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Abstract

The atomic mean square displacement (MSD) and the phonon dispersion

curves (PDC's) of a number of face-centred cubic (fcc) and body-centred

cubic (bcc) materials have been calclllated from the quasiharmonic (QH)

theory, the lowest order (A2
) perturbation theory (PT) and a recently pro­

posed Green's function (GF) method by Shukla and Hiibschle. The latter

method includes certain anharmonic effects to all orders of anharmonicity.

In order to determine the effect of the range of the interatomic interaction

upon the anharmonic contributions to the MSD we have carried out our

calculations for a Lennard-Jones (L-J) solid in the nearest-neighbour (NN)

and next-nearest neighbour (NNN) approximations. These results can be

presented in dimensionless units but if the NN and NNN results are to be

compared with each other they must be converted to that of a real solid.

When this is done for Xe, the QH MSD for the NN and NNN approximations

are found to differ from each other by about 2%. For the A2 and GF results

this difference amounts to 8% and 7% respectively. For the NN case we have

also compared our PT results, which have been calculated exactly, with PT

results calculated using a frequency-shift approximation. We conclude that
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this frequency-shift approximation is a poor approximation.

We have calculated the MSD of five alkali metals, five bcc transition

metals and seven fcc transition metals. The model potentials we have used

include the Morse, modified Morse, and Rydberg potentials. In general the

results obtained from the Green's function method are in the best agreement

with experiment. However, this improvement is mostly qualitative and the

values of MSD calculated from the Green's function method are not in much

better agreement with the experimental data than those calculated from the

QH theory.

We have calculated the phonon dispersion curves (PDC's) of Na and Cu,

using the 4 parameter modified Morse potential. In the case of Na, our

results for the PDC's are in poor agreement with experiment. In the case of

eu, the agreement between the tlleory and experiment is much better and

in addition the results for the PDC's calclliated from the GF method are in

better agreement with experiment that those obtained from the QH theory.
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1. Introduction

The objective in this thesis is to report the results of our calculations of

the mean-square atomic displacement (MSD) and phonon dispersion curves

(PDC's) of a number of monatomic face-centred cubic (fcc) and body-centred

cubic (bcc) materials. In these calculations we have included the quasihar­

monic and the lowest order cubic and quartic anharmonic contributions to

the MSD. Since results for MSD, calculated in the harmonic approximation

from a wide variety of models, are available in the existing literature, we first

provide a short review of these models and point out their shortcomings as

well as the deficiencies in the numerical procedures used in their calculation.

Next we summarize what is known of the anharmonic calculation of the MSD.

We then briefly summarize the results of calculations of the MSD for differ­

ent classes of solids which have been performed using the quasiharmonic and

anharmonic theory and the Green's function method proposed by Shukla and

Hiibschle (1989a). Finally we briefly describe what is experimentally known

of the phonon dispersion curves of the two metals for which our calculations

have been carried out.

Due to the thermal motions of atoms, the intensity of a scattered beam
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of X-rays or neutrons is reduced by a temperature-dependent exponential

factor given by

I(T) == 10 exp( -2W)

where 10 is the intensity at absolute zero and I(T) is the intensity at

temperature T. 2W is the Debye-Waller factor which is proportional to the

MSD. Among the three states of Inatter, solid, liquid and gas, crystalline

solids are very special because the translational and rotational symmetries

which they possess provide a considerable reduction in the mathematics of the

formalism needed in the calculation of the MSD and of other thermodynamic

properties.

Most calculations of the l\1SD have been carried out in the harmonic

approximation, in which the Taylor series expansion of the crystal potential

about its equilibrium configuration is truncated after the quadratic term.

A wide variety of models have been used in these harmonic calculations,

some of which have theoretical shortcomings; for example, any model whose

formalism violates the translational and rotational symmetry of the crystal

lattice (Pal 1973; Kharoo et al. 1977) cannot be physically valid. The
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functional form for MSD is very sensitive to the number of points N employed

in its numerical evaluation because the contribution from the long wavelength

region is weighted heavily. If the MSD is calculated using several different

finite values of N an extrapolation to N --+ 00 can be performed which

provides an exact answer to the sum (Heiser, Shukla and Cowley 1986). In the

vast majority of harmonic calculations in the existing literature (for example

Tripathi and Behari 1971; Prakash, Pathak and Hemkar 1975; Gupta 1975;

Prakash and Hemkar 1973; Kushwawa 1979; Sangal and Sharma 1971) this

extrapolation method has not been incillded in the evaluation of the MSD.

At low temperatures the harmonic approximation is usually adequate in

predicting the MSD and thermodynamic properties of a solid. At higher

temperatures the role of the omitted higher-order terms in the Taylor series

expansion of the crystal potential energy becomes important and these terms

have to be considered in the calculation of the MSD and the thermodynamic

properties of the system. These are the anharmonic terms of the Hamiltonian

and the phenomena they give rise to are referred to as anharmonic effects.

Several important properties of bllik solids fall into this category, including

the thermal expansion of solids, the temperature dependence of thermal re­

sistivity, and the deviation of the specific heat from the classical Dulong-Petit
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law at high temperature. The harmonic approximation can explain none of

these phenomena.

The implicit anharmonic contribution to all thermodynamic and MSD

calculations can be included by performing harmonic calculations at differ­

ent volumes and allowing the phonon frequencies to vary continuously with

the volume of the crystal. This is known as the quasiharmonic (QH) ap­

proximation. However for the evaluation of the full anharmonic contribution

the explicit anharmonic terms have to be included in addition to the QH

contribution.

The explicit anharmonic contributions can be calculated by a variety of

methods. The most commonly used is perturbation theory (PT) in which

the QH approximation is used to describe the unperturbed state and the

anharmonic contributions to the MSD and thermodynamic properties are

expressed in terms of the QH eigenvalues and eigenvectors of the system and

of the Cartesian derivatives of the potential function.

In PT we want to group together terms which are of the same order of

anharmonicity. This is accomplished via the introduction of an ordering pa­

rameter such as the Van Hove ordering parameter A, which is defined to be

the square root of the MSD divided by the interatomic nearest neighbour dis-
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tance. All terms in the perturbation expansion of the MSD can be grouped

by order in A. The first term in the expansion is the QH contribution which

is of order Ao. By symmetry all terms of odd order in A vanish. The next two

non-zero terms, the cubic and quartic, are of order A2
• These two terms are

of similar magnitude but are of opposite sign, so both must be included in

the A2 PT result. Inclusion of one withotlt the other can lead to serious er­

rors in numerical results (Shukla 1994). The classical (or high-temperature)

expressions for the cubic and quartic anharmonic contributions to MSD were

first derived by Maradudin and Flinn (1963) who evaluated them approxi­

mately for a nearest neighbour (NN) central force model of a fcc crystal in

the leading-term approximation (LTA). Shllkla and Plint (1989) (SP) how­

ever have found that the A2 anharmonic contribution to MSD obtained from

the LTA has the wrong sign. Therefore the LTA has not been used in any of

our calculations.

The MSD of a NN central force fcc solid has been calculated, in the QH

approximation and to order A2 exactly, by Heiser, Shukla and Cowley (1986)

(HSC) for the Lennard-Jones (L-J) potential. In the absence of experimental
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values of MSD for a L-J solid, HSC compared their ;\2 PT results with results

obtained from the Monte Carlo (MC) method which was also used by these

authors in the computation of MSD. In some sense the Me results are the

data obtained from the computer experiment. The comparison of the ,\2 and

MC results revealed that the ,\2 theory was adequate up to ~Tm where Tm is

the melting temperature of the solid.

To overcome the inadequacy of the ;\2 PT a Green's function method has

been proposed by Shukla and Hiibschle (1989a)(SHl). They used the Green's

function method to calculate the MSD of a NN L-J fcc solid, and compared

their results with HSC. At all temperatllres the values of MSD obtained from

the Green's function method were found to be in better agreement with the

MC results than the values of MSD obtained using ,\2PT. The agreement

between the Green's function and MC results was excellent except near the

melting point where the Green's function results were about 6% lower than

the MC results.

The only other fcc system for which a similar type of extensive investiga­

tion of MSD has been carried out is AI. The MSD of Al has been calclllated,

in the QH approximation and using ;\2PT, by SP. In their calculations SP

used two forms of the Morse potential. The first of these was the familiar
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3 parameter Morse potential and the second was a 4 parameter modified

Morse potential. For both potential functions the calculations of MSD were

performed in the NN approximation. The results from the modified Morse

potential were found to be in better agreement with experimental data than

the results obtained from the 3 parameter Morse potential.

The Green's function method was first used to calculate the MSD of

Al by Shukla and Hiibschle (1989b) (SH2). Their results, obtained using

the 3 parameter Morse potential, were in poor agreement with experiment.

Since the 4 parameter modified Morse potential was not used by SH2 in

their calculations, it would be interesting (in light of the results of SP) to

use the Green's function method to calculate the MSD of Al using the 4

parameter modified Morse potential, and to determine whether the results

are in better agreement with experiment than those calculated from the 3

parameter Morse potential. The comparison of results for MSD obtained

from the 3 parameter Morse potential and the 4 parameter modified Morse

potential can also be carried out for several other fcc metals for which the

parameters of these potentials are known (Macdonald and Macdonald 1981).
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The MSD of the alkali metals was calculated for the first time, in the QH

approximation and using ,,\2 PT and molecular-dynamics (MD) simulations,

by Shukla and Mountain (1982) (SM1) and Shukla and Heiser (1986) (SH3).

They used a sixth-neighbour interaction obtained from the Ashcroft pseu­

dopotential and Vashishta-Singwi screening function (AVS). Here the MD

results (again a kind of computer experiment) replace the real experimental

data. Good agreement was found between the MD and ,,\2 PT results at

temperatures up to Tm except in the case of Cs where the difference was

found to be about 15% near Tm .

Hiibschle and Shukla (1989) (HS) used the QH theory, ,\2 PT and the

Green's function method to calculate the MSD of Na, K and Cs. HS used the

same pseudopotential function, potential parameters and lattice constants

which had pre-viously been used in SH3. HS found that near Tm the values

of MSD calculated from the Green's function method were only about 3%

higher than the corresponding results obtained using ,\2 PT and were not in

much better agreemellt with the MD results of SH3 than the ,,\2 PT results.

Since Green's function calculations of the MSD of the bcc alkali metals

have not been done using a potential function other than the AVS pseu­

dopotential, it would be of interest to use the Green's function method to

8



calculate the MSD of bcc alkali metals using a potential function such as the

Morse potential or the Rydberg potential, and to compare the values of MSD

obtained from those calculations with experimental values of MSD. Since the

Morse and Rydberg potential parameters are also available for several bcc

transition metals (Macdonald and Shukla 1985) the MSD of these metals can

also be determined using the QH, ;\2 PT and Green's function methods.

Unlike the fcc case, for bcc materials it is essential to include both the

nearest- and next-nearest neighbour interactions in the harmonic and an­

harmonic calculation of MSD. It has been demonstrated (Shukla 1981) that

in the calculation of anharmonic effects in bcc metals the NN approxima­

tion produces misleading results. This problem arises because the nearest­

and next-nearest neighbour distances are almost equal in the bcc lattice and

therefore the interaction range of the pair potential must include the second

neighbour shell. This is the next-nearest neighbour (NNN) approximation.

For fcc solids, the Green's function method has not been used to calculate

the MSD in the NNN approximation and it would be of interest to carry out

these calculations using the QH, A2 PT and Green's function methods and

to compare our results with the NN reslllts in order to determine whether

the second-neighbour interactions affect the values of MSD.
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The phonon dispersion curves of a solid (AI) were first obtained experi­

mentally by Glmer (1948) using thermal diffuse scattering of X-rays (TDS).

Subsequently TDS was used by Jacobsen (1955) to measure the PDC's of Cu.

The TDS method was eventually superseded by the more accurate technique

of inelastic neutron scattering (INS), first used by Brockhouse and Stewart

(1955) to measure the PDC's of AI.

The INS method was first applied to Cu by Cribier et ale (1961). Their

initial work has since been improved upon by the more detailed results of

Sinha (1966), Svensson et aI. (1967), Nicklowet aI. (1967), and Miller and

Brockhouse (1971). Larose and Brockhouse (1976) obtained the PDC's of Cu

for the first time at T rv Tm • INS has also been used to obtain the PDC's of

other solids. The measurements for Na were performed for the first time by

Woods et aI. (1962) and later by Millington and Squires (1971). The latter

results were obtained at T rv Tme

Since the anharmonicity is largest around T == Tm the contribution of

anharmonic effects to the phonon frequencies can be calculated through the

Green's function method. Such frequencies are known as the renormalized

phonon frequencies and indeed they are the ones which should be compared

with the real experimental data of Cu and Na at T rv Tme

10



The outline of this thesis is as follows: In Chapter 2 we provide a summary

of some theoretical results of the Green's function method which are relevant

to the calculation of the MSD and PDC's of solids. We also describe the

numerical procedures used in these Green's function calculations, and in

similar calculations which were carried out in the QH approximation and

using ,\2 PT.

In Chapter 3 we report the results of our calculations of MSD for a

Lennard-Jones solid (Xe) which were carried out in the NN and NNN approx­

imations in order to determine whether the second neighbour interactions are

important in the calculation of MSD. We also compare our ,\2 PT results for

the MSD of Xe with those of Goldman (1968) which were obtained using a

frequency-shift approximation. Since our calculations have been done exactly

this comparison will determine whether the frequency-shift approximation is

valid.

We then report the results of our calculations of MSD for seven fcc met­

als, five bcc alkali metals, and five bcc transition metals. For each class

of substance the model potentials used in our numerical procedure are also

described. Wherever possible our results for MSD are compared with exper­

imental data and (for K alone) with the results of the calculations of SH1

11



which were obtained from the AVS pseudopotential.

In Chapter 4 we report the results of our calculation of the phonon dis­

persion curves of Na and Cu. These have been obtained using the QH and

Green's function methods. Our results are compared with experimental data.

A summary of our results is presented in Chapter 5.

12



2. Calculation of MSD

In this chapter we describe the theory and numerical procedures which

we have used in our calculation of the MSD and PDC's of fcc and bcc solids.

We begin by briefly summarizing the theory of the calculation of MSD.

Next we present (without outlining the whole theory) the Green's function

method of Shukla and Hiibschle from which we have obtained the MSD and

PDC's of a number of cubic solids in the high-temperature limit and in the

static approximation (to be discussed later).

Finally we summarize the numerical procedure required in the calculation

of MSD using the Green's function method. The numerical procedures re­

quired in the calculation of MSD in the QH approximation and using A2 PT

are also briefly described since we have also used these methods to calculate

the MSD of solids for the purpose of comparison with the results obtained

from the Green's function method.

2.1. Mean Square Displacement

The instantaneous displacement of an atom from its equilibrium position

in the crystal lattice can be expressed in terms of a superposition of all the

normal vibrational modes of the crystal. In a regular periodic crystal the

13



(1)

normal modes are plane waves and their quantized states are called phonons.

The Fourier expansion of the atomic displacement involves the harmonic

eigenvalues (or frequencies) w(qj) and the eigenvectors e(qj) and wavevec-

tors q of all the phonon modes of the system. In second quantized form

the plane-wave representation of the displacement is (Shukla and Hiibschle

1989a):

[

~ ] 1/2 ( ")f It "eO' q]" )
ua(t) = 2NM ~ (w(qj))1/2 exp[Zq · rdAqj(t

q]

In Eq.( 1), u~(t) is the instantaneous displacement of the p,th atom in the

crystal from its equilibrium position, in the a-Cartesian direction, at time

t. h is Planck's constant divided by 27r. N is the number of unit cells in

the crystal, M is the atomic mass, and ea (qj) is the a-Cartesian component

of e(qj). rf is the position vector of the fth lattice point. The quantity

j denotes the branch index of a phonon mode. Hereafter the phonon mode

having wavevector q and branch index j will be referred to as the qjth phonon

mode. The sum over q includes all the phonon wavevectors within the first

Brillouin zone (FBZ) of the crystal. We have used the notation

14



(2)

where at and aqj are the usual phonon creation and annihilation oper-

ators. The time dependence of Aqj is in the Heisenberg representation. H

denotes the Hamiltonian of the system. The expression for MSD is obtained

by squaring Eq.( 1) and taking the thermal average:

(3)

The angular brackets denote the thermal average. For an operator 0,

this is defined by:

(4)

Here f3 == l/kB T where kB is the Boltzmann constant and T is the tem-

perature. In order to obtain the MSD for a given Hamiltonian we must

therefore evaluate the quantity < Aq1i1 tAq2i2 > in Eq.( 3).

15



2.2. The Green's function method

In the harmonic approximation, the Taylor series expansion of the crystal

potential energy is truncated after the quadratic term. In PT of lowest order,

and in the Green's function method of Shukla and Hiibschle, the cubic and

quartic terms in the Taylor expansion are also included in the Hamiltonian

of the system, which is expressed as the sum of the harmonic component Ho

and an anharmonic component H':

H == Ho + H'

Ho =~ nw(qj)(a!uaqj + i),
v

(5)

(6)

H'==,\ L: V3(Qljl,Q2j2,q3j3)Aq1j1Aq2j2Aq3j3+ (7)
qljl ,q2j2 ,q3j3

,\2 L: V 4
(qtjt, q2j2, Q3j3, q4j4)Aq1j1 Aq2j2 A q3j3 Aq4i4

ql j1 ,Q2j2 ,Q3j3 ,q4j4

In Eq.( 7), A is the Van Hove ordering parameter and V 3 and V 4 are

the Fourier transforms of the third and fourth order atomic force constants.

These are defined by (Shukla and Wilk 1974):
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In Eq.( 9) cPa, ...,S(f!l) is the Cartesian tensor derivative of the potential

function at the f!lh lattice point. The cethod by which these tensor deriva-

tives are obtained has been described thoroughly by Shukla and Plint (1989)

so we will not repeat it here. The ~(q) function is equal to 1 if its argucent

is zero or a reciprocal lattice vector, and is equal to zero otherwise.

The derivation of the Green's function cethod is very lengthy and has

been outlined in detail elsewhere (Zubarev 1960; Shukla and Muller 1971;

Shukla and Hiibschle 1989a) so we will only succarize soce previously re-

ported results of this derivation which are relevant to our calculation of the

MSD and PDC's of solids.

Shukla and Muller (1971) have obtained the expression for the double-

--,
tice tecperature-dependent Green's function G~q,(t) for the anharconic

Haciltonian of Eq.( 5). The Fourier transforc of this is expressed as

17



(10)

In Eqs.( 10) and ( 11), bqql and bjjl are Kronecker delta functions. IIqj(w)

is known as the phonon self-energy term. IIqj (w) contains quartic and cubic

components. The quartic component is independent of w but the cubic com-

ponent has w-dependence. If this w-dependence is assumed to be weak and

the cubic component of IIqj (w) is evaluated for w == 0 (static approximation),

G~~,(w) then reduces to the following simple form:

(11)

The quantity O(qj) is the renormalized (or RE) phonon frequency. In

the high-temperature limit (T > 8, where 8 is the Debye temperature of

the solid) O(qj) is expressed as (Shukla and Hiibschle 1989a):

_ ,\2k B T
2N

+,\2k B T
2N

(13)

18



(14)

Here the quantities ~3(qj) and ~4(qj) are cubic and quartic anharmonic

phonon frequency shifts. These are due to the corresponding anharmonic

terms in the Hamiltonian. From Eq.( 11) the quantity < AqljltAq2j2 > in

Eq.( 3) is obtained, yielding the high-temperature RE expression for MSD:

2 kBT 1
< U >RE= NM ~ !V(qj)

q]

Substitution of the expression for f!(qj) in Eq.( 12) into Eq.( 14) and

expansion of the RHS in a binomial expansion in powers of A, yields three

terms to O(A2
):

(15)

_ (kBT)2,\2
- - 2N2M

The expressions for < u 2
>QH, < u 2

>Q and < u 2 >0 in Eqs.( 15), ( 16)

and ( 17) are, respectively, the same as the high-temperature expressions for

19



the harmonic, quartic and cubic anharmonic contributions to MSD which

are obtained using A2 PT (Shukla and Hiibschle 1989a). This demonstrates

that in this order of ,A the static approximation produces exact results. The

A2 PT expression for < u2 > is the sum of these three terms:

2 2 2 2< U >PT==< U >QH + < U >Q + < U >0 (18)

The Green's function result for MSD 110wever also includes anharmonic

contributions which are of order higher than ,A2. In this thesis the numerical

difference between < u2 >RE and < u2 >QH will be referred to as the RE

anharmonic contribution to MSD and the sum of < u2
>Q and < u2 >0 will

be referred to as the ,A2 a,nharmonic contribution to MSD. This should not be

confused with the ,A2 PT result which is expressed by < u2 >PT in Eq.( 18).

In Eqs.( 15), ( 16) and ( 17) the subscript QH denotes the quasiharmonic

approximation, in which the formalism is the same as in the harmonic case

but in which the w(qj) are permitted to vary continuously with the volume

of the crystal in order to account for the effects of thermal lattice expansion.

In all our calculations of the MSD and phonon frequencies of solids, w(qj)

denotes a QH frequency.

20



In addition to providing us with the inforcation needed to evaluate the

MSD, the knowledge of the w(qj) and !1(qj) (for values of q lying in the prin-

cipal syccetry directions of the crystal) also allows us to plot the dispersion

curves of the crystal, in the QH and RE cases respectively.

2.3. Numerical Procedure

The nucerical values of the w(qj) and e(qj) are obtained froc the dy-

nacical catrices Dcxj3 (q):

w 2(qj) == l:ecx (qj)Dcxj3 (q)ej3(qj)
cxj3

(19)

The cethod we have used to construct the dynacical catrices is de-

scribed in detail in Shukla (1966) and Shukla (1980) so we will not reproduce

it here.

The quantities ~3(qj) and ~4(qj) in equation (13) are evaluated froc

the following expressions (Shukla and Hiibschle 1989a):
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L.\4(qj) = ~f;2 L: ea(qj)eJ3(qj) -E[1 - cos(q · r£l)] L: <PaJ3/'5(£1)[S/,5(O) - S/,5(£1)](21)
a~ i 1 7 8

where the S-tensors are defined by

'"' ea (qj)e;3(qj)
SaJ3(£) = LJ2( 0) cos(q · r£)

qj W qJ

and the Fa ;3 and 9 functions are defined by

(22)

(24)

In the argument of Sa/3ce) , £ == 0 denotes ri == 0 (the position of the

central lattice site). Since all the information about the e(qj) and w(qj) is

contained within the Da ;3(q) matrices the S-tensors may also be represented

in terms of the Da;3 (q) matrices (Shtlkla and Wilk 1974).

The real-lattice sums over £1 in Eq.( 21), and over £1 and £2 in Eq.( 20),

include all neighbouring atoms whicll lie within the interaction range of the
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(25)

(26)

pair potential. The primes over the summations denote the omission of the

central lattice site from these sums.

In theory, the sum over f in Eq.( 20) includes all the atoms in the crystal.

However, in practice, contributions to ~3(qj) decrease in magnitude with

increasing r s and the sum over f can eventually be truncated after a finite

number of neighbour shells. In our calculation of ~3(qj) for fcc and bcc

materials, the values of f we have used correspond to 7 and 12 neighbour

shells respectively. This was found to produce adequate convergence for

~3(qj) and for < u2 >0 which is obtained from the ~3(qj) as follows:

2 kBT " ~3(qj)
< u >0== - NM ~ w2(qj)

q]

Similarly the quartic anllarmonic contribution to MSD is numerically

obtained from the ~4(qj):

2 kBT " Ll4 ( qj)
< U >Q= - NM~ w2(qj)

q]

The quantities < u2 >QH, < u2 >0 and < u2 >Q can also be evaluated in

terms of the S-matrices (Sllukla and Plint 1989). In this form the expression

for < u2 >QH is (Shukla and Mountain 1982):
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(27)

An alternate method of evaluating < U
2

>0 and < U
2

>Q (Goldman

1968) involves replacing ~3(qj) and ~4(qj) with a qj-independent average

frequency shift. We will examine the merits of this frequency shift method

in Chapter 3. < u 2 >RE is evaluated by use of Eq.( 14).

In theory the reciprocal lattice sums over q in Eqs.( 14)-( 17), ( 22),

and ( 25)-( 26) range over the entire FBZ of the crystal. However, because

the FBZ of a cubic crystal possesses cubic symmetry it is only necessary

to consider the wavevectors lying within the irreducible 1/48th section of

the FBZ in evaluating these sums. The values of q used in our calculations

make up a simple cubic mesh of wavevectors in the 1/48th FBZ. For the fcc

lattice, the co-ordinates of these reciprocal space wavevectors q == -L'lrpareao

determined from the relations:

L 2: Px 2: Py 2: pz 2: 0; Px + Py + pz < 1.5L

and for the bcc lattice,

(28)

Px + Py :::; L; Py + pz :::; L; pz + Px :::; L; L 2: Px 2: Py 2: pz 2: 0 (29)
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where p == (Px,Py,Pz). Here Px,Py,Pz and L are all non-negative inte­

gers, ao is the lattice constant and L is defined to be the step length in the

reciprocal lattice. Each wave-vector in the 1/48th section of the FBZ is as­

signed a weighting factor in order to account for the number of equivalent

points in the full FBZ. The central wavevector q == 0 is omitted [because here

w(qj) == 0] so in practice the normalization factor N is replaced with (N-1).

In a real crystal, L is very large so if the calculation of MSD is to be

realistic it is desirable to extract the value of the MSD in the limit L --t 00.

It has been observed (Heiser, Shukla and Cowley 1986) that the numerical

values of MSD vary linearly with 1/L so by calculating the MSD for several

finite values of L we can obtain the MSD in this limit. In our calculation

of MSD for fcc materials, the extrapolation has been performed using step

lengths of 6, 8 and 10. For bec materials, step lengths of 20, 25 and 30 have

been used.
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3. Results for Mean Square Displacement

In this chapter we report the results of calculations of MSD which we have

performed for different types of elemental solids. We begin by reporting the

results of our calculation of MSD for a fcc Lennard-Jones (L-J) solid (Xe)

in which we have used potential parameters fitted to NN and NNN pair

interactions. We have summarized the method by which these parameters

are determined in order to show why their values depend upon the interaction

range of the pair potential. The MSD of Xe has been calculated in the NN and

NNN approximations and the NN and NNN results have been compared with

each other in order to determine whether the second neighbour interactions

are important in the anharmonic calculation of MSD. We also compare our

,,\2 PT results for the MSD of Xe, which have been calculated exactly, with

results obtained by Goldman (1968) using a frequency-shift approximation

method. We conclude that this approximation method is inadequate in the

calculation of MSD to 0(,,\2).

Next we report our results of MSD for seven fcc metals. These have been

carried out in the NN approximation using both the 3 parameter Morse po­

tential and a 4 parameter modified Morse potential. Except in the case of Al
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we have only reported the.results which were obtained using the 4 parameter

modified Morse potential. Finally we describe our calculation of the MSD of

five alkali metals and five bcc transition metals. For each of the bcc metals

the potential function we have used is either the 3 parameter Rydberg po­

tential or the 4 parameter modified Morse potential. For all the bcc metals

our calculations have been carried Olit in the NNN approximation. In all our

calculations of MSD our results have been compared with experimental data

wherever it is available.

In this chapter and in Chapter 4 all references to the anharmonic contri­

bution to the MSD and phonon frequencies denote the explicit anharmonic

contribution obtained from the Green's function method (and, in the case

of MSD, the A2 PT method as well) rather than the implicit anharmonic

contribution which is already included in the QH result.

3.1 MSD of a Lennard-Jones Solid

3.1.1. Potentials and Lattice Constants

In our calculations of the MSD of a L-J solid we have used the familiar

12-6 form of the L-J potential:
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[(ro)12 (ro)6]cPL-J(r)=c -;: -2-;: (30)

Here c is the well depth and ro is the position of the minimum of the

potential. These potential parameters are obtained from experimental values

of the sublimation energy La and the zero-temperature lattice constant rz ,

and satisfy tIle relations (Shukla and Shalles 1985)

(31)

(32)

where U(r) is the static energy of the L-J potential:

(33)

and Eh is the zero-point energy.

(34)

In Eq.( 33) rl is tIle position vector of the fth lattice point. The sum over

f includes all the lattice points which lie within the interaction range of the

pair potential. The prime over the slimmation sign indicates the omission

of the central lattice site from the SlIm. In the NN approximation, the sum
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over £ in Eq.( 33) therefore includes only the 12 nearest neighbours of the

fcc crystal, while in the NNN approximation the 6 next-nearest neighbours

are also included. Since U(r) therefore depends upon the interaction range

of the pair potential it follows that the potential parameters c and ro, which

are obtained from U(r) and its derivative, are also dependent upon the range

of the potential.

The potential parameters we have used in our calculation of MSD are

taken from Shukla and Shanes (1985) (for the NN case) and Brown (1965)

(for the NNN case). These potential parameters are listed in Table I. The

procedure outlined above was used to calculate the parameters of the L-J

potential in both these references. The lattice constants for Xe used in our

calculations are taken from experimental data in Klein and Venables (1977).

3.1.2 Results and Discussion

In Fig. (3.1.1) we present our results for the MSD of Xe. The NN

and NNN results, calculated in the QH approximation, are in very good

agreement. Near Tm the NNN result is only 2.3% larger than the NN result

which indicates that the second neighbour interaction does not have much

effect on the QH value of MSD. The agreement between the NN and NNN
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Table I. Lennard-Jones Potential Parameters for Xenon

t 10

(10- 14erg) (A)

NNa 4.577 4.318

NNNb 4.086 4.356

a Shukla and Shanes (1985)

b Brown (1965)
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Figure 3.1.1.

Results for the Mean Square

Displacement of Xenon

The solid lines are the results calculated from

the NN model. Dashed lines are results from the

NNN model. QH, PT and RE refer to quasiharmonic,

A2 and renormalized vales of MSD respectively.

D denotes Debye temperature and M the melting

temperature.
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results is however not as good for the ,\2 PT results for MSD for which the

NNN results are 8.5% larger that the NN results near Tm . This is due to

the fact that the ,\2 anharmonic contribution to MSD, calculated from the

NNN model, only has about two-thirds the magnitude of the ,\2 anharmonic

contribution obtained from the NN model. This happens because the ,\2

anharmonic contribution to MSD is the sum of two terms « u2 >0 and

< u2 >Q) wllich are of roughly the same magnitude but have opposite sign

and which therefore largely cancel each other. Relatively small changes in

the values of < u 2 >0 and < u 2 >Q due to the second neighbour interactions

therefore can cause proportionately larger changes in their total. In order

to illustrate this, in Tables II(a) and II(b) we have tabulated the values

of the QH, cubic and quartic contributions to MSD in the NN and NNN

approximations respectively. The ,\2 anharmonic contribution to MSD (this

is the sum of the cubic and quartic contributions), the total ,\2 PT result and

the RE result have also been incillded in Tables II(a) and II(b) for the sake

of completeness.

For the renormalized values of MSD the agreement between NN and NNN

results is only slightly better than in the PT case with the NNN result being

about 7% larger than the NN result. For tIle L-J solid the second neigilbour
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Table II(a). Results for MSD of Xe in the NN Approximation

T (K) QH C Q C+Q .,\2 PT RE

40 .0451 .0047 -0.0055 -0.0008 0.0443 0.0444

60 .0729 .0124 -0.0145 -0.0021 0.0707 0.0709

75 .0974 .0223 -0.0262 -0.0039 0.0935 0.0938

110 .164 .0647 -0.0764 -0.0117 0.152 0.154

120 .190 .0877 -0.104 -0.0159 0.174 0.176

130 .216 .115 -0.136 -0.0210 0.195 0.199

140 .247 .152 -0.180 -0.0280 0.219 0.225

150 .283 .203 -0.240 -0.0374 0.246 0.254

160 .324 .270 -0.320 -0.0499 0.274 0.287

Table II(b). Results for MSD of Xe in the NNN Approximation

T (K) QH C Q C+Q .,\2 PT RE

40 .0461 .0051 -0.0057 -0.0006 0.0455 0.0455

60 .0745 .0133 -0.0149 -0.0015 0.0729 0.0730

75 .0995 .0240 -0.0268 -0.0028 0.0967 0.0970

110 .168 .0696 -0.0778 -0.0082 0.159 0.161

120 .194 .0943 -0.105 -0.0112 0.183 0.185

130 .221 .123 -0.138 -0.0147 0.207 0.209

140 .253 .163 -0.183 -0.0194 0.233 0.238

150 .290 .217 -0.243 -0.0257 0.264 0.271

160 .331 .289 -0.323 -0.0340 0.297 0.307

All values of MSD are in units of A2
• C and Q denote cubic and quartic

anharmonic contributions to MSD.
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interactions are therefore important in the anharmonic calculation of MSD

but are not so important in the quasiharmonic case.

For the L-J potential the results for MSD can alternately be converted

to a dimensionless form in which T and MSD are expressed in units of c/ kB

and 0-
2 /1000 respectively. Here 0- is the zero position of the L-J potential.

(For the 12-6 form of the L-J potential, a == 2-1
/

6 ro.) The advantage of this

representation is that for a given value of r / ro the fully dimensioned MSD

can be obtained from the dimensionless value of MSD for any choice of c and

roo However, since values of c and ro (calculated using the same values of Lo

and rz) are different in the NN and NNN approximations, the dimensionless

values of MSD for the NN and NNN cases should not be compared because

their units are not the same. In Fig.(3.1.2) we have converted the data of

Fig.(3.1.1) to dimensionless form to illustrate this point.

In the past, a number of approximation methods have been used to cal­

culate the anharmonic MSD of rare-gas solids. An example is the frequency­

shift method used by Goldman (1968) to obtain the MSD of Xe to 0(,,\2) for

a NN L-J potential. Since our calculation of the MSD of Xe has been done

exactly, a comparison of Goldman's results with our ,,\2 PT results will allow

us to assess the validity of the frequency-shift method. In these calculations
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Figure 3.1.2.

Dimensionless Results for the

Mean Square Displacement of Xenon

The solid lines are the results calculated from

the NN model. Dashed lines are results from the

NNN model. QH, PT and RE refer to quasiharmonic,

,\2 and renormalized vales of MSD respectively.

Temperatures are expressed in units of c/ kB and

MSD in units of 0-
2 /1000 (see text for definitions).
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we have used the same values of c, ro and L used by Goldman in his work

-14 0(c == 4.576 X 10 erg, ro == 4.318A, L==20).

In Fig. (3.1.3) we have compared our NN ,\2 PT results with those of

Goldman. Our results disagree with Goldman's at all temperatures above the

Debye temperature (where the high-temperature expressions we have used to

calculate the QH and anharmonic contributions to the MSD are valid). Near

Tm , Goldman's results are over 23% below the exact result. The frequency-

shift method therefore does not appear to be a very good approximation.
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Figllre 3.1.3.

Comparison of Theoretical Results

for the Mean Square Displacement

of Xenon

The solid line is the A2 result calculated from

the NN model. The dashed line represents the A2

results of Goldman (1968). D denotes the Debye

temperature and M tIle melting temperature.
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3.2 MSD of fcc metals

3.2.1 Potentials and Lattice Constants

For all seven fcc metals we have used the 3 parameter Morse potential in

our calculation of MSD:

(35)

We have also used the 4 parameter (modified) Morse potential:

(36)

The potential parameters c, ro , and a, which appear in both the 3 and 4

parameter forms of the Morse potential, are determined from experimental

values of the sublimation energy, zero-temperature lattice parameter and De-

bye temperature of the material. The modified Morse potential also contains

a fourth parameter, b2 , which is obtained from thermal expansion data. (If

b2 is set equal to 1 the 4 parameter modified Morse potential of Eq.( 36)

reduces to the 3 parameter form of Eq.( 35).) The method by which these

potential parameters are determined is outlined in Macdonald, Shukla and

Kahaner (1984) (MSK) so we will not repeat it here.
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In the L-J case the second-neighbour interactions have already been found

to be important in the anharmonic calculation of MSD for a fcc solid. This

is however not necessarily the case for other choices of potential function.

Shukla (1994) has found that for NN fcc solids, the ,A2 contribution to MSD

obtained from the 3 parameter Morse potential is much smaller than the

,\2 contribution obtained from the L-J potential. It is likely that this is

also true in the NNN approximation in light of the small effect the second

neighbour interactions have upon the QH values of MSD. In both the NN and

NNN approximations, the anharmonic lVISD values obtained from the Morse

potential should not differ much from the QH results, and therefore probably

do not differ much from each other. In our Morse potential calculations

involving the fcc metals we have therefore neglected the second-neighbour

interactions in these calculations and used the NN approximation only. Our

values of the 3 and 4 parameter Morse potential parameters are tal<en from

Macdonald and Macdonald (1981) who calculated them for the NN case.

These parameters are listed in Table III.

The lattice constants used in our calculations are obtained from experi­

mental lattice constants (Pearson 1967) and recommended values of thermal

linear expansion (Touloukian 1975).
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Table III. Nearest Neighbour Morse Potential

Parameters for the fcc metals

ro a E b2

(A) (A-I) (10- I2 erg)

eu 2.5471 1.1857 0.9403 2.265

Ag 2.8675 1.1255 0.7874 2.3

Ca 3.9264 0.8380 0.5535 1.0

Sr 4.2804 0.7867 0.5442 1.0

Al 2.8485 1.1611 0.6369 2.5

Ph 3.4779 0.8350a 0.5500 1.5

Ni 2.4849 1.3909 0.9843 2.4

From Macdonald and Macdonald (1981). The parameter b2 is only rele­

vant to the 4 parameter form of the Morse potential (modified Morse).

a This entry alone is different in Macdonald and Macdonald. (Shukla,

private communication.)
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3.2.2 Results and Discussion

In Fig. (3.2.1) we present the results of our calculation of the MSD of

Al which were carried out using the 3 parameter Morse potential and the 4

parameter modified Morse potential. For clarity only the QH and RE curves

have been included in Fig. (3.2.1).

In the QH case, the results for MSD calculated using the 3 parameter

Morse potential differ considerably from those calculated using the 4 param­

eter modified Morse potential. Near Tm , the 4 parameter QH results are 6%

larger than the 3 parameter QH results. However, in both the A2 PT and

RE cases the 3 parameter and 4 parameter results are not very different with

the 4 parameter results being about 2% larger. In the case of Al the extra

parameter of the 4 parameter modified Morse potential therefore does not

provide much additional anharmonicity and only serves to ,push up the QH

curve. This is also true in the cases of eu, Ni, and Ag. In the case of Ph the

values of MSD calculated using the 3 parameter and 4 parameter forms of the

Morse potential are not very different regaJrdless of whether the method used

is the QH approximation, ;\2 PT or the Green's function method. For these

metals we have therefore only presented the values of MSD whicll we have
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Figure 3.2.1.

Comparison of Theory with Experiment for

the Mean Square Displacement of Aluminum

The solid lines are the values of MSD calculated

from the 4 parameter Morse potential. 4QH and 4RE

denote the QH and RE results respectively.

The dashed lines are the values of MSD calculated

from the 3 parameter Morse potential. 3QH and 3RE

again denote the QH and RE results respectively.

The points represent the experimental data of

Killean (1974). D denotes the Debye temperature

and M the melting temperature.
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calculated using the 4 parameter modified Morse potential, which overall are

in better agreement with experiment than the results obtained from the 3

parameter Morse potential. This has been done to avoid redundancy and to

clarify our results and their comparison with experiment.

For Al our results agree well with the experimental data of Killean (1974)

at RT but at higher temperatures the experimental data curve upwards from

our results. For both the 3 parameter and 4 parameter forms of the Morse

potential the A2 PT and RE curves produce successive improvements (in

comparison with the QH results) in the agreement between our results and

the experimental data, but in tIle case of the RE anharmonic contribution to

MSD tilis improvement is clearly negligible when compared with the differ­

ence between the QH and experilnental curves. The situation is similar for

the A2 PT results which have been omitted from Fig.(3.2.1).

For Cu (Fig. 3.2.2) our results agree well with the experimental data of

Martin and O'Connor (1978) but only at low temperatures. At temperatures

above 600 K our QH results fall short of the experimental data. The inclusion

of the anharmonicity improves the agreement between theory and experiment

to some extent; however, near Tm tIle RE anharmonic contribution to MSD

only accounts for about one-fifth of the discrepancy between our QH results
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Figure 3.2.2.

Comparison of Theory with Experiment for

the Mean Square Displacement of Copper

The solid lines are the QII, A2 PT and

RE results calculated from tIle modified Morse

potential. The points represent the experimental

data of Martin and O'Connor (1978). D denotes the

Debye temperature and M the melting temperature.
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and the experimental data. The A2 PT curve lies slightly below the RE curve,

which is in the best agreement with experiment.

In the case of Pb (Fig. 3.2.3) our MSD curves agree well with the exper­

imental data of Merisalo et al.(1984) and Lisher (1976) at low temperatures,

but above 300 K this agreement worsens until, near the melting point, the

QH values of MSD are over one-third lower than the experimental value of

MSD. The RE curve is in the best agreement with experiment but the RE

anharmonic contribution to MSD still accounts for less than one-tenth of the

discrepancy between the QH curve and the 550 K experimental point.

For Ag (Fig. 3.2.4) our results agree well with the experimental data of

Simerska (1961) up to 900 K, and in this temperature range the anharmonic

MSD curves are also in better agreement with the experimental results than

the QH curve although the anharmonic contribution to MSD is not very

large. Above 900 K all of our results fall short of the experimental data but

the anharmonic contribution to MSD still improves the agreement between

our results alld the experimental data to some extent, with the RE results

being in slightly better agreement with experiment than the ,\2 PT results.

For Ni (Fig. 3.2.5) the experimental data (Singh and Sharma 1971) is

only available up to approximately Tm/2. At low temperature our results
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Figure 3.2.3.

Comparison of Theory with Experilnent for

the Mean Square Displacement of Lead

The solid lines are the QH, ,,\2 PT and

RE results calculated from the modified Morse

potential. The points represent the experimental

data of Lisher (1976). The crosses are some

low-temperatllre experimental results of Merisalo et.

ale (1984) D denotes the Debye temperature and M

the melting temperature.
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Figure 3.2.4.

Comparison of Theory with Experiment for

the Mean Square Displacement of Silver

The solid lines are the QH, ,\2 PT and

RE results calculated from the modified Morse

potential. The points represent the experimental

data of Simerska et al. (1961). D denotes the

Debye temperature and M the melting temperature.
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Figure 3.2.5.

Comparison of Theory with Experiment for

the Meall Square Displacement of Nickel

The solid lines are the QH, ,\2 PT and

RE results calc1.1lated from the modified Morse

potential. The points represent the experimental

data of Singh and Sharma (1971). D denotes the

Debye temperature and M the melting temperature.
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agree very well with experiment, but even at Tm /2 the experimental data

is already curving upward from our QH curve as in the cases of AI, eu, Pb

and Ag. The A2 and RE anharmonic contributions to MSD improve the

agreement between theory and experiment to some extent but even near Tm

the anharmonic corrections are not very large.

In general, for the fcc metals the A2 and RE anharmonic contributions to

MSD produce a qualitative improvement in the agreement between theory

and experiment, with this agreement being best for the RE results. How­

ever, the anharlllonic contribution to MSD does not account for much of the

observed difference between the experimental data and the QH results. This

is particularly true near Tm . In this respect alone, the results for MSD which

we have obtained using the 3 parameter form of the Morse potential are bet­

ter than those obtained using the 4 parameter modified form of the potential

as can be seen in Fig.(3.2.1). However, since the values of MSD calculated

using the 4 parameter modified Morse potential are still in the best overall

agreement with the experimental data, we have chosen to concentrate on

these rather than on the 3 parameter results.

For all five of the fcc metals for which comparison with experiment is

possible, the RE values of MSD are not very different from the A2 PT results
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within the temperature range of the experimental data, which indicates that

the ,\2 PT results adequately represent the anharmonic contributions to MSD

for these metals and this choice of potential function.

For Ca and Sr no experimental values of MSD could be located in the

literature. We have presented the results of our calculations of the MSD

of Ca and Sr ill Figs. (3.2.6) and (3.2.7) respectively. For Sr the thermal

expansion data is only available up to about Tm /3. For these two metals the

parameter b2 is equal to 1.0 and therefore there is no difference between the

3 parameter Morse and 4 parameter modified Morse potential.
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Figure 3.2.6.

Results for the Mean Square

Displacement of Calcium

The solid lines are the QH, A2 PT and

RE results calclliated from the modified Morse

potential. D denotes the Debye temperature.

Calcium changes to a bcc structure at 720 K and

melts at 1113 !(.
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Figure 3.2.7.

Results for the Mean Square

Displacement of Strontium

The solid lilles are the QH, A2 PT and

RE results calculated from the modified Morse

potential. D denotes the Debye temperature.

Strolltium changes to a bcc structure at 830 K

and melts at 1042 K.
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3.3 MSD of the bee alkali metals

3.3.1 Potentials and Lattice Constants

The thermodynamic properties of the alkali metals have been calculated,

using both the 3 parameter Rydberg potential and the 4 parameter modified

Morse potential, by MSK. They found that in the cases of Li, Na, K and Rb,

the thermodynamic properties calculated uSil1g the modified Morse poten­

tial were generally in better agreement with experimental data than those

obtained using the Rydberg potential. For Os alone the Rydberg potential

produced better results. In light of the findings of MSK we have used the

modified Morse potential of Eq.( 36) in our calculation of MSD for Li, Na,

K and Rb.

For Cs we have used the Rydberg potential:

(37)

The Rydberg potential parameters c, a and ro are determined by the

same method used to obtained the parameters of the Morse potential. In

our calculation of the MSD of the alkali metals we have used the potential

parameters of MSK (Table II of tlleir paper). These are listed in Table IV.
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Table IV. Next Nearest Neighbour Potential

Parameters for the bee alkali metals

ro a t b2

(A) (A-I) (10- I2 erg)

Li 3.16089 0.63220 0.39466 2.50

Na 3.83530 0.62804 0.26427 2.35

K 4.75468 0.53458 0.20277 1.15

Rb 5.08217 0.48863 0.19328 1.30

Cs 5.51053 0.64104 0.19239

From Macdonald, Shukla and Kahaner (1984). The 4 parameter modified

Morse potential is used for Li, Na, K and Rb. For Cs the 3 parameter

Rydberg potential is used.
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All of the values of lattice constant used in our calculation of MSD for the

bcc alkali metals are taken from room-temperature experimental values of the

lattice constant (Pearson 1967) and recommended values of thermal linear

expansion (Touloukian 1975) except in the case of Rb for which our lattice

constants are taken from the experimental work of Copley and Brockhouse

(1973), Copleyet al. (1974) and Rosengren and Johansson (1975).

3.3.2 Resllits and Discussion

Our results for MSD of the alkali metals are plotted in Figures (3.3.1)

through (3.3.5) for Li, Na, K, Rb and Cs respectively. For Li, Na and K

experimental values of MSD are available for comparison with our results.

In the case of K we have also included results for MSD which were calculated

by SH1 using the AVS pseudopotential.

In the case of Li (Fig. 3.3.1), our QH MSD curve is in poor agreement

with the experimental data of Bednarz and Field (1982b). Inclusion of the

anharmonic cOlltribution to MSD improves this agreement to some extent,

with the RE results being in slightly better agreement with experiment than

the A2 PT results. However, in the A2 PT case the anharmonic contribution

to MSD accounts for only 18% of the difference between the QH value and
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Figure 3.3.1.

Comparison of Theory witll Experiment for

the Mean Square Displacement of Litllium

TIle solicllines are the QH, .r\2 PT and

RE results calculated from the modified Morse

potential. The point represents the experimental

datum of Bednarz and Field (1982b). D denotes the

Debye temperature and M the melting temperature.
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the room-temperature (RT) experimental point, and in the RE case the an­

harmonic contribution accounts for only 19% of this difference. Thus there

is little quantitative improvement in the agreement between theory and ex­

periment., The RE values of MSD differ only slightly from the ,\2 PT results

near room temperature and only become significantly larger at higher tem­

peratures. For Li the higher-order anharmonic contributions to MSD which

are accounted for by the Green's function method therefore do not appear

to be very important at RT.

In the case of Na (Figure 3.3.2), the values of MSD obtained from the

modified Morse potential are in good agreement with the experimental data

of Crow et ale (1989) at temperatures below 200 K. At temperatures above

200 K our values of MSD fall short of the experimental results. As in the

case of Li, for Na the anharmonic contribution to MSD produces qualitative

improvement in the agreement between theory and experiment (with the RE

results being best) but this improvement is negligible.

For K (Fig.3.3.3) we have included the results of SRI (calculated using'

the AVS pseudopotential) along with Ollr modified Morse potential results

for MSD in order to demonstrate the effect of the choice of potential func­

tion upon the agreement betwee11 theory and experiment for the bec metals.
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Figure 3.3.2.

Comparison of Theory witll Experiment for

the Mean Square Displacement of Sodium

The solid lines are the QH, ,,\2 PT and

RE results calculated from the modified Morse

potential. The point represents the experimental

data of Crow et al. (1989). D denotes the Debye

temperature and M the melting temperature.
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Figure 3.3.3

Comparison of Theory with Experiment for

the Mean Square Displacement of Potassium

TIle solid lines are tIle QH, A2 PT and

RE results calculated from tIle modified Morse

potential. TIle dashed lines are the QH and

A2 PT results of SRI calculated from

the AVS potential. The point represents the

experimental datum of Bednarz and Field (1982a).

D denotes the Debye temperature and M the melting

temperature.
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The QH values of MSD which we have obtained from the modified Morse

potential are in excellent agreement with the QH AVS results of SHl, but

in the A2 PT case the anharmonic contribution to MSD produced by the

AVS pseudopotential is larger than that produced by the modified Morse

potential. Because of this, the AVS ;-\2 PT results are in better agreement

with the experimental data (Bednarz and Field 1982a) than our Morse ;-\2

PT results. For the modified Morse potential the RE values of MSD are in

the best agreement with experiment, but these still fall short of the AVS ;-\2

PT results.

For Rb (Fig. 3.3.4) and Cs (Fig. 3.3.5) no experimental values of MSD

could be located in the literature for comparison with our results.

For the alkali metals, the inclusion of the anharmonic contribution to

MSD improves the agreement between the available experimental data and

the results we have obtained using the modified Morse potential. The RE

results produce the best agreement between theory and experiment. How­

ever, in all cases the anharmonic contribution to MSD is not large enough

to account for very much of the discrepancy between the QH result and the

experimental data.
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Figure 3.3.4.

R.esults for the Mean Square

Displacement of Rubidium

The solid lines are tIle QJI, A2 PT and

RE results calculated from the modified Morse

potential. D denotes the Debye temperature and

M tIle melting temperature.
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Figure 3.3.5.

Results for the Mean Square

Displacement of Cesium

The solid lines are the QI-I, ,,\2 PT

and RE results calculated from the Rydberg

potential. M denotes the melting temperature.

The Debye temperature of Cesium is 40 K.
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3.4 MSD for the bee transition ~etals

3.4.1. Potelltials and Lattice Constants

In our calculations of the MSD of five bcc transition metals (V, Nb, Ta,,
Mo and W) we have used the 4 parameter modified Morse potential in the

NNN approximation. Our potential parameters are taken from Table I of

Macdonald and Shukla (MS) (1985) and are listed in Table V. These were

derived by MS using the same method outlined in MSK.

All of the values of lattice constant used in our calculations of MSD for the

bcc transition metals are taken from room-temperature experimental values

of the lattice constant (Pearson 1967) al1d recommended values of thermal

linear expansion (Touloul<ian 1975).

3.4.2 Results and Discussion

We have calculated the MSD of Nb for a number of temperatures in

the range 100 K to 500 K. Although tllermal expansion data is available

for temperatures above 500 K, for Nb only room-temperature experimental

values of MSD are available and therefore we have confined our reported

results to a low range of temperature in order to clarify the comparison

between these results and the experimental data. For the same purpose, our
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Table V. Next Nearest Neighbour Potential

Parameters for the bee transition metals

ro a f. b2

(A) (A-I) (10- 12 erg)

V 2.7479 0.8963 1.2483 1.20

Nb 3.0090 0.7530 1.7582 1.35

Ta 2.9790 1.0294 1.9367 1.80

Mo 2.8209 1.5135 1.6891 1.20

W 2.8331 1.5568 2.1909 1.35

From Macdonald and Shukla (1985). The 4 parameter modified Morse

potential has been used for all five bce transition metals.
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reported results for the MSD of Wand Mo have been confined to a range of

temperature for which the comparison with experiment is clearly visible on

their respective graphs.

For Nb (Fig. 3.4.1) our QH values of MSD are lower than the ,\2 PT and

RE results at all temperatures. At RT the ,\2 anharmonic contribution to

MSD is positive but very small. The RE values of MSD are larger than the

,\2 PT results at all teluperatures. (This is also true in the cases of V, W, Mo

and Ta.) Our results are compared with the experimental data of Bashir et ale

(1987). The agreement between theory and experiment is actually worsened

by the inclusion of the anharmonic contributions to MSD; however, these are

very small and in addition all three of our MSD curves lie almost within the

margin of error of the experimental point. The meaningfulness of this result

is therefore questionable.

In the case of V (Fig. 3.4.2) no experimental values of MSD could be

located for cOluparison witll our results. The anharmonic contribution to

MSD is very small below Tm /4 but becolues larger with increased temper­

ature until, near Tm , the ,.\2 PT and RE values of MSD are 5.6% and 6.,5%

higher than the QH result respectively.

For W, Mo and Ta the ,.\2 anharmonic contribution to MSD is negative.
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Figure 3.4.1.

Comparison of Theory with Experiment for

the Mean Square Displacement of Niobium

The solid lilles are the QH, A2 PT and

RE resllits calculated from the modified Morse

potential. The point represents the experimental

datum of Basllir et al. (1987). D denotes the Debye

temperature. The melting temperature of Niobium

is 2750 K.
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Figure 3.4.2.

Results for the Mean Square

Displacemel1t of Vanadium

TIle solid lines are the QH, ,,\2 PT and

RE results calculated from the modified Morse

potential. D denotes the Debye temperature and

M the melting temperature.
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In the case of W (Fig. 3.4.3) our results have been compared with the exper­

imental data of Bullard et al.(1991) which were obtained for 183W at several

temperatures in the range 80 K to 1067 K. (It should be pointed out that

the experimental values of thermal expansion which we have used in our cal­

culations are for bulk W rather than 183W.) The anharmonic contribution

to MSD clearly improves tIle agreement between the calculated and experi­

mental results. At 1067 K the QH value of MSD obtained from the modified

Morse potential is 13% larger than the experimental data but the A2 PT and

RE results are OIlly 7% and 8% larger tllan the experiment respectively.

In the case of Mo (Fig. 3.4.4), the ,,\2 PT curve is in the best agreement

with the RT experimental data of Paakaari (1974). Here the RE curve is

practically indistinguishable from the ,,\2 PT curve which indicates that at

RT the anharmonic contributioll to MSD is adequately represented by the

,,\2 contribution. In the case of Ta (Fig. 3.4.5) the anharmonic contribution

to MSD is not very large at any temperature. For Ta no experimental values

of MSD could be located for comparison with our results.

For all five of the bcc transition metals for which we have performed cal­

culations of MSD, near RT the anharmonic contribution to MSD is very small

and the difference between the ,,\2 PT and RE anharmonic curves is negligible.
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Figure 3.4.3.

Comparison of Theory with Experiment for

the Mean Square Displacement of Tungsten

The solid lines are tIle QH, ,\2 PT and

RE results calculated from the modified Morse

potential. The points represents the experimental

datum of Bullard et ale (1991) D denotes the Debye

temperature. The melting temperature of Tungsten

is 3695 1(.
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Figure 3.4.4.

Comparison of Theory vvith Experiment for

the Mean Squa.re Displa.cement of Molybdenum

The solid lines are the QH, A2 PT and

RE results calclliated from the modified Morse

potential. The poil1t represents the experimental

datum of Paakaari (1974). D denotes the Debye

temperature. The melting temperature of

Molybdenum is 2895 K.
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Figure 3.4.5.

Results for the Mean Square

Displacement of Tantalum

The solid lines are the QH, ,\2 PT and

RE results calclllated from the modified Morse

potential. D denotes the Debye temperature and

M the melting temperature.
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The anharmonicity is much larger near the melting point of each solid (with

the exception of Ta) but experimental values of MSD are not available for

these very large values of T. For W the experimental data is available up to

about 30% of Tm and in this temperature range the anharmonic contribution

to MSD improves the agreement between theory and experiment with the

agreement being best for the A2 PT results. For the other four bcc transition

metals the quantitative effect of the anharmonic contribution to MSD upon

the agreement between theory and experiment is difficult to evaluate due to

the sparseness of the experimental data.
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4. Phonon Dispersion Curves

In order to determine whether the cubic and quartic anharmonic phonon

frequency shifts which are obtained from the Green's function method im­

prove the agreement between theoretical and experimental phonon dispersion

curves of solids, we have calculated the PDC's of a bcc solid (Na) and an

fcc solid (Cu). These calculations have been carried out in the QH approxi­

mation and using the Green's function metllod. In both cases we have used

the 4 parameter modified Morse potential. The potential parameters are the

same as those used in our calculation of MSD.

The PDC's are a graphical representation of the frequencies of phonon

modes whose wavevectors lie in one of the three principal symmetry directions

of a cubic solid, (( 0 0), (( ( 0), and (( ( () where the units of ( are the same

as those of Px,Py,Pz in Chapter 2. In each symluetry direction there are

one longitudinal (LO) and two transverse (denoted TR if equal, or TRI and

TR2 if unequal) frequency branches. Since the anharmonic phonon frequency

shifts are largest near Tm, we have performed our calculations at the highest

temperatures for which experimental data is available for comparison with

our results.
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4.1. Phonon Dispersion Curves for Na

The phonon dispersion curves of Na have been experimentally determined

at room temperature. A collection of this data, both published and unpub­

lished, appears in Clyde and Taylor (1972). Millington and Squires (1971)

have also presented results of their own neutron scattering experiment. In

Fig. (4.1.1) we have compared their data with the results of our Morse po­

tential calculations. Our room-temperature lattice constant is taken from

Pearson (1967). A step length of 20 was used in the calculation of the Sa/3

tensors. In the (( ( () symmetry direction the phonon wavevectors for which

( > 0.5 are outside the first Brillouin zone of the bcc lattice and are therefore

not used in the calculation of MSD.

The PDC's of Na whicll we llave calculated in the QH approximation are

not in very good agreement with experimental values of phonon frequency.

Most of our results are too low. The (( ( 0)TR2 and (( (()LO branches are

exceptions. In the first of these two cases, all our values of phonon frequency

are too high. In the second case, this is only true for some wavevectors

outside the FBZ (which are not included in the calculation of MSD).

In general the inclusion of the anharmonic phonon frequency shifts wors-
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ens the agreement between theory and experiment for wavevectors lying just

inside the BZ boundary [the exception being the (( ( O)LO branch]. This is

surprising in light of our results for the MSD of Na in which the RE values

of MSD were found to be in better agreement with experiment than the QH

values. Since the MSD is calculated from the phonon frequencies, renormal­

ization should produce similar effects upon the agreement between theory

and experiment for both the MSD and PDC's if the lattice dynamical model

is an accurate· representation of the crystal.

This apparent contradiction is at least partially resolved when one real­

izes that the contributions to MSD arising from individual phonon modes

are heavily weighted towards the modes whose wavevectors lie within the

central portion of the FBZ, where the values of phonon frequency are rel­

atively small. The effect of anharmonicity upon these phonon frequencies,

and the agreement between their values and the experimental data, is diffi­

cult to discern in Fig.{4.1.1) so for the purpose of clarity we have enlarged

the phonon curves in the {( 0 0) direction in the range 0 ~ ( ~ 0.25. This

enlargement is presented in Fig.{4.1.2). Fig.(4.1.2) shows 'that four of the

five experimental points which lie in this ra.nge are in better agreement with

the RE phonon curves than the QH curves. Near the zone boundary the
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QH curve is of course in better agreement with experiment but these phonon

frequencies do not make much of a contribution to the MSD. This is also

the case in the (( ( ()TR phonon branch where the RE curve is closer to the

experimental data at low ( while near the zone boundary the QH curve is in

the best agreement with experiment.

The modified Morse potential does not predict the PDC's of Na with

much accuracy and the RE results are, in general, in worse agreement with

experiment than the QH results, particularly near the zone boundary. How­

ever, a closer examination of the phonon dispersion curves reveals that this

latter conclusion does not necessarily contradict the results which we have

already obtained for the MSD of Na.
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Figure 4.1.1.

Comparison of Theory with Experiment for

the Pll0non Dispersion Curves of Sodium

The solid and dashed lines are the QH and RE

results from the modified Morse potential.

The points represent room-temperature experimental

data tabulated in Glyde and Taylor (1972) and

and the crosses represent the experimental data

of Millington and Squires (1971). LO and TR

denote longitudinal and transverse branches

respectively.
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Figure 4.1.2.

Comparison of Theory with Experiment for t"he

(( 0 0) Pllonon Dispersion Curves of Sodium:

Enlarged View in tIle Long-Wavelength Region

TIle legend is the same as that of Fig.(4.1.1).
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4.2. Phonon Dispersion Curves for Cu

Larose and Brockhouse (1976) (LB) have measured the PDC's of Cu in

the (( 0 0) and (( ( 0) principal symmetry directions at 1336 K. Although

their values of phonon frequency have only been presented in the form of a

graph, they have provided the force constants of a five-neighbour Born-von

Karman fit which we have used to reproduce the experimental PDC's and to

obtain the PDC's in the (( ( () symmetry direction. We have also used their

value of the 1336 K lattice constant (3.6928 A). A step length of L = 20 was

used in the calculation of the Sa(J tensors. For the fcc lattice, the wavevectors

in the (( ( 0) symmetry direction for which ( > .A lie outside the FBZ and

therefore they are not involved in the calculation of MSD.

Our results are presented in Figure (4.2.1) along with the experimental

data of LB. Our QH phonon curves are in poor agreement with experiment.

However, wherever the QH and RE curves can be visually distinguished the

inclusion of the anharmonic phonon frequency shifts improves the agreement

between theory and experiment for all the phonon branches in the princi­

pal symmetry directions, ,vitIl the improvement being most marked in the

(( 0 O)L and (( ( O)T1 pJl0non branches.
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As in the case of Na we also want to examine the effect of renormaliza­

tion upon the low-frequency phonon modes. Since this effect is difficult to

discern in Fig.(4.2.1) we have enlarged the long-wavelength regions of all the

dispersion curves. Fig.(4.2.2) is an enlargement of the dispersion curves in

the (( 0 0) direction and Fig.(4.2.3) is a similar enlargement of the dispersion

curves in the (( ( 0) and (( (() directions. In both these graphs the values

of ( are restricted to the range 0:::; ( :::; 0.25.

Figs.(4.2.2) and (4.2.3) sIlow that, in the case of the transverse phonon

branches, the RE phonon curves are in the best agreement with the experi­

ment in all three symmetry directions and at all values of (. For the longi­

tudinal branches, however, the QH curves are in better agreement with the

Born-von Karman fit at the lowest vailles of (. However, here the anharmonic

frequency shifts are extremely small, and these only become appreciable at

larger values of ( for which the RE curves are actually in the best agreement

with the experiment. These results a,re consistent with our results for the

MSD of eu in wllich the renormalized values of MSD agreed better with

experiment than the QH values. In all three longitudinal branches the QH

and RE curves cross between ( = 0.1 and ( = 0.25.

The modified Morse potential is mtlch more successful in predicting the
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phonon dispersion curves for eu than for Na, in both the QH approximation

and using the Green's function method.
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Figure 4.2.1.

Comparison of Theory with Experiment for

the Phonon Dispersion Curves of Copper

The solid and dashed lines are the QH and RE

results from the modified Morse potential.

The points represent experimental values of

phonon frequency reproduced from the Born-von

!{arman fit of Larose and Brockhouse (1976).

LO and TR dellote longitudinal and transverse

phonon branches respectively.
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Figure 4.2.2.

Comparison of Theory with Experiment for the

(( 0 0) Phonon Dispersion Curves of Copper:

Enlarged View in the Long-Wavelength Region

The legend is the same as that of Fig.(4.2.1).
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Figure 4.2.3.

Comparison of Theory with Experiment for the

(( ( 0) alld (( ( () Phonon Dispersion Curves

of Copper: Enlarged View in the Long-Wavelength Region

The legend is the same as that of Fig.(4.2.1)
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5. SUllllllary

We have calculated the MSD of a central-force Lennard-Jones solid in the

nearest-neighbour (NN) and next-nearest neighbour (NNN) approximations

and have applied our results to a solid for which the L-J potential is appro­

priate (Xe) in order to determine the effect of the range of the interatomic

interaction on the MSD. In the QH approximation the NN and NNN results

for MSD only differ by abollt 2% at the highest temperatures. However,

when the anharmonic contribution to MSD is included (this is the case in

the ,.\2 and Green's function methods), the agreement between the NN and

NNN results worsens. We conclude that the second neighbour interactions

are important in the anharmonic calculation of MSD of a Lennard-Jones

solid but are not so important in the QH case. Comparison of our ,.\2 results

for MSD of Xe with the ,.\2 results of Goldman show that the frequency-shift

approximation used by Goldman is not a very good approximation.

We have performed lattice-dynamics calclllations of the atomic mean­

square displacement (MSD) of a number of fcc and bcc metals using the 3

parameter Morse potential, the 4 parameter modified Morse potential and

(for Cs alone) the 3 parameter R~ydberg potential. These calculations have
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been carried out in the QH approximation and also using PT of lowest order

and the Green's function method (RE). For the fcc metals we have used the

NN approximation but for the bcc metals the NNN approximation has been

used.

For most of the materials for which experimental data is available for

comparison with our results, the RE values of MSD are in the best agreement

with experiment. However, in general the RE results are not in much better

agreement with experiment than the ,,\2 PT and QH results. For the Morse

potential, the improvement in the agreement between theory and experiment

which the anharmonic contribution to MSD produces is mostly qualitative.

We have also calculated the phonon dispersion curves (PDC's) of Na and

Cu using the QH theory and the Green's function method. The interatomic

potential used in these calculations is the 4 parameter modified Morse poten­

tial. For Na our calculated PDC's are in poor agreement with experiment.

For Cu the agreement between theory and experiment is poor for the QH

results but for the RE results the anharmonic frequency shift produces ex­

cellent quantitative improvement in this agreement.
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