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ABSTRACT

The x-ray crystal structure of thiamine hydroiodide,C1ZH18N40S12'

has been determined. The unit cell parameters are a = 13.84 ± 0.03,
o

b = 7.44 ± 0.01, c = 20.24 ± 0.02 A, 8 = 120.52 ± 0.07°, space group

P2/c, z = 4. A total of 1445 reflections having ,2 > 2o(F2), 26 < 40°

were collected on a Picker four-circle diffractometer with MoKa

radiation by the 26 scan technique. The structure was solved by the

heavy atom method. The iodine and sulphur atoms were refined

anisotropically; only the positional parameters were refined for the

hydrogen atoms. Successive least squares cycles yielded an unweighted

R factor of 0.054. The site of protonation of the pyrimidine ring is

the nitrogen opposite the amino group. The overall structure conforms

very closely to the structures of other related thiamine compounds.

The bonding surrounding the iodine atoms is distorted tetrahedral. The

iodine atoms make several contacts with surrounding atoms most of

them at or near the van der Waal's distances

A thiaminium tetrachlorocobaltate salt was produced whose

molecular and crystal structure was j~dged to be isomorphous to

thiaminium tetrachlorocadmate.



2

ACKNOWLEDGEMENTS

The author most sincerely thanks Professor Mary F. Richardson

for the guidance and encouragement which was so generously provided

throughout the course of this work.

The author also expresses his gratitude to his colleagues for

their enlightening discussions and inspirations, to Janet Hastie for

her kind eleventh hour assistance, and to the Chemistry Department

as a whole.



3

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER

I INTRODUCTION

II EXPERIMENTAL

III STRUCTURE AND REFINEMENT

IV DISCUSSION AND RESULTS

V THIAMINIUM TE'I'RACHLIDR6COBALTATE

APPENDIX

BIBLIOGRAPHY

Page

1

2

4

5

6

14

21

29

48

49

53



4

LIST OF TABLES

Table

1. Torsional Angles of Thiamine Compounds

2. Interplanar Spacings .and Cell Constants

3. The Patterson Map

4. Positional Parameters for Non Hydrogen Atoms

5. Thermal Parameters for Non Hydrogen Atoms

6. Positional Parameters of Hydrogen Atoms

7 Bond Lengths of Covalent Bonds for Thiamine

Hydroiodide and Thiamine Hydrochloride

Page

11

17

22

26

27

28

30, 31

8.

9.

10.

11.

Bond Angles for Covalent Bonds Not Involving

Hydrogen Atoms for Thiamine Hydroiodide and

Thiamine Hydrochloride

Deviations from Least Squares Planes

Hydrogen Bond and Short Contact Distances

Angles of Hyd~ogen Bonds and Short Contacts

32

39

41

44



Figure

1.

2.

3.

4.

5.

5

LIST OF FIGURES

Newman Projections for the <Pr and <Pp Rotations

Projections of Thiamine Hydroiodide along

(a) 010

(b) 001

Projection of Thiamine Hydrochloride along 100

Major Contribution Resonance Forms for

Thiamine Hydroiodide

Packing of Molecules in the Crystal Structure of

Thiamine Hydroiodide

Page

10

34

35

36

38

45



6

CHAPTER I

INTRODUCTION

Vitamin B1 was first recognized in the early 1890's when it was

observed that hens fed exclusively on polished rice developed poly-

neuritic symptoms similar to those of human beriberi patients. Ensuing

work showed that these induced paralytic symptoms could be alleviated

by the addition of :otO"8 bran, to the diet. This discovery led researchers

to speculate rightly that the cause of the disease was a nutritional

deficiency. In the following years efforts were directed towa:rdsisolating

the active factor from rice bran, but it remained elusive until the

1920's. The year 1926 marked the report by Jansen and Donath (la) of

a crystalline hydrochloride of the active principle, however several

years elapsed before the substance was successfully isolated in other

laboratories. Numerous refinements in the technique of isolation were

necessary before a sufficient quantity of the vitamin could be produced

for structure elucidation. By 1934 an improved process was reported

for the isolation of thiamine from rice bran which yielded 5 grams of

thiamine hydrochloride, I,from each ton of rice bran processed (lb) !

This was a yield of about 25% (l).

,x



I, RI

7

H; R2 = H, thiamine

la, Rl = H; R2 = P2063-, thiamine pyrophosphate, TPP

II, Rl H3CC(H)OH; R2 = H, 2-a(Hydroxyethyl'thiamine)

In its biologically active coenzyme form thiamine exists as an

ester of pyrophosphoric acid, thiamine,pyrophosphate,Ia. The enzyme

systems for which thiamine pyrophosphate (TPP) is a cofactor include

the a-keto acid decarboxylases and the transketolases (2). As far as

it is known TPP or cocarboxylase, as it is sometimes called, is exclu-

sivelya coenzyme in decarboxylating systems (3). Studies on the~enzyme

pyruvate decarboxylase (PDC) have led to a proposal of a mechanism

for the decarboxylation of pyruvic acid, III, toacet.aldehyde. vi.a·) a

2-(l-Carboxy -l-Hydroxyethyl) thiamine pyrophosphate intermediate(4,5).

RO +

IaTTP

>

ylide

COOH
1
c=o
I
CH3

III
pyruvic
acid
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Ia

+ CHOCH3

For enzyme activity PDC requires in addition to TPP a divalent

2+metal ion such as Mg • The process by which the metal ion, coenzyme

and apoenzyme bind together to form a hQloenzyme is not yet known, but

there are several ways in which this could occur. First the metal ion

could bind TPP to the enzyme,

TPP

Second, TPP could be bound directly to the ~nzyme and the metal ion

could function to induce conformational changes by fixing itself else-

where on the enzyme's surface,
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TPP

In any case the conformation of the thiamine residue of the coenzyme

is important to the functioning of the enzyme. To date there have been

no examples of direct thiamine-metal bonding in any of the reported

structures. Species such as HThiCdC14 (6), HThiCuC14 (7), and HThiMgC14(8)

exist as complex salts [HThi]2+ [MC14}2- with no metal-sulphur or

metal-nitrogen interactions.

The conformation of the thiamine cation, that is the manner in

which the pyrimidine and thiazolium rings are oriented around the bridging

methylene group, can be easily defined in terms of the torsional angles

and <PP' N'l -C 7 -C 8 -C 9 (9). Projections of

~T and <Pp are shown in Figure 1. A particular ~, for example <p p a~~l~,
equals zero when the normal to the plane of the pyrimidine ring is parallel

to the normal of the plane defined by Nl-C7-C8. A counterclockwise rotation

corresponds to a positive angle. The mirror image of a particular con-

formation will have opposite signs for both ~T and <pp. Table I lists the

torsional angles for the accurately determined structures containing the

thiamine cation.

Recent calculations on the electronic structure and preferred con-

formations of thiamine (2) have shown that by concerted rotations about

~Tand ~p there is a nearly continuous range of conformations which will
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HIC9

C5

Projection along NI-C7 bond (~T)

HIe7

Projection along C7-C8 bond (~p)

Figure 1- Newman proj ections for the torsional angles ¢'T and ¢p.

in thiamine hydroiodide.
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Table 1. Conformation of Thiamine Derivatives *

Compound

Thiamine hydro iodide

Thiamine hydrochloride

Thiamine chloride.H20

HThiCuC1
4

(HThi)2U02C14

Hydrolyzed cocarboxylase

Thiamine pyrophosphate.HCl

¢p

81.9 ± 1• .5 0

76.1

76.2

82.6

83.7

85.4

93.1

137.3

¢T Ref.

... .5 .• 9 ± 1. 2 0 11

9.0 10

2.6 17

14.1 7

-5.4 19

6.6 16

2.7 21

110.4 6

2- (a.-Hydroxyethyl) thiamine chloride ",HCI

145,.6 100.3 9

* ¢p and ¢T are the N1-C7-C8-C9 and C8-C7-Nl-C6 torsional angles,

respectively. The angle ¢ equals zero' when the normal to the plane

is parallel to the normal of the plane defined by ,Nl-C7-C8. A

counter clockwise rotation corresponds to a positive angle.
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be accessible to the molecule at normal temperatures provided that the

rings are not coplanar. However, despite the large number of conformations

predicted to be stable, the crystalline structures for thiamine compounds

have so far fallen into two general conformations, one with I~pl =85±16°,

I~!I= 5±lO° and the other with ~p =l40±5, ~T=105±5°. The former category

which includes thiamine hydrochloride is the more common of the two.

The latter conformation was originally reported by Sax et ale (9) in

the structure of 2- (a-Hydroxyethyl) thiamine (I-I). It was claimed

that this new conformation was due to the presence of the a-hydroxyethyl

side chain. Richardson et al.in their thiaminium tetrachloro~admate

structure (6) also observed a conformation similar to that,of

2-(a-Hydroxyethyl) thiamine on a molecule without a substituent in the

2-position. Thus the 2-(a-Hydroxyethyl) side chain may be a contributory

factor for this particular conformation, but it is by no means crucial.

That only a limited number of conformations occur in the solid

state is probably the result of the favourable packing arrangements

which may be achieved for select values of ~T and ~p. Other conformations

which are also energetically stable from a torsional point of view (2)

may not offer the proper orientations for the extensive hydrogen bonding

which is generally observed in this class of compounds.

In the course of some general investigative studies with thiamine,

crystals of thiamine hydroiodide, THI, were produced. Preliminary x-ray

work showed that this structure was not isomorphous to thiamine hydro

chloride (10). In the light of two "odd" structures, 2-(a-Hydroxyethyl)
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thiamine and thiaminium tetrachlorocadmate, in which similar conformations

were observed for apparently different reasons, a complete structure

determination of thiamine hydroiodide seemed a worthwhile avenue of pur

suit.

The problem stated briefly is: what would be the effect upon the

basal THe conformation by the substitution of the chloride anions with

significantly larger iodide ions?
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CHAPTER II

EXPERIMENTAL SECTION

A. Reagents and Film

Thiamine was obtained as Aneurine hydrochloride C12H17N40SCleHCl

from BDH Chemicals. Sodium Iodide was of reagent grade conforming to

A.C.S. specifications. These chemicals were used without any further

purification.

The film used was Kodak No-Screen Medical X-ray film.

B. Preparation of Thiamine Hydroiodide

Thiamine hydrochloride, 3.37g (0.01 mole) and sodium iodide, 3.20g

(0.02 mole) were diluted to 60 ml in distilled water. The mixture was

vacuum filtered and the filtrate was placed in a petri dish overnight,

producing a large quantity of colourless crystals. The crystals were

collected by the Pasteur method, washed with water and left to dry in

the air. Micro analysis indicated: C, 27.79; H, 3.47; N, 10.90; S, 6.36%.

Thiamine hydroiodide'asClZHlSN40SI2 requires C, 27.70; H, 3.49; N, 10.77;

S, 6.17%. This compound melted with decomposition at 230 0 ·(lit. 229°,

ref 23).

C. Density Measurements

The density of thiamine hydroiodide was measured by the flotation

method. A crystal of this compound was placed in a mixture of benzene,

-3 -3p = 0.879 g cm and 1,2-dibromoethane (ethylene bromide), p = 2.179 g em

When the crystal remained more or less suspended, that is, it neither

s.ank to the bottom of the vessel nor floated to the surface of the

liquid, the density of the crystal was assumed to be equal to the

density of the liquid. A·I ml sample of the mixture was extracted
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volumetrically, transferred to a screw cap vial and weighed. The density

~3
of the crystal was 1.956 g em

D. Crystal Selection

Suitab.le crystals were chosen with the aid of a polarizing micro

scope. The quality of the crystals was based on the size, regularity in

shape and by the sharpness of the extinctions when the crystal was rota

ted in plane polarized light. Crystals judged as suitable were mounted

on thin glass fibres with "Five Minute" epoxy cement.

E. Diffraction Studies

1.Oscillation Photographs

Oscillation photographs were taken on a Picker X-ray diffraction

instrument using a Charles Supper Co., Weissenberg c~mera. The crystal

was allowed to oscillate through an arc of 15°. Unfiltered CuKa radiation

was used for all photographs. The exposure time was of a 20-30 minute

range. The alignment of the crystal was accomplished by the methods out

lined in Stout and Jensen (12a). A right-left symmetry pattern was ob-

served on the oscillation photographs.

2. Weis.senberg Photographs

Equi-inclination Weissenberg photographs were taken using the same

alignment obtained from the oscillation photographs. Nickel filtered

CuKa radiation .(.\=1.5481 AO) and an exposure time of about 12 hours

were used for all photographs. The layers zero through four were photo-

graphed using camera settings based on the lattice dimensions obtained

from the oscillation photographs (12b).
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3.Diffractometer Studies

A Picker four-e~rcle diffraetometer was used for the data collection.

A flat single crystal of ..cthiamiJrie thydroiJediCle .5 x O.2mtn}

was mounted on a eucentric goniometer head,
................. M'~.L-'''"' ·byoscilla.t::iol1 photo-

graphy on the \~eissenberg camera, and transferred to the diffractometer.

Accurate unit cell dimensions and all intensity data were obtained

using zirconium filtered'MoKa l radiation (A=O.7093AO). The methods of

crystal alignment for the four-circle diffractometer given in Stout and

Jensen (12c) were employed.

(a) Film

On the oscillation photographs a diffraction pattern with right-left

symmetry was observed. Tne axis about which the crystal rotated was

designated as b~~. Sy'stematic aosences for OkO, k=2n+l; and hOt, t=2n+l

indicated.space group P2 l /c. This monoclinic space group is completely

determined liy its' systematic absences (l2d).

(b) Diffractometer

The monoclinic unit cell dimensions were calculated from the axial

reflec tions. * *The angle S was determined from the locations of the a

* *and c axes (S ¢hOO - ¢OOl); a second determination was made from

the d-spacings of the 6,0,12 and 7,0,14 reflections. From

was then obtained '. The cell constants are a = 13.84 ± 0.03,

°b = 7.44 ± 0.01, c = 20.24 ± 0.02 A; S = 120.52 ± 0.07° (Table 2).

The calculated density based on 4 molecules per unit cell is

-32.017 g em •
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Table 2. The 2e angles and interplanar spacing from which the

cell constants wereG'iobtained.

a* axis

dnOO
d1aO

11.891 11.891

5.952 11.904

3.976 11.928

2.973 11.891

1.989 11.933

1.740 12.179

1.486 11.890

1.325 11.928

1.193 11.931

0.918 11.931

nOO reflection 26

100 3.425

200 6.845

300 10.255

400 13.730

600 20.585

700 23.569

800 27.665

900 31.105

10,00 34.665

13,000 45.560

14,00 49.450

b* axis

0.850

d100 = 11. 930 A0

Std. Dev. = 0.03 AO

11.894

OnO reflection 28

020 10.975

040 22.025

060 33.260

dOnO dOlO

3.716 7.432

1.860 7.441

1.242 7.450

080 44.895 0.931

dOlO = 7 .442 AO

o
Std. Dev. = 0.01 A

7.445
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c* axis

(continued)

18

d OOn
d OO1

8.797 17.594

4.356 17.425

2.906 17.439

1.741 17.407

1.247 17.457

0.873 17.454

aOn reflec tion 28

002 4.632

004 9.358

006 14.045

00,10 23.555

00,14 33.115

00,20 48.055

00,22 53.205

s*

0.794

a
001

= 17.456 AO

o
Std. Dev. = 0.02 A

17.458

axial measurement

reflection

6,0,12

7,0,14

2e

43.19

50.86

59.41

59.44

59.58

B''( = 59.48 0

Std. Dev. = 0.07°

For a monoclinic system

a = d100/sin S

b = dOlO

c = d001/sin (3

S = 1800 - (3*

thus a = 13.84 ± 0. 03 A0

b = 7.44 ± 0.01 A0

c = 20.24 ± 0.02 A0

6 ~ 120.52°
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5. Intensity Me~surements

The w -26 scan technique was used, with w changing at one half the

rate of 28.

The scan rate was 2°/min. over a 2° range in 28, from 1° below to

1° ,atio,ve the calculated peak positions. Background was counted for 10

sec. at each end of the scan. Zirconium filters .0005" thick were in

serted in the reflected beam whenever the peak counting rate exceeded

40,OOOcps. A standard reflection (6,1,-2) was monitored at 2 hour in

tervals in order to correct for instrumental fluctuations and possible

crystal decomposition. The reflection data between two successive mea

surements of the standard reflections were corrected by a linear inter

polation according to the number of intervening reflections. During the

course of the data collection there was a slight browning of the crystal

along the face which was incident to the x-ray beam; however the intensity

measurements of the standard reflection were not noticeably affected.

The intensities were corrected for background, for variation in the stan

dard reflection and for extra filters.

Lorentz and polarizing corrections were applied to convert the net

intensities I, into structure factors by:

IF(hkl)I =i=
1/2

(1)

The combined form of the Lorentz and polarizing factors, Lp,is:



Lp
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2
1 + cos 26

sin 26

where e is the Bragg angle of the hkl reflection. No corrections were

-1
made for absorption or extinction (~= 37.2 cm ). Standard deviations

on the structure factors, a(F) were calculated by the procedure detailed

in Stout and Jensen (12e):

o(F) 0.5 (Lp)-1/2
1/2

(3)

where NT N
B

and Np are the total counts, the background and the peak,
counts respectively. A total of 1865 reflections were measured having

26<40°. Of these 1445 had I~2a(I) and were classified as observable.

The remaining 420 unobserved reflections were assigned zero weights

during the refinement procedures and were not included in the R-factor

calculations.

Scattering factors for neutral I, S, 0, N, C and.H atoms as well as

the real and imaginary parts of the anomalous' scattering of iodine were

taken from the International Tables for X-ray Crystallography (13).



21

CHAPTER III

S~RUCTURE DETERMINATION AND REFINEMENT

A. Patterson Function

A three dimensmonal Patterson function was calculated by:

2
p(U,V,W) = r r L I Fo(hkl) I cos2TI(hU+kV+IW) (4)

where U,V,W are the fractional coordinates of the cell at which the

function was calculated, and I Fo(hkl) J is the absolute value of the

observed structure factor for the hkl plane. The iodine atoms occupy

the P2l /c general positions, 4(e): x,y,z; ~x,-y,-z; -x,1/2 +y, 1/2 -z;

x , 1/ 2 ~y, 1/2 - z •

The coordinates for the iodine atoms were found to bex=O.61,

y=O.12, z=0.89 for II and x=O.08, y=O.66, z=0.21 for 12 (Table 3 ).

B. Least Squares Refinement and Fourier Synthesis

The contributions to the structure factors were calculated by:

F(hkl)
;2

rf.cos2TI (hx.+lty. +lz.) exp-[B.(sine/AJ ]
J J J J J

(5)

where x.,y.,z. are the fractional coordinates,f. is the scattering
J J J J

factor and B. is the isotropic thermal parameter of the jth atom.
J

The wavelength of the radiation and the Bragg angle of the hk1 reflection

are respectively A and e. Ibers andCorfield's version of Busing and
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Table 3. The Patterson Map

No. Peak Position Relative Assignment -J<* of Mu1ti-
height to I-I vector p1icity

u v w origin*

1 0.0000 0.0000 0.0000 999

2 0.5208 0.4836 -0.324 407 x-x' y-y' z-z' 2 4
x-x' -y+y' z-z' 2

3 0.0000 0.2418 -0.5000 406 o ~-2y ~ 2 4
o ~-2y' ~ 2

4 0.4774 0.4836 0.3288 389 -x+x' y-y' -z+z' n4
-x+x' -y+y' -z+z'

5 0.000 0.2418 0.5064 388 o ~+2y ~ n4o ~+2y' ~

6 0.3038 0.000 0.4176 356 -x-x' ~-y+y' 12-z-z' n4
-x-x' ~+y-y' ~-z-z'

7 0.2170 0.4836 0.2696 213 2x ~ ~+2z 2

8 0.3038 0.2418 -0.0856 193 -x-x' -y-y' -z-z' 2

9 0.1736 0.4836 -0.0856 191 2x' ~ ~+2z' 2

10 0.5208 0.2418 0.1808 183 x-x' ~+y+y' ~+z-z' 2

11 0.4774 0.2418 -0.1744 182 ....._x+x' ~+y+y' ~ .....z+z' 2

12 0.2170 0.2418 -0.2336 95 2x' 2y' 2z' 1

13 0.1736 0.3224 0.4176 92 2x 2y 2z 1

~'< The calculated height of one I-I vector is 107, relative to the

origin. Thus peak 2 with peak h~tght of 407 is equivalent to four

I-I vectors.

*~'< The assignment of the I-I vectors is based on the coordinates:
x y z

I 0.61 0.12 0.89

I' 0.08 0.66 0.21
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Levy's ORFLS program (14) was used for the least squares refinement.

The computations were performed by a Burroughs 5500 computer. During

the refinements the function that was minimized was l.w/i2, where the

weight factor w is

2
w = l/a (F)

and

An initial refinement of the iodine positions was made with B. set
J

2equal to 3.5 AO
•

From the 1445 observable reflections the Fourier syntheses were

calculated by:

p(x,y,z) L L L F(hkl) cos2n (hx+ky+lz) (6)

where p(x,y,z) is the electron density at point x,y,z in the unit cell

and F(hkl) is the observed value of the structure factor of the hkl

reflection. A difference Fourier synthesis was computed by subtracting

the contributions of the iodine atoms from the overall electron density

Fourier synthesis. From this first Fourier difference map the positions

of all of the atoms heavier than hydrogen were ascertained.
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Thermal parameters were converted from isotropic to anisotropic

for iodine and sulphur, and anomalous scattering factors were intro

duced for iodine. Two successive cycles of least squares refinement

of the atomic positions, temperature factors and scale factor converged

to a value of 0.068 for the unweighted R factor (R
l

) and 0.087 for

the weighted R factor (R2) where:

Rl I I:1/I IFol '(1)

IWI12 /IwFo
2

R2
(8)

Another difference Fourier synthesis yielded the positions of

14 of th.e 18 hydrogen atoms. The atoms which were not located at this

point were HlCl,H2C2,H2N2,H3Cll. The positions of these hydrogen atoms

were calculated by assuming d (C-H) = d,{:N~H) = lAo and the appropriate

angles for tetrahedral carbon and trigonal nitrogen. The isotropic

thermal parameter for each hydrogen atom was fixed at lAo 2 greater than

the thermal parameter of the atom to which it was bonded.

By a weighting analysis it was observed that a number of strong

reflections with low sine,/A values were somewhat overweighted. For (2,0,-6),

(3,0,-2), (3,0,2), (3,1,0) the weighting scheme was changed so that

cr (F) (l/IFo-Fc/)· scale factor (9)

The weights of these reflections were changed because they were probably
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affected by extinction. As no corrections were made for extinction, the

accuracy of these measurements is diminished so less weight was given to

them. The hydrogen positions were included but not refined in the next

least squares cycle. The R factors resulting from this refinement were

R
l

=O.055 and R2=0.069. In the last cycle the scale factor, positional

parameters for all 38 atoms, anisotropic thermal parameters for iodine

and sulphur and isotropic thermal parameters for the other 17 atoms

heavier than hydrogen were refined: a total of 150 parameters. The R

factors were R
l
=O.054 and R2=O.066. The average (parameter shift)/(sigma)

on this cycle was equal to 0.6. A final difference Fourier synthesis was

computed with the four bad reflections (2~0,-6), (3,O,-2), (3,1,0) (vide

supra) omitted. The highest peak positions corresponding to ripples around

the iodine atoms were approximately le/Ao 3 • There were no positive holes

in the vicinity of the hydrogen atoms whose positions were calculated.

At this point the refinement was considered complete.

The appendix contains the structure factors for the observed

and unobserved reflections. The refined atomic parameters are given

in Tables 4, 5 and 6.
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Table 4 Positional Parameters of Non-Hydrogen Atoms in Fractional

Co-ordinates and Their Estimated Standard Deviations in Thiamine

Hydroiodide

x/a y/b z/c x 103

II 392.9 ± 0.1 871.0 ± 0.1 115.9 ± 0.1

12 79.0 ± 0.1 651.2 ± 0.1 204.1 ± 0.1

0 -337 ± 1 619 ± 1 192 ± 0.1

Cl -408 ± 1 447 ± 2 186 ± 1

C2 -444 ± 1 358 ± 2 107 ± 1

C3 -342 ± 1 334 ± 2 97 ± 1

C4 -293 ± 1 183 ± 2 94 ± 1

C5 -330 ± 1 -6 ± 2 92 ± 1

C6 -172 ± 1 390 ± 2 91 ± 1

S 266.3 ± 0.3 520.6 ± 0.5 97.6 ± 0.2

Nl -198 ± 1 216 ± 1 89 ± 1

C7 -124 ± 1 69 ± 2 87 ± 1

C8 -16 ± 1 140 ± 2 96 ± 1

C9 ~9 ± 1 215 ± 2 33 ± 1

N2 -97 ± 1 225 ± 1 -38 ± 1

N3 89 ± 1 281 ± 1 44 ± 1

CI0 178 ± 1 271 ± 2 113 ± 1

Cl1 283 ± 2 353 ± 2 126 ± 1

N4 177 ± 1 190 ± 1 173 ± 1

C12 77 ± 1 131 ± 1 163 ± 1
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Table 5. Thermal Parameters for the Non-Hydrogen Atoms and Their

Estimated Standard Deviations in Thiamine Hydroiodide

(a) Anisotropic ,~

S11 (322 833 812 613 823 x 104

II 58 ± 1 199 ± 3 27 ± 1 5 ± 1 20 ± 1 5 ± 1

12 93 ± 1 140 ± 2 20 ± 1 -20 ± 1 26 ± 1 4 ± 1

S 76 ± .3 104 ± 7 46 ± 2 0 ± 4 44 ± 2 -4 ± 3

(b) Isotropic **
B B

0 3.6 ± 0.2 C8 2.7 ± 0.3

CI 4.1 ± 0.3 C9 2.2 ± 0.2

C2 3.1 ± 0.3 N2 3.0 ± 0.2

C3 2.7 ± 0.3 N3 3.0 ± 0.2

C4 2.4 ± 0.2 CIG 3.2 ± 0.3

C5 3.7 ± 0.3 CII 3.9 ± 0.4

C6 2.8 ± 0.2 N4 2.9 ± 0.2

NI 2.3 ± 0.2 Cl2 2.5 ± 0.2

C7 2.4 ± 0.2

* The expression for the anisotropic temperature factor is

,'(* The expression for the isotropic temperature factor is

T. = exp (~B.sin2e/A2)
1 l'
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Table 6. Positional Parameters of Hydrog.en Atoms and Their Estimated Standard

Deviation in Thiamine Hydroiodide

x/a y/b z/c x 102

He> -43 ± 1 74 ± 2 19 ± 1

H1C1 ....48 ± 1 44 ± 2 19 ± 1

H2C1 ....36 ± 1 33 ± 2 22 ± 1

H1C2 ....48 ± 1 26 ± 2 10 ± 1

H2C2 ....51 ± 1 46 ± 2 6 ± 1

H1C5 -24 ± 1 ....11 ± 2 15 ± 1

H2C5 -35 ± 1 -7 ± 2 4 ± 1

H3C5 -39 ± 1 -11 ± 2 10 ± 1

HC6 -9 ± 1 46 ± 2 12 ± 1

HlC7 ....18 ± 1 ....2 ± 2 4 ± 1

H2C7 --10 ± 1 0 ± 2 14 ± 1

HlN2 -17 ± 1 18 ± 2 -4 ± 1

H2N2 -9 ± 1 24 ± 2 -9 ± 1

HlC11 28 ± 1 36 ± 2 6 ± 1

H2Cl1 33 ± 1 37 ± 2 17 ± 1.

H3Cl1 32 ± 1 26 ± 2 13 ± 1

HN4 25 ± 1 18 ± 2 23 ± 1

HC12 9 ± 1 11 ± 2 2 ± 1
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CHAPTER IV

DISCUSSION AND RESULTS

Thiamine hydroiodide (TRI) is composed of a divalent thiaminium

cation and two monovalent iodide anions., One positive charge is

associated with the aromatic thiazolium ring; the other results ~

from protonation of N 4 in the pyrimidine ring. The moleculat" structure

of·.t.h;i..amini~·.• hydroiddide resemblesithat of .•. thia.min.~hydnochloride +; (THe)

(10) . The bond distances and angles of the thiazolium and pyrimidine

rings in each structure are similar. The increased size of the

anions in THI has only a minor effect on the general molecular

conformation, although the crystal structure itself is different.

The bond distances and angles of THI and THe are given in Tables

7 and 8. Hydrogen bonds and close contacts are listed in Tables

10 and 11. figure 2 shows a single molecule of thiamine hydroiodide

projected along 010 and 001. A 100 projection of THC is shown in

Figure 3. The same conformation at the bridging methylene carbon

is present in both THI and THC. In THI the dimethy1ene side chain

i:s "trans U to amino group (N2) where as in THC it is "cis". The

protonation~ site of the pyrimidine ring is the N4. This is

consistent with what has been observed in other structures containing

protonated thiaminium cations (6,7,8,10,11,16,17). If the amino

nitrogen, N2, were the protonation site, the 1T system of the

pyrimidine would be greatly disturbed and the resonance energy
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Table 7a. Bond Lengths of Covalent Bonds Not Involving Hydrogen Atoms

and Their Estimated Standard Deviations for Thiamine Hydroiodide and

Thiamine Hydrochloride

Bond Length

THI (11) THC (10)
0 0

O-Cl 1.38 ± 0.02 A 1.417 ± 0.009 A

Cl-C2 1.57 ± 0.02 1.542 ± 0.010

C2-C3 1.51 ± 0.02 1.499 ± 0.008

C3-C4 1.33 ± 0.02 1.349 ± 0.007

C3-S 1.74 ± 0.01 1.718 ± 0.006

C4-C5 1.49 ± 0.02 1.479 ± 0.008

C4-Nl 1.38 ± 0.02 1.401 ± 0.007

C6-S 1.68 ± 0.015 1.667 ± 0.006

C6-Nl 1.33 ± 0.015 1.332 ± 0.007

N1-C7 1.51 ± 0.02 1.476 ± 0.007

C7-C8 1.50 ± 0.02 1.496 ± 0.008

C8-C9 1.45 ± 0.02 1.434 ± 0.007

C8~C12 1.32 ± 0.01 1.354 ± 0.007

C9~N2 1.32 ± 0.01 1.316 ± 0.007

C9-N3 1.36 ± 0.02 1.367 ± 0.007

N3-CIO 1.31 ± 0.01 1.306 ± 0.007

C1G-Gl1 1.48 ± 0.03 1.492 ± 0.008

C10-N4 1.36 ± 0.02 1.333 ± 0.007

N4-C12 1.37 ± 0.02 1.362 ± 0.007
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Table 7b. Bond Lengths of Covalent Bonds Involving Hydrogen Atoms

for Thiamine Hydroiodide and Thiamine Hydrochloride

Bond Length

THI (11) THC (10)
0

O--HO 1.2 ± 0.2 A
0

Cl-H1Cl 1.0 ± 0.2 1.1 ± 0.1 A

Cl-H2Cl 1.1 ± 0.2 1.3 ± 0.1

C2-H1C2 0.8 ± 0.2 0.9 ± 0.1

C2.....H2C2 1.2 ± 0.1 1.1 ± 0.1

C5-HlC5 1.5 ± 0.1 0.9 ± 0.1

C5-H2C5 1.0 ± 0.2 1.0 ± 0.1

C5-H3C5 1.2 ± 0.2 1.0 ± 0.1

C6-HC6 1.2 ± 0.1 0.9 ± 0.1

C7-HlC7 1.0 ± 0.1 1.0 ± 0.1

C7-H2C7 1.0 ± 0.2 1.0 ± 0.1

N2-HlN2 1.0 ± 0.2 0.9 ± 0.1

N2.....H2N2 1.1 ± 0.2 0.9 ± 0.1

CII-HlCll 1.2 ± 0.2 1.0 ± 0.1

Cl1.....H2C1l 0.8 ± 0.2 1.0 ± 0.1

Cll-H3C11 0.9 ± 0.2 1.1 ± 0.1

N4-HN4 1.1 ± 0.1 0.7 ± 0.1

C12_HC12 1.1 ± 0.2 1.1 ± 0.1
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Table 8. Bond Angles for Covalent Bonds Not Involving Hydrogen

Atoms and Their Estimated Standard Deviation for Thiamine Hydroiodide

and Thiamine Hydrochloride.

Angle Degrees
THI (11) THC (10)

O-C1~C2 112.0 ± 1.5 113.0 ± 0.5

C1-C2-C3 110.4 ± 1.1 110.8 ± 0.5

C2~C3-C4 130.1 ± 1.3 128.1 ± 0.5

C2..-C3-S1 119.8 ± 0.9 121.1 ± 0.4

C3-C4-C5 127.5 ± 1.5 127.9 ± 0.5

C3-C4-N1 112.9 ± 1.2 111.9 ± 0.4

C5~C4-N1 119.6 ± 1.3 120.2 ± 0.4

S~C3~C4 109.9 ± 1.0 110.7 ± 0.4

S~C6..-N1 111.0 ± 1.1 112.3 ± 0.4

C3~Sl-C6 91.7 ± 0.7 91.8 ± 0.3

C4-N1-C6 114.6 ± 1.1 113.3 ± 0.4

C4~N1-C7 123.2 ± 1.0 121.8 ± 0.4

C6~N1-C7 122.1 ± 1.2 124.9 ± 0.4

N1-C7-C8 112.8 ± 1.0 113.5 ± 0.4

C7~·C8-C9 122.7 ± 0.9 123.5 ± 0.4

C7~C8-C12 119.8 ± 1.4 119.6 ± 0.4

C8-C9-N2 123.0 ± 1.2 122.5 ± 0.4

C8-C9-N3 120.3 ± 0.9 120.5 ± 0.4

C9-N3-C10 118.7 ± 1.3 118.8 ± 0.4

N3-C10-Cl1 118.6 ± 1.5 116.9 ± 0.4

N3-C10-N4 122.9 ± 1.3 122.9 ± 0.4

C11-CI0-N4 118.5 ± 1.1 117.2 ± 0.4

C10-N4-C12 119.0 ± 0.9 120.7 ± 0.4
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Table 8. (continued)

Angle Degrees
THI (11) THC (10)

C8-C12-N4 121.3 ± 1.4 120.3 ± 0.4

N2-C9-N3 116.8 ± 1.3 116.9 ± 0.4

C9-C8-C12 117.5 ± 1.3 116.8 ± 0.4
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decreased. The separation of charges is more favourably accomplished

by protonation at N4 rather than the other pyrimidine nitrogen N3.

The resonance forms of the pyrimidine and thiazolium rings are shown

in Figure 4.

The aromatic rings in the molecule are virtually planar. Table

9 lists the equations of the least squares planes and the perpendicular

distances from these planes of pertinent atoms. The appearance of

the thiazolium ring plus substituents is somewhat bowl shaped; that

is, the substituents all lie out of the plane and to the same side

of the ring. This is a resultFof the position of the 12 atom in the

lattice and the fact that hydrogen bonding occurs only between

molecules having the same "handedness" (vide infra).

The dihedral angle between the plane of the pyrimidine ring and

the plane of the amino group (C9, N2, HlN2, H2N2) is 10.9°. Atoms

HlN2 and H2N2 are both hydrogen b,onded to iodine atoms so this slight

tilt is due to packing effects. The overlapping of the filled Pz

orpital on N 2 with the TI system of the pyrimidine ring (Fig. 4)

is demonstrated by the planarity of the amino group. The C 9 -N 2

°bond distance of 1.32 A is comparable to the C-N distances of the

pyrimidine ring. The bond order C9-N2 is 1.6 (18).

There are a number of contacts occurring on the thiazolium

nitrogen and sulphur atoms. II and 12 sit almost directly above

°and below Nl at the van der Waal's radius for I-N (3.70 A). The

°distances for Il-Nl and 12-N2are 3.69 and 3.67 A respectively.

The angle subtended by Il-Nl-I2 is 155.5°. Angles Il....Nl-c6 and

12-Nl-~6 are 103.59 and 97.9°. The p orbital on the trigonalz ' -

Nl is SUitably oriented for accepting negative charge from
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Table 9. Deviations from Least Squares Planes*

Atoms used in
calculating
plane

Deviation
o

A

Atoms not used
in calculating
plane

Deviation
o

A

Pyrimidine Ring

0.372 x - 0.897 - 0.238 -1.77

C8 0.01 C7 0.03

C9 -0.02 N2 -0.07

N3 0.001 HlN2 -0.06

CIO 0.02 H2N2 -0.36

N4 -0.03 Cll 0.14

C12 0.01 HN4 0.01

HC12 0.27

Thiazolium Ring

-0.0558 x + 0.0352 y - 0.998 z = -1.30

C3 -0.01 C2

C4 0.01 C5

C6 -0.01 C7

S 0.01 HC6

Nl -0.01 0

C9-N2-HlN2-H2N2 (amino) plane

0.271 x - 0.958 Y - 0.0890 z = -1.73

0.06

0.01

0.06

0.53

1.49

C9

N2

HlN2

H2N2

-0.02

0.07

-0.02

-0.03
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Table ,9. (continued)

* The equations of these unweighted least squares planes have the

form ax + by + cz = d where x, y and z are the orthogonal coordinates
o

(in A) of the atoms. These orthogonal coordinates are related to

the fractional coordinates of the unit cell (a, b, c) by the

transformations: x a + cos (3

y = b

z = c sin B
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Table 10. Hydrogen Bond and Short Contact Distances
0 0

a b c <abc, 0 db_c A d A Sum of van dera-c
Waa1's radii

0

(a-c) A

i 145.4 2.32 ± 0.2 3.42 3.55O-HO ... 11

ii 152.7 2.70 ± 0.2 3.64 3.65N2-H1N2 ... II

C11-H3C11 ... I1iii 162.4 3.09 ± 0.2 3.93 4.15

C6-HC6 ... 12 161.6 2.50 ± 0.1 3.61 4.0

ii 169.7 2.58 ± 0.2 3.62 3.65N2-H2N2 ... 12

C12-HC1Z ... 1Ziii 193.3 3.40 ± 0.1 3.65 4.00

iv 163.2 1.61 ± 0.1 2.72 2.9N4-HN4 ••• 0

s ...0 2.97 ± 0.01 3.25

ii 3.66 ± 0.01 3.65N1 ... II

iv 3.67 ± 0.01 3.65NZ ... 11

Symmetry code: none, x, y, z·,

i, x - 1, y, z

ii, -x, 1 - y, -z

iii, x, y - 1, z

iv, x, (~ +y) - 1, ~ - z
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the iodine atoms as well as for taking part in the TI system of the
o

thiazolium ring. There is an intramolecular contact of 2.97 A

occurring between the sulphur and oxygen atoms. The van der Waal's
o

0-8 radius is 3.60 A. Because of the partial positive charge

(fig. 4, Ref. 2) and the empty 3d orbitals of sulphur, 8-0 and/or

8-Clinteractions are a common phenomenon in other structures

(6,8,9,10,19). In the thiamine monohydrate structure (17) sulphur

is surrounded by electronegative nitrogen atoms N2 and N3 of the

unprotonated pyrimidine ring from adjacent molecules, although

neither of these distances is less than the sum of the van der

Waal's radii. Fewer examples are to be found of interactions

involving thiazolium nitrogen. Nitrogen-chlorine contacts of this

type have been observed in thiaminium tetrachlorocadmate (6) and in

bis (protonated thiamine) tetrachlorodioxouranium (VI) (19), and

nitrogen-iodine contacts in this present work. Table 10 gives the

hydrogen bond lengths, hydrogen bond angles and the corresponding van

der Waal's distances.

The coordination geometry surrounding the iodine atoms is

tetrahedral although the bond angles are rather distorted. Each of

II and 12 is involved in two short hydrogen bonds and two longer contacts.
o

The two iodine atoms are separated by more than 7 A so there is no

contact between them. 1able 11 lists the intermolecular contact angles

surrounding the iodine atoms and Nl.

Although the thiamine molecule has no centre of asymmetry, the

molecules in the unit cell which are related by a glide plane are in
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fact non-superimposable mirror images by virtue of their molecular

conformation. Conversion of one enantiomeric form to the other is

achieved by rotation about single bonds. Therefore, in solution there

is rapid equilibrium between configuarations.

It can be seen (Fig. 5) that hydrogen bonding occurs only between

molecules of like configu:ra.tion, i.e It, these' rela.ted-·ib;z:a screw ..axis.

This particular hydrogen bond is between 0 and HN4 (Table 7).

The conformation of the molecule around the bridging methylene

carbon (vide supra) is of the same category as THC. The values of

the torsional angles ~T and ~p are-5.9° and 81.0°. Table 1 lists

these torsional angles as well as the angles for the other accurately

determined structures.

One of the most interesting aspects of the thiamine molecule is

its conformation. The angles which ~T and ~p adopt are critical to

the formation and stability of the holoenzyme (enzyme plus cofactors)

and of the holoenzyme substrate complex. Attempts to unravel the

structure of the holoenzyme complex by x-ray diff~action have not been

made. Studies so far have been limited to crystal structures of the

thiamine salts and substituted thiamine derivatives.
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Table 11. Angles of Hydrogen Bonds and Short Contacts Surro.undilig Nl and

I·o,di.ne Atoms.

Angle

Nli...Il-HlNZi

Nl-Il-HOii

Nl_Il_H3Clliii

HlNZ-Il-HD

HlN2-Il-H3Cll

HO-Il-H3Cll

Nliv_IZ_HC12iii

NI-IZ-HZNZi

Nl-IZ-HC6

HCI2-IZ-HZN2

HC12-12-HC6

H2N2-IZ-HC6

iII -Nl-C6

12-Nl-C6

symmetry code: none, x, y, z

degrees

51 ± 4

1Z6 ± 5

100 ± 3

146 ± 5

81 ± 5

1Z8 ± 5

77 ± 3

143 ± 3

126 ± 4

77 ± 5

129 ± 4

98 ± 3

103.5 ± 0.7

97.9 ± 0.4

155.5 ± 0.3

i, -x, 1 + y, -z

ii, x + 1, y, z

iii, x, Y + 1, Z

iv, -x, ~ + y, ~ ... Z

v, x, (~+ y) - 1, ~ - z
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Figure 5. Packing of molecules in the crystal structure of thiamine

hydroiodide projected onto the 001 plane. Hydrogen atoms have been omitted

from the molecular structure.
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In these structures only two conformations have been observed, in

spite of prediction of a wide range of stable conformations at

ordinary temperature. (Ref. 2, vide supra).

Many authors (2,6,9,11) including the present one, have

attributed these observations to the presence of favourable packing

interactions that may be achieved by one or the other of the conformers.

Molecular models suggest that the extensive hydrogen bonding usually

observed would be in part disrupted for some ring orientations. In

the structures reported, intermolecular contacts have been very

different (6-11,14-17). Anions have varied from chloride to

tetrach1orodioxouranium(VI) but the thiamine conformations have

remained more or less constant.

From a simplistic point of view one might legitimately ask

whether an x-ray crystal structure of a thiamine compound casts any

light upon the mechanistic behaviour of thiamine as a coenzyme in

biological processes. Clearly the living system does not produce

a lattice of thiamine and anions. However, b~ the same token, it is

just as unreasonh1ble to believe that chemical reactions in living

organisms occur in a "test tube" fashion. A cell is by no means a

solution of catalysts and substrates inside a miniature baggie,

but rather a highly ordered system. There is a substantial amount

of ice inside a cell, even at 360 (20)! Because of the large degree

of hydrogen bonding present in biologically active molecules many

aspects of biochemistry may be considered with references to the

solid state. Holoenzyme-substrate complexing is one example;

diffusion of molecules through membranes is another.
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In the model PDC system (4) pyruvate decarboxylase apoenzyme,

thiamine pyrophosphate, Mg
2+ ions, and pyruvic acid substrate are

Th f h h · · M 2+ 1e structures 0 t e t lamlne- g sa t

and 2-(a-Hydroxyethyl)thiamine hydrochloride (HET) are known. HET

is an intermediate in the PDC system where pyruvic acid is converted

to acetaldehyde. The conformation is "regular" for Thi-Mg
2+ and

"odd"for HET. A Iff h·· h h h dstructura eature 0 t lamlne pyrop osp ate y ro-

chloride (22) is that the three non-protonated pyrophosphate oxygens

are directed away from the same side of the molecule. Since the

pyrophosphate group is suspected to bind the molecule to the enzyme,

an arrangement such as this allows the boun.d ettzymectobe (~ac.ce.ssible

to the substrate and permits conformational shifts between the two

rings.

In the structure presented here, the atomic positions of
o

carbon, nitrogen and oxygen were located to within 0.01 A. Owing

to the fact that half of the electron density of the molecule is

associated with two iodine atoms, the structure factors are not

very sensitive to small shifts in these atomic positions. The

final R factor converged to 5.4 %.

The final R factor is not al'vays indicative of the "goodness"

of the structure. The atomic positions of thiamine hydrochloride
o

have been determined to within 0.004 A with a final R factor of

8%. However, THC has no heavy atoms. Iodide and other heavy atoms

simplify the initial tasks of the interpreting of the Patterson

and the phasing of the reflections, but at the same time cause less

accuracy in the light atom parameters later in the refinement.
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CHAPTER V

THIAMINIUM TETRACHLOROCOBALTATE

A thiaminium tetrachlorocobaltate salt was produced from an

aqueous 1:1 mole ratio mixture of thiamine hydrochloride and cobalt

(II) chloride. A solution of thiamine chloride, 3.49 (0.01 mole)

in 4 mI. of water was added dropwise to 2.99 (0.01 mole) of cobalt

(II) chloride (C6C12.6H20) dissolved in 2 mI. of water. Upon evap-

oration of the solvent small diamond shaped crystals were formed.

Oscillation and Weissenberg photography indicated monoclinic

space group P2
l
/c and cell constants: a = 16.38, b °15.39, c = 7.83 A,

s = 97.23°. Structure factors were calculated for a thiaminium

tetrachlorocobaltate structure using the atomic and thermal parameters

of thiaminium tetrachlorocadmate (6) and substituting cobalt

scattering factors for cadmium. A comparison was made between the

intensities of the axial reflections on the film and the calculated

structure factors of these reflections. In terms of weak, moderate~

strong, very strong there was a close agreement between the intensities

and structure factors. On this basis thiaminium tetrachlorocobaltate

was judged to be isomorphous to thiaminium tetrachlorocadmate whose

space group is P2l /c and cell constants are a = 16.874, b = 15.553,
o

c = 7.906 A; S = 97.61°.
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APPENDIX

STRUCTURE FACTORS

The columns in the following tables contain

h k Fax 5 Fc x 5 a(F) x 5
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3 5 6 39 20 12 7 2 6 44 69 12 7 3 6 I) 13"•• 0 2 14 3 15242 2 2 14 47 60 16

• S 5 7 0 13··· 2 6 7 48 52 12 5 1 7 18 5. 26 7 2 7 34 25 15 0 2 16 0 2"···
3 ! a 35 36 '6 3 2' 8 It 22112 3 1 & 34 52 13 1 0 8 0 ,•.*. , 1 a 6 3 96
7 ? 8 0 29* •• 2 14 9 0 4 ••• 2 5 9 47 33 13 3 5 9 42 31 14 1 2 10 37 42 13., 1 3 10 34 31 15 3 2 10 28 43 17 5 2 10 0 4 ••• 6 1 10 34 A6 16 0 2 11 IS 39 27
0 :J 11 83 41 32 0 5 11 43 48 19 1 5 11 31 35 19 1 1 11 8 16 55 3 2 11 26 15 la
I 1 11 25 30 12 2 1 12 32 33 18 0 1 13 '0 18••• 0 3 13 0 ,... 1 2 13 4() 40 11

• a 3 1. 41 41 14 1 2 15 27 18 21 1 1 15 0 5··· 0 0 0 0 0 0 0 0 0 0 0 0

•
•
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