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CHAPTER I
INTRODUCTION

Energybands

An understanding of energy band structure is a valuable tool
when one is considering the optical and electrical properties
of crystaline materials.

A crystal structure may be considered as consisting of two
components. There is the crystal lattice which is a regular
periodic arrangement of points in space and associated with this
are the primitive translation vectors a |, b , and © . These are
required to define a vector

? =‘q3 + é? + 3? (1.1)
where T can move any lattice point into every other lattice
point by a suitable choice of integer values for n,, n,, and ns.
To complete the structure a basis of atoms must be added in an
identical fashion to each of these lattice points. These basis
atoms may be regarded as ionic cores which consist of the
nucleus and the inner core electrons which remain virtually
unchanged and the outer atomic orbitals. When these outer atomic
orbitals are brought within close proximity of each other with
the creation of the crystal the resulting overlap creates bands
consisting of extremely closely spaced energies.

If N is the number of unit cells in the crystal being
considered then 2N is the maximum number of eléctrons any of the
energy bands can hold. The number of electrons available to
fill the bands depends on the type of atoms in the crystal as
does the spacing of the bands relative to each other. The region
between bands corresponds to the energies which are '"forbidden"
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2
to the electrons and these are called energy gaps. In metals
some bands are only partially full of electrons and these will
readily conduct a current. If all the bands are either full or
empty and there is a large gap between the last full band
(valence band) and the first empty band (conduction band) the
crystal will not conduct current and is called an insulator. If
the gap between the valence and conduction bands is relatively
narrow then the crystal is a semiconductor. In an intrinsic
semiconductor, thermal excitation will cause electrons in the
valence band to cross the gap into the conduction band. The
departure of the electron from the valence band creates a "hole"
which can act as a positive current carrier. Consequently there
is a one to one pairing between the number of free electrons and
the number of holes. Extrinsic semiconductivity may arise from
donor impurities or defects yielding more electrons than the
valence band can hold. The surplus electrons are then available
to occupy the conduction band. Alternately, acceptor impurities
or defects can create holes in what would otherwise have been a
full valence band. Crystals containing these two types of
impurities oy defects are called n-type or p-type semiconductors
respectively.

Optical properties are also related to the energy band
structure. If a band is not full, "then low frequency light will
be absorbed, exciting the electrons between different levels in
the same band. Insulators require high energy light to excite
electrons across the large band gap and consequently are usually

transparent to visible light. Semiconductors will absorb light
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at lower energies than insulators and the lowest energy to be
absorbed depends on the width of the energy gap between the

conduction and valence bands.

Energy Gaps

Transitions across energy gaps can occur by way of one of
three mechanisms related to optical absorption. The first of
these is called a direct transition and the other two are
indirect transitions. It is necessary to digress slightly here
in order to provide a more complete explanation of these terms.

One electron energy band calculations result from the
solution of the single electron approximation of the Schrbdinger
equation which describes the motion of an electron in a periodic

lattice. This equation is written as

HY¥ ) = C-o*+vim)IYe (7)== g @) TR a.2)
here atomic units have been used so the energy is in rydbergs,
and distances are in Bohr radii (note 1 ryd = 13.605826eV,
1Bohr radius = 0.529167A°). This will be the case for all
calculations in this work. The potential V() represents the
summed coulombic affects of the ionic cores plus an averaged
value for the electron's interaction with the rest of the
conduction electrons. It also exhibits the periodicity of the
crystal, that is, it is required to remain invariant under a
lattice translation ?,

ieV (F+T)=V (T) (1.3)

where‘? is given by (1.1). As the potential is periodic,
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Bloch's Theorem may be applied, hence the eigenfunctions of the

wave equation are of the form

oo R
Ye(r) = e Ug (1) (1.4)

where LJ?C?) is to have the periodicity of the lattice and

? is a wavevector describing the state of the electron.
Consequently, E:f can be calculated for different wavevectors
X and a plot of E vs i will yield the required energy bands and
gaps.

The reduced zone scheme will be used, hence only the values
of X in the first Brillouin Zone need be considered. This
results from the fact that any wavevector ? outside the first
BZ can always be reduced to a vector i3 inside the zone by sub-

-
tracting a suitable reciprocal lattice vector G.

b - -
k= K— G (1.5)
Figure 1 gives an illustration of direct and indirect

transitions. Diagram "a'" represents a transition in energy with
no appreciable change in wavevector. Transitions of this type
are called direct transitions and the lowest energy of light
absorbed is equal to the band gap. Diagram "b" illustrates an
indirect transition which involves a change in wavevector and
energy. This change must be accompanied by the creation or
annihilation of a phonon. In the case of phonon creation the
photon energy is greater than the band gap by an amount equal
to that of the phonon. If a phonon is annihilated then the
photon energy is less than the band gap by an amount equal to

the phonon energy.



Figure 1.1

&) Direct Transition

’b) Indirect Transition (solid arrow)
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General Background

Cadmium.oxide is a JI-¥I Compound which crystalizes
only into a rocksalt lattice. It is an n-type semiconductor
with nearly metallic conductivity resulting from either cadmium
interstitials or oxygen vacancies (Koffyberg, 1975). It has been
the object of considerable investigation in the past ten years.

Experimental work on single crystals and thin films has
yielded varying results to confirm some of the theoretical work.

The work of the experimentalists in determining the
indirect gap widths is greatly hampered by the presence of free
electron concentrations. Altwein (1968) maintains that the
indirect gaps, being around leV in magnitude will be undetectable
in single crystals because the absorption by the free carriers
will be too high. He reduced this free electron problem by
working with sputtered thin films instead of single crystals.
By changing preparation conditions the electron concentration
could be reduced to loltm"a from about lOalcn‘fa. Using a
thin film with concentration IOJ%nfsat 300°K, and extrapolat-
ing the linear portion of the absorption curve from between
1.9eV to 1.4eV, Altwein deduced an indirect gap of 1.2eV. He
was unable to detect any other indirect gaps.

A'second experimental attempt at finding the indirect gaps
was made by K8hler (1972). Working with thin films at 300°K
he determined that there was an indirect gap at 1.35eV and
another at 0.55eV. Allowing for band gap variation with
temperature the gaps were then calculated to be 1.5eV and 0.7eV

at T=0. He also suggested that the existence of an impurity
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conduction band overlapping the conduction band may explain
some of the discrepencies between the different experimental
works.

Kocka (1971) looked for indirect transitions in single
crysta1'CdO at 85°, 173°, and 296°K. He measured the absorption
coefficient for an energy range of 0.5eV to 2.2eV and the results
indicated an indirect gap at 1.09% .04eV. Again it was felt
that the calculated gap about 0.8eV was not detectable because
it was being masked by free electron absorption.

Koffyberg (1975) obtained the thermoreflectance spectra
for single crystals. His results gave the direct gap of 2.28%
.05eV and two indirect gaps of 0.84eV and 1.09eV. Furthermore,
a comparison of single crystals and thin films appeared to
indicate that the discrepancies in results were not caused by
impurity bands as suggested previously by Kocka (earlier in
this section) but were more likely the result of structural
peculiarities. In addition to this, he questioned the validiity
of the parabolic shape of the [ ond [z bands at the direct gap.
These bands had been calculated by three theoretical works but
only in high symmetry directions. Nothing was known about their
behaviour in other directions.

The first theoretical calculation was performed by
Maschke and Rossler (1968) using the Augmented Plane Wave Method
(APW) incorporating the results of a selfconsistent potential
calculation by Herman and Skillman (1963). The work was only
performed along high symmetry axes in the Brillouin Zone.

Energies were calculated in the A direction from [ to L
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in the A direction from [/ to X ; and in the €
direction from [ to K and on to X . These points and
directions are shown in fig. (1.2). A parameter, the inter-
sphere potential (discussed in chapter 2), was varied to fit
the known direct optical gap of 2.35eV. The results showed
two indirect gaps. One from the maximum at L. in the valence
band to the minimum which occurs at r in the conduction
band. The other was from the maximum in the £ direction to
the conduction band minimum at [~

The APW method was also used by Tewari (1973) to calculate
the energy bands along the same symmetry axes as Maschke and
Réssler. Instead of fitting any parameters to experimental
data, she calculated the bands twice. First, she performed a
neutral calculation assuming no electron exchange between the
atoms, and secondly she performed an ionic calculation assuming
an ionicity of +1 for cadmium and -1 for oxygen. The neutral
calculation predicted metallic behaviour while the ionic
calculation gave results very similar to those of Maschke and
Rossler. Sincde we could not duplicate her neutral calculation
and since a request to her for further information in 1977 has
met with no reply to date we put very little trust in the
accuracy of her work.

‘A Linear Combination of Atomic Orbitals (LCAO) calculation
was done by Breeze and Perkins (1973) by parameterizing
initially to atomic values and then fitting the direct gap.

The overall shape of the resulting bands is similar to Mashke's

and Tewari's ionic calculation but the indirect gaps are much
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closer together. The [-L gap is 1i8eV and the ["—£ vpap
is 1.12eV,
These three theoretical calculations are weak in several
areas. Firstly the energy bands are only calculated in the
q/kv , & and € directions. Consequently there is insuf-
ficient information to determine whether the maxima in the
valence bands are local maxima or just saddle points. Since
the optical properties for two local maxima would be different
from a maxima and a saddle point, it is necessary to know which
structure exists. This information would be helpful to the
expermentalists in interpreting their results. Secondly, none
of the papers investigated in detail the shape of the conduction
and valence bands around [ or calculated the effective masses
characterizing the maxima in the valence band and the minimum
in the conduction band. This is important since these parameters
must be known before the optical properties can be predicted.
Thirdly, these previous works have treated the calculations in
a more unphysical fashion than is actually necessary. Since
cadmium oxide is known to be highly ionic, and since the shape
and separation of the energy bands will depend on the degreé of
this ionicity, the importance of this dependence should be
investigated and could perhaps be used to create a more realistic
model for the calculation. The aim of this work is to perform
a detailed APW calculation of the energy bands around the maxima
and minimum of interest. This information will then be used to
calculate representative effective masses. The effect of ionicity

will also be investigated and incorporated into the calculation.



CHAPTER I1I
GENERAL THEORY

The Augmented Plane Wave method of band calculation was
originally formulated by Slater (1937). However, the method was
intractable and it was not until the 1960's when high speed
computers became generally available that the method became
computationally feasible. The method was modified twice before
the 1960's in an effort to reduce the prohibitive calculation
time, but by the mid 1960's it was found through the experience
of different workers that the original formation was after all,
most appropriate.

To obtain the solutions of equation (1.2) using the one
electron approximation Slater (1937) made the assumption that
the actual crystal potential required in equation (1.2) could
be approximated in the following way. The potential around the
atomic sites is to be spherically symmetric out to a radius Sn,

(see Fig., 2.1). The subscript n is necessary if there are more
than one type of atom in the unit cell since each must have it's
own corresponding sphere radius. The only restrictions on the
size of the spheres of symmetric potential are that ﬁhey do not
overlap and that the value of the potential should be continuous
across the sphere boundaries. The value of the potential in the
region between the spheres is usually considered as constant
although small Wariations can be handled as perturbations

(De. Cicco (1965)). Because the spherically symmetric potentials

around the atomic sites are considered to be better approximations
than the constant intersphere potential, it is desirable to

choose the sphere radii as large as possible.

11



Figure 2.1
The ntM unit. cell atomic site or APW sphere
showing the convention of symbols used in the

calculations

APW or Muffin=Tin potential for a direction in
a two-dimensional lattice in which the spheres do

- not touch
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The origin of the potential scale is chosen to set the
intersphere potential Vc (Fig. 2.1) at zero. The potential
within the spheres is then shifted accordingly. Inspection of
the potential shown in figure 2.1 may give some indication of
why Slater chose to call it a "muffin-tin' potential.

Having postulated the "muffin tin'" form of the potential
for the crystal, Slater then suggested that the crystal wave

L]

function AP be the sum of = linearly independent functions';(‘ .

M °
Y= £ co Xt (2.1)

=l

where X£= X (E + ‘5")

The Eji are the reciprocal lattice vectors of the structure
under consideration and the (; are coefficients to be deter-
mined variationally. In the intersphere regions where the
potential was set at zero the ;(‘ could be represented by a
plane wave, but it was known that it is very difficult to
approximate the wave function near the atomic nuclii by even

a large sum of plane waves. Slater then suggested letting the
?(i have two forms: Inside the spheres a linear combination
of atomic orbitals and outside a plane wave. It should be
pointed out though that the consequence of this appears in the
evaluation of the kinetic energy which will be discussed later
in this section. Each J(é is 2 plane wave augmented by a
more suitable type of solution within the spheres and hence
the name Augmented Plane Wave.

Now more specifically it is known that inside the regions

of the spherically symmetric potential the Schroedinger equation
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is satisfied by a function of the form

Mm (6,8,8) = A Y, (68) Ry, (€,E) .2
where the FMW\ are arbitrary constants at this point and
“%1@1¢)are the spherical harmonics for the azimuthal and magnetic
numbers _# and m Trespectively. The functions th(fE)are
solutions of the radial Schroedinger equation
~ e (4 + LB 4 v (©)]R=ER, @9
The coordinate @ has its origin at the centre of the n"‘sphere
as shown in figure 2.1 and \5 (e) is the potential inside this
sphere. The only restriction placed on the form of the solutions
Rnf (e E) is that they be regular at the origin. It is
not required to satisfy any boundary conditions at the sphere
surface and consequently the energy E remains arbitrary.
In the region of zero potential between the spheres each
)(i is to takg thi form of a plane wave.
ie. :xi - o i'P* .
- iki-(lh+€)

s ec“ﬁ-?,': eﬂ::'(’

where ki =

>l

+ 4
»
ke

and f‘s'and r’i are shown in Fig. (2.1). The plane wave € may be
expanded in spherical harmonics (Powell and Crassman, 1961) in

the following manner:

e X< um ‘;E 2 i'r,:(?mm(?)g (ke)

mz=-0
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A A b
where k and € are the angular parts of the vectors k and

e.Thegéwoare the spherical Bessel Functions. The general APW

function has the form

=22 AN (6,6) Ry, (€ E) (2.4)

inside the spheres and

o +f *

= eit'r"[‘i-n‘jf )Em(e)(q/, ki €)] 2.5)

outside the sphere. To maintain continuity of the wave function
)(& at the sphere boundary Sngcomparison of equations (2.4) and

(2.5) yields

i:;'F . . Sq)
Ap, = 4TT € i lp Tp: (KL‘ %,,p,:jn,ES

but the discontinuity in the slope of Y¥' still remains and
will be discussed later in connection with the evaluation of
matrix elements. The crystal wave function is assumed to be a

linear combination of these APW's

ie. éP = ii C‘X.

=1
Straightforward application of the variational method leads to

DetT (H- E)
where  (H-E)ij = Ix‘*(z—z E)X“dt

The problem of setting up the general matrix element is
complicated by the fact that the individuél APW's have a dis-
continuity in slope at the sphere boundaries and integration
across this discontinuity will yjeld an extra contribution to
the kinetic energy. Slater (1937) was able to allow for this

discontinuity of slope by using Schroedinger's original
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representation of the kinetic energy instead of the more common
- g?z form which only applies to continuous differentiable
functions. Hence, instead of evaluating SX“‘(— Va') XJd"(

he used the more basic form (amc{xi* . 3(0‘] ' dT
The general matrix element results from evaluating
S X" (H-£) x’dx
over the volume of the cell and dividing the result by the cell
volume JU to get the average value per unit volume.

To evaluate this integral consider the cell as containing
two regions and determine the contribution from each, In region
I which is to include the spheres and their surfaces the
Hamiltonian consists of the dot product of the gradients of the
functions plus the spherically symmetric potential. The X's have
the form of equation (2.5). Region II is outside the spheres
and excludes the spherical surfaces. The potential is zero in
this region and the X's are individual plane waves. To obtain
the contrubution from region II, first integrate over the entire
cell and then over the spheres contained within the cell, and

finally subtract the latter from the former.

Contribution To Matrix Element From Region II

Because the potential is zero in this region the matrix
element (K- E);J is given by -_,J‘_' in(arad X‘fﬂfadx{—fx‘*x’)d?_’
<

Step 1 integration over the unit cell yeilds:

A+ (kk ( L IV

T (kik,~E) ) X "X dT

S cell
- Q
= (ki-E)
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th
Step 2 integration over the n sphere;,

A (Rl —E) €67 k)"‘fsne‘(k'k)e T.
:"J'T'(E J._-E)e"“‘.! Kiin (4 “ (9':(“% kllsn))
ok n TR

ie: the contribution from the region between the spheres is

. = (ke ~Ki)Ta (1K~ S,
(ki-E)z £45* (k-k,-E)e TR, R

Contribution To Matrix Element From Region I

In region I the X's have the form of equation (2.4) and

. . . th .
the contribution to the matrix element for the /] sphere is

A fo' (grad X grad X'+ (Va (€)=E ) x™* %d T
Now applying the result

(S

THRFE IANAT= x* v AT+ ) s

the above becomes

A= (LX7 (- VA4 va (0)- E) XPdT+ | 3 6% )45}

where dS= Si sinede J¢ and n is in the
direction of the outward normal from the n*h sphere.

In determining the functions )(i it is necessary to solve
the radial Schroedinger Egquation and the solutions K@u((:E)
depended upon the arbitrary choice of energy E. Denoting the

choice of energy as Ei' the resulting APW satisfied the

equation (- 2* + Vi ((’))7( E ')(
or (-v? + Vv, (e)—E )‘Xt-_-.-

It is clear then that if E' is chosen equal to the characteristic
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energy E in equation (2.3) then the volume integral becomes
zero. This means the APW's will depend on the energy E contained
within the problem

Det (H-E)ij=

which is exactly the problem to be solved; however, this
complication is out weighed by the simplification obtained by
eliminating the volume integral.

Now we evaluate the remaining surface integral by different-
iating (2.4) with respect to e and integrate over the angles
to obtain i

K () ds

:uance ¢ n

i (i )7 n 2 e Sa
=g kK q'_;T{S xéo(.?fﬂ)@(k;-kj)yp(k;Sn),QI“rjgn)mf’ué—

J

Hence, the total general matrix element . is given by

st i(ki-Ku)R (Ikj=kilSn) 7o o
(e £ 5= e {L—;—rl,j_‘, (.7

Sn,E)
+z - (a0+1) (ki W (kiSn)p g (ky s,,)“"}g{';(('gj,? (2.6)

Having determined the general matrix element the problem
now is to find the characteristic energies for which

Det (H-E)¢ =

Examination of the matrix element shows an explicit energy

dependence through the terms (REJ —-E) and an intrinsic
dependence through the radial function Rny (€)E) and its
derivative R:»Q (QIE) . Both types of dependence appear

in the diagonal and off-diagonal terms. This type of problem

cannot be solved exactly and the method which will be employed
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here will be to choose an interesting energy range and examine
the behavior of the determinarntas the energy is incremented in
small steps through this range. To determine the variation of
energy with wave vector it is necessary to repeat the calculation
with enough different wave vectors so a meaningful plot of

energy versus wave vector can be obtained.



CHAPTER III
THE NEUTRAL CALCULATION
The actual calculation of the energy bands for Cadmium
Oxide was accomplished by modifying a set of computer programmes
published by Loucks (1967). These programmes had been designed
to perform relativistic or nonrelativistic calculations on a
number of simple crystal structures. Their application required
only a few basic input parameters physically describing the
crystal. Unfortunately, they were limited for use on crystals
containing only one type of atom. They also required atomic
charge densities published by Liberman (1965) and these were not
available to us at the time of this calculation. Because of
these two limitations, a non-relativistic calculation for
Cadmium Oxide required making many changes to the programmes.
These can best be described by considering the complete set of
programmes as consisting of three separate blocks, each making
use of information obtained from the one before it. The
first block calculates the crystal potential which is used by
the second block to obtain the logarithmic derivatives and
‘these are used in the third to evalulate the determinant.

The Potential

For a crystal consisting of neutral atoms the potential
is created by superimposing atomic potentials Vp (e and then
adding a correction for the exchange energy. The atomic
electronic potentials \'7 (r) were obtained by numerically

solving Poison's equation (in atomic units)

V3Va(r) = - 8T g (r) (3.1)

20
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and this in turn requires atomic charge densities T (r) .
These charge densities were calculated from wave-functions
tabulated by Herman and Skillman (1963). The wave-functions
were determined for the o«upied orbitals of ground state neutral
atoms by a self-consistent Hartree-Fock calculation incorporating

Slater's (1951) average free electron exchange approximation.

Vex (r)= = G (F oc))” (3.2)
The wave-functions are tabulated as a function of a common
variable x for all elements. This variable corresponds to the
value of the usual radial variable r (Bohr units) scaled by the

cube root of the atomic number (Z) .
x= r/7b

where =

(s

]

88534138 2 /5

Since the atomic wave-functions are known to vary most rapidly
for small r (and hence x), and then decrease smoothly in value
for large values of r, Herman and Skillman chose to calculate
them at points on a linearly expanding mesh. This approach
provides a suitable combination of both numerical accuracy and
computer time efficiency. From an initial value of zero, the
variable x is incremented by steps of .01 for the first ten
intervals. The increment size is then doubled and continues
to double after each successive ten interval block.

The functions ﬁh 0*) listed in-the tables are related
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to the atomic radial wave-function f{ng(r) as follows

'B.Q(f‘) =T Rng (r)
and the ﬂw‘?) are normallized to unity.
ie. :I’ CPae(n]dr=)
This is the same as the function tabulated by Liberman (ment-
ioned earlier in this section) and will yield charge densities
on the Herman Skillman (H.S) grid

Tps ™= £ Bpg (ﬁ.g (r})"

OCCurIFp

OR8ITALS
where &W is the number of electrons in the orbital defined

by the quantum numbers p and £
Since the logarithmic derivatives require numerical inte-
gration of the radial Schroedinger equation (2.3) the computer

programmes for this calculation are based on an exponentially

expanding scale

r=egt?
Where y, fixes the starting point some small distance from the
origin; J takes on successive values 1,2,3, ....c.c00ces ;
and a4 is an arbitrary step size which must satisfy the

constraints set by the desired numerical accuracy and computer
time available. For this calculation Xoe=-8:85and A=0%
were found to be satisfactory. This mesh has the effect of
creating many more points near the origin ( [ <:01) than

the H.S grid and expanding the step size much more rapidly for

large distances ( r>|o ). Since the points on the two
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meshes do not coincide, it was necessary to interpolate the
densities from the linear to the expoential grid. In the region
between the origin and the first non-zero H.S charge density, a
parabolic interpolation was used. This is justified since for
small r the radial wave-function R (y) is proportional to rﬂ

In this region the |§ orbital is expected to dominate, yielding

=0 . The required charge density follows from
LrRq(mM)* =~ Cr (ar) 7
: Ora

where "a" is the parameter to be fitted. For points beyond the
first non-zero H.S charge density a linear interpolation was
used.

The results of this interpolation wefe tested for oxygen
against charge densities derived from analytic self-consistent
field functions obtained by Clementi (1962) fof neutral first
row atoms using Slater type orbitals as basis functions. These
charge densities were derived in the same fashion as those
from the H.S wave-function. As can be seen from table (3.1)
Clementi's Charge densities are not as large as those of Herman
and Skillman for r<ao , but are larger for > 20.

The Clementi charge densisty does not, in fact, become zero
for any value of ¢ <)00-@ . Considering the differences
shown in table (3.1), the results of the comparison shown in
table (3.2) may be judged to be fairly good. This comparison
also reduced the possibility of overlooking programming errors
in this part of the calculation.

These charge densities obtained in this fashion for oxygen
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and cadmium were now used in the numerical solution of equation
(3.1). The substitution

w::e% Va
reduces Poisson’s equation to one containing only the second
derivative
w’=%w -8relt o (x)

Following Louck's (1967), W was expanded in Taylor series about
an arbitrary point to obtain a set of finite difference
equations and a recursion relation between neighbouring points
was. then introduced. The boundary condition requiring W to
remain finite at the origin was used to determine the coefficients
of the recursion relation. This recursion relation was then
used in conjunction with the condition that Va(r)s=
for large r to evaluate W at the last point on the grid and
then at each successive point from the outer region inwards,
| It is necessary to calculate the crystal potential as
seen from the site of a cadmium atom and then from the site of
an oxygen atom. This is done by superimposing the contributions
from the surrounding shells of atoms using the method proposed
by Lowden (1956). The number of atoms per shell and the
distance of each shell from the central atom are listed for
the case of a cadmium atom in table (3.3). The contribution
from six shells was found to give a sufficiently converged
result.

The exchange correction was now added using Slaters free

exchange approximation given by

¥
Vex (F) == G ok (242 ) (3.3)
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COMPARISON OF HERMAN SKILLMAN AND CLEMENTI
CHARGE DENSITIES ON H,.S. GRID (RHS)
*

* *

Table (3.1)

RHS R H,.S. Clementi
0,01 .004427 ,073376 .071524
0,02 ,008853 .273497 +266526
0,03 ,013280 573348 .558714
0,04 ,017707 .949705 +925494
0,05 ,022134 1,382246 1,347534
0,06 .026560 1.854731 1,808368
0,07 ,030987 2,352034 2,294049
0,08 .035414 2,862423 2,792840
0,09 ,039840 3,375990 3.,294938
0,10 ,044267 3.883666 3,792228
0,12 .053120 4,857491 4,747091
0.14 .061974 5.,743687 5,618644
0.16 .070827 6.518471 6.383578
0,18 .079681 7.171661 7.030015
0,20 .088534 7.698820 7.554375
0,22 .097388 8.103112 7.958939
0,24 .106241 8.391174 8.,249992
0,26 .115094 8.573686 8.436406
0,28 .123948 8.661028 8,528577
0,30 .132801 8.664824 8,.537633
0,34 .150508 . 8.467962 8,351291
0,38 .168215 8,072724 7.963076
0.42 .185922 7.555906 7.,447856
0,46 .203629 6,978609 6.,866797
0,50 .221335 6.389239 6.,267241
0,54 «239042 ' 5,821131 5.683973
0,58 256749 5.297343 5.141077
0.62 + 274456 4,832286 4,653934
0,66 +292163 4,433516 4,231102
0,70 - .309869 4,103897 3.,875978
0,78 .345283 3,642863 3.364765
0.86 .380697 3.414853 3,091023
0,94 .416110 3,367801 3,007486
1,02 451524 3.449832 3,063748
1,10 ,486938 3.,614918 3,213793
1,18 .522351 3,.824816 3.,419134
1,26 557765 4,050589 3.649490
1,34 .593179 4,270482 3,882224
1.42 .628592 4,469457 4,101267
1,50 .664006 4,638688 4,295901
1.66 4734833 4,868533 4,589028
©1.82 .805661 4,950202 4,742761
1,98 .876488 4,899626 4,766117
2,14 .947315 4,742741 4,680597
2,30 1.018143 4,509233 4,511346
2,46 1.088970 4,224072 4,282492



COMPARISON OF HERMAN SKILLMAN AND CLEMENTI
CHARGE DENSITIES
) " :

*

. Table (3.2)

ON LOUCK'S GRID
*
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X RmeX H.S8. - Clementi
-8,80 ,00015 ,00008 .00008
=8,55 00019 ,00014 ,00014
-8,25 .00026 .00025 " ,00026
«7.95 00035 .00048 .00047
«7,65 .00047 ,00088 00085
=7.35 .00064 .00155 ,00160
-7,05 - ,00086 .00281 .00290
-6,75 ,00117 .00513 .00527
6,45 ,00158 . 00935 .00954
-6,15 .00213 01704 .01723
=5,85 .00287 03106 ,03103
«5,55 .00388 .05659 .05563
-5,25 .00524 11048 ,09919

4,95 .00708 .19348 .17551
«4,65 ,00956 32147 .30736
-4,35 .01290 54806 53090
«4,05 ,01742 ,92552 .90007
-3,75 ,02351 1.52999 1.,48816
=3,45 ,03174 . 2.,43951 2,37890
«3,15 .04285 3.72139 3.63422
-2,85 .05784 5.33033 5.,22427
-2,55 .07808 7.05369 6,92227
«2,25 ,10539 8,36379 8.22697
-1,95 \14227 8.55951 8,46806
«1,65 .19204 7.35611 7.25151
-1,35 ,25924 5.23191 5,06890
-1,05 .34993 3.61289 3.31614
«0,75 47236 3.54699 3.14335
=0,45 ,63762 4,51263 4,15357
-0,15 .86070 4,91089 4,77120
+0,15 1.16183 3.90036 4,00692
+0,45 1,56831 2.17614 2,37454
+0,75 2,11700 .85354 . 96633
+1,05 2,85765 \24124 .25827
+1,35 3.85742 .04320 .04770

-
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In this case ¢ (r) is the crystal charge found by superimposing
atomic charge densities in the same fashion as given earlier
in this section for the atomic potentials. The value of &«
was equal to unity for Slater$ (1951) original calculation
and this is the value used by Herman and Skillman (1965) in
their work (see equation 3.2). However, Kohn and Sham (1965)
showed that o should perhaps be closer to two thirds. Later,
Schwarz (1972) fitted the Hartee-Fock energies to determine

e values for the first forty-one elements. The oxygen o is
given as .74447 and the value .701 for cadmium can be found by
a short extrapolation. The changes resulting from use of these
different «&'s are shown in tazble (3.4). Since «=)p yielded
a direct gap which was closer to the experimental direct gap
(.167 rydbérgs) than = 473 , and since the atomic wave-functions
had been calculated originally with «=/-0 , we chose to perform
the remainder of the calculations in this work with £= }o
The resulting crystal potentials for neutral cadmium and oxygen
atoms are 1listed in tables (3.5) and (3.6) respectiVely.

The intersphere potential | and the sphere radii
required in the muffin tin approximation are calculated by
plotting these potentials in opposite directions from origins
separated by half the cube edge (%-;:; 4.436%a-u-) . The value of
the potential at the point of intersection is taken as the
intersphere potential. The distance from the origin of the
cadmium potential to the intersection point determines the
cadmium sphere radius and the oxygen sphere radius is

(4.436 - Scd) a.u. This procedure is illustrated in Figure (3, 1)
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and the resulting values are:

Ve = -.975 ryd.
chd = 2,435 a.u.
Sox = 2.000

These sphere radii must be converted into points on the
exponential grid. Since the grid points are fixed and separated
by a few tenths of an atomic unit at this distance, accurate
determination of the sphere radii is only necessary for the

intersphere potential.



Takle (3.3)

| TYPE OF ATOM POSITION ~ NUMBER IN DISTANCE
IN SHELL SHELL
Cadmium (0,0,0) 1 0.0
Oxygen (1,0,0) 6 0.50000000
Cadmium . (1,1,0) 12 0.70710678
Oxygen {1,1,1) 8 0.865602540
Cadmim (2,0,0) G 1,00000000
Oxygen (2,1,0) 2y 1.11803399
Cadmium (2,1,1) 2y 1.22u74487

Cadmium (2,2,0j 12 1.41421356

Number of atoms and distance from central cadmium atom of surrounding
shells. The distance #s measured in units of the lattice cube edge

a = §.8728 a.u. .
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Table (3.4)
Comparison'of results obtained through the variation of the &

value in the exchange correction given by equation (3.3).

Kohn & Sham Shwarz Slater
. o for oxygen . .666 744 1.0
& for cadmim 666 .701 1.0
€d. radius (a.u.) 2.45 2.41 2.43
Ox. radius (a.u.) 1.98 2.02 2.00
Ve (rydbergs) - .66 ~.72 ~.975

Direct Gap (rvyd) 513 .26
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.006096

Table (3.5)
CADMIUM POTENEIAL EOR NEUTRAL CRYSTAL
¢ -V(e) e V@ ¢ -v(e) e O
.000151  636455.7 .ﬂQOSZS 1820u0.6 .001836 51849.11 .0065409 14543.36
onoblss 76@5395.3 000553  173141.4 .00193% 11§299.53 006737  13812.69
000166  575848.8  .000581 16u&76.é .002026 46874.32 .007083  13117.71
.000175 53}7B3_3 .000611  156623.8 .002133 BYsSA7.40  .007446  12456.60
000184 fSélDOB;S .000642 148364 .2 .002242 42373.01 .007828 11827.70
.000193 ;;495577.7 .000675  141l678.1 .002357 40285.67 .008229  11229.56
000203 471387.0 .000710  134747.4 .002u78. 38300.23  .008831 10660.67
.000213  uu8376.2 000746 1281i54.7 .002605 36411.67 .009695 10119.63
000224 426487.6  .000784  121883.6 .00273¢ 3u615.05  .802361 9605.103
000236 u05666.6 .000825 1i5918.2 .00287% 32905.20 .010051 §91315.325
.000248  385861.0  .000867  110243.9 .003027 31279.99 .010367 8649 312
000261 367021.3 .000911 10uB8u6.2 .043182 28733.55 .QlllDB 206.188
°6b027ﬂ‘ 3@9160.5 .000558 99711.89 .0033458 28261.85 .011678 7784 .8u5
;006288 4332053.6 .001097 9ug27.92 .003517 25852.13 .012277 7384.233
.000303 ) 31?838.2 .001039 90182.14 .003697 25530.59 .012906 7003,.365
.000319 ' 300813.5  .001113 85762.35  .003887 24263.53 .013568 6641 .267
0003353 '285741:2 .001170 81559.28  .00u08%5 23059.00  .014264 6237.033
,000352 27i784.u .001230°  77560.64  ,00u296 21912.78 .014995 , 5969.636
-000370  258508.4 001294 73757.02  .00u5% 20822.42 015764 5658.27
000389 2u5879.8 .001360 70138.91 ..00Q7H8 1a785.22 .015572 5362.338
000u02  233867.1  .001430 66697 .27  .00u4991 i8798.74 017422 5386.950
000830 222440.2  ,001503 63423.,43  ,005247 1786G.52  .01831S 4813.376
000452  211570.7  .001580 60309.38 005516 16968.03  .019254 4589.103
.000476 201231.3  .001661 57347.15  .005799 16119.06 .020241 4317.316
000500 1913%6.1  .001746 54529 .41 15311.51 .021279 4087.525
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Table (3.5)
NTIAL FOR NEUTRAL CRYSTAL
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* % *
¢ V) & V(e p -veg) 0 -vE)

.0223 3869.131 .0780 887.575). .2725 142,104 .9512 11.5498
.0235 3661.546 .0820 832.2839 .2865 130.87L0 1.000 10.18u5
.0247 346%,299 .0862 779.9211 .3011 120.1383 1.051 8.9570
0259 3276.818 0907 730.4443 .3166 110.1774 1.105 7.8624
0273 3058.73u. L0953 683.6564 .3328 100.5417 1.161 6.8831
.0287 2929.586 .1002 639 4565 .3u93 92,3827 1.221 6.0252
.0301 2758.893 .1053 537.7036 .3673 84,4546 1.284 5.2634
0317 2616.258 1108 558.2956 .3867 77.1158 1.359 4.5920
.0333 2471.396 1264 521.095U 4065 76.3273 1.u10 4.0013
0353 2333.696 J122y 485.0240 L4274 64,0570 1.491 3.4831
0358 2203.061 .1287 52,9530 L1493 58.2492 1.568 3.0332
0387 2079.029 L1352 421.8052 L4723 52.843C 1.648 2.6391
LOuU7 . 1961.401 .1u22 3924772 UG 65 47,9680 1.733 2.2042
0428 18149.759 1495 35%.3525 .5220 43.4159 1.822 1.9951
050 1743.882 .1572 338.9722 .5u88 39.2777 1.915 '1.7u05
L0873 1643.u80 .1652 31,6313 L5769 35.4802 2.013 1.5177
.0us7 1598.2%8 .1737 291.3098 .6365 32.0075 2.117 1.3342
.0523 1458,0U6 .1826 270.4267 .6376 23,8339 2.225 1.1796
.055¢C 1372.524 .1920 250.3683 6703 25.9452 2.339 1.6529
0578  1291.480 2018 231.6355 L7048 232048 2.u359 .8551
0608 1214,704 .2122 214.0941 .7u08 20.8653 2,585 .8858
0639 1141.966 .2221 187.7156 .7788 18,6354 2.718 .8uuy
0672 1073.077 .2345 182.4108 .8187 16.6953 2.857 .8326
0706 1007.837 L2465  168,1354 .8607 14,7506

6742 946.0634  .2583  154.8124  .90UB 13.0730



Table (3.6)

OXYGEN POTENTIAL FOR NEUTRAL CRYSTAL
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* * *
¢ =V(®) e =V(§) p =Vig) o -Ve)
»,000151 106122.2 .000526 30386.01 .001836 8687 .286 .006409 2470.928
0000i58 1009u45.1 .000553 28902.81 .0001330 8262.341 .906737 2349.099
»000166 96020.72 .00581 27491.94 .002029 7858.121 .007083 2233.185
e600175 9133€.47 .000611 26149.88 .002133 7473.815 LUG7u445 2122.910
-000184 86880.68 000642 2u873.27 .002242 7107 .862 .007828 2017 .589
-000193 82642.26G .Q00675 23638.93 .002357 6759.947 .008229 1918.167
s0Q0203 78610.43 000710 22503.81 .002478 AL29 .000 009651 1823.185
.000213 74775.29 .0007u6 21405.02. 002605 6114.193 .009095 1732.950
-000224 71127.19 .000784 20359.82 .002733 5814.740 .009561 1647.198
000236 67657.02 .000825 18365.60 .002879 5529.892 .010051 1565.588
QOGOZHB 64356.09  .000867 18419.87 .003027 5258.936 .010567 1487.931
000261 €1216.1Y4 .000911 1758.26 .003182 5001.195 .011108 1414.037
-000274 58229 .33 .000958 16664,52 .003345 4756.24 .0(11678 1343.725
.060288 55388.1¢ = .001007 15850.52 .003517 4522.810 .012277 1276.821
300303 52685.62 .08105¢2 15076.22 .003€97 4300.971 .012906 1213.161
.000319 ,‘ 50114.85 .001113 14339.69 .003887 4089 .951 .013568 1152.641
000335 u7559:us .001170 13639.07 .06u085 3889.223 014264 1095.118
000352 'U3;ﬂ3,33 .001230 12072,62 .00u2956 3698.285 .01u985 1040.377
-000370 43130.64 .001294 12338.68 .0ous16 3516.750 .015764 988,2866
.000389 41025.88 -001.360 J11735,.65 .oou7u8 33&&.160 016572 938.7172
.000409 39023.7¢6 .001430 1116?.0% .0nu931 3179.940 .017422 891.5487
.000130 37119.23 .001503 10616.40 005247 3023.686 .(18315 846.7125
.00452 35307 .69 .001580 | 10097.37 .003516 2875.015 .019254 804.0671
000476 sassu.ush .001661 9603655  .005799 2733.561 020241 763.u850
000500 3)9u45.26 001746 9134.018 006036 2598.976 .021279 724.867C
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OXYGEN POTENTIAL F
*

Table (3.6)
OR NEUTRAL CRYSTAL

0 V() v(R) ¢ vE)
688.1298 .0780 1177.2230 36.0759 L8532 4.346C
653.0233 ~.0820 167.2835 33,5453 1.000 3.9167
619.9679 .0862 157.8570 31.1640 2.051 3.5247
588.3429 0907 148.8998 28.9307 1.105 3.1675
558.2642 .0953 140.3959 26.235k 1.161 2.8u38
529.6557 .1002 132.3226 24.864Y 1.221 2.5504
502.4316 .1053 1246654 23.0312 1.284 2.2860
476.5372 .1108 117.3937 21.3112 1.3u9 2.0u487
451.9069 .1164 110.5024 19.7118 1.419 1.8377
428.4753 122y 103.9646 18.2185 1.491 1.6490
406.1875 .1287 97.7649 16.8246 1.568 1.4842
384.9877  .1353 91.8877 15.5289 1.648 1.3383
364.8222 1422 85.3153 14,3175 1.733 1.2161
© 345.6419 .1495 81.0501 13.1870 1.822 1.1116
327.3980 ,1572 76.0502 12.1321 1.915 1.0280
" 310.0429 .1652 71.3235 11.1460 2.013 9649
© 293.5438 .1737 66.8463 10.2250 2.117 .§211
277.8607 .1826 62.6104 Q23653 2.225 .8980
262,9357 1920 58,6021 8.5627 2.339 .8977
2u8.7483 .2018 cy4.8113 7.8231 2.459 .9198
235,2651 .2122 51.2269 7.1203 2.585 .9670
222.4462 .2231 47.8388 6.4728 2.718 1.0423
210.2582 .23u5 uy 6385 5.8760 2.857 1.1518
198.6875 L2465 51.6172 5.3232
187 .67u1 .2592 38.76U6 4.6135



Figure 3.1
Plot of crystal potential (ryd.) vs. distance
“from nuclei (a,u.) . Cd potentiéls have positivé
slopes, The cadmium oxygen separation is 4,4364 a,u,
The dotted lines are calculated with o/ = 2/3 , the

solid lines are calculated withé& =1
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The Logarithmic Derivatives

'
The ratio —%“lﬁhﬁl‘ contained in the general
fﬂl(SntE)

matrix element given by equation (2.6) is called the logarithmic

derivative (L.D.) of the wave-function RﬂX . These L.D's

must be evaluated on both the oxygen and cadmium sphere surfaces.
The substitution Y= V@ R(¢) reduces the radial Schroedinger

Equation (2.3) to one involving only the second derivative and

on the exponential mesh the resulting equation is

Y (e (VO —E)+(2+%)°)Y (3.4)

This is solved numerically using Numerov's method. The
derivative of the resulting function is then determined at each
step by using the finite difference approximation

/

YJ = (Y‘;.g - QY*«.; + 8 YJ’H =~ Va2 )/ (124)

The subscripts denote the various grid points and A = .05
for this calculation. The approximation

Yoo =Y (X‘) e‘]#l)’b‘"%)
is used to give starting values at the origin.

The energy dependence contained within the L.D's requires
that they be completely re-evaluated each time the energy is
changed. In order to avoid this very time consuming process,
the radial function and its derivative are calculated at selected
points over the energy range of interest and the results are
fitted by a polynomial of arbitrary degree for each ‘Q value.

In this calculation, an eighth degree polynomial gave suitable
convergence. The L.D's at the sphere surfaces are then available

for all energies in this range by evaluating the function
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g (ao)i g’
LD,Q (E) = ‘{} (G E°

The coefficients (QC)i are determined by fitting the radial
function and the coefficients (QD)i are determined by fitting
the derivative of the radial function.

The variation with energy of the L.D's for somé R values
for neutral cadmium and oxygen are shown in figure (3.2) and
figure (3.3) respectively. The functions for ,Q =0,1,2 are
quite sensitive to energy change, but for {23 the sensitivity
decreases rapidly. Singularities arise in these functions
whenever a node in the radial function moves to the sphere
surface. These singularities can result in spurious roots or
loss of roots and consequently the energies at which they occur
must be known. The singularities in the oxygen L.D's are at
EA 1.6 ryd for ,e = 0 and at E=R.2 ryd for ,0 =1. A
singularity in the cadmium L.D's arises at E4-.8 for,Q =

The Determinant

The general matrix element is given by equation (2.6).

For the specific case of cadmium oxide this becomes

(R B R fi-kilSed )
l"j“‘(k. E)S'E"‘"S“'d e k)“f} ((”: =xy) (k‘ k; -E)

(uum (R kiSia) § (ks 5ea) LDy (E, Sl

T Se - fv J (i"‘a k“s“‘_’l =~
+iuf-£n t(KJ k,f ( ‘('k‘,"t') (/(C‘kj"l:)

2 (204 )R (i) b (i Sen)}s (ks Son) LD (E.50)]
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L.D'S for Neutral Cd
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FIGURE 3.2

L.0.'S for Neutral Cd
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FIGIRE 3.3

L.D.'S for Neutral Jxygen
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This differs from equation (2.6) in that the infinite
sum over £ values has in practice been restricted to a finite
number. In this calculation ,Q = 12 gave sufficient convergence.
The spherical Bessel functions SQ and the Legendre polynomials
RR were calculated from recursion relations. The imaginary

-
H . _‘i .f; ‘ ;"Ei)'rd
€ (%= ki) o e“ ‘ ¢ can both be

factors and
made real by choosing the origin on either an oxygen or a cadmium
atom site. This ensures that these factors are always +1 or -1.

'The eigenvalues are determined by evaluating the determinant
for an interesting range of energy and picking out those energies
which correspond to zeroes. Energy steps of .01 will generally
locate these zeroes but as mentioned in the discussion on the
L.D's, particular care must be taken when investigating energies
close to those creating singularities.

The number of APW's required to give converged eigenvalues
depends on the wave vector in question. Generally 65 basis
functions give accuracy within a few thousandths of a rydberg;
although for points of low symmetry 113 basis functions will
cause a decrease of about three one thousandths of a rydberg
from that obtained with 65. The eigenvalues at [* and converg-
ence with increasing number of APW's is shown in table (3.7).

The direct gap ( [,-[js ) calculated with 65 APW's is

-.2950 rydbergs.



TABLE 3.7
Illustration of convergence of energy (ryd.) eigenvalues

at F by increasing number of APW's from 9 to 65.



TABLE 3.7

NEUTRAL CALCULATION OF EIGENVALUES AT |’

-1.0164
-0.0095

L2769
L4414

15
-1.0392
-0.0099
-0.001

.1873
L4106

27

L0457
.0369
.022

.1430
L4071

51

.0503
.0500
.040

.1200
.4058

59

.0508
.0600
.040

1114
.4056

65

.0510
.0600
L0425
.1106
.4056

43



CHAPTER 1V 44
THE IONIC CALCULATION

In order to fit the experimental direct gap of -.1676
* .0037 rydbergs, we chose to vary the ionicity of the cadmium
and oxygen atoms. This was done by decreasing the number of
electrons in the 5S shell of the cadmium atom and increasing
the number by the same amount in the oxygen 2P shell but without
changing the one electron orbitals. The amount of extra charge
transferred to the oxygen atom (called the "ionicity" of the
calculation) was varied continuously until a direct gap of
.1676 rydbergs was obtained using an ionicity of .277. The
gap width was very sensitive fo the degree of ionicity and for
an ionicity of 1.0 the [ and K% points reversed positiqns
to give a gap of .0902 rydbergs.

The cadmium charge density is probably not affected very
much inside the 5S shell; but the effects on oxygen are relatively
severe, ie. the 2P orbitals should be allowed to relax. This |
was apparent from a comparison of charge densities with those
obtained from a calculation for ionic oxygen by Clementi (1965).
Consequently this ionicity should be regarded as a parameter-
ization only and not an indication of the crystal ionicity.

The introduction of ionicity into the calculation makes it
necessary to adjust the crystal potential withacorrection
for the Madelung energy. This was done by accounting for the
short range contributions through the superposition calculation
mentioned in Chapter III, and then allowing for the effects
of the ions outside the six-shells by including the appropriate

fraction of the Madelung constant for Na Cl structures. The
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resulting potentials are shown in tables (4.1) and (4.2) for
cadmium and oxygen‘respectively.

These potentials were then used to calculate the sphere
radii and intersphere potential using the method outlined
previously in Chapter III in the section on the potential. The

resulting values were

Scd = 2.46 a.u.
Sox = 1.98 a.u.
Ve = -.90 ryd.

These values coupled with the potentials were used to calculate
the logarithmic derivatives given in tables (4.3):and (4.9 for
cadmium and oxygen respectively. The singularities occur at

E = -.8245 ryd (= 0) and E = -.0043 ryd (£ = 1) for oxygen
and E = -,1799 ryd (= 2) for cadmium.

The energy eigenvalues at [° were calculated and their
variation with increasing number of basis functions was determined.
Each of these eigenvalues may be related to a corresponding
atomic orbital through the tight binding approximation. This
relationship and the variation of eigenvalues with increasing
number of basis functions is shown in table (4.5). The energy
bands were then calculated in the € , A , and A ,
directions from |[* to the zone boundary. Since it was found
that the individual band shapes varied only slightly with
increasing number of basis functions these bands were calculated
using 65 instead of the more accurate 113 basis functions. This
was necessary in order to keep the computer time and core

requirements at a reasonable level. Having determined the
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overall band shapes in the directions of interest and thus,
having located the maxima and minima in the. valence” and conduction
bands respectively, the gaps could be more accurately calculated
using 113 basis functions. The bands determined from calculations
using 65 basis functions are shown in figures (4.1), (4.2),
and (4.3). Comparison of these results with those obtained by
Maschke and RSsslef,(1968) shows the general features to be
very similar. Both calculations suggest the possibility of the
éxistence of 7 - L and [ - g indirect gaps and in both
the [ - L. gap is the smaller gap. The results of this work
indicate the [ - L gap is 1.32 eV and the [ - € gap is 1.38eV.
These gans have been calculated using 113 basis functions and
conseauently are more accurate and slightly larger than those
shown in figures (4.1) and (4.2). The band ordering and general
shape is-also similar to Tewari's (1972) ionic calculation
and Breeze and Perkin's LCAO calculation buf there is a difference
in the spacing of the ' - | and[? - £ indirect gaps. In
both of these works the [* - £ gap is smaller than the ' - L
gap. In all cases the gaps calculated in previous works are
a few tenths of an eV smaller than the ones calculated here.
Smaller gaps could result from any one of several areas. Dif-
ferent methods of constructing the crystal potential, the use
of too few basis functions, or different methods of extracting
the energy which gives a zero value to the determinant could
all lead to differences of this magnitude.

The results of this calculation are quité different than

those obtained by Tewari (1972) for neutral cadmium oxide which
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suggest metallic behaviour and which have the position of
the p and d bands reversed relative to each other. Only radical
differences in the construction of the crystal potential would
lead to a rearrangement of band position such as this. Because
Tewari's calculation assumes a completely neutral crystal
( ie. no ionic bonding), and because we have tried to incorporate
ionicity into our calculation by fitting the direct optical
gap it is not surprising to find such large differences in the
band structures. In fact because the approximation of rigid
orbitals causes the oxygen 2P energy to rise too quickly with
increasing ionicity, our fitted ionicity value of .277 is
probably more consistent with an ionic charge of 1 and this is
why our results resemble her ionic calculation more than her
neutral calculation.

All the previous workers have limited their band calculat-
ions to the £ , A , and A symmetry directions and as was
mentioned the results suggest the existence of two indirect gaps;
- one from the maximum in the <€ direction in the valence band
to the minimum at [* in the conduction band and the other from
the maximum at L in the valence band to the minimum at N
in the conduction band."

In order to be sure that both are local maxima in the
valence band it is necessary to investigate the band behaviour
around the points. This information is necessary since what
appears to be a maximuﬁ in one direction may be only a saddle
point in another. The density of states for a maximum and a

saddle point is not the same as the density of states for two
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fiaxima and it is the density of states which determines the
results seen experimentally., The density of states for two
maxima and the density of states for a maximum and a saddle
point are shown in figures (4.4a) and (4.4b).

In order to investigate the region around the maximum in
the & direction it was necessary to first determine the
wave-vector corresponding to this maximum value. This was
done by incrementing the f; and t} components of the
wave-vector by steps of .002 ( A%E; ) to find a maximum energy
and then using the two closest points to find a maximum value
from a quadratic fit. This led to a value of k= (.4588,
.4588, 0) which yields the maximum energy of ,3226 rydbergs in
a calculation using 65 basis functions. The variation in
energy in two directions perpendicular to each other and to
the = axis was calculated and the results are shown in Table

(4.6). Part (ii) of the table shows a decrease in energy for

points in the T, . 'ﬁ}

to the & dérection. This still suggests that (.4588, .4588, 0)

plane in a direction perpendicular

)((%¥9corresponds to a local maximum. However, moving in the
f; direction from the maximum point it is apparent from the
results shown in part (i) of Table (4.6A) that the energy
eigenvalues are increasing. This tendency continues in this
direction to a maximum of .3275 rydbergs at £ = (.4588, .4588,
.50) 4L From this maximum, by moving towards the L
point at the zone boundary it is possible to keep the energy
rising continually until the maximum of 3290 rydbergs is

obtained at | . Consequently the maximum in the £ symmetry
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axis is not a local maximum but is a saddle point with one
increasing and two decreasing branches. Table (4.6B) gives
the eigenvalues in two directions perpendicular to each other
and to the ./\. direction at | . The results indicate that

L is an absolute maximum as was suggested by the previous
workers.

In order to predict the optical properties of cadmium
oxide it is necessary to know the shape of the valence and
conduction bands around [° and also the effective masses char-
acterizing these bands and the maximum at L are required. The
shapes and effective masses were determined from eigenvalues
calculated for small changes in wave-vector around the points.
The eigenvalues and effective masses in the three symmetry
directions around |[' are listed for the conduction band in
table (4.7) and for the valence band in table (4.8). The
effective masses were calculated using a Taylor series expansion
to approximate the band shape. Because of symmetry consider-
ations only the even terms in the expansion were retained for
'all calculations but the longitudinal effective mass at L
These values coupled with the band shapes shown in figures (4.1),
(4.2), and (4.3) show that the conduction band is parabolic
and isotropic with the point at E vbeing an absolute minimum.
The valence band at [‘ is anisotropic since the eigenvalues
increase slowly in the.A. and & directions and decrease
very slowly in the Q direction. The effective masses at L

were calculated in the _A. direction which is the longitudinal
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direction and in two transverse directions. Energies in the
transverse directions were calculated for wave-vectors
(.5+4 , .5-a, .5)<4L and (.5-4, .5-4, .5+24)3F where
variation of A generates different points in these two
directions. The eigenvalues for various choices of A and

the resulting effective masses are shown in table (4.9).
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Table (4.1)
-CADMIUM POTENITAL FO& CRYEIAL §ITH IONICIYY = 277
¢ =V(®) £ =vEi o ~V(P) ¢ V@)
000151 63645€.7 .N00526 182040.6 .001835 51849.12 .0G6L09 ausy3.u7
000158 605395.3 .000553 173141.4 .001930 49299 .55 .008737 13812.71
000166  S575848.8 .000581 lﬁﬂ675;2 .002028  us874.34 .007083 13217.73
‘0000175 547743.3 .000611 156623.8 .002133 34567 .42 0067446 12u56.62
-000184 521008.5 . .000642  148864.2 .002242 42373.03 .0G7828 11827.72
600193 495577.7 000575 141678.2 .002357 40285.68 .0G8229 11229.57
003203 471387.1 .00071C 134747 .4 .002u78 38200.25 | .009651 106660,69
000213 448376.2 .00074% 128154,7  .002505 36411.69 008095 10115.65
806224 u26487.7 .000784 121883.6 002723 34615.07 LU09561 9605.122
000236 4035666.,6 .000825 115918.3 : .002879 32905.82 .010051 9il5.3u5
000248 385861.0 .003867 1102u3.3 .093027 3i280.01 .010567 8649 ,331
-000261 357021.3 L0609l 104845,3 .003182 29733,27 .011108" 8206.#07
000274 © BHQLQO.S .000958 29711.91 003345 28261.87 .011678 7784.86u4
eUObZBS 332053.7 -001007  94827.9% 003517 26862.15 .012277 7384,251
.U00303 315838.2 .001055 £9182.18 .003897 25530.61 .012908 7003.384
000313 300413.6 .001113 85762.97 .003387 ZH?SB;QS .013568 6641.286
;900335 2857Hi.é .00117n 1559.30 .0Cua8s 23059.01 LG1u26l 6297 .052
.03935 271784,5 .001.230 77560.66 .00u296 2i912.80 014845 55969.655
000370 258508.5 .00179% 73757.04 ~00us15 20822.44 .015764 5658.297
L0038  245879.8 .001360 73138.33 .00u748 19785.24 .16572 '5362.356
800409 233867.1 ‘001Q3U 65697 .29 004991 18798.76 017422 5080.989
000430 2224£9.2 .001503 63423.51 005247 17860.53 .018315 4813,354
000452 211570.7 .001530 ‘ 603309 .40 005516 163568.05 .019254 4549 ,122
000476 201231.3 ' .001661 S73u447.17  .005799 16119.08 .020241 4317.324

000500 191336.1 001718 54520.43 006095 15311.53 .021275 4487.,543
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: Tabie (¥.1)
_CADMIUN PQTENTIAL FOE CRYETAL SITH IONICITY = ,277
P =V P =VE) e ~V(E) p Ve
09223 3869.150 .0780 887.5942 .2725 142.4216 .9512 11.547%
0235 3661.565 .0820 832.2998 .2885 130.8849 1.000 10.1814
0247 3464,317 .0852 779.9369 .3011 120.2489 1.051 8.9530
(259 3276.836 0807 730.4600 .3166 113.1877 1.105 7.8575
0273 3098.752 0953 683.6720 .3328 i00.9516 1.161 6.8832
.0287 2329 €04 .1002 639.4719 3483 92,3223 1.221 6.0131
0301 2763.911 -1053 557 .7189 .3678 84,4639 1.284 5.2550
L0317 2616.275 .1108 558.3107 .3867 77.1248 1.349 4.5820
.00333 2471.323 -1167 521.1104 L4065 70,3359 1.419 3.9894
’°0350 2333.714 1224 486.0388 L4274 64,0652 1.491 3.4689
(268 2203.0?9 1287 452.9677 4433 58.2570 1.568 3.0165
0387 2079 .046 1353 423 .8197 4723 52.905u 1.648 2,6193
.J407 1961.419 J1u22 392.4916 .HAES5 47.97u48 1.733 2.2708
.6“28 1849.776 1455 364.9067 .5220 43.4220 1l.822 1.6678
. «0U50 1743.899 L1572 338.98562 .5u488 39.2831 1.915 1.7089
0473 ls4y3.,497 1652 314.6u52 .5769 35.48u9 2.013 l.4814
«0u97 ‘1548.2§5 1737 291.823y 6065 32.0115 2.117 1.2934
0523 1458 .064 .1326 270.4401 .6376 28.8421 2.225. 1.1341
0550 1372.541 .1620 250.3815 .67G3 25.98582 2.339 1.00320
.0578 1291.497 .2018 231.648Y 7046 23.2967 2.459 .9011
-0608 1214.720 .2122 214,1067 Lu08 20,8666 2.585 .8284
0639 1)l43.982 2231 187.7279 .7788 18.6360 2.718 .78%1
0872 1073.094 .2345 182.4229 8187 16,5052 2.857 .7693
0706 1007.854 . 2U65 158.1472 .8607 14,7498
0742 9“5.0795 2592 15¥.8239 .30u8 13.072%
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Table (%.2)
OXYGEN POTENTIAL FOR CRYSTAL WITH IONICITY = .277
” % &

-V(e ‘ -V -V -V
¢ ®) P ®) P @) e )

-000151 106121;5 .000526  30385.57 .001836 8686.8u7 .006409 2476.489
.L00158  10094y.7 .000553 28902.37 .001930 8261.902 .006737  2348.660
(100166 96020.28 .000583.  27u91.50 .002029 7857.682 .007083  2232.750
000175 91336.04%  .CO0GR11  261u49.u4y .002133 7473.176 .0o7446  2122.471
.100184 £6880.24 .000642  2u872.83 .002242 7107.423 .007828  2017.550
-000133 82641.76 000875  23658.u49 .002357 6759.508 .008229  1517.728
.000203 78609.99l .000710  22503.37 .002u478 6428.561  .009651  1822.756
.000213 °  74774.85 .000746  21u40u4.58 -002605 6113.754 .009095 1732.521
000224 71126.76 .000784  20352.38 .002733 5814.301 .009561  16u46.759
000236 67656.58 .000825  19365.16 .002879 5529 453 .010051  1565.149
-100248 G4355.65 .000367 18439 .43 .003027 5259.497 .010567  1u87.493
560261 61215.70 .C0C811 37515.82 003182 5000.756 .011108  1413.599
000274 58228.89 .U00958  16664.08 003345 W4755.585 .011678  1343.286
;000288 55387.75 ..001007 . 15850.08 .003517 4522.371  .012277 1276.382
000303 £2685.18 .001059  15075.78 .003687 4300.532 .012806  1212.722
.000319 S011iy4.41  .001113  14339.25 .003887 4085.512 .013568  1152.202
0002335 47669.02  .001170 13638.63 .00u086 3888.784  .01u264  1094.679
.000352  u5342.89 .001230 12972.18 .004296 3697.846 .014995 1039.939
-000370 43130.21  .001294 ‘ 12338.24 .00u516 3516.311  .015764 987.8u477
.000389 431025. 44 .001360 11735.21 .0047”8 3343.722  .016%572 938.2784
-000409 39023.32 .001%30 11161.60 .00u991 3173.501  .017422 891.1099
L0030 37118.85  .001503 10515.96 005247  3023.2u7 .018315 846.2737
000452 35307.26  .001580  10096.€3 .005516 2874.576 .019254 803.6283
-000476 3358u‘02 .001661 9603.21 .G05799 2731.122 .020241 763.0u63
000500 319ﬁﬂ.82 .0017u6 9133.5¢&0 .006096 2538.528 .021279 724.4288
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Table (4.2) .
OXYGEN POTENIIDL POli CRYiTAL '::I‘I‘H JTOMICITY = 277
# V(D) p R V(@ o -V(®)
.0223 687.5910  .0780 176.7852 .2725 35.6681 .9512  4.1084
0235 652.7646  .0820 166.8519 .2865 33.1418 1.000 3.6895
0247 619.5292  .0862 1574195 L3011 307651  1.051 313086
0279 507.9041 .0907 148.14626 .3166 28,5350 1.105 2.9631
.0273 557.8255  .0953 139.9589 .3328 26.4470 1.161 2.6505
0287 529.2150  .1002 1318858 .3499 21,4817 1.221 2.3686
.0301 501.9929  .1052 124,2289 .3678 22.6542 1.284 2.1156
0317 476.0985  .1108 116.9576 .3867 20.9491 1.3u9 1.8895
0333 us51.4682 1164 110.0667 4065 15 .3466 1.419 1.6837
.0350 428.0366 .12z 103.5293 L4274 17.8590 1.491 1.5117
0558 4os.7488  .1287 97.3301 L4453 16.4709 1.568 1.3572
0387 3845091 ,1353 $1.4535 4723 15.1807 1.5u8 1.2212
0407 364.3835  .1422 85.8818 4365 13.9750 1.733 1.1082
.on2s 345.2034  .1485 80.6173 .5220 12.8503 1.822 1.0122
.0u50 326.9595  .1572 75.6184 .5488 11.8012 1.915 .9365
0u73 309.6084  .1652 70.8926 .5769 10,8214 2.013 .8806
D497 293.1056 1737 66.14166 .6065 £9.5070 2.117 .8433
.0523 277.4223  .1826 62.1820 .6376 $.05u3 2.225 .8253
0550 262.4983  .14920 58.1753 .6703 8.2592 2.339 .8318
.0578 248.3i00  .2018 5t .3863 7046 7.5176 2.u59 .8538
.0608 234,8309  .2122 50.8040 7408 6.8332 2.585 .9129
0633 222.0081  .2231 47,4182 7768 €.1946 2,718 .9943
.0672 202.8201  ,2345 4%,2205 .8187 5.6072 2.857 1.1097
0706 198.2495 2465 41,2022 .8607 5.0€42
0712 187.2362  .2592 38.3530 .a048 4.5648
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TABLE (4 .3)

Logarithmic Derivatives for Cadmium J - 0,1,2,3
for ionicity = ,277

J=0 ];1 J=2 J-s

1,1627 1,3842 1.,4450 1,7787
1,0976 1,3184 1,3849 1.,7335
1.0301 1,2527 1,3215 1,6873
+9600 1,1866 1,2541 1,6401
+8869 1,1195 1,1819 1,5918
+8104 ' 1.0509 1,1032 1,5424
+7302 + 3806 1,0160 1,4919
6458 9081 49167 1.4400

+ 5567 . 48332 7992 1,3867
4621 +7554- +6519 1,3320
»3613 6743 ., 4495 1,2756
v2532 +5896 1243 1.2174
21367 : +5006 =.5876 1,1573
+0101 4060 -4 ,7465 . 1,0851
-.1284 +3078 4,2454 1,0305
-,2816 2023 2,0707 . 9633
-,4527 0897 1,4999 8931
-,6462 -,0314 1,2023 8197
-,8683 -.1624 +9988 _ « 7425
-1,1280 -.3053 8372 ,6610
-1,4381 =,4623 16967 +5745
-1,8186 «,6366 15672 «4822
-2,3017 -,8321 4430 + 3829
=2,9429 -1,0543 + 3207 +2751
=3,8469 -1,3107 + 1975 1570

=5,2388 -1,6122 0717 © ,0257
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TARLE (4 :‘3)

Logarithmic Derivatives for Cadmium -p =4, 8, 12
for ionicity = ,277

Dy /A D= 12
2,1116 3,5555 5.0690
2.0732 3.5315 5.0522
2.0342 3,5074 5.0353
1.9947 3,4832 5.0183
1.9545 3.4588 5.0013
1.9138 | 3,4342 4,9842
1.8724 ’ 3,4095 4,9671
1.8303 3.,3847 4.9499
1.7875 - 3,3597 4,9326
1.7440 3,3345 4.9153
1.6998 3,3092 4.8979
1.6547 3,2837 4.8805
1.6088 3,2581 4.8630
1.5620 3,2323 4.8454
1.5143 3.2063 4.8277
1.4656 3,1802 4,8100
1.4159 3,1539 4,7922
1.3650 3.,1274 4.,7744
1.3130 3,1007 4,7565
1.2598 3.0739 4,7385
1.2052 3.0468 4,7204
1.1493 3.,0196 4,7023
1.0918 2.9922 4.6841
1.0328 2.9646  4,6659

.9720 | 2.9368 4.,6475

9094 2,9088 4,6291
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TABLE (4 .4)

Logarithmic Derivatives for Oxygen 4 . 0,1,2,3
for ionicity = ,277

=0 D=1 J=2 J -5
.7862 1.1595 1,5966 2,0279
.6801 1.0927 1,5509 1.9907
.5605 1,0221 1.5043 1,9530
4230 9473 1.,4567 1.9148
.2610 8673 1.4081 1.8761
,0638 .7811 1.3585 1.8368
-,1870 ,6872 1.3078 1,7971
«,5254 .5836 1,2559 1.7567
-1,0226 ,4675 1,2027 1,7158
-1,8570 +3349 01,1482 1,6743
-3,6381 .1793 1.,0923 1,6321
=10,7018 -,0092 1,0348 1.5893
22,7867 -,2485 +9757 1.5458
6.4193 -.5717 ,9148 1,5016
3.9575 -1,0500 8521 1.4567
2.9311 -1,8697 .7873 1.,4110
2,3481 -3,7209 7203 1.3645
1.9588 -13,0595 6509 1.3171
1.6707 13,1859 .5788 1.,2689
1.,4417 - 4,8450 5039 1,2198
1.2499 3,0669 4258 1.,1696
11,0824 2,2587 3443 1,1185
+9317 1.7754 .2588 1.0663
.7924 1.4391 1691 1,0129
6611 1.1810 0746 .9584

+5352 . 9685 -,0251 + 9026
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TABLE (4 .4)

Logaritihmic Derivatives for Oxygen J =4, 8, 12
for ionicity = ,277 '

H=4 d=s A=12
2.4816  4,4134 6.4003
- 2,4501 4.,3942 6.3870
2,4183 4,3750 | 6,3736
2.3863 — 4,3557 6.3603
2.3539  4.3363 6.3468
2.3213 4,3169 6.3334
© 2,2883 4,2974 6,3199
2.2550 4,2778 6.3064
2.2214 4,2581 6.2929
2.1874 4,2384 6.2793
2.1531 o - 4,2186 6.2657
2.1184 4,1987 6,2521
2.0834 4.1787 6.2384
2.0479 4.,1587 6.2247
2,0121 4.1386 6.2110
1.9759 -~ 4,1184 6,1973
1.9393 4,0981 6,1835
1.9022 4,0777 6.1697
1.8648 . 4,0573 6.1558
1.8268 4,0368 6,1419
1.7884 4,0162 6.1280
1.7495 3,9955 6.1141
1.7101 3.9747 6.1001
1.6703 - 3.9539 6,0861
1.6298 3,9329 6,0721

1.5889 - 3,9119 6.0580



TABLE 4.5

Illustration of convergence of energy (ryd.) eigenvalues

at P by increasing number of APW's from 9 to 113.



TABLE 4.5

IONICITY = .277

9 27
-.8903 -.9185 -
-.0702 -.0999 -

.4184 .2800

L4582 L4226

Expected Ordering From

Tight Binding Approximation

O(25)— [

Cd (#d) => [3e4 My

65

.9228
.1244
.106

.2530
4209

O (ap) — ’75’
Cd(5S)— |}

89

.9230
.1249
.107

.2509
.4208

59

113
-.9230
-.1250
-.109
.2502
.4208
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Figures 4.4a and 4.4b show a schematic plot of
density of states D (€) in the valence band as a
function of energy € . € is the energy at
L and ei is the energy of fhe maximum in the

< symmetry axis.

Figure 4.4a corresponds to the case of two
local maxima, one at | and a smaller one

in the = axis.

Figure 4.4b corresponds to the case of one
maximum at [, and a saddle point in the

< axis.
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TABLE . G

A) Eigenvalues perpendicular to the maximum in the % direction

i) Stepping in @ direction perpendicular to £

ii) Second direction from the £ maximum

Wave = Vector

(,4588 , ,4588
(,4588 , ,4588
(,4588 , ,4588
(.4588 , .4588
(44588 , 54588
(,4588 , ,4588
(,4588 , ,4588
(.4588 , .4588
(,4583 , .4588
(.4588 , .4588
 (,4588 , ,4588
(.4588 , ,4588

- e P e W W W " e W W

Stepping from local

(,4588 , ,4588

(46, .46
(47 , 47
(48, .48
(L49 , .49
(,50 , .50

’

w W W e W

<o

)
05 )
075 )
Jd )
2 )
3 )
O )
A7 )
50 )
W53 )
58 )
.5824)

maximun (above) towards

50
50
S50
+50
»50
+50

M N Nl W N S

Wave < Vector

(.4588 , ,4588 ,
- (.5088 , ,4088 ,
(,5338 , 3838 ,

0
0 )
0

Energy Rydbergs

3226
+ 3227
3229
v 3231
v 3244
43259
13269
3272
23275
13271
3268
13267

+ 3275
3275
43278
3286
13289
+3290

Energy Rydberss

3226
+3183
3132

B) Eigenvalues perpendicular to,A direction around ke

i)

ii)

Wave - Vector

('5 bl 3 is
(.55 , .45
(.6 , 4
(.5 , 45
(.45 , .45
(,425, .425,

»
’
1]

W6

5)

Energy Rydbergs

« 329
327
323

329
\325
321
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TABLE 4.7
Band Shapes and Effective Masses

of Conduction Band Afound r

Direction Wave-Vector(%%z) Energy (ryd) Effective Mass

A (0, 0, 0) .4208 .12
(0, .05, 0) L4257
(0, .1, 0) .4389
(0, .2, 0) .4836
AL (o, 0, 0) 4208 .12
(.05, .05, .05) L4346
(.1, .1, .1) L4679
(.15, .15, .15) .5101
= (o, 0, 0) .4208 .12
(.05, .05, 0) .4303
(.1, .1, 0) L4546
(.15, .15, 0) .4875
(.2, .2, 0) .5250



Direction

4

Band Shapes and Effective Masses

TABLE 4.8

of Valence Band Around I

Wave-Vector(

(0,
(0,
(0,
(0,
0,

~ ~ NN
. o . B

P

-

~ ~ .~ N ~
. o . .

ot

E

0, 0)

.05, 0)
1, 0)
.15, 0)
.2, 0)

)

0)
.05)
1)
.15)

.2 )

0)
0)
0)
0)
0)

Energy (ryd)

.2530
.2528
.2527
.2522
.2514

.2530
. 2551
.2608
.2694

.2800

.2530
.2546
.2610
.2701
.2811

Effective Mass

-3.46

.87

.85
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Table 4.9
EFFECTIVE MASSES AT L

Longitudinal Direction

Wave-vector (451) Energy (ryd) Effective Mass
(.5, .5, .5) .329157 -1.34
(.475, .475, .475) .328318

(.450, .450, .450) .326742

(.425, .425, .425) 324364

(.400, .400, .400) .321246

Transverse Directions

i) ('5+A9 'S"A} '5)3‘11-“

[

A Energy Effective Mass
0 .329157 -0.83

.05 .327693

.10 .323919

ii) (.5-4, .5-A, .5+24)3L

A Energy Effective Mass
0o . .329157 -1.01

.05 .325652

.075 .321215

.10 .317884



CHAPTER V
DISCUSSION AND CONCLUSION

The aim of this work was to improve the calculation by
varying the ionicity to fit the known experimental gap, to
make a detailed study of the band shapes around the regions of
interest, and to obtain effective masses characterizing these
regions.

The value of .277 for the ionicity which was found to
give eigenvalues at [* which would fi$ the experimental
direct gap is a considerable understatement as was mentioned
in chapter IV. This aspect of the calculation could be greatly
improved by self-consistently calculating the atomic wave-
functions and the charge densities so the orbitals could change
with the redistributed charge densities. The use of Slater's

X« ¢xchange approximation in both the atomic and crystal
potentials would also be an improvement which could be incorp-
orated into this part of the calculation. It is felt however
that the ionicity is a more realistic parameter to vary when
fitting the direct gap than the intersphere potential which
was used in previous work and hence the calculation is improved
through this approach.

The conduction band at [° was found to be parabolic and
isotropic but the valence band at [ 1is anisotropic, that is
its curvature is different in the three symmetry directions
‘and it may be described as having a fluted shape. The effective
masses for these bands and those at |. were calculated and
the value m% = .12 Me for the conduction band at [' agrees

favourably with m*= .14 Me auoted by Koffyberg (1975).
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The maximum in the & svmmetry axis was found to be

a saddle point and consequently there is only one absolute

maximum in the valence band and this cccurs at L = (.5,
oD, .5)%} . The difference in energy between this maximum

and the minimum in the conduction band at [} is 1.32eV.
While this is about .2eV higher than the indirect gaps that
are found experimentally, the presence of only one maximum
in the valence band should explain why the experimentalists
are having such a difficult time locating two indirect gaps.
Apart from the improvement suggested for fitting the
ionicity, the calculation still does not include either
effects of correlation or the free carrier concentrations
which exist in the real crystals and these could have a
significant effect on the band structure. However, it is
hoped that the new knowledge of the band shapes and effective
masses plus the information that there is only one maximum in
the valence band will aid in any future research on cadmium

oxide.



10.
11.

12,

13.

14.
15.

16.
17.
18.
19.

20.

70
BIBLIOGRAPHY

. Altwein, M., Finkenrath, H., Konak C., Stuke, J., and

Zimmerer, G. (1968). Phys, Status Solidi 29, 203.

Breeze, A. and Perkins, P.G. (1973). Solid State Commun.
13, 1031.

Clementi, E. and C.C.J. Roothaan, and M. Yoshimine (1962).
Phys. Rev 127, 1618.

. Clementi, E. (1965). IBM Journal of Research and Development,

Supplement 9, 2.

. DeCicco, P.D. (1965). PhD Thesis., M.I.T. Dept of Physics

(unpublished).

. Herman, F., and Skillman, S. (1963). "Atomic Structure

Calculations" Prentice-Hall, Englewood Cliffs, New Jersey.

Kocka, J. and Konak, C. (1971). Phys. Status Solidi 43, 731.

. Koffyberg, F.P. (1975). Phys. Rev 13, 4470.

Kohler, H. (1972). Solid State Commun. 11, 1687.

Kohn, W. and Sham, L.J. (1965). Phys Rev. 140 A1133.

Liberman, D., Waber, J.T., and Cromer, D.T. (1965). Phys Rev.
137 A27. '

Loucks, Terry (1967). "Augmented Plane Wave Method", Benjamin,
New York.

Lowden, P.0. (1956). "Quantum Theory of Cohesive Properties
of Solids'" Adv. Phys., 5,1.

Maschke, K. and Rdssler, U. (1968). Phys. Status Solidi 28, 577.

Powell, J.L. and Craseman, B. (1961). '"Quantum Mechanics",
Addison-Wesley, Reading, Mass.

Schwarz, K. (1972). Phys Rev B5, 2466.
Slater, J.C. (1937). Phys Rev 51, 846.
Slater, J.C. (1951). Phys Rev 81, 385.

Slater, J.C. (1974). "The Self-Consisfent Field for Molecules
and Solids'". Vol. 4, McGraw-Hill, New York.

Tewari, S. (1973). Solid State Commun. 12, 437.



