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Abstract

Abstract ii

The optical response to far infrared radiation has been measured on a mosaic of heavy

fermion CeColnssingle crystals. The superconducting transition temperature of the crys­

tals has been determined by van der Pauw resistivity and ac-susceptibility measurements

as Tc = 2.3 K. The optical measurements were taken above and below the transition

temperature using a 3He cryostat and step and integrate Martin-Puplett type polarizing

interferometer.

The absolute reflectance of the heavy fermion CeColns in the superconducting state

in range (0, 100)cm-1 was calculated from the measured thermal reflectance, using the

normal state data of Singley et al and a low frequency extrapolation for a metallic ma­

terial in the Hagen-Rubens regime. By means of Kramers-Kronig analysis the absolute

reflectance was used to calculate the optical conductivity of the sample.

The real part of the calculated complex conductivity 0-(w) ofCeColns indicates a

possible opening of an energy gap close to 50 em-I.
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Chapter 1. Fourier Transform Infrared Spectroscopy

Chapter 1

Fourier Transform Infrared

Spectroscopy

1.1 The Principle of Fourier Transform

Spectroscopy

1

Fourier transform spectroscopy (FTS) is the technique of determining a spectrum by

Fourier transformation (See Appendix A) of an interferogram (See Section 1.3.2), which

is the record produced by a two-beam interferometer (See Section 1.3) as the path dif­

ferencebetween the beams is varied from zero to some maximum value [1]. FTS is a

well recognized method for analytic spectroscopic measurement in the UV, visible and

infrared region. It is a measurement technique whereby spectra are collected based on

the response from a pulse of electromagnetic radiation. It can be applied to a variety

of types of spectroscopy including infra-red spectroscopy (FTIR), nuclear magnetic res­

onance, electron spin resonance spectroscopy, optical and mass spectrometry. Fourier

transform spectroscopy is more sensitive and has a much shorter sampling time than

conventional spectroscopic techniques [2, 3].

In a conventional (or "continuous wave") spectrometer, a sample is exposed to elec­

tromagnetic radiation and the response (usually the intensity of transmitted radiation)

is monitored. The energy of the radiation is varied over the desired range and the re­

sponse is plotted as a function of frequency (or radiation energy). At certain resonant
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frequencies characteristic of the specific sample, the radiation will be absorbed resulting

in a series of peaks in the spectrum, which can then be used to identify the sample [3].

Instead of varying the energy of the electromagnetic radiation, Fourier transform

spectroscopy exposes the sample to a single pulse of radiation and measures the response.

The resulting signal, called a free induction decay, contains a rapidly decaying composite

of all possible frequencies. Due to resonance by the sample, resonant frequencies will

be dominant in the signal and by performing a mathematical operation called a Fourier

transform on the signal, the frequency response can be calculated. In this way the

Fourier transform spectrometer can produce the same kind of spectrum as a conventional

spectrometer, but in a much shorter time [3, 4].

The principles of the Fourier transform approach can be compared to the behavior of

a musical tuning fork. If a tuning fork is exposed to sound waves of varying frequencies,

it will vibrate when the sound wave frequencies are in "tune" (resonant frequencies).

This is similar to conventional spectroscopic techniques, where the radiation frequency

is varied and those frequencies, where the sample is in "tune" with the radiation, are

detected. However, if we strike the tuning fork (the equivalent of applying a pulse of

radiation), the tuning fork will tend to vibrate at its characteristic frequencies. The

resulting tone consists of a combination of all of the characteristic frequencies for that

tuning fork. Similarly, the response from a sample exposed to a pulse of radiation is a

signal consisting primarily of the characteristic frequencies for that sample [3].

The mathematical technique for determining these characteristic frequencies from a

single composite signal is Fourier transformation (FT). FT translates the signal from one

domain to another one. In the case of optical spectroscopy, these domains are:

1) Time in seconds (the single composite signal as a time varying value)

2) Frequency in Hertz [S-l] (response measured as a function of all frequencies with

non-zero amplitudes).



Chapter 1. Fourier Transform Infrared Spectroscopy 3

However, in interferometry (FTS) the typical domains used are space and inversed

space (cm f-t cm-1). This notation will also be used in this thesis. A simple example

and basic mathematical overview of FT can be found in Appendix A.

1.2 Fourier Transform Infrared Spectroscopy

Infrared (IR) spectroscopy is one of the methodologies for investigating matter that

has a very long history in research and applied sciences. This technique is capable of

investigating many important phenomena in crystal lattices, such as phonons, magnons

and charge carriers excitations, which involve very low energies. To excite and observe

these kind of processes in solid matter, electro-magnetic radiation of appropriately low

energy is needed. The energy range for many of these phenomena overlaps reasonably

well with the energy range for IR radiation.

The infrared region of the electromagnetic spectrum lies approximately between the

visible (A = 750 nm) and microwave (A = 1 mm) regions (see Figure 1.1). Infrared light

30 em lmm 750nm 400nm lOnm

Micro,vave Infrared
,risible
Light

UV Light

1.3 me" 1.7 eV 3 e\T 120eV

Figure 1.1: IR light in electromagnetic spectrum

is defined as a form of electromagnetic radiation with wavelengths between rv 0.7 /-Lm

and 1 mm. These wavelengths are longer than those of visible light, but shorter than

those of microwaves. (The prefix 'infra' means 'below'; infrared refers to radiation below

the frequency of red light.) Infrared light is primarily thermal radiation, and we think

of this as being heat. By convention, the infrared region is frequently divided into three
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sections: Near-infrared (13300 - 4000cm-1), Mid-IR (4000 - 400cm-1) and Far-IR.(400­

10cm-1).This division is not exact, but is widely used in the literature. In Table 1.1 we

can see the IR range with respect to different units used in the field of IR spectroscopy.

Wavenumber Frequency Energy Wavelength

[em-I] [Hz] reV] [m]

13300 4x 1014 1.65 750x 10-9

4000 1.2x 1014 0.5 2.5x 10-6

400 1.2x 1013 50x 10-3 25xl0-6

10 3x1011 1.25x 10-3 1x 10-3

Table 1.1: Range of IR light

Radiation in this region can be utilized in structure determination by making use

of the fact, that it is absorbed by interatomic bonds in the examined compounds and

by their electron systems. (Especially Far-IR is highly useful for examination of optical

and electronic properties of solids.) When a beam of infrared energy, covering a broad

frequency range, passes through a sample, the energy at certain frequencies is absorbed

by the sample. The IR absorption spectrum is characteristic of the particular molecule

and its molecular motions and can be used for quantitative analysis of molecular systems

and their electronic energy states. Chemical bonds in different environments will absorb

varying intensities at varying frequencies.

At very low temperatures (e.g. 4 K), IR spectra are very sensitive to the presence

of small amounts of impurities in the material of the sample being studied. Because the

region of interest is of such low energy, special apparatus (He cryostat) is required to

allow for maximum detection and to cool the ambient temperature below transition tem­

peratures. To carry out the measurements by means of low temperature apparatus is also

necessary because of the presence of a strong IR background signal at high temperatures
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(i. e. IR noise). The details regarding the apparatus for low temperature measurements

can be found in Chapter 3.

Although British astronomer William Herschel discovered the existence of IR radi­

ation in the electromagnetic spectrum for the first time around 1800 [5], and Albert

Michelson built his first interferometer in 1881 [6], the application of this technology

required almost a century before it revolutionized IR spectroscopy as we know it. The

introduction of computers in the second half of the 20th century allowed the digitiza­

tion of the interference information (called an interferogram) followed by fast Fourier

transformation (FFT) of the data into the actual IR spectrum.

The usually mentioned benefits of interferometry over dispersive measurements are:

FTIR spectroscopy is much faster and more sensitive (the multiplex or Felgett advantage

- see Section 1.3.3); it uses all IR energies simultaneously, thereby achieving much lower

noise levels (the throughput or Jacquinot advantage - see Section 1.3.4), and an internal

laser calibrates the interference information, providing very high wavenumber accuracy

and reproducibility (the precision or Connes advantage - see Section 1.3.5 ). In addition,

no stray light is generated by interferometry, which leads to more accurate quantitative

results than is possible with dispersive technologies. Interferometric techniques greatly

enhance the speed and sensitivity at which this type of spectroscopy is conducted. The

measurement devices working on the principle of FTS are Fourier transform spectrome­

ters.

1.3 A Fourier Transform Spectrometer

A Fourier transform spectrometer is a Michelson interferometer (sometimes refered to

as two-beam interferometer) with a movable mirror. By scanning the movable mirror

over some distance, an interference pattern is produced that encodes the spectrum of the

source (in fact, it is its Fourier transform) [6].
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S()'lll'*ce

of'Iigllt .:
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Figure 1.2: The scheme of a Michelson interferometer and its theoretical inter-

ferogram ofa composite pulse
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Figure 1.2 shows a simplest form of a Fourier transform spectrometer. It consists of

two mirrors, one fixed and one movable, located at a right angle to each other (oriented

perpendicularly), with a beam splitter placed at the vertex of the right angle and oriented

at a 45° angle relative to the two mirrors. The beam splitter is made of a special material

that transmits· half of the radiation striking it and reflects the other half. (This would be

true in a case of an ideal beam splitter without any frequency dependence for reflectance

and transmittance, the reality is of course different.) Radiation from the source strikes

the beam splitter and separates into two beams. One beam is transmitted through the

beam splitter to the moving mirror and the second is reflected off the beam splitter

to the fixed mirror. The fixed and moving mirrors reflect the radiation back to the

beamsplitter. Again, half of this reflected radiation is transmitted and half is reflected

at the beam splitter, resulting in one beam passing to the detector and the second back

to the source. When the position of movable mirror is continuously varied along the axis

of the corresponding arm, an interference pattern is swept out as the two phase-shifted

beams interfere with each other [6].

1.3.1 OPD and ZPD

Optical Path Difference (OPD) is the optical path difference between the beams travelling

through the two arms of an interferometer. OPD is equal to the product of the physical

distance travelled by the moving mirror (multiplied by 2,4, or other multiplier which is a

function of the number of reflecting elements used; for the simplest case seen on Figure 1.2

this multiplier is 2) and n, the index of refraction of the medium filling the interferometer

arms (air, Nitrogen for purged systems, etc... ) [7]. The raw FT-IR data consists of a

number of (signal, OPD) pairs of values. FT-IR spectrometer has a natural reference

point when the moving and fixed mirrors are the same distance from the beam splitter.

This condition is called zero path difference or ZPD. The moving mirror displacement,
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d, is measured from the ZPD. The relationship between the optical·path difference and

the mirror displacement for the simplest form is

1.3.2 The Interferograrn

OPD = 2dn (1.1)

Interferogram is the name given to the signal format acquired by an FT-IR spectrometer.

It is usually significantly more complex looking than a single sinusoid, which would be

expected if only a single wavelength of light was present. The centerburst, the big spike

in the centre of Figure 1.2 is a telltale signature of a broadband source. Its origin lies in

the fact that all wavelengths are in phase at the. ZPD. Therefore, their contributions are

all at maximum and a very strong signal is produced by the system's detector. As the

OPD grows, different wavelengths produce peak readings at different positions and, for

a broadband signal, they never reach their peaks at the same time. Thus, as you move

away from centerburst, the interferogram becomes a complex: looking oscillatory signal

with decreasing amplitude [7].

1.3.3 The Multiplex (Fellgett) Advantage

In a dispersive spectrometer, wavenumbers are observed sequentially, as the grating is

. scanned. In an FT-IR spectrometer, all wavenumbers of light are observed at once.

. When spectra are collected under identical conditions (spectra collected in the same

measurement time, at the same resolution, and with the same source, detector, optical

throughput and optical efficiency) on dispersive and FT-IR spectrometers, the signal-to­

noise ratio of the FT-IR spectrum will be greater than that of the dispersive IR spectrum

by a factor of VM, where M is the number of resolution elements [8]. This factor arises

due to the fact, that a single detector is used to detect all of the frequencies in the source

simultaneously. The noise produced in this one detector is therefore shared equally by
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all of the recorded signals. If M frequencies are measured in the spectrum, we would

ordinarily use M detectors to measure the spectrum and in the process get M samples of

the noise. The spectrum recorded by the interferometer, however, has only one detector

and as a result has -JM less noise, than its dispersively measured counterpart [4].

1.3.4 The Throughput Advantage

FT-IR instruments do not require slits (in the traditional sense) to achieve resolution.

Therefore, you get much higher throughput with an FT-IR than you do with a dispersive

instrument. This is called the Jacquinot Advantage. In reality there are some slit-like

limits in the system, due to the fact that one needs to achieve a minimum level of

collimation of the beams in the two arms of the interferometer for any particular level of

resolution [7, 8].

1.3.5 ReNe laser in FT Spectrometer - Precision Advantage

A collimated monochromatic light source will produce an interferogram in the form of

a sinusoid at the detector. When the light intensity goes from one maximum of the

interferogram to the next maximum, the optical path difference between the two legs of

the interferometer changes by exactly the wavelength of the incoming radiation.

The~traightforwardutilization of this fact has led to the development of FT spec­

trometers with presence of HeNe lasers. A HeNe laser emits light with a wavelength

of 633 nm, which is known with a very high degree of accuracy and which does not

significantly change under any common circumstances. The laser beam parallels the sig­

nal path through the interferometer and produces its own interferogram at a separate

detector. This signal is used as an extremely accurate measure of the interferometer

displacement (OPD). It is observed as a sinusoidal signal. The average value is half the

value you would see if the beams were not divided and no interference produced. The



Chapter 1. Fourier Transform Infrared Spectroscopy 10

sinusoid goes positive and negative about this value. The average signal level is called

zero level. A high precision electronic circuit produces a voltage pulse when the HeNe

reference sinusoid crosses zero level. By use of only positive zero crossing, the circuitry

can develop one pulse per cycle of the interferogram, or use all zero crossings for two

pulses per cycle of the interferogram. The latter case is often called oversampling [7].

There is a fundamental rule called the Nyquist Theorem which can be paraphrased

to state that a sinusoid can be restored exactly from its discrete representation if it has

been sampled at a frequency at least twice as high as its own frequency. If we apply this

rule we find that the minimum value of lambda is twice the wavelength of the reference

laser:

A == 633nm * 2 == 1.266J-Lm (1.2)

With oversampling, the reference laser wavelength is effectively halved. So in this

case:

A == (633nm/2) * 2 == 633nm (1.3)

In practice, the FFT math runs into difficulties close to the theoretical limit. That

is why we say 1.4JLm is the limiting wavelength without oversampling, and 700nm is the

limiting wavelength with oversampling [7].

1.3.6 How a .FT-IR spectrometer works

In a two-beam interferometer the position of the movable mirror varies linearly with time.

This motion at constant speed allows the OPD to increase linearly, and the two beams

create an interference pattern (interferogram). The interferogram measures the intensity

as a function of the movable mirror position. The intensity detected of these two plane

waves can be expressed as

(1.4)
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~n the case of normal incidence of both beams in the optical system, the relation between

the angle (J, the wavenumber ko and the optical path difference x is very simple

() == kox (1.5)

Providing that the beam-splitter is ideal and the electric field intensities of both waves

are equal and we can set them to Go/2 for the brevity, then

I(x) == Go(l + cos kox) (1.6)

The intensity is a function of the path difference, as expected, and in this case there is

only one inherent wavenumber ko (monochromatic source). Similarly, for a polychromatic

continuous source, the resultant intensity can be written as

l(x) = 100

[1 + coskx]G(k)dk (1.7)

which can be rearranged to

l(x) = roo G(k)dk + roo G(k) e
ikx

+ e-
ikx

dk = !1(0) + -2
1100

G(k)eikxdk (1.8)
Jo Jo 2 2 -00

Theoretically, there is no such thing as negative values for k. However, it is convenient

to write the interferogram function over symmetric, infinite limits. We can rewrite the

latter formula to a more familiar form, used in spectroscopy

W(x) = 21(x) - 1(0) = _1_100
G(k)eikXdk

. V21f V21f -00

(1.9)

Which can be quickly recognized as a Fourier transform! The detected intensity as

a function of moving mirror position I(x) can therefore be converted into G(k), the

intensity spectrum as a function of frequency by a simple Fourier transform.

G(k) = .~100

W(x)e-ikXdx
y27r -00

(1.10)

The FT works here as a tool capable of changing the experimental information expressed

in one domain to another. The Fourier analysis is used to transform the interferogram

to a plot of intensity as a function of frequency (or wavenumber). Such a plot is called

a power spectrum.
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1.3.7 Finite Resolution

12

In practice one cannot measure the OPD from -00 to +00. The resolution of a mea­

surement is simply given by how far in x you measure. It is fairly simple to illustrate

conceptually how the resolution of a spectrum measured interferometrically depends on

the maximum retardation of the scan. The following discussion of the resolution is done

according to Griffiths [8]. As an example, let us consider the case of a spectrum consist­

ing of a doublet, both components of which have equal intensity. Figure 1.3 shows these

two waves and their interferogram.

a)

b)

Figure 1.3: a) Two close waves; solid line- 10A1' dashed line - 9A2

b) Interferogram with the its first maximum

If the doublet has a separation of Llk(==k1 - k2), the two cosine waves become com­

pletely out of phase after a retardation of 0.5(Llk)-1, and are once more back in phase

after a retardation of (~k)-l. To go through one complete period of the beat frequency,

a retardation of (~k)-l is therefore required. (An interferogram measured only to half

of this retardation could not be readily distinguished from the interferogram of a source
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with a Lorentzian profile [8].) The narrower the separation of the doublet, the greater is

the retardation before the cosine waves become in phase. It is therefore apparent, that

the spectral resolution depends on the maximum retardation of the interferometer. Intu-

itively it might be concluded that the two lines could just be resolved, if the retardation

were increased to the point where the two waves became in phase for the first time after

zero retardation. As we can see in Figure 1.3, the two waves become in phase for the

first time after zero retardation point when

(1.11)

Thus, if the maximum retardation of an interferometer is ~max, the best resolution that

could be obtained using this interferometer ~k, is given by

(1.12)

Although this conclusion was arrived at intuively, the answer proves to be approximately

correct [8].

1.3.8 Sampling Frequency and Cut-off Frequency

In order to compute the complete spectrum from (0 to +00) cm-1 the interferogram

would have to be sampled at infinitesimally small increments of retardation. This is, of

course, impossible, at very least because it would create an infinite experimental data set.

As has been already mentioned in section 1.3.5 a sinusoidal function of time (or distance)

can be unambiguously sampled using a sampling frequency greater than or equal to twice

the maximum frequency in the function. If we consider the case with oversampling (see

section 1.3.5), then the increment of retardation for the movable mirror is "-J 317 nm and

the wavelength limit for the measured signal is 633 nm (see equation 1.3). Using a simple

relation for the wavenumber
1

1/=-
A

(1.13)
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will give us the maximum or so-called cut-off frequency Vmax = 15797 em-I.

1.3.9 Apodization

14

The range of data elements collected by a spectrometer is always finite (subject to ~max

or the resolution chosen) but, as we have seen, the Fourier transformation itself assumes

this range to be infinite. In practice the spectrometer "truncates" the range of data by

recording the measured signal up to some finite OPD. From a mathematical point of

view this is equivalent to multiplying the infinite series of data with a "boxcar" function,

that is, a function that is one over the time period for which data are collected, and zero

before and after this period. To the transformed spectra, this is the convolution of the

boxcar function with the original data [4]. The relation for the Fourier transformation

then changes

where

1 100
.G(k) = . f(L W(x)B(x)e-~kxdx

y21r -00

(1.14)

o Otherwise
B(x) =

1 for - ~ :S x :S ~
(1.15)

is the boxcar function. The most important consequence of this convolution is the so

called Gibbs phenomenon, a phenomenon occurring whenever a curve with sharp edges

(B(x) in this case) is subject to Fourier transformation, resulting in a change in frequency

representation in the transformed signal. This arises from the fact, that the representation

of the profilers measured with a limited number of Fourier harmonics is imperfect and

is resulting in high frequency oscillations at the edges. To cure this imprecision, special

data processing known as apodization (literally "foot removing") is performed on the data

prior to transformation [4]. The data are usually multiplied by some smooth function to

ensure that they go to zero at the edges of the data set. An example of such a function
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is the triangular apodization function
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o
for -~ ::; x ::; ~

Otherwise
(1.16)

This is a commonly used function· in IR Fourier transform spectrometry. It suppresses

the magnitude of the side lobes of an interferogram and helps to decrease the influence

of the finite Ll on the real shape of the measured signal. (For more apadization functions

see far· example Griffiths [8].)
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Chapter 2

The Optical Reflectance and

Kramers-Kronig Analysis

The knowledge of optical material properties is essential for many materials and mea-

surements of light reflected by the sample can provide us with a great deal of information

about the electron systems in the solid [9]. Reflectance spectroscopy provides a powerful

and versatile tool for optical characterization of solid matter. The spectroscopic mea-

surement is used to obtain optical functions from a spectroscopic measurement in con-

junction with the so called Kramers-Kronig analysis. Kramers-Kronig relations (KKR)

can be derived by applying the Cauchy integral formula (Appendix B) to an analytic

function bounded in the entire upper half-plane of its complex argument. They express

the interdependence between the real and the imaginary parts of such a function [10, 11].

2.1 The Optical Reflectance

Measurements of the reflectivity of light at normal incidence on a single cry'stal can

provide much information concerning the electronic system. The experimentally obtained

reflectance is defined as the unitless fraction

(
2 E;ejErej

R(w) = r* w)r(w) = p (w) = E'!' g
'tnc 2nc

(2.1)

where p(w) is the complex reflectivity amplitude and Einc and Erej are the incident and

reflected electric fields, respectively [9]. The reflectivity coefficient r(w) is a complex
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function defined at the crystal surface as the ratio of the reflected electric field to the

incident electric field

r(w) =Ere! =p(w)eiB(w)
Einc

where we have separated amplitude p(w) and phase B(w) parts [9].

(2.2)

From the interaction of electromagnetic radiation with matter at normal incidence it

can be shown (see Appendix C), that quantities such as:

- complex index of refraction N(w), [N(w) == n + ik]

- complex dielectric -constant c, [E == E1 + iE2 ]

- complex conductivity a, [a == 0'1 + iO'2]

are related to the optical reflectance R(w) and reflectivity coefficient r(w) via the following

relations
N - 1 n + ik-1

r(w)- ----
N + 1 n+ik+ 1

N(w) = VE(W)

E(W) = l+i~
EOW

(2.3)

(2.4)

(2.5)

(2.6)

where we assume that the light propagates from empty space into a medium with index of

refraction N, and in equation 2.5 and equation 2.6 that the relative magnetic permeability

/-lrel == 1. It is generally difficult to determine N, E(W) and o-(w) directly. In measuring

the re~ectance of the crystal R(w) (or more specifically measuring the reflected power

of the EM wave), we are measuring a real quantity, that holds implicitly the index of

refraction, dielectric function and conductivity [12].

As one can recognize from equation 2.1, from R(w) it is possible to find out the

amplitude part p(w) of r(w), yet it is impossible to determine its phase part B(w), which
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is crucial for extracting both the real and imaginary components of the complex index

of refraction. Fortunately, there is a mathematical method that helps us deal with this

problem, as is shown in the following section.

2.2 Linear Response and Kramers-Kronig Relations

When a solid material is exposed to an electric field E, there is a polarization P generated

in response to the applied field. This linear response of a medium to an electric stimulus

(e.g. infrared beam) can be expressed as

P(t) = EO 1.: Xe(t - t')E(t')dt' (2.7)

where Xe(t-t') is the response function of the medium after an electric field E(t') has been

applied at time t' and EO is the permitivity of vacuum [10]. After Fourier transforming

each of the functions involved, equation 2.7 can be rewritten in the frequency domain as

P(w) == EoXe(w)E(w) (2.8)

which explicitly expresses the linear response of a medium to a harmonic component of

an electro-magnetic wave. The electric susceptibility Xe (w) is analytic and bounded in

the upper half-plane of the complex angular frequency argument. This can be deduced

after applying the causality principle [13], i. e. Xe (t - t') ~ 0 for t < t', with the

expression for closed-contour integral around the upper half-plane when evaluating the

Fourier transform of this function

1 Joo .( ')Xe(t - t') == - Xe(w)e-'tw t-t dw
27r -00

Application of the Cauchy integral formula on X(w) yields the following equation

Xe(W) = ipJco X;(w') dw'
7r -00 W - W

(2.9)

(2.10)
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and after separating its complex components (subscripts rand i will be used for the real

and imaginary parts, respectively) we obtain

Xr(W) = ,!,pJoo X:(w') dw'
1f -00 W - W

( ) _ 1 p Joo Xr(W')d IXi W - -- W
1f -00 W' - W

(2.11)

(2.12)

wand w' are real and independent values of the angular frequency and P denotes the

Cauchy principal value of the integral. This pair of equations is called Kramers-Kronig,

due to their originators. They relate the real (dissipative) part with the imaginary

(absorptive) part of the susceptibility and are also referred to as dispersion relations [10].

Function Xe(t - i ' ) is a real quantity. From eqn. 2.10 then follows

(2.13)

where X: denotes the complex conjugate. Consequently equations 2.11 and 2.12 re­

formulated for positive values of frequency read

(2.14)

(2.15)

Equivalently they can be written for other material parameters, like the complex dielectric

function E(W) = El(W) + iE2(W) after substituting Xe(w) = E(W) - 1, or the complex index

of refraction N(w) = n(w) + ik(w), for which N 2 (w) == E(W).

Neither of the above mentioned parameters is directly experimentally accessible. For

this purpose a reflectance measurement is commonly used. The expression for the reflec-

tion coefficient at normal incidence r (w) is

r(w) = Eref(w) = n(w) - 1 + ik(w)
Einc(w) n(w) + 1+ ik(w)

(2.16)

Ere! and Einc are electric field strength magnitudes in the reflected and incident beams,

respectively. The measured quantity of reflectance R(w) equals the square of its modulus,
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hence in polar form

and
1

Inr(w) = 21nR(w) + iB(w)

The corresponding pair of Kramers-Kronig relations reads [10]

InR(w) = ~pl°O ~(w') dw'
rr -00 w - w

B(w) = -~pl°O In~(w') dw'
2rr -00 w - w

(2.17)

(2.18)

(2.19)

(2.20)

These hold under the condition that In(r(w)) is analytic and bounded in the upper half­

plane of the complex frequency argument. Applying the same arguments as with the

susceptibility above, the last equation in the positive frequency domain reads

B(w) __wp foo InR(w') dJ.»'
7[ io w/2 - w2

(2.21)

This is the form that can be used to retrieve the phase spectrum from the measured

reflectance spectrum and hence all the related material optical functions. For example,

from equations 2.16 and 2.17 we can relate Rand () with real refractive index n and the

extinction coefficient k [14] (see App. C)

1-R
n--------

1- 2VRcosB + R

k = 2VRsinB
1- 2VRcosB + R

2.2.1 Extrapolations for Reflectance

(2.22)

(2.23)

Equation 2.21 extends over the frequency range from 0 to +00 and thus extrapolation

must be used in the ranges, where the experimental data cannot be obtained [10]. The
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most common approach is to assume, that above the valence electron plasma frequency

Wp the dielectric function is given. by the Drude formula [15]

(2.24)

where

(2.25)

is the plasma frequency and N is the number of electrons per cm3 .

Thus at high frequencies tr ~ 1, ti ~ 0 and k ~ 0 (extinction coefficient) so that

(2.26)

(2.27)

and
(l-n)2 1 w4

R(w) = (1 +n)2 ~ 16w~

If the upper measurement frequency limit WI is larger than wp , R(w) can be extrapolated

beyond WI by

(2.28)

and its contribution to the KK integral can be evaluated analytically.

Another extrapolation must be done in the low frequency range (down to the zero

frequency). In a metallic material one usually invokes the so-called Hagen-Rubens (HR)

reflectance. It arises in the low frequency (or HR) regime defined by the condition

WT « 1, where T == 1/",/, and"'/ can be interpreted as a scattering rate in the damped

harmonic oscillator model for the conduction electrons. (For more details see for example

Dressel [49].) In this regime the optical properties are mainly determined by the dc

conductivity of the material. In the low frequency limit the real and imaginary parts

of the complex refractive index can be considered equal with a high precision. Thus we

have

n==k (2.29)
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and we can rewrite equation 2.4 by neglecting all the terms of higher order than 2

2
R~ 1-­

n

which can be reformulated to

R ~ 1 _ 2(2coW)1 / 2.

(J"de

This is called the Hagen-Rubens reflectance.

2.3 Experimental Optical Reflectance

(2.30)

(2.31)

The optical reflectance is defined as the ratio of the intensity of the beam incident on a

sample to that of the beam reflected from the sample. To know both of these physical

quantities the following procedure is used.

The IR light coming from a source is incident on the measured sample, and then on a

reference mirror. The reference mirror acts as an intrarun reference, correcting any signal

drifts, that can occur during the experiment. The RATIO is obtained [16] by dividing the

power spectra of measured signals (sample and reference), i.e. after the Fourier transform

of corresponding interferograms. Another step is to correct possible scattering effects and

any unwanted interference due to the surface imperfections. The sample is used as its

own reference via an in-situ gold evaporation. The amount of gold used is small enough

to maintain the same surface topology of the sample. Gold is used here because of its

high reflectivity in the FIR and the negligible temperature dependence of its R(w). The

same measurements are carried out on the coated sample, as on the uncoated sample.

New ratio between the mirror and the coated sample is then obtained. Let's call this

ratio GOLD-RATIO [16]. The final step is to divide RATIO with GOLD-RATIO and

multiply it with the reflectance of gold, which is a known function, where the result can

be represented as [16]

RATIO
IRefledanceI= GOLD _ RATIO x (known reflectance of gold) (2.32)
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or
(

sample reflectance)

IRI mirror reflectance (k fl f ld)
== ( gold reflectance ) X nown re ectance 0 go

mirror reflectance

This yields the absolute reflectance of the measured sample.

(2.33)
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Chapter 3

The Experimental Apparatus for

FIR Spectroscopy

3.1 The Martin-Puplett Interferometer
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Figure 3.1: The scheme of a Martin-Puplett interferometer [16]

3.2 The 3He Cryostat

The cryostat used for the experiments is the model HDL-10 dewar with dual 3He refrig­

erators from Infrared Laboratories. This system features two independent 3He refrigera-

tors. It is possible to use both of them, or just one. During the experiment one of this

refrigerators is used for the IR sensor, and the other one for the examined sample.

There are two main reasons why one uses a cryostat. First of all, when running

a spectroscopy measurement in the FIR region, it is necessary to suppress the strong

IR noise, which is present at common ambient temperatures. The FIR detector used

for the experiments, called a bolometer, is a very sensitive device, capable of measuring

slight differences in FIR light incident on it. It measures the temperature change, when a

photon hits its surface. Therefore, it must be maintained at a constant temperature. The

temperature used in the experiments was approximately 0.37 K. This very low working
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temperature assures, that the recorded signal is due to the IR light reflected from the

sample, and it also suppresses thermal noise inside the detector itself. (More details

about the bolometer can be found in section 3.3)

The second reason a cryostat is used, is to be able to run experiments on the sample

at low temperatures. This goal is achieved by controlling (changing) the temperature

at the sample stage of the cryostat, while keeping the bolometer stage cooled down. A

schematic overview of the 3He cryostat is shown in Figure 3.2.
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Figure 3.2: The scheme of a 3He cryostat [16]

The cryostat is interfaced with the Martin-Puplett interferometer via a brass pipe.

The light entering the cryostat can travel either to the sample or reference mirror. This

is accomplished by using two electronically controlled shutters (SRI and SH2) and a flip

mirror. The beam of light may travel only through one path at a time. The light is then
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reflected from the target (sample or ref. mirror) to the bolometer.

The basic problem with low temperature work is to provide suitable thermal insula-

tion. So, before filling any dewar, it must have an adequate vacuum. In Figure 3.3 we

can see a rough scheme of the 3He cryostat.

77K

4.2K

3He Housing

Figure 3.3: The rough scheme of a 3He cryostat

The purpose of the empty space separating all of the vessels is to thermally insulate

the cryostat from the ambient temperature, and also to insulate the liquid Nitrogen vessel

from the liquid H.elium vessel (4He). The process of cooling the cryogenic system down

is the following: .

The cryostat is evacuated using a pumping system consisting of a combination of a

rotary pump and a turbomolecular pump. The cryostat is pumped down for a long time

period, usually 2-3 days. The low limit for the vacuum in the system is approximately

3xlO-6 Torr (the order of lO-4Pa). Then both of the containers (4He and N2 container)

are filled with liquid nitrogen (T = 77 K) to pre-cool the cryogen vessels. Precooling the
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cryostat is an important step, which reduces the amount of liquid 4He used during the

transfer. When the system is equilibriated (5-9 hours), the 4He container is voided and

it is filled with liquid 4He (temperature 4.21K). After thermally stabilizing the cryostat

(this is usually done during the night, for appro 8 hours), the bolometer and sample

stage are brought down to (1.8 - 1.9)K by pumping on the liquid 4He. As can be seen

in Figure 3.3 these two stages are thermally connected to· another set of vessels - to the

3He containers. When the whole system is being cooled down, the isotope of helium,

3He, gets liquified at the temperature T == 3.19 K. After reaching the low pressure limit

for the rotary pump, used for cooling down the system to T ~ 1.8K, both of the 3He

stages are disconnected from the 4He container, and the same procedure is used to get

these cryogenic stages to even lower temperatures. By use of internal charcoal pumps,

the vapor pressure above the 3He liquid is lowered resulting in a temperature decrease

down to O.37K. For the rest of the experiment, the temperature at the bolometer stage

is kept at this value. The temperature at the sample stage can be changed by adding

some heat to this stage. (In the range (O.5K - 4.2K) this can be done by changing the

thermal connections to the charcoal pump and/or the 4He reservoir.)

3.3 The Bolometer

Two silicon bolometers can be used for the measurements, one that operates below 0.4 K

and another one, that operates below 4.2 K. The choice of the bolometer used depends on

the temperature and frequency range measured during the experiment. The bolometers

are of the composite type and feature a small silicon element thermally bonded to a

suitably blackened 5.0 mm diameter sapphire absorber mounted in a cylindrical cavity.

The entrance cone for the bolometer is gold plated to prevent tarnish, and to improve

thermal properties [17].

A bolometer is an instrument for detecting and measuring radiation in amounts as
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small as 10-13Joule. It was invented in 1880 by Samuel P. Langley. Basically it consists

of a radiation-sensitive resistance element in one branch of a Wheatstone bridge.

I

RL

R

"
Figure 3.4: The schematic bolometer bias circuit

Changes in radiation incident on the sensor cause changes in the electrical resistance

of the element [18]. The temperature rise causes a change in the resistance of the bolome­

ter and consequently in the voltage across it. This change in voltage is amplified and

measured. Thus, resistance is measured before and after the application of rf power. If

the same change in resistance is then· produced by a variable DC source of power, then

the rf power is equal to the measured DC power. This relationship makes possible the

direct calibration of a bridge circuit in units of power [19].
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Basic Electromagnetic Properties of

Matter

4.1 Electrical Resistivity

Electrical resistivity is one of the key physical properties for all materials. The resistivity

of different materials at room temperature can vary by over 20 orders of magnitude. The

electrical resistivity of a material is a quantity describing how much that material resists

the flow of electricity. If electric current can flow easily through a material, the material

is said to have low resistivity.

The resistivity of a material can vary greatly with the temperature. The resistivity

of metals usually increases as temperature increases, while the resistivity of semiconduc­

tors usually decreases as temperature increases, and in superconducting materials the

electrical resistivity vanishes at the critical temperature Tc.

Measuring the temperature dependence of the electrical resistivity is a straightforward

way to examine possible superconductivity of new materials, or to specify Tc for a given

sample in order to characterize it before carrying out more complex experiments later;

the latter being the main purpose of running resistivity measurements in this thesis. To

understand the basic idea of electrical resistivity, let us think about the cloud of electrons

in the lattice consisting of stationary positive ions.
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Figure 4.1 shows a simple microscopic model of electric current flowing through a mate-

rial. While this model presents a very simplified idea of the origin of resistivity, it is still

_ieeeee.. /.~...- -/~/ ~/ +
e •••~ ••• • • /.~.r

Figure 4.1: Simple model of electric current flowing through a solid material

a useful concept for recognizing its basics and making rough estimates of some physical

properties. (A more correct approach to the electrical resistivity of materials requires a

thorough understanding of quantum mechanics.) On a microscopic level, electricity is

simply the movement of electrons through a material. The electron tends to move from

the left side of the material to the right side because an external force acts on it. As the

electron moves through the material, it collides with the stationary atoms of the material,

represented by the black circles. These collisions tend to .slow down the electron. The

effect of the material on the motion of an electron, can then be approached by means

of simple statistics, where the regularly ordered atoms absorb a part of the electron's

kinetic energy, what can be described with one property of the .material - its resistivity.

Thus far it was assumed, that the material being measured is homogeneous and

isotropic. This is not always a valid assumption. A more exact definition of resistivity

is the proportionality coefficient p relating a local applied electric field to the resultant

current density:

(4.1)
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where E is the electric field (V1m), J is the current density (A/m2
), and p is a propor­

tionality coefficient (n.m). Equation 4.1 is one form of Ohm's law. Let us consider now

the case of a bar-shaped sample (Figure 4.2).

d

Voltage Source Ammeter

Figure 4.2: Measuring the resistivity for a bar-shaped homogeneous sample

The magnitude of electric field E is given by the voltage V divided by the distance d

over which the voltage is applied:
V

E=­- d (4.2)

The current density J is given by the current I, divided by the cross-sectional area A

through which the current flows:

Combining equations 4.1, 4.2, and 4.3 and rearranging gives:

v= Ipd
A

Now define a new quantity called resistance R with the definition:

R= pd
A

Combining equations 4.4 and 4.5 then gives:

1= V
R

(4.3)

(4.4)

(4.5)

(4.6)
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where I is the current in amperes (A) flowing through the sample, V is the voltage in

volts (V) applied across the sample, and R is the resistance in ohms (D) of the sample.

Equation 4.6 is another form of Ohm's law. Note that the resistance R can depend on

the size and shape of the sample, while p is independent of the size, or shape, of the

sample. For example, if the length d of the sample bar is doubled, the resistance will

double but the resistivity will remain constant. Thus the resistivity is a quantity that

represents the resistance to the flow of current through a sample, that is independent of

the sample geometry. In real experiments, it is often necessary to measure small samples

with arbitrary shape. One of the methods of dealing with this situation is the van der

Pauw technique for measuring the resistivity.

4.1.2 Van der Pauw Technique

This method is a general four-point resistivity measurement technique that allows mea­

surements on samples of arbitrary shape, with no need to measure all the physical di­

mensions of the sample. There are four conditions that must be satisfied to use this

technique [20]:

a) The sample must have a flat shape of uniform thickness.

b) The sample must not have any isolated holes.

c) The sample must be homogeneous and isotropic.

d) All four contacts must be located at the edges of the sample.

In addition to these four conditions, the area of contact of any individual contact

should be at least an order of magnitude smaller than the area of the entire sample. For

small samples, this might not be pos~ible or practical. If sufficiently small contacts are

not achievable, it is still possible to do accurate van der Pauw resistivity measurements,

using geometric correction factors to account for the finite size of the contacts.

The illustration of Figure 4.3 shows one possible sample measurement geometry.
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Figure 4.3: Method of van der Pauw

The procedure for doing a van der Pauw measurement is as follows. We consider·a

flat sample of a conducting material of arbitrary shape with successive contacts A, B, C

and D fixed on arbitrary places along the circumference such that the above-mentioned

conditions (a) to (d) are fulfilled. We define the resistance RAB,CD as the potential

difference VD - Vc between the contacts D and C per unit current through the contacts

A and B. The current enters the sample through A and leaves through the contact B.

Similarly we define the resistance RBC,DA. It can be shown [20], that the following

relation holds

(4.7)

where p is the resistivity of the material and d is the thickness of the sample. Equation 4.7

determines uniquely the value of p as a function of RAB,CD, RBc,DA and d. In order to

facilitate the solution of p from equation 4.7, we write it in the form

(4.8). -

where f is only function of the ratio RAB,CD/RBC,DA. If RAB,CD and RBC,DA are almost

equal, f can be approximated by the formula

f';::j 1- (RAB,CD - RBc,DA)2ln 2 _ (RAB'CD - R BC,DA)4{(1n2)2 _ (In2)3} (4.9)
RAB,CD + RBC,DA 2 RAB,CD + RBC,DA 4 12

More details about the van der Pauw technique can be found in [20].
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Just as a dielectric contains electric dipoles that contribute to the field, so there are

magnetic media that contain magnetic dipoles [21]. Depending on the response of these

dipoles to the external magnetic field, we divide the materials into three groups: diamag­

netic, paramagnetic and ferromagnetic. Generally speaking - the diamagnetic materials

decrease the field penetrating into them and paramagnetic materials amplify the mag­

netic field entering them. Ferromagnetic materials can be considered as an extreme case

of paramagnetic materials with a very strong response to the magnetic field [21]. In

a magnetic medium, where there are magnetic dipoles distributed through the volume

of the material, we define the magnetization vector M as the vector sum of the dipole

moments in unit volume, so the magnetization M of a dielectric is defined by

M==Nm (4.10)

where N is the number of magnetic dipoles per unit volume and ill is the magnetic dipole

moment per dipole.

The magnetic field inside a material is given by [21]

B == J-lo(H + M) (4.11 )

where H is the external magnetic field intensity.

In the diamagnetic or paramagnetic medium, the magnetization M is proportional to

B [21]. Thus both these vectors are proportional to H and one may write

B == J-lH == J-lrel J-loH (4.12)

where the dimensionless quantity J-lrel is generally referred to as the relative permeability.

The ratio of magnetization M to magnetic field intensity H is called the magnetic

susceptibility and is defined as

M == XmH (4.13)
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Thus, the magnetic susceptibility is a measure of the ability of a material to be

magnetized. It is an important property of materials. On the surface it describes how a

material will interact with an applied magnetic field. The proportionality constant links

magnetization to the applied magnetic field intensity (at levels below which saturation

and hysteresis are important). Magnetic susceptibility, Xm, is then related to magnetic

permeability f.1 by

Rearranging the equation 4.13 we have

M
Xm == H'

which can be directly used in magnetic experiments.

4.2.1 Measuring the AC Susceptibility

(4.14)

(4.15)

AC magnetic susceptibility is an important tool for investigating magnetic and super-

conducting materials [22]. The AC susceptibility of a sample is defined in accordance

with 4.15 as
8M

Xm == 8H (4.16)

The measurement of the AC susceptibility offers a non-invasive technique capable of

confirming, if there is a superconducting transition occurring in the sample.

In our experimental setup the AC susceptibility measures a change in mutual induc­

tance of a primary and two identical (but oppositely wound) secondary coils when a

sample is inserted into the inner space of the primary and one of the secondary coils,

which have a common axis (see Figure 4.4). The two secondary coils are connected

in series so that the output is nearly balanced without the presence of a sample [22].

The sample is placed on a sample holder (Sapphire rod) and mounted on the bolometer
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Figure 4.4: Scheme of the experimental set-up for susceptibility measurements

stage of the 3He cryostat together with the coils, so that temperature dependant mea­

surements can be carried out. More details about the experimental setup for the AC

magnetic susceptibility can be found in reference [22].

4.3 Resistivity and Susceptibility Measurements in

a Superconducting State

To carry out measurements of the electrical resistivity and/or magnetic susceptibility is a

straightforward way of examining possible superconducting transition in a solid matter.

Both techniques described in the sections 4.1.2 and 4.2.1 were used in this thesis work as

preliminary experiments to characterize the superconducting properties of the samples of

heavy-fermion superconductor CeColns utilized for optical spectroscopy measurements.

The results of these measurements can be found in chapter 6.
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Heavy fermion systems are inter-metallic compounds that exhibit very unusual low tem­

perature properties. One of their constituents isa member of the lanthanide (Ce, Yb)

or actinide (U) group of the periodic table (See Figure 5.1). The unifying character­

istic behind all heavy-fermion systems is a large, low temper"ature density of electronic

states at Fermi level. This large density of states is interpreted as an enhancement of

the mass of the conduction electrons due to their interaction with the spin of electrons in

the unfilled f-band of the magnetic rare-earth· ions [23]. Their effective masses can reach

hundreds or even a thousand times the mass of a free electron as a consequence of this

interaction; hence the name heavy fermions or heavy electrons. At room temperature

and above, heavy electron systems behave as a weakly interacting collection of f-electron

moments with ordinary masses. As the temperature is lowered the f-electron moments

become strongly coupled to the conduction electrons and to one another, and the con­

duction electron effective mass is typically sever~l orders of magnitude larger than the

bare electron mass.

Despite the common characteristic of having a large value for the electronic effective

mass at low temperatures, heavy-electron systems display a variety of ground states. The

four main groups are: Non-magnetic, coherent Fermi-liquids (e.g. CeAI3, UPt4Au) , mag­

netic (e.g. Deus, CePb3) and superconducting (e.g. DBe13' UPd2AI3 ) [24]. The latter
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being a surprising result given that in ordinary superconductors a dilute concentration

of magnetic impurities destroys superconductivity [26].

Some unique features of the low temperature normal state properties of heavy electron

systems are:

1) A very large specific heat. For example, the inter-metallic CeAI3 , the first known

heavy-electron system [27], has a gamma coefficient of 1620 mJ/mol.K2 , one of the largest

for all such compounds. As the temperature goes to zero, we can write the specific heat

C(T) in form

(5.1)

where I is the specific heat coefficient and B characterizes the contribution of the phonons

to the specific heat. In heavy fermion systems I is so large, that the BT2 term can be

ignored (at least up to approximately 20 K). Since deviations from a linear electronic

specific heat occur, one often writes

(5.2)

Several values for the specific heat coefficient are listed in Table 5.1 and compared to the

values of conventional metals.

A popular way of probing the electron effective mass is by determining the density

of states at the Fermi level. This is often done by measuring the electr·onic specific heat

of a system, C, which at very low temperatures « 1K) is proportional to the density

of states at the Fermi energy, and therefore, to the electron effective mass, m*. Normal

metals like Cu or Au have values for gamma of the order of 1 mJ/mol.K2 and transition

and rare earth metals have values ten times as large, while heavy-fermion systems show

values in the hundreds (in some cases the thousands) of mJ/mol.K2
•

2) A transport property that characterizes metals is a low resistivity. The heavy

fermion (HF) systems have room temperature values that are enhanced over that of con­

ventional metals, but not by so much that the systems are not still metals. Typical values
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Type Room Temp. T2 - Coefficient Specific Heat

of Resistivity of Resistivity Coefficient

Material p [flncm] A [flncm/K2] tt(O) [mJ/mol.K2]

HF Superconductor UPt3 150 3 450

HF Magnet U2Zn17 110 negligible 400

Normal HF CeAl3 170 35 1620

Conventional Metal Pd 20 10-5 9.4

Conventional Metal Ag 2 10-7 0.6

Table 5.1: Comparison of heavy fermions and normal metals [23]
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of the resistivity are compared with conventional metals in Table 5.1. As the tempera­

ture decreases from room temperature the resistivity of a heavy fermion metal typically

increases while that for a conventional metal decreases. Nonetheless at a sufficiently low

temperature the resistivity of the heavy fermion system turns downward and for very low

temperature in many cases has a T2 dependence, Le.

p(T) == p(O) + AT2 (5.3)

The second column of Table 5.1. shows the enormous enhancement of the A coefficient

over that of conventional metals. The temperature dependence of the resistivity of sev­

eral heavy fermion compounds displaying a range of behaviors is given in Figure 5.2.

The intermediate temperature regime (10 K < T < 300 K) is characterized by unusual

structure in the thermodynamic and transport properties. For example a peak in the

resistivity is observed in most heavy fermion systems [26]. (UPt3 being one of the excep­

tions; note that the resistivities at room temperature have been normalized to the same

value.)
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Figure 5.2: Resistivity vs. temperature for several heavy-electron metals [26]

5.2 Heavy Fermion Superconductors

Heavy-fermion superconductors are materials in which superconductivityl emerges out

of a normal state with strong electronic correlations [28]. Of the vast number of metallic

compounds, only a small fraction enters a superconducting state at low temperatures, and

of this small number, an even smaller fraction develops superconductivity out of a normal

1A phenomenon when the electriGal resistivity of a material drops to zero. At a critical temperature

T c the specimen undergoes a phase transition from a state of normal electrical resistivity to a super­

conducting state. A bulk superconductor in a weak magnetic field will act as a perfect diamagnet with

zero magnetic induction in the interior. The superconducting state is an ordered state ·of the conduc­

tion electrons of the metal. The order is in the formation of loosely associated pairs of electrons. The

electrons are ordered at temperatures below the transition temperature and they are disordered above

the transition temperature.
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state in which electronic correlations produce orders-of-magnitude enhancement of the

conduction electron effective mass. This subset of materials, known as heavy-fermion su­

perconductors, has been an influential area of research in condensed-matter physics since

its first member CeCu2Si2 was discovered in 1979 [29]. In spite of progress, the heavy­

fermion problem and heavy-fermion superconductivity in particular remain a challenge

to, experiment and theory. Though heavy-fermion behavior has been found in several

structure types, it appears that, like conventional BCS superconductivity, heavy-fermion

superconductivity may be favored by particular crystallographic structures [28, 30]. Be­

cause .of the limited number of examples, very little is known about relationships that

might exist between the structure and properties of these materials. Any predictive un­

derstanding of how superconductivity can emerge in the highly correlated ground state

has to be able to explain why it appears in one crystal structure and not another. This

makes the discovery of a new prototype structure (like CeMIns) for heavy-fermion su­

perconductivity of special interest [30].

The interaction of magnetism and superconductivity is a significant and long standing

problem in condensed matter physics. Usually, the presence of magnetic order undermines

superconductivity, but in heavy fermion materials, superconductivity and magnetism can

coexist without deleterious consequences to the superconducting state. These systems

provide an opportunity to explore the interaction of magnetic and superconducting order

parameters as a function of temperature, pressure, or magnetic field [31].

In. a conventional superconductor, the binding of electrons into the paired states

that collectively carry the supercurrent is mediated by phonons, which are vibrations

of the crystal lattice [32]. The existence of magnetically mediated superconductivity

in some compounds could help shed light on the question of whether magnetic inter­

actions are relevant for describing the superconducting and normal-state properties of

other strongly correlated electron systems, perhaps including the high-temperature cop-
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per oxide superconductors [32]. Recent analyses of the features qf strongly correlated

superconductors present the magnetic interactions as being decisive in the mechanisms

for obtaining several kinds of fermionic coupling that generates superconductivity in a

variety of compounds. The transition to the superconducting state in these materials

seems to be caused by certain fluctuating magnetic waves that can be propagated either

in non-ordered systems or in materials that present ferromagnetic or anti-ferromagnetic

ordering [33]. It seems that, although there is no clear mechanism which fully satisfies all

the characteristic behavior of this superconductivity, phonons can be ruled out as being

responsible for the pairing. In these systems, the superfluid state seems to be parasitic

of its authentic phase transition that can be anti-ferromagnetic or even ferromagnetic

and whose energy interval is larger than that in which superconductivity occurs [33]. In

addition, the unusual temperature dependence of the specific heat for temperatures less

than Tc is a clear feature of unconventional superconductivity, which suggests node lines

in the superconducting gap, possible with an anisotropic pair potential arising from mag­

netic interactions. As is well known, the main behaviors of these heavy-fermion materials

are governed by the concurrence of band effects, hybridization of localized f states with

extended states, exchange interaction between these states, and Heisenberg interaction

between the loc~lized spins [33].

The presence of a strong magnetic interaction between 4f moments and itinerant elec­

trons in this class of compounds allows the possibility of non-phonon mediated coupling

between superc9nducting quasi-particles (a signature of unconventional superconduc­

tivity) and a superconducting order parameter with lower symmetry than that of the

underlying crystal lattice.

Soon after the discovery of superconductivity in CeCu2Si2 [29], several uranium-based

heavy fermion superconductors were discovered. The presence of a double transition in

UPt3 immediately identified this compound as an unconventional superconductor [34].
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Subsequent observations of power law temperature dependences of the specific heat and

thermal conductivity have been instrumental in identifying UPt3 (and other V-based

heavy fermion superconductors) as unconventional [34]. Until very recently, among Ce­

based heavy fermion compounds only CeCu2Si2 was shown to superconduct at ambient

pressure. Other Ce-based compounds with the ThCr2Si2 structure require application

of significant pressure (on the order of 20 kbars) before they exhibit superconductivity.

These include CeCu2Ge2, CePd2Si2, and CeRh2Si2 [34].

Recently, cubic CeIn3 was shown to superconduct under pressure of about 25 kbar,

with superconductivity mediated by magnetic interactions [35]. Heavy-fermion CeIn3 is

also involved in a new recently discovered class of HF superconductors, CeMIns, the

structure of which includes .CeIn3' In this new family CeMIns M can be Ir, Co or Rh.

One of its members - CeCoIns - is the material examined in this thesis. An overview of

existing literature about the CeMIns compounds can be found in the following section.

5.3 Heavy Electron Metal CeCoIns

5.3.1 An Overview of CeMIn5 FaIllily

Heavy fermion metal CeCoIns belongs to a recently discovered family of heavy fermions

with chemical composition CeMIns, where M = Ir, Co or Rh. The presence of an

appropriate magnetic ion - in this case Ce - enhances the effective mass m* of conduction

electrons by several orderS' of magnitude, thus creating one of the typical features of heavy

fermion metals. These compounds have attracted much interest in recent years due to

their similarity with cuprates: a quasi-two-dimensional (2D) structure and the proximity

of magnetic order [36, 33, 28, 37]. The ground state of these materials depends strongly

on the transition metal M, being anti-ferromagnetic for Rh, but superconducting for Ir

and Co. Alloying the different members of this family produces a rich phase diagram of
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superconducting and antiferromagnetic regions that can coexist with each other [38].

A question which is still open is the nature of the pairing interaction. The close asso­

ciation between antiferromagnetic order and superconductivity in heavy fermion systems

suggests that magnetic excitations may play an important role in pairing the electrons

[38]. Recent model calculations for magnetically mediated superconductivity show that

this really could be a possible answer and while the origin of superconductivity in heavy­

fermion materials is still unknown, there is growing evidence that it is magnetically

mediated. This seems to be the case as well in the CeM1n5 family [28]. A number of ex­

periments on this recently discovered family of heavy fermion superconductors CeRhln5'

Celrln5 and CeColn5 point to the existence of a non-Fermi-liquid (NFL) metallic state

in these compounds. Similar behavior is observed in other heavy-fermion materials and

is understood in terms of magnetic fluctuations near a zero-temperature critical point,

where theory predicts either JI rv -In(T) or JI == Jlo - AT1
/

2 depending on the dimension­

ality and nature of the magnetism [37].

Let us note here, that typical of a Landau Fermi liquid are that CIT and X are

constant as T ~ OK and that the resistivity behaves as P == Po + AT2 , independent of

the strength of electron-electron interactions as long as the concept of a quasiparticle

remains valid.

As an example from the CeMln5 family - there is a transition in Celrln5 to a zero­

resistance state at 1.2 K that is significantly above the bulk, T c ' as determined by specific

heat and susceptibility, and the resis~ivityvaries as P == Po +AT1.3 up to 5 K (and down to

0.06 K in a magnetic field sufficient to suppress superconductivity). This non-Fermi-liquid

(NFL)-like temperature dependence of the resistivity suggests that superconductivity in

Celrln5 develops near or at a quantum critical point (see next paragraph), with associated

spin fluctuations that are conducive to magnetically mediated Cooper pairing [39].

When the symmetry of the ground state of a system changes as a function of an
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external or internal parameter, the system is said to undergo a quantum phase transi­

tion. If, in addition, this transition is second order, the system has a quantum critical

point (QCP) at the critical value of the parameter. The competition between the nearly

degenerate ground states determines the behavior of the system over a range of tempera­

tures and tuning parameter values in the vicinity of the QCP. In this region of the phase

diagram the properties of the system differ from those on either side of the transition and

often exhibit unusual dependence on the temperature and the tuning parameter. This

has made quantum critical phenomena a subject of intense current interest [54].

The study of quantum critical points in heavy fermion systems has been the focus

of particular attention. In these materials the competition typically takes place between

a paramagnetic and a magnetically ordered ground state. The unconventional behavior

near a QCP is manifested in the deviation of the temperature dependence of measured

properties from those of metals described by the Landau Fermi liquid (FL) theory. (The

electronic specific heat is linear in temperature, C(T) == ryT, and the resistivity increases

quadratically from a residual value, P == Po + AT2
.) In systems tuned to a QCP, the

Sommerfeld coefficient ry(T) == CIT commonly diverges as the temperature goes to zero

and has been variously argued to behave as either logT or T Ci
, with a < o. A resistivity

with an exponent less than 2 is also ubiquitous in these compounds [54].

Tuning the system through a QCP can be accomplished experimentally by varying the

sample's composition, applying pressure, or applying a magnetic field. In nonstoichio­

metric compounds the Kondo disorder is an il:~portant mechanism leading to a non-Fermi

liquid (NFL) behavior. In these compounds it is not easy to separate this origin of NFL

b'ehavior from the consequences of the proximity to a QCP. Hence the stoichiometric

compounds receive more attention in the field of quantum criticality. One class of such

materials is the Ce-based compounds [54].

The superconductivity (BC) in the CeMIn5 (M == Co, Rh, Ir) heavy fermion com-
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pounds provides valuable information about superconductivity in the vicinity of a possible

QCP due to the excellent tunability of their superconducting properties with pressure

and magnetic fields. Besides a complicated phase diagram due to a competition/interplay

between magnetism and superconductivity, the superconducting properties as well as the

normal state ones around the QCP exhibit various anomalous behaviors such as NFL

power law dependence on temperature of the resistivity, pseudogap behavior above the

superconducting critical temperature, a continuous evolution from a second order to a

first order superconducting phase transition with magnetic field, etc... [40].

These materials provide the opportunity to study superconductivity in the vicinity of

a magnetic instability and help expand our understanding of magnetically mediated su­

perconductivity and its relevance to other strongly correlated electron systems. Evidence

for unconventional superconductivity in these Cerium based heavy fermion superconduc­

tors is mounting. Recent heat capacity experiments, thermal conductivity measurements,

and NMR relaxation rates reveal power law temperature dependences at low tempera­

tures. This has been interpreted as an indication of an unconventional superconductivity

with line nodes [41].

These materials are often compared to cuprates (copper oxides). While cuprate su­

perconductors were discovered almost two decades ago, a microscopic theory to explain

their high T c and anomalous normal state properties is still an area of ongoing research.

It has been suggested that the anomalous normal state properties arise from the proxim­

ity to a quantum phase transition associated with the o~set of spin density wave (SDW)

or charge density wave (CDW) ordering·in a Fermi liquid and that at optimal (or near

optimal) doping a quantum critical point occurs. The crossover from the pseudogap state

at underdoping to the Fermi liquid state in the overdoped regime is a consequence of the

model [55].

Though the issue of quantum criticality and superconductivity came to prominence in
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the context of cuprates, there have been several recent examples of this interplay in heavy

fermion compounds. Like the cuprates, unconventional superconductivity in Ce-based

heavy fermions develops out of a distinctly NFL normal state that evolves in proximity

to a continuous T == 0 antiferromagnetic transition, but (unlike the cuprates) this state

can be accessed cleanly by applied hydrostatic pressure and without introducing extrinsic

disorder associated with chemical substitutions. In addition to chemical inhomogeneity

in the cuprates, a further "complication" is the existence of a pseudogap state above Tc

for dopings less than optimal [53].

Characteristic of heavy-fermion systems, each member exhibits a large Sommerfeld

coefficient ~ (equal to CIT as T ~ 0) in the specific heat C. CeIrlns and CeCoIns are

bulk superconductors with transition temperatures at T c == 0.4 and 2.3 K and normal­

state values of ry ~ == 750 mJ/(mol.K2 ) and 1200 mJ/(mol.K2
), respectively. CeRhlns

displays heavy-fermion antiferromagnetism with TN == 3.8 K at ambient pressure, but

applied pressure of order 16 kbar can induce an apparently first-order transition from

the magnetically ordered state to a superconducting one with T c == 2.1 K [42]. A precise

value of its ~ is difficult to establish unambiguously because of the Neel order, but a

lower limit of approximately 400 mJ/(mol.K2
) has been set [39].

The temperature that CeColns was observed to superconduct at (Tc == 2.3 K), is the

highest Tc yet reported for a heavy fermion superconductor [28, 31, 33].

5.3.2 Crystal Structure of CeMIns

The crystal structure of the heavy-fermion metals CeMIns is a tetragonal lattice of the

HoCoGas type, space group P4/mm [28, 43, 33]. One way to view these materials is

as a composite of alternating Ce1n3 and MIn2 layers, where CeIn3 is itself a 3-D heavy

fermion superconductor (Tc == 200 mK at 25 kbar) [38,31]. The crystal structure of the

CeMlns family can be seen in Figure 5.3.
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Figure 5.3: The crystal structure of CeMIn5 compounds [44]
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The lattice constants for all of the CeMlns compounds can be found in table 5.2. The

structural model of CeColns has the following atomic coordinates: Ce at (0, 0, 0), Co at

(0, 0, 1/2), Inl at (1/2, 1/2, 0) and In2 at (0, 1/2, z == 0.3094). The 3rd row in table 5.2

is the positional parameter z (or zIn2) defined with respect to the lattice parameter c.

The 4th and 5th rows in the table represent the interatomic distances between the Cerium

and the Indium atoms in the ab-plane, and the Cerium and the Indium atoms out of the

ab-plane, respectively. The last row in the table shows the interatomic distance between

the transition metal M and an Indium atom.

I Ce1n3 I CeColns ICeRh1ns ICelrIns I
a [AJ 4.689 4.61292 4.656 4.674

c [AJ 7.5513 7.542 7.501

zIn2 0.3094 0.3053 0.3052

Ce-Inl [A] (x4) 3.3156 3.26183 3.292 3.3050

Ce-In2 [A] (x 8) 3.283 3.2775 3.272

M-In [AJ (x8) 2.7187 2.7500 2.7560

Table 5.2: Lattice constants for CeMlns family [43]

5.3.3 Growth of CeCoIns

Single crystals of CeColns were grown using an Indium flux method in the group of Dr.

Razavi at Brock University.

Heavy fermion CeColns was synthesized by combining stoichiometric amounts of Ce

and Co with excess of Indium in an alumina crucible and encapsulating the crucible

in an evacuated quartz ampoule. Because of the deep eutectic formed between Ce and

Co and the strong phase stability of Ce1n3' growth of CeColns appears to be optimized
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in dilute melts with a two-stage cooling process - an initial rapid cooling from 1220°C,

where the molten material is homogenized, to 750°C and then a slower cool to 300°C.

The resultant crystals are well-separated, faceted platelets with characteristic dimensions

2mmx 1mmxO.1 mm. The as-grown crystals have smooth, shiny surfaces. Crystals were

separated by heating the contents of the crucible to the melting point of In and then

extracting individual crystals from the melt using a small soldering iron and tweezers.

Excess In was removed from the crystal surfaces using an H20:HF:H20 2 4:1:1 etch.

Crystals after etching exhibited silvery, flat mirror-like surfaces and no polishing was

required for the later optical measurements. The method of the growth is very similar

to that reported by other authors [39, 28, 38, 30, 37, 45].
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The initial software and hardware equipment for the resistivity measurements using the

van der Pauw method were developed by M. Hildebrand, and details about the system

can be found in his MSc. thesis [12]. Further software development was carried out by

M. Janzen.

The van der Pauw technique was used to examine the superconducting transition of

the sample - the heavy-fermion material CeCoIn5' and to find the value of the transition

temperature T e •

A clean sample of CeCoIn5 with dimensions rv 2mmx1mmxO.lmm was mounted on

a glass plate with GE varnish (See Figure 6.1). The four contacts were made using silver

Figure 6.1: The sample of CeCoIn5 for van der Pauw resistivity measurement
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paste. Gold wire of thickness 50 pill was used to make connections to the probe. The

sample was then placed into a 3He cryostat and the temperature was lowered down to

0.5 K. After stabilizing (rv 30 minutes) the temperature was slowly increased by means

of a heat transfer from the 4He container up to 4.2 K. When all of the liquid 4He was

evaporated, the cryostat was left to slowly heat up through the thermal contact with

the environment. This kind of experiment lasts approximately 2 days. The resulting

resistivity vs. temperature dependence can be seen in Figure 6.2. As we can see in

20
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Figure 6.2: The ab-plane resistivity of the CeColns

the inset of Figure 6.2 in the range of low temperatures there is a sudden decrease in

the resistivity of the sample. (Below T rv 2 K the resistivity of the sample drops to
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an undetectable level and what we see in the inset of Figure 6.2 is the thermodynamic

resistivity noise in the circuitry used.) The superconducting temperature Tc rv 2.3 K,

which is in a very good agreement with the literature [28, 30, 41].

The resistivity of CeCoIns displays typical heavy fermion metallic· behavior with a

broad maximum in the resistivity close to rv 50 K, followed by a rapid decrease at

lower temperature. This behavior is generally attributed to a crossover from strong,

incoherent scattering of electrons at high temperature to the development of strongly

correlated Bloch states at low temperature. Below rv 30 K the resistivity of CeColns is

nearly linear in temperature, a functional dependence commonly found in magnetically

mediated superconductors and frequently associated with the proximity to a quantum

critical point [28, 41]. The low value of p at. rv2.4 K ( rv 3 jLDcm) indicates minimal

defect scattering. The inset of figure 6.2 reveals clear evidence for superconductivity:

zero resistance is achieved at rv 2.3 K.

6.2 Results for Magnetic Susceptibility

The details about the AC susceptibility measurements can be found in section 4.2.1 and

in the reference [22]. A similar cooling/warming technique was used as for the resistivity

measurement. Several chips of CeCoIns were glued with 5-minute epoxy (Mastercraft)

on a Saphire rod (see Figure 6.3) which was thermally anchored to the bolometer stage

inside the 3He cryostat. The system was then cooled down to 0.5 K (for cooling see

section 3.2) and after stabilizing, the temperature was allowed to increase slowly.

Results for two different sets of crystals can be seen in Figures 6.4 and 6.5. In

each Figure we observe a superconducting transition taking place at T c rv 2.3 K, which

confirms the result from the resistivity experiments and is again in very good agreement

with the known literature value. (These are "raw" data, uncorrected for the influence

of empty coils or their geometry, used only to observe the change in the response of the
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experimental system at the transition temperature.) The orientation of the magnetic

field during the measurement was approximately perpendicular to the ab-plane of the

crystals.

Note the two steps - two transitions - in Figure 6.5. The change in the magnetic

susceptibility at rv 3.4 K is due to an uncleaned remaining trace amount of pure Indium

flux on the sample. This is due to the fact, that the crystals with the best surfaces

were saved for the optical measurements. In spite of careful cleaning there was still some

Indium remaining in microscopic holes on the rough surface of the small pieces used for

the ac-susceptibility experiments. The ac-susceptibility thus reflects the transition to the

superconducting state of Indium at 3.4 K.

Figure 6.3: Chips of CeCoIns for measuring the magnetic susceptibility X

6.3 Conclusion from the Electric and Magnetic

Experiments

Both of the experiments confirmed there is a superconducting transition in the examined

sample of CeCoIns. The transition temperature was observed at Tc = 2.3 K. This

information confirms the quality of the samples used for the more complex experiments

of the optical properties of CeCoIns above and below the transition temperature. The

results of the optical measurements in the FIR region are presented in the following

sections.
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6.4 The FIR Optical Measurements

6.4.1 The SaIllple for the Optical Experilllents

58

To carry out optical measurements on any material one must have a flat sample of good

quality and of proper dimensions. The samples of CeColn5 are small thin platelets with

usual dimensions of 1 mm x 1 mm, or 1 mm x 2 mm. To increase the total reflecting

surface, a mosaic was built out of several pieces of CeColn5. One such a mosaic with area

f',.J 4 mm x 4 mm can be seen in Figure 6.6. The yellowish material is the 5 minute epoxy

used to glue the sample to the copper post. All the optical experiments were performed

on mosaics of CeColn5.

Figure 6.6: Mosaic of CeCoIn5 samples for optical measurements

6.4.2 Therlllal Reflectance

As has been already discussed in section 2.3 the first step involved in determining the

reflectance of a given sample is to measure the ratio of the intensity of light reflected
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from the sample to the intensity of light reflected from a reference mirror. This RATIO

is given by the following formula

RATIO = Reflectance (sample)
Reflectance (mirror)'

(6.1)

An example of experimental data of such a ratio for CeCoIns in the range of approxi­

mately (20 - 200) cm-1 at 0.5 K in the superconducting state and at 2.5 K in the normal

state can be seen in Figure 6.7.

--Superconducting State; 0.5 K
_._-- Normal State; 2.5 K
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0.4
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0.6 ,..----.------.----...-------------.....----
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Figure 6.7: The example of the RATIO-s for CeCoIns

If we divide two RATIO-s given by equation 6.1 obtained at different temperatures,

we will obtain the so-called "Thermal Reflectance". Thermal reflectance can be used to

compare the properties of the material in two different states. In this thesis it is used to

compare the superconducting state to the normal state of the given sample. An example

of the thermal reflectance at low frequencies can be seen in Figure 6.8. The thermal
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reflectance will reveal any change in the reflectivity below Tc. The optical functions are

interdependent, which means a change in the reflectance is the equivalent of a change

in the complex conductivity (or the complex refractive index), which of course reflects

changes in the electron energy states in the material.

If there is no change in the optical properties at the two temperatures, the thermal

reflectance would be unity for all wavenumbers. In practice there is always noise. If

there is a temperature dependent change above the level of the noise in the spectra,

this will be seen in the thermal reflectance as a distinct change in the region of relevant

wavenumbers. The thermal reflectance presented in this thesis is always the ratio of the

superconducting state (below T c at T == 0.5 K) with respect to the normal state (above

T c at T == 2.5 K).

The final result can be seen in Figure 6.9. This is the composite thermal reflectance
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obtained for one completed set of experiments carried out in two regions of the FIR.

The first region being approximately (10 - 30) cm-1 and the second region being ap­

proximately (30 - 100) em-I. For the filtering the fluorogold with black polypropylene

(cut-off frequency rv 60 em-I) and the diamond powder with the black polypropylene

(cut-off frequency rv 250 em-I) filters were used, respectively. The discrepancy between

cut-off frequencies and the frequency ranges of the resultant thermal reflectance is due to

the increasing noise, as one approaches the cut-off frequency of a given filter. (It should

be mentioned here, that due to the mosaic nature of the sample and the resulting very

small signals, to get this result 83 ratios of the low frequency range and 50 ratios of the

high frequency range were recorded within a time period of 2 weeks. One ratio here

represents· two step-and-integrate scans of the reflectance of the sample and one scan of

the reflectance of the mirror.) As we can see there is an apparent change in the thermal

reflectance below 50 em-1 .

The thermal reflectance of CeColn5 is shown together with the thermal reflectance of

the gold coated sample, which allows one to make a simple comparison with a very good

reflector in the FIR. The same experiments were carried out on the gold coated sample

as on the uncoated sample for a similar period of time. As can be seen from Figure 6.9

the feature is not present for the gold coated sample and the thermal reflectivity is close

to a unity, a behavior expected for an ideal mirror-like surface, with no temperature

dependence.

In Figure 6.10 we can see the uncertainties calculated for both ranges (low and high)

before the data were processed to make a smooth function with no discontinuities that

could be used for the Kramers-Kronig analysis. Standard deviations for both of the

ranges are below the value of 1.5 %. The data plotted together with the error bars still

preserve the decrease in the reflectance below rv 50 em-I.
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6.4.3 Absolute Reflectance
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To obtain the absolute reflectance of the sample the gold evaporation technique described

in section 2.3 can be used. However, the small dimensions of the mosaic sample used in

the optical measurements and the small change in superconducting state reflectance with

respect to the normal state, made it difficult to extract the absolute reflectance, because

the small difference is lost in the noise. That is, further division of the sample RATIO by

the one for the gold-coated sample according to the procedure outlined in section 2.3 to

obtain the absolute reflectance resulted in severe amplification of the noise, which made

the use of this procedure impossible.

Another possibility is to make use of the reflectance data for the sample in the normal

state, if this .is available in the literature. In this case, the thermal reflectance data are

multiplied with the absolute normal state reflectance of the sample itself. This yields the

absolute reflectance in the superconducting state. Singley et al [38] carried out optical

measurements on CeCoIns in a wide range of frequencies and temperatures. To extract

the superconducting state absolute reflectance we used their lowest temperature (10 K)

and lowest frequency data (25 - 100 em-I). The procedure is outlined in section 6.4.4.

Once the absolute superconducting state reflectance is known, Kramers-Kronig analysis

can be used to obtain the optical conductivity. However, in order to perform the Kramers­

Kr6nig analysis one must have as wide a range of data as possible. (Outside the range

of av:ailable experimental data extrapolations must take place.) We used the reflectance

of Singley et al at T = 10 K in the range (25, 2000) cm-1 (see Figure 6.11) and their

room temperature reflectance from 2000 cm-1 to 48800 cm-1 (see Figure 6.12). At high

enough frequencies the reflectance usually loses its temperature dependence justifying

the use of the high temperature data as the direct extrapolation for the low temperature

data. In the low frequency region, where there is a strong temperature dependence, one

must be much more careful. Here we have assumed that since the temperature difference
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between our normal state (2.5 K) and that of Singley et al (10 K) is not too big, that we

are justified in using Singley et al's low frequency data to extract our superconducting

state data. Furthermore, we assume, that Singley et al's 10 K normal state data from

100 cm-1 to 2000 cm-1 is a valid extension for our extrapolated superconducting state

data.

Taking Singley et al's two sets of data as a starting point, some manipulation was

required before KK analysis could be carried out. To be successful with the KK analysis

the extrapolations in the low frequency range (down to zero) and in the high frequency

range (until the reflectance decreases enough that free-electron behavior can be assumed)

must still be performed. Furthermore all regions of the reflectance, the modeled and the

measured ones must be linked, to make a smooth function without discontinuities.

To ensure that our extrapolations are reasonable we first attempted to reproduce

the optical conductivity obtained by Singley et al. In the low range of frequencies a

Hagen--Rubens reflectance with p = 6fLncm was used to extrapolate the data down

to zero frequency. In the high frequency range, the tail of Singley et al's data ([38])

was fit with a decreasing power law (w-O.30062). To overcome the difference in absolute

reflectance between the low temperature and high temperature data sets of Singley et al

at 2000 cm-1, the high temperature data was modeled in two different ways (see below)

to decrease more quickly towards the low frequencies (between 2000 cm-1 and 15000

cm-1). The software used for the Kramers-Kronig calculations requires the different

regions of the reflectanc~ to contain not more than 1024 points. The reflectance was

therefore divided into several files of different frequency increments. One of the resulting

absolute reflectances consisting of these files can be seen in Figure 6.13. This normal

state absolute reflectance was then used for Kramers-Kronig analysis to calculate the

optical functions.

As has been already mentioned above, the data set of Singley et al for the high
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Figure 6.13: Absolute reflectance of CeCoIn5; Experimental data and extrapo-

lations

frequency range (2000 cm-1 - 48800 em-I) was modeled in two different ways to link

with the low frequency data (25 - 2000)cm- l . In the first model a constant value of 900

cm-I was added to all of the wavenumbers thus creating a shift of the whole function

towards high frequencies. In the second model the high frequency data set was divided

into two regions, the first one in the range (2000 - 15000)cm-1 and the second one (15000

- 48800)cm-l . Only the values for reflectance in the region (2000 - 15000)cm-1 have

been changed, thus leaving the rest of the high frequency range of Singley et al's data

unchanged. This approach assures, that the significant peak at f".J 17000 cm-I is not

affected by the change in the function. The values for (2000 - 15000)cm-1 were changed

with a function f = v + 900 x [1 - (v - 1100cm-1)/13900 em-I], resulting in a smooth

connection to the previous data set (25 - 2000)cm- l . Both of the models were used for
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KK analysis with several different extrapolations in the low and high frequency limit.

This process was repeated several times to get the best match with Singley et al's

data. The best two results for the calculated real part 0-1 of the complex conductivity

are shown compared with the real part of the optical conductivity obtained by Singley

et al in Figures 6.14 and 6.15. As can be seen, the results match quite well. Since

the extrapolation used in Figure 6.14 matches better at low frequencies, we chose that

for the Kramers-Kr6nig analysis of the superconducting state, which is presented in the

following section.

6.4.4 Krarners-Kronig Analysis for the CeCoIns

The data shown in Figure 6.9 were used to calculate the optical functions in the su­

perconducting state. First the thermal reflectance was smoothed to suppress noise (see

Figure 6.16). Then it was multiplied with the extrapolated low frequency data of Singley

et al [38] to gain the absolute reflectance of the sample in the superconducting state.

The result can be seen in Figure 6.17. Note that data below 25 cm-1 is not reliable since

it is derived from extrapolations to Singley et al's data. The absolute reflectance was

then extrapolated at lower and higher frequencies as discussed in the preceding section.

The resultant data were used for Kramers-Kronig analysis. The real part of the opti­

cal conductivity obtained is shown in figure 6.18. The low frequency data is shown in

Figure 6.19. (The data for wavenu~bers less than 25 cm-1 were omitted, because they

are not believed to be reliable due toa lack of normal state data in this region.) As we

can see, there is a significant difference between the real part of the conductivity in the

normal.and superconducting state in the low frequency range (25 - 75)cm-1 with a peak

in the conductivity at rv 50 cm-1 . This behavior may be due to the opening of an energy

gap in the spectrum of excitations, however repetition of the optical measurement must

be performed to confirm this result.
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It is very important to note here, that this effort to. obtain the superconducting state

optical conductivity from our data can not be understood as an exact result, but rather

represents a best estimate with several caveats as discussed above. That said, this still

represents a very significant result, because to our knowledge, no other experimental

system is capable of carrying out absolute reflectance measurement at these low temper­

atures and frequencies. Suggestions for further work include measuring a larger mosaic

and/or large single crystals to confirm the t?ermal reflectance result of Figure 6.9 and

if possible to obtain the absolute reflectance directly, both above and below Tc. Mea-

surements of intermediate temperatures would also be valuable to see the temperature

evolution of this feature.
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The optical experiments on heavy-fermion superconductor CeColns in the FIR indicate

the opening of some type of an energy gap close to v rv 50 em-I. The thermal reflectance

obtained in the range of (10, 100)cm-I clearly reveals a change in the superconducting

state reflectance compared to the normal state reflectance of CeColns below 50 em-I.

Although the assumptions made in order to perform the Kramers-Kr6nig analysis imply

some uncertainty, these calculations can give us a reasonable first estimate of the optical

conductivity in the superconducting state. We note two important facts at this point:

1) The extrapolations for the low frequency range (towards zero frequency) and for

the high frequency range (decrease in reflectance in accordance with free-electron be­

havior) are common to all Kramers-Kronig (KK) analysis. One must perform these

extrapolations in order to gain the infinite range of frequencies required to compute the

corresponding KK integrals. These extrapolations imply that any time Kramers-Kronig

analysis is used it gives only an estimate for the final function and not an exact value

(though it may be very close to the exact value).

2) The data used for the interval, that is of greatest interest,· are obtained from our

measurements. This means, that even though the resultant real conductivity function

is not exact (due to the extrapolations used), the experimental change occurring in the

reflectance of CeColn5 upon entering the superconducting state will manifest itself in the

optical conductivity as well.

Further evidence for the feature observed in the thermal reflectance of CeCoIn5 can
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be found through comparison with an earlier experiment. Unfortunately, (due to a weak

signal, bad SIN ratio, and technical problems during the experiment) the resultant ther­

mal reflectance contains strong fringes. Still, after performing KK analysis on this earlier

data set (the same procedure was used), there is an evidence for a suppression in the real

part of the complex conductivity (j(w) at low frequencies.

Although the presence of the gap has not been incontrovertibly established, some

comparisons with other work can be made, which suggest that the results of the very far

IR spectroscopy measurements of CeColns are of considerable interest.

The frequency regime where we find a difference in the superconducting state re­

flectance and the normal state reflectance was also found to be of interest in the normal

state data of Singley et ale They identified the minimum in the optical conductivity near

60 cm'-1 (as can be seen in Figure 6.19) to a Holstein band. They suggested this Holstein

band could arise from the coupling of antiferromagnetic spin fluctuations to the heavy

quasi-particles.

Rourke et al carried out point-contact spectroscopy measurements on CeColns [50].

They observed an energy gap around 3 meV, which they attributed to the superconduct­

ing energy gap. Since tunneling experiments measure ~, this would correspond to an

energy of 6 meV (rv 48 em -1) in optical spectroscopy [51] ,. which measures 2~. This is

in very good agreement with the feature in our work.

The question that remains open is the character of this energy gap (assuming further

work supports its existence). That is, whether it is attributable to the superconducting

energy gap, as might be suggested by comparison with the tunneling work, or to the

opening of a gap in the spectrum of magnetic excitations.

Bonn et al [52] observed similar behavior for heavy-fermion metal URu2Si2 (exhibiting

both superconducting and magnetic ordering). They observed in the real conductivity

the development of a peak close to 60 cm-1, followed by a strong suppression below this
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frequency, as the temperature was lowered below the Neel temperature (TN = 17.5 K).

The shape of their conductivity is very similar to our own data. Taking into account

the work of Sidorov et al [53], there is a belief that CeColns is in a state close to an

antiferromagnetic (AFM) QCP (i. e. the development of an AFM state for T -7 0 K) at

atmospheric pressure. According to their assumptions, the AFM transition for heavy­

fermion CeColns may be at an inaccessible slightly negative pressure. (This conclusion

is made upon the comparison of CeColns to CeRhlns. CeCo1ns has a 1.7% smaller

cell volume than isostructural CeRhlns. CeRhlns is antiferromagnetic, but it becomes a

pressure-induced unconventional superconductor at rv 1.6 GPa. For more details see [53].)

They present a phase diagram which shows the opening of a pseudogap just above the

superconducting transition temperature Tc, a situation that is similar to the cuprates.

Confirmation of the existence of an energy gap close to 50 cm-1 in CeColns, would

provide a new challenge for the theory in the field of heavy fermion .physics.

To further investigate this intere~ting feature, improvements in the experiment must

be accomplished. One is to build up a bigger mosaic, and - if possible - out of bigger

single crystals (or, ideally to carry out measurements on a single large crystal). This

would improve the SIN ratio and enable one to determine the absolute reflectance of the

sample directly from the measurements. Further suggestions are to carry out experiments

in a wider range of frequencies and to run measurements at several temperatures below

Tc to observe the temperature evolution of this feature.
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A.I Fourier Series

Fourier series are expansions of periodic functions f(x) in terms of an infinite sum of sines

and cosines of the form [46]

00 00

f(x) = I: a~ cos(nx) + I: b~ sin(nx)
n=O n=O

(A.I)

Fourier series make use of the orthogonality relationships of the sine and cosine func­

tions, which can be used to calculate the coefficients a~ and b~ in the sum. The compu-

tation and study of Fourier series is known as harmonic analysis.

To compute a Fourier series, use the integral identities:

i: sin(mx) sin(nx)dx = 1rOmn n, m =I 0 (A.2)

i: cos(mx) cos(nx)dx = 1rOmn n, m =I 0

i: cos(mx) sin(nx)dx = 0

i: sin(mx)dx = 0

i 7r

7r cos(mx)dx = 0

(A.3)

(A.4)

(A.5)

(A.6)

where bmn is the Kronecker delta. Now, expand the function f(x) as an infinite series of

the form:

00 00 1 00 00

f(x) = I: a~ cos(nx) + I: b~ sin(nx) = 2"ao + I: an cos(nx) +I: bn sin(nx) (A.7)
n=O n=O n=l n=l
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where we have related the ao == 2a~ term for future convenience but set bn == b~and left

an == a~ for n ~ 1. Using the identities in (A.2 - A.6) we can write:

1 J1Tao == - j(x)dx
7r -1T

1 J1Tan == - f(x) cos(nx)dx
7r -1T

1 J1Tbn == - f(x) sin(nx)dx
7r -1T

(A.8)

(A.9)

(A.I0)

for n == 1, 2, 3, .... The series expansion converges to the function 1 (equal to the orig­

inal function at points of continuity or to the average of the two limits at points of

discontinuity) if the function satisfies the Dirichlet conditions [46].

For a function f(x) periodic on an interval [-L, L], use a change of variables to trans­

form the interval of integration from [-7r,7r] to [-L, L]. Let

I

7rXx=_·­
L

dx 7rdx'
L

Solving for x', x' == ~x. Plugging this in gives:

(A.II)

(A.12)

(A.I3)

The notation of a Fourier series can also be extended to complex coefficients. Consider

a real-valued function f(x)

(A.I4)
n=-oo

where

For a function periodic in [-~, ~] these become:

00

f(x) == L: Anei21Tnx/L
n=-oo

(A.15)

(A.16)
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An = ~ f: f(x)e-i27rnxfLdx (A.17)
2

These equations are the basis set for the extremely important Fourier transform,

which is obtained by transforming An from discrete variable to a continuous one as the

length L ~ 00.

A.2 Fourier Transform

The Fourier transform is a generalization of the complex Fourier series in the limit as

the length of the interval L ~ +00. Replace the discrete An with the continuous F(k)dk

while letting L~ k. Then change the sum to an integral, and the equations become [46]

f(x) = f: F(k)ei27rkxdk

F(k) = f: f(x)e-i27rkxdk

Here,

F(k) = Fx[f(x)](k) =f: f(x)e-i27rkxdx

is called the forward (-i) Fourier transform, and

(A.18)

(A.19)

(A.20)

(A.21)

is called the inverse (+i) Fourier transform. Note that some authors (especially physicists)

prefer to write the transform in terms of angular frequency w == 21r1/ instead of the

oscillation frequency v. However, this destroys the symmetry, resulting in the transform

pair

H(w) = F[h(t)] = i: h(t)e-iwtdt

1 100

h(t) == F-1[H(w)] == - H(w)eiwtdw
27f -00

To restore the symmetry of the transforms, the convention

1 100

g(y) == F[f(t)] == . fiC f(t)e-iytdt
y27f -00

(A.22)

(A.23)

(A.24)
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1 JOO .f(t) == F-1 [g(y)] == . /CL g(y)e'tytdy
y27r -00

is sometimes used [46].

A function f(x) has a forward and inverse Fourier transform such that:
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(A.25)

f(x) ==
f~oo e2i1l"kx[J~ j(x)e-2i1l"kxdx]dk for f(x) continuous atx

for f(x) discontinuous at x
(A.26)

provided that:

1) integral exists

2) There is a finite number of discontinuities.

3) The function has bounded variation. A sufficient weaker condition is fullfilment of

the Lipschitz condition [46].

A.3 Fourier Transform - Simple Example

In the precedent sections we could see how FT is defined and how it works from math-

ematical pont of view. For better understanding, let us consider one quite simple com-

posite signal. Suppose .we have three sinusoidal signals:

fl(X) == sin(IHz)

h(x) = ~ sin(3Hz)

1 .
h(x) = "5 sm(5Hz)

(A.27)

(A.28)

(A.29)

which can be seen in Figure A.I (a). If we mix these signals together, we will have a

single composite signal, which can be seen in Figure A.I (b). We can express this signal

as

F(x) = h(x) +h(x) + h(x) = sin(lHz) + ~ sin(3Hz) + ~ sin(5Hz) (A.3D)
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Figure A.I: The simple example for the process of Fourier Transform.

a) Three sinusoidal signals

b) Their time representation

c) Their frequency representation
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(A.31)

This can be understood as the time (or space) domain representation of measured signaL

Straight from its mathematical expression, we can think about this signal in other domain

- we can think about it as a sum of different frequencies with various amplitudes. Thus,

there are two (equivalent) ways of thinking (Figure A.I (b) and (c) ). We can work

with the signal (record it) as time dependant deviation, or as a sum of frequencies.

The technique for changing the signal from one domain to another one is the Fourier

Transform.

Note the shape of the signal in Figure A.1, it looks similar to the so-called boxcar

function

B(x) = f sin[(2n + l)Hz]
n=O 2n + 1

actually, the trial signal is a a part of this sum. This simmilarity is not a coincidence

and the example has been chosen on purpose. Boxcar function is a typical example used

in any introduction to F"TS (i.e. see Willimas [4]). It's easy to build up this function

according to formula A.31, but it is bringing another difficulty with it - so called Gibbs

phenomenon (see section 1.3.8 or Griffiths [8] for more details).
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Cauchy's Integral Formula
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Let fbe analytic in the simply connected domain D, and let C be a simple closed positively

oriented contour that lies in D. If ZQ is a point that lies interior to C, then [47]

j(zo) =~ r j(z) dz
21T2 Jc Z - ZQ

(B.l)
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Medium
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We begin with the basic set of equations for electro-magnetism - the Maxwell's equations.

We will consider, that there are no external sources (pext == 0) and that there is no spatial

variation in E (isotropic media) [48, 14, 12]. With these conditions, we can write the

Maxwell's equations as

\7·E==O

8H
\7 x E == -J-L­

8t

\7·H==O

8E
\7 x H = aE + E at

Using the vector identity

\7 x (\7 x E) == \7(\7 · E) - \72E

the equations predicting elecromagnetic waves may be obtained. These are

2 . 82E 8E
\7 E - EJ-L-. - J-L(J"- == 0

8t2 8t '

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

and a similar one for H. The solution of equation C.6, which is most useful for us,

describes a plane electromagnetic wave of angular frequency w. For these waves E and

H are perpendicular to each other and also to the direction of propagation. The solution
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of 0.6 at a point at distance z from a fixed origin measured along the direction of

propagation has transverse components [14]

E == Eoei(qz-wt)

where q is the wave vector and .is defined as

27f W
q=-==-

A u

(C.7)

(C.8)

u being the phase velocity and A the wavelength. It is more general to write q as if, the

wave vector, which is given by

-+ W-+
q==-u

u 2

Equation C.7 may be now written as

E == Eoei(q.r-wt)

A similar solution exists for the magnetic field H such that

1
H==-qxE

Wj1

(C.9)

(C.10)

(C.11)

The wave vector, or propagation constant, if, can be ··expressed in ter.ms of. the electric

and magnetic constants of the medium by differe~tiating eqn. C.7 and substituting in

eqn. C.6, to give

(C.12)

To' relate these quantities to the measurements which may be made in optical experi­

ments, we remember, that for a non-absorbing medium, the refractive index is defined

as c/u, where c is the speed of light in free space. For the absorbing case we define a

complex refractive index N == n + ik, such that

. c Iql
N == n + zk == - == c­

u W
(C.13)
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or

where c2 = (EoJ-lo)-l. Using eqn. C.12 we obtain
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(C.14)

(C.15)

From equation 0.15, the general relationship involving the index of refraction, dielectric

function and complex conductivity can be determined. Let's rewrite this equation in a

slightly different form

N 2 = (c2
fjo EO) fjrel (Erel + i..!!-) = fjrel (Erel + i-.!!-)

WEO WEO

Now we can define

where E(W) is a complex diel~ctric function. Now we can write

(0.16)

(C.17)

(0.18)

or as is usual in spectroscopy (after taking J-lrel = 1, which is true in most of the cases)

N(w) = VE(W)

(C.19)

(C.20)

which will give us the following relations for complex refraction index N (= n + ik) and

complex dielectric function E(= El + iE2)

E2 = 2nk

(0.21)

(0.22)

(C.23)
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(C.24)

(C.25)

k - ~[(El + E2)1/2 - El]1/2

A set of equations for the dielectric function E(w) and complex conductivity cr(w) can

be found, when we model the electrons within the dielectric material as a set of damped

oscillators. Solving the equation of motion will yield following relation for the complex

index of refraction

N2 = 1- (Jdc'Y 1
EO w2

- W5 + i~w

where crdc is the dc conductivity (at w = 0). The complex conductivity is related to the

complex index of refraction, according to:

N 2 = 1_i(J(w).
EOW

(C.26)

In the case of a metal, eqn. C.25.will change slightly by .setting Wo to zero, however the

general result C.26 remains valid. Now taking into account equation C.20 we have

2 2 0"2
tl = n - k = 1--

EOW
(C.27)

(C.28)

(Here, we still think of /-lrel = 1. At infrared frequencies the magnetic permeability /-lr

may usually be assum~d equal to unity [14].)

e.l Reflection at Normal Incidence

The reflectance of light at normal incidence onto an ideal solid surface can be derived

simply from a consideration of the boundary conditions for E and H at the interface [48].

For the electric field strengths we can write

(C.29)
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where subscripts i, rand t represent, respectively, the incident, reflected and transmitted

waves at the interface. A similar equation holds for H, but with a change in sign for Hr

(C.30)

(Here, we must remember that H is perpendicular to E in the sense, that E x H is in the

direction of propagation.) In the vacuum, H = (l/c/-Lo)E (or H = VEo//-LoE), whereas in

the medium

H = (EocN )E
l

J/-lrel

where c is the speed of light and we assume N == ..jE.

Thus, equations C.29 and C.30 become

(C.31)

(0.32)

(C.33)

where the relative permeability I-lrel has been taken as unity. Equations C.32 and C.33

are easily solved to yield a reflectivity coeffiecient

Er I-N
r------ E i - 1 +N

The reflectance is then given by .

Generally, the reflectivity coefficient is a complex number, so we can write

r(w) == p(w)eiB(w)

or

r (w) == p(w)(cos e+ i sin e)

(C.34)

(0.35)

(0.36)

(0.37)
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(C.40)

(C.38)

(C.39)

where we have separated the amplitude p(w) = JR(w) and the phase O(w) parts. Now

knowing that
1- n - ik

r(w) = 1 ok =p(w)(cosO+isinO)
+n+'l

r*(w) = ~ - n + ~~ = p(w) (cos 0 - i sinO)
+n-'l

R = (1- n? + k
2 = 1- 4n

(1 + n) 2 + k2 (n + 1)2 + k2

by adding and subtracting equations C.38 and C.39 and using C.40 we are able to find

out

k = 2VRsinO
1- 2VRcos() + R

l-R
n=------

1 --- 2VR cos () + R

(C.41)

(C.42)

which relate the complex refractive index to the reflectance, after the phase has been

determined by means of the Kramers-Kronig analysis (see Chapter 2).
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