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ABSTRACT

Linear alkylbenzenes, LAB, formed by the Alel3 or HF catalyzed alkylation of

benzene are common raw materials for surfactant manufacture. Normally they are

sulphonated using S03 or oleum to give the corresponding linear alkylbenzene sulphonates

In >95 % yield.

As concern has grown about the environmental impact of surfactants,' questions have

been raised about the trace levels of unreacted raw materials, linear alkylbenzenes and minor

impurities present in them. With the advent of modem analytical instruments and techniques,

namely GCIMS, the opportunity has arisen to identify the exact nature of these impurities and

to determine the actual levels of them present in the commercial linear ,alkylbenzenes.

The object of the proposed study was to separate, identify and quantify major and

minor components (1-10%) in commercial linear alkylbenzenes. The focus of this study was

on the structure elucidation and determination of impurities and on the qualitative

determination of them in all analyzed linear alkylbenzene samples.

A gas chromatography/mass spectrometry, (GCIMS) study was performed o~ five

samples from the same manufacturer (different production dates) and then it was followed by

the analyses of ten commercial linear alkylbenzenes from four different suppliers. All the

major components, namely linear alkylbenzene isomers, followed the same elution pattern

with the 2-phenyl isomer eluting last. The individual isomers were identified by

interpretation of their electron impact and chemical ionization mass spectra. The percent

isomer distribution was found to be different from sample to sample. Average molecular

weights were calculated using two methods, GC and GCIMS, and compared with the results

reported on the Certificate of Analyses (C.O.A.) provided by the manufacturers of commercial
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linear alkylbenzenes. The GC results in most cases agreed with the reported values, whereas

GC/MS results were significantly lower, between 0.41 and 3.29 amu.

The minor components, impurities such as branched alkylbenzenes and dialkyltetralins

eluted according to their molecular weights. Their fragmentation patterns were studied using

electron impact ionization mode and their molecular weight ions confirmed by a 'soft

ionization technique', chemical ionization. The level of impurities present i~ the analyzed

commercial linear alkylbenzenes was expressed as the percent of the total sample weight, as

well as, in mg/g. The percent of impurities was observed to vary between 4.5 % and 16.8

% with the highest being in sample "I".

Quantitation (mg/g) of impurities such as branched alkylbenzenes and dialkyltetralins

was done using cis/trans-l,4,6,7-tetramethyltetralin as an internal standard. Samples were

analyzed using .GC/MS system operating under full scan and single ion monitoring data

acquisition modes. The latter data acquisition mode, which offers higher sensitivity, was used

to analyze all samples under investigation for presence of linear dialkyltetralins.

Dialkyltetralins were reported quantitatively, whereas branched alkylbenzenes were reported

semi-qualitatively.

The GC/MS method that was developed during the course of this study allowed

identification of some other trace impurities present in commercial LABs. Compounds such

as non-linear dialkyltetralins, dialkylindanes, diphenylalkanes and alkylnaphthalenes were

identified but their detailed structure elucidation and the quantitation was beyond the scope

of this study. However, further investigation of these compounds will be the subject of a

future study.
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INTRODUCTION

1. Brief history of synthetic detergents

Soap is the oldest surfactant and is believed to be one of the oldest chemical materials

known to man obtained· by reacting two substances to obtain a product with social

significance. The word soap is derived either from the celtic "saipofll or the latin "sapo", first

used by Pliny The Elder about A.D. 75. Although Pliny is credited2 with the first written

reference to soap, its use is believed to have begun long before recorded history. Soap "per

se" was probably never actually discovered but evolved rather from various crude mixtures

of alkalis and fatty acids.

Over time it was learned that soap was not a mixture of alkali and fat but indeed

resulted from a chemical reaction, later called saponification, and thus soap making changed

from an art to a science. Soap remained the principal cleaning product, or surface active

agent, well into the twentieth century.

Synthetic detergents or surfactants are more than 100 years old but they were

insignificant until the early 1930's. Since their development, synthetic detergents dramatically

reduced world dependence on soap for cleaning. A tremendous number of synthetic

detergents were made and patented, particularly in Germany where the greatest application

for these new products occurred in the textile. industry. By the end of World War II it was

estimated that production and consumption of synthetic detergents in Germany was 90-100

million pounds per year. This was still small compared to an annual soap production of 3

billion pounds. 3

Starting in 1945 a very marked growth occurred in synthetic detergent production and

by 1947 soap sales began to decline. Detergents based on synthetic surfactants continued to
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displace soap powders due to the availability of petrochemical feedstocks and observations

that synthetic surfactants are less sensitive to temperature and water hardness. In 1953 the

synthetic detergent production surpassed the production of soap.3

It is interesting to note that the basic batchwise process for soapmaking remained

practically unchanged for approximately 2000 years. Is was not until the late 1930's that

continuous soapmaking processes were developed and installed in large-scale manufacturing

plants. Ironically, this timing coincides with the early stages of the tremendous growth of the

synthetic detergent products. Nonetheless, a significant market remains for soap-based

products for both consumer cleaning, primarily bar soap and for industrial use2
.

2. General nature of surfactants

The theory of surfactants has been studied and developed as an important part of the

field of surface chemistry. Many scientists have contributed to an understanding of the

physical-chemical properties of surfactants. Concurrently with the scientific studies of

surfactants by chemists, physicists, and biologists, a vast technology has developed related

to the application of surfactants in many different industries. This work includes studies of

the effect of surfactant structure on· wetting, detergency, dispersion and foaming.

A surfactant can be defined as organic chemical molecule consisting of two parts: a

water soluble "head group" and a water insoluble "long tail". Anthropomorphically, it can

be said that the "head group" likes water and the term hydrophilic' is used to describe the

behaviour of the head group. Similarly, it can be said that a "tail" hates water and the term

hydrophobic is applied to the character of the water incompatible tail. The schematic

representation of the surfactant molecule with a "head group" and a zig-zag "tail" is shown

below:
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Head

Tail
An example of a surfactant is dodecyl sulphate, the head group (hydrophilic) is the sulphate

group and the tail (hydrophobic) consists of the dodecyl chain:

Another example of a surfactant molecule is sodium 2-phenyldodecane sulphonate:

Looking at the above surfactant molecule, the hydrophilic group is the sulphonate group and

the hydrophobic group is the "alkyl" group linked to a benzene ring. This material is the

most widely used surfactant today and will be discussed further later.

A surfactant may be defined also as a material which reduces the surface energy of

water or solvent. A good surfactant, for example, will reduce the surface tension of water'

from 72 to 30 dynes/em at a concentration of less than 0.01 %.3

As stated above, the first reason why surfactants are effective detergents is that they

lower the surface tension of water, enabling it to wet surfaces more effectively. Water alone

does not wet well, a seeming contradiction in terms, and hence' does not deterge effectively

by itself. This is because water globules do not spread quickly on many cornman surfaces.

This is due to an imbalance of attractive forces between water molecules on the surface of

the globule. In other words, there is a net force parallel to the surface, a kind of a "skin"

which keeps the shape of the water globule. When a surfactant is introduced, the combined

hydrophobic and hydrophilic moieties render the compound surface-active and thus able to

concentrate at the surface between a surfactant solution and another phase, such as air, soil

or textile. As a result, the hydrophilic head ends up in the surface layer and the hydrophobic
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tail sticks out into the other phase. Such an orientation weakens the forces paralle.l to the

surface (weakens ·the "skin") and the water globule collapses under the influence of gravity;

as it spreads out and wets4.

...- detergerrtlolecules

In water the surfactant molecules congregate at the surface, the water-air surface.

There comes a point when all of the available surfaces are covered with surfactant molecules.

As the number of surfactant molecules increases, they start to aggregate or cluster. These

. clusters are called micelles. All of the hydrophobes point into the centre of the micelle and

all of the hydrophilic head gro:ups point outward to the water. Micelles act as a reservoir of

surfactant molecules; they also provide a "fatty" environment inside the water phase so the

oily grease globules can actually be dissolved inside the micelles.

The second important function of a surfactant is that it helps to dislodge dirt from

fabrics. Dirt is usually described as a mixture of fatty material and solid. The solids include

any or all of the following: clay, pigment, carbon, and iron oxide. The fatty material on

fabrics is mainly a natural skin constituent, sebum.

The "lift-off" mechanism of the fatty or oily globule from fabric can be represented

scematically4 ,where'-- represents a surfactant molecule:

fabric

The surfactant molecules adsorb on the surface of the fat globule with the hydrophobes
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pointing inside and the hydrophillic groups sticking into the water. As more and more

surfactant molecules crowd around the fat globule, the globule is sque,ez'ed off the fabric and

starts to float about in the wash water. The fact that the oil globules are covered with the

charged groups, causes them to repel each other and hence they stay suspended.

The "lift-off' mechanism ofthe non-fatty globule, like a particle of rust, from fabric

can also be represented schematically4:

~fabric

The surfactant molecules first attach themselves with the head groups on the rust particles.

The hydrophobic tails pointing outward provide a first layer, a "fatty" environment for the

hydrophobe tails of the other surfactant molecules. Thus, a second layer of surfactant can

surround the rust particle. The doubly surrounded rust particle is dislodged from fabric and,

like the oil globule, is held in ~uspension by the repulsion of the charged groups.

In summary, surfactant function is to penetrate and wet soiled surfaces, to displace

and solubilize various soils, and to disperse suspended soils in solution to prevent their

redeposition.

3. Classification of surfactants

Surfactants are classified into four categories, depending on ionic activity or according

to their electrical charge: i) Anionic, ii) Nonionic, iii) Cationic, and iv) Amphoteric.

i) Anionic surfactants, where the hydrophilic portion of the molecule carries a negative

charge, account for 45.0 % of worldwide surfactant use (Figure 1)5 c Generally, they are high-

foaming and sensitive to hard water, and thus require the addition of substances to complex



Figure 1

Estimated Surfactant Consumption (1991)
(W.Europe, USA, Japan)

Anionics 45.0%

Amphoterics 0.9%

Cationics 10.6%

Nonionics 43.5%

'000 Tns.
Anionics 2,255 Nonionics 2, 180
Cationics 530 Amphoterics 44

0'\
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calcium and magnesium ions. But they are more effective than other surfactants in particulate

soil removal, especially for natural fabrics. As a rule, they are easily spray-dried and thus

are favoured for detergent powders. 5 The most commonly used anionic surfactants are:

A. Linear alkylbenzene sulphonates (LAS),

which are synthesized by Fiedel-Crafts alkylation of benzene to produce linear alkylbenzene

(LAB), followed by sulphonation with oleum or S03. Sulphonation produces mainly the para

Isomers.

B. Linear alkyl sulphates,

(y ranges from 9 to 17)

also called alcohol sulphates, are formed by making the sulphuric -acid esters of linear

alcohols followed by ne'utralization with base. The properties of the alkyl sulphates vary with

the alkyl chain length distribution. The alcohol source can be either olechemical or

petrochemical. Tallow-range and coconut-range alcohols come from both olechemical and

petrochemical feedstocks.

C. Linear alkyl ether sulphates, .

(z ranges from 7 to 15)
(t ranges from 0 to 11)
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also called alcohol ethoxysulphates are prepared by addition of one to eleven oxyethylene

groups to an alcohol, vyhich is then sulphated and neutralized with base. Oxyethylation

enhances water solubility, improves skin mildness and reduces sensitivity to temperature and

water hardness. The raw materials for these products can be either olechemical fatty alcohols

or primary or secondary synthetic alcohols~

ii) Nonionic surfactants, which do not carry a charge but commonly derive their

hydrophilic portion from polyhydroxy or polyethoxy structures, account for 43.5 % of

worldwide surfactant use (Figure 1)5. This percentage is growing because nonionics are

generally more tolerant of water hardness than anionics, which makes the requirement for

substances to complex calcium and magnesium ions in laundry detergents less demanding.

They also- tend to be more effective than other surfactants in removal of oily soil from

synthetic fabrics. Most nonionics are considered low-foaming products and have good cold

water solubility. The most commonly used nonionic surfactants are:

A. Ethoxylated alcohols,

(x ranges from 9 to 15)
(y ranges from 4 to 20)

are generally made by solventless addition of ethylene oxide to fatty alcohols using alkaline

catalysis. Most often, the alcohol starting material consists of a range of alkyl chain lengths,

almost always linear. The most important surfactant properties are controlled by the average

percent ethylene oxide units (EO) and the average chain length of the starting alcohol. The

primary alcohol ethoxylates are the typical items of commerce.
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B. Ethoxylated a1kylpheools,

(z ranges from 7 to 13)
(t ranges from 3 to 12)

are produced by alkaline-catalyzed "ethoxylation of the alkylphenol. Their use is limited to

special applications. They ~re excellent. for the removal of oily soils and can .be produced

at a lower' cost than more' abundant alcohol ethoxylates, but have a less acceptable

toxicological profile.

C.. Fatty acid a1kanolamides,

(v ranges from 9 to 17)
(0 ranges from 1 to 2)

(m is 1 or 0)

are made by reation of an a~~anolamine ~th'either a fatty acid or a fatty acid ester, usually

triglycerides or methyl esters. The most common examples of this class are the mono- and

diethanolamides of linear alkyl acids. They are effective for increasing the viscosity of liquid

formulations and are used to stabilize the foam formed by other surfactants. Although they

are very effective surfactants in their own right, they are very sensitive to water hardness in

the absence of other surfactants, as well as being subject to attack by acid or base. They are

commonly used in liquid products where high foaming is required.

iii) Cationic surfactants, where the hydrophillic portion of the molecule carries a

positiv'e charge, account for 10.6 % of worldwide surfactant use (Figure 1)5. They are useful
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as fabric softeners, corrosion inhibitors, and antimicrobial agents. They are not used in

general-purpose detergents because they do not provide effective cleaning at neutral pH and

they can absorb rapidly to textiles6
. Commercially important cationic surfactants are:

A. Quaternary ammonium salts,

are made from naturally occurring materials by reaction of methyl chloride with the

dimethylalkylamine, wherein the alkyl group is C 12 to C16 .

iv) Amphoteric surfactants, where the molecule carries a positive and negative charge

locations, represent only 0.9 % of all surfactant produced (Figure 1)5. They are less irritating

than the ionic surfactants and are used, for example, in children's shampoos7. Commercially

important amphoteric surfactants are:

A. Carboxybetaines such as,

are most often made by quanternization of a tertiary amine with chloroacetic acid (they are

internal salts). The commercial product is generally a mixture with alkyl chain lengths of

CS-C 1S . Although- there are a number of betaines classified as amphoteric surfactants, only

the carboxybetaines are widely used, often in liquid soaps.



11

4. Basic ingredients in the detergent formulation

Typically, a laundry detergent formulation contains the following ingredients: a builder

to soften water by complexing calcium and magnesium ions ( trisodium nitrilotriacetate or

sodium tripolyphosphate), a processing aid to improve product. processing and

handling(sodium sulphate), a corrosion inhibitor to protect washer parts (sodium silicate), an

antiredepositioning agent, to prevent dirt from going back on cloths (carboxymethyI

cellulose)~ a fluorescent whitening agent for a whiter looking wash, an enzyme to remove

specific stains (protease), a perfume to provide scent, water, and last but not the least of the

ingredients, a surfactant to lift dirt from cloths by helping water to penetrate the fabric and

soil more easily for cleaning (alkylbenzene sulphonate).
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optimization of the sulphonation process. An important step involved in this optimization is

the improvement in calculation of the actual molecular weight of raw material, namely linear

alkylbenzenes, LAB.

6. LAB production routes and typical composition of commercial LAB

The production alternatives of linear alkylbenzenes (LAB) are differentiated by the

alkylation catalyst used in the primary step of the production process, either HF (process #1)

or Alel3 (process #2 and #3). Aluminium chloride was the first catalyst used in the industry

.in the early 60's, HF was introduced later. The schematic representation of LAB production

is shown below:

R.outes to LAB

Process #1
Olefins .. LAB

@(HF)

Chloroparaffins
Process #2 .. LAB
@(A1CI

3
)

Process #3
LABPure olefins •

@(A1CI
3

)

Process #4

Olefins .. LAB
@ (DETAL)

A third process, #3 for production of LAB has recently been introduced. The new LAB

process basically makes use of the same technology empl~yed for the production route #2,

but has been modified to use olefins. A 4th route has also been developed which uses a new
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solid catalystlO (DETAL) in a fixed bed reactor operating in the liquid phase for the alkylation

of benzene. The olefinic raw material used is the same as in the HF process #1, and

operating conditions are very mild. A substantial advantage of the new technology is its

simplicity compared to the HF route. The absence of HF catalyst is reflected not only on the

process itself but also on other inherent aspects such as HF purification, regeneration, and

neutralization of acidic effluents, etc.

The linear alkylbenzenes, LAB, whose structural representation for the linear

components is shown below:

CH 3 (CH 2) nCH(CH 2 )mC·H 3

( n + m = 7 to 11)

have different percent distribution of the phenyl position isomers along the linear alkyl chain

as a function of the process. For example, for Cl2 LAB there are 5 (five) possible isomers:

6-, 5-, 4-, 3- and ·2-phenyldodecane:

6-phenyldodecane

5-phenyldodecane

4-phenyldodecane
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3-phenyldodecane

2-phenyldodecane

For C IO LAB there are only 4 (four) possible isomers: 5-, 4-, 3- and 2-phenyldecane, whereas

for C I3 and CI4 LAB there are 6 (six) possible isomers: 2-, 3-, 4-, 5-, 6-, and 7­

phenyltridecane, the latter being:

7-phenyldodecane

A further element of variation between LAB produced by alternative processes can be found

in the different total amount of the linear alkylbenzenes, 2-phenyl isomer and in the

impurities like dialkyltetralins and branched alkylbenzenes. The percent of the linear

components present in the industrial LAB varies between 90 and 94 % for the route via HF,

87 and 91 % for the route via AICI3, around 98 % for the route #3 and 91 and 93 % for the

4th route. This is a consequence of the different amount of the by-products being formed

along with the linear alkylbenzenes via the three production processes which were described
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earlier. In the HF route, the branched alkylbenzenes vary between 5 and 8 % with the low

content of 0.5 to 2 % of dialkyltetralins, whereas in the AICl3 route, process #2,

dialkyltetralins vary between 6 and 10 % with branched alkylbenze content of about 3 0/0.

The ~hird route, using the top quality n-olefins leads to a low dialkyltetralin content of about

0.5 % and the branched alkylbenzenes between 0.5 to 1.5 0/0.

Typical LAB composition for the above processes, including percent of the total linear

alkylbenzenes, percent of the dialkyltetralins and percent of the branched alkylbenzenes is

presented in Table 1. The percent of 2-phenyl isomer, derived from four different processes

is also presented in Table 1. It has been observed8
•
1l that percent of 2-phenyl content

markedly affects formulating properties of linear alkylbenzene sulphonate in liquid detergents,

particularly solubility and viscosity.

The average molecular weight, which is the main parameter in the optimization of

the sulphonation process of commercial LAB, is calculated based on percent carbon

distribution in the LAB. Table 2 represents a, typical percent carbon distribution in

commercialy produced LAB via the first three processes.

7. Impurities present in commercial linear alkylbenzenes

As mentioned in the previous paragraph, one class of compounds found as an impurity

in the production of commercial linear alkylbenzenes, dialkyltetralins, DAT, is formed as a

by-product during the alkylation of benzene with chloroalkane/AICl3 (Process #2), or with

olefinIHF (Process #1). A second class of compounds found as an impurity in the production

of LAB via the AICl3 route, multi~branched alkylbenzenes is formed from skeletal

rearrangement of the alkyl chains.



Table 1

LAB characteristics - typical composition

Process

Catalist

Linear isomers

Branched isomers

Dialkyltetralins

2-phenyl isomer

Average MW (amu)

#1

HF

(%) .

94

5

max 1

~18

240

#2

AIC~

(0/0)

91

3

~6

~29

242

#3.

AICI3

(%)

98

1

max 1

~29

242

#4

DETAL

(%)

91 - 93

6 - 8

max 1

~29 .

240
.......
0"\
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Table 2

Typical Percent Carbon Distribution In Commercial Linear Alylbenzenes
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[TI Process #3
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The number of dialkyltetralin isomers is restricted according to the chain length of the

original paraffins. For example, the possible dialkyltetralin isomers coming from the CIO

dichloroparaffins (Process #2) are SiXI2
:

R1 R2

2
CH3 Cs H11

3
~~ C4~

R2 ~H7 SH7

where R I and R2 can be disposed in cis or trans positions, namely: cis and trans-I-methyl­

4-pentyltetralin, cis and trans-I-ethyl-4-butyltetralin, and cis and trans-I,4-dipropyltettalin.

The third class of impurities, dialkylindanes,may be found in the production of

commercial LAB. For the corresponding dialkylindane isomers, there are still six possible

isomers but the side chains R I and R2 are different:

R R1 R21

CH 3 CsH 13

C 2Hs CsH 11

R
C 4 H g

2 C 3H 7

again with R I and R2 in either cis or trans position, namely: cis and trans-I~methyl-3­

hexylindane, cis and trans-I-ethyl-3-pentylindane, and cis and trans-l-propyl-3-butylindane.
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In theory, one more possible isomer exists for each dialkyltetralin and dialkylindane, having

R I = Hand R2 = C6H l3 or C7H15 . These isomers, however, are very unlikely. In fact

the alkylation reaction involves the formation of carbonium-ion intermediates, which tend to

rearrange to form more stable secondary carbonium ions. The absence of the I-phenyl

isomers in the alkylbenzenes is due to the same reason. For the remaining: CII ,C12 , and C13

dichloroparaffins, the expected number of possible dialkyltetralin and dialkylindane isomers

is as follows:

Dichloroparaffin Dialkyltetralin
Isomers

6

8

8

Dialkylindane
Isomers

8

8

10

The number of branched alkylbenzene isomers formed during production of LAB is

practically unknown. One can howener, easily differentiate a branched alkylbenzene from

the corresponding linear alkylbenzene using GCIMS analytical instrument. The separation

of linear from branched alkylbeznes will be discussed later.

8. Analvsis of commercial linetU' alkylbenzenes (LAB)

The so called "work horse" surfactant for manufacture of modern detergents, Linear

alkylbenzene, LAB is synthetically produced from crude oil following different alternatives.

At present LAB is, after soap, the most widely used surfactant feedstock in household

products as well as in industrial formulations.

Since 1968 a number of significant advances have been made in the technology for

the production of linear alkylbenzenes. These advances have been the result of detergent
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industry's commitment to improve not only economic benefits but also the quality of the LAB

produced.

With the steady increase of the world production and consumption of LAB, concern

has grown about the environmental impact of surfactants, namely linear alkylbenzene

sulphonates, LAS. Questions have been raised about the trace levels of starting materials,

LAB and minor impurities present in them. With the advent of modern analytical instruments

and techniques like gas chromatography or gas chromatography/mass spectrometry, the

opportunity has arisen to id"e.ntify th.e exact nature of these impurities and to determine the

actual levels of them present in the commercially availa:ble LABs.

Analysis of commercial LAB is generally carried out using gas chromatography/flame

ionization detection (GCIFID). This technique provides good information on the different

homologues but other components like impurities, however, are not so easily identified. Gas

c4romatography/mass spectrometry (GC/MS) offers more information on the chemical

composition of commercial LAB. It not only provides the identification of different

homologues but also allows identification of the impurities, such as dialkyltetralins and

branched alkylbenzenes. In order to evaluate their influence in the final LAB molecular

weight, it is important to know the exact percentage of impurities. As mentioned before, the

use of an accurate molecular weight is critical in the operation of sulphonation plants and

therefore on the final yields obtained.

9. Summary of studies related to linear alkylbenzenes and to the impurities present in

commercial alkylbenzenes. LAB and their sulponation derivatives

As mentioned above, linear alkylbenzenes obtained via different processes, are not the

same. They differ in the carbon chain length distribution, as well as, in isomer distribution,
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with the phenyl group being distributed differently along the paraffin chain. The greatest

difference is in the amount of 2-phenyl isomer (Table 1). Linear alkylbenzenes obtained from

the AICl3 and HF processes are, therefore, commonly referred to as high and low 2-phenyl

LAB, respectively, as are the linear alkylbenzene sulphonates (LAS). Drozd et al. 8 reported

that differences in 2-phenyl content markedly affect formulating properties of linear

alkylbenzene sulphonate (LAS) in liquid detergents, particularly solubility and viscosity.

They reported the solubility of sodium and ammonium low 2-phenyl LAS to be lower than

that of high 2-phenyl LAS, causing cloudy or hazy mixtures. Viscosities of solutions of the

various salts of high and low 2-phenyl LAS were not the same but did not appear as

significant as the solubility differences.

It is already well known in the detergent industry that LAB derived from the AICl3

alkylation process gives slurries with higher solubility than LAB derived from the HF process.

This effect has been explained historically as a function only of the higher 2-phenyl alkane

isomer content of the AICl3 derivative. Moreno et al. II reported that although the external

isomers, 2- and 3-phenyl, of a given homologue have a different solubility than the internal

ones, 4-, 5-, and 6-phenyl, the reason why AICl3 derivatives gave.lower cloud points (higher
\.

solubility) than the HF ones, was also related to the higher tetralin content of the former.

At the same time, authors observed that the higher the sulphonation severity, the S03 to LAB

ratio, the poorer the solubility. This viscosity depressing effect was explained as a

formation of dialkyltetralin sulphonates.

Cohen et al. I2 have reported that the alkyl chain length and the presence of tetralins

have an important influence on solubility, viscosity and surface tension. They observed that

tetralin content acts as a viscosity depressor. The lower the molecular weight of a similar

type of LAB (same tetralin content), the lower the viscosity, and the better the solubility. It
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is already well known that the optimum solubility is reached for a molecular weight of 232 -

235 (C II homolog).

On the contrary, Matheson and Matsonl3 reported that the carbon chain length, not

phenyl isomer distribution, is the most important factor in determining detergency

performance. According to these authors, LAS manufactured via both HF and AICl3

processes perform equally well and can be used interchangeably in high performance

products.

Instrumental studies by GC/MS, of commercial LABs have been reported by Otvos

et a1. 14
, Lesko et a1. 15

, Cavalli et a1. 16and Bravo and Vergaral
? In 1973 Otvos et a1. 14 tested

the applicability of a simple GLC/MS system to' obtain accurate data on the compositions of

some commercial detergent alkylbenzenes, with a special emphasis on the major compone~ts.

These authors identified all linear alkylbenzenes but for branched chain isomers, complete

resolution of the individual components was unsuccessful. Alkyltetralins and alkylindanes

were detected in each analyzed commercial LAB, but results were not reported.

Three years later, Lesko et al. 15 reported the analysis of commercial alkylbenzenes

using GC, LC and GC/MS techniques. Although GC/MS analysis was carried out using a

packed column that was incapable of separating all of the isomeric alkylbenzenes, the

identification of these substances was successfully accomplished by taking the mass spectra

of overlapping peaks. The quantitative analysis of alkylbenzenes was considerably influenced

by dialkyltetralins and dialkylindanes present in the analyzed commercial products.

The same year, Cavalli et al. l6 investigated four commercial alkylbenzenes. to obtain

accurate and comparative data about the nature and concentration of minor components. A

detailed analysis on laboratory synthesized model compounds and commercial linear

alkylbenzenes, was carried out using both GC and GC/MS instruments. Besides the
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identification of all the main peaks, which corresponded to the various phenyl isomers,

several minor peaks were identified. Among these minor components, three different main

types of compounds were recognized: branched alkylbenzenes, tetralins with linear side

chains, and tetralins with branched side chains.

Bravo and V-ergara17 used both GC and GCIMS techniques to determine a detailed

analytical composition of commercial linear alkylbenzenes derived from HF and AICl3

processes. They' identified minor components as branched alkylbenzenes, dialkyltetralins,

dialkylindanes and dip?en·:rlal~anes. Th~se authors reported the same observations as Cavalli

et al. 16
, that minor components appearing in LAB derived from HF process were basically

branched alkylbenzenes, while in the AICl3 process, dialkyltetralins constituted the most

important impurities. In addition to identification of impurities, the authors reported the

difference in homologues' distribution in commercial LAB comparing two analytical

techniques, GC and GCIMS.

In 1988 Cavalli et al. 18 used high performance liquid chromatography, HPLC, in order

to separate and concentrate impurities present as traces in industrially produced LABs. Apart

from tetralins and branched alkylbenzenes, dinaphthenbenzenes, diphenylalkanes, and

naphthalenes were identified and quantified as the "secondary components" using both GC

and GCIMS techniques.

In 1982, Kuhne and Hesse19 reviewed studies relating to the investigation of the

reaction pathway in the radical cation of tetralin and related compounds. A special emphasis

was placed on the occurrence of the formal retro-Diels-Alder reaction, a C2H 4 loss. In the

past, since the significance of the mass spectral retro-Diels-Alder fragmentation pattern was

recognized, the "clean" RDA reaction of dialkyltetralins was accepted as being formally

correct. Loudon et a1. 20
, Grutzmacher and Puschmann2

\ Stolze and Budzikiewicz22
, and
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Budzikiewicz et a1. 23 observed that the RDA fragmentation pattern was not "clean" and that

the other fragmentation pathways were possible.

Budzikiewicz et a1. 23 in their study in 1965, under EI conditions, discussed the

fragmentation reaction of organic molecules corresponding formally to the retro-Diels-Alder

reaction. From' thermodynamic data (the energy necessary for the decomposition}, they

showed that it was possible to predict whether an ionized ene- or diene-fragment would be

formed preferentially. These predictions held true for complicated molecules such as

dialkyltetralins.

More evidence with respect to RDA reaction emerged from the field ionization

kinetic stl}dies by Levsen et a1. 24
. They investigated loss of C2H4 from the molecular ion of

tetralin and revealed some hydrogen exchange prior to ethylene loss. They reported that loss

of ethylene occurs via competing processes, not just vi~ a single process, a "clean" RDA

fragmentation pattern as had been suggested in the earlier studies.

Sindona et a1. 25 used the field ionization kinetic (FIK) technique to reinvestigate the

hydrogen exchange reactions in tetralin molecular ions prior to loss of ethylene. For their

studies they uS,ed the suitable deuterium-labelled precursors.

Wojinski and Gross26 reported that ionized 1- and 2-substituted phenyltetralins exhibit

highly specific, 1,4 and 1,3 eliminations of small neutrals. from position 1 and 4, and 2 and

4, respectively.

The cyclization of open-chain structures to cyclic isomers of tetralin or indane type

was observed by Andrews et a1. 27 as the overall trend and a preferred way of isomerization

of these radical cations. Dass and Grass28 also observed a pronounced trend to form cyclized

isomers from open-chain, nonconjugated alkylbenzene ions.
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10. Scope of this study

Though a number of analytical reports have been published from allover the world

on production of LAB and LAS, to date there are only a handful of papers published in which

the presence of minor impurities like branched alkylbenzenes and dialkyltetralins in

commercially available LABs, is discussed. Most studies have focussed on the identification

of impurities and have paid less or no attention to the quantitative aspects. Moreover, all of

the qualitative studies that have been published, reported impurities as per cent (%) of the

total weight of the analyzed LAB samples. No published study was carried out with

dialkyltetralins (DAT) standard mix and with the internal standard technique using cis/trans­

1,4,6,7-tetramethyltetralin.

The objective of the proposed study was to separate, identify and quantify major and

minor components (1-10 %) in ten (10) commercial linear alkylbenzenes. The focus of this

study was on the structure elucidation and determination of impurities levels in all analyzed

linear alkylbenzenes samples, using both GC/MS and IS techniques.

The results of this study will provide firsthand information regarding the composition

of all analyzed linear alkylbenzene samples including the identity and quantity of some

impurities present in them. The qualitative results of impurities such as dialkyltetralins and

branched alkylbenzenes will provide accurate calculation of the actual average molecular

weights which are critical in the operation of the sulphonation plants in the production of very

important surfactant, linear alkylbenzene sulphonate, LAS ..
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EXPERIMENTAL

I. Materials and Reagents

1. Types of analyzed linear alkvlbenzenes, LAB

1) Initial study

For the initial part of this study, the following five (5) samples from Company #1 were

analyzed:

Sample "AI" from January 31, 1991,

Sample "A2" from April 23, 1991,

Sample "A3" from April 13, 1992,

Sample "A4" from January 28, 1993,

Sample "A5" from April 15, 1993.

2) Main study

For the main part of this study, the following ten (10) samples of commercial linear

alkylbenzenes from Compat:ly #1, #2, #3, and #4 ,were analyzed:

Company #1 Sample "A"

Company #1 Sample "B"

Company #2 Sample "C"

Company #2 Sample "D"

Company #2 Sample "E"

Company #3 Sample "F"

Company #3 Sample "G"

Company #4 Sample "H"

Company #4 Sample "I"



Company #4

2. Solvents

Sample "J"

--
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The following solvents were used in this study:

Acetone, certified ACS grade, A18-4 from Fisher Scientific,

Dichloromethane, distilled in glass, 3601-2 from Caledon Laboratories,

Toluene, HPLC grade, certified ACS, A998-4 from Fisher Scientific,

Petroleum Ether, certified ACS, E139-4 from Fisher Scientific.

3. Preparation or linear alkvlbenzene samples

1) Initial study

All analyzed samples of commercial' LAB were provided by Company #1:

Sample "AI" - 0.0740g in 5 ml of methylene chloride, a total of 14.8 ug/ul,

Sample "A2" - 0.0700 g was dissolved in 5 ml of methylene chloride, a total of 14.0 ug/ul,

Sample "A3" - 0.0680 g was dissolved in 5 ml of methylene chloride, a total of 13.6 ug/ul,

Sample "A4" - 0.0480 g was dissolved in. 5 ml of methylene chloride, a total of 9.6 ug/ul,

Sample "AS" - 0.0670 g was dissolved in 5 ml of methylene chloride, a total of 13.4 ug/ul.

2) Main study

Company #1, Sample "A" from April 15/93, 0.043 g was dissolved in 5 ml of acetone, a

total of 8.6 ug/ul,

Company #1, Sample "B", 0.0345 g was dissolved in 5 ml of acetone, 'a total of 6.9 ug/ul,

Company #2, Sample "C", 0.0280 g was dissolved in 5 ml of. acetone, a total of 5.6 ug/ul,

Company #2, Sample "D", 0.0265 g was dissolved in 5 ml of acetone, a total of5.3 ug/ul,
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Company #2, Sample "E", 0.0325 g was dissolved in 5 ml of acetone, a total of 6.5 ug/ul ,

Company #3, Sample "F", 0.0310 g was dissolved in 5 ml of acetone, a total of 6.2 ug/ul,

Company #3, Sample "G", 0.0305 g was dissolved in 5 ml of acetone, a total of 6.1 ug/ul,

Company #3, Sample "H", 0.0335 g was dissolved in 5 ml of acetone, a. total of 6.7 ug/ul,

Company #4, Sample "I", 0.0285 g was dissolved in 5 ml of acetone, a total of 5.7 ug/ul,

Company #4, Sample "J", 0.0405 g was dissolved in 5 ml of acetone, a total of 8.1 ug/ul.

4. Preparation of internal standard solutions

In the main part of this study, the following organic compounds were used as the internal

standards:

cis/trans-l ,4,6,7-Tetramethyltetralin (cis/trans-1 ,4,6,7-Tetramethyl-1 ,2,3,4­

tetrahydronaphthalene), 8673.00-1, from Wiley Organics, 1245 South Sixth St.,

Coshocton, Ohio 43812, USA,

1-phenyldecane, 98 %, 11,321-2 from Aldrich Chemical Company, P.O Box 355,

Milw., WI 53201, USA,

1-Phenyldodecane, 97%, 11,-323-9 from Aldrich Chemical Company, P.O Box 355,

Milw., WI 533201, USA.

i) Full Scan

a) Working solution

A working solution of 1-phenyldecane @ 50 ug/ul was prepared by dissolving 0.050 g in 1.0

ml of acetone. I-phenyldodecane @ 50 ug/ul was also prepared in acetone by dissolving

0.050 g in 1.0 ml of solvent. All samples were prepared at final volume of 1.0 ml after

spiking 10 ul of each internal standard solution. Final concentration of internal standards in
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each sample was @ 500 ng/ul.

ii) Single lon Monitoring

a) Working solution

A working solution of cis/trans-l,4,6,7-tetramethyltetralin @ 50 ug/ul was prepared by

dissolving 0.050 gin 1.0 ml of acetone. All samples were at a final volume of 1.0 ml and

were spiked with' 10 ul of above internal standard solution. Final concentration of internal

standard in each sample was @ 500 ng/ul.

5. Preparation of dialkyltetralins standard solutions

a) Stock solution

A stock solution @ 100 ug/ul was prepared by dissolving 0.037 g of dialkyltetralins mixture,

DAT, in 0.37 ml of acetone.

b) Working solution

A working solution of dialkyltetralins @ 500 ng/ul was prepared by diluting a stock solution;

5.0 ul of the stock solution was measured accurately and added into 1.0 ml of· acetone.

For both acquisition modes, the full scan and SIM, the same amount of internal

standard, 10 ul was added to all samples. which were at a final volume of 1.0 ml. Final

concentration of internal standard in each sample was @ .500 ng/ul.
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II. Gas ChromatographylMass Spectrometry (GC/MS) as an analytical technique for

identification and quantification of commercial linear a1kylbenzene (LAB) isomers and

impurities present in LABs.

1. Mass spectrometer t~ning

Before any analytical data are acquired it is necessary that the mass spectrometer be

tuned satisfactorily. Source pressure is a significant factor affecting tuning, and so it is

desirable to tune the instrument under -1.5 x 10-5 Torr. The purpose of tuning is to achieve

the best mass spectrometer sensitivity across the selected mass range. Mass setting and

measurement must be repeatable on a scan-to scan and run-to run basis.

Calibration gas, PFTBA, perfluorotributylamine was used to tune the Ge/MS system.

Since PFTBA was introduced via the gas chromatograph as a Ge/MS sample, it was therefore

indicating the overall system performance under routine operating conditions. The optimum

peak shape, optimum peak intensity, optimum sensitivity throughout the mass range, optimum

mass resolution, and the following abundances for selected PFTBA ions:

m/z 69

m/z 219

m/z 502

base peak

40-70 % of 69

2-5 % of 69

were required and determined during each Ge/MS tuning. PFTBA resolution check was also

performed, where m/z 502 and m/z 503 ions had to be fully resolved.

Mass resolution, R, is a measure of the GC/MS system, (mass analyzer's) ability to

separate (resolve) masses that are close together:

R= m / ~ m where for example; m = m/z 502

~ m = m/z 503-502
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Since the quadrupole recognIzes only a full unit of mass difference, it has a unit mass

resolution and therefore it is called a low resolution mass spectrometer.

2. Quadrupole mass spectrometer and its scan characteristics

The quadrupole consists of four cylindrical or hyperbolic rods set parallel to each

other. The if and de voltages are applied to two pairs of rods to set up an electric field.

Quadrupole operates with a fixed accelerating voltage. All ions oscillate in the electric field,

but for a given fixed set of voltages, only one ion at a time reaches the detector.

Since quadrupole is essentially an electrostatic device, it has a very low inductance

and a relatively low capacitance and can therefore be scanned at high rates. The amplitude,

from minimum to max:imum, of both if and de voltages can be changed extremely quickly,

in a few milliseconds. Quadrupole is therefore suitable for both fast scanning work and

selected ion monitoring.

In other words, the setting of a suitable mass spectrometer scan can be considered as

the selection of two variables, mass and time. The mass/time function may be continuous or

not, often called selected. A smooth transition from one mass to the next at a defined rate,

called a full scan mode, gives an integrated signal indicative to the total amount of the

analytes. This fast acquisition .mode gives the full mass spectra across the defined mass

range, usually between 45 to 500 amu.

Where the analytes in the sample are known and are at low levels, it is often

preferable to monitor selected masses, unique to each analyte. In the latter mode the if and

de voltages are rapidly switched among a number"of values corresponding to the selected

masses.

In the initial study, all .data were acquired using only a full scan mode.
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In the main part of this study all samples, from "A" to "J", were scanned using both

acquisition modes. Linear and brcinched alkylbenzenes were analyzed and quantified using

a full scan mode,' whereas dialkyltetralins were analyzed and quantified using a selected ion

monitoring acquisition mode.

3. Gas chromatograph injectors and capillary columns

The injector port of a gas chromatograph fulfils a number of purposes. The injector

acts as a point of anchorage for the gas chromatography column and as the carrier gas

connection to it. The injection assembly is usually contained in a heated block which serves

to preheat the carrier gas as well as flash evaporating the injected sample.

The GC column is the heart of a GC/MS system. Without its s~parating power the

mass spectral data would be impossible to interpret. Capillary column chromatographic

res'olution is very important. The degree of resolution required for adequate separation

depends ,on the complexity of the sample being analyzed. Complex mixtures like linear

alkylbenzenes or dialkyltetralins require the high resolution of capillary columns.. Capillary

columns have no packing material like the old type packed columns which were filled with

fine particles of packing material coated with different kinds of liquid phases. The liquid

phase in the capillary columns is bonded either directly to the column walls or to a support

material coating the inner wall surface. To maintain the effective interaction b·etween the

liquid and gas phases, the internal diameters (ID) need to be small, typically 0.2 to 0.5 mm.

Small internal diameters allow gas flow rates between 0.1 to 2 ml/min, which permits a direct

connection to the mass spectrometer system via the GC/MS interface. Capillary columns

usually range in length from 25 to 100 meters.

Unfortunately, capillary columns are limited in their sample- and solvent-carrying
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capacity. It is often necessary to split the sample at the injector to prevent column damage

by a relatively large injection of solvent. To overcome the problem of sample loss due to

split injection, a number of splitless injectors and injection techniques have beendeveloped29
.

A packed column injector was used for the first part of the initial study. For the rest of the

initial part and for the main part of this study a splitless injector was used exclusively.

The following columns were used:

J&W capillary column DB-5, 30 m, 0.25 mm I.D, 0.25 u film thickness,

J&W capillary column SPB-20, 30 m, 0.25 mm I.D, 0.25 u film thickness,

Restek's capillary column Rtx-20, 60 m, 0.32 mm I.D, 1.0 u film thickness.

4. Gas chromatograph/mass spectrometer, GelMS

GC/MS is an established technique for the analysis of complex matrices, holding a

prime position in analytical chemistry because of its combination of sensitivity, wide range

of applicability and versatility30.

A gas chromatograph/mass spectrometer, GC/MS, comprises the gas chromatograph

for admitting and separating components of analyzed mixtures, a mass spectrometer, for mass

analysis of each component and an interface for transferring components between the two

environments of gas chromatograph and mass spectrometer. A carrier gas, typically Helium,

is passed through the system in order to achieve sample transfer and separation. A block

diagram of a typical Ge/MS system is shown "below:
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Computer Control and Data Capture

t
Operator

Data Storag

In general terms, the GC/MS has to perform one of two tasks: identification of unknown

compounds or the detection of the known compounds.

For this study a Hewlett-Packard gas chromatograph 5980 Series II was directly

interfaced, via a direct GC/MS interface, to Hewlett-Packard mass spectrometer 5989A, called

ENGINE. Both instruments were controlled via Hewlett-Packard MS ChemStation 59940A,

UNIX series equipped with B.04.04 version of the software.

Befo~e the mass spectrometer can analyze a sample it is necessary that the sample

molecules be ionized. A number of techniques have been used to impart the charge on the

molecules. The most common methods employed are Electron Impact Ionization and

Chemical Ionization. Both ionIzation techniques were used in this study.
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5. Methods of Ionization

a) Electron Impact (EI) Ionization

In an Electron Impact, EI source,

Ions

Electron Multiplier

Sample entry

I-. -. _. _. -... _. -. _. _.-

Slit

Source

Magnets

Filament

Ionization chamber
Trap

Repeller

electrons from a heated filament are accelerated across the ionization chamber. The effluent

from the gas chromatograph also passes through the same chamber. The electrons interact

with these gas molecules, transferring energy to them in the inelastic collisions that take

place. If sufficient energy is transferred, the molecule of alkylbenzene or dialkyltetralin, R -

H, will become significantly excited and may release an electron, giving rise to a molecular

Usually the energy given to the molecule is such that it enters a very excited state and breaks

up into ions of lesser mass. The resulting fragments, electrically charged, are drawn by the

electrical fields in the ion source into the mass analyzer section where they are separated

according to their mass-to-charge ratios. Under the scan conditions the masses leaving the
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mass analyzer are transmitted to the detector. Because the ions created in the ion source are

being transmitted to the detector, the system must necessarily operate under a high vacuum,

,..; 10-5 Torr, otherwise, the ions would collide with neutral molecules and be dissipated.

Each ion normally carries only one electrical charge. The movement of these charges

is equivalent to a current flowing. The current levels are usually very small, typically 10-11

to 10-10 A. Some form of amplification is needed to detect these extremely low levels. This

usually takes the form of an electron multiplier giving a typical gain of 106
. The electron

multiplier is followed by an electron amplifier that gives a current-to-voltage conversion of

about 107 VIA. The output is then fed to a preamplifier, an amplifier, and finally is passed

directly to a computer which evaluates the incoming data and prints out the required

information31
.

In the Electron Impact ionization technique, in the unimolecular decompositions of

alkylbenzenes and dialkyltetralins, represented as R - H;

R - H + e- ~ R - W· + 2e-

R - W· ~. R+ + H'

R - W· ~ R1 - W· + neutral molecule

the probability of cleavage of a particular bond is related to the bond strength, the possibility

of low-energy transitions, and the stability of the fragments (charged and uncharged). There

are some "General Rules" that apply to fragmentation patterns, some of which are applicable

for the compounds under study, namely alkylbenzenes and dialkyltetralins:

the relative height of the molecular ion is greatest for the straight chain compound

and decreases as the degree of branching increases,

the relative height of the molecular ion usually decreases with increasing molecular
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weight (MW) in a homologous series, (C10 to C14-alkylbenzenes),

cleavage is favoured at branched carbon atoms (branched CIO to C14-alkylbenzenes),

the more branched, the more likely is the cleavage (branched C10 to CI4-

alkylbenzenes and non-linear dialkyltetralins),

generally, the largest substituent at a branch is eliminated, most readily as a radical,

double bonds, cyclic structures and especially aromatic rings stabilize the molecular

ions and increase the probability of its appearance (dialkyltetralins),

in alkyl-substituted aromatic compounds, cleavage is very probable at the J3-bond to

the ring (ClO to Cl4-alkylbnzenes),

cleavage is often· associated with elimination of small stable neutral molecules,

saturated rings tend to lose side chains at the a-bond and positive charge tends to

stay with the ring fragment,

in the McLafferty rearrangement, 6-membered ring transition is observed with the

1-H migration,

where for linear alkylbenzenes ,R is from C7H I5 to C11H23 . The detailed fragmentation patterns

of linear alkylbenzenes, dialkyltetralins and branched alkylbenzenes -will be discussed further

later.
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b) Chemical ionization (CI)

Chemical Ionization is a "softer" technique than Electron Impact Ionization. There

is less energy transferred to the sample molecule and consequently less fragmentation. In

principal, the degree of fragmentation depends on the chemical nature of the sample, the

reagent gas, and the source temperature. Chemical Ionization is used in two principal

applications, the determination of molecular weight' and the determination of chemical

structure not normally available through Electron Impact ionization. Molecular weight

information is an ideal complement to characteristic fragmentation patterns observed under

Electron Impact conditions in the elu'cidation of the structure of unknown. Nowadays, many

mass spectrometers are designed as combin.ed EI/CI ·sources. With today's advanced

computers, the combined source may be switched between EI and CI operation and vice versa

in times of a very few seconds.

In a CI source, the collision of an ion and the reagent gas molecule leads to a reaction

giving a new charged species. For effective ion/molecule reactions it is necessary to operate

at source pressure of about 0.1 to 1.0 Torr, much greater than for EI source. The

ion/molecule reaction between a methan.e ion and a methane molecule gives rise to the

unusual but fairly stable CHs+ species in the following "reactions:

CH4 +e-
~ CH+' + 2 e-

4

CH+' ~ CH+' + H24 2

CH+' ~ CH+ + H'4 3

CH+· + CH4 ~
CH+ + CH3'4 5

The CH3+ ion can react with uncharged methane molecule to form C2H s+:
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Bothions, CHs+ and C2Hs+, along with C3Hs+ are the most prominent ions formed, accounting

for approximately 95 % of the total ionization29
. They are extremely reactive and attack

molecules, passing charge to them., Furthermore, a proton or even the whole methane ion

becomes attached to the sample molecule giving a pseudomolecular ion (1\1+1)+, and two

additional ions (M+29)+ and (M+41)+, where M is a molecular weight. The protonated and

addition ions formed in the CI source, very often have greater stability than molecular ions

formed in the EI source, so that positive identification of molecular weights can be confirmed'

with a great deal of confidence. The Chemical Ionization technique was used in the initial

part of this study, using methane as a reagent gas. Another reagent gas, ammonia was also

used in the initial part of this study but with much less success, mainly due to problems with

the equipment.

6. Mass spectrum

In the quadrupole mass spectrometer, a mass spectrum is obtained by scanning the rod

voltages from low mass to high mass. A compound's mass spectrum is a unique chemical

fingerprint. It is possible to determine the compound's molecular weight from its mass

spectrum. The cracking pattern resulting from collision-induced fragmentation in the ion

source provides the analyst (operator) information about the compound's structure and enables

the identity of an unknown compound to be determined. Once a mass spectrum is known,

certain features of it can be recognized as being particulary representative of the c,ompound,

the mass spectrometer can then be operated so as to select these features, -and if they are

detected then the presence of the known compound can be confirmed. Furthermore,

integration of the mass spectrum gives an output trace that is indicative of the amount of

compound present. With suitable techniques like internal standard technique used in this
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study, accurate quantitation of analyte even at very low levels is easily achieved.

7. Internal standard technique, IS

The Internal standard technique, IS, is a quantitative technique which requires the use

of analyte's calibration standards and the addition of internal and/or surrogate standards. It

offers the highest quantitative accuracy compared to other techniques, since it allows for

minor variation in instrument response and injection size. It is commonly used for many

environmental monitoring methods as wella~ fore.nsic, clinical and industrial analyses. It is

usually used when each: analyte has a unique detector response, when the detector response

varies slightly over time, when analyte retention times very slightly from run to run, and

finally when injection size varies slightly over time.

An internal standard is a substance that is added to the sample just prior to the

instrumental analysis. Selection of the most appropriate internal standard is critical to

obtaining accurate quantitative results. An internal standard must be completely resolved

from all other peaks in the chromatogram, whilst at the same time being as similar as possible

in terms of chemical and physical properties to the analyte being measured, consequently, the

detector response is similar to the solute to be quantified. The internal standard should not

be present or be a potential degradation product of the sample. It should be stable during the

period of an~lysis and it should be available in reasonable high purity. Substances that are

commonly used as internal standards include analogues, homologues, and isomers of the

analyte. For the Ge/MS analyses, internal standards are typically deuterium or 13C labelled

analogue of the analytes32
•

When analyzed compounds encompass a wide range of boiling points, molecular

weight discrimination is observed. Therefore, it is advisable to select multiple internal
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standards which encompass a wide boiling point range and elute from the chromatographic

capillary column at various retention times (early, middle,late).

For this study, based on the general criteria in selecting internal standards and a wide

range of boiling points of the analyzed compounds, three internal standards were selected.

Both i-phenyJdecane (C 16H26) and i-phenyldodecane (C18H28) were used to calculate final

concentration of linear and branched alkylbenzenes. Their structures are presented below:

A cis/trans-i, 4, 6, 7-tetramethyltetralin was used to calculate final concentrations of

dialkyltetralins and other impurities like branched dialkyltetralins and dialkylindanes:

To determine the linear responses for the analytes, the calibration standards which contained

the analytes at various concentration levels and identical amount of internal standard, were.

injected into the instrument and the resultant retention times and peak areas were recorded

for each analyte and the internal standard.

Relative response factors, RRF, were then calculated for each analyzed compound.

Relative retention times, although more accurate, since they take into account slight.shifts in



42

absolute retention time that occur from run-to-run, were not calculated due to an excellent

repeatability of the manual injections.

retention time (analyzed compound)
RRT retention time (Internal standard)

area (analyzed compound) x concentrationJIS)
RRF area (IS) x concentration (analyzed compound)

When analyzed compound exhibits a desired linear response over the concentration range, the

relative response factors, RRFs, should have almost identical calculated values. In the final

step, concentration of the analyzed compounds were calculated as shown below:

Concentration
area (analyzed compound) x concentrationJIS)
area (IS) x RRF

III. GC/MS instrument operating parameters and conditions

1. Gas Chromatograph, GC

1) Initial study - analysis of samples ''Ai'', ''A 2", ''A 3", ''A 4", and ''A 5"

In the initial study two capillary columns were used:

J&W capillary column DB-5, 30 m, 0.25 mm I.D, 0.25 u film thickness,

J&W capillary column SPB-20, 30 m, 0.25 mm I.D, 0.25 u film thickness.

Two injectors were used for this part of the study. Shortly after the experimental 'part

was started, the packed column injector" was upgraded to split/splitless to allow better peak

separation and specificity.

For this part of the study, both injector port and Ge/MS direct transfer line
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temperatures were kept constant at 260°C. The initial temperature for GC oven was set

separately for each solvent in which sample "AS" was dissolved. Each oven temperature was

set at the boiling point temperature plus approximately 20°C as follows:

dichloromethane

toluene

acetone

60°C

130°C

80°C

(b.p 39.4 °C)

(b.p III C)

(b.p 56.5 °C)

Different GC temperature programs 'were tested to determine the optimum peak

resolution fOT-sample "A5~", as well as, to determine the overall analysis time. For the sample

"AS" dissolved in dichloro methane, two temperature programs were tested.

Program I

Initial temperature: .60°C

Initial time: 2 min

Rate Final temperature
(OC/min) (OC)

Levell 15.0 100

Level 2 3.0 260

Program II

Initial temperature: 60°C

Initial time: 2 min

Rate Final temperature
( °C/min ) ( °C )

Levell 10.0 120

Level 2 1.0 260

Final time
( min)

o

10

Final time
( min)

o

10.0

The splitless injector's purge valve off time was tested for the optimum sample transfer
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time. For the J&W SPB-20, 30 m, 0.25 mm I.D, 0.25 u film thickness capillary column, and

for injection of 1 ul of a solvent and 1 ul of a sample, the purge valve was turned on at 1.0

minute. Column head pressure was set at 7 psi and remained constant throughout this part

of the study.

2) Main study - analysis of ''A " to "J" samples

Restek R~-20 capillary column, 60 m, 0.32 mm I.D, 1.0 u film thickness was used

exclusively for this part of the study. All the analyzed linear alkylbenzenes, were dissolved

in acetone.

Both injector and GC/MS direct transfer line were set at 250°C. The GC temperature

program for the capillary column, was set as follows:

Initial temperature:

Initial time:

80°C

2 min

Rate Final temperature Final time
( °C/min ) ( °C ) ( min)

Level 1 20.0 130 0

Level 2 1.0 230 0

Level 3 10.0 280 10.0

Total run time: 119 min

For 60 m Restek Rtx-20 capillary column and for injection of 1 ul of a solvent and

1 ul of each sample, the purge valve was turned on at 1.5 minute. Column head pressure was

set at 20 psi and remained constant throughout this part of the study.
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2. Mass spectrometer in EI mode

1) Initial study

i) Full Scan mode, FS

The ion source temperature, quadrupoles temperature, and electron energy were kept constant

throughout the study, and were set as follows:.

Ion source:

Quadrupoles temperature:

Electron energy:

200°C

100°C

70 eV

The electron multiplier was kept at the autotune value plus 250 V, resulting in a total of ,..,

2600 V to 2800 V. The instrument was scanned from 45 amu to 500 amu at the scan rate

of 1.16 scans/second, and the acquisition threshold @ 35. The filament was turned on at 20

min (solvent delay).

2) Main study

i) Full Scan mode

ii) Single Ion Monitoring mode

Temperature and ion source parameters were kept the same as for a full scan

acquisition mode, except for the scan range. Five groups of ions ~d the time descriptors

were selected as follows:

Group
#

1

Start
time(min)

20.0

# ions

20

Dwell
time(usec)

50

Cycles Ions (m/z)
/sec

0.8 117,131,145,159,1 73,187 .

216,230,146,188,160,168
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167,165,210,185,214,

218,232,246

2 68.0 19 50 0.8 117, 13 1, 145, 159, 173

187,201,215,168,167,165

210,216,230,214,185,244

246,260

3 78.0 13 80 0.8 11 7, 13 1,145,159,173

187,201,215,244,260

274,229,230

4 88.0 13 80 0.8 II 7, 13 1,145,159, I 73

187,201,215,229,258

274,243,244

5 98.0 13 80 0.8 117,131,145,159,173

187,201,215,229,243

272,257,260

The filament was also turned on at 20 min (solvent delay).

3. Mass spectrometer in CI mode

1) Initial study

i) Full scan, FS

A J&W capillary column SPB-20, was used for this part of the study. GelMS transfer line

and quadropule temperatures were kept .constant throughout the initial study and were set as

follows:



Quadrupoles temperature:

Interface:

100°C

260 °C
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The electron multiplier was kept at the autotune value plus 600 V, resulting in a total of

,-v 2600 V. The instrument was scan from 45 amu to 500 amu at the scan rate of 1.16

scans/second, and the acquisition threshold was set at 10. The filament was turned on at 6.5

min (solvent delay).

Both methane and ammonia were used as reagent gases. Ion energy, Ion source

temperature and reagent gas pressure were optimized and set at:

Ion energy:

Ion source temperature:

Reagent gas pressure:

100 eV

250°C

0.8 Torr
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RESULTS AND DISCUSSION

I. Investigation of commercial linear a1kyIbenzenes, GC vs GC/MS techniques

The investigation of alkylbenzenes has been a central focus of mass spectrometry

SInce its application to the analysis of petroleum and gasoline in the mid-twentieth

century, and has provided much insight into the stability and reactivity of organic ions.

Besides, and in connection with, for example, the C7H7+/C7H8+' ion problem and the

McLafferty rearrangement, new information has emerged during the last few decades of

investigating the mass spectrometry of alkylbenzenes.

Mass spectrometry of alkylbenzenes was reviewed for the first time, in 1963 by

Grubb et a134
. Within ten years after the first review, the literature was deluged with

reports on intermolecular rearrangements in gaseous organic ions. In 1973 Bursay et a1. 35

collected and published this phenomena· in a comprehensive review. The latest review

was done by Kuck36 and published in 1990.

The quantitative analysis of commercial linear alkylbenzenes, LAB, is carried out

USIng gas chromatography, GC. Suppliers of the raw material use this analytical

technique to provide customers with the Certificate of Analysis (C.O.A.) which guarantees

its laboratory results within predefined specifications and limits. Generally, the GC

technique provides enough information on the different homologues of alkylbenzenes, but

it is deficient in identification of impurities present in commercially available linear

alkylbenzenes.

"Gas chromatography/mass spectrometry, GCIMS, on the other hand gives more

detailed information on the chemical composition of commercial linear alkylbenzenes.
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It not only provides the qualitative information on linear alkylbenzene isomers but. also

allows identification of the undesired compounds like branched alkylbenzenes and

dialkyltetralins. It is important to know the exact percentage of impurities, in order to

evaluate their influenc~ in the final molecular weight (M.W) calculation of linear

alkylbenzenes. The use of an accurate molecular weight is critical in the operation of the

sulphonation plant and therefore on the final yield of the linear alkylbenzene sulphonates.

The initial part of this study was to find out if the reported results from the raw

material supplier for the average molecular weight (MW) and for the percent 2-phenyl

isomer were correct in the sense that they could be repeated in our laboratory by

analyzing the same samples. The most accurate way to determine their values was to

develop a GCIMS analytical method as apart of this study to determine actual average

molecular weight and actual percent of 2-phenyl isomer in the commercial LAB.

II. Investigation of linear a1kylbenzenes (lAB) in company #1 's sample "AS"

1. Separation of linear alkylbenzenes. LAB, using packed column andsplitlessGC

injection ports

This study was performed on the Hewlett-Packard's ENGINE 5980 11/5989 A

GCIMS system with the direct interface between gas chromatograph and mass·

spectrometer. The first goal was to obtain a good chromatographic separation of the

major eluting peaks. At the start of the study the Gas Chromatograph was only equipped

with a packed column injection port. This gave separation of the major components,

linear alkylbenzenes isomers in sample "A5" except for 6- and 5-phenyl isomers of CIO -
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C13 alkylbenzenes. The arrows in the Figure 2 point to the unresolved peaks.

As soon as the packed column injector port was replaced with the split/splitless

injection port, the baseline separation of the major peaks improved dramatically (Figure

3).

2. Identification of linear alkylbenzene isomers using mass spectral interpretation of

fragmentation patterns obtained via electron impact ionization mode.

T4e molecular weights of alkylbenzenes fall into the series; C6HS(CH2)nCH3'

mass equal to the molecular weight, is the heaviest ion produced in the mass spectrometer

except for those containing heavy isotopes. Peaks at (MW + 1)+ and at ( MW +2)+ result

from parent ion that contains one or two heavy isotopes of 13C. The heights of these

peaks relative to that of the parent peak can be calculated from the known natural

abundance of 13C and 2H.

Among the dissociation products of alkylbenzenes, the most abundant ions derive

from the cleavage of bonds ~ to the benzene ring:

The number arid .lengths of the substituents on the a-carbon atom largely determine the
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Figure 2

TIC Chromatogram of sample '~5" using packed column injection port

and SPB-20 capillary column

(0
C"')

C'J
~

"""""'C r::-d N g.,..-
M>- ClJ~ = E« 0i=C'I"')

.0
ClJ

U.
......
0

u
i= ()

co VN

CIJ
00 NC

cd
"'0
C
:;]

0 0 0 0 0 0..0 0 0
<t 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0

~
0 0 0

~ e.g If) tr') N ,.-



52

Figure 3

TIC Chromatogram of sample "AS" using splitless injection pprt

and SPB-20 capillary column
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product distribution. Increase in length of these groups promotes decomposition of the

parent ion, the breaking of carbon-carbon bonds in competition with carbon-hydrogen

bonds, and the breaking of p-bonds in competition with a-bonds. In any homologous

series, as the side-chain length increases, the peaks at the parent mass MW+', at (MW +

1)+, and at the m/z 77/78/79 region decrease. The B-bond breakage alone produces the

m/z 91 peak. The stability of the m/z 91 ion, benzyl ion (a), the' product of cleavage of

C7H8+' and h'omologous ionized alkylbenzenes, has been shown to be less than that of the

isomeric tropylium ion (b). According to the thermochemistry studies37
,38,39 the tropylium

ion represents the thermodynamically controlled product of fragmentation of the

unsubstituted alkylbenzenes.

C~~.'
V+

a

+ R-

b

+ R-

In 1990 Kuck36 reviewed a number of studies related to the presence and stability

of the m/z 91 ion. In, his view, for most interpretive mechanisms it is not important to

make a distinction between the resonance-stabilized benzyl ion and similarly stabilized

tropylium ion.

From the semiempirical calculations and reliable models the 'following
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rearrangements for the m/z 92 ion were suggested by Pujado et a1. 33
:

'"®....-.. 'l.

\ + ....
. .. ...

/
H

H

CH 2 H
I

H H

H ... ...

When the ~.-bond breakage is accompanied by hydrogen migration, it produces the m/z

92 peak. This reaction was uncovered in the early days of organic mass spectrometry but

proposed much later34 to proceed via a six-member transition state, hence representing a'

variant of the McLafferty rearrangement via formation of distonic ion (c) as a crucial

intermediate:

c
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U.
cH;l+·
H +

:::::.:-.......
H

In 1988 Kingston et a1.40 reported conditions when the rearrangement is not

favourable because either the y- or the ortho-position are completely substituted or

virtually suppressed if there is also a para-substituent in the molecule.

A year later, Kuck41 published a letter to stress the role of the distonic ion isomers

and to corroborate Kingst<?n's4o observations. He demonstrated that, under favourable

conditions the McLafferty rearrangement may even generate the base peak in the 70 eV

mass spectrum on the "ortho-blocked' alkylbenzene. He observed a "paradox", a para-

methyl group suppresses the McLafferty rearrangement whereas two ortho-methyl groups

do not.

Evidence in support of the McLafferty rearrangement comes also from the isotopic

labelling which showed that 5- 6- and 7-membered-ring transition states could be

involved36
, as well as, from observations of structure-specific ion-molecule reactions in

an ion-cyclotron resonance spectrometer~2.

Based on the above, on the "General Rules" mentioned in the experimental

paragraph and on electron impact mass spectra, the identification of the different

homologues of alkylbenzenes in sample "A5" became possible. Each linear isomer
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showed characteristic homologous series corresponding to m/z 77,91,105,119, etc., as

well as, quite high parent ions, MW+' ions. Molecular weight ions were identified as m/z

218, 232, 246, and 260, corresponding to CIa' C II , C I2, and CI3 homologous serie~,

respectively. In each mass spectrum, peaks at. (MW + 1)+ were identified as m/z 219,

233,247 and 261. The 77/78 region was analyzed but not in great detail.

The base peak at m/z 91 which is C7H7+ was found to be common to all isomers

except one, the 2-phenyl which has a base peak at m/z 105 (Figure 4). The position of

the benzene ring in the linear isomers was assigned by examining B-bond cleavage a~d

the formation of the characteristic ions via favourable radical loses. In all 6-phenyl

isomers for Cll - CI~ alkylbenzenes, (MW-71)+ ion, representing a CSH 11 radical loss was

observed. The same B-bond cleavage was observed in all 5-phenyl isomers for CIa -CI3

alkylbenzenes with the formation of (MW-57)+ ion, representing C4H9 radical loss (Figure

5). The remaining 4- and 3-phenyl isomers for CIa - C I3 alkylbenzenes showed (MW­

43)+ and (MW-29)+ ions, represe:nting C3H 7 and C2Hs radical losses (Figure 6). The

same fragmentation pattern for 2-phenyl isomer was also observed for all CIa - C I3

alkylbenzenes with an exception for a much lower abundance of (MW-15)+ ion or rather

a lack of it (Figure 4). The summarized B-bond cleavage for CIa - C I3 linear

alkylbenzenes isomers is presented below:

Sample '~5"

Homolog

Molecular weight (amu) 218 232 246 260
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Ion (m1z)

6-phenyl (MW-71)+ 161 175 189

5-phenyl (MW-57)+ 161 175 189 203

4-phenyl (MW-43)+ 175 189 203 217

3-phenyl ,(MW-29)+ 189 203 217 231

2-phenyl (MW-15)+ 203 217 231 245

A 6-membered-ring transition state rearrangement, with the y-H migration and

formation of the m/z 92 ion was also observed in mass spectra of all linear alk'ylbenzenes

in the analyzed sample "A5".

The retention times, RT for linear alkylbenzene isomers using a small bore

capillary column, are represented in the tabulated form below:

Retention Times (min) for Sample "A5"

Alkyl group C IO Cll C I2 C13

6/7-phenyl 51.40

6-phenyl 34.42 42.78

5-phenyl 27.32 34.97 43.37 52.04

4-phenyl 27.94 35.77 44.31 53.12

3-phenyl 29.37 37.51 46.28 55.26

2-phenyl 32.36 41.02 50.05 59.12

Some degree of separation for the other peaks, representing impurities had also
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become possible with the upgraded injector port and the right choice of the capillary

column, namelySPB-20 (Figure 7 and Figure 8).

Lesko et al. 15 in their published study followed the same general rules and reported

mass spectral fragmentation assignments for 4-phenyldecane, 3-phenyldecane and 2­

,phenyldecane. Bravo and Vergara17 in their study published a Ge/MS chromatogram of

the commercially available'LAB with assigned chromatographic peaks but without mass

spectral interpretation.

3. Identification of branched alkylbenzenes using electron impact mass spectral

interpretation patterns

The same capillary column, J & W SPB-20 and Ge/MS system allowed for the

identification of some impurities present in the sample "A5" as branched alkylbenzenes

and dialkyltetralins.

Although the mass spectrum of a branched alkylbenzene is definitely more

complex than that of a linear isomer, it can be easily differentiated from the corresponding

linear alkylbenzene.As stated earlier, the mass spectrum reflects the influence of each

group present in the analyzed organic molecule. Thus a spectrum of a branched

alkylbenzene exhibits many similarities to a linear alkylbenzene but also exhibits many

anomalies which are caused by the highly branched side chains. Branching on the a­

carbon promotes the cleavage of the a-bond in competition with f3-bonds and formation

of a m/z 119 ion:
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Figure 7

TIC Chromatogram of sample "AS" - linear a1kylbenzene isomers .
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Figure 8

TIC Chromatogram of sample "A5" - linear aIkylbenzene isomers

elution order - continued
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Combinations of a-bond and ~-bond breakage in different side chains result in profiles

at m/z 91/92 and m/z 105/106, similar to that of m/z 77/78. Parent peaks, as well as, (M

+ 1)+ are evident but are much smaller than for the linear alkylbenzenes. Ion series at

m/z 77, 91, 105, 119, 133, etc., is a clear demonstration that the compound is an

alkylbenzene. Other peaks, however, are present with unpredictable intensity.

Consequently, it is difficult on the basis of the mass spectrum alone to state the exact

structure of a branche<;i alkylbenzene, only the total carbon number of the alkyl group can

be given, for example CII .

Again, based on the above, on the "General Rules" mentioned in the experimental

paragraph and on the electron impact mass spectra, the identification of some branched

alkylbenzenes as a total carbon number of the CIO to CI3 alkyl groups in sample "A5"

became possible. Parent peaks at m/z 218, 232, 246, and 260, as well as, (M + 1)+ ions

were evident. Ion series at m/z 77,91,105,119,133, etc., were observed. Similarly to

the linear isomers, all branched alkylbenzenes with benzene in 6 to 3 positions, showed

m/z 91 ion as a base peak (Figure 9), whereas for benzene in 2 position an ion m/z 105

was observed as a base peak (Figure 10).
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4. Identification ofdialkyltetralins using electron impact mass spectral interpretation

of fragmentation patterns

Certain rules governing mass spectral fragmentation for cyclic alkylbenzenes were

put forward around 1960. Since then their validity has not been questioned, but

subsequent studies have suggested that a rather aesthetic point of view had been taken in

the formulation of many fragment ions. As an example, the retro-Diels-Alder reaction,

RDA:

and its significance was first recognized by Biemann43 in 1962. The reactions of 1,2,3,4-

tetrahydronaphthalene, tetralin and its derivatives like dialkyltetralins, were .therefore

regarded as being more reliable, and as being especially favoured from energetic

considerations. These compounds were thus said to undergo a clean RDA ·reaction. In

a subsequent review, Budzikiewicz et a1. 23 examined the fragmentation reaction of tetralin

and 1- and 2-methyl substituted methyltetralins. They reported the RDA reaction

mechanism as being formally correct. I-Methyl-tetralin eliminates CH3' preferentially

(base peak) rather than ethylene (ca. 18 %). In the latter case the stepwise elimination

of (C-2)(C-3)H4 seems probable, resulting from ready rupture of (C-l)-(C-2) bond. The

13C-Iabelled methyl substituent remains with the diene part. Quite different behaviour is

shown by 2-methyltetralin, which forms its base peak by loss of propylene as 93 % RDA

reaction as shown below:
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+

+

e

Further studies on tetralin fragmentation have been carried out using 2H_ and 13C_

labelled tetralin molecules. These investigations clearly excluded fragmentation by a

formal RDA mechanism. This findings stimulated further work involving the labelling

of substituted and unsubstituted tetralins23
.

The first experimental results came from Loudon et al. 20 in 1970. The part of the

ethylene caused by the RDA mechanism could be determined by peak shift in the
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spectrum of D2-1,4-tetralin. Without taking into consideration mass spectral HID

exchange reactions, a 45 % RDA loss of (C-2)(C-3)H4 has been calculated based on

mechanism A. The remaining 55 % loss resulted from elimination of (C-1)(C-2)H4 via

mechanism B. These fragmentation reactions and their proportions have been confirmed

by metastable ion transitions.

Mechanism A

(1) (2)

~+. CH 2(2)

... + If
(3)

CH 2
CH 2

(4) (4) (3)

45%

Mechanism B

(1) 1+.
(3)

CH~ CH 2... CH
(2) 2 + II

CH 2
(4)

55 0/0

A year later, Grutzmacher and Puschmann21 in an investigation into the influence

of 1,4-substitution on the RDA reaction of tetralins, observed the loss of substituted

ethylenes. In an attempt to elucidate this loss, they studied the fragmentation of

deuterated tetralin, D4-1,1,2,2-tetralin. Instead ofm/z 104 ion (Figure 11), they observed

m/z 104, 106 and 108 ions in the approximate ratio of 1 : 2 : 1 (with a remarkably intense
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signals at m/z 105 and m/z 107). The ratio was nearly constant between 12 and 70 eV,

so that the superposition of two different mechanisms was considered very unlikely. As

a consequence, they proposed two fragmentation mechanisms, mechanism C and D, with

phenylcyclobutane (C) and tetrahydroazulene (D) as intermediates which because of their

symmetry resulted in the observed intensity ratio.

Mechanism C

;1+'
(3)

(1) 1+'
(2)

(4)

(1)

c

(4) 1+.
CH~ I

CH 2
(3)

(4) 1+'
CH~

CH 2
(1)

+ and +

(1) (2)

H2C== CH2



Mechanism C - continued

(4)

72

)0

c

/
(1) 1+.

OJ
C~I

~ I CH 2
~ (2)

+ and

(2) 1+·
(3)

+

Mechanism D

(1)

~;l+.

~(3)
(4)

O
· (2)1+­

-CH I
~ 2
~

+

CJ ..

and +
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Mechanism D - continued

(1)

(4)

;;1+ ·
(3) o ...

D

(3)

(3) ~+.
CH2

+
and

(1) ~+.
CH '2

+

Though it is known from studies by Grutzmacher and Puschmann21 on D4-5,6,7,8-tetralin

that HID exchange reactions take place, quantitative statements are difficult to make.

Furthermore, exchange reactions within the aliphatic part are not taken into consideration.

Nevertheless the peak pattern at m/z 104-108 could have been influenced by such process.

Gorfinkel and Bugreeva44 have synthesized and studied 13C-1-tetralinand 13C_2_

tetralin. Their observations, namely the loss of ethylene to the extent of 31 % or 66 %,

respectively, of the 13C label, agree with the results reported by Loudon et a1. 20
. Apart

from calculation of the relative proportions due to the mechanism A and B, no conclusion

could be drawn.
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Gretler et a1. 45 In their studies reported a possible fragmentation pathway as

mechanism E:

+
1+- CH2.. CH 2

~

...

G

H j
E

(3)

~+-
CH2 (2) (3)

+ H2C== CH2

J

F
0

~+.
CH2

(1) (2)

+ H2 C== CH2
0

After the opening of an aliphatic ring and rearrangement to a propyltropylium radical

cation, E, ethylene is lost directly via formal RDA reaction, or alternatively rearrangement

to the inverted propyltropylium radical cation F, takes place. Loss of ethylene from F

corresponds formally to the loss of carbon atoms (C-l )(C-2) or (C-3)(C-4) and results in

a heptafulvene radical ion D, similarly to mechanism D proposed by Grutzmacher and
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Puschmann21 . Good agreement with the observed values was found for all four doubly

13C-labelled tetralins, where fl. Ii represents 13C:

with a ratio of 2:3 for rearrangement and 1:3 for RDA reaction. The reason for the

rearrangement being preferred over direct elimination of 'ethylene was left open to

question. If, however, a symmetrical ion G were involved in the rearrangement, the

contribution of the RDA reaction should always be at least 50 %.

Tetralins doubly labelled with 13C have been examined by Stolze and

Budzikiewicz22. The values are in good agreement with the assumption of superposition

of the fragmentation via mechanism A and mechanism B, combined with a small

proportion of complete C ~crambling. The proportion of scrambling is almost constant

(9-12 %) at all electron energies~' but the ratio of the two decomposition reactions to each

other is dependent on such energy. The same year, in 1978, results published by Levsen

et a1. 24 not only confirmed the loss of ethylene from the molecular ion of tetralin but also

that the decomposition did not occur via a single process as had been suggested earlier

by Biemann43 and Budzikiewicz et a1. 23 . According to their results, about 11 %of the

molecular ions lose C2H4 after complete, but independent, C and H scrambling. 'About

32 % eliminate ethylene from the position (C";2) and (C-3) as a classical RDA
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decomposition and the remainder 56 % from positions (C-l) and (C-2) or (C-3) and (C-4).

The occurrence of competing processes was corroborated by the observation that lowering

the electron energy resulted in a change of the ratio of the various decomposition modes.

At 13 eV the percentage of scrambling was about 10 %, RDA was about 20 %, and loss

from positions (C-l) and (C-2) and (C-3) and (C-4) was about 70 %.

Based on the discussed literature review, dialkyltetralins mass spectra can be

interpreted similarly to the alkyl substituted tetralins or just tetralin. When dialkyltetralins

contain linear side chains, besides a relatively high molecular weight or parent peak,

benzylic bond rupture predominates and favourers the appearance of (MW - R 1 )+ and

(MW - R2 )+ fragments.

R 1

R 1 + R 2~
+

R2
e +

+ R1

R2

The dialkyltetralin skeleton structure gives a fragment at m/z 131. The m/z 117 is

observed in all dialkyltetralins, as well as, the presence of m/z 145,m/z 173, and m/z 187

due to the characteristic losses at 1 ad 4 positions. The ( MW - 15 )+ fragment comes

from the rupture of one of the benzylic bonds (Figure 12).



Figure 12

EI mass spectrum fragmentation pattern of I-methyl-4-pentyltetraIin

and I-methyl-4-hexyltetraIin
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}figure 12 - continued

EI mass spectrum fragmentation pattern of I-methyl-4-hexyItrtralin - continued
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Figure 12 - 'continued

EI mass spectrum fragmentation pattern of I-propyl-4-butyltrtralin

and l-ethyl-4-pentyltetraIin
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5. Confirmation of linear aIkylbenzene isomers and impurities such as branched

alkylbenzenes and dialkyltetralins using Chemical Ionization mass spectra

fragmentation patterns

To complete the initial part of this study, confirmation of the molecular weight

for all linear and branched alkylbenzenes, as well as, for dialkyltetralins was conducted

using a much "softer" mass spectral ionization technique, chemical ionization, (Cl).

First chemical ionization mass spectra of aromatic hydrocarbons were reported

196746
. Several subsequent studies of the proton transfer CI of alkylbenzenes have been

reported since then. Aromatic molecules with no alkyl substituents show only MW ions

and the cluster ions (M + C2Hs)+ and (M + C3Hs)+. With the introduction of methyl

groups, hydride abstraction also becomes possible and increases in importance with

increasing size of the alkyl substituent. Hydride abstraction phenomenon are also

observed for other compounds containing linear or branched alkyl chains in their

molecules, as in branched alkylbenzenes and dialkyltetralins. Hydride abstraction is

generally described as:

M + CHs+ ~ (M - H)+ + CH4 + H2

M + NH4+ ~ (M - H)+ + NH3 + H2

Both. methane and ammonia were used as a reagent gas, the latter one however with less

success due to instrumental problems. Ammonia is generally used for chemical ionization

when less fragmentation is desired in the chemical ionization spectrum. This is because

the proton affinity of ammonia is higher than that of methane; hence, less energy is
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transferred in the ionization reaction. Because many compounds of interest have

insufficient proton affinities, ammonia chemical ionization spectra often result from the

addition of NH4+. This, together with~, (M + H)+ and hydride abstraction ion (M­

H)+ , was observed in chemical ionization mass spectra for alkylbenzenes (Figure 13, 14,

and 15), as well a.s in chemical ionization mass spectra for dialkyltetralins (Figure 16, 17,

and 18).

Molecular weight information via chemical ionization is an ideal complement of

characteristic fragmentation patterns observe.d under electron impact conditions in the

elucidation of the structure of unknown or the confirmation of the known compound.

Methane gas was used to confirm molecular weight ions of impurities like branched

alkylbenzenes and dialkyltetralins, as well as molecular weight ions of linear

alkylbenzenes. For the linear isomers of CIO' CII , and Cl2 alkylbenzene homologues, M+,

(M + H)+ and (M -H)+ ions (Figure 19, 20 and 21) were observed but at a much smaller

intensities than in the branched alkylbenzenes (Figure 22 and 23). These two

observations are due to the vast difference in concentration between linear and branched

isomers entering the ionization chamber in the mass spectrometer.

Chemical ionization mass spectra for dialkyltetralins showed characteristic adduct

i~ns of methane, (M +H) + and (M + C2Hs)+ (Figure 24, 25, 26 and 27). The other ions,

~, and (M - H)+ were also observed.

The cis- and trans- assignment follows the results obtained by NMR study

conducted by Cavalli et al. l6 of a model compound cis- and trans-l ,4-dialkyltetralin. The



Figure 13

CI mass spectrum of C10 linear alkylbenzene (MW=218)

using ammonia as a reagent gas
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Figure 14

CI mass spectrum of C11 1inear alkylbenzene (MW=232)

using ammonia as a reagent gas
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Figure 15

CI mass spectrum of C12 1inear a1kylbenzene (MW=246)

using ammonia as a reagent gas
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Figure 16

CI mass spectrum of I-methyl-4-pentyltetralin (MW = 216)

using ammonia as a reagent gas
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Figure 17

CI mass spectrum of I-methyl~4-hexyltetraIin(MW = 230)

using ammonia as a reagent gas
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Figure 18

CI ~ass spectrum of 1..methyl..4..heptyltetralin (MW = 244)

using ammonia as a reagent gas
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NMR study allowed assignment of the cis structure to the more abundant isomer. The

more abundant isomer of a model compound, l-methyl-4-heptyltetralin was eluted first

with a very short retention time. This finding can be confidently extended to all other

linear dialkyltetralins.

II. Analyses of sample from "AI" to "A5"

1. Alkvlbenzene homologues' distribution - GC technique vs GCMS technique

As mentioned earlier, the determination ofhomologues distribution in commercial

linear alkylbenzenes was carried out by gas chromatography. Suppliers of the raw

material, LAB, for the molecular weight calculation purposes assume that all compounds

included between the most external and most internal isomer of a given homologue have

,the same molecular weight. However, this assumption substantially 'changes when using

the GC/MS technique results, because the mass distribution does not coincide with the GC

results. By expanding a Total Ion Chromatogram, TIC, (Figure 28) it was observed that

branched alkylbenzenes of a given number of carbon atoms are distributed between the

corresponding linear isomers of the same number of carbon atoms and one carbon atom

lighter. In other words, CI2-branched alkylbenzenes are eluted with CI2 and eII linear

isomers, but in particular within C1I isomers. The same pattern was observed for the

other homologues in all analyzed samples, "AI" to "A5". Another observation was that

2-phenyl isomer represents the highest percent of t~e total percent of all -linear

alkylbenzene isomers.

For the initial part of this study, results (Table 3, 4 and 5) for the two analytical



Figure 28

Expanded'TIC Chromatogram of sample "AS"
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Table 3

Linear alkylbenzene distribution in sample ''A3''
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Sample: "A3" (April 13/92)

between isomers actual

% Total Area % Total Area

2-Phenyl
C1,0 (218) 8.72 7.85
C11 (232) '12.68 12.45
C12 (246) 6.83 6.70
C13 (260) 1.25 1.23

Total % 29.48 28.23

3-Phenyl
C10 ( 218) 4.94 4.85
C11 (232) 7.87 7.73
C12 (246) 4.65 4.56
C13 (260) 1.01 1.04

Total % 18.47 18.18

4-Phenyl
C10 ( 218) 4.81 4.72
C11 (232) 7.32 7.45
C12 (246) 3.81 3.74
C13 (260) 0.78 0.77

Total % 16.72 16.68

5-Phenyl
C10 (218) 5.02 4.93
C11 (232) 7.97 7.83
C12 (246) 4.43 4.45
C13 (260) 0.93 0.93

Total % 18.35 18.14

6-Phenyl or 6/7-Phenyl
C11 (232) 3.52 3.46
C12 (246) 4.25 4.17
C13 (260) 1.43 1.41

Total % 9.2 9.04

initb.wk3



Table 4

Linear a1kylbenzene distribution in sample "A4"

100

Sample: "A4" (January 28/93)

between isomers actual

% Total Area % Total Area

2-Phenyl
C10 (218) 7.54 7.32
C11 (232) 11.25 I 10.93
C12 (246) 7.44 7.23
C13 (260) 1.75 1.70

Total % 27.98 27.18

3-Phenyl
C10 ( 218) 4.68 4.55
C11 (232) 4.97 4.83
C12 (246) 5.36 5.21
C13 (260) 0.83 0.80

Total % 15.84 15.39

4-Phenyl
C10 (218) 4.31 4.19
C11 (232) 6.06 5.89
C12 (246) 4.29 4.17
C13 (260) 0.90 0.88

Total % 15.56 15.13

5-Phenyl
C10 ( 218) 4.85 4.71
C11 (232) 7.01 6.81
C12 (246) 4.67 4.54
C13 (260) 1.14 1.10

Total % 17.67 17.16

6-Phenyl or 6/7-Phenyl
C11 (232) 4.03 3.92
C12 (246) 4.65 4.52
C13 (260) 1.78 1.73

Total % 10.46 10.17
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Table 5

Linear alkylbenzene distribution in sample "AS"
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Sample: "AS" (April 15/93)

between isomers actual

% Total Area % Total Area

2-Phenyl
C10 (218) 7.09 , 6.98
C1l (232) 12.98 12.79
C12 (246) 7.61 7.50
C13 (260) 1.54 1.52

Total % 29.22 28.79

3-Phenyl
C10 ( 218) 4.1 4.04
C11 (232) 7.94 7.82
C12 (246) 4.91 4.83
C13 (260) 1.09 1.08

Total % 18.04 17.77

4-Phenyl
C10 ( 218) 4.00 3.94
C11 (232) 7.77 7.65
C12 (246) 4.13 4.07
C13 (260) 0.87 0.86

Total % 16.77 16.52

5-Phenyl
C10 (218) 3.80 3.75
C11 (232) 7.98 7.86

.C12 (246) 4.7'1 4.63
C13 (260) 1.04 1.03

Total % 17.53 17.27

6-Phenyl or 6/7-Phenyl
C11 (232) 3~4 3.35
C12 (246) 4.41 ·4.34
C13 (260) 1.58 l.56

Total % 9.39 9.25

initc.wk3
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techniques were reported 'as follows: for GC technique as ''between isomers" and for

GCIMS technique as "actual". The summarized results for percent linear alkylbenzene

distributions are presented in Table 6. The difference between supplier's analytical data

and GCIMS data for linear isomers was observed to be between 0.14 % and 0.43 %.

2. Determination of dialkyltetralins distribution using GCMS technique

For the impurities like dialkyltetralins, observation was that dialkyltetralins of

molecular weight corresponding to a given linear alkylbenzene homologue are eluted

within the linear isomers having a molecular weight of one carbon atom higher. In other

words, CII dialkyltetralins are eluted with C l2 linear alkylbenzene isomers. For the 30 m,

SPB-20 capillary column, all dialkyltetralins corresponding to a given linear alkylbenzene

homologue are eluted just before 2-phenyl isomer of the one carbon higher alkylbenzene

h,omologue (Figure 28).

3. Determination of a total percent of impurities using GCMS technique

The total percent of impurities including all non-linear (branched) alkylbenzenes

and dialkyltetralin (cyclic) is presented in Table 7. According to GCIMS results, sample

"A4" from January 28, 1993, contains the highest amount of the impurities, at 14.82 %.

Second highest, from April 15, 1993, contains over 10 % of branched alkylbenzenes and

dialkyltetralins. AC'cording to GC method, results for the same two samples are not the

highest amongst them all. As expected, reported results using GCIMS method differ from



Table 6

Percen( linear isomer distribution - comparison of two methods:
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GC (between isomers) and GC/MS (actual)

Linear Isomers Distribution (°k)

between isomers

Sample IA1" Sample "A2" Sample "A3" Sample "A4" Sample "AS"

Position of Phenyl Group (January 31/91) (April 23/91 ) (April 13/92) (January 28/93) (April 15/93)

2-Phenyl 28.08 28.63 29.48 27.98 29.22

3-Phenyl 18.71 18.64 18.47 15.84 18.04

4-Phenyl 16.78 16.98 16.72 15.56 16.n

S-Phenyl 18.10 18.57 18.35 17.67 17.S3

6 or 617-Phenyl 9.29 8.66 9.20 10.46 9.39

actual

Sample "A1" Sample ",AZ' Sample "A3" Sample "A4" Sample "AS"

Position of Phenyl Group (January 31/91) (April 23/91) {April 13192) (January 28/93) (April 15/93)

2-Phenyl 27.48 28.1 28.23 . 27.18 28.79

3..Phenyl 18.31 18.23 18.18 15.39 17.n

4-Phenyl 16.44 16.54 16.68 15.13 16.52

5-Phenyl 17.71 18.16 18.14 17.16 17.27

6 or 61l-Phenyl 9.09 8.47 9.04 10.17 9.25

Difference

Sample "A1" Sample"AZ' Sample "A3" Sample "A4" Sample "AS"

Position of Phenyl Group (January 31/91) (April 23/91) (April 13/92) (January 28/93) (April 15/93)

2-Phenyl -0.60 -0.53 -1.25 -0.80 -0.43

3-Phenyl -0.40 -0.41 -0.29 -0.45 -0.27

4-Phenyl -0.34 -0.44 -0.04 -0.43 -0.25

5-Phenyl -0.39 -0.41 -0.21 -0.51 -0.26

6 or 617-Phenyl -0.20 -0.19 -0.16 -0.29 -0.14

initd.wk3



Table 7

Comparison of pereent impurities such as branched a1ky~benzenes and cyclic

using two metho<:,s GC (between isomers) and GC/MS (actual)

Total % branched Alkylbanzenes

between isomers actual Difference

Sample "A 1" (January 31/91 8.17 ' 4.32 -3.85

Sample "A2" (April 23/91) 7.76 4.31 -3.45

Sample "A3" (April 13/92) 7.67 3.89 -3.78

Sample "A4" (January 28/93 11.07 6.40 -4.67

Sample "AS" (April 15/93) 7.82 4.63 -3.19

104

Total % Cyclic

between isomers

Sample "A 1" (January 31/91)

Sample "A2" (April 23/91)

Sample "A3" (April 13/92)

Sample "A4" (January 28/93)

Sample "AS" (April 15/93)

actual

6.1

5.88

5.71

8.42

5.82

Total % branched Alkylbenzenes ICyclic

between isomers actual Difference

Sample "A1" (January 31/91 8.17 10.42 2.25

Sample "A2" (April 23/91) 7.76 9.89 2.13

Sample "A3" (April 13/92) 7.67 9.60 1.93

Sample "A4" (January 28/93 11.07 14.82 3.75

Sample "A5" (April 15/93) 7.82 10.45 2.63

initf.wk3
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GC method. The methods agree only for one sample, sample "A4" with respect to level

of impurities. Both report them as being the highest in all analyzed samples, at 14.82%

and 11.07 %. .

4. Determination ofmolecular weight distribution and the average molecular weight

Having observed the above differences, linear alkylbenzene molecular weight

determination results, as well as, the calculated percentage of the total non-linear and

cyclic compounds, should not be the same using GC/MS vs GC technique (Table 8, 9,

10, 11 and 12). The higher the content of impurities, like branched alkylbenzenes and

dialkyltetralins in commercial LAB, the bigger difference should be observed in the final

molecular weight calculations. Indeed, the difference in results from 1.28 up to 2.00 was

observed (Table 13) with results being on the lower side using the GC/MS technique.

5. Determination of a total percent of 2-phenvl isomers and comparison to the

reported values

Drozd and Germans, Moreno et al. l1 ,Cohen et al. 12
, and Matheson and Matson13

reported that total percent of 2-phenyl isomer is very important to know in formulation

of every detergent product. As part of the specifications, the percent of 2-phenyl isomer

is reported on the C.O.A with every shipment of commercial linear alkylbenzene. Table

13 summarizes the total percent of 2-phenyl isomer present in the analyzed samples "AI"

to "A5". The comparison with the C.O.A. results is not complete since some of the



Table 8

Moleculr weight distribution of LAB in sample "AI" (GC vs GC/MS)

Sample: "A1" (January 31/91)

106

between isomers actual

C10 (218)

C11 (232)

C12 (246)

C13 (260)

C10(218)

C11 (232)

C12 (246)

C13 (260)

Dialkyltetralins (21 6)

Dialkyltetralins (230)

Dialkyltetralins (244)

Total Area (M)

Total %

Total NON-Linear Area (M)

Total Cyclic Area (M)

Total NON-Linear (%)

Total Cyclic (%)

Total NON-Unear/Cyclic (%)

Average Molecular Weight

Linear Alkylbenzenes

Area (M) % Area (M) %

208.1 21.00 210 21.61

~00.7 40.44 391.3 40.28

250.3 25.26 234.8 24.17

50.80 5.13 34.26 3.53

Branched Alkylbenzenes

13.15 1.33 15.42 1.59

26.96 2.72 17.63 1.81

24.35 2.46 8.88 0.91

16.54 1.67

Cyclic

17.10 1.76

18.15 1.87

24.02 2.47

990.9 971.56

100 100

81.00 41.93

59.27

8.17 4.32

0 6.10

8.17 10.42

234.66 233.23
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Table 9

Moleculr weight distribution of LAB in sample "A2" (GC vs GC/MS)

Sample: "A2" (April 23/91)

107.

between isomers actual

C10 (218)

C11 (232)

C12 (246)

C13 (260)

C10 (218)

C11 (232)

C12 (246)

C13 (260)

DialkyltetraJins (21 6)

DialkyltetraJins (230)

Dialkyltetralins (244)

Linear Alkylbenzenes

Area (M) % Area (M) %

224.6 23.37 226.3 23.89"

893.7 40.96 385.7 40.71

229.2 23.85 216.7 22.87

38.99 4.06 24.94 2.63

Branched Alkylbenzenes

12.36 1.29 14.06 1.48

25.91 2.70 17.97 1.90

22.30 2.32 8.81 0.93

14.05 1.46

Cyclic

16.65 1.76

16.47 1.74

19.78 2.09

Total Area (M)

Total %

Total NON-Linear Area (M)

Total Cyclic Area (M)

Total NON-Linear (%)

Total Cyclic (%)

Total NON-Linear/Cyclic (%)

Average Molecular Weight

961.11

100

74.62

7.76

o

7.76

233.76

947.38

40.84

52.90

100

4.31

5.58

9.89

" 232.45
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Table 10

MolecuIr weight distribution of LAB in sample ''A3'' (GC vs GC/MS)

Sample: "A3" (April 13/92)

108

' ..

between isomers actual

C10 (218)

C11 (232)

C12 (246)

C13 (260)

C10(218)

C11 (232)

C12 (246)

C13 (260)

Dialkyltetralins (21 6)

Dialkyltetralins (230)

Dialkyltetralins (244)

linear Alkylbenzenes

Area (M') % Area (M) %

202.8 22.18 205.4 22.95

358.3 39.19 347.4 38.82

223.3 24.43 210.2 23.49

59.71 6.53 45.94 5.13

Branched Alkylbenzenes

10.62 1.16 13.13 . 1.47

24.78 2.71 13.86 1.55

20.92 2.29 7.83 0.88

13.77 1.51

Cyclic

13.92 1.56

16.11 1.80

21.02 2.35



Table 11

Moleculr weight distribution of LAB in sample "A4" (GC vs GC/MS)

Sample: "A4" (January 28/93)

109

between isomers actual

C10 (218)

C11 (232)

C12 (246)

C13 (260)

C10 (218)

C11 (232)

C12 (246)

C13 (260)

Dialkyltetralins (21 6)

Dialkyltetralins (230)

Dialkyltetralins (244)

linear Alkylbenzenes

Area (M) % Area (M) %

80.6 20.69 81.87 21.48

.127.1 32.62 124.5 32.67

106.9 27.44 96.03 25.20

31.89 8.18 22.2 5.83

Branched Alkylbenzenes

6.5 1.67 7.68 2.02

11.6 2.98 9.03 2.37

15.36 3.94 7.68 2.02

9.69 2.49

Cyclic

6.92 1.82

10.87 2.85

14.28 3.75

Total Area (M)

Total %

Total NON-Linear Area (M)

Total Cyclic Area (M)

Total NON-Linear (%)

Total Cyclic (%)

Total NON-Linear/Cyclic (%)

Average Molecular Weight

389.64

100

11.07

11.07

236.25

381.06

24.39

32.07

100

6.40

8.42

14.82

234.25
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Table 12

Moleculr weight distribution of LAB in sample "AS" (GC vs GC/MS)

Sample: "AS" (April 15/93)

110

C10 (218)

C11 (232)

C12 (246)

C13 (260)

C10 ( 218)

C11 (232)

C12 (246)

C13 (260)

Dialkyltetralins (21 6)

DiaJkyltetralins (230)

Dialkyltetralins (244)

Total Area (M)

Total (%)

Total NON-Linear Area (M)

Total Cyclic Area (M)

Total NON-Linear (%)

Total Cyclic (%)

Total NON-linear/Cyclic (%)

Average Molecular Weight

between isomers

825.76

100

64.58

7.82

7.82

234.46

820.33

37.99

47.76

actual

100

5.82

4.63

5.82

10.45

233.18

Init2.wk3



Molecular Weight

between isomers actual Difference C.O.A.
~(Certificate of Analysis)

=
Sample "A1" (January 31/91) 234.66 233.23 1.43 *

t") ac:>a c:>
liIIIIIlI

~ rc
Sample "A2" (April 23/91) 233.76 232.45 1.31 * ~-

t")

sa.
fIJ

~c:>
Sample "A3" (April 13/92) 234.72 233.43 1.29 * = ~

i rc...,-
i (JQ

Sample "A4" (January 28/93) 236.25 234.25 2.00 236.3 =-rc fIIIto.
rc

~=Sample "A5 11 (April 15/93) 234.46 233.18 1.28 236.5 i Q.
~

i ~
c:> e:
a r; rc

rcrc =
.....

9' fIIIto. ~

c:> c:>
Q. ~
fIJ

~~

Total % 2-Phenvl Isomer n N

!
I

~

actual C.O.A. Difference
Q. ;-
~ =~
~

......
(Certificate of Analysis) ...,-

Sample "A1" (January 31/91) 27.48 *
fIJ
c:>

00 a
Sample "A2" (April 23/91) 28.10 *

rc..,
I

Sample "A3" (April 13/92) 28.23

Sample "A4" (January 28/93) 27.18 28.5 -1.32

Sample "A5" (April 15/93) 28.79 . 28.6 0.19 ~

~

~

NOTE: * - not available inite.wk3
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C.O.A., especially from 1991 and 1992 were no longer available.

Actual average molecular weight calculations were repeated for sample "A5" with

different amount of sample dissolved in the same amount of solvent. Results are almost

identical, 234.46 vs 234.37 and are presented in Table 14 and Table 15.

III. Analyses of samples from "A" to "J"

1. Distribution of linear alkvlbenzene isomers

The main part of this study was extended to other commercial linear

alkylbenzenes. A total of ten raw material samples, sample "A" to "J", from four

different suppliers, company #1 to company #4, were analyzed on GCIMS system.

Reported molecular weights (C.O.A.) varied from 231.6 amu to 242.0 amu, and percent

of 2-phenyl isomer varied from 13.0 % to 31.0 %. Graphical representations of the

analyzed samples, the TIC chromatograms are presented in Figure 29a&b, 30a&b, 31a&b,

32a&b, 33a&b, 34a&b, 35a&b, 36a&b, 37a&b, and 38a&b. All peaks in each

chrom'atogram were labelled as follows: for example, for CIa homologue "5-Ph" represents

5-phenyldecane, "4-Ph" represents 4-phenyldecane, "3-Ph" represents 3-phenyldecane, and

"2-Ph" represents 2-pheriyldecane. Also, a letter "B" and a letter "T" were used to label

all branched alkylbenzenes and all dialkyltetralins, respectively. Full scan mode did not

allow for complete separation of all dialkyltetralins thus on the TIC chromatograms there

are only a few peaks labelled with a letter "T".

Instrumentally the main part was a continuation· of the initial part of this study

with an exception for a different capillary column, Restek's Rtx-20. With the use of a



Table 14

Molecular weight distribution of lAB in sample '~5"

Sample: "AS" (April 15/93) Total weight: 0.045 g

between isomers actual

linear Alkylbenzenes

Area (M) % Area (M) %

C10 (218) 333.7 18.86 330.9 19.22

C11 (232) '706.1 39.90 688.7 40.00

C12 (246) 460.1 26.00 435.1 25.27

C13 (260) 124.5 7.04 100.1 5.81

Branched Alkylbenzenes

C10(218) 24.61 1.39 21.80 1.27

C11 (232) 53.44 3.02 36.07 2.10

C12 (246) 40.78 2.30 15.84 0.92

C13 (260) 26.44 1.49

Cyclic

Dialkyltetralins (21 6) 23.45 , 1.36

Dialkyltetralins (230) 28.21 1.64

Dialkyltetralins (244) 41.42 2.41

Total Area (M) 1769.67 1721.59

Total % 100 100'

Total NON-Linear 145.27' 73.71

Total Cyclic 93.08 5.41

Total NON-Linear (%) 8.21 4.28

Total Cyclic (%) 5.41

, Total NON-linear/Cyclic (%) 8.21 9.69
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Average Molecular Weight 235.52 234.46
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Table 15

Molecular weight distribution of LAB in sample '~5" - continued

Sample: "AS" (April 15/93) Total weight: 0.067 g

between isomers actual

Linear Alkylbenzenes

Ar~a (M) % Area (M) %

C10(218) 623 19.19 616.4 19.52

C11 (232) 1290.7 39.75 1259.4 39.88

C12 (246) 845.8 26.05 801.3 25.37

C13 (260) 225.5 6.95 176.8 5.60

Branched Alkylbenzenes

C10(218) 40.3 1.24 33.69 1.07

C11 (232) 96.8 2.98 65.65 2.08

C12 (246) 75.92 2.34 31.46 1.00

C13 (260) 48.65 1.50

Cyclic

Dialkyltetralins (21 6) 49.98 1.58

Dialkyltetralins (230) 49.99 1.58

DialkyltetraJins (244) 73.4 2.32

Total Area (M) 3246.67 3158.07-

Total % 100 100

Total NON-Linear Area (M) 261.67 130.80

Total Cyclic Area (M) 173.37

Total NON-Linear (%) 8.06 4.14

Total Cyclic (%) 5.49

Total NON-Unear/Cyclic (%) 8.06 9.63
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Average Molecular Weight 235.48 234.37
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new column the detailed composition of the alkylbenzene isomers was clearly identified.

In addition, more sensitive Ge/MS data acquisition technique, SIM, and more accurate

data integration technique, IS, were employed.

Similarly to the initial part of this study, the percent of each linear isomer present

in the analyzed LAB samples (from "A" to "J"), as well as, the total linear alkylbenzene

isomers distribution were calculated and are presented in Table 16.

2. A verage molecular weights and distribution of molecular weights

In order to calculate molecular weight distributions for all the selected commercial

alkylbenzenes, the percent of the linear isomers, percent of the branched alkylbenzenes

and percent of dialkyltetralins had to be calculated first. For this exercise, branched

alkylbenzenes and dialkyltetralins were called non-linear and cyclic, respectively. Results

for the percent of the non-linear alkylbenzenes in samples "A" to "J" were tabulated and

are presented in Table 17, 18, 19 and 20. Molecular weight distribution and actual

average molecular weights for all analyzed samples are presented in Table 21, 22, 23 and

24.

The molecular weights and percent of 2-phenyl isomers are summarized and

compared to the C.O.A. results in Table 25. Using a GC/MS method, molecular weights

for all analyzed samples were found to be lower than reported values on each Certificate

of Analysis. The difference in amu varied from 0.12 to 3.29. For the percent of 2-phenyl

isomer, on the other hand, results were found to be higher than reported with the biggest

difference for sample "G" at 4.25 %: and the smallest for sample "A" at 0.31 %.



% Total

Isomer Sample "A" Sample "B" Sample "e" Sample "0" Sample "e" Sample "F" Sample "G" Sample "H" Sample "I" Sample "J" (]
c:>

mlz 204 a
5·Phenyl 3.63 ~
4·Phenyl 6.36 §.3-Phenyl 5.17
2·Phenyl 6.28 rJ'J

c:>Total m/z 204 21.44 =m/z 218 c:>
5-Phenyl 3.95 3.73 5.39 8.37 5.25 2.81 0.06 6.57 .3.31 10.84 IIIIIti)

4-Phenyl 3.64 3.31 3.88 6.26 4.13 2.24 0.08 4.92 3.19 8.35
~3·Phenyl 4.08 4.17 3.73 5.59 3.74 2.08 0.08 4.10 3.79 7.43

2-Phenyl 7.50 9.47 4.78 7.28 4.79 2.95 0.12 5.80 8.14_ 8.58
.-. fi

Total m/z 218 19.17 20.68 17.78 27.50 17.91 10.08 0.34 21.39 18.43 35.20 = tt>
rJ'J =mh232 a ..........6-Phenyl 3.25 3.41 5.65 5.88 6.50 2.91 1.79 5.3-1 3.23 2.30 .-.

5·Phenyl 6.62 7.02 11.26 11.65 12.92 6.03 3.67 10.75 6.85 4.61 ~ =..... tt>4·Phenyl 6.76 6.43 9.80 9.14 10.39 4.85 2.67 8.52 6.28 3.42 tt>
~ l-33·Phenyl 6.81 7.19 1.90 7.49 8.35 4.33 2.40 6.89 7.35 2.85 rJ'J

2·Phenyl 12.17 14.19 10.08 9.08 10.27 6.23 2.96 7.82 14.09 3.49

~ ~ ~Total m/z 232 35.61 38.84 44.69 43.24 48.43 24.35 13.49 39.29 37.80 16.67 .....
a ~

tt>
m/z 246

I .... ~
6·Phenyl 3.86 4.21 1.20 5.16 7.06 10.06 8.77 9.26 3.86 3.31

~ i 0'\
5-Phenyl 3.82 4.34 6.96 5.51 6.77 9.93 8.33 8.79 3.94 3.21
4-Phenyl 3.62 4.12 5.67 4.29 5.41 8.43 6.62 6.41 3.87 2.54 : r:13-Phenyl 4.07 4.58 4.81 ,3.70 4.31 8.16 6.19 4.14 4.16 2.12 g tt>2·Phenyl 1.49 9.60 5.85 4.67 4.97 13.13 6.10 2.23 8.20 2.44 =Total m/z 246 22.86 26.91 30.49 23.93 28.52 50.31 35.51 30.83 24.03 13.74 tt>

~ .-.
m/z 260 rJ'J

7/G-Phenyl 1.31 2.65 0.10 0.17 0.35 2.25 12.86 0.29 0.97 2.62 c:>
5·Phenyl 0.81 1.76 0.44 0.19 1.41 8.09 0.13 0.65 1.66 a4-Phenyl 0.18 1.54 0.32 0.12 1.14 5.94 0.57 1.14 tt>
3·Phenyl 0.86 1.76 0.21 1.00 4.98 0.63 0.89 ~2-Phenyl 1.15 4.14 0.36 1.16 6.78 1.39 1.04

Total m/z 260 5.51 11.85 2.09 0.11 0.66 1.02 38.65 0.42 4.21 1.35 c...-.
rJ'J

m/z 274 s.7/6-Phenyl 0.04 0.08 0.48 1.46 0.03 0.01
5-Phenyl 1.41 cr

=4-Phenyl 1.26 et.3·Phenyl 0.89 c:>2·Phenyl 0.69 =Total m/z 214 0.04 0.08 0.48 5.11 0.03 0.01

Total Linear 83.25 98.36 95.05 94.84 95.52 92.24 93.70 91.93 84.50 76.66
Main5.wk3 ......

W
0\



Branched ALKYLBENZENES

Sample "A" Sample "B"

RT(min) Area (k) % Total % Total NON RT(min) Area (k) % Total % Total NON
~
~

m/z 218 41.73 21.9 0.07 0.89 r;
~42,43 26.1 0.08 1.06

=43.14 23.5 0.07 0.95 fI'I+.
44.97 28.0 0.08 1.14 =45.23 30.1 0.09 1.22
47.59 131.0 0.39 5.32 47.73 36.9 0.14 9.59 c:>
48.80 74.9 0.22 3.04 =I
49.75 182.0 0.54 7.39 50.05 66.4 0.25 17.25 ..........53.93 53.9 0.16 2.19 =('1>

m/z 232 50.29 23.5 0.07 0.95 ~
50.76 42.1 0.13 1.71 ..... ...-..
51.13 82.6 0.25 3.35 - = CT'
51.81 54.8 0.16 2.23

t:Il ~52.87 81.7 .0.24 3.32 a53.14 42.5 0.13 1.73 f")
53.63 39.4 0.12 1.60 =-55.00 56.8 0.17 2.31 -0 ~

56.7 157.0 0.47 6.38 56.93 50.5 0.19 13.12 ;- Q" ~
58.55 139.0 0.41 5.65 t:Il '"-" ~
60.18 303.0 0.90 12.31 60.43 45.2 0.17 ;11.74

~
!.. e:65.11 42.9 0.13 1.74

~
('1>

71.56 73.5 0.22 2.98
74.22 38.6 0.12 1.57 74.4 49.9 0.19 12.96 ..... ~

80.17 89.6 0.27 3.64 80.46 136.0 0.52 35.33
~ ~

'-J

Q" am/z 246 60.71 62.8 0.19 2.55 ('1>
61.22 30.8 0.09 1.25 cd =61.67 38.2 0.11 1.55 : ~
62.05 31.6 0.09 1.28 .....
63.93 29.4 0.09 1.19 t:Il
66.47 56.7 0.17 2.30 c:>
66.82 63.6 0.19 2.58 a68.34 63.6 0.19 2.58 ('1>
69.05 41.0 0.12 1.67 :A70.80 85.6 0.26 3.48
71.35 60.1 0.18 2 ..44 Q"74.55 60.6 0.18 2.46 .....

t:Il

NON-Linear; % Total area 100 =.100 CT'

=NON-Linear; Total area (k) 2462.35 384.9 C".
c:>=Total area (k) 33556.2 26243.2

% Total area 7.19 1.47
impur1.wk3

~

VJ
.....J



Branched AlKYlBENZENES

Sample "C" Sample "0" Sample "E"

RT(mln) Area (k) % Total % Total NON RT(mln) Area (k) % Total % Total NON RT(mln) Area (k) % Total % Total NON

m/z 218 ~
~

41.75 25.6 0.11 2.34 rl42.44 15.1 0.07 1.38
~43.16 25.9 0.11 2.36 =47.55 42.8 0.20 3.35 47.58 52.2 0.23 4.76 47.61 61.1 0.32 7.28 .....

49.85 95.6' 0.44 7.48 49.79 131 0.58 11.95 49.79 83.1 0.44 9.90 =53.16 41.7 0.18 3.80 ==I....,..
m/z 232 50.31 22.5 0.10 2.05 =~50.84 25.2 0.12 1.97 50.78 27.9 0.12 2.55 50.77 22.7 0.12 2.70 .,.. ~51. 17 51.5 0.24 4.03 51.11 58.4 0.26 5.33 =51.87 46.9 0.21 3.67 51.81 52.2 0.23 4.76 51. 13 50 0.27 5.96 ~

52.83 44.3 0.20 3.46 52.84 51.1 0.23 4.66 51.82 43.4 0.23 5.17
tt.l cr

55.13 43.6 0.20 3.41 53.11 37.5 0.17 3.42 52.75 38.3 0.20 4.56 e ~55.05 46.4 0.20 4.23 55.07 40.3 0.21 4.80
56.73 107.0 0.49 8.37 56.69 115 0.51 10.49 56.71 89.1 0.47 10.62 -a f')

58.67 123.0 0.56 9.62 58.57 58.9 0.31 7.02 ~ =-tt.l ~60.22 227.0 1.04 17.75 60.16 161.0 0.71 14.69 60.16 145 0.77 17.28 c.. ~64.00 16.0 0.07 1.46
~

"'-" ~64.48 55.9 0.26 4.37
!. cr

VI"
...

~
~

d ... ~

m/z 246 60.76 38.1 0.17 2.98 60.69 38.4 0.17 ' 3.50 60.68 18.1 0.10 2.16 ~
QC

61.26 22.9 0.10 1.79 61.24 20.9 0.09 1.91

~ ~62.07 21.7 0.10 1.70
66.54 74.9 0.34 5.86 66.5 20.5 0.09 1.87 66.42 55.6 0.30 6.63 c.. ~
66.87 52.4 0.24 4.10 66.81 43.5 0.23 5.18 =68.33 47.8 0.21 4.36 ~. ~

69.1 82.0 0.38 6.41 .,..
0.57 9.70 70.59 88.9 0.39 8.11 70.59 90.1 0.48 10.74 : tt.l70.64 124.0 =

NON-Unear; % Totaf area 100 100 100 a
~

NON-Unear; Total area (k) 1278.8 1096 839.2 ~

c...,..
18835.3

tt.lTotal area (k) 21815.1 22682.9 =.% Total area 5.86 4.83 4.46 cr
=impur2.wk et.
C

=
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Branched ALKYLBENZENES

Sample "F" Sample "G" Sample "H"

RT(mln) Area (k) % Total % Total NON RT(mln) Area (k). % Total % Total NON RT(mln) Area (k) % Total % Total NON

~
m/z 218 ~

46.51 15.6 0.06 0.75 rs47.77 49.9 0.15 3.09 47.32 22.7 0.08 1.09 47.86 136 0.55 7.96
~49.64 43.8 0.13 2.71 49.37 20.6 0.08 0.99 50.04 105 0.42 6.15 =53.31 33.6 0.12 1.62 ......

=m/z 232 51.36 36.3 0.15 2.13 Q
62.07 33.4 0.13 1.96 =55.32 42.8 0.13 2.65 I...
55.33 50.7 0.20 2.97 ...,.

56.92 55.4 0.17 3.43 56.96 38.8 0.14 1.87 56.97 70.4 0.28 4.12 =~60.41 141.0 0.43 8.72 60.45 73.8 0.27 3.56 60.41 153 0.61 8.96 ...,. ~74.57 59.8 0.18 3.70 64.00 16.0 0.06 0.77 :::80049 103.0 0.32 6.37 ...-...
88.05 71.1 0.26 3.43 r:n cr

m/z 246 a ~
60.42 71.8 0.22 4.44 60.47 10.4 0.26 3.39 60.45 63.9 0.26 3.74 -c n......

~60.94 97.1 0.30 6.01 60.96 100 0.37 4.82 60.92 16.6 0.31 4.48 ~
61.49 61.4 0.19 3.80 61.52 54.2 0.20 2.61 61.49 47.7 0.19 2.79 r:n ~

61.96 48.3 0.15 2.99 61.98 54.9 0.20 2.65 c.. ~
62.26 61.9 0.19 3.83 62.28 56.9 0.21 2.74 62.26 51.6 0.21 3.02

~
'-" ~

64.17 34.9 0.11 2.16 64.21 25.3 0.09 1.22 64.64 45.2 0.18 2.65 ea. cr
64.69 53.9 0.17 . 3.33 64.72 41.6 0.15 . 2.00 65.3 44.7 0.18 2.62 ",,-

......
65.05 23.4 0.07 1.45 66.81 93.2 0.37 5.46 ~

~

65.32 59.9 0.18 3.70 65.32 30.1 0.11 1.45 67.1 62.1 0.25 3.64

~
...... .....

66.85 142 0.44 8.78 66.84 90.2 0.33 4.35 70.88 83.3 0.33 4.88

~
\0

61.14 67.4 0.25 3.25 74.32 555 2.23 32.49
68.64 106 0.33 6.56 68.64 59.2 0.22 2.85

~ ~69.37 51.3 0.16 3.17 69.39 29.1 0.11 1.40
70.95 281 0.86 17.38 10.95 162 0.59 7.81 c.. ~80.48 28.3 0.09 1.75 ==; ~

m/z 260 ...,.
C/.)

69.84 64.7 0.24 3.12 Q
70.72 137 0.50 6.60 :311.41 90.6 0.33 4.31
11.72 42.6 0.16 2.05 ~
72.15 24.3 0.09 1.17 ~73.13 79.9 0.29 3.85
74.63 70.5 0.26 3.40 c..
77.19 54.9 0.20 2.65 ...,.
77.43 79.1 0.29 3.81 C/.)

78.65 74.99 0.28 3.61 =.79.17 46.7 0.17 2.25 cr79.99 37.2 0.14 1.79
C81.41 118 0.43 5.69 :t.
c:>m/z 274 94.8 21.3 0.08 1.03 =

NON·Unear; % Total area 100 100 100

NON-Unear; TotaJ area (kJ 1616.9 2075.29 1708.1

Total area (k) 32592.7 27267.7 24937.3 ~

W
\0% Total area 4.67 7.39 5.88

impur3.wk



Branched ALKYLBENZENES
~
tI)

Sample "I" Sample "J" ~
tI)

=.....RT (min) Area (k) % Total % Total NON RT (min) Area (k) % Total % Total NON =Q
m/z 204 33.92 24.5 0.07 1.34 =I36.09 30.9 0.09 1.69 ...

40.33 151 0.43 8.27
..-.

=53.43 26.2 0.07 1.44 tI)
59.65 223 0.63 12.22 ~

m/z 218 41.96 40.7 0.12 2.23 ~e:r42.69 25.6 0.07 1.40

_.
~43.39 40.4 0.11 2.21 =

43.86 36.3 0.10 1.99 tfj

44.67 24.7 0.07 1.35 e ~

=-45.23 23.3 0.07 1.28 tI)
45.49 39.4 0.11 2.16 -e. Q. ;.3

47.81 74.7 0.33 11.52 47.86 251 0.71 13.75
~

'-'
~49.03 37.8 0.17 5.83 49.04 66.9 0.19 3.67 tfj !.49.99 82.9 0.37 12.78 50.07 421 1.19 23.06
....

~ ~
~

53.93 53.9 0.24 8.31
N54.49 14.4 0.04 0.79 §

...
Q

~C.
~

m/z 232 51.37 27.7 0.12 4.27 ~
tI)

=53.03 26.4 0.12 4.07 - tI)55.23 21.1 0.09 3.25 55.28 26.7 0.08 1.46
56.93 44.2 0.20 6.81 56.87 35.4 0.10 1.94 ..-.

tIJ58.82 52.3 0.23 8.06 Q
60.44 60.7 0.27 9.36 60.38 103 0.29 5.64 a80.43 89.4 0.25 4.90

~

r;;
m/z 246 66.73 30.9 0.14 4.76 66.71 59.3 0.17 3.25 c..

68.59 56.4 0.25 8.70 ...,..
tIJ69.32 31.9 0.14 4.92 9".70.83 72.2 0.20 3.96

71.05 47.7 0.21 7.35 0-c:
Q".

NON-Linear; % Total area 100 Q
100 =

NON-Linear; Total area (k) 648.6 1825.3

Total area (k) 22580.7 35242.5

% Total area 2.87 5.18
~

~

impur4.wk 0



Table 21

Molecular weight distribution of LAB in samples 'i\" and "B"
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Table 22

Molecular weight distribution of LAB in samples "eft, "D" and ''E''

Company #2

Sample "C" Sample "0" Sample "E"

Isomer Area (k) % Area (k) % Area.(k) %

line'ar AlKYLBENZENES
m/z 218
5-Phenyl 1176 5.39 1898 8.37 988 5.25
4-Phenyl 847 3.88 1419 6.26 777 4.13
3-Phenyl 813 3.73 1269 9·59 704 3.74
2-Phenyl 1042 4.78 1652 7.28 902 4.79

m/z 232
6-Phenyl 1233 5.65 1334 5.88 1224 6.50
5-Phenyl 2457 11.26 2642 11.65 2433 12.92
4-Phenyl 2137 9.80 2073 9.14 1957 10.39
3-Phenyl 1723 7.90 1699 7.49 1573 8.35
2-Phenyl 2199 10.08 2060 9.08 1934 10.27

m/z 246
6-Phenyl 1570 7.20 1307 5.76 1329 7.06
5-Phenyl 1519 6.96 1249 5.51 1276 6.77
4-Phenyl 1237 5.67 973 4.29 1019 5.41
3-Phenyl 1049 4.81 840 3.70 812 4.31
2-Phenyl' 1276 5.85 1060 4.67 936 4.97

m/z 260
7/6-Phenyl 152 0.70 37.9 0.17 65.3 0.35
5-Phenyl 96.5 0.44 35.0 0.19
4-Phenyl 68.8 0.32 21.7 0.12
3-Phenyl 59.4 0.27
2-Phenyl 77.6 0.36

Branched AlKYlBENZENES

m/z 218 97.4 0.45 292 1.29 144 0.76

m/z 232 502 "2.30 588 2.59 488 2.59

m/z 246 458 2.10 217 0.96 207 1.10

Cyclic

m/z 216 7.2 0.03 36.3 0.16 3.0 0.02

m/z 230 16.1 0.07 30.2 0.13 7.3 0.04

m/z 244 2.1 0.01 6.5 0.03

142

Total area (k)

Total %

Average M.W

21815.1

234.59

100

22682.9

231.48

100

18835.3

233.71

100

init2a.wk3



Table 23

Molecular weight distribution of LAB in samples ''F'', ''e'' and "II"
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Company #3

Sample "F" Sample "G" Sample "H"

Isomer Area (k) ok Area (k) % Area (k) %

linear ALKYLBENZENES
m/z 218
5-Phenyl 917 2.81 15.6 0.06 1638 6.57
4-Phenyl 730 2.24 22.7 0.08 1228 4.92
3-Phenyl 678 2.08 20.6 0.08 1022 4.10
2-Phenyl 962" ,2.95 33.6 0.12 1447 5.80

m/z 232
6-Phenyl 947 2.91 487 1.79 1325 5.31
5-Phenyl 1965 6.03 1000 3.67 2681 10.75
4-Phenyl 1581 4.85 729 2.67 2125 8.52
3-Phenyl 1412 4.33 654 2.40 1718 6.89
2-Phenyl 2031 6.23 808 2.96 1949 7.82

m/z 246
6-Phenyl 3280 10.06 2391 8.77 2310 9.26
5-Phenyl 3236 9.93 2271 8.33 2193 8.79
4-Phenyl 2747 8.43 1779 6.52 1599 6.41
3-Phenyl 2658 8.16 1414 5.19 1033 4.14
2-Phenyl 4476 13.73 1828 6.70 555 2.23

m/z 260
7/6-Phenyl 733 2.25 3507 12.86 71.9 0.29
5-Phenyl 479 1.47 2207 8.09 33.5 0.13
4-Phenyl 372 1.14 1621 5.94
3-Phenyl 326 1.00 1358 4.98
2-Phenyl 378 1.16 1848 6.78

m/z 274
7/6-Phenyl 155 0.48 399 1.46
5-Phenyl 384 1.41
4-Phenyl 344 1.26
3-Phenyl 242 0.89
2-Phenyl 187 0.69

Branched ALKYLBENZENES

m/z 218 93.7 0.29 92.5 0.34 241 0.97
m/z 232 402 1.23 129 0.47 344 1.38
m/z 246 1121 3.44 437 1.60 1124 4.51
m/z 260 920 3.37
m/z 274 21.3 0.08

Total 4.96 5.87 6.85

Dialkyltetralins

m/z 216 184 0.56 12.7 0.05 210 0.84
m/z 230 330 1.01 36.2 0.13 89.9 0.36
m/z 244 399 1.22 29.9 0.11
m/z 258 38.6 0.14

Total 2.80 0.43 1.20

Total area (k) 32592.7 27267.7 24937.3

Total % 100.00 100.00 100.ob

Average M.W 240.27 251.34 233.79
init2b.wk3



Table 24

Molecular weight distribution of LAB in samples ''I'' and "J"

Company #4

Sample "."
Sample "J"

Isomer Area (k) % Area (k) %

linear AlKYlBENZENES
m/z 204
5-Phenyl 1279 3.63
4-Phenyl 2241 6.36
3-Phenyl 1823 5.17
2-Phenyl 2213 6.28

m/z 218
5-Phenyl 748 3.31 3821 10.84
4-Phenyl 721 3.19 2943 ' 8.35

3-Phenyl 856 3.79 2619 7.43
2-Phenyl 1838 8.14 3021 8.57

m/z 232
6-Phenyl 729 3.23 811 2.30
5-Phenyl 1546 6.85 1626 4.61
4-Phenyl 1419 6.28 1205 3.42
3-Phenyl 1659 7.35 1005 2.85
2-Phenyl 3181 14.09 1229 3.49

m/z 246
6-Phenyl 871 3.86 1189 3.37
5-Phenyl 889 3.94 1151 3.27
4-PhenyJ 875 3.87 894 2.54
3-Phenyl 939 4.16 747 2.12
2-Phenyl 1852 8.20 859 2.44

m/z 260
7/6-Phenyl 220 0.97 923 2.62
5-Phenyl 147 0.65 584 1.66
4-Phenyl 128 0.57 401 1.14
3-Phenyl 142 0.63 313 0.89
2-Phenyl 315 1.39 366 1.04

m/z 274
7/6-Phenyl 5.8 0.03 25.9 0.07

NON-Linear AlKYlBENZENES

m/z 204 456 1.29
m/z 218 249 1.10 984 2.79
m/z 232 232 1.03 165 0.47
m/z 246 167 0.74 132 0.37

Cyclic

m/z 216 708 3.14 103 0.29
m/z 230 1387 6.14 106 0.30
m/z 244 741 3.28 7.6 0.02
m/z 258 15.9 0.07

Total area (k) 22580.7 35242.5

Total o~ 100 100

Average M.W 233.71 224.33
init1 b.wk3

144



Table 25

Molecular weight of LAB and percent of 2-phenyl isomer in LAB -

comparison of actual results and reported by the suppliers

Molecular Weight

Full Scan mode - using Molecular Weight lon's (m/z) area counts

145

Sample "A"

Sample "8"

Sample "C"

Sample "0"

Sample "E"

Sample "F"

Sample "G"

Sample "H"

Sample "I"

Sample "J"

Actual C.O.A. Difference
(Certificate of Analysis)

233.89 236.5 2.61

236.16 237.5 1.34

234.5'9 235.0 0.41

231.48 231.6 0.12

233.71 234.0 0.29

240.27 242.0 1.73

251.34 252.0 0.66

233.79 235.0 1.21

233.71 237.0 3.29

224.33 225.7 1.37

Total % 2-phenyl isomer

Full Scan mode - using Molecular Weight lon's (m/z) area counts

Sample "A"

. Sample "8"

Sample "en

Sample "0"

Sample "E"

Sample "F"

'Sample "G"

Sample "Hit

Sample "I"

Sample "J"

Actual C.O.A. Difference
(Certificate of Analysis)

28.9 28.6 -0.31

38.0 31.0 -7.00

21.1 17.8 -3.27

21.2 18.5 -2.70

20.2 17.0 -3.15

24.1 21.0 -3.07

17.3 13.0 -4.25

15.9 13.0 -2.85

31.8 29.0 -2.82

26.3 18.5 -7.80

impura.wk3
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. The same observations were published by Qtvos et al. l4
. They used GLC/MS method

and reported the average molecular weight for the analyzed commercial linear

alkylbenzene to be 2.5 lower. In 1988 Bravo et al. l
? in their studies compared GC and

Ge/MS methods and reported the difference of 2.00 amu lower in average molecular

weights using Ge/MS method. Another interesting observation was done by the same

authors that for the commercial alkylbenzenes obtained via HF route, an actual molecular

weight was higher when using GC/MS technique.

3. Influence o{LAB actual molecular weight on the calculation of the percent active

ingredient in LAS

The main parameter In the calculation of active ingredient content in linear

alkylbenzene sulphonic acid is the LAB molecular weight. Thus, the exact determination

of the linear alkylbenzenes average molecular weight is of major importance. The active

ingredient content of an anionic surfactant (LAS) titrated with a cationic is given by the

following formula:

where,

% A = C x MW x 100 %

A - activ~ ingredient,

C - constant related to the cationic concentration and volume consumed

during titration (laboratory data indicates that C~0.003),

MW - molecular weight of linear alkylbenzene sulphonic acid.

Taking both molecular weights, using GC and GC/MS techniques, the effect on the active

ingredient calculation is presented below:
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MW (GC method) = 237.00 (Table 25) + 80 (SO]) = 317.00

% A = 317.00 x 0.003 x 100 % = 95.10 %

MW (GC/MS method) = 233.71 (Table 25) + 80 (SO]) = 313.71

% A = 313.71 x 0.003 x100 % = 94.11 %

In view of these differences two conclusions were made. First, the actual active ingredient

content based on the GC/MS technique was substantially lower that the active ingredient

calculated using the GC technique. The second, a difference in active ingredient content up

to 0.99 % was observed in one of the analyzed linear alkylbenzene samples. An accurate

linear alkylbenzene molecular weight calculation using the GC/MS technique was found to

contribute greatly to a better understanding of differences observed in the sulphonation yield.

4. Semi-quantitative determination of branched alkvlbenzenes

In addition to. the initial part of this study, the use of an Internal Standard technique

allowed for the semi-quantitative results for non-linear alkylbenzenes. First of all, samples

from "B" to "J" were analyzed under a full scan mode. Since a standard blend of linear

alkylbenzenes was not available, sample "A" was used as a standard. Two internal standards,

1-phenyldecane and 1-phenyldodecane were used to calculate relative response factors, RRF,

for all non-linear alkylbenzenes. Since there were only two internal standards available, the

following assumptions were made; for all CI0 and CII non-linear alkylbenzenes, the 1­

phenyldecane's molecular ion at m/z 218 was used as a quantitative ion, and for all Cl2 , Cl3

and Cl4 non-linear alkylbenzenes, the 1-phenyldodecane's molecular ion at m/z 246 was used
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as a quantitative Ion and for all C12 , C13 and C14 nan-linear alkylbenzenes, the 1-

phenyldodecane's molecular Ion at m/z 246 was used as a quantitative Ion. The

summarized results for samples from "B" to "J" are presented in Table 26, 27, 28 and 29.

The highest concentration of the first class of impurities, branched alkylbenzenes was

observed in sample "G" at 81.32 mg/g whereas the lowest concentration was observed in

sample "B" at 18.10 mg/g.

5. Analysis of dialkyltetralins standard, using both full scan and single ion

monitoring modes

With the longer column, a higher percentage of the phenyl grqups in the bounding

phase, 20 % vs 5 %, and a much thicker bounding phase, a greater degree of separation

was achieved between non-linear alkylbenzenes and dialkyltetralins. Most peaks eluted

in the same order, except for all cis/trans isomers of 1,5- , 1,6- , 1,7- and 1,8­

dialkyltetralins which eluted after 2-phenyl alkylbenzene in comparison to just before 2­

phenyl isomer peak using SPB-20 column.

In this part of study a ·more sensitive Ge/MS data acquisition mode, a single ion

monitoring mode was used to analyze all samples from "A" to "J" for the second class

of impurities? dialkyltetralins. By monitoring ions of specific mass instead of the whole

spectrum, a hundred to a thousand-fold increase in sensitivity is usually attained. Before

any compound can be analyzed quantitatively, its mass spectrum must be examined for

the best mass peaks suitable for selective monitoring. The selected ions should be

abundant and characteristic for each analyzed compound. Dialkyltetralins mixture, a blend







Branched Alkylbenzenes (mg/g)

Internal Standard Techniaue (1
e

Sample "A" Sample "F" Sample "G" Sample "H" a
As a Standard --0

Isomer RT (min) Area (It)' uglul RRF RT (min) Area (k) mg/g RT (min) Area (It) mg/g RT (min) Area (k) mg/g §.
fJ'j

mlz 218 41.73 21.9 0.0056 0.62174 e
42.43 26.1 0.0067 0.61932 =43.14 23.5 0.0060 0.62268
44.97 28.0 0.0072 0.61827 0
45.23 30.1 0.0077 0.62148 45.51 15.6 0.59 ~47.59 131.0 0.0336 0.61984 47.77 49.9 1.73 47.32 22.7 0.86 47.86 136 5.17

=48.80 74.9 0.0192 0.62020
49.75 182.0 0.0466 0.62092 49.64 43.8 1.52 49.37 20.6 0.78 50.04 105 3.98 e
53.93 53.9 0.0138 0.62095 53.31 33.6 1.27 =mil 232 50.29 23.5 0.0060 0.62268 .!..,..
50.76 42.1 0.0108 0.61974 =51.13 82.6 0.0212 0.61943 51.36 36.3 1.38 = ~51.81 54.8 0.0140 0.62230 52.07 33.4 1.26 fJ'j

~52.87 81.7 0.0209 0.62148 .,..
53.14 42.5 0.0109 0.61989 = ~53.63 39.4 0.0101 0.62019 (JQ
55.00 56.8 0.0146 0.61851 55.32 42.8 1.49 55.33 - 50.7 1.93 0-
56.70 157.0 0.0402 0.62090 56.92 55.4 1.92 56.96 38.8 1.47 56.97 70.4 2.67 ~ '~58.55 139.0 0.0356 0.62075 60.41 141.0 4.88
60.18 303.0 0.0777 0.61997 60.45 73.8 2.79 60.41 153 5.81 .,.. r')65.11 42.9 0.0110 0.62003 = =-71.56 73.5 0.0188 0.62155 ft74.22 38.6 0.0099 0.61987 74.57 59.8 2.07 ~

80.17 89.6 0.0230 0.61934 80.49 103.0 3.57 a c..
;30.61934 64.00 16.0 0.61 "-"

mlz 246 60.71 62.8 0.0161 0.61446 60.42 71.8 2.51 60.96 100 3.82 60.45 63.9 2.45
at !. e:61.22 30.8 0.0079 0.61417 61.49 61.4 2.15 61.52 54.2 2.07 61.49 47.7 1.83 fJ'j

~ ~61.67 38.2 0.0098 0.61405 61.96 48.3 1.69 61.98 54.9 2.10 62.26 51.6 1.98 g62.05 31.6 0.0081 0.61359 62.26 61.9 2.17 62.28 56.9 2.17 ...... N
63.93 29.4 0.0075 0.61752 64.17 34.9 1.21 64.21 25.3 0.96 ~ QC
66.47 56.7 0.0145 0.61600 c..
66.82 63.6 0.0163 0.61466 66.85 142 4.97 66.84 90.2 3.44 66.81 93.2 3.57 a a68.34 63.6 0.0163 0.61466 68.64 106 3.71 68.64 59.2 2.26
69.05 41.0 0.0105 0.61512 69.37 51.3 1.79 ~
70.80 85.6 0.0219 0.61573 70.95 281 9.81 70.95 162 6.17 70.88 83.3 3.19 tt =71.35 60.1 0.0154 0.61478 ~
74.55 60.6 0.0155 0.61589 74.32 555 21.23 f") fJ'j

0.61589 60.94 97.1 3.39 60.47 70.4 2.68 60.92 76.6 2.93 =- .,..
0.61589 64.69 53.9 1.88 64.72 41.6 1.58 64.64 45.2 1.73 = =0.61589 65.05 23.4 0.82 67.14 67.4 2.57 65.30 44.7 1.71 .....
0.61589 65.32 59.9 2.09 69.39 29.1 1.11 67.10 62.1 2.38 .c fJ'j
0.61589 80.48 28.3 0.99 70.95 162 6.17 = amil 260 0.61589 69.84 64.7 2.46

~

0.61589 70.72 137 5.22 --0
0.61589 71.41 90.6 3.45 ......
0.61589 71.72 42.6 1.62 ~

0.61589 72.15 24.3 0.93

~0.61589 73.13 79.9 3.04
0.61589 74.63 70.5 2.68
0.61589 17.19 54.9 2.09 '-1'4

0.61589 77.43 79.1 3.01
0.61589 78.65 74.99 2.86

~
0.61589 79.17 46.7 1.78
0.61589 79.99 37.2 1.42
0.61589 81.41 118 4.49

mil 274 0.61589 94.81 21.3 0.81 ~c..
1.5 l·Phen (m/z 2181 61.09 3145 61.35 3752 61.38 3495 61.08 3168

~
1.5 l·Pheny (m/z 24 82.31 3174 82.64 4654 82.68 4105 82.29 3737

Total area (It) 33556.2 32597.2 27267.7 24937.3 I--l

Vl
Total (mg/g) 56.35 81.32 65.20 I--l

impurd.wk
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Qa
-0

Branched Alkylbenzenes (ug/g) ~-tf.J
Q

Internal Standard Technique =Q
~

Sample "A" Sample "I" Sample "J" =AI. Standard Q
Isomu RT (min) Aro. Ck) uglul RRF RT(mIn) Area Ik) mg/g RTCmJn) AruCk) mg/g =C I.....

tf.J .-mh204 0.62174 33.93 24.5 0.74 .- =0.61932 36.09 30.9 0.93 = tD0.62268 40.33 151 4.53 (JQ

~0.61827 53.43 26.2 0.79

~
0.62148 59.65 223 6.70

~

mlz218 41.73 21.9 0.0056 0.62174 41.96 40.7 1.22 .- 0-
42.43 26.1 0.0067 0.61932 42.69 - 25.6 0.77 = ~43.14 23.5 0.0060 0.62268 43.39 40.4 1.21 ft44.97 28.0 0.0072 0.61827 43.86 36.3 1.10 n45.23 30.1 0.0077 0.62148 44.67 24.7 0.74 a ="' ~47.5S 131.0 0.0336 0.61984 47.81 74.7 3.09 45.23 23.3 0.70

~
tD =48.80 14.9 0.0192 0.62020 49.03 31.8 1.56 45.49 39.4 1.19 Q., 0-49.75 . 182.0 0.0466 0.62092 • ,49.99 82.9 3.42 -'7.86 251 7.55 '-" .....

53.93 63.9 0.0138 0.62095 53.93 53.9 2.23 49.04 66.9 2.01 tf.J tD
0.62090 50.07 421 12.66 i ea. N0.92095 54.49 14.4 0.29

~ \0
mh232 60.29 23.5 0.0060 0.62268 Q.,a .....50.16 42.1 0.0108 0.61914

i51.13 82.6 0.0212 0.61943
51.81 64.8 0.0140 0.62230 51.37 27.7 1.14 .. a52.87 81.7 0.0209 0.62148 ;-53.14 42.5 0.0109 0.61989
63.63 39.4 0.0101 0.62019 53.03 26.4 1.09 n tD
55.00 66.8 0.0146 0.61851 65.23 21.1 0.87 55.28 26.7 0.81 ="' =56.10 157.0 0.0402 0.62090 56.93 44.2 1.82 56.87 35.4 1.06 = tD
58.55 139.0 0.0356 0.62076 68.82 52.3 2.16 .- tf.J
60.18 303.0 0.0777 0.61997 60.44 60.7 2.51 60.38 103 3.10 .c .-
65.11 42.9 0.0110 0;62003 C =71.66 73.5 0.0188 0.62155 tD·

tf.J74.22 38.6 0.0099 0.61987 a80.17 89.6 0.0230 0.61934 80.43 89.4 2.70

mlz248 60.71 62.8 0.0161 0.61446 -cs61.22 30.8 0.0079 0.61417 .....
61.67 38.2 0.0098 0.61405 tD
62.05 31.6 0.0081 0.61359

~
63.93 29.4 0.0075 0.61152
66.47 66.7 0.0146 0.61600
66.82 63.6 0.0163 0.61486 66.73 30.9 1.29 86.71 59.3 1.80

!68.34 63.6 0.0163 0.61466 68.59 58.4 2.35
69.05 41.0 0.0105 0.61612 69.32 31.9 1.33
70.80 85.6 0.0219 0.61573 70.83 72~2 2.19 Q.,
71.35 60.1 0.0164 0.61·ns 71.05 47.7 1.99
74.55 60.6 0.0155 0.81589

~
I.S l·Phen (rnJz 218) 61.09 3145 61.34 3422 60.31 3308
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of dialkyltetralins was synthesized by company #1 and a few drops of it were kindly

offered to me. Mass spectra for all compounds present in the dialkyltetralin blend were

acquired under a full scan mode (Figure 39 to Figure 51) and carefully examined for the

best suitable peaks. The following mass peaks were selected: M+' representing molecular

weight ion, (M - RI)+ ion representing RI loss from 1- or 4-position, and (M - R2)+ also

representing loss from 1- or 4-position but for R2. The same blend of dialkyltetralins

containing an internal standard, cis/trans-1,4,6,7-tetramethyltetralin was rerun under the

single ion monitoring mode (Figure 52 an~ 53). Relative response factors were calculated

and used for the final calculation of the dialkyltetralins.

6. Quantitative analysis of dialkyltetralins

All samples under investigation, sample from "A" to "J", were then analyzed under

the same instrumental conditions. Figures 54 to 67 correspond to sample "A" where the

top portion of each figure represent ,molecular weight ion chromatograms at m/z 216, 230,

244 and 258 corresponding to CIO' Cll' CI2 and C13 dialkyltetralin homologues. The

middle and the bottom portions of the same figures represent dialkyltetralin mass spectra.

Results were calculated (Table 30, 31, 32 and 33) using an internal standard technique

and m/z 173 ion (common fragmentation ion to the most dialkyltetralins) of cis/trans­

1,4, 6, 7~tetram ethyltetralin as a quantitation ion (Figure 68). All dialkyltetralins identified

in the standard blend, DAT, were found in the following samples: "A" and "B"

manufactured by company #1, and "I" and "1" manufactured by company #4. The

remaining analyzed samples contained most but not all of the dialkyltetralins. The highest
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Figure 5~ .

Ion ~hromatogramsof selected ions of dialkyltetralins standard, DAT,

using 81M mode
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Figure 53

Ion Chromatograms of selected ions of dialkyltetridins s~danl, ~AT,

using 81M mode - continued
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Dialkyltetralins - 81M mode
~

Internal Standard Techniaue <:>=f)
~

total-1,4,6,7-Tetramethyltetralin as an Internal Standard =
~OAT Std. OAT Std. Sample "A" Sample "B"

Total: 0.5 ug/ul <:>=Isomer m/z RT (min) Area (k) ug/ul RRF RT (min) Area (k) mg/g RT (min) Area (k) mg/g f'-l

<:>cis-3,3 173 61.98 100 0.00117 1.35364 61.97 255 0.42 61.98 19.4 0.04 ! ~

trans-3,3 173 62.79 105 0.00123 1.35254 62.78 216 0.36 62.79 14.8 0.03 Q.,
cis-2,4 159 63.02 270 0.00317 1.35194 63.07 788 1.31 63.02 48.3 0.10 ...,. ...,.
trans-2,4 159 63.66 239 0.00281 1.35855 63.72 624 1.03 63.66 47.2 0.10 = e:..

~ ~cis-l,5 145 64.02 1393 0.01635 1.35260 64.12 3845 6.37 64.05 217 0.45
8trans-1,5 145 64.18 1215 0.01426 1.35241 ·64.3 3361 5.57 64.23 162 0.34 .......

cis-3,4 173 71.41 469 0.00551 1.35222 71.52 783 1.30 71.46 50.5 0.10 e:.. ~
. trans-3,4 173 72.65 489 0.00574 1.35134 72.73 659 1.09 72.66 42.5 0.09 f'-l [ ~

cis-2,5 159 73.16 1189 0.01396 1.35269 73.24 1599 2.65 73.18 108 0.22 g ...,. ~trans-2,5 159 73.98 988 0.01160 1.35229 74.04 1329 2.20 73.97 87.4 0.18 =cis-1,6 145 74.63 5318 0.06242 1.35218 74.71 7344 12.17 74.63 429 0.89 Q., f'-l ~

trans-1,6 145 74.83 4699 0.05516 1.35213 74.94 6519 10.80 74.87 359 0.74 a ...,. t.H
cis-4,4 187 80.71 .191 0.00224 1.34992 80.77 446 0.74 80.74 29.8 0.06 = 0
cis-3,5 173 81.33 433 0.00508 1.35348 81.39 654 1.08 81.36 41.1 0.09 ~

f'-l

trans-4,4 187 82.36 318 0.00373 1.35090 82.41 338 0.56 82.39 23.5 0.05 n atrans-3,5 173 82.85 547 0.00642 1.35250 82.89 521 0.86 82.85 33.5 0.07 ~ -c
cis-2,6 159 83.61 1322 0.01552 1.35187 83.66 1254 2.08 ' 83.61 84.6 0.18 = ..........,. ~trans-2,6 159 84.49 1138 0.01336. 1.35247 84.53 1000 1.66 84.48 73.9 0.15 ..c
cis-1,7 145 85.21 7011 0.08230 1.35216 85.25 5220 8.65 85.21 316 0.66 = ~~trans-1,7 145 85.39 5890 0.06914 1.35231 85.45 4603 7.63 85.39 265 0.55
cis-4,5 187 90.29 92.5 0.00109 1.35550 90.28 101 0.17 90.29 16.6 0.03

!cis-3,6 173 91.36 288 0.00338 1.35699 91.34 162 0.27 91.36 21.3 0.04
trans-4,5 187 92.12 247 0.00290 1.35578 92.19 71.7 0.12 92.21 13.1 0.03 Q.,
trans-3,6 173 92.96 405 0.00475 1.35619 92.94 84.7 0.14 92.97 16.7 0.03

eacis-2,7 159 93.78 961 0.01128 1.35481 93.81 282 0.47 93.77 41.1 0.09
trans-2,7 159 94.71 758 0.00890 1.35582 94.73 207 0.34 94.7 35.5 0.07
cis-1,8 145 95.52 3548 0.04165 l.35514 95.54 929 1.54 95.51 142 0.29 =trans-1,8 145 95.66 2973 0.03490 1.35524 95.68 725 1.20 95.65 113 0.23 f'-l...,.

=Total area (k) 42596.5 ClQ

cis-1467-TMT 173 47.07 15615 47.07 13643 47.03 13446
trans-1467-TMT 173 47.29 15688 47.28 12306 47.24 12380
total 1467-TMT (I.S) 31303 25949 25826

Total OAT (mg/g) 72.76 5.91 1--1

00
W

impdmt1.wk3



Dialkyltetralins - SIM mode ~
Q

Internal Standard TechniQue =fI)
n'>

=total-l.4.6.7-Tetramethyltetralln as an Internal Standard

~.OAT Std. OAT Std. Sample "e" Sample "0" Sample "E"
Total: 0.5 ug/ul Q

Isomer mlz RT (min) Area (k) ug/ul RRF RT (min) Area (k) mg/g RT (min) Area (k) mg/g RT (min) Area (k) mg/g =c:Il

cis-3,3 173 61.98 100 0.00117 1.35364 62.04 36.7 0.09 62.06 64.4 0.19 62.05 37.7 0.08 Q
trans-3.3 173 62.79 105 0.00123 1.35254 62.83 32.3 0.08 62.85 72.8 0.21 62.84 32.9 0.07 ~

cis-2.4 159 63.02 270 0.00317 1.35194 63.06 56.4 0.14 63.09 109 0.32 63.06 60.3 0.12

!
Q..

trans-2.4 159 63.66 239 0.00281 1.35855 63.7 62.2 0.16 63.72 118 0.34 63.70 66.7 0.14
.....

cis-l.5 145 64.02 1393 0.01635 1.35260 64.08 137 0.34 64.11 241 0.71 64.08 112.0 0.23 e:-
trans-l ,5 145 64.18- 1215 0.01426 1.35241 64.25 122 0.31 64.28 242 0.71 64.26 123.0 0.25 ..... Qcis-3,4 173 71.41 469 0.00551 1.35222 71.5 27.2 0.07 71.51 23 0.07 71.49 27.1 0.06 =tt ......
trans-3.4 173 72.65 489 0.00574 1.35134 72.7 28.2 0.07 72.71 32.1 0.09 72.69 28.9 0.06 ttcis-2.5 159 73.16 1189 0.01396 1.35269 73.21 55.8 0.14 73.23 63.6 0.19 73.21 51.4 0.11 atrans-2.5 159 73.98 988 0.01160 1.35229 74.02 63.1 0.16 74.04 67.7 0.20 74.02 51.7 0.11 e:.. [cls-l.6 145 74.63 5318 0.06242 1.35218 74.67 163 0.41 74.69 187 0.55 74.67 140.0 0.29
trans-l ,6 145 74.83 4699 0.05516 1.35213 74.89 187 0.47 74.9 216 0.63 74.88 163.0 0.33 c:Il

..... ~
cis-4.4 187 80.71 191 0.00224 1.34992 80.74 18.3 0.05 80.76 16.8 0.05 80.75 13.9 0.03 i = ~c:Ilcis-3,5 173 81.33 433 0.00508 1.35348 81.36 26.4 0.07 81.38 23.3 0.07 81.37 19.4 0.04 ..... ......
trans-4.4 187 82.36 318 0.00373 1.35090 82.39 24.9 0.06 82.41 20.9 0.06 82.88 21.4 0.04 c.. = ~
trans-3,5 173 82.85 547 0.00642 1.35250 82.87 30.3 0.08 82.88 25.4 0.07 82.39 17.6 0.04 a ~cis-2,6 159 83.61 1322 0.01552 1.35187 83.63 48.6 0.12 83.64 44.6 0.13 83.64 34.1. 0.07 c:Il

trans-2,6 159 84.49 1138 0.01336 1.35247 84.51 58.7 0.15 84.52 49.2 0.14 84.51 40.9 0.08 e .....
cis-l,7 145 85.21 7011 0.08230 1.35216 85.23 122 0.31 85.23 108 0.32 85.23 85.1 0.17 tttrans-l,7 145 85.39 5890 0.06914 1.35231 115.41 162 0.41 85.41 140 0.41 85.39 112.0 0.23 -c
cis-4.5 187 90.29 92.5 0.00109 1.35550 fI) ......

=-- ~
cls-3,6 173 91.36 288 0.00338 1.35699 =trans-4.5 187 92.12 247 .0.00290 1.35578 .....

~trans-3.6 173 92.96 405 0.00475 1.35619 ' ..c
cis-2,7 159 93.78 961 0.01128 1.35481 = VI"

trans-2.7 159 94.71 758 0.00890 1.35582 n'>
cis-l.S 145 95.52 3548 0.04165 1.35514 95.66 11.6 0.03 dtrans-l.S 145 95.66 2973 0.03490 1.35524 95.67 15.9 0.04

Total area (k) 42596.5 !
cis-1467-TMT 173 47.07 15615 47.07 13515 47.11 12698 47.09 14622.0 c..
trans-1467-TMT 173 47.29 15688 47.29 12721 47.32 11055 47.31 13202.0

~
total 1467-TMT (1.5) 31303 26236 23753 27824

Total OAT (mg/g) 3.75 5.48 2.53 =c:Il
impdmt2.wk3

.....
=(JQ

~

00
+::ao.



Dialkyltetralins - SIM mode ~
<:>

Internal Standard Techniaue =r')
~

=. total-l,4,6,7-Tetramethyltetralin as an Internal Standard

~.OAT Std. OAT Std. Sample "F" Sample "G" Sample "H"
Total:·0.5 ug/ul <:>

=Isomer m/z RT (min) Area (k) ug/ul RRF RT(min) Area (k) mg/g RT (min) Area (k) mg/g RT(min) Area (k) mg/g f'-l

"cis-3.3 173 61.98 100 0.00116 1.34766 61.98 107 0.24 62.01 144 0.29 c:>
trans-3.3 173 62.79 105 0.00122 1.34545 62.78 138 0.31 62.79 204 0.41 ~
cis-2,4 159 63.02 273 0.00317 1.34630 63.01 196 0.45 62.99 10.6 0.03 63.03 256 0.51 Q.,trans-2,4 159 63.66 241 0.00280 1.34554 63.65 242 0.55 63.65 18.2 0.04 63.67 294 0.59 !5 ....
cis-l.5 145 64.02 1341 0.01556 1.34728 64.03 372 0.85 64.01 22.7 0.06 64.05 572 1.14 a
trans-l.5 145 64.18 1217 0.01412 1.34739 64.2 472 1.07 64.16 20.3 0.05 64.22 708 1.41 .... Qcis-3,4 173 71.42 101 0.00117 1.34950 71.5 216 0.49 71.45 66.8 0.16 71.47 145 0.29 =trans-3,4 173 72.65 501 0.00581 1.34803 72.68 287 0.65 72.65 81.7 0.20 72.67 151 0.30 ft ......
cis-2,5 159 73.17 1189 0.01379 1.34789 73.19 328 0.75 73.17 82.0 0.20 73.18 175 0.35 a ft
trans-2.5 159 73.98 993 0.01152 1.34752 73.99 467 1.06 73.98 101.0 0.25 73.99 201 0.40 [cis-l.6 145 74.63 6169 0.07156 1.34766 74.66 783 • 1.78 74.63 115.0 0.28 74.63 269 0.54 attrans-l,G 145 74.74 4685 0.05434 1.34781 74.88 910 2.07 74.84 141.0 0.34 74.84 309 0.62 .... ~cis-4,4 187 80.71 201 0.00233 1.34858 80.72 178 0.40 80.75 20.4 0.05 f'-l =i =cis-3.5 173 81.33 449 0.00521 1.34724 81.35 258 0.59 81.38 22.2 0.05 f'-l e:trans-4,4 187 82.37 318 0.00369 1.34722 82.37 266 0.61 82.38 25.4 0.06 ....
trans-3.5 173 82.85 553 0.00641 1.34867 82.85 346 0.79 82.86 26.7 0.06 Q. = ~
cis-2.6 159 83.61 1333 0.01546 1.34790 83.61 372 0.85 83.61 35.4 0.09 a f'-l (.Htrans-2.6 159 84.49 1148 0.01332 1.34733 84.49 523 1.19 84.48 46.6 0.11

a ~cis-l,7 145 85.21 6837 0.07931 1.34764 85.19 717 1.63 85.21 84.2 0.20
trans-l,7 145 85.39 5958 0.06911 1.34771 85.38 951 2.16 85.39 118.0 0.29

~cis-4.5 187 90.29 92.G 0.00107 1.35290 90.31 14.6 0.04 ~
cis-3.G 173 91.35 311 0.00361 1.34676 91.36 19.4 0.05 r') ......

=- ~trans-4,5 187 92.20 261 0.00303 1.34659 92.19 18.7 0.05

=trans-3.6 173 92.95 422 0.00490 1.34634 92.95 18.3 0.04 .,...
~cis-2,7 159 93.77 982 0.01139 1.34780 93.77 34.3 0.08 ..ctrans-2,7 159 94.70 794 0.00921 1.34772 94.69 43.6 0.11 = ~4

cis-l,S 145 95.51 3541 0.04107 1.34784 95.49 98.8 0.24 ~
trans-l,S 145 95.65 2989 . 0.03467 1.34775 95.65 112.0 0.27

~Total area (k) 43104.6

cis-1467-TMT 173 47.06 15998 47.03 13422 47.00 12285 47.05 14686 !trans-1467-TMT 173 47.28 15986 47.24 12865 47.22 12771 47.27 13056 Q.,total 1467-TMT U.S) 31984 26287 25056 27742

Total OAT (mg/g) 18.51 3.39 6.84 =3
impdmt4. wk3 =f'-l....

=(JQ
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00
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Dialkyltetralins - SIM mode

Internal Standard Technique

total-1 ,4,6,7-Tetramethyltetralin as an Internal ,Standard

OAT Std. OAT Std. Sample "I" Sample "J" ~
Q

Total: 0.5 ug/ul =f)
Isomer mlz RT (min) Area (k) ug/ul RRF RT (min) Area (k) mg/g RT (min) Area (k) mg/g ~

=cis-3.3 173 62.09 84.1 0.00112 1.38772 92.08 253 0.64 62.07 33.4 0.06
~trans-3,3 173 62.91 86.1 0.00115 1.38365 62.89 213 0.54 62.86 48.1 0.09

cis-2,4 159 63.13 23? 0.00313 1.38754 63.12 614 1.54 63.11 39.5 0.07 Q

trans-2,4 159 63.77 207 0.00276 1.38607 63.76 614 1.54 63.75 61.9 0.12 =fJ'}

cis-1,5 145 64.14 1198 0.01596 1.38722 64.15 3441 8.65 64.12 194 0.36
~

0trans-1,5 145 64.29 1075 0.01433 1.38639 64.33 2939 7.39 64.29 210 0.39 ~
cis-3,4 173 71.53 403 0.ooS37 1.38693 71.56 737 1.85 71.54 -- 11.3 0.02 .... Q.
trans-3,4 173 72.77 422 0.00562 1.38771 72.77 623 1.56 72.75 17.8 0.03 = .....
cis ..2,5 159 73.29 ·1032 0.01375 1.38707 73.28 1520 3.82 73.25 37.1 0.07 ~ at
trans-2,5 159 74.09 855 0.01139 1.38728 74.09 1259 3.16 74.08 36.8 0.07 a ~
cis-1,G 145 74.14 4666 0.06218 1.38681 74.76 7394 18.58 74.72 108 0.20 !.. ....

fttrans-i,G 145 74.95 4147 0.05526 1.38690 74.97 6671 16.77 74.93 115 0.21 en [ ;3cis-4,4 187 80.83 161 ,0.00215 1.38392 80.82 370 0.93 80.81 i3.~ 0.02 gcis-3,5 173 81.45 376 0.00501 1.38699 81.44 553 1.39 81.44 18.5 I 0.03 ..... e:
trans-4,4 187 82.48 280.. 0.00373 '1.38730 82.47 291 0.73 82.45 15.9 0.03 Q. = ~

trans-3,5 173 82.97 473 0.00630 1.38753 82.94 448 1.13 83.62 21.1 0.04 a fJ'}
~..... ~cis-2,6 159 83.73 1150 0.01533 1.38637 83.71 1046 2.63 83.7 38.6 0.07 =trans-2,6 159 84.61 989 0.01318 1.38677 84.58 855 2.15 84.58 43.3 0.08 ~ fJ'}

cis-i,7 145 85.32 6116 ' 0.08150 1.38686 85.31 4737 11.91 85.29 87.9 0.16 t") atrans-1,7 145 85.51 5382 0.07172 1.38684 85.49 4225 10.62 85.48 109 0.20 =-
cis-4,5 187 90.41 72.4 0.00096 1.39377 90.38 90.2 0.23 90.55 11.6 0.02 = ~....

..c ....
cis-3,6 173 91.49 253 0.00337 1.38744 91.45 143 0.36 91.44 12 0.02 C

~

trans-4,5 187 92.32 208 0.00277 1.38773 92.29 68.4 0.17 92.29 10.8 0.02 ~ ~trans-3,6 173 93.07 349 0.00465 1.38706 93.05 92.5 0.23 93.05 12.5 0.02
cis-2,7 159 93.89 839 0.01118 1..'38689 93.86 218 0.55 93.86 18 0.03 !trans-2,7 159 94.82 661 0.00881 1.38659 94.78 179 0.45 94.79 21.5 0.04 c..
cis-1,8 145 95.64 3176 0.04232 1.38694 95.6 906 2.28 95.6 109 0.20 c.;trans-1.8 145 95.36 2624 0.03497 1.38673 95.74 802 2.02 95.74 49.4 0.09

Total area (k) 37519.6 =fJ'}.....
cis-1467..TMT 173 47.15 13261 47.11 12825 47.16 12578 =CIQ
trans-1467-TMT 173 47.37 13794 47.34 12342 47.37 11230
total 1467..TMT (1.5) 27055 25167 23808

Total OAT (mg/g) 103.80 2.81

Impdmt3.wk3
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concentration of a total dialkyltetralins was found in the sample "I" at 103.80 mg/g (10.38

%), followed by sample "A" at 72.76 mg/g (7.28 %). The lowest concentration of the

same class of impurities was found in the sample "E" manufactured by company #2, at

2.53 mg/g (0.25 %).

As mentioned earlier, no published study was carried out with the actual standard,

dialkyltetralins blend, DAT, and with an internal standard, cis/trans-1,4,6,7­

tetramethyltetralin, chemically si.milar to the compounds under investigation.

In 1991, Unilever was asked to take part in a round-robin test of a tentative

method for determination of dialkyltetralins in linear alkylbenzenes. Results of the test

were never published due to method's sensitivity and precision problems. A tentative

result for a total concentration of dialkyltetralins (65283 ppm) present in one of the

analyzed commercial LABs became available via personal communication.

The method that was developed ,as a r~sult of this. study proved to 'be not only

sensitive but also precise. The summarized qualitative results, in % (rng/g for IS

technique), for dialkyltetralins in all ten analyzed samples are presented below:

Sample %

(by total weight of sample)

0/0 (mg/g)

(by IS technique)

"A" 9.43 7.28 (72.76)

"B" 0.16 0.59 (5.92)

"C" 0.11 0.38 (3.75)

"D" 0.32 0.55 (5.48)
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"E" 0.06 0.25 (2.53)

"F" 2.79 1.85 (18.51)

"G" 0.53 0.34 (3.39)

"H" 1.20 0.69 (6.85)

"I" 12.63 10.38 (103.80)

"J". 0.61 0.28 (2.84)

For samples containing high concentration of dialkyltetralins, calculated results using an

internal standard technique were found to be lower of about ---2 %. The difference

represents some other impurities present as traces in industrially produced linear

alkylbenzenes. Identification and quantitation of them was beyond the scope of this

study. However, some of them representing the following class of compounds:

diphenylalkanes, alkylnaphthalenes, non-linear dialkyltetralins and dialkylindanes, were

identified and their mass spectra are presented in the appendix. The detailed structure

elucidation and quantitation of them will take place in the near future.

6. Summary of the identified impurities in commercial linear alkvlbenzenes

The summary of the total concentration of impurities present in analyzed

commercial linear alkylbenzene samples are presented in Table 34. The highest

concentration was observed in sample "I" at 13.07 % (130.66 fig/g). The similarily high

level of impurities would be observed for sample "A" if it hadn't been used as 'a standard.

The lowest concentration of the total impurities was found 'in sample "B" produced by

company #1 at 2.40 % (24.02 mg/g).



T9tallmpurities in Commercial Linear Alkylbenzenes (mg/g)
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As mentioned in the experimental paragraph, five consecutive time windows (descriptors)

were set in the SIM mode to monitor selected ions for all dialkyltetralins and the internal

standard. In addition, each time window was set to monitor other possible impurities such

as dialkylindanes, diphenylalkanes and alkylnaphthalenes. Selected mass apectra of these

compounds are presented in the appendix.

IV. Linearity studies

1. Accuracy and precision in the method used (or determination of dialkyltetralins

There are two basic indicators of measurement quality: precision and accuracy.

Generally, the accuracy of an analytical method is a degree of agreement of the test

results generated by the method to the true value. The true value for accuracy assessment

can be obtained in two ways. They can be compared with results of an established

reference material or the sample itself is spiked with a known concentration of reference

material. Since for this study a reference material was not available, the provision of

accurate results was by the use of internal standard. The use of internal standard,

chemically similar to the analytes, assumes that both the internal standard and analyte are

affected to the same extent by the analysis conditions. For this work, three internal

standards were used.

Precision of a method is the degree of agreement among individual test results

when the procedure is applied repeatedly to multiple samplings. For this study, precision

was measured by injecting a series of standards, DAT standards at five different

concentrations: at 50, 100, 250, 500 and 1000 ng/ul (Table 35). Relative standarq
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deviation for all linear dialkyltetralin isomers using cis/trans-l ,4,6,7-tetramethyltetralin

was around 10 %, namely between 7.6 % and 13.5 %. At the time of the accuracy and

precision study, a second internal standard, cis/trans-l ,4-dimethyltetralin became available.

Using latter internal standard, relative standard deviations for all dia/ky/tetra/in isomers

except one, cis-l,4-dipropyltetralin, were calculated to be lower, at 6 % to 7 % (Table

36). Percent relative standard deviation at such low levels confirms a good accuracy and

precision of analytical method used in this study, a GC/MS technique.

2. Linearity study of dialkyltetralins standard. DAT

The linearity of the detector response (GC/MS system) measured in the analytical

method used in this study was directly proportional to' the concentrations of analytes in

sample within a given range. The response should be linearly related to the

concentrations of standards.

Generally, linearity is determined by a series of injections of standards at about

five different concentrations that span 50 - 150 % of the expected working range assay.

A linear regression equation applied to the results should have an intercept not

significantly different from zero.

DAT standard was prepared at five different concentration: at 50, 100, 250, 500,

and 1000 ng/ul.. Tabulated r~sults are presented in Table 36. Th~ response for each

dialkyltetralin isomers was linear, as can be seen in Figure 69, 70, 71, 72, 73, 74 and

75.



linea~ Range using 1,4-DMT as an Internal Standard @ 50 ng/ul

Total conca 50 ngl 100 ngl 250 ngl 500 ngl 1000 ngl 50 ng/ul 100 ngl 250 ngl 500 ngl 1000 ng/ul

Compound Area (k) Area (k) Area (k) Area (k) Area (k) RF RF RF RF RF Average STD RSD (%) ~......=~
cis-3,3 20.1 57.8 214.5 413.4 871.2 0.0047 0.0052 0.0064 0.0061 0.0062 0.0057 0.0006 10.4 r') ~......
trans-3,3 20.3 48.8 177.5 350.9 757.6 0.0047 0.0044 0.0053 0.0052 0.0054 0.0050 '0.0003 6.7 fJ'J

~
..........

cis-2,4 66.6 157.1 554.2 1102 2277 0.0154 0.0141 0.0164 0.0162 0.0161 0.0157 0.0008 4.8 ~trans-2,4 55.2 137.4 481.3 965.6 2033 0.0128 0.0124 0.0143 0.0142 0.0144 0.0136 0.0008 5.7
CIQ

fJ'J ~

cis-1,5 122.2 293.7 1089 2094 4502 0.0283 0.0264 0.0323 0.0307 0.0318 0.0299 0.0020 6.8
I

~1-6

trans-1,5 101 278.9 955 2013 4103 0.0234 0.0251 0.0283 0.0296 0.0290 0.0271 0.0022 8.1 ~
..,

I ......
cis-3,4 157.4 385.7 1392 2814 5805 0.0365 0.0347 0.0413 0.0413 0.0411 0.0390 0.0026 6.6 e., ............ =trans-3,4 185.9 460.1 1670 3420 7010 0.0431 0.0414 0.0496 0.0502 0.0496 0.0468 0.0034 7.3 a tt>

cis-2,5 285 646 2187 4426 8927 0.0661 0.0581 0.0649 0.0650 0.0631 0.0635 0.0026 4.1 ~ ~
trans-2,5 202.9 499.2 1774 3677 7458 0.0471 0.0449 0.0526 0.0540 0.0528 0.0503 0.0033 6.5 er- e.,

~ ............ &l-cis-1,6 417.7 1030 3748 7897 15775 0.0969 0.0927 0.1112 0.1159 0.1116 0.1057 0.0083 7.9 ft ~

trans-' ,6 402.3 999.4 3567 7222 14721 0.0933 0.0899 0.1059 0.1060 0.1041 0.0999 0.006~ 6.3 [ ~ e:......
cis-4,4 56 141.5 492.9 1032 2120 0.0130 0.0127 0.0146 0.0152 0.0150 0.0141 0.0009 6.7 ...... ft ~ .

cis-3,5 163.2 396.7 1442 3017 6120 0.0379 0.0357 0.0428 0.0443 0.0433 0.0408 0.0031 7.6 = [ tH

trans-4,4 85.6 210 750.9 1573 3190 0.0199 0.0189 0.0223 0.0231 0.0226 0.0213 0.0015 7.1 ~ 0\......
trans-3,5 193.6 476.7 1727 3606 7270 0.0449 0.0429' 0.0513 0.0529 0.05"4 0.0487 0.0037 7.5 ~

~
cis-2,6 252.4 629.3 2269 4755 9563 0.0585 0.0566 0.0673 0.0698 0.0676 0.0640 0.0049 7.6 ~......

~
trans-2,6 215.8 540 1929 4048 8183 0.0501 0.0486 0.0572 0.0594 0.0579 0.0546 0.0040 7.4 =ft >
cis-1,7 526.2 1339 4796 . 9987 ,20254 Q.1221 0.1205 0.1423 0.1466 0.1433 0.1350 0.0103 7.6 8 ~

trans-1,7 492.1 1284 4561 9441 18864 0.11410.11550.1354 0.1386 0.1334 0.1274 0.0095 7.5 &l- fJ'J

cis-4,5 38.7 93.3 334.6 698.1 1434 0.0090 0.0084 0.0099 0.0102 0.0101 0.0095 0.0007 7.0 fJ'J i
cis-3 ,6 108.7 268.2 932.6 1963 3974 0.0252 0.0241 0.0277 0.0288 0.0281 0.0268 0.0016 6.1 i e.,

trans-4,5 126.6 312.8 1095 2294 4671 0.0294 0.0281 0.0325 0.0337 0.0330 0.0313 0.0020 6.4 e., a
trans-3,6 135.9 331.8 1166 2446 4935 0.0315 0.0299 0.0346 0.0359 0.0349 0.0334 0.0021 6.3 a '-"

cis-2,7 195 457.9 1618 3377 6806 0.0452 0.0412 0.0480 0.0496 0.0481 0.0464 0.0027 5.8 =fJ'J......
trans-2,7 142.1 357.2 1242 2596 5239 0.0330 0.0321 0.0369 0.0381 0.0371 0.0354 0.0022 6.2 =CIQ
cis-1,'8 259 686.2 2440 4757 10332 0.0601 0.0617 0.0724 0.0698 0.0731 0.0674 0.0050 7.4
trans-1,8 259 607.8 2100 4758 8712 0.0601 0.0547 0.0623 0.0699 0.0616 0.0617 0.0044 7.2

c/t-1,4-DM 4311 5557 6739 6811 7069
c/t-1467-T 59979 75538 86738 87607 89128 ~ '(- LINEAR1B.WK3

.....,a

\0
~



Figure 69

DAT standanl - linear range for cis and trans l-ethyl-4-pentyltetraIin

and I-methyl-4-hexyltetraIin
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Figure 70

DAT standanl - linear ~ge for cis and trans I-methyl-4-pentyltetralin

and I-propyl-4-l;lutyltetralin
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Figure 72

DAT standanl - linear range for cis and trans 1,4-dibutyltetraIin

and l-ethyl-4-pentyltetraIin
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Figure 73

DAT standanl - linear range for cis and trans l-ethyl-4-hexyltetralin

and I-methyl-4-heptyltetralin
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Figure 74

DAT standard .. linear range for cis and trans 1..butyl..4..pentyltetraIin

.and 1..propyl..4..~exyltetraIin
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Figure 75

DAT standard - linear range for cis and trans l-ethyI-4-heptyltetralin

and I-methyI-4-octyltetralin
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3. Linearity study of dialkyltetralin isomers present in commercial linear

alkylbenzenes, in sample '~ "

The same exercise was done for dialkyltetralin isomers present in commercial

linear alkylbenzenes, sample "A". Five samples at different concentration of

dialkyltetralins were prepared and analyzed using single ion monitoring data acquisition

mode. Again, precision 'and accuracy for this method was very good, percent relative

deviations were calculated and are presented in Table 37. The response for each

dialkyltetralin isomer was observed to be linear and is presented in Figure from 76 to 82.

4. Determination of precision and accuracy of the manual injections

The percent of relative standard deviations for the retention times of all linear

alkylbenzenes were calculated to determine precision and accuracy of the manual

injections for all ten analyzed samples (Table 38). Results in Table 38 confirmed a very

good accuracy and precision of the manual injection technique with the percent standard

deviation as low as 0.17 %. For the dialkyltetralins present in analyzed sample "A", a

ten-fold lower (Table 39) percent relative standard deviations were observed for their

retention times. Thus in each chromatogram of the analyzed commercial linear

alkylbenzenes, all major peaks representing linear alkylbenzenes and mInor peaks

representing dialkyltetralins were identified with an excellent accuracy.



~....
=fI>
~

Linear Range for Dialkyltetralin isomers using total cis- and trans-1 ,4,6,7-DMT as an Internal Standard @ 5 ng/ul

~
Sample "A"- {JQ

fI>

OAT Std. OAT Std.
Ft

~
Total 0.5 ugl Isomer 0.0137 0.0286 0.0447 0.0601 0.0137 0.0286 0.0447 0.0601 9

..,
Isomer ml RT Area (k) ug/ul Area (k) Area (k) Area (k) Area (k) ug/g ug/g ug/g ug/g Average STO RSD (%) i e:

ea.
cis-3,3 173 * * ** * 21.6 0.00109 21.3 42.1 64.3 84.4 0.38 0.33 0.35 0.32 0.35 0.0243 7.0

~trans-~,3 173 ***** 22.3 0.00112 18.5 31.3 44.9 59.9 0.33 0.24 0.24 0.23 0.26 0.0417 15.9 9- ..
cis-2,4 159 ***** 68.4 0.00345 60.3 128 189 252 1.09 0.99 1.02 0.97 1.02 0.0450 4.4 t< ~..trans-2,4 159 ***** 61.2 0.00309 80.6 189 293 397 1.45 1.46 . 1.58 1.53 1.51 0.0518 3.4 ;- [cis-l,5 145 * * * * * 365 0.01841 309 756 1231 1853 5.58 5.84 6.64 7.13 6.30 0.6207 9.9 [trans-l,5 145 * * * * * 323 0.01629 286 656 982 1429 5.16 5.07 5.30 5.50 5.26 0.1624 3.1

....
=cis-3,4 173 ***** 90.2 0.00455 44.9 98.1 145 191 0.81 0.76 0.78 0.74 0.77 0.0280 3.6 .... ....

trans-3,4 173 * * * * * 96.1 0.00485 40.8 84.7 124 161 0.74 0.65 0.67 0.62 0.67 0.0424 6.3 = f'-I

~ =cis-2,5 159 ***** 268 0.01352 111 244 359 465 2.00 1.88 1.94 1.79 1.90 0.0780 4.1 53trans-2,5 159 ***** 225 0.01135 102 196 287 366 1.84 1.51 1.55 1.41 1.58 0.1603 10.2
~

fI>
cis-l,6 145 * * * * * 1347 0.06794 544 1264 1917 2546 9.82 9.76 10.34 9.80 9.93 0.2368 2.4 ~ ~trans-l,6 145 ***** 1164 0.05871 497 1161 1720 2263 8.97 8.97 9.28 8.71 8.98 0.2007 2.2 ....

~ ~=cis-4,4 187 ***** 57.4 0.00290 24.8 50.1 71.1 89.1 0.45 0.39 0.38 0.34 0.39 0.0374 I 6.4
~ ; ......

cis-3,5 173 ***** 78.2 0.00394 36.3 75.1 108 136 0.66 0.58 0.58 0.52 0.59 0.0467 8.6 3 f'-I fI>

trans-4,4 187 ***** 64.2 0.00324 32.4 71.8 102 128 0.58 0.55 0.55 0.49 0.55 0.0333 6.1 fI>
~=trans-3,5 173 * * * ** 94.2 0.00475 24.9 59.6 79.7 99 0.45 0.46 0.43 0.38 0.43 0.0304 7.1 ea. fII1'- ....-J

cis-2,6 159 ***** 279 0.01407 76.9 168 242 302 1.39 1.30 1.31 1.16 1.29 0.0808 6.3 f'-I ....
i =trans-2,6 159 ***** 244 0.01231 . 67.7 157 226 280 1.22 1.21 1.22 1.08 1.18 0.0608 5.1 f'-I

cis-l,7 145 * ** * * 1683 0.08489 367 832 1201 1522 6.62 6.43 6.48 5.86 6.35 0.2911 4.6 Q. etrans-l,7 145 *****. 1434 0.07233 311 714 1074. 1312 5.61 5.52 5.79 5.05 5.49 0.2743 5.0 acis-4,5 187 ***** 16.1 0.00081 8.1 14~9 20.3 24.1 0.15 0.12 0.11 0.09 0.12 0.0193 16.7 ~......
cis-3,6 173 ***** 50.2 0.00253 11.7 22.9 32.2 38.7 0.21 0.18 0.17 0.15 0.18 0.0221 12.5 .... fI>

trans-4,5 187 ***** 44.7 0.00225 5.4 11.9 15.7 17.1 0.10 0.09 0.08 0.07 0.08 0.0120 14.1 = ~trans-3,6 173 * * ** * 69.3 0.00350 7.3 13.1 18.7 21.4 0.13 . 0.10 0.10 '0.08 0.10 0.0177 17.0 r..n.
cis-2,7 159 ***** 189 0.00953 18.2 37.5 56 65.1 0.33 0.29 0.30 0.25 0.29 0.0281 9.6 ~ =trans-2,7 159 ***** 153 0.00772 13.3 26.8 36.8 43.5 0.24 0.21 0.20 0.17 0.20 0.0259 12.7 f'-I
cis/trans-l,8 145 ** * * * 1405 0.07087 109 234 324 376 1.97 1.81 1.75 1.45 1.74 0.1884 10.8 e ....=Total area 9913.1 = (JQ

Q.
t")fI> ....

cis-1467-TMT 173 * * * * * 46.4 42.9 40.6 36.9 36.2 f'-I
tr-1467-TMT 173 46.9 53.2 58.7 73.1 67.3 72.4 itotal 1467-T 173 99.6 101.6 113.7 104.2 108.6 DATLAB2.WK3
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Figure 76

Sample "A" ~ linear range 'for ~is and trans 1,4-.dipropyltetraIin

and l-ethyl-4-butyltetraIin
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Figure 77

Sample "A" - linear range for cis and trans I-propyl-4-butyltetraIin

and I-methyl-4-pentyltetraIin
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Figure 78

Sample "1\" - linear range for cis and trans l-ethyl-4-pentyltetraIin

and I-methyl-4-hexyltetraIin
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Sample "A"
r.J).

Dialkyltetralin Isomers a--c......
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Figure 80

Sample "A" - linear range for cis and trans l-ethyl-4-~exyltetraIin

and I-methyl-4-heptyltetraIin
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Figure 81

Sample "A" - linear range for cis and trans I-butyl-4-pentyltetralin

and I-propyl-4-hexyltetralin
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Figure 82

Sample t~ tt - linear range ~or cis and trans l-ethyl-4-heptyltetraIin

and I-methyl-4-octyltetraIin
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~;
Sample "B" Sample "C" Sample "0" Sample "E" Sample "F" Sample "G" Sample "H" Sample "I" 'Sample "J" Average STO RSTO (%) t")•.

Isomer RT(min} RT(min) RT(min} RT(min) RT(min) RT(min) RT(min) RT(min) RT(min) RT(min) f;'.J..
<:>

m/z 204 =5-Phenyl 37.59 37.59 0 0
~4-Phenyl . 38.02 . ,38.02 0 0

3-Phenyl 39.75 39.75 0 a Q.
2-Phenyl 43.27 43.27 0 a ~

flI)

=mlz 218 ~5-Phenyl 46.48 46.33 46.31 46.26 46.49 46.51 46.53 46.47 46.63 46.45 0.113 0.24
4-Phenyl 47.34 47.17 47.16 47.11 47.33 47.32 47.37 47.32 47.48 47.29 0.112 0.24 ~

3-Phenyl 49.39 49.21 49.17 49.14 49.37 49.37 49.41 49.38 49.50 49.33 0.116 0.23 <:>
~

2-Phenyl 53.38 53.15 53.12. 53.08 53.32 53.32 53.35 53.37 53.44 53.28 0.122 0.23
etc

<:> ~

m/z 232 - ~ er.tJ
6-Phenyl 55.77 55.63 55.56 55.57 55.79 55.79 55.82 55.76 55.76 55.72 - 0.095 0.17 a ~5:Phenyl 56.30 56.17 56.12 56.12 56.31 56.59 56.34 56.28 56.28 56.28 0.135 0.24

=4-Phenyl 57.39 57.23 57.19 57.18 57.38 57.36 57.43 57.38 57.35 57.32 0.089 0.16 --= e?......
3-Phenyl 59.73 59.54 59.49 59.48 59.71 59.69 59.74 59.71 59.67 59.64 0.100 0.17 n>

63.62 63.88 63.84 63.88 63.95 63.80 63.81 0.124 0.19
..

2-Phenyl 63.97 63.68 63.64

~
.=

~
CiiioIII.
n>

: flI)

m/z 246 = ct. n>
65.9 65.88 65.84 65.72 65.73 65.71 0.140 0.21 r.tJ c:>

6-Phenyl 65.74 65.59 65.51 65.51 .. = ~

5-Phenyl 66.38 66.22 66.14 66.15 66.55 66.53 66.49 66.36 66.36 66.35 0.147 0.22 = I
QC)

(J'Q
4·Phenyl 67.65 67.48 67.41 67.4 67.8 67.78 67.72 67.63 67.62 67.61 0.141 0.21 ;3-Phenyl 70.13 69.93 69.85 69.85 70.27 70.23 70.14 70.11 70.07 70.06 0.146 0.21 a2-Phenyl 74.46 74.17 74.09 74.09 74.58 74.47 74.32 74.43 74.32 74.33 0.167 0.22 ;-...... =r.tJ ct.flI)

! c:>
m/z 260 =
7/6-Phenyl 75.73 75.47 75.38 75.38 75.75 75.97 75.68 75.68 75.73 75.64 0.184 0.24 1:1';.
5-Phenyl 76.51 76.23 76.18 76.56 76.75 76.44 76.47 76.52 '67.96 0.309 0.46 e
4-Phenyl 77.88 77.61 77.54 77.91 78.08 77.86 77.86 60.53 0.360 0.60 n>
3-Phenyl 80.47 80.2 80.51 80.63 80.43 80.45 68.96 0.205 0.30 r.tJ

2-Phenyl 84.76 84.43 84.73 84.87 84.69 84.67 72.59 0.245 0.34 ~
~

m/z 274 e
7/6-Phenyl 85.43 85.43 0 0 a
5'Phenyl 85.77 85.77 O' 0 ct.

't:S
~-Phenyl 86.60 86.60 0 0 ......
3-Phenyl 88.05 88.05 0 a n>

2-Phenyl 90.65 90.65 0 0
•.
2.
n>
flI)

I.S 1-Phenyl (m/z 218) 61.29 61.14 61.06 61.08 61.35 61.38 61.08 61.34 61.31 61.23 0.125 0.20 ~

J.S 1-Phenyl (m/z 246) 82.55 82.33 82.26 82.29 82.64 82.68 82.29 82.58 82.56 82.46 0.159 0.19 c:> tv= ~

r.tJ ~

Main8.wk3



DAT Std.
~. Total 0.5 ug/ul 0.0137 9 0.0286 9 0.0447 9 0.0601 9

Isomer m/z RT (min) RT (min) RT (min) RT (min) RT (min) Average STD RSTD (%)
;:;
fI).....
~

cis-3,3 173 61.612 61.671 61.713 61.693 61.688 61.675 0.0344 0.056
.....
Q

trans-3,3 173 62.460 62.480 62.519 62.502 62.071 62.406 0.1689 0.271 =
.cis-2,4 159 62.679 62.700 62.743 62.717 62.707 62.709 0.0210 0.033 ~trans-2,4 159 63.335 63.359 63.398 63.375 63.367 63.367 0.0206 0.032 e.-
cis-i,5 145 63.703 63.715 63.768 63.758 63.697 63.728 0.0292 0.046

~trans-1,5 145 63.866 63.882 63.941 63.934 63.935 63.912 0.0312 0.049 fI)
cis-3,4 173 71.109 71.110 71.162 71.157 71.154 71.138 0.0237 0.033 =trans-3,4 173 72.344 72.331 72.376 72.364 72.359 72.355 0.0157 0.022 ~cis-2,5 159 72.857 72.841 72.883 72.866 72.859 72.861 0.01'36 0.019

.....= t..<
trans-2,5 159 73.664 73.649 73.686 73.665 73.656 73.664 0.0124 0.017 ~ Qcis-l,6 145 74.313 74.297 74.347 74.340 "74.339 74.327 0.0190 0.026 e ~

trans-1,6 145 "74.520 74.510 74.654 74.562 74.654 74.580 0.0629 0.084 -c 9'cis-4,4 187 80.390 80.381 80.409 80.392 80.3a5 80.391 0.0096 0.012 .... (It)

~
(It)

cis-3,5 173 81.014 81.007 81.035 81.019 81.013 81.018 0.0095 0.012 atrans-4,4 187 82.043 82.053 82.078 82.057 82.044 82.055 0.0127 0.015 ~ ~
e:

trans-3,5 173 82.477 " 82.518 82.541 82.519 82.505 82.512 0.0210 0.025 =
(It)

=cis-2,6 159 83.219 83.272 83.305 83.273 83.256 83.265 0.0280 0.034 = !.. ~

trans-2,6 159 84.127 84.157 84.188 84.158 84.146 84.155 ~ \00.0198 0.024 .....
= .....

cis-1,7 145 84.861 84.855 84.890 84.871 84.860 84.867 0.0124 0.015 (JQ r.:=.
trans-1,7 145 85.049 85.039 '. 85.076 85.058 85.049 85.054 0.0124 0.015 r.LJ.

(It)
fI)

cis-4,5 187 89.965 89.958 89.969 89.944 89.927 89.953 0.0154 0.017 ! ct.
cis-3,6 173 91.028 91.008 91.028 91.003 90.984 91.010 0.0166 0.018 Q

trans-4,5 187 91.879 91.867 91.877 91.855 91.837 91.863 0.0155 " 0.017 =
trans-3,6 173 92.627 92.617 92.625 92.601 92.584 92.611 . 0.0162 0.018 ~
cis-2,7 159 93.438 93.426 93.441 93.415 93.398 93.424 0.0158 0.017

.,
trans-2,7 159 94.362 94.354 94.364 94.343 94.324 94.349 0.0147 0.016 e.-.....
cis/trans-1 ,8 145 95.182 95.161 95.171 94.147" 95.128 94.958 0.4058 0.427 !..

~....
cis-1467-TMT 173 46.692 46.669 46.707 46.689 46.682 46.688 0.0124 0.027 tt
tr-1467-TMT 173 46.894 46.874 46.971 46.896 46.892 46.905 0.0337 0.072 [
Total 1467-TM 173 46.793 46.772 46.839 46.793 46.787 46.797 0.0226 0.048 .....=~
Total 1,4-DMT 145 27.801 27.771 27.790 27.771 27.761 27.779 0.0145 0.052

DATRT.WK3

N......
N
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tetramethyltetralin and cis/trans-I,4-dimethyltetralin were not used in previous studies. Also,

in the previous studies, neither ~he more sensitive SIM technique nor the more accurate

internal standard technique was used for the GeIMS analysis of commercial linear

alkylbenzenes.

Further, the analytical data presented in this study can be utilized by other chemists

for the identification and quantitation of the impurities such as branched alkylbenzenes and

dialkyltetralins in all currently available linear alkylbenzenes. These data are useful and can

help other scientists in their future studies to assess the environmental impact of these

compounds and their sulphonated derivatives.

Lastly, the GeIMS method that was developed during the course of this study allowed

identification of some other trace impurities present in industrially produced linear

alkylbenzenes. Compounds such as dialkylindanes, alkylnaphthalenes and diphenylalkanes

were identified without preparative HPLC separations. Further investigation of these

impurities using GCIMS method will be the subject of a future study.

In summary, the results of this study provide a detailed picture of,the composition of

commercial linear alkylbenzenes, their actual molecular weights and the quantity of the

impurities present.
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APPENDIX

Apart from dialkyltetralins and branched alkylbenzenes, other trace impurities that

belong mainly to the following classes of compounds: dialkylindanes, diphenylalkanes and

alkylnaphthalenes were identified using the Ge/MS method that was developed in the course

of this study.

Structure elucidation of diphenylalkanes; 1,I-diphenylmethane (MW=168) and 1,1­

diphenylbutane (MW=210) was done using electron impact mass spectra. Their mass spectra

are presented in Figure 83 and 84. Two alkylnaphtalenes were identified (MW= 212 and

MW=226) and their £1 mass spectra are presented in Figure 85 and 86. Figure 87 represents

the E1 mass spectrum of dialkylindane with the base peak at m/z 131.
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