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ABSTRACT 

The algebraic expressions for the anharmonic contr ibut ions to 

the Debye-Waller factor up to 0 (A ) and 0 L% ) £ where ^ 

is the scat ter ing wave-vector] have been derived in a form sui table 

for cubic metals wi th small ion cores where the interatomic potent ia l 

extends to many neighbours. This has been achieved in terms of 

various wave-vector dependent tensors, fo l lowing the work of Shukla 

and Taylor (1974) on the cubic anharmonic Helmholtz free energy. 

The contr ibut ion to the various wave-vector dependent tensors from 

the coulomb and the e lectron- ion terms in the interatomic meta l l i c 

potent ia l has been obtained by the Ewald procedure. A l l the res t r i c ted 

mul t ip le whole B r i l l o u i n zone (B.Z.) sums are reduced to s ingle whole 

B.Z. sums by using the plane wave representation of the delta func t ion . 

These single whole B.Z. sums are fur ther reduced to the •%?? 

port ion of the B.Z. fo l lowing Shukla and Wilk (1974) and Shukla and 

Taylor (1974). 

Numerical calculat ions have been performed for sodium where the 

Born-Mayer term in the interatomic potent ia l has been neglected 

because i t is small £ Vosko (1964)3 • * n o ^ e r to compare our calcu

lated resul ts wi th the experimental resul ts of Dawton (1937), we 

have also calculated the ra t i o of the in tens i t i es at d i f f e ren t temp

eratures for the lowest f i ve re f lec t ions (110), (200), (220), (310) 

and (400) . Our calculated quasi-harmonic resul ts agree reasonably 

well with the experimental resul ts at temperatures (T) of the order of 

the Debye temperature ( 0 ) . For T » © ^ 9 our calculated anharmonic 

resul ts are found to be in good agreement with the experimental r esu l t s . 
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The anomalous terms in the Debye-Waller factor are found not to be 

negl ig ib le for cer ta in re f lec t ions even for T ^ © ^ . At temp

erature T yy Op 9 where the temperature is of the order of the 

melting temperature (Xm) » "the anomalous terms are found to be 

important almost for a l l the f i ve re f l ec t i ons . 
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I. INTRODUCTION 

The intensity of scattered x-rays from a crystal system decreases 

with increasing temperature which can be formally expressed as (Debye 

(1914), Waller (1923)) 

2 T = I «,-««<•*. ) 
T © 

( l .D 

where J and J are the in tens i t i es of the scattered x-rays at the 

temperatures T K and 0 K respect ive ly , and the factor & ~ y 

accounts for the decrease of the in tens i t y due to thermal v ib ra t ion of 

the atoms. The exponent 4 M ( f J ) " i s known as the Debye-Waller factor 

and is a funct ion of the scat ter ing wave-vector %§ and also of temp

erature T. 

For a monatomic Bravais l a t t i c e , J is proport ional to the 

T 
sum 

i i' / (1.2) 

where Jt^ and Kj/ are the equilibrium positions of the atoms in the 

|/land t a unit cells respectively, U and U. are their 

corresponding displacements, and <^ y indicates the thermal 

average. In the thermal average in Eq. (1.2), neglecting all terms 

except those which are independent of / and J( , and then comparing 

Eqs. (1.1) and (1.2), we get 
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*> - < e 

( 1 . 3 ) 

At high temperatures, i . e . , at temperatures greater than the 

Debye temperature 0 , calculated values of AM ( J o ) for various 

materials obtained by employing the harmonic approximation of the 

solid have been found to be quite inadequate to account for the 

experimental resul ts . The expression for olM {%o)obtained by perfo 

ing the harmonic thermal average on the right hand side of Eq. (1.3), 

is linear in temperature T in the high temperature l imit. Formally, 

i t can be written as 

rm-

M i*0 ^\\T 

(1.4) 

where, V is a volume dependent constant. The experimental values of 
H 

5M (,?*) at high temperatures deviate from the predicted linear temp

erature dependence as given by Eq. (1.4). 

For example, James (1925) has found that for rock-salt (NaCl) 

the experimental value of AM($*) is proportional to T and not to 

T at T >)• &n . Similar results are found by other workers, like 

James and Brindley (1928) for sylvine (KC1), Boscovites et al (1958) 

for si lver, Dawton (1937) for sodium, and Chipman (1960) for alumiriurm., 

lead and beta-brass. 

In order to find a proper explanation for the observed temp

erature dependence of ©£M ( 5 0 > the effect of thermal expansion 
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has been investigated where \A, , in Eq. (1.4), is treated not simply 

as a constant but as a volume dependent quantity. Such calculations 

where A M ( f > ) is considered to have a linear explicit temperature 

dependence while \/ is allowed to vary with volume, is known as the 
H 

quasi-harmonic theory, and have been carried out by several workers, 

e.g. Nicklow and Young (1966), Shukla and Dey (unpublished). 

In their work, Nicklow and Young performed their calculation 

first for a particular volume and then used the volume coefficient of 

expansion and the Gruneisen constant to account for the volume change 

in Vy . On the other hand, Shukla and Dey have used the force 

constants for various volumes to account for the volume change in V^ 

exactly. 

The values of 5 Hi*©) > obtained by the quasi-harmonic cal

culations, are certainly in better agreement with the experimental 

results compared to that of the purely harmonic calculations done at 

a fixed volume, but still the discrepancies remain at temperatures 

much greater than 0^ . 

Thus, in order to look for some other contributions to *tft(**} 

one is tempted to examine the thermal average in Eq. (1.3). The thermal 

averaging in Eq. (1.3) can be performed without making the harmonic 

approximation. This introduces the terms in the hamiltonian which are 

neglected in making the harmonic approximation. The collection of all 

these neglected terms in the hamiltonian are known as the anharmonic 

terms. 

Maradudin and Flinn (1963) have derived the expressions for the 
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harmonic and anharmonic contr ibut ions to 5 Pi \jt°J l n the c lassical 

high temperature l i m i t . Their der ivat ion retained only the lowest 

order cubic and quart ic terms in the anharmonic part of the hamil tonian. 

They found two types of anharmonic contr ibut ions to S M ( %o) 

proportional to %0 and \ respect ive ly . The l a t t e r cont r ibut ion 

was dubbed by them as the anomalous part of <3 M ( 5 0 • 

Maradudin and Fl inn have also computed the value of the Debye-

Waller factor (harmonic and anharmonic) for a central force nearest 

neighbour fee cyrsta l (Pb). Because of the extreme complexity of 

the anharmonic expressions of &M[%*)9 they used the leading term 

approximation where one keeps only the highest order radia l der ivat ive 

of the interatomic potent ia l to represent the d i f f e ren t cartesian 

components of the tensor force constants. For ca lcu la t ing the so-cal led 

anomalous terms in 4 M ( $ * ) » they used one more approximation. This is 

known as the Ludwig's approximation which is equivalent to the Einste in 's 

approximation. In t he i r ca l cu la t i on , the potent ia l der ivat ives were 

obtained from the Morse potent ia l funct ion as well as from other 

experimental sources. 

However, i t should be noted that the Morse potent ial i s a poor 

representation of meta l l i c interatomic potent ial where, p a r t i c u l a r l y , 

small ion cores are involved. The leading term approximation also i s 

not yery r e l i a b l e . The error introduced in making th i s approximation 

is of the order of 30-47% (Shukla and Wilk (1974)). Moreover, the 

Ludwig's approximation, combined with the leading term approximation, 

gives an error of the order of 100% (Shukla (unpublished)) . 
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One conclusion of Maradudin and Flinn, based on the above two 

approximations, is that the anomalous terms in ol H i t e ) c a n be 

neglected. 

Another work in this direction is reported by Wolfe and Goodman 

(1969). They did their anharmonic calculations for a nearest neighbour 

model of copper. For the harmonic part of the calculation, which 

provides the eigenvalues and eigenvectors, they used two sets of force 

constants. One is the third neighbour model of Lehman et al (1962), 

and the other is the sixth neighbour model of Sinha (1966). For the 

anharmonic part, the nearest neighbour potential derivatives were 

obtained from a Born-Mayer potential function by using four sets of 

parameters obtained from the works of Mann and Seeger (1967) and 

Jaswal and Girifalco (1967). Wolfe and Goodman concluded that the 

anomalous terms in ^ M (J#)are not negligible. 

Obviously, the anharmonic calculations of <$M(fe) performed by 

Maradudin and Flinn, and Wolfe and Goodman are geared to a nearest 

neighbour model of a crystal. For a metallic crystal with small ion 

cores where the range of the interatomic potential extends to many 

neighbours, one has to develop some suitable method for performing the 

real lattice summations arising in the calculation of the anharmonic 

contributions to «5 H ( 5 0 • Moreover, to make the calculations 

consistent, all the harmonic and anharmonic force constants should be 

derived from the same potential function representing the metal. 

The standard method of obtaining such a potential function is 

to use an effective two-body interatomic potential. This potential 

in metals consists of three parts (Toya (1958), Cochran (1963)): 
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(a) d i rec t coulomb in terac t ion of the ion cores, (b) the e lectron- ion 

in terac t ion screened by other electrons (electron gas), (c) the Pauli 

exchange repulsive in te rac t ion due to the overlap of closed electron 

shel ls of the ion cores, i . e . , the Born-Mayer term. 

For small ion core metals l i k e sodium, the Born-Mayer c o n t r i 

bution is found to be neg l ig ib le (Vosko (1964)). 

Using the force constants derived from the radial der ivat ives 

of such a f i r s t p r inc ip le potent ial func t ion , Shukla and Taylor (1974) 

have calculated the cubic and quart ic anharmonic contr ibut ions to 

the Helmholtz free energy and the speci f ic heat at constant volume of 

sodium and potassium. This is probably the f i r s t work on the calcu

l a t i on of the anharmonic contr ibut ions to the Helmholtz free energy 

where a method is presented to carry out the anharmonic summations out 

to any neighbour. 

Such anharmonic ca lcu la t ions , whether of the Helmholtz free 

energy or of the Debye-Waller fac to r , are very d i f f i c u l t to perform 

because they involve the res t r i c ted mul t ip le B r i l l o u i n zone sums 

(q-sums and the delta funct ion AC§)), and the d i rec t l a t t i c e sums 

( I -sums) in the ca lcu la t ion of the Fourier transform of the anharmonic 

force constants. 

Here in th is thes is , we present a method of performing such 

d i f f i c u l t calculat ions of ^ H ( f f t T ) in metals wi th small ion cores. 

The main purpose of th is thesis is then to derive expressions 

for the anharmonic contr ibut ions to the Debye-Waller factor fo r cubic 

metals in such a way that 
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(1) a ca lcu la t ion becomes possible for metals where the interatomic 

potent ial extends to many neighbours, by the in t roduct ion of the 

wave-vector dependent tensors, and 

(2) the res t r i c ted mul t ip le B r i l l o u i n zone sums can be reduced, even 

in th is case, to single B r i l l o u i n zone sums thereby making the 

exact ca lcu la t ion possible. 

Other objectives of th is thesis are to calculate the harmonic 

and anharmonic contr ibut ions to * & M ( 5 0 for sodium and 

(3) see whether or not the anomalous terms in the anharmonic c o n t r i 

butions to 5 M ( % ) | f f 0i%9 Ij are neg l ig ib le compared to 

the rest of i t £©£ O C j £ ) ^ and 

(4) compare our calculated resul ts (harmonic and anharmonic) wi th 

those obtained experimentally ^Dawton (1937)3 . 

The out l ine of th i s thesis is as fo l lows. In section 2, we have 

presented a summary of the contr ibut ions to the Debye-Waller factor 

in the high temperature l i m i t . In section 3, the expressions for 

the anharmonic contr ibut ions to the Debye-Waller fac tor are expressed 

in terms of d i f f e ren t wave-vector dependent tensors. The expressions 

obtained in section 3 are s imp l i f i ed for cubic metals in section 4. 

In section 5, the res t r i c ted B r i l l o u i n zone sums are expressed in 

terms of single B r i l l o u i n zone sums with the help of the plane wave 

representation of the delta func t ion . Section 6 contains a descr ip

t ion of the der ivat ion of the expressions of the various wave-vector 

dependent tensors using Ewald's method of summation. Our numerical 

calculat ions are described and the resul ts are presented i n section 7. 

The discussion and conclusions are presented in sections 8 and 9, 

respect ive ly . 
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2. EXPRESSIONS FOR THE ANHARMONIC DEBYE-WALLER FACTOR IN THE HIGH 

TEMPERATURE LIMIT TO 0(X2) AND 0(qQ
4) 

From Equation (1 .3 ) , in order to obtain an expression for the 

exponent 2M ($Q ) of Debye-Waller fac to r , the usual method is to 

express U and U in terms of normal coordinates, and then perform 

the thermal averaging. 

For an atom in the I un i t c e l l , the c( component of the 

displacement, as given by Born and Huang (1954) is 

*> ' ( 2 . 0 

where the subscript 0( denotes a cartesian component, N is the to ta l 

number of atoms in the c r y s t a l , M is the mass of each atom, q is the 

phonon wave-vector, j the branch index, €* £ 5 k ) is the 

0( component of the eigenvector for the phonon mode C% i ) s and 

^ C 5 J *) 1S the normal coordinate for the same mode. 

In the harmonic approximation, quantum mechanical thermal aver

aging can be performed by fo l lowing the procedures out l ined i n 

Messiah (1958). In the high temperature l i m i t , the cont r ibut ion to 

AJA C 5 0 a as given by the harmonic averaging, is 

***&*) = % 3 ^ ^ ^(fO 

(2.2) 

where ^ g is the Boltzmann constant, T is the absolute temperature, 

and 6tJ(fi) is the angular frequency of the phonon mode C ^ O e 



9 

In order to perform the thermal averaging for a weak anharmonic 

crystal, the usual procedure is to consider the anharmonic part of the 

Hamiltonian of the crystal as a perturbation. In order to perform such 

a thermal averaging of a physical quantity, using the perturbation 

method, certain ordering scheme is needed due to the presence of a 

double series expansion - one due to the perturbation series expansion 

of the potential, and the other due to the series expansion of the 

physical quantity in terms of the perturbing potential. 

Following the ordering scheme of Van Hove (1961), we can denote 

the ordering parameter by X where A is equal in magnitude to the 

ratio of a typical atomic displacement and the nearest neighbour 

distance. It has been shown by Maradudin and Flinn (1963) that the 

lowest order anharmonic contributions to the Debye-Waller factor are 

of 0 ( A )» and there are four such terms - two of them are o| O (% J 

( ^ M f ( V ) and AtA%(%/j) and the other two (2h^(%) and A H ^ (f^)) 

are of 0 f\ ) , where %0 is the scattering wave-vector. The 

expressions for these four terms are 

M,c% **»**&$&> ^(^>2(^^c^o (23) 

x " ^ * c i ^ (2>4) 
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(2.5) 

(2.6) 

where, in Eqs. (2.4), (2.5) and (2.6) the delta function A(^^2+" ' f r i ) , 

which conserves the sum of the phonon wave vectors, has the following 

meaning 

A Q ' ^ + ' " + r t - 1 *H ($*+**-»-• ••&«) so OTz,T 

(2.7) 

where T ' is a vector of the reciprocal l a t t i ce ; the function 

tpfydnfifai" "%!*) which is the Fourier transform of the atomic 

force constant 9 , , (£) > is defined as 

(2.8) 



n 

The force constant ^K ^ # , e #0/ (^ / is the n tensor der ivat ive 

of the two-body potent ia l <P(«t ) with respect to atomic displacements 

Ul and evaluated at the equi l ibr ium posi t ion \X sO . That i s , 

* f # 4 ^ , n 

(2.9) 

Isolating the £ dependent terms and the corresponding sum over 

4 in Eq. (2.8), we can define the following function 

(2.10) 

We can now express Eq. (2.8) in terms of Eq. (2.10) and this expression 

is 

(2.11) 

In Eqs. (2.8) to (2.11), each of the subscripts <*i » *a » ' ' * *^*» 

is assigned the values of cartesian components x, y, z and 2_ indicates 

the summation over real lattice vectors excluding the origin point {*0 , 

We note from Eqs. (2.2), (2.3), (2.4), (2.5) and (2.6) that 

each of the expressions for «2M© (.$J), *wi(%")and &.^2L(.%) is 

proportional to ^ whereas * C ^ 3 C i W and ^ ^ C~« / are 
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proportional to % . In other words, although «2 ^?>L% J and 

&% C t o ) are of 0 (A 2 " ) as are A M , (*«>") and £ < % ( % ) , 

t he i r q-dependence is d i f f e r e n t . For th is reason, A H ^ C%~) and 

A M i j C f e j are known as anomalous terms. 
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3. SIMPLIFICATION OF THE ANHARMONIC DEBYE-WALLER FACTOR IN TERMS OF 

DIFFERENT WAVE-VECTOR DEPENDENT TENSORS 

As has already been mentioned in section 1 , the main purpose 

of th is thesis £s to s impl i fy the expressions for Debye-Waller factor 

in such a way that i t s evaluation becomes possible for meta l l i c 

crysta ls where the in te rac t ion potent ial extends to many neighbours. 

The expressions of 4 M , £ * 0 > Z ^ z C ? # } > A 1 - » C * 0 

and 5 M 4 C f ^ ) , in Eqs. ( 2 .3 ) , ( 2 . 4 ) , (2.5) and (2.6) respec

t i v e l y , are in terms o f Y C ^ ' ^ ^ f i % ^ • # * °fn J»y , and they are 

more appropr iate, from computational point of view, for a short range 

potent ial where the summation over I in Eq. (2.10) is res t r i c ted 

to a few neighbours on ly . In meta l l ic crysta ls with small ion cores, 

where the inter-atomic potent ial extends to many neighbours, i t is 

very d i f f i c u l t to achieve a decent converged value of q> _ , ^ j 1 ' - • . * / * _ % / 

in Eq. (2.10) by performing the summation over I . For such c r ys ta l s , 

here we derive an a l te rna t i ve set of expressions for olMt C%0)1 ^ ^ 2 » ^ 3 v ? 

A M a f t u W d A M * C £ « 5 1 n t e r m s o f t h e function f M ( ^ " ) 

which is defined as 

s^a(2'"^« / eft*2.' ,,0(n ^ / 

(3.1) 

(3.2) 
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^W-^cso^z.'̂ ,* ....«* ĉ *** (*•**) 
* 

(3.3) 

For our purposes in this thesis, in the calculation of <s?M»Cf«) 

a M * C % ) , * M 3 ( 2 . ) and 4Mz, (f^only S £ | 0 , ^ C $ ") and 

CF. , , ( % 1 are needed. For the sake of simplicity of 

notation, we set 

SF, w,*2<*3 ^ 5 s E p ^ c s ) 
(3.4) 

and 

6F ^ ) 2 »Lo^ Cs) 
'3 ^ 

(3.5) 

We note from Eqs. (2.4) and (2.6) that each of ^ f % ( t j ) and ^ W / ^ f c J ) 

are proportional to | T ( ? ^ I i%zi% 9 f ^ O s } J • Thus, s imp l i f i ca t i on 

of ^ J % ( f e j a n d ^ M ^ [ 4 ^ in terms of ^ P i ^ C l f } i s s i m i l a r t o 

that of f « , the cubic anharmonic free energy, which is also proportional 

to I ̂ i%ijn%2li ffsH^I • Shukla and Taylor (1974) have 

developed a procedure for the computation o f F* , where P3 has been 

expressed in terms of f ^R- / ( % } * a n d s o w e w i H n o t repeat that 

der ivat ion again. 

Now, from Eqs. (2.3) and (2.5) we see that both 0^ -?M, ( f 0 ) 

and AT^\^(%p) are proport ional to y ^ i ^ ^ h ^ ^ W s anc* 
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4 M 3 ( $ o } has a delta funct ion A ( ? I + ? * + ? 3 + %*) while in 

S M i C t f O the delta funct ion is exactly s a t i s f i e d . Hence, to 

avoid r e p e t i t i o n , we w i l l derive the expression for &M$Q%oj only 

as th is is more complex of the two. 

From Eq. (2.5) we see that ^ ^ 3 ( ^ 0 ) contains the funct ion 

h(%d%^%t^%^3%t%^^\ wh l 'ch depends on the funct ion 

$ * et « 4 ^ , f - * ' ~ 3 ' - * ^ through Eq. (2 .11) . The complete expression 

for 2) ( t ^ f ^ f s ^ l ^om Eq. (2.10) is 

§̂ ^ ^ C^^'^^O =7" 4i„ „ ., COO-*1"'*"') 

(3.6) 

Mul t ip ly ing the l as t four factors in Eq. (3.6) we get 

. r - » « » . & - * ' & . * / - * ? 3 - * f ~i%k.hA -a'C$»+*0**Jl 
U i - •fc' - £ / _ ^ , __g, + ^ 

+ •# ±V +J& +&, 

• f r * - £ - - ^ 

(3.7) 

Due to the presence of the delta funct ion A(%t^s,^f3^%^in, Jtf*%(!A, we 

make the fo l lowing replacements in expression (3.7).* 
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$» + ** - T-ti-fz 

£' "*" £»• "+ ?3 ~ 7 ~ 1* 

*i -+ ?* •*•?** 7 - ! ' 

and then, expression (3.7) becomes 

-itt.tti -£h'*i -*t*>*x -*£*'&* 
I, U. - Ss — £s ~ 4s ~- &> 

-I ($,+ **>** - J C £' + * » > & -hi (fi+W)-& 
4-^s *f & + 4s 

4- £> - f -^ - f -^ 

+i%-*t -hit*'** + * & • & • + * £ * • & -1 
_ ^ - € / -•€< - ^ J 

(3.8) 

Substituting Eq. (3.8) for the last four factors into Eq. (3.6) and then 

employing Eq. (3.5), we can write Eq. (3.6) in the form 

-&pyS (*•»)- 5rpr* ( * * ) + £p Y f (t,+?«) 

(3.9) 
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Subst i tut ing Eq. (3.9) in to Eq. (2 .11) , we get 

-5pv5 Ctr*) + 5prJ (f'+**)+&j3vf (*»+*») 

•+5pv? C*a+*OU 

(3.10) 

In Eqs. (3.9) and (3.10) we have used ^B-vS" ^ ° ^ which 

is equivalent to ^ R - y § ( 1 * ° ) . 

Subst i tu t ing Eq. (3.10) in to Eq. (2.5) we obtain 

x 15m Co)-5pv« C ^ ) - 5 ^ « C*a>Eprf C«»>&pvf(W 

( 3 . l l ) 

Relabel l ing the wave-vectors in Eq. ( 3 . I I ) , i t is seen t h a t , 

in the square bracket, the 2nd, 3rd, 4th and 5th terms are equivalent, 

and so are the 6 th , 7th and 8th terms. 

Taking th i s in to account, and using the fo l lowing notations 
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%. § c W3) = X- .V €, c n h ) 

v& c***V)*l.fc * c**'0 , 
€ « 

Eq. (3.11) can be written as 

C 

(3.12) 

where 

* *3 -* *Q . ** I ,; /kA& "*!&.} T^M fW) 3%>\ 

Similar expressions for #?M| ($*")* « W J ? ^ * ) and ^ ^ ( t ^ i n terms of 

^ p v C^)and S p r t f C O are 

(3.13) 

^,5 M*3 Z—~ **» "»., ••%,. N n J/* A /** 4^ 

toittnc, 
(3.14) 

i^s2iz" riS") f ^ i fa*?} 

(3.15) 

B 

1>e 
(3.16) 
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where 

B 

(3.17) 
3 

(3.18) 

where 

3) 
H =21 7" J~~ ^C?/+?2+?3)AC-?/+?5--*-«C) 

o', 0$ $'<$ J? d'e ^JIA V 

(3.19) 

The superscripts A, B, C and D over N are used for some i d e n t i f i c a t i o n 

purposes only and they do not bear any physical s ign i f i cance. 
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4. THE ANHARMONIC CONTRIBUTION TO THE DEBYE-WALLER FACTOR FOR 

CUBIC CRYSTALS 

Expressions of £M, (?o)^AU (fc^ , < a % 0 " ) and -^C^O, 

given by equations (3.12) to (3.19) are true for any crystal. 

Symbolically, they can be written as 

on r Z - - £ ° a - ^ o 

lo / t .2 

(4.1) 

AM? C$0 ") T— 3 on if 

OK )• -=T % % % %. z 

In general, for any crysta l system, the ca lcu la t ion of ^^t(t^) 

or A M ^ C f o } w l " ^ require the computation of nine components of 
I Oft SL 

2L , and the ca lcu la t ion of ^$(f0
s) and 5 M ^ ( f < f ) w i l l 

require the computation of eighty-one components of 32, _ < , 

and th is indeed is a p roh ib i t i ve task. For cubic c r ys ta l s , the second 

and fourth rank tensors ^ a and ^ c e ^ S respect ive ly , can be 

reduced considerably. 

For example, we take the expression for ^M f(15y) or A Hx(%@) 

in Eq, (4.1) which can be written as 

2 A Z §£)4 <-* y g 

(4.3) 
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I f ^^«( f©)and A M ^ d > o / represent the contr ibut ions to 

^ M ( f i f ) fo r a cubic c r y s t a l , they w i l l remain invar iant under a l l 

the fo r t y -e igh t symmetry operations of a cube applied on the wave-
I art z 

vector |f0 . 2 L « w i l l also remain unchanged since i t is 

independent of %Q . 

The appl icat ion of one fou r - fo ld ro ta t ion on the wave-vector 

i t the x-axis changes %0y 

the Eq. (4.3) in to the fo l lowing 

% about the x-axis changes $ * v t o %0mm , & t o - f t , , and changes 
/ 2 z °y 

^ M t ( 0 ) 1 lo/tA J / a * * 4 ' " * ! • ** 10/ca 

5c w
y *- 7cZ • -JBX -• y ' 2 1 - * ? * 

(4.4) 

The appl icat ion of another fou r - fo ld ro ta t ion on the wave-vector 

^ 0 about the y-axis changes % to % , % t o — t ^ , and the 

Eq. (4.3) in to the fo l lowing 

(4.5) 

In a s imi la r manner, the appl icat ion of one fou r - fo ld ro ta t ion 

about the z-axis changes %a t o % ? % to — % , and for Eq. (4.3) 

we have 
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(4.6) 

Comparing the coefficients of different components of %Q in 

Eqs. (4.3), (4.4), (4.5) and (4.6) we see that 

lore % | ©x 9. 

(4.7) 

Employing the re la t ions given by Eq. ( 4 .7 ) , Eq. (4.1) reduces to 

«"* CtO) y * 
(4.8) 

or, in full form, the expressions for <5 M, (fj,)and ̂ M ^ ^ f ^ f o r cubic 

crystals can be written from Eqs. (3.14) and (3.16) as 

AM, (J.) - - ^ f C< * %! + V* ) N, 
N<W * ̂  x "y ^ / c 

(4.9) 

^w-Mo(X*04 
(4.10) 
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w h e r e N ^ N A , ^ N A - NA 

A A 
on., 

(4.11) 

and K,& & K, B a 

or , © 3 * * J * * * J ( 4 j 2 ) 

A A A 
Subst i tu t ing for N , N V v and N - _ from Eq. (3.15) in to 

x x yy % jf 
Eq. (4.11) we obtain 

x& tfc$* C^3>^ Cfe^( f i^+^ ( f ^ y< 5*?1 

(4.13) 

But 

(4.14) 

Performing the summation over J ^ in Eq. (4.13) wi th the help of Eq. (4.14) , 

we get 

Si *'* — 

(4.15) 
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B g B 
Sim i la r l y , subs t i tu t ing for |Nj « N . and M from 

xx n yy z £ 
Eq. (3.17) in to Eq. (4.12)?and using Eq. (4.14) we obtain 

(4.16) 

Following the same procedure as has been used in the der ivat ion of 

equation (4.8) and a f te r some lengthy algebra, we f ind the fo l lowing 
3 0 * 4 

relationship among the components of the fourth rank tensor 3? » v ^ 

BOH,if 3&/t 4 3 o«. 4 
Z ~ 2?r - Z 

i **yy $ r L ^ " > =H*yy** J 

1****? r l ^ i ? 5 "^ m * J -i*yyy? J 

3 «*• 4 r 3 »/t 4» ^ s 3 0/X 4 S -a. X - J 1 S 3 0 / 1 4 7 
o 

(4.17) 

In these equations, the curly brackets -f > indicate the sum of 

all the tensors obtained by permuting the explicit cartesian components 

of the tensor under consideration. Explicitly it is given by 
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-?2? 1 - 2 3 -t-23 + 2 * 4- ? 3 

L ?cx.^y ) * .<*7y y y x - * T tyy^ . y ^ * f 

(4.18) 

Making use of the re la t ions given by equation (4 .17) , equation 

(4.2) takes the fo l lowing form 

(4.19) 

0r9 wi th a l l the factors put i n , the complete form of AM^(%J) and 

5 H i | {%) for cubic crysta ls can be wr i t ten as (from Eqs, (3,12) and (3.18)) 

( 8b 3 #Z> S? ^^ ** % «i 

5M« CM = ̂ f f ***** ( v -* \ -«•».; i 

+ / * K C ^ + ^ ^ + t t ) ] 

(4.20) 

7> , 4 „ 4 4 

(4.21) 
c c 

The expressions for N and Ns,„^,*, are obtained by f i r s t 

xx** x*yy 
putting ^ s ^ r V =" £ ~ X and then putting ^ =>« - ** and 

y s €r ~ y in EQ- (3.13). These expressions are 
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ft/+fs^4^^K^-^rfff,;^35^f?/^,3 

(4.22) 

and 

&„-2:04.Y (^0 a^o r^o 
/ / ^2 /> i?^ 

(4.23) 

Expressions for other tensors in -£ ^^^ny^ f are obtained 

in a similar manner as in Eq. (4 .23) . 
3) P 

Similarly, expressions for N and f\/ are 
X^XX X > y y 

obtained by f i r s t putting £ s: > j - : fes^syand then putting £ = > ^ X 

and ^ | r j in Eq. (3 .19) . These expressions are 

D 
Nx*xy ~ZL Z- J~ ^ (g' + f^fO^frg'+^gQ 

J'f ?x \ ) s 4 J/». ̂  

xfiST) f W ) fiM f̂kS*?) f^vs 

and 

(4.24) 
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N*xyy ~ZL Z Z . Ad'+^tdAtrft + ts + ti) 

Expressions for other tensors in ^ N * x y y 5 

obtained in the same manner as in Eq. (4.25). 

(4.25) 

can be 
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x x >« 

5. SIMPLIFICATION OF DEBYE-WALLER FACTOR FOR CUBIC CYRSTALS FROM 

THE NUMERICAL POINT OF VIEW 

From Eqs. ( 4 . 9 ) , (4 .10) , (4.20) and (4.21) of section 4 , we see 

that the calculat ions of A^i (tf*)and ^^X\%j require the 

knowledge of N and N respect ive ly , the ca lcu la t ion of *2t^3 [%o) 

requires the knowledge of ^^^^o€ an(* \ ^?c«>tvy I ' a n d 

the ca lcu la t ion of A M ^ C^O r e c l u l * r e s the knowledge of N ^ s 

and ^ M X X y y f • T h e expressions for N6 , N0 , N^C1KK?C 

iN%^yy *) > N K X X X a n d ^ X x y y ^ , as presented in 

Eqs. (4 .15) , (4 .16) , (4 .22) , (4 .23) , (4.24) and (4.25) are not sui table 

for numerical ca lcu la t ion because of the presence of mul t ip le B r i l l o u i n 

zone sums ( i . e . q sums) and the delta functions in them. However, we 

can derive more sui table expressions from the numberical viewpoint where 

only single B r i l l o u i n zone sums are involved and the delta functions are 

removed. 

To fac tor ize these mul t ip le B r i l l o u i n zone sums, we w i l l use the 

fol lowing plane-wave representation of the delta funct ion A ( f ' ^ f f + ' ' ' * * H ) ' 

A(fc/+*^ + #..+ %n) - JL J & 
t (& + %* + +t»)"£ 'A 

(5.1) 

Also, as w i l l be seen l a t e r , we require the fo l lowing seven types of 

B r i l l o u i n zone sums, v i z . , 

MO-I(4&L"«c*.so 
(5.2) 



?/ u)" hi ' 

(5 

***** W) r Z 5 B-** U) "*(%-**) 

(5 

* ^ (5 

(5 

(5 
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%«tW%agX ^«cs;^ci.*o Cd% V 

(5 .9 ) 

The harmonic cont r ibut ion to the Debye-Waller f ac to r , defined 

in Eq. (2.2),can also be expressed in terms of H . g ( 4 "\ . 
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5.1 SIMPLIFICATION OF 2M (q ) 

Employing the following relation for the components of the eigen

vectors .& (f 3 / 

Eq. (2.2) can be written as 

which, employing Eq. (5.2) can be expressed in terms of f^a L°) #? 

3M 

(5.10) 

where ^ p Col - H^p t 4 * < 0 . 

Eq. (5.10) can also be wr i t ten as 

*". C10 - ** ~ f NH 

where 

NH - i - C H ^ C o J + H y y Co3 + Ha>s Co)3 

(5.11a) 

(5.11b) 
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5.2 SIMPLIFICATION OF 2M,(q ) 

Equation (4.15) can be written as 

where 

N0 =iZI.to) e ,Z(^-) 5,„c; 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

Using Eqs. (5.2) and (5.3), Eq. (5.13) can be written as 

(5.16) 
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where "Q ( o ) = fy ( J 8 c ) , 

(5.17) 

Although the $ i and j^g sums are already factor ized in Eqs. (5.14) 

and (5.15) we can s impl i fy the expressions fur ther in terms of %B(*%T-{*)*£*., 

by introducing the fo l lowing i den t i t y 

) 

14 ?1 

or, using Eq. (5.1) we get 

which, with the help of Eqs. (5.2) and ( 5 . 4 ) , reduces to 

(5.18) 



Using Eqs. (5.18) and (5.3), Eq. (5.14) can be written as 

N° -Til % "HpwO^CO 

(5.19) 

Following exactly similar method as used in the derivation of 

Eq. (5.18), we can write 

J? 

(5.20) 

With the help of Eqs. (5.20) and ( 5 . 2 ) , Eq. (5.15) can be wr i t ten 

as 

A C3) 4 

No = ~ Z H H*B <!»U*t « ) T t , « ; 

(5.21) 

To fac tor ize the ft/ and ?M sums in Eq. (5.16) we set f/ -f f * r f 

or equiva lent ly , we introduce a delta funct ion A C Qt + f&~ %*") • 

This gives 

o r , using Eq. (5.1) for A C § / + ? « ? - 1 * 0 
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X /̂ 

which, using Eqs. (5.2), (5.3) and (5.4), further reduces to 

N0 _ * 

€ 

(5.22) 

Eq. (5.12) combined with Eqs. (5.17), (5.19), (5.21) and (5.22) 

A 
gives the most suitable simplified expressions for N from 

0 

a numerical viewpoint. 



36 

5.3 SIMPLIFICATION OF 2M9(q ) 

Equation (4.16) can be written as 

o 

" V (%-*>5MV ty+Gpr (U)fry (fySpr m^AV)] 

(5.23) 

By relabelling the wave-vectors, it can be shown that of all the 

tensors in the square bracket in Eq. (5.23), the equivalent terms in 

pairs are: first and fifth, and second and fourth; and the third, sixth, 

seventh and eights are also equivalent to each other. When these equiv

alences are taken into account, Eq. (5.23) reduces to 

(5.24) 
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To factorize the Brillouin zone sums in Eq. (5.24), let us 

consider any of the four terms in the square bracket. For example, 

the first term is 

* I JM H 

xS5^ (to%,* c?>; 

(5.25) 

Representing the delta funct ion A (ff+%$ + $3) by a plane 

wave fo l lowing Eq. ( 5 . 1 ) , and then fac to r iz ing the B r i l l o u i n zone sums, 

Eq. (5.25) can be wr i t ten as 

K ' *&IZ lr (*2). ^m^cto^c^w 

*z. &$l ^u-^z (2$ "Kb-ty 

(5.26) 

Similarly, we can express the other three terms in Eq. (5.24). 

These terms are 

*Z(&£) FA^^*)^*'^Z (^) "'U*'**) 

(5.27) 
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(5.28) 

*Z&$) 5rrt*d&p (**)**&.&) 

(5.29) 

where 

B 3 CO B <*; B W 8 &) 

© o 

(5.30) 

Using Eqs. (5.2), (5.3), (5.5), (5.6), (5.7) and (5.8), Eqs. (5.26), 

(5.27), (5.28) and (5.29) can be written as 

B ") a ^ 
N 

(5.31) 
=%ri H s«v w Hm « ; T V^ c *; 

5 M^*> ^ (5-32) 



8 C*) A/A 

' ^ " V " (5 

Equation (5 .30) , combined with Eqs. (5 .31) , (5 .32) , (5.33) and 

8 
(5 .34) , gives the required s imp l i f ied expression for N 
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5.4 SIMPLIFICATION OF 2M~(q ) 

Equation (4.22) can be written as a sum of three terms as 

follows 

(5.35) 

where, separating the three terms in the square bracket in Eq. (4 .22) , 

k l « CO € ( 0 C C33 
expressions for N ^ ^ , */ ^ ^ and N ^%%% can be 

obtained. Thus, we can wr i te 

<xXf =/ C^W. (=£?! . G^J ^** 

/̂ ̂i ̂  4 

-~«%J^*«^% «K, mt W$rrt o; 

(5.36) 

where, in obtaining Eq. (5.36) we have used Eqs. (5.1) and (5.2). 
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In a s imi la r fashion we can obtain 

M 
e CO _ - 4 

^.xx-* 

and 

(5.37) 

Ms 

-Mii,im.M,^'^ 5 *p*t i, tx 

x "w w ««* « ; 

(5.38) 
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To separate the % and $& sums in Eq. (5.38) we set 

%i + 3z s £* , or equivalently, introducing another delta 

function A Cfy+ $#-%yT) > we have 

. i(.Si + t$'*jL 

which, with the help of Eqs. (5.1), (5.2) and (5.4), reduces to 

* fy*« fc>; ^ w) "*< « ; 

(5.39) 
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e 

The f i na l s imp l i f i ed expression for N x x , which is 

most sui table for numerical work, is then given by Eqs. (5 .35) , (5 .36) , 

(5.37) and (5 .39) . To s impl i fy the expression for "L ^ - H - H W T 

which appears in £>M$ C$o), we f i r s t consider the expression for 

A/ .. . From Eq. (4.23) we can wr i te 

(5.40) 

where, separating the three terms in the gy&s**bracket in Eq. (4 .23) , 
& CO e CiJ) £ 13} 

expressions for A/ , N and A/ „ _ , „ u can be obtained 

which are the fo l lowing 

ft cO 
N -7" ff*^) fv?£) /^-v) f ^ O 

(5.41) 

N
e^} . ^ T f M A fef£) (V£) (^ifi) 

% $g t% t^ 

Z'*** X*C«»+?«+23+*2eW<C*0 (5.42) 
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H**r? = SZL (&£) . ( W \ A,<\ /Sv*r\ 

(5.43) 

Now, as already explained in Eq. (4.18), the term \.^ *».**« \ 

represents the sum of six tensors obtained by permuting the tensor 

C 
indices x, x, y, y in ^^^y . 

So, following Eq. (5.40) we can write 

(5.44) 

By permuting the tensor indices x, x, y, y in Eq. (5.41), and then 

relabell ing the wave-vectors, i t can be shown that 

fi cO e cO c cO « t i ; ceo ,*• W 
o o e ^ ? ? * * * "*-VYH ^ K « 7 * > * ? y^VX 

(5.45) 

Similarly, i t can be shown from Eqs. (5.42) and (5.43) that 

c 
N 

IV M**- «.?>,„, y**y " ^ y 9 t y - ^ 

(5.46) 

(5.47) 
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(5.48) 

Thus, Eq. (5.44) can be written as 

{<*,,] = c c^ -*<<*£ 

(5.49) 

Using the plane wave representation of the delta func t ion , Eq. 

( 5 .1 ) , and then separating the %in%^9 ^ 3 a n ^ z.H s u m s ' Eq. (5.41) 

can be wr i t ten as 

which, using Eq. ( 5 . 2 ) , reduces to 

(5.50) 
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Simi la r l y , Eq. (5.42) can be s imp l i f ied as 

€ /?•/$ ft;/ ft)*<?/?/ r 

it-it « xf«1/, 

(5.51) 

Expressions for A/ _ ̂  and AJ , can also be obtained 

in a similar manner from Eq. (5.43) and we obtain 

c c* ; -» _ • - . ^ . ^ *&'+*$>& 

<7 (ti±*S ^f?3-«y (f£f£) «*cv*i) X 

?303 

or, following the same procedure as used in the derivation of Eq. (5.39), 

(5.52) 



47 

and, in an exactly similar manner, we get 

(5.53) 

Eq. (5.49), combined with Eqs. (5.50), (5.51), (5.52) and (5.53), 

gives the required simplified expressions for A M f. 
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5.5 SIMPLIFICATION OF 2M.(qJ 

Equation (4.24) can be written as 

^/Mi w^4v> W^A ^A^y^Xj, 

(5.54) 

By re labe l l i ng the wave-vectors i t can be seen t h a t , out of a l l 

the nine terms in the square bracket in Eq. (5 .54) , the f i r s t and the 

s ix th and the second and the ninth terms cancel each other in pairs and 

the contr ibut ions of the f o u r t h , f i f t h , seventh and eighth ones are 

equal to each other. Hence, Eq. (5.54) can be wr i t ten as 

s, *C&) C^Z) C4*?*) fa<*«\ fa 

x C- V (%!>%™ (*')+** V (Ufa* (WJ 
(5.55) 
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The two terms in the square bracket in Eq. (5.55) can be written 

separately as 

OCX OCX ~ " o c x . * * -X.K-K.OC 
(5.56) 

where, 

*Z(%H£) ^Cit-^y f***A "ic?s-*0 

& v W5 JMt " <&^ 

(5.57) 

which, using Eq. (5.2), reduces to 

2> CO 

(5,58) 

and, fo l lowing s imi lar methods, the expression for N can be 

wr i t ten as 

http://-x.k-k.oc
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$IJI i<xp-* ^QliOi) 

or, using Eqs. (5.2) and (5.7) we can write the above expression in 

the following form 
2) Ca) 

N 

(5.59) 

Eq. (5 .56) , combined with Eqs. (5.58) and (5 .59) , gives the 

desired s imp l i f i ca t i on of ^ x x x x 

In order to obtain s imi la r s imp l i f i ca t ions f o r - f N Y , 
3> 

we first write the expression for M , from Eq. (4.25), which is 
x x y y 

3? 
N**yv~Zl. Z Y~~ A (*?'+?«+ ? 0 A £ * ' + S*+fO 

*<^v\ fW\ /̂ 5T) rf^t) (̂ f̂ ) 
^ ^ A - <W?*$*^ ^ ^ ^ «M5%> *x'hk 

+ 5p v a ^ y (^+5j^r &)&*&)- 5pr (&*)&*(%> 

+ fyr (*-$%/<•» &$ + F«P* (h3F4"*&>%P* (H)%u*C$j 
(5.60) 
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By permuting the cartesian indices x * X> y» y i n E c l ' (5.60) and 

then re labe l l i ng the wave-vectors, i t can be shown that 

X x y y y y x ? < 

(5.61) 

and 

E 3? $ 3 
N r N — N = N 

xyxy yxyx xyyx y x * y 
(5.62) 

Following exactly similar procedures which have been used in the 

derivation of Eqs. (5.58) and (5.59), it can be shown from Eq. (5.60) that 

xxyy yyxx J xxxx xxyy yy 
( 5 . 6 3 ) 

and 

^xyxy^yxxx^^xyyy^Vxyl 

(5.64) 

Eqs. (5.63) and (5.64) give the s imp l i f ied expressions fo r 

^-Xxyy) * 
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6. INTERATOMIC POTENTIAL AND DIFFERENT WAVE-VECTOR DEPENDENT TENSORS 

As we have seen in sections 3, 4 and 5, the numerical ca lcu la t ion 

of A M . C ^ O * a ' V C . S O , *«3Cb)and Wn{&) is reduced to the 

ca lcu la t ion of (^g-y (^1 i ^ B Y & ( $ ) anc ' t n e B r i l l o u i n zone sums 

through the functions HtpG"} ? X * p Ci ") 9 ^ * p y £ CO» B ^ /u-$Qi), 

&$*,/**(*-')'> Sjfiy CO, ^pr(0 a n d % p v t C D defined in 

Eqs. (5.2) to ( 5 . 9 ) . Some of the B r i l l o u i n zone sums contain the 

eigenvalues (0(%i) and eigenvectors ^ ( f / } obtained from the dynamical 

matrix elements f^» C ^ ) • 

In th is section we w i l l ou t l ine the der ivat ion of the expressions 

for the tensors ^ p C ^ ) ? ^ p v C t ) and F^jg-yg (%) for a long 

range interatomic po ten t i a l . 

I t is well known in l a t t i c e dynamics t ha t , for a monatomic 

c r y s t a l , the dynamical matrix element PL (ft*) is defined as 

(6.1) 

Also from Eqs. ( 3 . 2 ) , ( 3 . 3 ) , (3.4) and (3 .5 ) , we can wr i te 

(6.2) 

(6 .3 ) 



53 

The two-body potent ia l tydj for a meta l l i c crysta l may be 

formally wr i t ten as (Toya (1958)) 

( i ) = <f)e co 4 <|)s co + 4>Mco 
(6.4) 

where 

(p QJL ) j s the d i rec t coulomb in te rac t ion of the ion cores, 

<p C O is the short range overlap in te rac t ion of the closed 

shel ls of the ions, and <p C O is the e lectron- ion i n t e r 

act ion as mediated by other «MJj^cBzon,$# 

For small ion cores, which occupy a small port ion of the 
c 

atomic volume, the overlap term <p C O 1S neg l i g ib le . For sodium, 

Vosko (1964) has estimated the Cp GO for N a - AA* in te rac t ion 

and has shown i t to be smal l . 

Ana ly t i ca l l y <p € 0 is expressed in terms of the fo l low

ing in tegra l (Cochran (1963)). 

(6.5) 

and Ct (-C ) has the usual form, 
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4>cc*) = 

(6.6) 

where, 

e is the e lectronic charge, 

Z is the valency of the meta l l ic atom, 

Q is the wave-vector 

and, from Shukla and Taylor (1974), 

(6.7) 

In Eq. ( 6 . 7 ) , M C ' S O i s t h e b a r e e lect ron- ion matrix element, 

and Oi ( Q ) is the s ta t i c electron gas screening funct ion which is 

related to the d i e l ec t r i c funct ion £ ( f i ) through the equation 

(6.8) 

Now, for large values of I , 4> CO f r ^ ^ +4>B~*C*')~1 

behaves as J to$ Qzkf ft^J J fi^ T where kf is Fermi wave-

vector (Harrison (1966)), and so, <fcp ("-Of <kp - * C O a n d ^otp-yS ^ O 

also behave as ^ e r $ G ^ f N ) / ^ J f o r l a^ge £ • Consequently, 

the values of £ p C $ * ) , F d ^ C O a n d F^ ]9 V S C O > o b t a i n e d ^ 

performing the straight forward real l a t t i c e sum 2 l l n E ( l s • (G* 1 ) ' 

(6.2) and (6.3) respect ive ly , also osc i l la tes 1 ike* *[ur$(^ k p h ^ ) / h ^ J. 

Thus, for large distances, i t becomes very d i f f i c u l t to obtain converged 

values of F ( $ * ) * ^ B T C ? *) a n d ^BV£ (^} w h e n t h e s u ™ a t i ° n 
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over i extends to a large number of neighbours. However, i t is 

possible to overcome th is d i f f i c u l t y . One such procedure is to 

d i f f e ren t i a te f i r s t Eq. ( 6 .6 ) , and then d i f f e ren t i a te under the 

integral sign and numerically integrate Eq. (6.5) to obtain c o n t r i 

butions from ^> C O and $ 0*-l) to $ {^ ) , ^ L 1 ) ^ <t> l l J 

and <f> ( O , the f i r s t , second, t h i r d and fourth order radia l 

der ivat ives of the potent ia l £ p £ £ ") respect ive ly . This then 

helps us to obtain values of TP^IR C ^ / ? ^ © ^ £ 0 and 4 L B y $ C * 0 * 

a n d % C t ) 9 ^ p ^ C t ) a n d & p ^ i C ^ ) respect ively by per/orming 

the sum ^rf over a large number of neighbours. Then, beyond that 
i 

neighbour, the potent ia l is represented by an asymptotic form l i k e 

^cos(ZkFk^/k/ J and correct ions to g p C*h 6 p ^ C f ) a " d § ^ f Ct) 

are evaluated. This procedure has been employed by Gonenc (1977) in 

the ca lcu la t ion of quart ic free energy /=& , mean square frequency 

<cJ y a nd the energy (J where he found that the correct ion to the 

above properties were small beyond the 23rd neighbour in the case of 

sodium for the volume 90°K. 

An a l te rna t i ve procedure is to evaluate the contr ibut ions to 

E a C ^ l ^ ^ B ^ O a n d ^ p v £ C ^ } d i r ec t l y from the two terms 

^ e ( 0 and <p£*"% C f t ) of the potent ial ^ C O . This is 

done by evaluating the contr ibut ions to S g C O ? ^ ^ ( f ) a n d ^ 8 * " ^ ^ 0 

from fl> (t) by the Ewald procedure and the other cont r ibut ion from 

d> C£Q is evaluated exact ly . In th is thesis we w i l l fo l low 

th is procedure. 

The complete expressions for the tensors % f t C - O i 

*w a - * CO a n d ^ 4 B Y ^ C O obtained from a central force two-body 

potent ia l <j> £ A ) are 
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(6.9a) 

, < - . < 

kjL * * hJL 
(6.9b) 

. ^ X s X J r - J ^ . 

(6 .10a) 

Ob) 

4> 

(6 .11a) 

_^X*<x/ ~J ** f<£/VcO- $£& Jlf^l <**'«> n 

J^ 

u - » 

(6 .11b) 
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where X , refers to the cartesian ©(-component of the equi l ibr ium 

l a t t i c e vector fx, 

We f i r s t derive expressions for the contr ibut ions from 

4s C & " ) to % p (%"), ^ ? y ( I ) and & p v s ( $ } 

which may be denoted by f? C f ) ? F ^ o Y C I ) a n d ^pnti C$) re

spect ive ly . 

From Eqs. ( 6 . 1 ) , (6.5) and (6 .9 ) , we can wr i te 

- - " (6.12) 

Since >_ is a discrete lattice sum, upon changing the order of 
e 

integration and summation in Eq. (6.12) we obtain 

(6.13) 

Now, we recall the well-known relation which transforms the sum 

over the direct lattice vector I into a sum over the reciprocal 

lattice vector T" * 

iZ.KjL <§7?)3y- *( %mm T) 

i *- r 

(6.14) 
ne and the prime over the 1 summati 

indicates that | s O is excluded, 

where \9 is the unit cell volume and the prime over the 1 summation 
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Substituting Eq. (6.14) into Eq. (6.13), we obtain 

E"J^ (*$? *****£ S GQ$0 5p eo= f % (kny 
# 

a- -%*j**2ZS(8-z) 

Q*Ol***,<*- f GQ$0 
**y Q' 

Q^%dsZH^~?~-T) 

(6.15) 

In both the integrals on the right hand side of Eq. (6.15), we inter

change once again the order of the integration and the summation, 

which is permissible because 2__ is a discrete sum. Then we carry out 
T 

the trivial delta function integration and obtain 

5? *y~ V &£ £(!T0 *Y*>ef" _. ^T+e/). 
r1 * P CT+f)" >QCT+ilJ 

' u. 4-L ?*• ft? ci+.T^" *v" ?J 

(6.16) 

f 9 

where f and P are related to T and % via 

T c ( ^ / O 1 **** f - CA7r/<0 J? * *• 
being the lattice parameter. 

Similarly, from Eqs. (6.2), (6.5) and (6.10a) we can write 

(6.17) 
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In Eq. (6.17) we have made the following substitution, 

Now, interchanging the order of integration and summation in Eq. 

(6.17)jWe can write 

© £ 

or, using Eq. (6,14), the above equation becomes 

£z
 Ct> OZZSfa ^aaBo JHs-t-r) 

* Tit d? }r /y 

(6.18) 

In each term on the r igh t hand side o f Eq. (6.18) we change the 

order o f in tegra t ion and summation, and then perform the t r i v i a l delta 

funct ion i n teg ra t i on . A l l these operations y i e l d 

(6.19) 



60 

In the second term on the right hand side of Eq, (6.19), we 

replace^ by-T , which is permissible because in XL, T runs 

over all + and - values. Then, remembering that {^CJ-^-Z I") -GClf+ttl)* 

we can write Eq. (6.19) as 

which in terms of f and P , reduces to 

1 (6.20) 

Finally, using Eqs. (6.3), (6.5) and (6.11a), we can write 

X & ~ Is " 

(6.21) 

Interchanging the order of integration and summation in Eq. (6.21), 

we get 

or, using Eq. (6.14) 
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B-l 

Q 
4<V^«,rf!?Z'f9-/-r; 

(6.22) 

The second term on the r igh t hand side of Eq. (6.22) can be 

dropped, because i t is independent of T and is essent ia l ly a constant 

which comes in several times in the expressions of AMi(tpj and 

A ^ % C ? 0 and exactly cancels each other as can be seen in Eqs. (3.13) 

and (3 .15) , respect ive ly . 

Also, i n the f i r s t term on the r igh t hand side of Eq. (6.22) we 

can interchange the order of the in tegrat ion and summation and then, 

performing the t r i v i a l delta funct ion i n teg ra t i on , we get 

£ - 1 «= ̂ Z - f ^ a ^ WW 
which, in terms of f and P , reduces to 

(6.23) 

In Eqs. (6 .16) , (6.20) and (6.23) we have derived expressions 

for the contr ibut ions from (J> C^dto ^cpC?i } * ^ g y C f f ) and 

F < / ^ l which are defined in terms of reciprocal l a t t i c e vector sums 
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We now describe the derivations of the contributions to ̂ B (?) 

fyr(&) a n d f c p r * C f c ) from ^CO . 

For a coulomb potential defined in Eq. (6.6), the expressions 

for the derivatives $(0-> $>'(*)i $ (-*) and ̂ ' " C O are 

nf (6-24) 

v 
, w 

(6.25) 

<P (.<) = ~"~~~T4 (6.26) 

^ 0 0 = 
'St 

(6.27) 

When Eqs. (6.24) to (6.27) are substituted in Eqs. (6.9b), (6.10b) 

and (6.11b) which, in turn, are then substituted in Eqs. (6.1), (6.2) 

and (6.13), we can see that the expressions of F\„ (?>")'? ^ c y (?:) 

a n d V B T ^ ^-/ involve the tensors of the various ranks of the 

following type ; 
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I 4 

<*. Ota *X C (« ^ ' ^ v - ^ ( j . & ) «.«^ 
< * 4 * 

* . 

In fact, all these real lattice sums defined by tensors $0 (t?)9 
*y\ *JH ^i *yi 

^ ^ ^ ^ B ^ ^ ^ B ^ ( - ) a n d **ofBr$(Ocan be obta1ned from the differ

entiation of the basic sum S (^)^t^&s^/% with respect to %# f 

tjy and $^ as follows : 

(6.29) 

S^(e) r —J—™ S (e) 
rfpr V V ^ 2 ^ * 3 % , ' V k " ' (6.31) 

Now we sketch the evaluation of the sum Sa(t*)by the Ewald 

procedure. In th is method, at f i r s t the fo l lowing integral t rans

formation is used to wr i te -—. as an i n t e g r a l , 
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f6 

v. nr r (*>/£)) J * *v 
(6.33) 

Subst i tut ing for */ft* from Eq. (6.33) in to Eq. (6.2«*)we get 

c"r*\ & T ~ / * £ • & / % - ' -*xAy* 
y 

M M . f 

2L-
 1S a dij 

(6.34) 

Since /L- 1S a discrete sum, in Eq. (6.34) we can interchange 

the order of the summation and the integration. Then Eq. (6.34) becomes 

C({)=/^Mr **"'£'* 
(6.35) 

The advantage of using the integral transformation, defined in 

Eq. (6.33), is that a Gaussian function in the sum S C § / 

in Eq. (6.35) converges better than a function of the form « ^ 

But, for small y, the influence of the Gaussian becomes small and so, 

"the sum JF in Eq. (6.35) has a convergence problem. 

To tackle this situation, the integration in Eq. (6.35) is 

divided into two parts by dividing the range of y at an arbitrary value, 

say,yssd( • Eq. (6.35) then can be written as 
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sv-rwy J-^-

(6.36) 

On the right hand side of Eq. (6.36), we represent the first 

integral by Jj and the second integral by J^ > and then formally 

write Eq. (6.36) as 

s \ e ) = 7{ +• 7% 

(6.37) 

Obviously, i f oC is not too small, only the f i r s t integral 

has the convergence problem. In order to overcome this problem, 

Ewald's method suggests a transformation which changes the variable 

of integration y to a new variable proportional to -~- , so that a 

small value of y gives a large value for JL , and then, the integral 

J» converges as quickly as the second integral Jj . 

The required transformation from y to ^ is easi ly obtained 

from Born and Huang (1954). The transformation changes the sum in d i rec t 

l a t t i c e £ to a sum in the reciprocal l a t t i c e T ' . E x p l i c i t l y , the 

transformation is 

C 111 / — 9 
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o r , 

z * 
3/? -it*?)/*?* 

"0 / - . ~~~™ "~" 

(6.38) 

Subst i tu t ing Eq. (6.38) into the f i r s t in tegral on the r igh t hand 

side of Eq. (6 .36) , we get 

* A v ^ 

W(*/*)U y4r y* y\ *** J 
o i 

(6.39) 

Changing the order of integration and summation in Eq. (6.39), 

which is permissible since ^T is a discrete sum, we obtain 
T 
#•» 

(6 .40) 

and dy - ". 7 - e 
Putting y : - and <fy r 2ft cfcfr in the integral 

o 

we obtain 
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which, put t ing t - p and &%<*£ ~ Pi reduces to 

(6.41) 

Subst i tu t ing Eq. (6.41) in to Eq. (6 .40) , we obtain 

me* 

jfV9 ^ J 
(6.42) 

In Eq* (6 .42) , put t ing o ( : | - on dimensional grounds where 

c is a constant parameter known as Ewald's parameter, and l l r — 

where m = 2 for bcc l a t t i c e s and m=4 for fee l a t t i c e s , we get 

j , = 
re 

3/2 n-a - j 

-mrr c 

(6.43) 

Eq. (6.43) gives the final expression for J"/ suitable for 

numerical work. To obtain a similar expression for J- > ln tne 

second term on the right hand side of Eq. (6.36) we interchange the 
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order of integration and summation which is permissible since JP 

is a discrete sum. Then we get 

* , = 

In the integral 

T -J y 4, dy 

(6.44) 

we put y* sro(*f , 4ydy?o( d£ and y =• <* € , and then 

we can wr i te 

T S T J " 5 - ^ ' 
I 

and so, Eq. (6.44) can be written as 

*•,&£'-<.*>*/, **-*«'•',, 

Once again, we put o( ~ jL. in Eq. (6.45) and obtain 
(X 

(6.45) 
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(6.46) 

Eq. (6,46) gives the f i na l expression for X^ sui table for 

numerical work. 

Subst i tu t ing Eqs. (6.43) and (6.46) in to Eq. (6 .37) , an expression 

for the sum 5 £ ? J c a n be obtained. From the sum SG C^ J 9 

expressions for other tensors defined in Eqs. (6.28&)to (6.32) also can 

be obtained, which, to avoid r e p e t i t i o n , we w i l l not describe here. 

Combining the contr ibut ions coming from <p (*tj and <p (t) 

t o 5 f l ( ? 0 * ^ot &V Ci) *n(* ^ g y ? C O w e c a n obtain the f i n a 1 expressions 
f o r f p ^ ) , F ^ v ( f ) and 5 p v g C t ) • 

In f a c t , out of the nine components of FR (Jt *) , the fo l low

ing six are independent: 

FXJ?) 3 Fyy ( t ) ,§*C*) , F„yCt), FXSCI) *»AFygL(%) 

Expressions for two of them are 
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9 

(6.48) 

By changing the indices x, y and z, expressions for K^y ^ 1 

and F £#> can be obtained from Eq. (6.47) and expressions for 

F f t / 1 ancl '"VsClO c a n be obtained from Eq. (6.48). 

Out of the twenty-seven components of E o ^ f ^ l > o n l y ten 

are independent. They are 

5xx C») , Pyyy C t ) , F * * H C t r l , F x y z C5), Fxxyft; , 

* * * * < $ ) ' Fyyx<^), FyX2 ^">> F „ x C § > ^ F^yCe;, 

Expressions for three of them are 

*%OiWf LnC / J 

(6.49) 
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.$dze^M$rS«*<,i 
^IOLW ( A-

ZVjlfrfl. 
lT*~cmXi%)feM ^^*}] 

(6.50) 

? ( p+* y 

W *'* . . .. ^ B , A -<*6*iA ec £fc**M)fim*~i**" <f] 
(6.51) 

By changing the indices x , y and z, expressions for ^yyy (%) 

a n d l " ? ? ( * ? ) can be obtained from Eq. (6 .49) , expressions for Pxxs(t0 

F y / X C ^ F y / Z C $ ) ? ' S S J E X C S )
 a n d ^^yC?) c a n be obtained 

from Eq. (6 .50) . 

Out of the eighty-one components of f S g ^ C t f ) > o n 1 y f i f t e e n 

are independent. They are 

*xxx* < e - ^ F y y / y C e ) , g ^ (e) , f>xxyCe), FXXX2Cl), 

F y y y x C £ ; ? F y y y ^ C f ) v f223X {-")> FZMzy C?)» F xxy2 £?), 

F
yy** (? ) ' W C?)> W «),5W ,C«;««« FyrZ^*;, 

Expressions for four of them are 
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i ' (6.52 

(6.53) 
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VL*f (F + 3)1 L K c2 l) 

-^1[¥^F.^^^ *$] 
(6.54) 

p. , . ^^rCfr^CK+ufr ,„*• • 

5 ^a%tf 

e c7 rBV-w^V^ 
>*M -&**/* 

ZVA**/n^. 

(6.55) 

By changing the indices x, y and z, expressions for ^ y y y y ( ? ) 

a n d ^ 2 2 2 i ( ? ) can be obtained from Eq, (6 .52) , expressions for 

^ ^ ^ w c ^ . r ^ c s ; ' %••«»;—i r,„yci; 
can be obtained from Eq. (6.53), expressions for yy *M«^ \^J and 

F ? 2 ^ y C f / can be obtained from Eq, (6.54), and expressions for 

5c*z2C?)and F yy?? ^ ) can be ob ta ined from Ec*- ( 6 - 5 5 ) -
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All these expressions in Eqs. (6.47) to (6,55) hold for a 

which arises in these equations, has been introduced by Misra (1940), 

and later used by Cohen and Keffer (1955), 

In fact , i f 

** -fix 

then, 

^c*)^ffT* *F 

Qm C*) = 9o <*? + &>/*) 6^-, C*} ' 

where 

and 

e> (*) - & / x 

6, Cot) = - £ i £.*") , 

e_, c*>«(j/*y*D - © C**^ 

E i f ^ ^ y is the exponential i n t e g r a l , and 0 \ X J is the error 

funct ion, 
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7. NUMERICAL CALCULATION AND RESULTS 

From what has been e x p l i c i t l y stated in the previous sect ions, 

i t is obvious that the ca lcu lat ion of «2MCf«v requires the calcula

t ion of the tensors g g ^ C ? % 5 S T I 0 D I & £ ^ a n d Xcp 0£ ) • Also 

we see from Eqs. (5.2) and (5.3) that the ca lcu la t ion of H^g (i J 

and X^pQi) requires the eigenvalues 4 ) ( f 3 y and the associated 

eigenvectors ^ C? ^ / obtained from the tensor V B I s / . 

In order to calculate the tensors ^ B C § *) » w p V ^ - / 

anc* ^ B ^ l ( ^ ) ^ r o m ^ s * (6-47) to (6 ,55) , we f i r s t generate the 

wave-vectors in the f i r s t B r i l l o u i n zone. This is done by using a 

step-length Z=32 which y ie lds 240 odd wave-vectors i n the 1/48 

port ion of the f i r s t B r i l l o u i n zone. Then we select a value fo r the 

Ewald parameter C i n such a way that each of the real sum 7" 

and the reciprocal sum 21 converges qu ick ly . Following Cohen and 
I 

Keffer (1955), we choose C r / F . We found that for convergence up 

to at least six s i gn i f i can t f igures , the real l a t t i c e sum JE 

requires 25 shel ls and the reciprocal l a t t i c e sum J£ requires 

th 2 

the indiv idual vectors up to the 25 s h e l l . 

To check our ca lcu la t ion of PJo (Jb\ , we calculated frequencies 

VCti)Jj?'^(^J/^WJ along the three pr incipal symmetry d i rect ions 

[ i l l ] , D i o ] and J j O O j in q-space. To obtain CJ(4j) we 

diagonalised the matrix of 5 g ( ? ) b y using the Jacobi method. Our 

calculated values of ^ ( f i ) along f i l l } , L^Q1 a n d C 1 0 0 l d i rec t i ons , 

and the experimental values of them measured by Wood et al (1962) are 

presented in Tables ( l a ) , ( l b ) and (1c ) . 
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The coulombic contr ibut ions to the tensors v p y C ? / and 

^ R / S Ctz) sa t i s fy a number of i den t i t i es which serve a useful check 

on our numerical work. 

From Eqs. (6 .49) , (6.50) and (6 .51) , we can derive the fo l low-
e 

ing i den t i t i es or sum rules for F^ e y ( f ) . 

k t * « ) + Py%ce)+ F^K (e; r o (7.1) 

Fxxy it) + Fyyy( t ; -+ F
H % X <f)=° ( 7 ' 2 > 

C ^ ) + tf*c*; + '.«(*)«• (7.3) 
Similarly, from Eqs. (6.52), (6.53), (6.54) and (6.55), we can 

show that the identities or sum rules satisfied by the components of 

C J* M 

yyyy / yyzz ' •x<jcyyv-/ (7.5) 

FC ( t ) f F d , / " e ) ^ F C f O r O (7.6) 
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F***y<*> + Fw* ^ ) + F Z 2 x y ^ ) = ° (7.7) 

F L z C 5 ) + FyCy** f y + F a « 7 t C « ) « o (7.9) 
For any wave-vector q, these sum rules are satisfied to an 

accuracy of at least 1 part in 10 in our calculations. This indicates 

that all the components of the third and fourth rank tensors ^ g * r (%) 

and f ^ g ^ f ( * ) a r e accurate to the same order. 

As a further check on these tensors, we calculated ^ B ^ i^) 

anc* ^ofBYfi C*} f r o n i o u r c a ^ c u ^ a t e c * values of ^ e y (|^) and 

R /g^ f (t 1 following the relations 

£ GO = 1 ^RV C&)<^*l(8' * 0 
V j3y ^ - / -^r- °^Py v - y v ~ x / ( 7 j 0 ) 

(7.11) 
4*** CO-Z F^vs (I) «*($.&) 

Our calculated values of H ^ O ^ ( ^ ) and % f g ^ Ô y agreed up to 

at least four significant figures with those calculated independently by 

numerical integration (obtained from R.C, Shukla, through private 

communication). 
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Thus, having assured ourselves of the correctness of our 

calculated values of ^ a ( f ) ; F^§y t ^ y and V S ^ S C$0 > w e 

entered in to the second phase of our numerical work. We calculated 

eigenvalues and eigenvectors, ^ ( f j ) and ^ C f i / respect ive ly , by 

diagonal ising the matrix o f ^ g ( * ) w h e r e f ^ o ( f 1 Is calculated for 

a given volume implying thereby the volume dependence of ^ { f ^ / a n d 

^ C% Jf *) • K(B^**) 1S v o ^ u m e dependent because they are ca lcu la

ted from a potent ia l funct ion CpfCy the coulomb part of which is 

volume dependent through the l a t t i c e parameter A and the e lect ron-

ion part is volume dependent through (xO&Q . These eigenvalues and 

eigenvectors are u t i l i z e d in the various tensors in performing the 

B r i l l o u i n zone summations defined in Eqs. (5.2) to ( 5 .9 ) . A l l of 

these tensors are also volume dependent. The volume dependence of 

the tensors HjgC*4) anc* T t f a O O arises from the frequencies and 

eigenvectors^ ^ ) ( f j ) and 4* C f J ) • T h e o t h e r tensors^ A^p^g {{% 

B p v „ C £ ) , < ^ y < 4 ) , fypCU, E, ^ C 4 ") and &^% C i ) , 

depend on volume also through fj jfgyCfO and ^ g y j ( * ) which are 

volume dependent because the i r ca lcu la t ion is carr ied out from the 

potent ia ls given in Eqs. (6.5) and (6 .6 ) . Considerable reduction in 

computer time can be achieved i f each of these whole B r i l l o u i n zone 

summations defined i n Eqs. (5.2) to (5.9) can be reduced to a 

summation over the 1/48 port ion of the B r i l l o u i n zone by wr i t i ng 

the i r invar iant forms. This has been done for the second and fourth 

rank tensor B r i l l o u i n zone sums by Shukla and Wilk (1974) and we have 

followed essent ia l ly the same procedure here. To obtain the invar iant 

form expressions for the B r i l l o u i n zone summations involv ing the t h i r d 
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rank tensors, we have followed essent ia l ly the same procedure as has 

been suggested by Shukla and Taylor (1974) for real space summations 

T8 . In f a c t , the invar iant form expressions in q-space and 

i 
<- space are exactly similar, only the cartesian components of I 
#» **• 

and q interchanges. So, to avoid r e p e t i t i o n , we w i l l not describe 

those transformations here. 

In our ca lcu la t ions , we have replaced the frequency CO C ? i ) 

by a dimensionless frequency A C t r l / by wr i t i ng j i C f O * ^ C f ^ ) J£~ 

where M is the atomic mass and A f t is a force constant. At the end 

of our ca lcu la t ions , we have mu l t ip l ied ^ ( f i l y by only n%\ , thus 

the M's a r i s ing in the de f in i t i ons of a M * C % ) * * M i C f o ) f *MaC*«>), W${£) 

and AMj>Ct#)5 in Eqs. ( 2 . 2 ) , (3 .14) , (3 .16) , (3.12) and (3 .18) , 

exactly cancel . 

The expressions for A M * ( $ 0 , a M i ( $ 0 , SL^M^) ^ M s C ^ ) 

and £M/| ($o) then can be wr i t ten from Eqs. (5.11a), ( 4 . 9 ) , (4 .10) , 

(4.20) and (4.21) as 

* « . ( * ) -CKBT)*? <k&> (7.12) 

M, c*0 = -C*BT/&* * . C*») (7.13) 

*«*C*0 *0<»t)V <*a<>0 (7.14) 
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+ «3%<< + << + <<^ (7 j6) 

^r«c«+«*«^ (7.16) 
where the volume dependent quantities <3L0 ( I v ) , A, C^O» ^-;s ^0> ^ * OO, 

<X^ fr"), du Qu^A-hd^ C#J are given by 

aCV) * NH CO ( 7 1 7 ) 

«-, 6 0 = N* 0>) / " * (7.18) 

H& - N°B to/*** (719) 

aT<>; = ^ L . * ^ / ' * * 9
 (7.20) 
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K,'c*> = C * wA» 
(7.22) 

(7.23) 

and the terms N C i O * N / C I O I ^ J O O , 

are defined in Eqs. (5.11b), (4 .15) , (4 .16) , (4 .22) , (4 .23) , (4.24) and 

(4 .25) , respect ive ly , and t he i r s imp l i f i ed expressions given in section 5, 

The e x p l i c i t volume and temperature dependence of Af^CIOfeJ 

is shown in Eqs. (7.12) to (7 .23) . We note that the volume i t s e l f is 

again a temperature dependent quant i ty . 

Since the anharmonic terms in HF\C%o) 9 given by Eqs. (7.18) 

to (7.23) are already of 0 ( ^ J , there is no need to examine the 

var ia t ion of these quant i t ies wi th volume as the increase in volume 

simply produces the e f fec t of higher order anharmonic terms in A -

Thus, to take care of the volume dependence of 5 M ( ? 0 ) , i t i s 

su f f i c i en t at least to 0 (A ) to consider the volume dependence of 

the harmonic contr ibut ions to £MC?w)- We have done th is by ca lcu la

t i n g the eigenvalues C0C%$*) and the e i g e n v e c t o r s ^ ( % j 1 a t f i ve 

d i f f e ren t volumes by using f i ve values of the l a t t i c e parameter (X 

and the corresponding f i ve values of the electron- ion term ( S r C ' ^ O 

which correspond to the temperatures T = 5°K, 111°K, 160°K, 293°K and 

361 °K. The values of ft and GQCklJ were obtained from R.C. 

Shukla (through pr ivate communication). 
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On the other hand to calculate the anharmonic terms in 

5 ^ ( t © ) ? 9 1 v e n by Ec!s- (7.18) to (7 .23) , we used the l a t t i c e 

parameter A and GQ$^J for only one volume corresponding to 

temperature T = 5°K which is very close to 0°K. 

Since experimental resul ts related to the Debye-Waller factor 

are avai lable at temperatures T = 117°K, 180°K, 291°K and 368°K, our 

calculat ions of 5 M C ? 0 w e r e performed at these temperatures. In 

order to calculate 3M£G D } , we regrouped various anharmonic terms 

as fol lows 

2f i C«0 =^oi,(?<.) +*'>uc«.) 

An£l C^rd' .^^+' iX'SV^'c-O (7.25) 

* / > ^ C^) - ^ ' C „ ) ^ (7.26) 

CO ^ 
Calculated values of A 0 C * ) t ®-< 0»O » A ^ C i O , #.3 O O , 

a « < V ) > ^ O * ) and &*'0>) are given in Table 2 (in.C,<?.S.u*U*). 
0> Ca-s 

Calculated values of«?M (%) JA? <&) 4M Cfe)and ^ A L ,,, ( O , fo r the 

f i ve lowest order re f lec t ions (110), (200), (220), (310) and (400), 

are given in Tables ( 3 a . ) , (3b ) , (3c ) and (3d ) . 
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In order to compare our resul ts with those of experiments of Dawton (1937) 

from our calculated values of the harmonic and anharmonic contribu

tions to AM C.%o)i we calculated the values of ( ?T ffT J 

by using the following re la t ion 

X '' Z^f^$r (727) 
where K is the in tens i ty of ref lect ion a t some standard temp

le 

erature T0 and J L is the in tens i ty of ref lect ion a t some other 

temperature T. Values of temperatures used by us are T = 117°K and 

T = 180°K, 291°K and 368°K. 

We have calculated the values of Qlr /fL J in the following 

three ways : 

(1) by using only the harmonic contribution to AM ( f 0 

(2) by using the harmonic and anharmonic contributions to 5 M ( ? e ' ) 

but excluding the anomalous part of i t , and 

(3) by using the harmonic and anharmonic contributions (normal and 

anomalous) to AM Cti«0 . 

Values of(%/figJ, 0 ? , y / ^ / ) a n d (?W /%t*)i calculated 

by us for ref lect ions (110), (200), (220), (310) and (400) are produced 

in Table 4. 
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8. DISCUSSION OF NUMERICAL RESULTS 

From the previous sect ions, we have seen that the basic quant i t ies 

which enter in to our ca lcu la t ion of A M (%) are the tensors f ^ a y ( $ ) 

dn<^ ^ B Y S {*%) » an(* t ' i e eigenvalues CO^f j ^ and the eigenvectors 

£" CfrlO °f "the matrix of E g ( t ) . From Tables l a , lb and 1c, we 

see that our calculated values of V C f i } f ^ C ^ ^ / ^ w ] a r e i n 

excel lent agreement wi th the experimental values. This provides 

confidence in our ca lcu la t ion of the tensors Km ft/1) and the eigen

values and eigenvectors obtained from i t . Consequently the tensors 

HUCBC^9)
 anc* X C B C ^ J which are defined in terms of t*>C%.dj and 

&£%$') are also r e l i a b l e . Also, we have given in section 7 the 

assessment of the accuracy of our calculated values of f k g * y ( ^ ) anc* 

In section 7, we have described the ca lcu la t ion of the harmonic 

and the anharmonic (normal and anomalous) contr ibut ions to J3M ( x c y 

which are given in Tables 3a, 3b, 3c and 3d. The calculated ra t i o of 

i n tens i t i es f E p / ? T ^ f o r t h e re f lec t ions (110), (200), (220), 

(310) and (400) at TQ = 117°K and T = 180°K, 291 °K and 368°K respec

t i v e l y , along with the experimental values obtained by Dawton (1937), 

are given in Table 4. At th i s point we note t h a t , for the harmonic part 

of the ca l cu la t i on , we have taken in to account the volume change (quasi-

harmonic ca l cu la t i on ) . For the quasi-harmonic calculat ions of ^ H ^ ( ? « y 

at the temperatures 117°K, 180°K, 291°K and 368°K, we have used s l i g h t l y 

d i f f e ren t volumes corresponding to the temperatures 111°K, 160°K, 293°K 

and 361°K respect ive ly , because the f i r s t p r inc ip le potent ia l was 

avai lable at these volumes. For the reasons explained in section 7, we 
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have performed the ca lcu la t ion of the anharmonic contr ibut ions to 

5 1 * 1 ( 5 0 a t t h e 5 ° K volume. 

From Table 4 , the di f ference between our calculated and the 

experimental values of £ f T /fT 1 can be expressed as the percentage 

di f ference from the experimental values. We ca l l th i s percentage 

di f ference T ^ C T V v i n 9 e n e r a l . When th is percentage di f ference is 

referred to our quasi-harmonic ca lcu la t ions , we ca l l i t Pt U^/Tj , 

and s im i l a r l y ^C*y*s and lg \T0/T) re fer to our (quasi-

harmonic + normal anharmonic) and (quasi-harmonic + to ta l anharmonic) 

resul ts respect ive ly . Values of \\CJO/TJ 5 2̂ (V''"/ a n d *3 C W T / 

are given in T a b l e d for a l l the re f l ec t i ons . 

From Table §*9 we note that the values of ^\\}l^/^°J remain 

wi th in +5.2 to -3.5 for a l l ref lect ions1which indicates that our quasi-

harmonic values of \^i\f/'tgo/ c a n mostly account for the experimen

ta l values. But the values of *\\(*l¥/*lO l i e w i th in +3.5 to -22.9 

and the values of ^Qlf/3 C^J l i e w i th in -20.0 to - 4 4 . 1 . From 

these resul ts we can i n fe r that our quasi-harmonic resul ts are inadequate 

to explain the experimental resul ts at T = 368°K whereas at T = 291°K 

the quasi-harmonic resul ts are adequate for the re f lec t ions (400), (310) 

and (220), and inadequate fo r the re f lec t ions (110) and (200). 

A careful observation of Table ^Treveals mainly two types of 

behaviour of the quant i t ies 1^ O y V anc* ^ ( 7 ^ f ° r various re f l ec 

t i ons . The f i r s t kind may be cal led the "converging type" where the 

anharmonic contr ibut ions bring the quasi-harmonic resul ts closer to the 

experimental values. For example, we note t h a t , for the r e f l ec t i on (110), 
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The physical s igni f icance of th is may be as fo l lows . For the re f l ec t i on 

(110) and T = 180 K, the addi t ion of the normal and the anomalous 

anharmonic terms to the quasi-harmonic one improves the agreement with 

the experimental r e s u l t . Similar behaviour is exhibi ted by f ^ O v X / 

and ^ ( T O / T ) for the re f lec t ions (110) and {200)foh A M ^ ^ ^ ° I T ^ 

The second kind of behaviour of the quant i t ies *2.CJO/TJ
 a n d 

^KCJO/TJ way be cal led the 'd iverging type1 where the anharmonic 

contr ibut ions are in the opposite d i rec t ion and the i r addi t ion to the 

quasi-harmonic resul ts produces poor agreement with the experimental 

values. For example, we note that for the re f l ec t i on (220) 

With the exception of J\CllyX9j a n d I3 O'Sy ^ C l y for the re f l ec t i on 

(400), a l l other percentages, v i z . I ^ C ^ / T ) a n d f ^ C X / T y for the 

re f lec t ions (220), (310)and (400) are of the divergent type. 

I J O l j j / a c O a n d %}Ol?/bC8)9 for the re f l ec t i on (400) are 

exceptions because yL ( j l T / B t ? ^ indicates almost a complete agree

ment with the experimental r e s u l t , whereas i f the anomalous terms are 

l e f t out the agreement is w i th in 12%. 

In order to explain a l l these behaviour of our calculated 

values of the Debye-Waller f ac to r , we would l i k e to mention that the 

expressions of the anharmonic contr ibut ions to the Debye-Waller f ac to r , 

as given by Maradudin and F l i nn , are not complete. These expressions 

contain anharmonic contr ibut ions only up to 0(^A ) and do not contain 

any term of O (A ) . But anharmonic terms of 0(A ) may be quite 
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s ign i f i can t too. For example, Shukla and Cowley (1971) and Shukla and 

Wilk (1974) have calculated the Helmholtz free energy of an anharmonic 

crysta l to 0 ( 3 / , and found that the contr ibut ions from terms of 

O f A ) are not neg l i g i b l e . So, for the case of the anharmonic con

t r ibu t ions to the Debye-Waller factor a lso , we expect the anharmonic 

terms of OfX j to be qui te important. A l l these facts suggest 

that i f the terms of 0 (^ ) are added to terms of 0 QA ) 9 the values 

of the Debye-Waller factor m*y converge in a better way. 

Keeping a l l these facts in mind, and noting the values of 

H 0 o A } and H C % / i } for a l l the re f lec t ions in TableijT, we can 

reasonably say tha t the agreement between our calculated resul ts and 

the experimental resul ts is sa t i s fac to ry . 

In order to establ ish the re la t i ve importance of the normal 

and the anomalous anharmonic terms in 5 M ( f e ) , we examine the Tabled 

which gives our calculated values of P A M ( f « 0 / ^ M d ( ^ 0 ] X ' o o j 

<0 CO 

We denote them by R ? ^ 3 4 , 4 and K 3 4 . 4 > respect ive ly . From 

th is table i t is seen t h a t , for a l l the r e f l e c t i ons , R, , * increases 

with temperature and remains p rac t i ca l l y constant for d i f f e ren t re f l ec 

t i ons . % varies from 4.2% at 117°K to 12.5% at 368°K. Noting 

that the Debye temperature GL of sodium is/v!51°K and i t s melt ing 

temperature 7 ^ is AJ 371°K, we f ind that the normal anharmonic con

t r i b u t i o n to A M ( 5 0 i s n o t neg l ig ib le even at 7 X 8 , and i t becomes 

quite s ign i f i can t at T a > T « 
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On the other hand, we find from Table £ that R , , /. and 

fL . i do not remain constant for different reflections. K « . /. 

increases with the order of reflection whereas R * ./. varies in a 

different way. But bothK^4^ ancl K 3 + ^ increase with the increase 

ul c*0 

of temperature. Combining^ and R^ . /. , we f ind that the 

to ta l cont r ibut ion of the anomalous terms to A 1*1(^0 becomes of the 

order of 1% at the lowest temperature T = 117°K for re f lec t ions (220) 

and (310), whereas at the highest temperature T = 368°K the to ta l 

anomalous cont r ibut ion becomes 2.8%, 1.4%, 9.3%, 5.5% and 2.8% for 

the re f lec t ions (110), (200), (220), (310) and (400) respect ive ly . 

Thus, the anomalous terms are found not to be negl ig ib le for cer ta in 

re f lec t ions even a t y r u © and they become qui te s i gn i f i can t a t y / v l m 

for most of the r e f l e c t i o n s . 
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9. CONCLUSION 

We have derived the anharmonic cont r ibut ion to ^ H C 5 0 ? 

for a cubic metal wi th small ion core, in terms of ^ g ^ t Id ) 

R . C$ } > anc ' the eigenvalues CO C%iJ and the eigen

vectors «€? ( f J } of the tensor F^ « ( t ) . We have i n t r o 

duced methods for an accurate ca lcu la t ion of the tensors ^ c p ( - ) 9 

R R C t f ^ ) a n d ^PYi ^ ) * A 1 1 the res t r i c ted mul t ip le 

whole B r i l l o u i n zone sums have been reduced to s ingle whole B r i l l o u i n 

zone sums using the plane wave representation of the delta func t ion . 

Thus, the f i r s t two object ives of th is thes is , as mentioned in the 

in t roduc t ion , have been achieved. 

We have calculated & H C^o") f ° r sodium and compared the 

calculated resul ts with the experimental resul ts of Dawton (1937). 

From our ca lcu la t ions , we found that the anomalous terms in 5 M ( ^ ) 

are s ign i f i can t for cer ta in re f lec t ions and become important at 

temperatures of the order of the melting temperature. 

This completes the remaining two objectives of th is thes is , 
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Table (la ) Calculated and experimental values of phonon frequencies v(qj) 

10 0 
(in units of 10 cps) along q = — [£,0,0] direction, for sodium at 90°K 

-s/ a 

L 

(Longi 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.85 

0.90 

1 .00 

P 

i t u d i n a l , L) 

(Transverse, T) 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.75 

0.80 

0.90 

1.00 

Calculated 

1 .296 

1.869 

2.322 

2.689 

2.965 

3.202 

3.406 

3.489 

3.562 

3.614 

1.131 

1.675 

2.169 

2.607 

2.970 

3.246 

3.358 

3.450 

3.574 

3.614 

Experimental 

1.43±0.07 

1 .94±0.06 

2.44±0.05 

2.78±0.06 

3.0U0.07 

3.24±0.06 

3.44±0.05 

3.53±0.06 

3.55±0.05 

3.58±0.04 

1 .09±0.04 

1.64±0.03 

2.17±0.04 

2.59±0.05 

2.96±0.03 

3.23±0.04 

3.35±0.04 

3.45±0.05 

3.57±0.06 

3.58±0.04 
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Table (lb ) Calculated and experimental values of phonon frequencies v(qj) 

19 9 

(in units of 10 cps) along q = — [£,£,0] direction, for sodium at 90°K 
a 

Experimental 

1 .25±0.04 

2.32±0.03 

2.77±0.05 

3.17±0.05 

3.46±0.06 

3.67±0.05 

3.75±0.09 

3.82±0.07 

0.43±0.03 

0.61±0.03 

0.76±0.03 

0.87±0.03 

0.92±0.04 

0.93±0.02 

1.16±0.04 

1 .52±0.04 

1.8U0.03 

1.97±0.03 

2.09±0.03 

2.27±0.04 

2.47±0.04 

2.52±0.06 

2.56±0.05 

? 

(Longi tudinal , L) 

0.10 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

(Transverse, T,) 

0.14 

0.21 

0.28 

0.35 

0.42 

0.50 

(Transverse, T~) 

0.15 

0.20 

0.25 

0.28 

0.30 

0.35 

0.40 

0.45 

0.50 

Calculated 

1 .222 

2.308 

2.762 

3.130 

3.408 

3.607 

3.725 

3.763 

.364 

.522 

.664 

.777 

.837 

.856 

1.168 

1.513 

1.815 

1.976 

2.074 

2.282 

2.431 

2.523 

2.554 
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Table (1c ) Calculated and experimental values of phonon frequencies v(qj) 

(in units of 10 cps) along q = — [£,£,£]direction, for sodium at 90°K 
~ a 

r, Calculated Experimental 

(Longitudinal, L) 

0.10 1.545 1.53±0.05 

0.20 2.760 2.72±0.06 

0.25 3.169 3.16±0.06 

0.30 3.385 3.38±0.06 

0.35 3.451 3.44±0.05 

0.40 3.386 3.42±0.06 

0.45 3.177 3.22±0.06 

0.50 2.858 2.88±0.04 

(Transverse, T) 

0.20 1.326 1.28±0.06 

0.30 1.941 1.92±0.06 

0.40 2.452 2.47±0.05 

0.50 2.858 2.88±0.04 
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Table 2a Calculated values of the coefficients a (v), a,(v), a2(v), 

a3
(1)(v), a3

(2)(v), a4
(1)(v) and a4

(2)(v) in Eqs. (7.17) to (7.23). 

Volumes or the corresponding 

Coefficients lattice parameter Values 

.„(») 

a-,(v) 

a2(v) 

»3 ( 1 ) ( v ) 

a3<2»(v, 

a 4 < " ( v ) 

a 4
( 2 ) ( v ) 

a = 4.2247A°(T=5°K) 

a = 4.244 A°(T=ni°K) 

a = 4.251 A°(T=160°K) 

a = 4.288 A°(T=293°K) 

a = 4.309 A°(T=361°K) 

[ a l l these anharmonic 

coef f i c ien ts are calcu i lated 

at the same volume which 

refers to the l a t t i c e 

at 5°K ] 

parameter 

0.227010 x 10"3 

0.224117 x 10"3 

0.225378 x 10"3 

0.249097 x 10"3 

0.237456 x 10"3 

0.370073 x 101 0 

0.42833 x 101 0 

0.147430 x 105 

-0.115742 x 106 

-0.159900 x 105 

-0.285015 x 106 

a (v) is expressed in units of erg" cm . 

-? 9 
a^(v) and a2(v) are expressed in units of erg" cm . 

a3 ^ ' a3 (v), a 4^^(v), and a 4^(v) are in units of erg~
3cm4. 
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Table 3a. Calculated values of 2M (q ) 
0 - 0 

Reflection 

no 

200 

220 

310 

400 

117°K 

0.1587 

0.3174 

0.6348 

0.7935 

1.2696 

180°K 

0.2447 

0.4894 

0.9789 

1.2236 

1.9578 

291 °K 368°K 

0.4298 

0.8595 

1 .7190 

2.1488 

3.4380 

0.5130 

1.0261 

2.0521 

2.5651 

4.1042 
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Table 3b. Calculated values of 2M,+2(q ) 

Reflect ion 

no 

200 

220 

310 

400 

117°K 

0.0067 

0.0133 

0.0267 

0.0333 

0.0533 

180°K 

0.0157 

0.0314 

0.0629 

0.0786 

0.1258 

291 °K 

0.0404 

0.0808 

0.1615 

0.2019 

0.3230 

368°K 

0.0639 

0.1279 

0.2558 

0.3197 

0.5116 
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Table 3c. Calculated values of 2M^J(q } 
3+4 ~o 

Reflect ion 

no 

200 

220 

310 

400 

117° K 

0.0001 

0.0005 

0.0010 

0.0017 

0.0040 

180°K 

0.0005 

0.0018 

0.0036 

0.0063 

0.0144 

291 °K 

0.0018 

0.0074 

0.0147 

0.0257 

0.0588 

368° K 

0.0036 

0.0146 

0.0292 

0.0510 

0.1166 
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Reflection 

no 

200 

220 

310 

400 

Table 

117°K 

0.0003 

0.0000 

0.0055 

.0031 

0.0000 

3d. Calculated 

180°K 

0.0012 

0.0000 

0.0198 

0.0112 

0.0000 

values of 2M3+1 ^ o ) 

291 °K 

0.0051 

0.0000 

0.0810 

0.0455 

0.0000 

368°K 

0.0100 

0.0000 

0.1606 

0.0903 

0.0000 
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p l 

p l 

p r 

p r 

p T 

p T 

P r 

p T 

p T 

P-T 

p T 

p T 

P r 

p l " 

p T 

17/p180 

17/p291 

17/p368 

17/p180 

17/p291 

17/p368 

I7 /P180 

I7 /P291 

17/p368 

I7 /P180 

I7 /P291 

17/p368 

I7 /P180 

I7 /P291 

I7 /P368 

Table 4 . Calculated and experimental values of PT / P T 

o 
Quasi-harmc 

Quasi -
harmonic + 

Quasi- normal 
harmonic anharmonic 

Reflect ion (110) 

1.090 1.100 

1.311 1.356 

1.425 1.509 

Reflect ion (200) 

1.188 1.209 

1 .720 1.840 

2.031 2.278 

Reflect ion (220) 

1.411 1.463 

2.957 3.384 

4.126 5.189 

Reflect ion (310) 

1.537 1.609 

3.878 4.590 

5.881 7.831 

Reflect ion (400) 

1.990 2.140 

8.744 11.452 

17.024 26.921 

Quasi-harmonic 
normal 
anharmonic + 
anomalous 
anharmonic 

1 .101 

1.365 

1.529 

1.211 

1 .852 

2.310 

1.488 

3.700 

6.232 

1.629 

4.905 

8.976 

2.162 

12.097 

30.131 

+ 

Experimental 

1.13 

1.7 

1.9 

1 .23 

2.0 

2.5 

1 .34 

2.9 

5.3 

1.50 

4.0 

8.3 

1 .96 

8.8 

30.4 
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Table 5. Values of P (T / T ) , P~(T / T ) and P_(T / T ) 
1 o 2 o 3 o 

•VVT> 
Quasi-harmonic + 

p / T ,j\ ^ u a i i - normal 
p / - /Ts r o1 ' harmonic + anharmonic + 

n o ' Q u a s i - normal anomalous 
harmonic anharmonic anharmonic 

P 
n 

Pn 

Pn 

Pn 

Pn 

Pn 

Pn 

P n 

Pn 

Pn 

P n 

Pn 

Pn 

Pn 

117 /180) - 3 . 5 - 2 . 7 - 2 . 7 

117 /291) - 2 2 . 9 - 2 0 . 0 - 1 9 . 4 

117 /368) - 2 4 . 7 - 2 0 . 5 - 1 9 . 5 

Reflection (200) 

117/180) -3.3 -1.6 -1.6 

117/291 -14.0 -8.0 -7.5 

117/368) -20.0 -8.8 -6.6 

117/180) 5.2 9.0 11.2 

117/291) 3.5 16.6 27.6 

117/368) -22.1 -2.1 17.5 

117/180) 2.7 7.3 8.7 

117/291 -3.0 14.8 22.8 

117/368 -28.9 -5.7 8.2 

Reflection (400) 

117/180) 1.5 9.2 10.2 

117/291 -1.1 30.1 37.5 

P (117/368) -44.1 11.5 -0.9 

P2(T0/T) 

Quasi-
harmonic + 
normal 
anharmonic 

Reflection 

-2.7 

-20.0 

-20.5 

Reflection 

-1.6 

-8.0 

-8.8 

Reflection 

9.0 

16.6 

-2.1 

Reflection 

7.3 

14.8 

-5.7 

Reflection 

9.2 

30.1 

11.5 

(no) 

(200) 

(220) 

(310) 

(400) 



Table 6. Calculated values of R1+2>
 R3+4> a n d R3+4' 

100 

Reflect ion 

110 

200 

220 

310 

400 

110 

200 

220 

310 

400 

no 

200 

220 

310 

400 

117°K 

4.19 

4.19 

4.20 

4.20 

4.20 

0.06 

0.16 

0.16 

0.21 

0.32 

0.19 

0.00 

0.87 

0.39 

0.00 

180°K 

[R1 + 2 ] 

6.42 

6.42 

6.43 

6.42 

6.43 

r R ( 1 ) i 

0.20 

0.37 

0.37 

0.51 

0.74 

TR (2)1 

0.49 

0.00 

2.02 

0.92 

0.00 

291 °K 

9.40 

9.40 

9.39 

9.40 

9.39 

0.42 

0.86 

0.86 

1.20 

1.71 

1.19 

0.00 

4.71 

2.12 

0.00 

368°K 

12.46 

12.46 

12.47 

12.46 

12.47 

0.70 

1 .42 

1.42 

1.99 

2.84 

1.95 

0.00 

7.83 

3.52 

0.00 



REFERENCES 

Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Clarendon 

Press, Ltd., Oxford (1954). 

Boscovits, J., Raoilos, M., Theodossion, A. and Alexopoulos, K., Acta 

cryst. Camb. Y\_, 845 (1958). 

Chipman, D.R., J. appl . Phys. 31_, 2012 (1960). 

Cochran, W., Proc. Roy. Soc. A276, 308 (1963). 

Cohen, M.H. and Keffer, F., Phys. Rev. 99, [4], 1128 (1955). 

Dawton, R.H.V.M., Proc. Phys. Soc. 49, 294 (1937). 

Debye, P., Ann. d. Physik 43, 49 (1914). 

Gonenc, Y.T., M.Sc. Thesis (unpublished) (1977), Dept. of Physics, 

Brock University, Ontario. 

Harrison, W.A., Pseudopotentials in the Theory of Metals, Benjamin 

Press, New York (1966). 

James, R.W., Phil. Mag. 49, 585 (1925). 

James, R.W. and Brindley, G.W., Proc. Roy. Soc. Al21, 155 (1928). 

Lehman, G.M., Wolfram, T. and Dewames, R.E., Phys. Rev. 128, 1593 (1962). 

The force constants in Table III of this reference are incorrect 

and are corrected in the errata of Phys. Rev. 130, 2598 (1963). 

Jaswal, S.S. and Girifalco, L.A., J. Phys. Chem. Solids 28, 457 (1967). 

Mann, E. and Seeger, A., J. Phys. Chem. Solids 1̂ 2, 314 (1967). 

Maradudin, A.A. and Flinn, P.A., Phys. Rev. 1_29, [6], 2529 (1963). 

Messiah, A., Quantum Mechanics (Vol. 1), North-Holland Publishing Company, 

Amsterdam (1958) (pp. 449-451). 

Misra, R.D., Proc. Cambridge Phil. Soc. 36, 173 (1940). 

Nicklow, R.M. and Young, R.A., Phys. Rev. 152, 591 (1966). 



REFERENCES (cont'd) 

Shukla, R.C. and Cowley, E.R., Phys. Rev. Ê 3, [12], 4055 (1971). 
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