate the so-called "naked" fluoride ion is well known. 41 ,42,44,96

To account for the difference between the activities of oven-dried and

freeze-dried potassium fluoride, phenol andp-nitrophenol were alkylated

at about 60°C in DMF. In the alkylation reactions of phenol, about 10%

fluorinated compound was obtained when oven-dried potassium fluoride was

used. The main produc~, benzyl phenyl ether, was found to be less than

that obtained by using freeze-dried potassium fluoride. It appeared that

oven-dried potassium fluoride acts as a nucleophile as well as a hydrogen
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bond electron donor. In the case of p-nitrophenol, no fluorinated

compound was found. even when oven-dried potassium fluoride was used. The

yield of ether was almost the same in both the reactions of p-nitrophenol

where oven-dried and freeze-dried potassium fluoride were used. However

the yield of the benzyl phenyl ether was different from the two sources of

potassium fluoride. Yields were good, but not quantitative in the freeze­

dried potassium fluoride system (cf. Table IV). To check whether the freeze-

potassium fluoride contai-pedhydrated sc?-lt or not, 3 50 g oven-dried

potassium fluoride was dissolved in water to make a saturated solution.

The solution was frozen in the freezer and dried on a vacuum line for four

days. The final weight of the freeze-dried potassium fluoride was 3.51 g

Therefore, it was clear that freeze-dried potassium fluoride did

significant amounts of hydrated potassium fluoride.

From these observations, it was found that freeze-dried potassium

fluoride was more effective as a hydrogen-bond forming catalytic reagent

for alkylation of phenol. Calcine-dried potassium fluoride had a greater

fluorinating ability tha~ the freeze-dried salt. This difference did not

apply in the alkylation reactions of p-nitrophenol. The reason may be

that p-nitrophenol forms a stronger hydrogen bond with the fluoride

ion, giving a faster reaction and thus consumption of benzyl halide before

competing fluorination could occur. The identification of benzyl fluoride

was done by lH NMR (the benzylic proton's peak was a doublet centered at

o = 5.35 ppm, with coupling constant 2JHF = 48 Hz) and GC/mass spectrometry.

The percentage of benzyl fluoride was measured by integrating the benzylic



Table IV. Reactions of phenol andp-nitropheno1 with benzyl bromide using oven-dried and freeze-dried

potassium fluoride in DMF.

Phenols used Potassium fluoride Temperature Time Conversion* Isolated Yield of ether

-
phenol oven-dried 60°C 24 h 100% 67% ether

10% benzyl fluoridea

phenol freeze-dried I. 60°C 24 h 100% 73%

p-nitrophenol oven-dried 60°C 19 h 100% 76%

p-nitrophenol freeze-dried 60°C 19 h 100% 76%

*The percent of conversion was based on the percentage of benzyl halide consumed.

aThe percentage of benzyl fluoride was measured by integration of the benzylic proton's peaks of
1

the H NMR spectrum.

+:-­
w
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proton's peak area of the ethereal extract of the reaction 'mixture. The

mass spectrum is shown in the Appendix.

(B) Homogeneous reactions: For these reactions; tetrabutylammonium

fluoride was used as the source of fluoride ion. Tetrabutylammonium

fluoride is highly hygroscopic; to get it perfectly dry is rather difficult.

The presence of water in the system changes the course of alkylation

reactions of phenols. Phenol, when alkylated in toluene, produced a

mixture of benzyl phenyl ether, benzyl alcohol and benzyl fluoride (cf.

Table V). Tetrabutylammonium fluoride was found to be less soluble in

toluene; the conversion was not 100% even at about 80°C up to 24 hours.

In DMF, the reaction was observed to be complete within 75 hours at room

temperature, but the products so formed were a mixture of benzyl phenyl

ether benzyl formate and benzyl fluoride. One reaction was run in the

mixed solvent, benzene with 10% DMF. In this mixed solvent, fluorination

was the major reaction. Comparing the three solvents, toluene, DMF and

benzene/DMF,it was observed that change from nonpolar aprotic (toluene)

to polar aprotic (DMF) also changed the course of fluoride assisted

homogeneous reactions. In toluene, benzyl fluoride was the major product,

but in DMF benzyl phenyl ether was the major product. It appeared that

polar aprotic solvent favoured a-alkylation and nonpolar aprotic solvent

favoured fluorination when the soluble tetrabutylammonium fluoride was

used as the catalyst. The byproducts were benzyl alcohol and benzyl

formate It was quite reasonable that the trace amount of water present

in the reaction mixture may hydrolyse benzyl bromide to benzyl alcohol.



Table V. Reactions of various phenols with benzyl bromide in the presence of tetrabutylammonium
fluoride in various solvents. Homogeneous reactions.

Phenols used Catalyst Solvent Temperature Time Conversion* Product Isolated
Yield

phenol tetrabutyl- toluene 82°C 24 h 70% ether 20%a
ammonium benzyl alcohol 4%
fluoride benzyl fluoride 76%

phenol tetrabutyl- DMF 23°C 75 h 100% ether 54%a
ammonium benzyl formate .6%
fluoride benzyl fluoride 40%

phenol tetrabutyl- benzene 70°C 24 h 100% ether l5%a
ammonium with formate 5%
fluoride 10% DMF fluoride 80%

p-nitrophenol tetrabutyl- DMF 23°C 24 h 100% ether 76%b
ammonium
fluoride

p-nitrophenol tetrabutyl- benzene 23°C 2 h 100% ether 75%b
ammonium with
fluoride 10% DMF

p-nitrophenol tetrabutyl benzene 23°C 1 h 100% ether 75%b
ammonium with
fluoride 25% DMF

2,6-ditertiarybutyl- tetrabutyl;.. toluene 82°C 24 h 100% fluoride
4-methyl phenol ammonium

fluoride

2 t 6-ditertiarybutyl- tetrabuty1- DMF 23°C 24 H 100% formate 8%
4-methy1 phenol ammonium fluoride 48%

fluoride mixture 44%c

*The percent of conversion was based on the percentage of benzyl halide consumed.

aThe yields were not isolated t but calculated from the integration of the lH NMR spectrum.

bThe isolated yield.

cThe mixture was not identified.
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DMF can also be hydrolysed by water, producing formic acid and dimethyl

amine. 97 The role of water in the alkylation reactions of phenol has been

studied and described separately later on. However, in the mixed solvents

it was observed that there was a decrease in the percentage of ether as

compared to the percentage of benzyl fluoride. It seemed that in benzene

with 10% DMF, tetrabutylammonium fluoride was found to be a better

fluorinating agent than it was in toluene. Benzyl formate was also formed

in the mixed solvent. Phenol-fluoride monosolvate did not contain water,

but the excess tetrabutylammonium fluoride did contain some. Therefore,

it could be better to use anhydrollsmetallic fluoride instead of using

tetrabutylammonium fluoride to avoid the itlt~rference of water.

In the alkylation of p-nitrophenol, both the mixed solvent and DMF

were used as solvents. In benzene with 25% DMF, the t·ime taken was one

hour at room temperature for completion of the reaction, in benzene with

10% DMF, it was two hours, but in pure DMF the time was 24 hours. It was

found quite surprising that the use of mixed solvent was more efficient

than the polar solvent (~MF) for the alkylation of p-nitrophenol, using

tetrabutylammonium fluoride as catalyst. Therefore the role of the

solvent in this homogeneous reaction for the alkylation of p-nitrophenol

was not very clear. There was no byproduct obtained in these p-nitrophenol

alkylation reactions. Though there might be a possibility of having water

in the excess tetrabutylammonium fluoride, the presence of these small

amounts of water could not change the course of alkylation of p-nitrophenol,

but it changed significantly in the alkylation of phenol. Therefore it
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appeared that the hydrogen bonding of fluoride with p-nitrophenol was much

stronger than that of fluoride with phenol.

Alkylation of 2,6-di-tert-butyl-4-methylphenol was also attempted

using tetrabutylammonium fluoride in toluene and in DMF. In toluene, only

benzyl fluoride was obtained, no alkylation took place@ Thus in toluene,

tetrabutylammonium fluoride acted as a good fluorinating agent in the

alkylation reaction, especially when the sterically hindered phenol was

present. In general, there was a competition between the fluorination and

the alkylation reactions, and fluorination was faster than alkylation in

nonpolar aprotic solvent versus the polar aprotic solvent. To assess the

fluorinating ability of tetrabutylarnmonium fluoride in toluene, one

reaction was ~un between benzyl bromide and tetrabutylammonium fluoride

only. At room temperature, the fluorination was very small even after six

days. When the reaction mixture was heated to about 82°C for 24 hours,

100% conversion was obtained. Thus, tetrabutylammonium fluoride was

found to be a good fluorinating agent in toluene, if the potential

nucleophile is highly hinaered. Also in DMF, no alkylated pre·duct was

formed in the alkylation reaction of the sterically hindered phenol. A

mixture of products' was found, of which benzyl fluoride was the major one

identified. Benzyl formate was found as one of the products in small

quantities. Besides these, some other products were also found to be

formed in small quantities which could not be well separated and remained

unidentified, Therefore, for highly sterically hindered phenols such as

2,6-di-tert-butyl-4-methylphenol, alkylation was not possible even by

using tetrabutylammonium fluoride in either polar or nonpolar aprotic

solvents.
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4.4 Attempted alkylation reactions of phenols in the presence of triphenyl-

phosphine oxide:

In these reactions, we attempted to alkylate phenol and p.....nitropheno1

using triphenylphosphine oxide as hydrogen bond assisted catalyst. The

solvents used were toluene and DMF. The reactions were not successful,

i.e., no a1kylated product was obtained in any reaction either in toluene

or in DMF. From these reactions, it was observed that triphenylphosphine

oxide may not be a good hydrogen bond electron donor.

To verify the hydrogen bonding between phenol and triphenylphosphine

oxide, lH NMR studies were carried out at ambient temperature (cf. Table

VIand Figure 1). These studies showed that there is hydrogen bonding

between phenol and triphenylphosphine oxide. The hydrogen bond becomes

limiting after a 1:1 mole ratio of phenol and triphenylphosphine oxide. To

experiments was done in the nonpolar solvents. However, there was no doubt

about the hydrogen bonding of triphenylphosphine oxide with phenols, but

this hydrogen bonding did not assist the alkylation reaction. The expected

reaction was:
8+ 6-

Ar-OH + Ph
3

PO '" ), Ar-QH •• OPPh
31Ar-CHz-X

Ar-O-CHzAr + HX + Ph3PO

The first stage has been verified by lH NMR studies, that there is hydrogen

bonding between phenol and triphenylphosphine oxide. To account for the

inability of the second stage, it may be mentioned that there is no place
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Table VI. Hydroxy proton chemical shifts of 1M solutions of phenol with
triphenylphosphine oxide in CDC13 -

Mole ratio of phenol and
triphenylphosphine oxide

1:0

1:0.125

1:0.25

1:0.5

1:1

1:2

1:3

1:4

1:5

B(OR) observed in ppm

5.83

6.6

7.4

8.73

9.75

10.29

10.46

10.56

10.66
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Table VII. Hydroxy proton chemical shift of phenol in various solvents
at various concentrations.

Molarity Solvent 0 in ppm

0.05 M hexane not observed

0.1 M hexane 4.78

0.25 M hexane 5.35

0.5 M hexane 6.00

1 ~I. hexane 6.63

0.05 M' CC1
4 4.46

0.1 M' CC1
4 4.78

0.25 M, CC1
4 5.30

0.5 M CC1
4 5.95

1M CC1
4 6.46

0.05 M CDC13 4.78

O.lM CDC13 4.85

0.25 M CD~13 5.15

0.5 M CDC13 5.65

1M CDC13 5.83
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for the hydrogen halide to go. If we compare with the fluoride assisted

reactions, the hydrogen halide was picked up by metal fluoride to produce

hydrogen fluoride which reacts with fluoride ion to produce the stable

- 98species HF2

MF + HX --~> MX + HF

or

MF + HX --~) ~FX-

Under oth'er conditions, triphenylphosphine oxide may be a good catalyst for

hydrogen bond assisted reactions, e

reaction.

in the traditionally base-catalysed

4.5 Use of fluoride ion with a phase transfer catalyst:

An attempt was made by Miller and Demmig99 to use fluoride ion with a

phase transfer catalyst for the alkylation of 2-naphthol. The reaction was

run in a DMF and water mixture containing potassium fluoride. The

experiment was unsuccessful. As an extension of that work, detailed studies

were made by using solid--potassium fluoride and tetrabutylammonium bromide

in DMF in the alkylation reactions of phenol. These reactions,'when carried

out under anhydrous conditions, gave good results. In these reactions,

benzyl chloride was used as the alkylating agent. At about lOQ 9 C, the

normal time required for the completion of the reaction was 19 hours without

using the phase transfer catalyst. When tetrabutylammonium bromide was

used in the reaction, it was completed within four hours, having the same

yield Table VIII). The yield in these reactions, especially at high

temperature was found to be quite low. The optimum temperature was



Table VIII. Reactions of phenol with benzyl chloride in the presence of potassium fluoride and
tetrabutylammonium bromide in DMF.

Amount Amount Amount Amount Time Product with yield
of phenol of benzyl chloride of potassium of tetrabutyl- at 1000e (isolated)

fluoride ammonium bromide

0.01 mole 0.01 mole 0.02 mole 0.02 mole 5~ h ether 59%

0.01 mole 0.01 mole 0.02 mole 0.01 mole 4~ h ether 58%

0.01 mole 0.01 mole 0.02 mole 0.005 mole 4~ h ether 63%

0.01 -mole 0.01 mole 0.02 mole 0.002 mole 4 h ether 62%

0.01 mole 0.01 mole 0.02 mole 0.001 mole 4~ h ether 63%

0.01 mole 0.01 mole 0.02 mole 0.0004 mole 8~ h ether 60%

0.01 mole 0.01 mole 0.02 mole 0.0002 mole 9~ h ether 61'%

In
.+:"-
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The amount of the phase transfer catalyst used in

the mole ratio was 0.001 mole (one tenth of the reactants) and was quite

sufficient for the reaction to occur. Thus, fluoride ion from solid

potassium fluoride can be transferred to the solution yia a phase transfer

catalyst to enhance the alkylation reaction of phenol. This was found in

contrast with the homogeneous reactions for the alkylation of phenol,

where the soluble tetrabutylammonium fluoride acts as a fluorinating agent

as well. However, it may be suggested that, for the alkylation of phenol

using fluoride ion, it is better to use the phase transfer catalyst and

potassium fluoride rather than the tetraalkylammonium fluoride, which is

very difficult to dry.

4.6 Influence of water in the alkylation reaction of phenol:

In the beginning of this research, when a reaction was run in DMF,

amount of benzyl formate waS

was relatively low. The formation of benzyl formate was surprising. It

was found in the literature97 that DMF can be hydrolysed readily to produce

formic acid and dimethyl amine.

Once formic acid is produced, it forms a hydrogen bond with fluoride ion and

thus produces the benzyl formate. Therefore that reaction was not carried

out under anhydrous conditions. This observation encouraged us to study

the role of water in the alkylation reaction of phenol. It is also known



In the absence of a more powerful
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that the presence of water may have a profound effect on the basic

b h · f h fl -d - 100-103e aVlour 0 t e uorl e anlon.

hydrogen bond electron acceptor, water solvates the fluoride anion and

masks it. Ogilvie et 104 have shown that when fluoride ion is faced

with two possible reaction centres, ~t preferentially attacks the one

closest to the hydroxyl group. In this part of ourwork,the tolerance

for water in the alkylation reaction of phenol has been measured. When the

reactions were run in the presence of water, the major byproduct was benzyl

formate. To confirm the formation of benzyl formate, one reaction of benzyl

bromide with formic acid was run at about 70 o e, in the presence of

potassium fluoride in DMF. The reaction was found to be completed within

l~ hours and the product was 100% benzyl formate. The compound was

1
identified by H NMR and mass spectrometry.

1H NMR: 0 = 5.21 ppm (s, 2H) 7.41 ppm (s, 5H) and 8.15 ppm (s, IH).

The molecular ion was at m/z 136 (M+). When one reaction was run in DMSO

in the presence of water, no benzyl formate was produced. Therefore, it

may be said that the water in the reaction mixture easily hydrolyses the

solvent DMF, producing formic acid. Formic acid is more acidic than phenol,

therefore a much stronger hydrogen bond with the and

thus competes with the phenol for alkylation. As the amount of water was

increased, the formation of benzyl formate was increased with a decrease

of the ether formation. Besides the benzyl formate, there were other

products in very small quantities. One compound was identified as benzyl

fluoride the other as benzaldehyde, and some other fractions were present.

These fractions could not be separated,and remained unidentified.
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However, from the studies above, it was observed that a remarkable amount

of water may be present without compl'etely suppressing ether formation

(cf. Table IX)~

To study the action of water with benzyl bromide, one reaction was run

in DMSO in the presence of potassium fluoride. The reaction was found

to be completed after 12 hours at about 70°C. The products were analysed

by GC/mass spectrometry. Four products were obtained: (i) benzyl fluoride,

(ii) benzaldehyde, (iii) benzylalcohol-, and (iv) benzylmethyl sulfide.

Abdul Aziz and Clark8l have already mentioned that benzyl bromide is

hydrolysed by water., when treated in aqueous DMSO in the presence of

fluoride ion, producing benzyl alcohol. In our reaction, benzyl alcohol

was found in very small quantities, but benzaldehyde and benzylmethyl

sulfide were formed in significant amounts. It appeared that the expected

benzyl alcohol is oxidised to benzaldehyde. It has been mentioned in the

literature
l05

that dimethyl sulfoxide can be used as an oxidising agent

Thus formation of benzaldehyde can be explained'as the oxidation of

benzyl alcohol byDMSO~
105has also been reported that aqueous

solutions of hydrogen halide, HX (~, HBr), dimethyl sulfoxide can be

reduced to dimethyl sulfide.

HX

The dimethyl sulfide thus formed during the above reaction may act as a

nucleophile to form sulfonium salt, which in the presence of fluoride may

form benzylmethyl sulfide, according to the following reaction.



Table IX. Reactions of phenol with benzyl bromide in the presence of water in DMF using potassium
fluoride.

Phenol and Solvent Potassium Water Temperature Time Conversion* Identified Yield
benzyl bromide fluoride product isolated

(ether)

0.01 mole DMF 0.02 mole 0.01 mole 80°C 2 h 100% ether 33%
fluoride
formate

0.01 mole DMF 0.02 mole 0.015 mole 80°C 2 h 100% ether 31%
fluoride
formate

0.01 mole DMF 0.02 mole 0.02 mole 80°C 2~ h 100% ether 33%
fluoride
formate

0.01 mole DMF 0.02 mole 0.03 mole 80°C 2~ h 95% ether 33%
fluoride
formate

0.01 mole DMF 0.02 mole 0.04 mole 80°C 3 h 100% ether 34%
fluoride
formate

0.01 mole DMF 0.02 mole 0.05 mole 80°C 3~ h 95% ether 30%
fluoride
formate

0.01 mole DMF 0.02 mole 0.06 mole 80°C 3~ h 95% ether 22%
fluoride
formate

0.01 mole DMF 0.02 mole 0.1 mole BOoC 6 h 100% ether 0.0%
fluo:rride
formate

*The percent of conversion was based on the percentage of benzyl halide consumed.
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Therefore, it was observed that the presence of water in the alkylation

reactions of phenols changes the course of the reaction drastically.
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Chapter 5

GENERAL DISCUSSION AND CONCLUSION

5 Now it is well known that fluoride ion assisted reactions are

considered as hydrogen bond assisted reactions. From this research, it

also appears that hydrogen bond assisted reactions are better methods than

the conventional base assisted reactions for the alkylation of phenols.

However, the choice of fluoride and solvents is important in determining

the course and rate of the reaction. Even when the same potassium fluoride

was used in this research, the different ways of drying it gave different

results. Oven dried potassium fluoride gave some fluorinated 'compounds,

but freeze-dried potassium fluoride gave no fluorinated product, therefore

more alkylated product was obtained. The cause of different activities of

oven-dried and freeze-dried potassium fluoride is not known. It was

106 107reported· .. , that freeze-dried potassium fluoride is less hygroscopic

than oven...;.dried potassium fluoride. It is also known that the presence of

water may have a profound effect on the basic behaviour of fluoride

. 100-103
anlon. Tetrabutylammonium fluoride is more soluble in organic

solvents, producing more free fluoride ion and hence an increase in the

rate of the reaction, but the behaviour of fluoride ion depends on the

dielectric constant of the solvent. In a nonpolar aprotic solvent, the

fluoride ion (soluble) acts as fluorinating agent as well, but in a polar

aprotic solvent acts as a hydrogen bonded complex only.
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5.2 Mechanism of the reactions;

The mechanisms of the base assisted and hydrogen bond assisted reactions

are slightly different In the presence of a strong base, the acidic proton

of the phenols is abstracted by the base, generating phenoxide ion. This

phenoxide ion reacts with thealkylating agent as a nucleophile by an SN2

mechanism.

In the fluoride assisted reactions the fluoride anion forms hydrogen bonds

with the acidic proton of phenols thereby producing a highly reactive

anionic complex.

The anionic complex is quite stable and the formation of a hydrogen bond

between the fluoride anion and the phenol resulted in the transfer of

electron density from the anion to the organic part, thus enhancing the

nucleophilicity of the organic species, while at the same time the

nucleophilicity of the fluoride is reduced. The anionic complex reacts

with the alkylating agents by an SN2 type mechanism.



62

~;2F-

~

In comparison between phenol and p-nitrophenol, it is quite evident that

the more acidic the protic compound (phenols), the stronger the hydrogen

bond shall be. The stronger hydrogen bonded complexes are more reactive.

The stronger the hyd~ogen bond, the more transfer of the electron density

on to the atom next to the acidic hydrogen atom, i.e., oxygen of the

phenol.

5.3 Effects of solvents:

The solvents like DMF and DMSO are especially effective at solvating

cations.
32

Thus in base assisted reactions, it was observed that the polar

aprotic solvent such as DMF effectively solvates the cation, thereby

producing more dissociated anion. The nonpolar a~rotic solvent like

toluene was found unable to solvate the cation, but the use of crown ether

such as l8-crown-6 helped the solvation of the cation producing phenoxide

Thus only O-alkylated products were found It may be

suggested that there was no contact ion pair which usually favours

C....alkylation.
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In fluoride assisted reactions, the polar aprotic solvent, DMF,

solvates the cation more effectively, and as a result, the hydrogen bonded

anionic complex was formed, which favoured a-alkylation. In nonpolar

aprotic solvents, toluene, the reaction is thought to be occurring

on the surface of the suspended potassium fluoride, i.e., the reaction

was absolutely in the heterogeneous condition. The electronegative oxygen

atom was not free to attack the alkylating agent. It may be suggested from

our observation that for the alkylation of phenol in toluene using potassium

fluoride, the electron density was completely delocalised in the ring,

giving C-alkylated products only. However, for soluble fluorides such as

tetrabutylammonium fluoride, the polar aprotic solvent favoured a-alkylation

and a nonpolar aprotic solvent favoured Whe·n a protic solvent

was used in the alkylation reaction, it formed a hydrogen bond with the

oxygen atom of the phenol, thus the oxygen atom becomes shielded, and as a

33result, C-alkylated products were formed.

Though the solvent can control the course an'd rate of alkylation 6f phenols,

the hydrogen bond plays an important role. If the hydrogen bond is very

strong, activities of solvent become less effective. For example, in this

research p-nitrophe.nol in benzene/DMF in the presence of oven-dried

potassium fluoride gave only a-alkylated product, whereas phenol gave

a-alkylated and fluorinated products under the same conditions. It appears

that the p-nitrophenol-fluoride hydrogen bond is much stronger than the

phenol-fluoride hydr,ogen bond, which controls the course of the reaction.
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5·.4 Conclusion

To sum up, the above results indicate that hydrogen bonding is very

important in the .course and rate of phenol's alkylations. Protic solvents

form hydrogen bonds with the electronegative oxygen atom of phenols,

producing C-alkylation,33 where the electron density is delocalised to the

ring. An aprotic polar solvent favours O-alkylation and a nonpolar aprotic

solvent favours C-alkylation, but if there is strong hydrogen bonding in the

phenol-fluoride complex, it favours a-alkylation. The localisation of the

negative charge depends on the strength of the hydrogen bonding, usually

electron density being greater on the atom next to the hydrogen of the fluoride

hydrogen bonded complex. Regarding fluoride ions, oven-dried potassium

fluoride is a better fluorinating agent than freeze-dried potassium

fluoride. The more soluble and reactive fluoride such as tetrabutyl-

ammonium fluoride is a better fluorinating agent in a -nonpolar

solvent, and a better hydrogen bonding agent in a polaraprotic solvent.

Potassium fluoride can be used with a phase transfer catalyst in

fluoride assisted organic synthesis, by using tetraalkylammonium halides

other than fluoride under anhydrous conditions. The presence of water in

the reaction plays a very important role. It decreases the main product

ether, drastically It can hydrolyse the solvent, DMF, to produce formic

acid, which competes with phenol in the alkylation. It can hydrolyse the

alkylating agent, producing the corresponding alcohol, which can be

oxidised by an oxidising agent, ~,DMSO. Water also helps to reduce

the DMSa at the same time in the presence of hydrogen halide (~, HBr).
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