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ABSTRACT 

A mathematical expresslon for the quartic term of the 

Helmholtz free energy of an anharmonic crystal (F4 ) is 

derived which is more appropriate for the long range 

oscillatory potentials in metals. All the fourth rank 

tensor sums required in the calculation of F4 have been 

obtained by the Ewald's summation technique for the long 

range asymptotic potentials of the form 

and ~'n+a) S:"'" (ZL .. _\ h' . • .,. K r .), were n lS an odd lnteger. The 

long range contributions (corrections) to each of the 

various physical properties such as F4 , F4E (in Einstein 

approximation) , l1(Energy) ,(~>(average GJ~) and the phonon 

frequencies G.)qj for a model of Na at 90 oK (Shukla and ... 
Taylor, 1974)are found to be small. 
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1. INTRODUCTION 

In the theory of the lattice vibrations accurate 

calculations of anharmonicity have aroused considerable 

theoretical interest since Mie (1903) and Gruneisen (1908) 

developed their equation of state assuming a temperature 

dependent lattice constant. For the first time using 

classical statistical mechanics, Born and Brody (1921) 

investigated the effect of anharmonicity on the caloric 

equation of state. Born and co-workers (1939) studied 

the temperature dependent elastic constants in the high 

temperature limit. Stern (1958) discussed the anharmonic 

deviation of the specific heat from the Dulong-Petit 

law (3R) at high temperatures. Apparently, the first 

quantum mechanical perturbation treatment of anharmonic 

Helmholtz free energy, which is based on the expansion 

of the crystal potential energy in terms of an ordering 

parameter , ~, defined by the ratio ofa typical atomic 

displacement and nearest neighbour distance, was given by 

Ludwig (1958). Expressions for the two lowest order 

terms in the Helmholtz free energy of ()(~) arising 

from the cubic and quartic terms in the Hamiltonian were 

derived by Ludwig and these are valid for all temperatures. 

Numerical calculation of the anharmonic Helmholtz free 

energy was carried out by Maradudin et al (1961) in the 

high temperature limit for the case of nearest neighbour 

central force interaction in the leading term approximation 

1 



where one takes into account in the calculation only the 

highest'order radial derivative of interatomic potential. 

Horton (1968) has reviewed the anharmonic calculations of 

the Helmholtz free energy for ideal rare gas crystals. In 

these crystals it is sufficient to take into account the 

nearest neighbour interaction in the anharmonic calcula-

tions because the potential is of short-range nature. On 

the contrary, in many simple metals, the potential consists 

of two parts; the short-range and the oscillatory-long-range. 

The latter contribution to the potential arises from the 

effect of the singularity in the dielectric function in the 

effective ion-ion interaction. For large distances the 

oscillatory asymptotic potential behaves as 'V"'-~ G:rs(2 kf" r) 

(Harrison, 1966). Thus, for metals, any calculation of a 

potential dependent physical quantity will end up with an 

oscillatory result, and will create a convergence problem. 

For example, Shukla and Taylor (1974) have computed the 

lowest order cubic (F3 ) and quartic (F 4) anharmonic con­

tributions to the Helmholtz free energy for Na and K. In 

their calculations, (F3 ) was found to be rapidly convergent 

sum, but (F4 ) oscillated wildly and turned out to be a 

function of the shell contributions. This last mentioned 

quantity (F4 ) can be expressed as a sum of potential deriv­

atives over the real-space lattice vectors and certain 

functions involving Brillouin zone sums for each real-

lattice vector'. They performed the Brillouin zone sums 

2 
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first and the real space vector summations last, examining 

the contributions to (F4 ) up to 23 real-lattice vector 

shells, and did not get a convergent answer. On the other 

hand, for oscillatory asymptotic long range potentials if 

we perform the real-space summations first and the Brillouin 

zone summations last, the real-space sums then can be 

evaluated as rapidly convergent sums with the aid of 

Ewald's method. Consequently, these convergent sums can 

be used to calculate long range contributions to many 

physical quantities such as the quartic term of the Helm-

holtz free energy, the phonon frequencies, the elastic 

constants, the Gruneisen constant, thermal expansion, etc. 

Cohen et al (1976) have studied the long-range contribu-

tions to the Gruneisen parameter and the elastic constants. 

To the best of our knowledge the calculation of the fourth-

rank tensor sums for oscillatory asymptotic potentials of 

the form r-n. Cos(.2.k,r ) and r(n+1) Sc.n(2kFr) (n is odd) 

by Ewald's method have not previously been reported in the 

literature. This is one of the main objectives of this 

thesis. 

In Section 2 the quartic anharmonic contribution to 

the Helmholtz free energy has been expressed in terms of the 

wave-vector dependent direct lattice sums more suitable for 

the application of Ewald method. In Section 3 we have given 

the analytical form of the interionic potential for large 

distance which yields correct representations of the first, 

second, third and fourth derivatives of potential when 

3 



compared with the actual potential derivatives. The method 

and formalism of Ewald's sums have been given in Section 4. 

In Section 5 we have presented the numerical calculations 

for the long-range contributions to the exact quartic term 

(F4 ) in the Helmholtz free energy and the Einstein quartic 

E term (F4 ). Since the simplest quantities such as the 

long-range contributions to the energy and the phonon fre-

quencies can also be calculated as another application of 

Ewald's method we have also computed these quantities in 

this section. Numerical results have been discussed in 

Section 6, and finally the conclusions drawn from the 

results obtained in this thesis are presented in Section 7. 

4 
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2. QUARTIC ANHARMONIC CONTRIBUTION TO THE HELMHOLTZ 

FREE ENERGY 

The potential energy of vibrating lattice may be expanded 

in terms of the small displacements 

¢ = ¢(i! ... ~l) 
(2.1) 

¢ .. ¢o;. 9{ + ¢a ... ¢.3 or ¢ ... + ... 

where 

(2.2) 

the prime over the i sum indicates the omission of the 

origin from the sum, are the real lattice vectors 

~ ~ are the anharmonic force constants, and the 
01 f$'t d ••• -i: 

indices ()(, ~, 0', d' , .... I -e each take the values x, y, z 

in the summation. Uoe the 0(. -component of displacement 

operator, is given by 

(2.3) 

where N is the number of unit cells in the crystal, M is 

atomic mass, eO( (qj) is the ~-component of the eigenvector, .., 
UJ(2 j ) is the angular frequency of the dynamical matrix, aqj 

and at. are annihilation and creation operators for the wav; 
q] 
N 

vector (q) and branch index (j) . .. 
In the first order perturbation theory the quartic anharmonic 

contribution to the Helmholtz free energy arising from ~~ 

term in Eq(2.1) is given by (Shukla & Taylor, 1974) 

(2.4) 

5 



where the angular bracket denotes the thermal average of ~4 

which for any operator CJ is defined by 

(2 .5) 

where Ho is the harmonic hamiltonian, kBT = ~ -1, kB is the 

Boltzmann constant, T is the temperature, Tr denotes the 

trace of the operators. Substituting}J4 from Eq(2.2) in 

Eq(2.4) we get 
I 

~ =i :if ~~.t 9!c(b'll"a(I,t( t} < u,( Up t.y V f > (2.6) 

Anharmonic force constants ~f3'(d' in Eq(2.6) are given by 

9£,.l:O::'( \)d 9"~9~ 9"1r?of ¢'(i,l} - !ll} \ ~ ~O (2 • 6) , 

¢.,P'r~ !~\)= (~_JJ.I.'/r~ -lJ" )(r: _U.,)(; i- 1J.r)1 'c~!l r'" C{i,r~ !!. \} 
i{(t!-tJ.()('"i- up) dl'r40(r~_uF)(r:-lly )t~+(ty'-- ~)r.,~_IJ,.() ~~ ~ 

..(~-~)(1"U~~l"-.{~-tJ,.)~;-u~t't.f.f~_IJ~)(r;_Ucl')tpJlr~ ~t B4!<"~ I) 

+(~~~~c!'+ ~~l'~ctel+ ~'(~~~)tt~~'-Z A(l!::'~\)J~~o (2.6a) 

where 

(2.6b) 

(2.6c) 

(2.6d) 

6 
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~(r) is a potential function for a given distance. 

In Eq(2.6), decoupling the quantity inside the angular bracket, 

two at a time in all possible ways and taking into account the 

symmetry of ~~'(~ in all indices, we can write 
. ,. 

:r.:: ~ ~ 3:r L; ~;t ~(l.,r{t~~ I) (tJ~ O~>t (0, tJ 1->( ( 2 • 7) 

In terms of ul)( and u ~ , the correlation functions 

can be expressed as 

, 

~"1:r~~~~tr.~~ ~~Jftr~O 
. t:c(!!J.,) e,,{f!~') elf!.jz.} ecJ{f.lc.} 

6l(},JI} 0..)(1,,$2.) 

(2.8) 

It is obvious from Eq(2.9) that one method of performing the 

summation for a fixed direct lattice vector r!i. over the wave 

vectors and branch indices (qj) would be to define first the ,.., 

functions S oer (~l) by 

,sf (rL):=.2: e.(!~)ei1n cott(i\2..~~irrj_Cos~,.,~. !:.t)) 
I(~ i" ~~ G.)(~ ~ ~ tJ t 

(2.10) 

and then express Eq)2.9) in terms of S~~ i.e. 

~ = 1'~ Nl"+~ ¢"P'(Jo(r):~ l) 1~ 0;<) J.,.l!:~) (2. 11) 

7 
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At this stage one can carry out the summation over 01, ~ ,'0 ,ct 
;e 

in Eq(2.ll) for a fixed value of r and this yields altogether ,., 

81 terms. Since the fourth-rank tensor 9SCI(p1rJ' is completely 

symmetric and S~p is a symmetric tensor, Eq(2.9) really con­

tains 15 distinct terms with different coefficients. The 

final expression for F4 is 
I 

F..;~'~frr.~fWr()~:(r<)+~~:ly(t"<)~;("~)+9jZ%z(,.~)~(r.e) 

8 

+'41C':Jitt.)(2.~(t()~:J&().yf~:(T(~i-&.cZ%( .. <)~~(r()~.it·<)+4tz(r~B 

+~~%z(l"(}(2~~6'"~}jZ.(r()-r4~(r~Ht~«i-t(4~JC(r.fJ~("~~+~(,,~)(+~r{)~(Yf.») 

or 

+~~/r~[4~+t-t)i,(r"~+~~1"()f41=-(r~)~z t()+~z7.,lr<)[~~(:}~z.(~~ 

+~,lr<)[4~~r()~z.({"<~+~~z{;)[4~x(l"()~lr.()+8~~(,..l)~z(~.t)] 

+ ~j)Cz(r()[-4~~(r~)~z(r.t)+8SX96-<) ~it'~)l 

... ¢ 0·1[4 S (yt)S (t~)+8's (r~S <t<)l} 
:ZZX~ zz K~ XZ ~z 

(2.12 ) 

(2.13) 

where f~ is the quantity inside the curly bracket in Eq(2.l2). 

This procedure of calculating F4 as a function of direct 

lattice vectors was followed by Shukla and Taylor (1974), 

which clearly would be useful if fe drops rapidly in magnitude 

increases. For short range potentials, where 
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, 

-~. 

the t summation is extended to iii. few neighbours only, the 

above method of Shukla and Taylor (1974) would give a rapid 

convergence. For metals, where the potential is not only 

long range but oscillatory in nature, F4 can never be summed 

satisfactorily by the above method. This was demonstrated by 

Shukla and Taylor (1974) in their calculation of Na and K. 

F4 really never converged, although the summation was exten­

ded out to 23 neighbour shells. Since this method did not 

give a convergent answer for F4 from Eq(2.9), it was necessary 

to introduce a different method to get a convergent result 

for F4 • In this procedure we perform the real lattice vector 

summations first and the wave vector summations last. Combin-

ing the two cosine terms in Eq(2.9) and defining the fourth-

rank tensor sums for a fixed value of wave vector Q, as 
I'-

I 

.z;;p-rl (9)= ~ ~PT<l' (t<) ~(~·l) 
we can express Eq(2.9) in terms of F~p~~ i i.e. 

·[r.;~ ... r(o)- t'~'rf(~\- r:p"ti~) 

+t F~f~f(~ + ~2) +{- F;f/t (~-ill)1 

(2.14 ) 

(2.15 ) 

Eq(2.1S) can be written in terms of only three distinct terms. 

9 
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On interchanging ql and q2 the second and third terms in 

"" 
Eq(2.15) are found to be equivalent. Since q2 takes all 

"'I 

possible values in the summation, changing ;j to -~ the 

fourth term is equivalent to the fifth, and finally F4 can 

be written as 

(2.16) 

where 

(2.17) 

(2.18) 

(2.19 ) 

10 



o 1 F3 2.1 SIMPLIFICATION OF F4 , F4 , 4 

013 
In this section we will simplify the terms F4 , F4 and F4 

arising in the expression for the quartic term (F4 ) in the 

Helmholtz free energy. Using all the 48 point group oper-

ations of a cube for a general wave vector q with positive 

components satisfying the condition q fq 1q 10 and recalling x y z 

the fact that 

(2.20) 

the wave vector sum appearing in Eq(2.17) can be simplified as 

(2.21) 

Summing the diagonal term of Eq (2.21) over the index of., where 

~ =x,y,z, and using the normalization condition on the eigen-

vectors, . the. quantity D is expressed as 

(2.22) 

Substituting Eq{2.21) in Eq(2.17), we obtain 

(2..1.3) 

11 
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Summation over ol and 'If gives 

Introducing 

and using Eq(2.21},Eq(2.18) can be written as 

or summation over ~, f t:'1' and a gives for .t"'~ 

(2.24) 

(2.26) 

~1= ~:,.p. iJ. h..l~~~[~~)+t:s/~)+rx",z(~~ 
4- t~~ (~~l) [~~3j(~)+ r;x~,~~ + ~,z:z ( ~)1 

+ h ('!: ~.) [ ~Z'" 1\ ') -+ F>(l( ZZ (~} -+ P:t)zz C~)] 

+2 ~~ ('!: ~.J [r:...~ (<!:)-t- ~>«~) -+~ (~;'j1 

+2 \'" (~~~[ F;..."z (~~ -+ r;ZZ)(C<!:)-+ F;:t"zC'k)i 

+ 2 i:lz (,!:~. \ [ ~~~ '" (<!:) + F,;ZZj ('!i ) -+ r;":!,, ('!l ~ 1 
(2.27) 

12 
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With the aid of Eq(2.25), Eq(2.l9) can be written as 

(2.28) 

For simplicity, we introduce 

and we rewrite Eq(2.2S) as 

(2.29) 

Summation over cI, ~, 7, lr·' gives 

where 

(2.31) 



~x~~®c:;~ [1sc./1:j,)t~~(~-~,j:l) +tKxf~-!!J)a.)-f:.)j(1'J,) 
..J')'ct2 

.... 4 ~!:f(~l') iX~(~-~,)l 

1,.%2 ~~;. [-Iso/!o ~,) -/;;zz~-l" l;)+1.,,@-1>,j.) ~,.(~ ~) 

--t-4\~(<J!l~ t)(Z~-1\/jJ,~ 

T (Q)= Z ["\/"}. )*s.Z~ -'I" ~2)+ \J~-'b/l~ \Z<cr.~.) 
~~:zz. 1"* ~ )'d'Z ,... 

..(.4\Z(~~I) ij~l~-!JI j&)] 

T)(>(Xl~)"2.~JM 1~ \'~-ll,i~)+ V~-~'.i~) \y(,!!)~] -
T>oocz(~)=z2.: [\X~l')\Z(~-!')i~4-~l~-~,~~-ii~ )~] 

q,),~2 ,.., 

14 

(2.32) 

(2.33) 

(2.34) 

(2...35) 

(2 .36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 



; 
- :;;::.. 

T=,,~).,. 2 ~J~Z(~~.)~,.(~ -!1..iz)+ \~- !!,j.)"\lll.iol] (2 .42) 
N 

1:~z~) .. 2 Z. [\~),) \.(~-!.' ,~)+tc~':111 j.)~l~)' ) v,.. ~.),)& 

+ z( t~l~).) \f~-i"j~ t \~~ .. ~l' jJL)\2.(~ ll~J (2..4!.) 

~j><i~)=2 ~[~~),) \1(~- !!,~J+ )l~-!'J1.)tz~ l') 
~\,)l~ll. 

15 

-l- 2( -t)J~~,)1,Z(~-~~)2.)-\-t~/~~~'}.)~z(1!~~] (2. 4~) 

"Izx~@)_2~ [~2(i'~~~~~_~,)~+ ~.£~-l"):l)\i~)') 
!t)\)2. 

"" 2( "k(~)'} 1z(~-M# "tl~-ll'~1rz4h )~1 (2.4 5) 
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2.2 THE QUARTIC ANHARMONIC CONTRIBUTION TO THE HELMHOLTZ 

FREE ENERGY IN THE EINSTEIN MODEL (F E) AND THE AVERAGE cJ 
4 

The simplest calculation of any thermal vibrational property 

of solids can be performed in the Einstein model where every 

phonon frequency GJ(qj) is replaced by the Einstein frequency 
N 

G.l£f:IIA<CJ2.J!2.. Since we are interested in the calculation of 

F4 in the Einstein approximation (F4E) and average~2, in 

this section we will derive analytical expressions for these 

quantities. 

In the Einstein approximation the frequency dependent 

term can be taken out of the wave vector sum in Eq(2.8) and 

the correlation function can be written as 

where for simplicity we have substituted t in place of the 

direct lattice vector rl . ,.. 
,., 

The Eq(2.46) can be simplified using the orthonormality 

condition of the eigenvectors 

16 

(2.47) 

and the sum over the wave vectors q, viz 

(2.48) 

where 
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The final result is 

(2.49) 

where 

(2.50) 

( ) . f E a Expresslon or F4 

Substituting Eq(2.49) in Eq(2.7), we get 

, 
(2 .51) 

Using Eqs(2.6b), (2.6c), (2.6d) in Eq(2.6a) and substituting 

the resulting expressions in Eq(2.5l) then summing over 

andt we obtain the following expression for F4 E 
I 

F: E =..!...2!!. Ce2. L: r ¢ 10'" 0 + 4 (A r' at /I}~ I)] 
""'" 2 -4 \ .t - 1"1 \1 .... -

(b) Expression for <G:)2.) 

The average GJ2 ,(GJ) ,is defined by 

<ci/) ... (3N)i ir G,12(1n 

The eigenvalue equation is given by 

(2.52) 

(2.53) 

(2.54) 

where the elements of the dynamical matrix, D ,are defined by c(p 
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(2.55) 

Multiplying both sides of E,(2.54) by e~ (qj) and summing 
IV 

over the index«, we get 

Using the normalization condition 

in Eq(2.56) and summing both sides of this equation over q 

'" 
and j, we get 

Using Eq(2.47), we can write Eq(2 .58) as 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

and finally the expression for<~&>can be obtained by combining 

Eqs(2.53) and (2.59) in the form 

(2.60) 



substituting Eq(2.55) in Eq(2.60) we get 

I 

<c.l) =-(3 M Nj' ~~~9£.lIAI>(l_e·H) 
,.., '" 

I 

:=(3MN)11=2; ~(~.[N-JV.6(~)] 
tv 

I 

=:~M)1~rP1lI~~~Yjjl~~.\.~MI~ 
/'# 

where in obtaining Eq(2.61) we have used Eq(2.48). 

The harmonic force constants appearing in the above 

equation are defined by 

fif.s.~.ll)= / Q" szS'a~-U 1)\ 
"r" ~&J"~Ufb ,.. ~::o 

-«<C-~~-Ll{J)l;4-~i2r ¢(~-~~-s!i~ 

. i»it~- ~I~ +~I~-.!!r!¢'ft ~-~Ol 
, Ll.<) 

N 

(2.61) 

(2.62) 

with the aid of Eq(2.62), Eq(2.61) is reduced to the 

following form 

(2.63) 

19 
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3. INTERIONIC POTENTIAL 

For simple metals like Na,K (tightly bound cores) the inter-

ionic potential can be written as 

where z' is the ionic valence and Ule is the ion-electron 

interaction which comes from the screening of the ion motion 

by the conduction electrons. 
oQ . 

Ur =_Tf11,(Z'eyl.{ dq f(C)) @.r)i ~ .. n&Y") 
e 0 

where 

20 

(3.1) 

(3.2) 

(3.3) 

M(q) is the bare electron-ion matrix element, Q(q) is the static 

electron gas screening function related to the dielectric function 

by the equation 

(3.4) 

where 

(3.5) 

and ,=q/2kF , q is the wave vector, kF is the Fermi wave number, 

m and e are the electronic mass and charge respectively. 

For large distances, the effect of the logarithmic singularity 

at l~f =2kF in E(q) given by Eq(3.5) gives rise to an 

asymptotic representation of the potential function of the 



form (Harrison, 1966) 

This oscillatory behavior of the potential creates the conver-

gence problem for the potential and potential derivative 

dependent sums over the real lattice vectors(r), such as the 

quartic term (F4 ) in the Helmholtz free energy, the phonon 

frequencies, etc. In the numerical calculation, the oscilla-

tory convergence of (F 4) has been indicated by Shukla and 

Taylor (1974). In Figures 1 and 2 we have plotted (F 4 ) and 

2 
<~>calculated from the interionic potential given by Eq(3.1) 

(Shukla & Taylor (1974)). To compute the long-range contribu-

tion to the energy, Basinski et ale (1970) introduced the 

four-term asymptotic potential 

21 

( 3 • 6) 

the 
But Eq(3.6) does not give/correct representation of the third 

and fourth derivatives obtained from the actual potential 

(Shukla and Taylor, 1974), thus we have chosen the 8-term pair 

potential as 

(3.7) 

The potential constants A. and B. presented in Table 1 have 
1. 1. 

been determined from the four inflection points of the actual 

potential function. 



The first, second, third and fourth derivatives obtained 

from the above potential Eq(3.7), for Na at 900 Kare in 

reasonable agreement at larger distances in terms of mag­

nitude and sign with those of the actual potential of 

Shukla and Taylor (1974). We have presented in Table 

2 the first. four derivatives calculated by Shukla and 

Taylor (1974) and from Eq(3.7) respectively. 
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2.7 

«(A)J 

2.5 

2. ~ .-.. 5 ~ 7 8 9 10 " • .2. 1& 11' 15 ,~ .7 18 19 .20 21 2.2..a3 

Fi~LJre 2... <Ci:Ja) I in units of ,02.6 rad~seC2. .as a funC\-iOYl of -sheU IL. 

number tOY' ac+ual po+entiat and latTice ysvQme1-er .a::~Z34 A. 
r-..> 
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TABLE 1.. Long range potential constants. 

A 
1 

:a 
1 

A 
2 

:B 
2 

:5 

lB' 
3 

A 
4 

:8" 
4 

ell 
The units are eV for a-:;:.4.234 A. 

-.528305137 

-.397123867 x 10 

2 
-.416975194 x 10 

4 
..... 319156322 x 10 

4 
- .103945142 x 10 

6 
-.125589463 x 10 

6 
.718540782 x 10 

7 
.568556732 x 10 
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-
TABLE 2. Actual and lo~g range potential derivatives as a function 

of r"=(a/2Kn~ ,n: ,n:) .The units are erg .cm-:a • erg .em-z • 
erg:em-s ,erg.em-"'. a-. 4.234xlO-& em. for Na. at 90 0 k. 

drJ /drs Irs /102 d2rJ/d(rS )2/103 d'V/d(rS )'/loll d4V/d{rs)4/1020 

So . AP LRP .AlP LRP Ap LRP AP' LRP n " 

N 

III -1.33'5 -4.4j71 3.7627 5.5220 -9.8008 ·7.095' 1.834, -2.2853 

200 1.208, .4976 .,498 1.220' .,.4268 -5.'266 .7047 1.0760 

220 -.1349 -.0867 -.078' -.0807 .4246 .3977 -.049' -.0500 

'11 •• 0,4, -.02'8 .0922 .0700 -.0511 -.0448 -.0071 -.0200 

222 .002' .0029 .0699 .0488 -.10'1 - .0839 -.0245 -.0056 

400 .0212 .0110 -.0219 -.0204 - .0610 -.011' .0069 .0091 

"1 -.00,4 -.0045 -.019' -.0102 .0'12 .02'7 -.0044 .0007 

420 -.0073 -.0062 -.0125 -.00,6 .0287 .026, .0028 -.0015 

422 -.0050 -.0015 .012' .0085 .0066 -.0016 -.0062 -.0030 

333 .0013 .0022 .0065 .0033 -.0121 -.0120 .0043 -.0002 

511 .001' .0022 .0065 .0033 -.0121 -.0120 .004, -.0002 

440 .0030 .0008 -.0047 -.0043 -.0141 -.0007 .0054 .0016 

5'1 .0002 -.0008 -.0055 -.0027 .0055 .0057 .0007 .0006 

442 -.0004 '-.0011 -.0044 -.0016 .0064 .0064 .000' .0002 

600 -.0004 -.0011 -.0044 - .0016 .0064 .0064 .0003 .0002 

620 - .0016 -.0009 , -.000' .0020 .0073 .0030 .0015 -.0009 

53' -.0010 .00002 .00'2 .0024 .0010 -.0014 -.0043 -.0008 

622 -.0006 .000' .0028 .0021 -.0046 -.0026 -.0022 -.0006 

444 .000' .0007 .0025 -.0001 .0025 - .00,6 -.0030 .0002 

551 .0008 .0004 -.0004 -.0014 -.0110 -.0017 .0017 .0006 

711 .0008 .0004 -.0004 -.0014 -.0110 -.0017 .0017 .0006 
, , 

640 .0006 .000' -.0017 -.0016 -.0059 -.0008 .0047 .0006 

624- .0001 -.000' -.0002 -.0011 .0026 .0020 -.0021 .0003 
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4. METHOD OF OBTAINING WAVE-VECTOR DEPENDENT TENSOR SUMS 

We have introduced the oscillatory asymptotic form of the 

interionic potential in section 3. As pointed out before 

in section 1, this potential creates oscillatory wave 

vector dependent direct lattice sums which arise in the 

calculation of the· various physical properties. Thus, in 

this section we turn our attention to the development of a 

technique for evaluating these sums. 

The simplest property we can calculate is the potential 

energy. 
I 

U=..!.. L ¢/lril) Z. l \1,., 
(4.1) 

where r~ is the t th neighbour distance and ¢(r~) is the 

(4.2) 

where 

(4.3) 

After substituting Eq(4.2) in Eq(4.l) and introducing the sums 

(tensors of zero rank) 

(4.4) 

(4.5) 

the interionic potential energy can be written as 



4 

U.1:.L[a" C (.2k lo7o)+b.~. (2k ,0,0)] 
:l. -'::j. 2 ..... SF... ..... .. +:.1 F 

(4.6) 

The other wave vector dependent direct lattice sums arise in 

the expression of the dynamical matrix elements defined by 
/ 

M ~l~)::2; 9!t,lrt) [ 1_ C:.s(~. ~e)] (4. 7) 

where the force constants 9!. are given by 
ot(l> 

(4 .8) 

Substituting ~ from Eq(4.2) in Eq(4.8) the resulting express­

ion for Eq(4.7) can be expressed in terms of the following 

second rank tensor sums: 

(4.9) 

(4.10) 

as .... 

M~~~) .. .?,;;~aJ ~:~kv.o}- '17:1 (2k". ~ ) 

(4.11) 

In section 2 the quartic term (F4 ) in the free energy was 

expressed in terms of the wave vector dependent lattice sums 
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defined by 
I 

t~'IS"~)=~ ~pt (r<) Co,,(~, l) (4.12) 

Substituting t;I from Eq(4.2) in Eq(2.6{ and defining the 

following two different fourth rank tensor sums 

C~~or Q"f 
(2k G)-

n F:)'" - ~d~t..W--=~-" t3--:-g~---:~~"~r CrJ2~J ~> ~)L,. .. -
(4 .13) 

ct(!.1rt 
5 (.2.k;) G\= n ,::,.,} (4.14 ) 

Eq(4.12) can be expressed as 

~[c(P'tt oc~;or 
F (G)=.L. a.C (2~,Q)-l-b S. (2ke.'"~Q) 
llI(1'l1"" J.=J. .It ~""i • - " .2.1o .... :z. r"'" 

(4 .15) 

Therefore, in the calculations of the long range contributions to 

the quartic term (F4 ) in the free energy, energy (U), and phonon 

frequencies 6.,) (qj)"we need to evaluate six types of oscilla-,. 
tory slowly convergent "infinite" direct lattice sums viz. 

~~ ~pof ~~~~. ~~ 
Cn. t $", ') Ch,. ,C" I S"" I Sn 

One of the most useful methods of evaluating slowly convergent 

lattice sums was introduced by Ewald (1921). First we apply 

Ewald I S method to C ana. thiill we generate all other cosine sums 
n 

by differentiating this basic sum with respect to ~, u~' 

All sine sums are also generated from the cosine 

sums from the following equation 



According to Ewald's procedure, the term -n (r-u\ in the 
,... N 

direct lattice sum is replaced by the Gaussian integral, 

then the integral is split into two parts over the dummy 

variable. This creates two direct lattice sums. Using 

the Theta function transformation, the slowly convergent 

direct lattice sum is replaced by the reciprocal sum. 

(For further details see Appendix A2) • The sum C is 
n 

independent of the choice of the splitting point, namely 

the Ewald parameter (c(). 0( is chosen in such a manner 

that the two sums over the direct and the reciprocal 

lattice vectors converge rapidly. 

Following Born and Huang notation we find (see Appendix A2) 

I 

S."C2k ,q,u)= 2 ~'.t.-'1rns..n(2klt..lJl)Cos(Cf.!}(~~r e-lIl.'tJ:& 
F..... "" r(!!;, 1. .. ) 1: ,. F ... ,. ,. L (4 .17) 

+ L E~(1k,lG +11, u) 
Ga l'\ r"" ,.. -

where 

(! 3/2. r J~ \ fCC "'1 
~(C/~+111~)~!. U)~+!"M 1 d~ 9 -

'Uc r 6l/!z) 0 

. ~+l~+1l-1c,) expr-<~+\~~!I)/~&] 
(4.1S) 

4 ... (<i+lf~~) eX:f[-(~-~-t .1~/4~2.1] 
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E$(l!J\~+ql/u)= ;/2.Cosf(i+~)·~l {(G+qfl[~ 
n ,.. "" z'-'crCn .... i) },.. - lOY 

.2. 

(exp[ -(a +tS+!lt/4~~]:[(~~~t~I):J.s WI-5_2 .3 n-31 

- eX'ff..(t;-t~"'1lt/4~~1 [(t;_l~+'l},.~n~2 ~n ... l~l (4.19) 

and Vc is the volume of the direct lattice unit cell and ~~2kF' 

With the help of two sums Cn (2kp '0,0) and Sn(2kp '0,0) we 

can now calculate < fA:I. > and the Einstein quartic term 

(P4 E) in the free energy. To obtain these particular sums 

we have to take the limit of the direct and the reciprocal 

lattice sums in Eqs(4.16) and (4.17) as vector q tends to ... 
zero for u=O. The direct lattice sum does not create any 

problem, however the reciprocal lattice sum must be exam-

ined more carefully because of the singular nature of the 

term {G + ql-l. This term diverges for G=O and q=O. 
N ,.., IU N 

Isolating this term in the reciprocal sum and taking the 

limit as (G + ql tends to zero, we find 
1\1 N 

/ 

+~ EnC(?l~ IIS1,o) 
II'Y 

(4.20) 
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The second rank tensor sums required in the calculation of 

the dynamical matrix elements can be obtained similarly by 

substituting Eqs(4.l6) and (4.17) in Eqs(4.9) and (4.10) 

respectively. We get 

C:~k;.. ,.) .. f[ .t1~ A: (tk~t)+ t,.c' D: ~~, L ~c.,3C!.! ) 
-~ (lic+qlt)(~-+tp) E~(.2,,=J!i+!I/O} (4.22) 

,.. 

+ 2 feeQ [(~~):l ~ +-2.. ()("+2] 
r(n/:z.) n (n+&.) 

I 

{~kl" ~ )~~[.r\~ '<~I<f'.()-I- ~,.r'D'pv)} G...($'!) 
",.. 

-L<~ +'1.c )(/>4+ rp) ~(~JW tit 0) _ 4 t~ t2 "" ~ vi 11+: 
~ r ,.._- rc";') n-t-i 

(4.23) 

where 

A,{l:,'i\):;rv: · {(:~ eKp(-ty)[ t 3n- i +:H a' (C, .l.yl. 
I \·.12) ~ ')60 ll+'i ~'~ J (4.24) 

'l. 

It~, ~ \)= - !L f fZ ~Pf. t!l.~a)I Z ~ n_i +2'J d c: (l! .. .t)] 1 
\'Yn/z) r/. "'.0 ))~"1 

(4.25) 



.' 

a:CCl t ) -= _ c.,2rc,s((;t)+e .¢-i.~Y\q;t) 

a~~,~):=. 4 c,.t. S.i.Y\(t;t) 

a~(~lt)= 4J..2~stt) 

d:(e,t):: (:, S;.Y\(Cl) 

o\;~~)~ 2i (Qs(t,t) 

A:~.t): 2. ~ \d~ e)(p(_!:Z~:l)[Z '3n-+2~as. ~-e)]1 
rO!;!~ I CIt 7::s() )J .... 'l 

:s. 

-n:tcA = ~) 1 f~ e)(p(..{~")[ ~ '!Jn~ ~~,,(, ~-t») 1 
a:CC,,:/J.)== - C2;t S~(~)+ l:,a:,.s(Ct)_.t-"'S.i.Y\~) 

d:~J'l) ~ -4Ictf.CAs(Ct)+ts;.Y\Q:t)] 

.a~ (e .. t)-;:: 41. 'bS~\'\ (et) 

d:~7t)= CJ.<As<t:~,) -+ SA." tt) 

d;~L)~_2t1.&1\~) 

-=0 

To evaluate the sums C~~ and sq~ 
n n for q=O, we again take 

I'U 

the limit of direct and reciprocal lattice sums in the Eqs 

(4.22) and (4.23). In this case the reciprocal sum does not 

create any difficulty because the quantity (Go( +qQl ) (G~ +q (It) 

.lG+q\ -1 tends to zero as G ... 0 and q~ 0, hence in the 
IV ,., "''''' I 

numerical computation we replace 1: by I: for the sums C c(~ 
G G n 

«~ ~ ~ 
(2kF ,O) and Sn \- (2kF ,O). 
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The calculation of the quartic term (F4 ) in the free energy 

requires tensor sums of the type given by Eq(4.15), viz, 

e ti,. .... ~ and SCIl~1'~ • Substituting Eqs(4.16) and (4.17) in 
n n 

Eqs(4.13) and (4.14) respectively we obtain the fourth rank 

cosine and sine tensor sums. These are given by 

ot~Tf ~r -<4 c: 
~ Ctkf~')=7 1. ~.4('~.tct en Clk~,.t} 

,.. 

-!-ir ck~ tf>+ ~t tl .. + ~I'~~I". + ~'11.. .tt+ ~~4.r+ t,.\4,r) &:~k~, i! ) 
+t(~~d'lrf+ ~f6gio( + ~ ~~f) A~~kF/t))<A.s(.!.!) +&:~kFI«) 

... ~ (Got -I- <\", ) (Gpo ... II f> )"~'" <I-r ') ~ cI' -+ 'tel') E:@ ~ ,1~+9..1/0 ) 
/'V 

ctfb"r ~ [ .. oS 1 (.tkfl i)=~ L- ~Af'tr.tcr Cn.4lkftL. ) -
+rt \.r{,.+ ~~ ~+4_t\~'" "y v.r + \.y~l~+ t/& .t'l~.t) ri(:t~t) 

34 

+ft( .t~~f+ j~"(~~ ..... ~'t ~(6~)"\l2kl'llU G.s(H) -\- &'}k"ce) 

-I-L ~oI-t '11)~/'> -t f,8I(l:1+ ~t)~ -t-q ,,) E~(2kf/\,"'" q \ I 0) G ~ (I' It. tv", 

/'II 

The expressions for the functions eC , eS BC BS J:! c and'£"s n n' n' n'Q(,n ""n 

are 
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where 

CC~,()= ~"'(OS~t)_'l;a.clSt.n.(t;4_15~.i-.2Co&tt)+lS l:.t-?J S.lYl.(l:t) 
i 

~~~)a.-8~).tSi..{tt)_ 24l;;:r.(Qs(l:t) .... 2-+ ~t ... t Stn.{tt) 

C;a:IO,:: 24[_ ~~2. G:»s(tt) -to z:tS.l.Y1.(l:4)j 

i(t.~~= 32. .t3t: ~y\~.() 

c c~.t):= 1 b 1"* Cos(e-t ) 
5 

b ~ t):::. e, ~ SA.,,(cA) -+ :3 t21..-1CA.s(~( ) _ :3 ~ J. -!l 54\1. 4:.1, ) 
I 

~(t;~lJ= G[~~~S~)_ Z;Si.y\~] 

J{~t) -- -12.l:,.t1 S;'V(. (i:-t ) 

bC~I.t)::: --8 t 3 Co.s{i;l) ... 



c:(t;,t)= l:""l S;.n(Ct}+2~'~~) ~ ~ 'C.,rJ.../.-' S .... n(Z;t) 

-t-15 ~ l-·G,s(~t}_ 15.(-3 S.in.{i:t) 

l~L):: ac;~:l.~s(~)+24C Ga..s{t:t}-2.4 ./.-i SA.n(~l} 

C:((; .. t): 24 [_l:~aS;'~~.t)+ ~.t:LCas(et)_.t S\.n~t)] 

S:~t)=-3Z[ ~.t4~s{l:l) -t-~3 S;'l1.(t4}l 

C:~,.()= 16'1.05 ~nlc.t) 

~~t)=- ci Cos~l)_ 3.t"'£C, ~s~.t) -+ 31-.&S.4n(~.t} 

bS (C,t):: ,l~:t.% Stn(tl)_t..t Co&(l;t) + Si.~~)] 
z. 

~(~,()== 12[ C;~a~S~)4- .t7.S""y\~.() 

~~t)~_8.t4 S;.n(et) 

f . h oetAo,," Cl(a.-.' ~ ( I we examlne t e sums C ~ (2kF ,q) and S r 2kF ,q) 
n "" n '" 

for q=O, it is obvious that G=O vector does not create a 
~ '" 

singularity in the reciprocal sum because the term 

(GO( +qcc ) (G, +q~ ) (~ +q-r ) (Gd'- +q~) ·l~:l \ ~ 0 as 2-+ 0 

and G~O; consequently in the numerical computation of ,., 
C aCftYt' (2kF , 0) and S 0( ~'\( ... (2kF , 0) we replace.E' by ~ • 

n n G <4 
"'" ,., 
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5. NUMERICAL CALCULATION 

Our fundamental goal is to evaluate the contribution 

or correction from the oscillatory long range part of the 

potential function to the anharmonic term CF4 ) in the 

Helmholtz free energy. Before we calculate the exact 

F4 we will evaluate the long range contributions to 

much simpler physical quantities such as the Einstein 

quartic term (F E) in the Helmholtz free energy, phonon 
4 

frequencies cJ(qj), and energy (U). ,.. F E depends on 
4 

<G)~> ' hence we need to evaluate this quantity 

separately. 

The contribution or correction to a given physical 

property (P) from the long range potential can be obtained 

in the following manner. 

First we compute this property from the 8 -term 

potential given by Eq(3.7) employing the sums obtained 

from the Ewald method (P~). Then P is calculated once 

again from the same potential using a discrete real 

space lattice vector summation. The difference of these 

two calculations gives the necessary contribution or 

correction for that physical property (A P) from the 

long range part of the potential function. Symbolically 

we can state all this in terms of 
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We have pointed out earlier in Sec. 4 that with the 

help of two sums, Cn.~k¥IOIO) and 5"" (:.z.k,. ,() I 0) 
one can calculate <C£> ' Eli 

""" 
and u. These sums 

are given by the Eqs(4.20} and (4.21), respectively. 

The Ewald's parameter (0( ) appearing in these express-

ions is to be chosen in such a way that the real and 

the reciprocal lattice sums converge simultaneously 

and rapidly. The choice of oC. by Born and Huang (1954) 

was r:I.-i/a , Shukla (unpublished result) chose 0(:= i.2.~/.a 

Cohen and Keffer (1955) selected cC==1Ti /2./-a . 
In the numerical calculation we will follow Cohen 

and Keffer (1956) and choose O<::=1r'1/J./a and replace 

the integrals appearing in Eq(4.20) and (4.21) by the 

Cf -functions introduced by Misra (1941) 

(5.1) 

where 

These functions satisfy the recurrence relations 
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and reduce for m == 0,_1./2,_1 

tabulated functions 

~(X)= e'Jt!x 

to the well-known 

cp (k)= (tr/x-):1/2. [1-.¢'(X~.f.)] 
-V.z 

Cf-'J (X) = - E..c.C ?<' ) 

where El(-X') is the exponential integral, and ¢()() 

is Gauss' error function. 

We have presented in Table 3 the dimensionless sums CCn 

and SSn defined by 

(5.3) 

(5 .4) 
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We have found that for an accuracy of 8 significant 

figures the summation over.l and G in Eq. (4.20) and 
'" I'll 

(4.21) from which CCn and SSn are obtained can be 

restricted to the 9th shell. 
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TABLE 3. Dimensionless infinite sums Can and 

SSn for BC~O 1attle e . 

co 
:; 

SS 
4 

00 
5 

ss 
6 

00 
7 

SS 
8 

cc 
9 

SS 
10 

CO 
11 

SS 
12 

00 
13 

SS 
14 

cc 
15 

ss 
16 

co 
17 

SS 
18 

-1 
.34162860 x 10 

-2 
.25356562 x 10 

·3 
.59164169 x 10 

-4 
.59384:;09 x 10 

.4 
.11800645 x 10 

-5 
.12318190 x 10 

-6 
.25097378 xID . 

-7 
.25200346 x 10 

-8 
.54470766 x 10 

-9 
.11896291 x 10 

-10 
.10761030 x: :CO 

-11 
.260:;6681 x 10 

-12 
.2257 :;867 x 10 

-I:; 
.570:;5565 x 10 

-14 
.4779:;358 x 10 
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5.1 LONG RANGE CONTRIBUT IONS TO THE EINSTEIN 

QUARTIC TERM (F!) • <G::l-> ' AND ENERGY (U). 

(a) Correc,tions to (w'l. > : 
Differentiating the 8-term asymptotio potential, Eq(3.7). 

with respect to lfl and substituting the resulting derivatives in 

Eq:(2.63}, then using the sums Cen and 88n defined by the Eqs{5.3), 

(5.4) respeetively,(GJa> can be written as 

-4 

«(J) = ~~)2.~$ AJ_cC. +4SS +2;'(2i.+1) CC. ] 
..JL"I L=1 1 ,2"+1 2.-t2 2c.+! 

42 

The calculated discrete cumulative 23-shell and infinite sums 

for (cJ) and the corresponding corrections ~<G.l>:«W2»OO-«W2.»y\' 

for different shells (n) are presented in Table 4 • «c,.l»)oo is 

evaluated simply by substituting the values of een and SSh from 

Table 3 in Eq{5.5). and we find 

The minimum oorrection to (cJ) appears when the discrete sums 

are truncated at the 23rd shell, which is 

2.' 2._2-
_ -0.000.3188 ~ 10 rad. sec. . 
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a To get the total (~> we perform the summation in Eq(2.63) up 

to the 23rd shell for actual potential(AP} which is found to be 

and then we add the minimum correction to it • i.e. 

26 z -2 ; 2.799833 x 10 rad.sec • 
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~ 

TABLE 4. (~~>,F~ and (U) as a function of shell vectors 
l=(a/2Xn! ,n~ tn!) .where a-::.4.234xl0-8cm,and corresponding 
corree tiona 4.<CA)&~ p E and 4(U) for 8-term potential. . 
«~'.t.>t 4<G.)~> ) t Ct, t (U • .6.U) are in units of 103'rad~sec2. t 

10'* N Ot:e,T) % .erg~a .10-a", ergs respectively .. 

d' (G,):& »n A<G)~> (FJlE )h, AF S (U)h. AU 
N 4 

III 3 .. 2362 .7232 -5 .. 3558 .5681 .. 1556 -6.6876 

200 3.9276 .0318 ... 4.6037 -.1840 -8.2041 1.3614 

220 3.8249 .1346 -4.6652 -.1225 -5.9024 -.9403 

311 3.9616 .... 0021 -4.7838 -.0039 -7.0935 0;:·508 

222 3.9961 "" ~o367 ... 4.8018 .0140 -7.5743 .7317 

400 3.9866 - .0271 . ... 4 .. 7904 .0027 -7.5081 .6654 

331 3.9634 -.0039 -4.7804 .... 0074 -7.0745 .. 2318 

420 3.9532 .0062 -4. 782~2 -.0055 -6.7887 .... 0549 

422 3.9705 - .. 0110 -4.7982 .0105 -7.0066 .1639 

333 3.9731 -.0136 ... 4.7994 .0116 -7.0612 .2186 

511 3.9810 .... 0215 -4.8028 ,,0150 -7.2252 .3251 

531 3.9647 -.0052 ... 4.7906 .0029 -6.9526 .1100 

441 3 .. 9609 -.0014 ... 4.7887 .. 0010 ... 6.8723 .0296 

600. 3.9599 .... 0005 .·-4.7883 
'. 

.0006 .... 6 .. 8522 .0096 

620 3.9639 -.0044 ... 4.7926 .0049 -6.8971 .0544 

533 3.9689 -.0095 .4.7969 &0092 -6.9762 .1335 

622 3.9734 -.0139 -4.8004 .0127 -7 .0511 .2084 

444 :;.9734 -.0139 -4.8001 .0124 -7.0553 .2126 

551 3.9707 -.0112 _4.7974 .0096 -7 .0196 .1769 

711 :;.9679 .... 0085 -4.7946 .0069 -6.9839 .1412 

640 3.9648 -.0053 ... 4.7916 .0039 -6.9385 .0958 

642 3.9598 - .0003· ... 4.7878 .0001, -6.8497 .0071, , 

00 3.9594 -4.781'7 -6.8427 



(b) Corrections to the Einstein quartic term (F~) in the 

Helmholtz free energy: 

45 

In the numerical evaluation of ~ or F4 it was convenient to 

take the high temperature limit, which affects only the hyperbolic 

aotangent function, coth(1L ~G)t in their expressions. Expanding 

this function in the high temperature limit and taking the first 

term in th e expans ion.t we have 

co1ii.f-n.. ~ \ = 2 k& T + ... 
z. k~f) -f\~ (5.6) 

SUbstituting Eq (5.6) in Eq (2 .50), CE whioh arises in the expression 

for F! can be written as 

where 

SUbstituting Eq(5.7) in Eq(2.52), the Einstein quartic term(F!) 

~an be written as 

(5.8) 

Differentiating the a-term potential given by Eq(3.7) and substitu­

ting the derivatives in Eq(5.8),and then using the sums COn' SSn ' 

as defined by the Eqs(5.3},(5. 4) respectively and given in Table 3, 

F4E can be written as 
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+.2i.(2i.+ 1)(2" +2)(.2i. + 3) Cc..2i. +J 
f B.(5S2. "l+4{2i.+I)CC. _b(2c,+I}(2,-+2) 55. 

Co Co +.. .2 Co -to 3. 2 .. '"" 4f. 

-4 (2.c.+ ,V.., i. -to 2. VZ~ + ~) CC 
'J'r'- ~ 2 .. +5 

+(2 .. + 1)(2c.+Z)(2«. -\-3)(2<.+4) SS.2i. ... C; ]} (5.9) 

The discrete cumulative 2'-shell and infinite sums for ': and the 

related oorrections ~~ = (~>CIO - (~)n for different shells are 

presented in Table 4. The smallest oorreetien arises when the 

discrete sum over the shells is truncated at the 2,rd shell, we 

find 

AF! :: 0.00011'7 x 1012 N(ke.!) 2 erg-I. 

To evaluat~ the total ~ for this particular shell, first the 

summation is performed in Eq(5.8) up to the 2,rd shell using the 

actual potential (AP). and we obtain 

«F:>2,)AP = 1.6968875 x 1012 N(kaT)2erg-1. 

then we add the corresponding correction to «pf>2,)AP to obtain 

(~) Total :; «Pi> 2') AP + (6(~» LRP 

= 1.6970006 x 1012 N(k&T)2 erg-l. 



.' 

(c) Corrections to Energy (U) : 

SUbstituting the 8-term asymptotic potential i.e. 

Eq(3.7) in Eq(4.l) and using the sums CCn and SSn ' we express 

the energy as 

(5.10) 

The finite oumulative 23-shell and infinite sums for U and the 

corresponding oorrections AU = (U)oo-(U)n. • where (U) n 
represents the truncated sum at the nth shell, are presented 

in Table 4 • (U)oO is evaluated substituting the values of Cen 

and SSn from Table 3 in Eq(5.l0). and we find 

/. ) -/-4 ,LJ 0() = - b. 842.l)812 >< 10 eres. 
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The smallest correction arises when the finite sums are truncated 

at the 23rd shell • 
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S .2 LONG RANGE CONTRIBUT IONS TO THE PHONON FREQUENC IES 

FOR N a AT 900 K IN THREE FUNDAMENTAL DIRECTIONS 

l~ 00 J f L~ ~ 0 J , It; l; Co j • 

The calculation of the long range corrections to the 

phonon frequencies from the 8-term potential requires the compu­

tation of the dynamical matrix elements, Eq(4.1). Numerical 

accuracy of these elements can be cheeked deriving the following 

sum rule 

M~ 1?p(~) ~~= M 2; 'D .... (~) 
/ 

= 2;[AO~b+a'!i'~')l[Lc., ... (~ .!l] 
'" 

(S.ll) 

To derive this sum rule, first we sUbstitute Eq(2.62} in Eq(4.7) 

and get 

/ 

t1 ~r(2 )=ff i~.d~A(t)+~~ 'D(i~[1_ CoS(l !)] (S .12) 
,., 

where AC") is given 'by Eq(2.6d} t D(t) ::.~ ~(t) and P'(t) is the 

potential function, then use Eq(S.12) in (S.ll) and sum over 

index ot. 

The LHS of Eq(S.ll) can be computed independently with the help of 
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ci~ .,.~ 
the second rank tensor sums On (2kF'~)' Sn (2k~ .~) given by 

Eq(4.ll) and the RHS is also computed independently using the 

zeroth rank tensor sums from the Eqs(4.4), (4.5). The terms 

appea.ring on the RH'S are then written as 

I 4 

~ A(l)[ l_Coe.( 2 .!)l= {; f·~ k.) a • .[C;, + I (2k., 0 '~-~+I (2k.,~, 0) 

t r(2kF'(4.i+ 3).Dl. _(2.kF) ~ 1 [5. (2 k¥/O,o)_ S . (~ks:,Cl ,0)1 
U "... ,2"+2 .240 +2 ,., ~ 

(5.l3) 

I ~ 

2: i'O(t)[i_Coc(Q.4)]=}:> ..(.ak.).a.[S 12k 00\_5 12k q o~ ~ - N f.::r.1 l " 2,+2" " I ') 2.i.+2\: F/_' 'J ,... 

+[-(.2<+~a. ~kF) b.1[ C2 <+?(2kF,o,o)-C2t+? (21<., ~ ,051 

-(2~+2.) ~ [52' .A(2kF ) 0,0)- S. (2kF'1 q o)l"l 
"40.... 2,,+4..., I ~ I (5.14) 

Letting d~~ (~) = M D~~(~) .' we have presented in Tables 5a,5b,5c 

the functions d (q) and the term dO which represents the RHS of 
oC~ N 

Eq(5.ll), in three fundamental directions LIO001,1l:I;Ol .l~l;~j, 

where q = (2W/a)C • ,.. ,.., 

After solving the eigen-value equation of dynamical matrix, 
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D(q)e(qj) = UJ2(qj)e(qj), as we indicated before in section 5 the 
tv ,., tv ,.. ~ "",.. 

long range corrections(contributions) to the phonon frequencies, 

~~ (%) =G)(~j)/2n , is obtained from the equation 

~ )l. (q) = ( v. (q)) _ (». (q)) 
J, .... 6 .... cO J..., n. 

where ( y. (q» is calculated from the Ewald's method and 
c} IV 00 

( lJ ~ ($J ) n from discrete summation. 

We have presented in Tables 6a,6b, 6,c (Ya (~»oo' (Yb- (~»n t 

~( -l ~ (~» for three basic directions It; 001 ,l~l!; OJ , and ll; k l; j 

in their FEZ's taking different shells ( 1'1 = 5,8,12.16,23). 

50 



TABLE 5a Second rank tensor sums and sum rules for LRP. 2-,:.(zWa) ~ 

dc(~ and dO are in units of eV /lJ2 . 

51 

C;-=-l~oOj direction, d :: d ,ddA: 0 for d/:f! i o.2.t ~~ 1.0 • 
N ':f~.z~.,- r 

TABr;E 5 b ~:.l~ In oj 

TABLE 5c ~~tt;t,~J 

t; d d dO 
"" ~~ 

0.2 0.2664 0.1502 0.5668 

0,4 0.8267 0,,5574 

OQ6 1.2672 1.0496 

0.8 1.5091 1.4444 

1.0 1 .. 5949 1.5949 

direction. o .1~ l:,~ 0.5 

d -= d..,:z == 0, ~~+ O. 
~2 

l;:; dxX' dZz. 

0.1 0.10799 0.0739 

0 .. 2 0.3919 0.2674 

0.3 0,.'7278 0.5069 

0.4 0.9914 0.7036 

0.5 1.0897 0.7774 

direction. O.lt. t,~O.5 ... ... 
d :::: d ::: d 
x~ )(2 ~':3. • 

t, ci)O( d)(~ 

0.1 0.1429 0.0916 

0 .. 2 0.4951 0.2780 

0 .. 3 0 .. 8536 0.3723 

0.4 1.0765 0.2669 

0.5 1.1372 0.0 

t 

, 

1 .. 9416 

3 .. 3664 

4.3979 

4 .. 7848 

d :II d xx IJ~ 

d~~ 
0 .. 0973 

0.3534 

0.6548 

0 .. 8888 

0.9765 

, 

d :=. 
d _ 

!l(X' ,~-

dO 

0.4287 

1.4854 

2.5607 

3 .. 2295 

3.4116 

dO 

0.2899 

1.0512 

1.9628 

2.6866 

2.9569 

d 
Z% 
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TABLE 6 a • Frequenoy table and pho:n.on correotions for LRP- in 
t;; .. U:oal direotion, wheres-= 21/a , , 0.2~~"1.0. 
ov"i (g,) and corrections A"l(q). (~ (q) ~ - (y~ (q»y\ 
are in units of 10J~ ops. N ~ ~ ~ 

~I+ 5 8 12 16 23 00 

1.6826 1.7078 1.6920 1.6862 1.6827 0.2 L 1.7276 

A ';'0.0428 0.0002 .0.0250 -0.009' -0.0034 

T 1.2902 1.2669 1.2841 1.2697 1.2679 1.2638 

A -0,0265 -0.0031 -0.0203 -0.0060 -0.0041 

0.4 L 2 .983~ 2.9593 2.9681 2.9652 2.96'8 2.9644 

A -0.0187 0.0052 .0.00,6 -0.0007 0.0007 

T 2.4392 2,4194 2.4'84 2,4'16 2.4,42 2.4,4, 

A -0.0049 0.0149 .0.0041 0.0026 0.0001 

0.6 L '.6749 ,.6669 '.677' 3.6710 3.6704 ,.6702 

A -0.0047 0.00" -0.0071 .. 0,0008 -0.0002 

T 3.,4'7 ,.,,45 ,.,489 3.,440 '.,422 ,.,404 

A -0.003' 0.0058 -0.0086 -0.0036 -0.0018 

0.8 L 4.0167 4.0006 4.0074 4.0062 4.00'7 4.005' 

A -0,0114 0.0046 .. 0.0022 -0.0009 0.001; 

T ',9292 '.9186 '.9270 '.9215 '.9181 '.9185 
A -0.0108 -0.0001 -0.0085 -0.00'0 0.0004 

1.0 L,T 4.1"7 4.1195 4.1260 4.1186 4.1185 4.1176 

A -0.0161 -0.0019 -0.0084 -0.0010 -0.0008 
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TABLE 66. Frequency table and phonen corrections for LRP'in 
~J.~IOl direction, where q. 21f/a G t O.l'a., 0.5 • 
.... ')f.j <st.) and corrections A')J. (qJo;:a ("I:, (q» - (~, (q»1'1 are 
inunitsof10 t2..eps..)N "" ;),.. 

~Sm.l\~ 5 8 12 16 2:5 00 

0.1 L 1.5073 1.4775 1.4990 1.4855 1.4793 1.4774 

A -0.0299 ... 0.0001 -0.0216 .0.0081 -0.0019 

Ifl 0.3900 0.3318 0.3659 0.3502 0.3;18 0.;366 

~ .0.0531 0.0047 -0.0293 -0.01;7 0.0047 

'2 0.9129 0.98;6 0.9061 0.8925 0.8870 0.8866 

A -0.026; -0.0070 -0.0195 -0.0060 -0.0004 

0.2 L 2.8;72 2.80;; 2.824; 2.8173 2.8161 2.8146 

A .. 0.022; 0,0094 -0.0097 -0.0026 -0.0015 

'1 o .719? 0.6;76 0.6777 0.6574 0.6456 0.6398 

~ -0.0794 0.0021 -0.0380 ;"0.0176 -0.0058 

'r2 1.7256 1.6984 1.7107 1.6975 1.6907 1.6860 

A -0.0;95 -0 .OU~; .0.0247 -0.0114 -0.0046 

0,; L 3.8537 ;.8:;6; ;.8:;97 :;.8;62 ;.8:;;5 :;.8340 

A -0.0197 -0.002:; -0.0057 -0.0023 0.0005 

~\ 0.9510 0.8812 0.9137 0.8935 0.8918 0.8817 

A -0.069; 0.0005 -0.0;20 -0.0118 -0.0100 

'f2 2.;564 2.;;22 2.;;90 2.;31; 2.;276 2.3214-

/j. -0.0;50 .0.0108 -0,0176 -0.0100 .0.0062 
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!ABLE 6b continued 

t!;~ll~ 5 8 12 16 2' 00 

0.4 L 4.4808 4.4705 4.4749 4.4704 4.4717 4.4707 

A ... 0.0102 0.0001 .0.0042 0.000' .0.001) 

'1 1.0797 1.0)21 1.0671 1.046, 1.0418 1.044) 

A -0.0)54 0.012) .0.0'227 -0.0020 0.0026 

T2 2.752) 2.7)" 2.7405 '2.7)5' 2.7)28 2.7)48 

A -0.0175 0.0015 -0.0057 .0.0005 0.0020 

0.5 L 4.9614 4.6809 4.6928 4.6900 4.6857 4.6867 

A -0,0047 0.0058 -0.0061 -0,00)4 0.0010 

T1 1.1195 1.0820 1.1219 1.1009 1.9111 1.0971 

A -0,0224 0.0151 -0.02)8 .0.00'8 0.0060 

T2 2.8870 2.8699 2.879) 2.8747 2.8706 2.8748 

A -0.0120 0.0049 -0.0045 0.00009 0.0042 
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TABLE 6c.. Frequenoy table and phonon correotions for LRP in 
C=r.lI~e"l direction, where .£l1:21TJa~. 0.Ul:~0.5 .. A"" (q)!II' ( )I, (q)) ... ( -). (q» are in units of IOn cps • 

. ~ J~ ,~ .. ~~n. 

o sht.lI~ 5 8 12 16 23 (f:) 

0.1 L 1.896:5 1.8650 1.8854- 1 .. 8716 1.8655 1.8622 

A ... 0.0341 -0.0028 -0.0233 .. 0.0095 -0.0033 

T 0" 7697 0.1336 0.1583 0.7458 0.7398 0.7383 

4 -0.0::514 0.0046 -0.0200 -0.0075 -0.0016 

0.2 L :;.3599 3.3349 3.3462 3.3430 3.3431 3.3427 

A -0.0172 o .Orn 8 -0&0035 -0,,0003 -0.0004 

T 1.5345 1.4978 1.5266 1.5190 1.5208 1.5192 

A ... 0 .. 0153 0.0215 -0.0073 0.0002 -0.0016 

0.3 L 4.1300 4.1205 4.1282 4.1231 4.1224 4.1218 

6 -0.0082 0.0013 -0.0065 -0.0019 -0.0006 

T 2 .. 2764 2.2550 2.2730 2.2673 2.2646 2.2618 

A -0 .. 0145 0.0068 -0.0112 -0,0056 -0.0027 

0.4 II 4.1476 4.1345 4.1429 4.1400 4.1370 4.1374-

A ... 0 .. 0102 0.0029 -0.0055 -0.0025 0.0004 

T 2 .. 9513 2.9361 2.9437 2.9363 2.9333 2.9336 

A -0.0176 -0.0025 -0.0101 ... 0.0026 0.0003 

0.5 T.I,T 3.4959 3.4801 3.4840 3.4761 3,,47693 3,,47691 

.A ... 0.0190 .. 0.0032 -0.0070 0.0008 ... 0 .. 00002 



5.3 LONG RANGE CONTRIBUTION TO THE ANHARMONIC QUARTIC TERM 

(F4 ) OF THE HELMHOLTZ FREE ENERGY FOR Na AT 90 o K. 

The exact calculation of F 4' Eqs (2 .1.6), (2.17), (2.18), 

(2.1.9) , involves the summation over the Brillouin zone wave 

vectors. The wave vectors q =L'2~/a)p are generated from ,., ,., 
the bounciaries of the first B. Z. defined by P.It+ p~, L, P~TPZ"L. 

are integers and 

L denotes the step length. For a given step length L, this 

procedure will generate 2L3 points in the whole zone. 

The long range contribution to F4 from the 8-term 

asymptotic potential, Eq(3.7), requires the computation of 

the fourth rank wave vector dependent tensor sums F.;~~~ (!) 
given by Eq(4.15). In order to get a realistic answer for 

F4 , the density of points in q-space must be reasonable. 

Usually this requires a large number of points distributed 

uniformly in the first B.Z. We have found that for a given 

step length L, the major contribution to a B.Z. sum comes 

from those components of p which are either, all odd or all 

even (Shukla, unpublished results) viz. Good Wave Vectors (GWV) 

and L = 2,4,6 ..•. This generates (L3/4) points in the whole 

zone. 

All sums over the first B.Z. were computed over the 

irreducible sector (1/48th) and by suitable weighting the 

results were obtained for the whole zone. We have presented 

in Table 7 the nUmber of even good wave vectors in the 1/48th 
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- => 

portion of FBZ. The number of odd good wave vectors can 

be obtained from this table, since the number of odd good 

wave vectors in 1/48 portion of FBZ for step length (L) is 

equal to the number of even good wave vectors in 1/48 

portion of FBZ for step length (L+2). 

In order to assess the numerical accuracy of the 

function we derive the following sum 

rule 

/ 

-:; ~ [ C(t) +,0 i' Btl) +15.t-.a ACt fl Q, c~. ~ ) 
'" 

(5.15) 

To derive this sum rule we substitute the expression for 

F:t'ir d (!) from Eq (2.14) and sum over oi, 't indices and 

use Eqs(2.6a), (2.6b), (2.6c), (2.6d). Now the LHS can be 

computed independently 
.,.V'",r 

C (.2.k~ I 4 ) and 
n ~ 

from the Eq(4.l5) with 

" a(~)rf 
,&:)n (2. kf I q ) 

,." 

the help of 

The RHS can 

also be computed independently with the help of zero rank 

tensor sums whibh can be obtained from the Eqs(4.4) and (4.5). 

The expressions for these terms are 
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I - ~ 

~ _1 ~{~ 3 L.t B(t)Co_(q.~):=~ "kF) ai. 52' 2(2.kF,'i,o) 
./, ... "at "._ -

+[ 3(2kF{(2i.+2.)d~_(ZkF)3l:t] C.2C:-l' :;(2kF/ !, 0) 

2. 
+ 3[..(2 kF)(4i..2;-tO ~+ 5)a"..(..2 kF)@~+ 3)b~] ~"+4(2kF/~ ,0) 

+[_(2i.+1)(4~.z+16i. +15) do,-

+ 3(2k'F)( 4.4,.2+ 14.L + 10 b~J S"+5 (2kF"1 ~ 10) 

-(2t+2)(2~+4)(2.~-+b)b~ ~ .. +~(2 k9/ $ I 0)] (S./~) 

/ 4 

L C(l) G,S(q.t)= Z,5(zkla.. C~. (21c", It 10) 
l N #v -4.01 )' 4' + '1 IV ,..., 

+f_2(2k~Yr4';'+ S)aL#kFf' bi.] S,Zi. .. 2. (2 kFI .$ 10) 

+f..(2kF) [ b(.2 ..... I)f2i +5Jla. +2.(2k .. f(4'+7)~ 1 S.+b(2kp/$'o) 

+{(2kf ) [Z(.2i.+O( 2~ +2)(4L\-15) + t5 (4 .... +.3)] aA, 

-(2kF5['(.2·+2)(2i.+~+15] b .. } ~'+4 (2kpJ ! ,0) 

+I [C.z. "'1)(2~+2)(2~4- 3)(2;. + \0)+ 15(2~+I)(.2c.",,3.)1.a.c: 

-(2kF)[2.(2c.+1!)(2i. l' 3)(~-\-\7)+l5(4L +5)] b t 1 c. fikF)q,o) 
2t,.+~ _ 

+[(2i,-t2)(2~ + 3)(2;' +4) (2i. + ll) 

+15 (2< +2)(2,+4)J b ... ~+t;~kpJ $,0) 1 
(5.l7) 
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(5.18) 

We have presented in Table 8 all distinct FGtp"(r ~ ') 

functions and the term fO which corresponds to the RHS 

of Eq(5.lS). This table not only shows the numerical 

verification of the sum rule, Eq{5.1$), for every wave 

vector q, but also displays the symmetry of ,.., F;p.'lrd' (~ ) 
for we know that the transformation properties of ~f'(8fj) 
are decided by those of the vector q. 

N 

We have derived the expression for FE 
4 

in Section (2.2) 

and computed it in Section (5.1). To test our computer 

program of F~ further, we set all phonon frequencies equal 

to a constant,GJe ' and expect our program to produce the 

E answer for F4 • Indeed for the step length L = 32 we have 

obtained exactly the same numerical result as calculated 

from Eq (2 • 52) • 

Finally as pointed out in Section 5 the long range 

correction (contribution) to exact F4 is obtained from the 

equation 
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where (F 4~ is calculated from the Ewald's method and (F 4) 23 

is calculated from discrete summation (using the simplifica-

tions outlined in Appendix AI). In both methods of 

evaluations of (F 4)GQand (F 4) 23 the eigenvalues O)a~J) and 

the corresponding eigenvectors ~(!!J) in Eq(2.15) or Eqs 

(2.7), (2.18), (2.19) have been obtained from the actual 

potential (Shukla and Taylor, 1974). 

We have presented in Table 9 the total F4 as well as 

c-t 0 'C'f i. £ 2-
its three separate contributions viz J.~..q 1.1"...:( I 4 and 

the corresponding corrections ~~ as a function of step 

length (L). 
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TABLE 7. Number of Even Good Wave Veetors(NEGWV) of BeC lattice 

in 1/48 portion of FBZ as a funotion of step 1ength(L). 

L NmWV L NEGWV L NEGWV L NEGWV 

2 2 ,6 '85 70 2280 104 696 
/4 5 '8 440 72 2470 106 7'08 

6 8 40 506 74 2660 108 7714 

8 14 42 572 76 2870 110 8120 

10 20 44 650 78 ,o80 112 8555 

12 '0 46 728 80 "11 114 8990 

14 40 48 819 82 '542 116 9455 

16 55 50 910 84 '795 118 9920 

18 70 52 1015 86 4048 120 10416 

20 91 54 1120 88 4'24 122 10912 

22 112 56 1240 90 4600 124 11440 

24 140 58 1360, 92 4900 126 11968 

26 168 60 1496 94 5200 128 12529 

28 204 62 16'2 96 5525 

'0 240 64 1785 98 5850 

'2 285 66 19'8 100 6201 

,4 "0 68 2109 102 6552 
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-
TABLE 8. Fourth rank tensor sums and sum rules for LRP. SL=~1T taL),£? 

all sums are units of eV/Ao~ .Even good wave vectors 
are generated from L= 8. 

______ ~ 000 200 220 222 400 420 422 

F ';"1.5437 -1.9316· -1.3763 -0.9867 -1.2681 -1.30:55 -1.332' 
xxxx 

F -1.5437 .0.6960 -1.3763 .0.9867 1.3779 -0.0181 -0.0368' 
yyyy 

F -1.5437 .0.6960 .0.1206 -0.9867 1.3779 1.3399 -0.0368 
ZZZ2r;: 

F -1.5042 -0.9500 -0.5436 -0.3868 -0.0540 0.1700 0.1726 
xxyy 

F -1.5042 -0.9500 -0.7365 -0.3868 0.0540 0.041' 0.1726 
xxzz 

F -1.5042 -1.1916 -0.7365 .0.,868 -0.4077 -0.1919 -0.0055 
yyzz 

F 0.0 0.0 -0.9918 0.7049 ~.O 1.3247 0.9348 
xxxy 

F 0.0 0.0 0.0 0.7049 0.0 0.0 0.9348 
xxxz 

F 0.0 0.0 -0 .9918 0.7049 0.0 1.3459 0.9481 
yyyx 

F 0.0 0.0 0.0 0.7049 0.0 0.0 0.0264 
yyyz 

Ii' 0.0 0.0 0.0 0.7049 0.0 0.0 0.9481 
zzzx 

F 0.0 0.0 0.0 0.7049 0.0 0.0 0.0264 
zzzy 

F 0.0 0.0 0.0 0.2717 0.0 0.0 -0.0082 
xxyz 

F 0.0 0.0 0.0 0.2717 0.0 0.0 0.3960 
yyxz 

F 0.0 0.0 0.3996 0.2717 0.0 0.5687 0.3960 
ZHY 
0 

-13.6561 .6.9064 f -9.5070 -5.2808 0.8881 0.05700 -0.7266 
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TABLE S cont. 

~ 440 442 444 600 620 622 800 

F -1."74 -1.,612 -1.'870 2.0120 1.4014 0.9645 4.2860 
xxxx 

F -1.3374 -1.,612 -1.3870 3.4'39 1.4014 0.9644 4.2860 
yyyy 

F 1.3100 .0'.0589 -1.38700 3.4339 2.8153 0.9644 4.2860 
zzzz 

F 0.2990 0.3080 0.3150 0.6372 0.5593 0.3880 0.7716 
xxyy 

F 0.0306 0.1737 0.'150 0.6372 0_,871 0.'880 0.7716 
XXzz 

F 0.030' e.17'7 0.3150 0.4176 0.3871 0;'880 0.7716 
YYZZ;1 

F 1.8619 1.'130 0,0 0.0 0.9206 0.6465 0.0 
xxxy 

F 0.0 0.0 0.0 0,0 0.0 0.6465 0.0 
xXXz 

F 1,8619 1.31'0 0,0 0.0 0.9206 0.6465 0~0 
YYYX 

F 0.0 0.0 0.0 0.0 0.0 -0.6465 0,0 
yyyr;, 

F 0.0 0.0 0.0 0.0 0.0 0.6465 0.0 
zzzx 

F 0.0 0.0 0,0 0.0 0.0 .0.6465 0,0 
zzzy 

F 0,0 0.0 0.0 0.0 0,0 -0.29'3 0.0 
xxyz 

F 0.0 0.0 0.0 0,0 0,0 0.29'3 0.0 
yyx'Z-

F 0,7950 0.5562 0.0 0.0 0.4115 0.29" 0.0 
zzxy 

to -0.6440 -1.4705 -2.2708 12.2640 8.2851 5.~2G9 17.4$77 



64 
.' 

-

TABLE 9. Long range correotion (A=(P)oo- (P}n) to Ft, 1 
F4' 3 

F4' 
Anharmonic tuartie term(F4) as a function of step length 

(L), where o .13 F 4 = F 4 - 2F 4 ... F 4 and n is shell number. 
0 

1"4' 
'I 
1"4' 

, 
F4 t F4 and A- a.re in units of N(\ T)2 erg-I. 

L n FO 
4 Pi F' 4 F4 

00 -10.7608 -4.05'6 -15.4142 -18.0877 

4 2' -10.7811 -4.0447 ·37.2598 -;9.9514 

A 0.0002 -0.0089 . 21.8456 21.8637 

00 -15.4'15 -7.6870 -'.8092 -;.8687 

6 2; -15.4;19 -7.6848 -15.2199 -15.2822 

A 0.0004 -0.0022 11.4107 11.4154 

oa -18.;410 .10.0756 -4.9810 -;.1718 

8 2; -18.3414 -10.0742 -4.9791 -;.1721 

A 0.0004 -0.0014 -0.0019 0.001; 

00 -20.1759 -11.5959 -5.818; -2.8025 

10 23 -20.1764 -11.5948 -5.8180 -2.8048 

6 0.;3;5 ,-0.0011 -0.0004 0.0023 

00 -21.4067 -12.6153 -6.4219 -2.5980 

12 23 -21.4072 -12.6158 .6.4221 -2.5918 

A 0.0005 ~.0005 0.0002 -0.0003 
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TAJaLE 9. continued 

0 F1 p3 L n F4 F4 4 4 

00 -22.2797 -13.3372 .6.6891 -2.4745 

14 23 -22.2802 -13.3380 -6.8695 -2.47'7 

A 0.0005 0.0008 0.0004 -0.0007 

00 -22.9276 -1,.8725 ~1.2110 -2.39'7 

16 2' -22.9272 -13.8722 -7.2108 -2.3945 

A 0.0005 -0.0003 -0.0003 0.0008 

c:JJ -22.4264 -14.2823 -7.4784 -2.3403 

18 23 -23.4270 -14.2824 -7 .4783 -2.3406 

A 1.0006 0.0001 -0.0001 . 0.0002 

dJ -23.8220 -14.6066 -7.6932 -2.3021 

20 23 -23.8226 -14.6069 -7.69'1 -2.3018 

A 0.0006 0.0003 -0.0001 -0.0003 

00 -24.1435 ... 14.8720 -7.8695 -2.2726 

22 23 -24.1440 -14.7802 -7.8691 -2.2727 

A 0.0006 0.0001 -0.0003 0.0001 

C'J;) -24.4099 ... 15.0882 -8.0159 -2.2494 

24 2' -24.4105 -15.0883 -8.0159 -2.2498 
~ 0.0006 0.0001 -0.0000 0.0004 
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L n FO 
4 

FI 
4 F' 4 F4 

00 -24.6343 -15.2716 -8.1400 .2.2312 

26 2; -24.6;49 -15.2718 .8.1400 -2.2314 

A 0.0006 0.0002 0.0000 0.0002 

00 -24.8260 -15.4282 ... 8.2464 -2.2160 

28 2; -24.8266 -15.4283 -8.2464 -2.2162 

A 0.0006 0.0001 0.0000 0.0001 

00 -24.9917 -15.56;5 -8.3;85 -2.20;2 

;0 2; .. 24.9923 -15.5638 -8.3386 -2.2033 

A 0.0006 0.0002 0.0001 0.0001 

cO -25.1364 -15.6817 -8.4192 -2.1921 

32 23 -25.1:1570 -15.6819 -8.4192 -2.1923 

A 0.0006 0.0002 -0.0000 0.0002 

00 -25.2637 -15.7857 -8.4903 -2.1826 

;4 23 -25.264; -15.7859 -8.4903 -2.1828 

A 0.0006 0.0002 0.0000 -0.0002 

00 -25.;768 -15.8779 ';;'8.55;4 -2.174; 

;6 2; -25.;774 -15.8782 .8.5535 -2.1744 

A 0.0006 0.000; 0.0001 0.0001 
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TABLE 9. continued 

0 pI F' L n F4 F4 4 4 

«l -25.4777 , , ' -15.9604 -8.6100 .2.1669 
. - .. 

'8 23 -25.4783 -15.9606 -8.6100 -2.1670 

A 0.0006 0.0002 ·;0.0000 0.0001 

00 .. 25.5685 -16.0346 -8.6609 -2.16o, 

40 23 .. 25.5691 -16.0348 -8.6608 -2.1604 

A 0.0006 0.0002 -0.0001 0.0001 

00 -25.6505 -16.1015 -8.7069 -2.1544 

42 2' -25.6512 -16.io16 .8.7069 -2.1545 

.6 0.0006 0,0002 0,0000 0,0001 

00 -25.7251 -16.1623 -8.7487 -2.1491 

44 2:; -25.7257 -16.1626 -8.7487 -2,1492 

A 0.0006 0.0003 0.0000 0.0001 

00 -25.79:;0 -16.2178 .8.7869 -2.1442 

46 23 -25.7937 -16.2181 -8.7869 -2.1444 

A 0.0006 '. 0.0002 -0.0000 0.0001 

00 -25~8553 -16.2687 -8.8219 -2.1398 

48 23 -25.8559 -16.2690 -8.8219 -2.1399 

A 0.0006 0.0002 -0,0000 0.0001 

00 -25.9126 -16.3155 -8.8541 -2.1'58 

50 23 ';'25.9132 -16.3157 -8.8541 -2.1359 

A 0.0006 0.0002 0.0000 0.0001 



6. DISCUSSION 

In order to calculate the long range contribution 

(correction) to the quartic term of the Helmholtz free 

energy (F 4 and F!>, phonon frequencies (Gl( q~)) and .. 
energy (U) it is necessary to select a long range poten-

tial as given by Eq(3.7). As shown in Table 2 the first, 

second, third and fourth derivatives obtained from this 

potential are in reasonable agreement with the actual 

potential at large distances. It is easily seen from 

Table 2 that the magnitude and sign of the derivatives 

from the two potentials are very close for many shells: 
II II 

for example, at the 18th shell, ¢AP= .0028 and ¢L..RP= .002.1 

The corrections to F! ' and U for different 

shells as obtained from the 8-term potential are presen-

ted in Table 4. After the third shell and except for the 

8th shell, all corrections are negative for <tu~). If we 

ignore the first few shells where the asymptotic potential 

has no validity, the smallest correction is obtained when 

the discrete sums are truncated at the 23rd shell. All 

corrections for F! are positive after the 7th shell. 

Except for the first, third, and eighth shells, all correc-

tions to U from the LRP are positive. 

Tables 6a, 6b, 6c show the long range corrections to 

the phonon frequencies in the three principle symmetry 

directions l~OOj ,1t;t;oj, l~t.l;l . 
In l'ooJ direction the magnitude of the smallest 
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correction is found for the longitudinal mode beyond the 

8th shell for (:=.2. and the 23rd shell for ~ •. 6. These 

are the same as the smallest transverse mode correction 

beyond the 23rd shell for ~,:.4 . 

In It: ~Oj direct.ion the smallest correction is found 

beyond the 23rd shell for the longitudinal mode. 

direction the smallest correction for the 

longitudinal and transverse modes is found beyond the 23rd 

shell at the BZ boundary. 

Since the smallest corrections for <~a>1 F!, and U 

are found beyond the 23rd shell, we have examined the 

correction to the exact F4 beyond this shell. We have 

presented in 
o 1 

Table 9 the three terms of F 4' viz. ~ ,~ , 

r 3 
4 

arising in the expression of F4 ,Eq(2.16). This table 

also contains the corresponding corrections to each of 

these 3 terms and total F4 beyond the 23rd shell as a 

function of the step length (L). It is clear from this 
o 1. 

table that the numerical magnitude of ~ , ~ , 

and the total F4 change rather rapidly with the number of 

points in the whole zone but the correction to F4 is 

unchanged as the step length is increased from L = 38 to 

L = 50. This correction is found to be 0.0001 N(k~Tyaer~-1. 
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7. CONCLUSION 

We have developed the theory and performed the calcu-

lations for the long range contributions (corrections) to 

the anharmonic quartic term (F4 > in the 

energy, the Einstein quartic term (F!>, 

Energy (U) and phonon frequencies cJq~ 
,.. 

Helmholtz free 

/r ... 2.> average ,UJ 
from the 8-term 

asymptotic potential with the help of several tensor 

lattice sums of rank zero, two and four obtained by the 

Ewald's method. The long range corrections to the above 

mentioned properties are found to be negligible beyond the 

23rd shell. 
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APPENDIX Al SIMPLIFICATION OF THE WAVE VECTOR DEPENDENT 

FOURTH RANK DISCRETE TENSOR SUMS 

In order to evaluate the fourth rank discrete tensor 

sum" Eq(2.14), which requires the summation over the discrete 

lattice vectors rt the most practical method of reducing ,.. , 
the computer time is to use all the 48 point group operations 

of a cube for a general direct lattice vector rt with -
positive components satisfying the condition 

This procedure reduces the I. summation to shell (s) summation 

and thus 1';,,"1' r (~ ) needs to be computed for only one 

representative point in that shell. There are four distinct 

types of tensor sums and their expressions can be obtained by 

the method outlined in Shukla and wilk (1974). 
/ 

r (G) =L (ns/b)[szf c (c e c C) 
X~J(JC ,.. S JCJ(IC/( I<J( !ly ZZ + ~z Zj 

(ALI) 

(AI. 2) 
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I 

F (Q) -L(-fla/~\.r s (Pi s c.. ri oS C ) xxx~ "" - s :JL xx )(KI(~ ~~ zz + ~Xx'Z ~:z .z~ 

-t S (fl$ s C. ~ s c )j xz %Z'2JC' ~x .z.~ -+ 'Zzz~ ~, ZX U (AI. 3) 

/ 

f,;'''~1 (~) ",-2;(-ns/~)[ ¢.c"llZ C",. (~) ~z;-~ ~,,) 

(AI. 4) 

where C.cp:::. CoS(Q., r~) , Sl(~:=$ S~y\ (Qcl r~) ; ct,~:::.)(, ~)z 
15 a( s oS S) . th !. 1:$ 2' "x I n~ '",c. ; s ~s e shell index, r,s is the real ,., 

s ~ oS 
lattice shell vector; n)( I n~ I n'Z are three positive 

integers with 

th 

, n is the number of pOints in s 

s shell, and 

¢XJ<:tj("'S)= r;r;?;'" Ct)~ ';c2.+r;) ~~B(i-) +;~6-)\ t-~rs 

¢)C(",(r,s)= r:r~~A\Cv)+ O'rx't,:,;'S Btr)lr=~ 

¢xx~~(Y"S)~ r: ':-, rz r-4C(r) .... r~ V'z .:-~ 'BC'w .. )L .... y"s 

(AI. 5) 

(AI. 6) 

(AI.7) 

(AI. 8) 
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where C(t') I S~) and A(y) are given by Eqs (2. 6b), (2. 6c) , 

(2.6d) . 

The other eleven fourth rank tensor sums, indicated in the 

square brackets viz. 

[~~~(~), ~zza(~)] I [F;XZZ(~)I ~yzz(~)] I 

[F;:""z(~) I F;,~x~) I F;~~z((~) Ir;zzxl~) I ~ZZ~~)] I 

[F;~)(z(~\' rz.z)(~(~)j 
can be obtained from Eqs(Al.I), (AI.2), (AI.3) and (AI.4) 

respectively by cyclic permutation of x, y, z indices. 
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APPENDIX A2. WAVE VECTOR DEPENDENT LATTICE SUMS AND EWALD'S 

METHOD 

In this appendix we will evaluate slowly convergent lattice 

sums Cn (t; '~'E) I C:po(~ I~) I C,.,o(~'fJ'(t"i)/SI\'/t:"l~~)' ~:~{C~ 1)/~p1~ j) 

h th k '1' 'd f' d b T e zero ran tensor cos~ne att~ce sum ~s e ~ne y 

I 

C,./~# 1,~)~~{~_ul-n. ~(t;I~-~l) ~ (~, -{) (A2.l) 

The summation over the direct lattice vectors l converges ,... 
slowly. However, for numerical calculations we need to 

convert this sum by a rapidly convergent sum. This can be 

easily done by the following Ewald's method. 

-~ 
Using integral representation of l~""!:.!l we can write 

(A2 .2) 

Since the summation in Eq{A2.2) is over discrete values of ~ , 

the sequence of the integration and summation are interchange-

able, and we rewrite Eq{A2.2) as 

The RHS of this equation will converge quickly for a fixed 

value of the parameters ~ , q, and l for large values of y 
N IV 
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but for small values of y there is a convergence 

problem. Therefore we split the integration over the dummy 

variable y into two parts at some arbitrary point ~ . 

(A2 .4) 

If ~ is not very small the second integral in Eq(A2.4) conver-

ges rapidly. On the other hand, the dummy variable y which is 

in the range O~ y~~ may be very small for the first integral 

and cause slow convergence, since exponential term will not be 

1\-1 
able to control the term ~ ,we must find a transformation 

.... xlZ.~:;r. _z2./::;j'Z.. 
to convert the term e to e ; this conversion can 

be done by the Fourier transformation. 

The sum C ('~fi4,JJ) can be trivially obtained from the two follow­
n~' '" "'l 

ing sums defined by 

(A2 .5) 

(A2 .6) 

where each of these functions are periodic in u with the 
.....; 

periodicity of the lattice. We expand them in Fourier series. 
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For Eq(A2.5} we have 

(A2 .7) 

where 

(A2 . 8) 

G is the reciprocal lattice vector, V is the volume of the 

crystal. Noting that exp ( .. G . ~ ,..., '" ) =j and substituting Eq(A2.5) 

in Eq(A2.8}, we get 

(A2 .9) 

letting .,.=.1._1.1 we rewrite Eq (A2 .9) as, 
N ,....,,.. , 

(A2 .10) 

I -1 
where G = q+G, Vc = N V, Vc is the volume of the real space 

,... N N 

unit cell, and N is the number of unit cells. 

The triple integration in Eq(A2.10} reduces to the following 

one dimensional integral 

(A2.11) 

Similarly if we repeat the same procedure ~or Eq(A2.6} we 

obtain the corresponding Fourier coefficient as 

(A2.12) 
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Combining Eqs(A2.11) and (A2.12) we find 

(A2.13) 

But 

(A2 .14) 

Hence, Eq(A2.13) can be simplified with the help of Eq(A2.14) 

and we get 

(A2.15) 

From EqS(A2.5) and (A2.6) the cosine sum can be written as 

(A2 .16) 

Substituting for FG1 + FG2 from Eq(A2.15) in Eq(A2.16), we get 
..., N 

(A2.17) 
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The expression given by Eq(A2.l7) is the well known Theta 

function transformation of crystal physics. 

From Eq(A2.4) we can write the cosine sum 

(A2.l8) 

First we substitute Eq(A2.l7) into the first integral of Eq(A2.l8) 

and then we multiply both sides of the resulting equation by 

;q.O eN'" to get 

(A2 .19) 

In order to evaluate C (t: ,q,u) given by Eq(A2.l) we first 
n N'" 

evaluate the sum 

~~-~ en. c,sC I!I~ -~ I) Gss0!.~ ) 
f'V 

which can be expressed as 
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~1~-~T"'~s(~J-~OG,s(3'~)=! ~~_~rtl{Qs(C¥_~)~'·~e':~#.4) 
~ -

(A2 .20) 

The first term of this equation is given by Eq(A2.19) whereas 

the second term can be obtained from Eq(A2.19) by changing q 
fV 

to -q. The change q~ -q will not affect the sum over l but 
N N ~ -

the reciprocal sum should be examined more carefully. For 

this, we consider the following reciprocal sum which has the 

same structure as the sum we are interested in 

(A2.21) 

If we replace q by -q in Eq(A2.21), we get 
N 'V 

(A2.22) 

but G takes all possible values in the summation, hence Eq(A2.22) ,.., 
can be written as 

(A2.23J 

combining Eqs(A2.23) and (A2.21) we get 

tf ~(j)+ ~!)1",2; 1t§+ lD c,sg" + !). ~1 (A2. 24) 
,., 
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with the help of Eq(A2.24), we can write Eq(A2.20) as 

(A2.25) 

The real lattice sum in Eq(A2.25) contains a singularity when 

u-9" 0 for .t =0. To remove this singularity we subtract the 
,1\1 ,..., 

corresponding 1,=0 term from both sides of this equation and 
1># 

obtain 

I 

ell q;, ~ , )a)'" L;l:!:- 9,i"" G..c( t;1~- !:!O Cc,!:(j-~) -

(A2 .26) 

The derivation of sum S (' ,q,u) is straightforward, since 
n IV IV 

B.nt~ ~, U'=_.sL C 01 (C" q , u) (A2.27) 
\" i'I"") de.., h+ ... ,..J,AJ 
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usi~g this equation we can obtain Sn{~ ,q,u) from Eq(A2.26) 
,.., rv 

and write it as 

(A2 .28) 

EqS(A2.26) and (A2.28) still contain the singularity as G-+O 
IV 

for q=O. Hence, the reciprocal· lattice sum in C «(;, 0, 0) and 
~ I n 

S (~,O,O) has to be split into two parts as!: + (G=O term). 
n S N 

To find the G=O term for q=O, we have to examine the Fourier 
IV ""Ie 

coefficients given by Eqs{A2.11) and (A2.12). From Eq{A2.11) 

we get 

(A2 .29) 

or 

(A2 .30) 

and similarly from Eq(A2.12) we have 

(A2 .31) 



82 

Combining the two previous equations, we get 

(A2.32) 

But 

(A2 .33) 

Therefore the substitution of Eq(A2.33) in Eq(A2.32) gives 

(A2 .34) 

and finally the G=O and q=O term is 
N IV 

(A2 .35) 

(A2 .36) 

and w.ith the help of Eq(A2.27) Sn(t, ,0,0) can be obtained from 

Cn(C ,0,0). The final expression is 
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0( 

+.2 tJ~ ~II-:;l e(C!-\~\)/~: /e4-\~\)~~"H 

+t:( fJ~ (~ 'j'n--: eZ~ 11-7 ) e ~2f~"D 
I 

~) -¥~Is;'Y\(t:~D Co(\~jn e~I&~" (A2.37) 
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CALCULATION OF C c(~ (~,q) AND s olf (e, ,q) • 
n ~ n ~ 

The second rank cosine and sine tensor sums are obtained 

from the two following equations t 

(A2 .38) 

(A2 .39) 

where the sine tensor sum S«~ (~,q) can also be obtained 
n rv 

from the cosine tensor sum C o{~ (~,q) with the help of 
n rv 

Eq(A2.27) as 

(A2.40) 

substituting C (t; ,q,u) from Eq(A2.26) into Eq(A2.38), and 
n tV ,..., 

letting !':'!-};I l =l!t , u -= l~ I ) .(={~ .... ~ I we get 

- Z; ~-+ 'la)(Gp + 1p) £"YC,19 +2\, J;!)\ !o!-,.<> 
..... 

.j- (~ca:'o{))c(r (A2.4l) 

Here we note that the argument IX in the function (W"'r\(l:"o())e(' is 

the Ewald parameter and should not be confused with the tensor 



indices IJ( I (b etc. I and 

(A2.42) 

(A2 • 43) 

(A2.44) 

(A2.45) 

where the dummy variable t.. can assume different values 
I 

such as 1. ,.i, or U arising in the following ¢ function. 

(A2.46) 
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I 
Letting S ... ,t in Eqs. (A2.42) and (A2.43) and then substituting 

for ~(~,.e/) from Eq. (A2.46) into these equations, we 

A: (}e. IJ t) ~ (./}<I. A') can express •• ~,~ and ~,t~.~ in the following 

form. 

(A2 .47) 

The calculation of (~(l; ... ol))G(~ involves taking limits of 

some functions of LJ such as AJc7 LJ) and D:(~ w) which 

can be obtained in a similar manner as the fUrictionA~a:,.t') 
and D~~ .. f) except that now the limit of all integrals 

in Eqs (A2 .47) and (A2. 48) is from 0 to 0(. instead of 0( to 

Now we can examine Eq(A2.45} for !::! .... O. The term u-.2Uo(~~~,U) 



for can be written as 

(A2 .51) 

where 

(A2 .52) 

is the first order Spherical Bessel function of the first 

, thus 

(A2 .53) 

(A2. 54) 

Since iJ.frI x"gLnx.-+l, Eq(A2.54) can be simplified after 
JC..,.o 

interchanging the process of integration and limit, we get 

(A2 .55) 
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Substituting Eqs(A2.53) and (A2.55) in (A2.45) we get 

~: Cl::,IXV ,,~= 2 l'or!!. [ 7:/· «" +2 Qn+2. .J (A2. 56) 
fJ{~ 4) d r(n/2..) -n.. ()'l +..2.) 

Now the second rank cosine tensor sum, C o(PCt;.Iq) given n _ 

by Eq(A2.41), can be written as 

To derive the second rank sine tensor sum 

(A2 .57) 

S « ~ (l: a \ , we 
n / "l.J .... 

substitute Eq{A2.57) in Eq(A2.40) and obtain 

(A2.58) 
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where 89 

A: (C, t) =.2 ~ fC~ s;.,,(tt)+cc..sttJ_l's • ..e: .tjJfdy :lL elV' 
~Zl~ l 0( 

_ "1rCtt.~et)+t S;.~4;l.)J r~~ ~'n~~La~2. 
Ol 

+ .. u.'1>s.YI.~!) r~~ ~ 11+4 e..t~"l (A2.59) 



CALCULATION OF AND 

The fourth rank cosine and sine tensor sums are given by 

(A2.62) 

~~r Q~ I 5 (c .. ~)::: S (e.,~ ~ , ~) 
n. '" d"l,{ ~\J f> ~\J't all d' n ,. ~ ::1<» 

(A2.63) 

To evaluate SCli{6'Ytc: .. Cot) once again we use Eq (A2 .27) , which \'l _ 

allows us to obtain the sine tensor sum from the cosine tensor. 

(A2.64) 

substituting Cn.(t'2 ,E) from Eq(A2.26) into Eq(A2.62), we find 

~l-~( \.tt~LP+t~t;~ ~~(+iY ~.i.t+ ~l"l;L;+ !II{~;) ~it.t,) 

+i-.2(~~~lf + ~~O~~ot-t ~"t~(?>t)~h(C,.t'~ Cos~ .~) 

~('"" +1/oI'i&p~ f~)(\-~'/y I.i-+ 9.t) ( (l: ~ +1\'!.!/ ,,_ <I 

- -+ (R:~,o())",p . .I' (A2.65) 
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where 

, 
~(c,~ ~):: ~-4(A} ¢(C,~) 

B:(t: .. t)= ~a(t}¢(',l) 

A:(t" b,)~ ~2<k.) pet, ~) 

(A2. 66) 

(A2. 67) 

(A2 .68) 

and the differential operators appearing in Eqs(A2.66) , 

(A2.67), (A2.68) are defined by 

(A2. 69) 

(A2.70) 

(A2 .71) 

The function EC(~,("+.I/U) is defined previously in Eq(A2.44). h. ,." _ .... 

91 

The full expression for the last term in Eq(A2.65) ,(R~~/~»_~~fl 

is 

Explici t expressions for CG (t" 1') 
D 

(A2.72) 

etc. can be obtained 
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following the procedure outlined in the section of the 

calculation of C e{ ~ /,,. q) n. \~ I 
IV 

etc. The final results are 

(A2 .73) 

O(J 

Be (tlt')~ 2. f· [~$s;.Y\(cL')~ 3~.t~iQ,~l')_3t;.l·zs",,(l:4/~fJ~ 'Jrt-'e-'~J" 
n. ~) . ~ 

.j..'[l;1ias(GU')_C;51.~l')] (~9 ~ n ... l e...t·~ .. 
CIt 

(eQ ./,'1. \A~ 
-12. t,tJI. Si.Yl.{t;.t') J d~ '!jn+3 e '" 

01 

_8,t''1> CaS(~I) {~(1.~ ~ n .. s e.il
• y.& } (A2. 74) 

(~(t;,o£))c:(pr.,.. is evaluated as follows. The contributions 

from the functions U"UCllUp~U(C:(~,u) and tI3 ( \.l~"'~+ .. ~ B), 0) 

as u -+' 0 is zero. The proof is similar to the calculation 
f'tJ 



.' 

outlined in Eqs(A2.5l) and (A2.52). The nonzero contribution 

arises from u1[<tP~'tf+,..)AJt:,U}. Substituting for ~n(t;)U) 
from Eq(A2.49), we get 

(A2.75) 

But 

and 
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4.1\\ £! j:lGZ)....:,-t (Ha"d b(\~k of Ma-f::-- F..,n~t.;f>.""37i 1.970,A"rol'K)~ii:y 
%....,,0 

Thus, Eq(A2.75) is reduced to the following form 

(A2.76) 

Combining EqS(A2.64), (A2.65) and (A2.76) we can evaluate 
ol,l'4n; 

the sine tensor sum 5 \l;, q ) The final expression is _ n. _ 



+1'(.t"I~tp"'~otl~.a'i ... d(&~~A+ct'l~tg+t ... ~t&-\o t~\td") B:~/L) 

+t".t( ~Il~ ~ll-+~(tt ~~cl-+ <ttl\' ~ ~~) A:@,.l)] <4 s(,.~) 

+4(~ +f.t)~+1p)(4'r" ~(G.t+ 1 r) E: (t;/~+ 11.0) 
.., 

(A2.78) 

(A2. 79) 
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and the quanti ties A:(l!,..l) 
s 

and E (e,IG ... " 1 0) have been 
1\ -AI 

defined by Eqs(A2.59) and (A2.61), respectively. 
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