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ABSTRACT

In light of the fact that literature on toxicity of heavy metals in non-acidified

freshwater systems is sparse, this project was initiated to conduct an environmental

assessment of Lake Gibson. Chemistry of soils from adjacent areas and vineyards in the

region provide a comparative background database. Water quality determinations were used

to identify and highlight areas of environmental concern within the Lake Gibson watershed.

A Shelby Corer was used to obtain 66 sediment cores from Lake Gibson. These were

sectioned according to lithology and color to yield 298 samples. A suite of 122 soil samples

was collected in the region and vicinity of Lake Gibson. All were tested for metals and

some for Total Petroleum Hydrocarbons (TPH). Evaluation of the results leads to the

following conclusions:

1. Metal concentrations ofAI, Cd, Cu, Cr, Pb, Ni, Fe and Zn in soils from the Niagara

Region are well below background limits set by the Ministry of the Environment

and Energy (MOEE) for provincial soils.

2. There is a spatial and depth difference for some of the metals within the various

soils. The Cr, Ni and Pb contents of soils vary throughout the region (p<O.05). In

addition, Pb contents tend to be highest in surficial soil samples (p<O.05), an

observation consistent with deposition by airborne particulates.

3. The Ni contents of sediments from Lake Gibson fall below the LEL (Lower Effect

Level) guideline specified by the MOEE for aquatic ecosystems.

4. All other metal contents exceed the LEL, and in some instances they also exceed

the SEL (Severe Effect Level) guideline. In this instance acute toxicity testing of
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the sediments is required to assess impact on the aquatic biota.

5. Specifically, effluents and discharges from outfalls, roadways, railways and

industrial activities are all degrading the local ecosystem.

6. Mineral oil and greases are a major environmental concern in the sediments of

Lake Gibson. Of the 240 samples tested for TPH, 200 samples exceed the MOEE

Open Water Disposal Guideline of 1,500 mg/kg.

7. Four areas within Lake Gibson are especially degraded with respect to TPH. One

area is just downstream from the Old WeIland Canal divergence point and

waterfall. Other areas of concern are located just south of Beaverdams Road and

just west of the Ontario Hydro control pipes; south of the Village ofBeaverdams.

The fourth area of environmental concern and TPH impact is located between

Highway 406 and Merrittville Highway.
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INTRODUCTION

Lake Gibson is situated atop the Niagara Escarpment, west ofthe WeIland Ship Canal

and south west of the City of Thorold (Figure 1). Marlatt's Pond and Lake Moodie are

located in the north-eastern and western parts of Lake Gibson (Figure 1). In 1905, the

flooding of low-lying land created this lake to act as a reservoir for hydroelectric power

generation. Its primary water source is the WeIland Ship Canal and ultimately Lake Erie.

Lake Gibson, a reservoir for the Decew Power Generating Plant, is also used for

recreational, municipal and industrial purposes. Residents use the lake for fishing (Figure

2) and swimming, and plans are in place for the development of Mel Swart Lake Gibson

Conservation Area along the north shore ofthe lake. The water from the WeIland Ship Canal

enters the Power Canal which is further diverted into a drinking water reservoir for St.

Catharines and other municipalities. Industrial and municipal effluents enter the lake via

several storm sewers and outfalls along the lake. Lake Gibson is considered a non-acidified

softwater lake, however much ofthe metal work done on freshwater environments deals with

acidified lakes, streams and rivers. It has been suggested/observed that in acidified lakes

metal speciation increases with decreasing pH, and hence increasing toxicity of the water

and metals (Brezonik et al., 1990). It is assumed that hardwater water lakes are less toxic

due to the presence of calcium and magnesium ions and their complexing capacity.
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Figure 1. Lake Gibson is located atop the Niagara escarpment, west of the WeIland Ship
Canal and south-west of the City of Thorold.
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Figure 2. Sport - fishing is a major recreational use ofLake Gibson.
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Metals in the Environment

Heavy metals are defined as elements with an atomic density greater than

6g/cm3 (Phipps, 1981). According to Holdgate (1979, p. 10) "Pollution is the introduction

by man into the environment of substances or energy liable to cause hazards to human

health, harm to living resources and ecological systems, damage to structures or amenity,

or interference with legitimate uses ofthe environment".

In general, natural and pristine freshwater ecosystems have low metal levels.

Background levels ofmetals in sediments ofthe Great Lakes Basin (Persaud et aI., 1992) are

given below.

Metal

Cadmium (Cd)
Chromium (Cr)
Copper (Cu)
Iron (Fe)
Lead (Pb)
Nickel (Ni)
Zinc (Zn)

Background Level (ppm)

4.2
1.1
25

31,200
23
31
65

Most trace elements, especially the heavy metals, do not exist in soluble forms for

a long time in waters since soluble fractions of trace cations are rapidly incorporated either

by clays or organic compounds and deposited in bottom sediments, or they are absorbed by

root tissues of aquatic plants. In aquatic systems, metals form complexes with ligands and

although they can remain in solution for extended periods of time, their ultimate fate is

deposition in the sediments. Sediments may be regarded as the ultimate sinkfor heavy metals

that are discharged into the aquatic environment (Pendias and Pendias, 1992, p. 27 ). Thus
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concentrations of trace metals in bottom sediments or in plankton reflect geochemical

anomalies ofthe bedrock as well as the different anthropogenic sources ofpollution (Pendias

and Pendias, 1992).

The behaviour ofmetals in sediments is complex and cannot be easily characterized.

This difficulty lies with the number of different forms in which metals can exist. These

forms, and the sediment components in which they can reside, have direct implications in

their bioavailability and rate of uptake by aquatic biota.

Chemical complexities of the behaviour of metals are not sufficiently understood

and the interpretation of the results is not necessarily straightforward or even, in some cases,

possible (Mance, 1987). The polluting effects of metals have been recognized for a long

time, and the adverse effects on aquatic environments have also been documented. For

example, in Japan itai-itai (ouch-ouch) disease occurred in villages along the Jintsu River

in 1947. The people developed painful skeletal deformities. It was due to waste waters from

a local Zinc mine and the disease was attributed to Cadmium (Mason, 1991).

In the context of human health, Pb in drinking water has been the focus of the press,

particularly as the source of Pb was not from effluents but rather from the dissolution of

domestic plumbing. In the 1960's, Zn and Cu were considered among the 5 commonest

toxic pollutants in rivers (Mance, 1987).

Contaminated sediment has been singled out as a major environmental problem

(Persaud et ai, 1992). The concern is that persistent toxic substances in sediment will

accumulate in fish, epibenthos and infaunal organisms. These contaminants may be

transferred to fish either because they feed on the organisms or come into contact with the
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sediments. These chemicals may be transferred again to wildlife, birds and eventually

people, if they eat the fish. The two processes through which this occurs are

bioaccumulation and biomagnification. The first refers to the selective uptake and storage

of a chemical, by an organism, from water or food. The latter is the accumulation of a

chemical through the food chain (Beamish, 1996). Primary sources of contaminants in

sediments are toxic chemicals in industrial and municipal waste water discharges, followed

by runoff from cities, towns and agricultural areas. Other sources include building of

shorelines with rubble, bricks, stones, concrete and loose earth (unless the fill is free of

contaminants). Furthermore chemicals from factory emissions may attach themselves to

particles of dust or droplets of water, which eventually fall back to the Earth in the form of

dust, rain, sleet, hail and snow. The analysis of water for heavy metals has many problems

associated with it. This includes low metal concentrations, variations in water (pH and

Hardness) and chemical speciation. Since sediments and biota contain higher concentrations

of metals, they provide useful information in relation to spatial and temporal trends and

possible hazard levels (Mance, 1987). Sources ofmetals include mining activities, industrial

waste waters, urban run-off and leachate from solid waste disposal sites.

Heavy metals important in fresh water and aquatic studies include Cd, Cr, Cu, Pb,

Hg, Ni and Zn. Their toxicity is related to speciation and many are capable of being

bioaccumulated (Hellawell, 1988). A slight increase of trace metal levels in lake waters

may be ecologically hazardous, because some elements such as Cd and Cu may have

negative impacts on the ecosystem, even at concentrations slightly above natural background

levels (Borg and Johansson, 1989). At very low concentrations Cd accumulates in tissue



7

and causes developmental abnormalities in fish. Furthermore, crustacea and algae tend to

be particularly sensitive to abnormal Cd incorporation (Hellawell, 1988).

The Ontario Provincial Ministry of the Environment and Energy set out Sediment

Quality Guidelines to protect the aquatic environment by setting safe levels for metals,

nutrients and organic compounds (Persaud et al., 1992). The guidelines used for the total

metal fraction are based on two parameters, which are the LEL and the SEL. LEL is the

Lowest Effect Level and at this level of contamination the chemicals in the sediment have

no effect on the majority of sediment-dwelling organisms, although acute ecotoxic effects

become apparent. The sediment is considered to be clean to marginally polluted.

Contamination in sediments that exceeds the Lowest Effect Level may require further testing

and a management plan. In areas where contaminants in sediments are at or above the LEL,

steps should be taken to control all point and non-point contaminant sources to the area.

The SEL is the Severe Effect Level, and at this level the sediment is considered heavily

polluted and is likely to affect the health of bottom-dwelling organisms (Persaud et al.,

1992). If the level ofcontamination exceeds the Severe Effect Level, then testing is required

to determine whether or not the sediment is acutely toxic. At this level a management plan

may be required. It may include controlling the source of the contamination and removing

the sediment.

The No Effect Level is defined as the level at which the chemicals in the sediment

do not affect fish or the sediment dwelling organisms. There is no transfer of chemicals

through the food chain and no effect is expected on water quality. This level was designed

to protect against biomagnification through the food chain.
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When metal concentrations exceed the LEL and/or SEL guidelines the health of

bottom-dwelling organisms may be affected. The effects can be magnified further up the

food chain. Lake Gibson supports relatively extensive areas of macrophyte growth. These

areas may be suitable spawning habitats for smallmouth and largemouth bass, northern pike,

carp, bullheads and catfish. Other species of fish found in the lake include suckers, perch,

crappie and goldfish (SNC/Sandwell Inc., 1990). These species of fish are capable of

bioaccumulating the metals found in the sediments, which may affect their health. But more

importantly, it could affect the health of local residents who catch and eat these fish.

Once the fish have bioaccumulated metals and other contaminants, other wildlife and

birds who ingest the contaminated fish can be affected. Mammals in the vicinity of Lake

Gibson include ducks, white-tailed deer, raccoons, meadow voles, skunks, squirrels,

chipmunks and cotton-tailed rabbits (SNC/Sandwell Inc., 1990). These mammals may be

affected by the water they drink. Reptiles and amphibians such as turtles, toads and frogs

may be affected as well if the sediments are disturbed and the metals become resuspended

in the water (Schmidtke, 1988).

The principal contaminants in urban runoff are Cu, Zn, and Pb, largely a result of

automotive activity and corrosion of metallic surfaces and fittings (Schmidtke, 1988). Most

contaminants in urban runoff are associated with suspended particulates. As a consequence,

effects of runoff should be fairly localized and concentrated in sediment depositional zones

near outfalls.
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In shallow lakes, sediment re-suspension and transport occurs throughout the lake

and contaminant effects may be more widely distributed. The significance of pollutants in

fresh waters is modified by characteristics of running waters, of which flow is most

significant. Flow can transport, disperse, and dilute pollutants from their point of origin.

Pollutants associated with sediments may be re-suspended during higher flows, and resettled

further downstream (Hellawell, 1988). Schmidtke (1988) discusses cross boundary

transport of toxic pollutants. Pollutants (such as metals) are not necessarily deposited at

source from which they come, but can travel over large distances. In the case of Lake

Gibson, the pollutants can come from the WeIland Canal, or even as far as Lake Erie which

flows into the WeIland Ship Canal. Lake Erie has its own pollution problems, some ofwhich

originate from upstream sources. Urban runoff, industrial wastes, phosphates and other

pollutants from these sources can travel from Lake Erie into the WeIland Canal, into Lake

Gibson and Marlatt's Pond, down the Twelve Mile Creek, into Martindale Pond, and

ultimately end up in Lake Ontario. The other possibility is that the pollutants may settle out

during any part of the route, depending on water flow. Pollutants can enter a freshwater

ecosystem via air deposition. Metal-containing particulates are washed from the atmosphere

by rain and snow. They are deposited in drainage basins and ultimately end up in rivers and

lakes. One metal readily deposited into water bodies from air is Ni (Fergusson, 1990).
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OBJECTIVES

The primary objective of this thesis is the environmental assessment of Lake Gibson

waters and sediments. The overall scope of the environmental assessment includes the

following components:

1) to evaluate the water quality and water chemistry of Lake Gibson,

2) to analyse sediments for their total metal contents and compare them to the MOEE

Provincial Sediment Quality Guidelines for Metals and Nutrients, and with soil

background concentrations of the Region,

3) to determine and evaluate the concentration of Total Petroleum Hydrocarbons (TPH)

in Lake Gibson sediments, and

4) to evaluate the distribution of metals and TPH in the sediments of Lake Gibson and

identify possible point and non-point sources.

BACKGROUND

History

Marlatt's Pond was created during the construction of the first WeIland Canal in

1829. Today, it is a portion of Lake Gibson. In 1897, a power canal was dug from

Allenburg through to Decew Falls (Figure 3). Its purpose was to provide water for the Power

Glen Power House, and the project was referred to as the Klondyke work after the gold rush

in the Yukon (Jubilee History of Thorold, 1897).

The Decew Power Plant was built in 1898 about 6 Ian south west from St.Catharines,

atop the Niagara Escarpment (Figure 3). The plant was the first in Canada to supply power
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Figure 3.- The Power House Water Supply and Diversion.
Water is diverted from the WeIland Ship Canal into Lake
Gibson which acts as a natural reservoir and forebay for
the Decew Power Generating Plant (Articles on Decew
Falls, 1958).
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by long distance transmission to consumers. The electrical power was transmitted from the

Decew Power Plant to Hamilton; a distance of 56 kIn (Articles on Decew Falls, 1958).

Need for additional hydroelectric power lead to the purchase of322 ha (800 acres) of land

south of the present City of Thorold, and to the damming of Beaverdam Creek, a tributary

ofTwelve Mile Creek. With the permission ofthe government, the Hamilton Cataract Power

Company commenced flooding ofthe area in December of 1904, and flooding was complete

in 1905. Several artificial waterways were formed as a result of this project: Lakes Gibson,

Moodie and Patterson with a total water surface area of 13.3 ha (33 acres; Jackson and

Wilson, 1992). Lake Gibson was constructed as a forebay reservoir for the Decew Power

Generating Plant. Water from Lakes Gibson and Moodie is conveyed through penstocks

down the Niagara Escarpment to the power plant below, a fall of 80.7m (265 feet;

SNC/Sandwell, 1990). The tail-race water is discharged into Twelve Mile Creek, which

empties into Lake Ontario (Figure 3). The lake was named after John Gibson, President of

the Dominion Power and Transmission Company Limited (Jackson and Wilson, 1992).

SURFICIAL BEDROCK

The stratigraphy in the Niagara Region is represented by the Niagara Escarpment

(Figure 4). The Paleozoic bedrock in the area is Ordovician to Silurian in age (Haynes,

1995). The area around Lake Gibson is underlain by gently dipping Palaeozoic bituminous

dolomite and shale, which represents the Eramosa Member of the Guelph Formation. The

bedrock in the area is covered by various glacial deposits. These Quaternary sediments

consist primarily of lacustrine stratified sand, silt and clay (Haynes, 1995).
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SOILS

Soils around Lake Gibson are classified as the Beverly, Brantford, Toledo and

Alluvium soils (Kingston and Presant, 1989). The Beverly soils consist of mostly lacustrine

silty clay, which is poorly drained with moderate to low hydraulic conductivity. The

material of the Brantford and Toledo soils is a lacustrine silty clay, and drainage varies from

moderately well to poor (Kingston and Presant, 1989). There are numerous deposits

consisting of sandy loam and sandy soils throughout the Thorold area (Jubilee book, 1897).

LAND USE

The land use around Lake Gibson has remained fairly static until the 1970s. Two

major roads, Merrittville Highway and Beaverdams Road transect the lake, and a small

residential community (Beaverdams Village, Figure 5) is located on the eastern periphery

ofLake Gibson (Figure 6). Some industrial complexes, leftovers from the Second WeIland

Canal, are located northeast of Marlatt's Pond of Lake Gibson. The major landuse, as seen

in the 1954 air photo (Figure 6), is agricultural on three sides of the lake. The Old and

current WeIland Canal form the eastern boundary of the lake watershed/basin.

In the forty years since, major institutional, commercial and residential, in addition

to roadway construction has taken place north of Lake Gibson (Figure 7). Brock University

sits on the shore ofLake Moodie, as do the Niagara Regional Government Offices. A major

subdivision, Confederation Heights, was developed, and is still expanding west along the

north shore of Lake Gibson (Figure 7). Further industrial development has taken place on

the north shore of Marlatt's Pond and the "New" WeIland Canal. A major roadway,



Figure 5. Cottage-type lifestyle along Lake Gibson, Village ofBeaverdams.

- (



Figure 6. 1954 Aerial photograph of Lake Gibson and the sllrrounding
area. Ontario l\ir Photo Library. [Niagara air photo: 1: 16000, L4304/28,
Photo 114, l-oronto, Ontario].



Figu[( 7. 1994 Aerial photograph of Lake Gibson. Arepresents Marlatt's Pond,
B is t~:~ \Velland Ship Canal. .~qllarills Flight Inc. [Niagara airphoto, 1:25000,
L7003. Photo 24. ~arkhaln. Ontario]. This photo has been reduced to 1:3 1,242.



18

Highway 406, traverses the western portion of Lake Gibson (Figure 8). For the most part

though, the lands south of Lake Gibson are under agricultural consideration. All of these

land use changes bring additional pressures and concerns to the lake, through illegal dumping

(Figure 9), discharges of effluents (Figure 10) and storm waters (Figure 11), and until

recently (early 1990s), sanitary sewage from the Village of Beaverdams (City of Thorold).

METHODOLOGY

Field Methods

Soils

A soil map and aerial photographs were obtained for the area surrounding Lake

Gibson. Based on the type of soil, sampling locations were chosen in areas that were

relatively undisturbed, primarily at the edges of open fields, in areas where the soils had not

been tilled, or in woodlots (Figures 12 and 13).

Soil samples were extracted using an AMS Auger. At each site, surficial samples

were taken at depths of 10 and 30 em, with the exception of Site 5 at which both samples

were taken at 10 em as the water table was near the surface. The soil samples were placed

in labelled plastic bags, and were stored in a cooler for transport to the laboratory. A log was

kept of the soil type occurring at each sampling location.

The methodology in sampling the viticultural areas of the Niagara Peninsula was as

follows: When permission to sample a number of vineyards was obtained from the

owners/operators, one of the conditions was that the vineyards' names would not be

mentioned in the written report; hence they will not appear in this thesis. The proposed



Figure 9. Asphalt shingles and other refuse are dumped along the shores of the lake
in forested areas.





Figure 13. Photograph of a typical sampling area.
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sampling agenda was to sample all vineyards on the same day.

Field work was carried out on May 22, 1997. This consisted of visiting each of the

9 vineyards and taking soil samples from three different locations within each vineyard, and

at three different depths, for a total of 9 soil samples per vineyard. The locations were chosen

as far away from buildings and roads as possible so that the samples would be representative

of natural background conditions.

Sediments

52 cores were taken from Lake Gibson (Figure 14), with 42 cores taken from a boat

and 10 cores (cores 60, 61, G1, C1, C2, C3, B1, Ex4, G2 and P1) taken from shore. 14 cores

were taken in Marlatt's pond, all of them from shore. The cores were collected between July

1995 and September 1997. The samples were taken from areas where deposition of fine

grained sediment would occur. In some places the sediment was so waterlogged that it

drained out of the sampler and therefore a sample could not be obtained.

All cores were taken with a Shelby Tube Corer. Inside the stainless steel case was

a clean 30 cm plastic sleeve. When a larger corer was used, 50 cm and 1m long plastic

sleeves were utilized. Once the core was retrieved, the sleeve was capped with a red plastic

cap to denote" top" and a black plastic cap denoted "bottom". The sleeves were placed in

a cooler for transport to the laboratory.
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Water

On July 24, 1995, temperature, pH, salinity, turbidity, conductivity, and dissolved

oxygen readings were taken at sites 1,2 and 4-9 of Marlatt's Pond, with a Horiba V-IO

Water Quality Meter. Water quality readings were taken at 16 sites around Lake Gibson

(sites 3, 10-24) throughout the summer of 1997 (Figure 15). The data are listed in Appendix

1. All readings were taken no more than four ft. from shore. Equipment used included a

Horiba VI 0 Water Quality Meter, a Hach Conductivity/TDS Meter and a Hach pH/Eh meter.

The Horiba was calibrated for pH with pH buffer solutions of pH 4, 7 and 10 prior to each

use. The electrodes were rinsed with deionized water after and between each use, and were

stored in water. The calibration for conductivity was done using a 1,000 ppm NaCI (sodium

chloride) solution and the calibration for turbidity utilized a Formazin solution of 800 NTU.

The Eh/pH electrodes were stored in a 2 molar KCL (potassium chloride) solution. The

electrodes were rinsed with deionized water after each use and stored in their respective

solutions.

In the field, the probe was gently lowered into the water, the Horiba was turned on,

once the readings stabilized, a reading was taken and recorded in a chart or field book. The

electrodes were rinsed with double deionized water and stored in tap/lake water in between

stations.
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Lab Methods

Soils

In the laboratory, the soil samples were frozen until they were ready to be processed.

The frozen soil samples were sectioned according to texture (sand, silt or clay) and color.

Subsequently, the samples were freeze dried for two days.

After freeze drying, all samples, both from around Lake Gibson and in the Niagara

Peninsula viticultural areas, were disaggregated. Approximately O.6g of sample was

weighed out for each. An aqua regia digestion procedure (a modification of U.S. EPA

Method 3050), and a magnesium chloride extraction method (a modification ofTessier et al.,

1979) were carried out.

All samples were analysed by flame atomic absorption spectroscopy (AAS).

Samples, duplicates and blanks were analysed for AI, Cd, Cu, Cr, Pb, Ni, Fe and Zn.

Accuracy of methodology was confirmed by evaluation of National Institute of Standards

and Technology (NIST) standard reference material (SRM) 2704 (Buffalo River Sediment).

Data are listed in Appendix 2. All statistical evaluations were determined by One Way

ANOVA using the Minitab Program. Statistics were used to order to verify apparent

differences in metal concentrations occurring within the 9 vineyards.

Sediments

Once the cores were transported to the laboratory, they were placed in the freezer.

The sediment was extracted from the sleeve by running a little hot water on the outside of

the sleeve to loosen the sediment from the core, then the sediment was extracted with a clean
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stainless-steel rod. The core was rinsed with deionized water and then sectioned according

to lithology (Appendix 3), which was recorded in a log book. The sample was taken from the

middle of the core to minimize smearing and thus avoid cross contamination. Each sample

was measured, described, placed in a clean, labelled 100 mL glass beaker, and placed in a

freeze dryer (freezer for 1 day, in vacuum for 4 days). Once the samples were freeze-dried,

they were disaggregated using a clean glass test tube. Approximately 0.5g of each sample

was taken for total metal analysis.

The samples taken from Marlatt's Pond were sieved into 4 size classes, <60 flm, 60

120flm, >150 flm, and a coarse-grained size. Ideally the smaller size fraction is preferred

as it is likely to contain the greatest amount of contaminants (Mudroch and Duncan, 1986).

However, due to a lack of sufficient fine grained sediment, one size class of <150 flm was

utilized for the Marlatt's Pond samples. Upon consultation with a commercial laboratory that

follows MOEE guidelines, it was discovered that they do not sieve their samples, they

simply disaggregate them and take a sub sample. Upon freeze drying, the Lake Gibson

sediment samples were handled according to commercial laboratory procedures.

TPH Extraction

Approximately 1 to 5 grams of sediment per sample was weighed out and placed into

plastic bottles. 20 mL of hexane was added to extract the oil and grease. The jars were

placed in a rotator for one hour, after which they were removed and the sediment was

allowed to settle. The supernatant was pipetted into a funnel which contained a plug made

up of glass wool, silica gel (approximately 1 g) and a layer of anhydrous sodium sulfate (2
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g). The solution was filtered through this system into pre-weighed aluminum weighing trays.

Once the hexane evaporated, the tray was weighed. This procedure was carried out again,

for a total ofthree times. After the last rotation, the bottle was placed in a sonic bath for half

an hour to further extract any remaining oil and grease from the sediments. The data are

listed in Appendix 4.

Chemical Extraction of Total Metals

Marlatt's Pond Samples 1-14, 37a, 38a and 39a were analysed using the following

procedure: Approximately 0.25g of each sediment sample was weighed out and placed in

a Teflon beaker. The sediment was digested using the following procedure:

- preheat hotplate to 92 degrees centigrade

- to each sample add a total of 30 mL of Aqua Regia, 1 mL Hydrogen Peroxide and 2 mL

Hydrofluoric acid at time intervals of fifteen minutes

- cover the beaker with a watch glass and place on the preheated hotplate

- remove the solution from the hot plate once it boils down to approximately 5 mL and

allow it to cool

- filter the cooled solution through filter paper and into a 10 mL volumetric, bring to mark

with quadruple deionized water.

- pour the solution into a labelled test tube and store in the fridge until ready for

analysis.
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The remaining samples were digested by an Aqua Regia digestion procedure (a

modification of U.S. EPA Method 3050) as follows:

Weigh out approximately 0.5g sub sample and put it in a labelled glass beaker.

- add 10 mL of 1:1 HN03 and water, cover with a watch glass and place on the hot plate.

After 15 minutes remove the sample from the hot plate and allow it to cool.

-when cool add 10 mL concentrated HN03, cover with watch glass and place on hot

plate. After 30 minutes remove it and allow it to cool.

- when cool add 2 mL hydrogen peroxide, cover with watch glass and place on hot plate.

After 30 minutes remove it and allowed it 'to cool.

- when cool add 10 mL 1: 1 HCI, cover with watch glass and place on hot plate for

3 hours or until it refluxes down to 25 mL mark on beaker, remove from hot plate and

allow to cool.

- filter the cooled solution into a 25 mL volumetric, top to 25 mL mark with quadruple

deionized water, and store in plastic bottles in fridge at 4°C until ready for analysis.

QAlQC Procedures

Blanks were utilized to ensure that cross contamination did not occur, and to show

the purity of water and acids used. Duplicates were used to show that the results could be

reproduced. NIST (National Institute of Standards and Technology) standard reference

material (SRM) 2704 (Buffalo River Sediment) was used to show the reliability of the

extraction method.
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All glassware, bottles, caps, etc. were cleaned with soap and water, rinsed three times,

and then further cleaned with aqua regia, then rinsed 3 times with quad- deionized water.

All sampling instruments were rinsed with distilled and deionized water, as well as

calibrated properly before each use. Laboratory handling equipment such as spatulas, mortar

and pestle etc., were rinsed before use and between individual samples. HN03 and HCI were

purified in a quartz still. Water was distilled and quadruply deionized. Every precaution was

taken to avoid sample contamination. The AAS analysis, accuracy and precision

determination all follow standard Good Laboratory Practices (GLP).

The samples, duplicates and blanks from all metal extraction procedures were

analysed on a Varian Spectra AA-400P Atomic Absorption Spectrometer by air acetylene

flame for Cd, Cu, Ni, Zn, Fe and Pb. Nitrous Oxide combined with air acetylene was used

to analyse for Al and Cr. Accuracy ofmethodology was confirmed by evaluation ofNational

Institute of Standards and Technology (NIST) standard reference material (SRM) 2704

(Buffalo River Sediment). Data are listed in Appendix 4. Precision was calculated through

the use of duplicate samples.

The samples, duplicates and blanks for TPH evaluations were determined by

gravimetric means. Accuracy was determined through spike recovery.



31

SOIL EVALUATION

INTRODUCTION

Soil Formation

Soil is a natural body, having both mineral and organic components as well as

physical, chemical and biological properties. The composition of soils is extremely diverse

and is governed by many different factors, of which climatic conditions and parent material

are the most significant. Soil is formed by the weathering of rock(s) as the result of

interactive geological, hydrological and biological processes (Manahan, 1993). Soil is

composed of three phases, solid, liquid and gaseous (Kabata-Pendias, and Pendias, 1992).

Lithogenic elements are those which are directly inherited from the lithosphere

(parent material). Pedogenic elements are of lithogenic origin also, but their concentration

and distribution in soil layers and soil particles are changed due to pedogenic processes.

Anthropogenic elements are those deposited into soils as direct or indirect results of human

activities (Kabata-Pendias, and Pendias, 1992).

Distribution ofheavy metals in soil profiles is often uniform, although bioactivity and

leaching may redistribute elements within the soil profile (Harmsen, 1977). As long as heavy

metals remain tightly bound to solid soil constituents, there will generally be little effect on

the environment. When soil conditions change in such a way that heavy metals go into

solution, the increased content of heavy metals in the soil can impose a direct environmental

hazard (Sposito, 1984). Environmental effects of heavy metals are governed by their

mobility, which, in tum, is governed by their solubility. Significant increases in solubility

occur by lowering soil pH, waterlogging the soils and increasing microbial decomposition
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of organic material. Precipitation and adsorption reactions also tend to increase solubility

(Harmsen, 1977).

Soils function as a filter to protect groundwater from inputs of potentially harmful metals,

and act as a geochemical sink for contaminants (Alloway, 1995). The persistence of

contaminants in soil is much longer than in other compartments of the biosphere, and

contamination ofsoil, especially by heavy metals, appears to be virtually permanent (Kabata

Pendias, and Pendias, 1992). The factors controlling the total and bioavailable

concentrations ofheavy metals are ofgreat importance with regard to both human toxicology

and agricultural productivity since the most important role of soil is in supporting the

production of food (Manahan, 1993).

Soils Located in the Study Area

The Regional Municipality of Niagara has many geologic and physiographic

features. The features associated with Lake Gibson and its surroundings are the Haldimand

Clay Plain and the Iroquois Bench (Figure 16). The Haldimand Clay Plain is composed of

clay soils, predominantly silty clays. In areas where the clay deposits thicken to >1m, these

represent the Beverly and Toledo soils (Kingston and Presant, 1989).

The predominant soil types in the vicinity of Lake Gibson are Alluvium, Beverly,

Brantford and Toledo soils. Soil types and sampling stations are illustrated in Figure 17.

Alluvium soils are associated with alluvial sediments on flood plains, and their

physiographic features tend to be active river and stream flood plains. The Beverly,

Brantford and Toledo soils consist of glaciolacustrine silty clays. They are associated with
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deep water lacustrine silty clay and clay. The Toledo soils are poorly drained, the Beverly

soils are imperfectly drained, and the Brantford and Alluvium soils are well drained,

although the Alluvium can have variable drainage. These soils have various agricultural land

uses and are used for grass forage crops, small grains, corn, soybeans, winter wheat and

alfalfa. Near the Niagara Escarpment, hardier fruit crops such as labrusca grapes, apples,

plums and pears are grown (Kingston and Present, 1989).

Environmental Guidelines

Although the particle size compositions of the Alluvium, Beverly, Brantford and

Toledo soils are known, literature pertaining to the heavy metal chemistry of these soils is

unavailable. This study was initiated in order to establish the background concentrations for

AI, Cd, Cr, Cu, Fe, Ni, Pb and Zn for the soils in the vicinity of Lake Gibson and to

characterize the soil chemistry of vineyards in the Niagara Region (Figure 18).

Remediation action is required wherever contaminants are present at concentrations

above ambient (background) levels. The Ministry of the Environment and Energy (MOEE)

defines ambient or background concentrations as the level of a substance in the local area

(Phyper and Ibbotson, 1994). Chemical results of the samples were compared to several

guidelines in order to assess the heavy metal content in the soils. The Guideline for use at

Contaminated Sites in Ontario, Soil Remediation Criteria, Table F was used to compare the

obtained metal concentrations to Ontario Typical Range Soil Concentrations (background).

The total metal content was compared to Table A (MOEE, 1996). This table is applicable

for surface soils in agricultural, residential/parkland and industrial/commercial land use for

a potable groundwater condition.
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RESULTS

Total Metal Fraction- Soils surrounding Lake Gibson

There is no significant difference (p >0.05) between the concentration of AI, Cu, Cr,

Ni, Pb, Fe and Zn within the four different soil types, but there is a statistical difference in

Cd concentrations between the four different soil types (p=0.045). The mean Cd

concentration in the Beverly soil samples is 0.08 ppm, whereas the mean Cd concentration

in the Alluvium, Toledo and Brantford soils are 0.19,0.29 and 0.20 ppm, respectively (Table

1).

Table 1. Mean Cd concentrations and P-values for metal concentrations as compared for the
Alluvium, Beverly, Brantford and Toledo soils, as obtained by a One Way ANOVA.

mean (ppm) Al Cd Cu Cr Pb Ni Fe Zn

Alluvium 35,418 0.19 16 43 10 25 23,317 649

Beverly 41,776 0.08 20 51 8 31 25,701 688

Brantford 39,322 0.20 20 49 6 28 26,940 695

Toledo 53,001 0.29 19 55 7 28 26,771 714

p-value 0.213 0.045 0.628 0.230 0.593 0.542 0.696 0.886

Although there is a statistically significant difference in Cd concentrations between

the four different soil types, all samples are below the MOEE (1996) background value of

1 ppm. Furthermore, all samples are below the 3 ppm Soil Clean-Up Criteria (MOEE, 1996)

in Table A (Appendix 2).
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The background concentration for Cu and Pb is 56 ppm. All soil samples contained

less than 35 ppm of Cu and Pb. Furthermore, all samples are below the Soil Clean Up

Criteria (Table A) of 150 and 200 ppm, respectively.

Chromium concentrations for 6 samples are above the background value of 67 ppm.

Background exceedances occur in Brantford (3-2), Beverly (10-3, 14-2, 15-2) and Toledo

(12-1, 12-2) soil samples. The spatial distribution of these samples is random. None of the

samples exceed the Soil Clean Up Criteria (Table A) for Cr of 750 ppm.

Two Beverly soil samples, 14-2 and 15-2, are above the background concentration

of 43 ppm for Ni. The average Ni concentration for each of the different soil types is less

than 30 ppm, and below the Soil Clean Up Criteria (Table A) of 150 ppm.

Soil background concentrations of Zn should be less than 150 ppm (MOEE, 1996).

All the soil samples were below the background and Soil Clean Up Criteria (Table A) for Zn.

Background concentrations for Al and Fe are not given in Table F. Based on the data

gathered, it is proposed that the background concentration should be 66,518 ppm for Al and

35,085 ppm for Fe. These numbers are based on the 90 percentile of all samples collected

and analysed for Al and Fe, following the procedure outlined by the MOEE Aquatic

Sediment Quality Guidelines (1992).

The metal concentrations ofall samples, regardless of soil type, were pooled into one

of two categories: surficial samples or samples taken at depth. Surficial samples were those

taken at a depth of 10 cm, samples at depth were those taken at 30 cm.

The mean Al surficial concentration is 37,965 ppm and at depth it is 48,001 ppm.

Although Al concentration appears to increase with depth, statistically there is no significant
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difference (p ==0.062) between Al concentrations in surface samples and samples taken at

depth (Table 2).

Table 2. P-values and various mean metal concentrations occurring in soil samples
collected at depths of 10 and 30 cm, as calculated by the statistical package
Minitab, are given below. Statistically significant values (i.e. p< 0.05) are
indicated in bold.

Al Cd Cu Cr Ni Pb Fe Zn

p-value 0.062 0.174 0.001 0.024 0.009 0.000 0.015 0.185

mean concentration 37,965 0.20 16 46.5 25.5 10.8 23,679 718
10cm depth (ppm)

mean concentration 48,001 0.12 22 54.4 32.5 4.1 28,292 655
30cm depth (ppm)

The mean Cd surficial concentration is 0.19 ppm and at depth it is 0.16 ppm. The

mean Zn surficial concentration is 72 ppm, whereas at depth it is 66 ppm. Although it

appears that the concentrations of Cd and Zn are decreasing with depth, these concentrations

do not vary significantly with depth (p=0.174 and 0.185, respectively).

Cu, Cr, Pb, Ni and Fe all show statistically significant differences in metal

concentration with depth (p= 0.001, 0.024, 0.000, 0.009 and 0.015, respectively). Cu

concentrations are higher at 30cm depths in 11 of the 18 sampling locations. At 7 locations

Cu concentrations are higher at the 10 cm depth. For the majority of the samples, there is

a large difference in the Cu concentration between the two depths at each site. Cr, Ni (Figure

19) and Fe show the same general pattern. At sites 4, 8, 9, 13, 18 and 19 higher

concentrations ofCu, Cr, Ni and Fe occur at the 10 cm depth whereas all other sites show
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higher concentrations at the 30 cm depth. Although the difference is statistically significant,

the spatial variation between these 6 sites is random.

Pb also shows a wide range in concentration between the 10 cm and 30 cm depths at

each sampling location (Figure 20). Unlike the other metals there is a significant difference

(p<0.05), with higher Pb concentrations occurring at 10 cm depth.

Total Metal Fraction- Soils from Viticultural Areas, Niagara Peninsula

There are three soil samples that were above the Guideline for use at Contaminated

Sites in Ontario, Table F (Ontario Typical Range soil concentrations (background) for Cu.

Those samples are I-lb, 1-2b and 6-1c. These samples have copper concentrations of 74,

75 and 60 ppm, respectively.

In all other soil samples, metal concentrations are below the Guideline for use at

Contaminated Sites in Ontario Table A (Surface soil and Groundwater criteria for

agricultural, residential/parkland, industrial/commercial land-use for a potable groundwater

condition (Appendix 2). Thus there is no soil contamination problem with respect to AI, Cd,

Cr, Ni, Pb, Fe and Zn.

All samples, irrespective of vineyard, were pooled into three depth categories of 10

cm, 30 cm and 60 cm. There is no statistical significance for metal concentration varying

with depth for AI, Cd and Cu (Table 3). There is a statistical difference between Cr (p==

0.001), Ni (p==O.OOO), Pb (p==0.004), Fe (p==0.032) and Zn (p==0.034) concentrations and

depth. It appears that Cr, Ni (Figure 21) and Fe concentrations are lower at the surface (i.e.

10 cm) and concentrations increase with depth. This could indicate that Cr, Ni and Fe are
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leached down through the soil profile. Pb shows the reverse trend, having higher

concentrations at the surface and decreasing concentrations with depth (Figure 22). This

may be attributed to the deposition of lead-carrying airborne particulates. Zn

concentrations are similar to Pb concentrations in that they are higher at the surface and

decrease with depth.

Table 3. Statistical analysis of soils from vineyards of the Niagara Peninsula (p-values and
mean concentrations; in ppm).

Al Cd Cu Cr Pb Ni Fe Zn

p-value 0.188 0.435 0.961 0.001 0.004 0.000 0.032 0.034

10 cm 24,817 0.22 24 33 10 14 23,577 59

30cm 33,830 0.23 23 40 5 17 25,713 51

60cm 30,581 0.17 24 42 4 22 28,128 48

The mean metal concentrations and p-values from all 9 vineyards are listed in Table

4. There is a statistical difference in Cu, Cr, Pb, Ni and Fe concentrations occurring within

these vineyards. Copper concentrations were highest in Vineyards 1 and 6, and lowest in

Vineyards 4 and 7 (Figure 23). Zinc concentrations were higher in Vineyards 2 and 5, and

lower in Vineyards 8 and 9 (Figure 24).

Chromium concentrations were higher in Vineyards 2, 3,4, 5 and 6, and lower in

Vineyards 1,7,8 and 9 (Figure 25). Iron concentrations exhibit the same trend as chromium,

being higher in Vineyards 2, 3,4,5 and 6, and lower in Vineyards 1,7, 8 and 9 (Figure 26).

Pb concentrations were highest in Vineyards 1 and 8.
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Figure 24. There is a statistical difference in soil zinc concentrations occurring in the
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9 vineyards. Vineyards 2, 3,4 and 5 have higher iron concentrations, while
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Table 4. p-values and mean metal concentrations for the 9 vineyard soil samples. All
concentrations are in ppm and statistically significant differences are in bold.

Al Cd Cu Cr Pb Ni Fe Zn

p-value 0.108 0.395 0.001 0.000 0.016 0.083 0.000 0.000

Vineyard 1 23,188 0.32 35 31 14 13 22,614 55

Vineyard 2 36,242 0.17 26 44 4 21 28,706 68

Vineyard 3 35,264 0.22 26 44 6 20 28,842 60

Vineyard 4 32,301 0.22 17 40 5 17 28,375 44

Vineyard 5 38,074 0.20 22 47 6 20 31,494 63

Vineyard 6 33,665 0.17 34 44 4 22 30,159 56

Vineyard 7 20,517 0.27 14 33 4 15 21,369 48

Vineyard 8 32,152 0.13 23 31 9 15 21,223 38

Vineyard 9 16,281 0.13 19 29 5 16 19,471 40

Originally it was thought that the differences in metal concentrations may be due to

the geographic locations of the vineyards. The most obvious breakdown, based on

geography, was to place the samples into one of two groups, those being above the

escarpment and below the escarpment. Based on this categorization scheme, there was no

significant difference for the Cd, Cu, or Pb concentrations. AI, Cr, Ni, Fe and Zn

concentrations were higher in the samples taken above the escarpment (Table 5).
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Table 5. p-values and mean metal concentrations for vineyard soil samples classified as
taken above or below the escarpment. All concentrations are in ppm and
statistically significant differences are in bold.

Al Cd Cu Cr Pb Ni Fe Zn

p-value 0.011 0.986 0.351 0.000 0.259 0.043 0.000 0.002

above 35,470 0.20 22 44 5 20 29,354 59

below 25,161 0.20 25 34 7 16 22,967 48

The statistics indicated that a third area existed, so the samples were re-organized

to include Niagara-on-the-Lake, and the samples were statistically re-evaluated. With

this classification scheme, there were no statistical differences in Cd, Ni and Pb

concentrations. There were differences in AI, Cu, Cr, Fe, and Zn concentrations. Soil

samples from Niagara-on-the-Lake have lower Cu, Cr, Fe and Zn concentrations than

samples from other geographic locations (Table 6).

Table 6. p-values and mean metal concentrations for the vineyard soil samples
classified as Niagara-on-the-Lake, above and below the escarpment. All
concentrations are in ppm and statistically significant differences are in bold.

Al Cd Cu Cr Pb Ni Fe Zn

p-value 0.038 0.462 0.000 0.000 0.246 0.116 0.000 0.000

above 35,539 0.20 21 44 5 19 29,525 59

NOTL 22,983 0.18 19 31 6 15 20,688 42

below 30,706 0.24 31 40 8 19 27,205 57
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Some of the samples showed varied chemistries that the three chosen areas did

not exhibit. Based on the location of these samples, it became apparent that other

geographic areas should be considered. The samples were once again reorganized to

represent different areas of the Niagara Peninsula Viticultural Area, those being above

the escarpment, plateau, Niagara-on-the-Lake, Winona and "other". Under this

breakdown there is no statistical difference between Al or Cd concentrations in the

vineyard soils. There are, however, statistically significant differences for Cu, Cr, Pb, Ni,

Fe and Zn. Although there are differences, the trends are not as obvious as in the

previous categorization schemes. The statistics indicate that eu, Fe and Zn concentrations

are lowest in Niagara-on-the-Lake, and are higher in the other locations. The statistics

show that Cu concentrations are higher in Winona and "other" , while being lower in

Niagara-on-the-Lake, above the escarpment and the plateau locations. Cr and Fe

concentrations are similar, being lower in Winona and Niagara-on-the-Lake, and higher

in the three remaining areas. Pb concentrations are highest in Winona and lower in the

remaining areas (Table 7).
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Table 7. p-values and mean metal concentrations for soil samples in the Niagara Region.
All concentrations are in ppm and significant differences are in bold.

Al Cd Cu Cr Pb Ni Fe Zn

p-value 0.063 0.334 0.000 0.000 0.006 0.014 0.000 0.002

Winona 23,188 0.32 35 31 14 13 22,614 55

escarpment 35,539 0.20 21 44 5 19 29,525 59

NOTL 22,983 0.18 19 31 6 15 20,688 42

plateau 35,264 0.22 26 44 6 21 28,842 60

other 33,665 0.17 34 44 4 22 30,159 56

Conclusions and Recommendations

The environmental assessment of the Alluvium, Beverly, Brantford and Toledo soils

in the vicinity of Lake Gibson, suggest the following conclusions:

1) With the exception of Cd, there is no statistical difference in metal concentration

between the four different soil groups.

2) all soil samples are below the Provincial Background Guideline (MOEE, 1996)

level for Cd, Cu, and Pb.

3) Based on the 90th percentile, the background concentration is calculated

to be 66,518 ppm for Al and 35,085 ppm for Fe.

4) There is a significant difference (p<0.05) in metal concentration with depth for

Cu, Cr, Pb, Ni and Fe. In addition, Pb concentrations are higher in the surficial

samples than at depth in 16 out of 18 sampling locations.



50

The assessment of heavy metal in the soils in Niagara Peninsula Viticultural areas

suggest the following conclusions about the ambient environmental conditions:

1. All 81 soil samples are below the Guideline for use at Contaminated Sites in

Ontario Table A (Surface soil and Groundwater criteria for agricultural,

residential/parkland, industrial/commercial land use for a potable groundwater

condition) (Appendix 2) for all 8 metals. Thus there are no heavy metal

contamination problems in these areas.

2. With the exception of three samples, the samples are below the Guideline for use

at Contaminated Sites in Ontario Table F (Ontario Typical Range soil

concentrations (background) for all 8 metals. The exceptions are in Cu, but they

were only a few ppm higher than the guideline. It appears that metal

concentrations in the vineyards fall below the background guideline.

3. There are statistical differences in Cr, Ni, Pb, Fe and Zn concentrations throughout

the region. It appears that Cr, Ni and Fe concentrations are lower in surface

samples and increase with depth. Pb and Zn show the opposite trend with Pb

concentration being higher in surficial samples and decreasing with depth.

4. Cr, Fe and Zn concentrations are higher in vineyards that are above the escarpment

and lower in vineyards classified as below the escarpment and "other".

5. Vineyards located in areas designated as Niagara-on-the-Lake, Winona, the

plateau, above the escarpment and "other" exhibit significant differences in

metal chemistries.
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RESULTS

WATER QUALITY

Water quality data were recorded at a number of sites throughout the year (Appendix

1). The pH of Lake Gibson ranged from 6.05 to 9.57. Overall the pH tends to be neutral

to slightly basic. Lower pH readings occurred at sites 3 and at site 15 (Figure 27). Site 15

has been named "the leak" as liquid seeps out of a crack just below Beaverdams Road

(Figure 28). In the summer of 1997 the lowest recorded pH was 5.98 (leak) and the highest

recorded pH was 9.57 (Table 8).

Table 8. Recorded pH readings below 6.5 or above 8.5 in Lake Gibson.

Location Date (1997)

(See Figure 15) May 6 May 20 May 27 June 10 June 24 July 15

3 6.45

10 8.63

11 8.79 8.68

12 8.60 8.67 8.66

13 8.54 8.65 8.79

14 8.58 8.89

15 6.05

16 8.87 8.74 8.57 9.06

17 8.58

18 8.76 8.57

19 8.79 8.85

20 9.00 9.57 9.42

21 8.81 8.79 9.15 8.56

22 8.82

24 5.98 8.57
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Figure 27. pH readings for sites 1,2, 4 - 9 were taken on July 24, 1995.
The readings for sites 3 and 10-24 were taken on May 27, 1997. Note the
low pH at site 15.
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Figure 29. Temperature readings for sites 1,2, 4 - 9 were taken on July 24, 1995.
The readings for sites 3 and 10-24 were taken on May 27, 1997. Fluctuations can
be attributed to seasonal variations and other factors.



Figure 28. A mysterious "leak" was found in a ditch along Beaverdams Rd.
Chemical analysis suggests that it is not "water".
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Temperature measurements ranged between 8.4 and 26.1°C (Figure 29). In addition

to having low pH, sites 3 (outfall) and 15 (leak) exhibit elevated electrical conductivity

readings (Figure 30), as do sites 2 (outfall) and 6 (Frog Pond). Sites 6, 8 and 15 have low

dissolved oxygen readings (Figure 31), and site 15 has a negative Eh (Figure 32). Turbidity

readings are highest at sites 2, 4, 6, 9,14, 20 21 (Figure 33). The effects of nutrient

loading in Lake Gibson are illustrated in Figures 34 and 35.

TPH

TPHQAlQC

A total of 11 duplicate samples were run on the Lake Gibson sediments analysed for

TPH content. The average precision was 14%. The TPH extraction was carried out on

samples containing waste oil and engine oil. The average recovery for these samples was

87%. The TPH blanks were high in TPH content, averaging 1500 ppm.

Sediment Chemistry - TPH

Sediment core 39a contains almost 50,000 ppm ofTPH, which greatly exceeds the

guideline of 1500 ppm. Cores 9, 11, 12, 17, 19,20,21, 25, 28, 32, 47, 52 and PI contain

over 10,000 ppm ofTPH (Figure 36).

The sediment samples used for the TPH extraction were divided into two categories,

surficial samples and samples taken at depth. There was no statistical difference (p=0.909)

between these two categories, the average concentration of the surficial samples was 5,016

ppm and the average for deeper samples was 4,910 ppm.
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Figure 30. Conductivity readings for sites 1,2, 4 - 9 were taken on July 24, 1995.
The readings for sites 3 and 10-24 were taken on May 27, 1997. Note the increases
at sites 2 and 3 (outfalls), 6 (Frog Pond) and 15 (the ''LEAKII).
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Figure 31. Dissolved oxygen readings for sites 1,2, 4 - 9 were taken on July 24, 1995.
Readings for sites 3 and 10-24 were taken on May 27, 1997. Note the low readings
for site 15 (LEAK) and site 6 (Frog Pond).
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Figure 33. Turbidity readings for sites 1,2, 4 - 9 were taken on July 24, 1995.
The readings for sites 3 and 10-24 were taken on May 27, 1997. The Aesthetic
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Figure 35. Early stage of lake eutrophication (excess growth of organic matter
[algae] on the rocks) due to excess nutrient loading and increased clarity
caused by zebra mussel filtration.
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Figure 36. TPH concentrations throughout Lake Gibson exceed the Open Water
Disposal guideline of 1500 ppm. Location 390 is of particular concern os
concentrations exceed the guideline by several orders of magnitude.
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There is a significant difference (p==O.OOO) in TPH concentrations throughout the

lake. The highest concentrations are in areas R, S, T and Y, which correspond to cores taken

near the Beaverdams Community Centre and by the WeIland Canal outfall (9,659-10,984

ppm), near the equalization channel (7,194 ppm), between Highway 406 and the Merrittville

Highway (3,859 ppm), and a small area located in the southern portion of the lake (2,993

ppm). These locations represent areas of concern with respect to TPH as they exceed the oil

and grease guideline of 1,500 ppm.

Average TPH concentrations below the 1,500 ppm guideline occur in areas I, K, P

and V. These correspond to cores G1, 53-56, E4 and 60. Out of 87 samples, 67 samples

exceed the Open Water Disposal Guideline of 1,500 ppm set by the MOEE.

Metals

QAlQC Results

A total of 27 duplicates and 17 NBS samples from Lake Gibson were evaluated by U.S.

EPA method 3050. Metal concentrations occurring in the majority ofthe blank samples were

below 1ppm. The overall precision and accuracy are summarized in Table 9.
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Table 9. Mean concentrations of blanks, duplicates, NBS and expected recoveries for
u.S. EPA Method 3050.

Al Cd Cu Cr Ni Pb Fe Zn

Blanks (ppm) 0.87 0.006 0.04 0.04 0.07 0.006 1.1 0.02

Duplicates (%) 9 14 10 10 9 17 12 21

NBS (%) 36 71 78 69 80 72 87 94
Recovery

%2704 US EPA n/a 90 82 61 85 90 n/a 90
3050 Publication

Metals

Total metal concentrations are useful in determining areas of high elemental loading

and thus may be used to extrapolate to point sources. Although metal speciation and

complexation information is important from a toxicological aspect, it could not be

determined from the total metal concentrations. The total metal content in the sediments will

be presented with respect to provincial guidelines to evaluate their environmental status.

The guidelines used for the total metal fraction are based on two parameters, which

are the LEL and the SEL. LEL is the Lowest Effect Level and at this level of contamination

the chemicals in the sediment have no effect on the majority of sediment-dwelling

organisms, at this level acute ecotoxic effects become apparent The sediment is considered

to be clean to marginally polluted. The SEL is the Severe Effect Level and at this level the

sediment is considered heavily polluted and is likely to effect the health of bottom-dwelling
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organisms (Persaud et al., 1992).

Metals - Marlatt's Pond

In Marlatt's .Pond,there is no significant difference between metal concentration and

depth for AI, Fe, Cd, Pb, Ni, Cu and Zn (Table 10), however there is a significant

difference for Cr. Surficial samples having an average Cr concentration of 97 ppm and

samples at depth having an average concentration of 72 ppm. Al concentrations in surficial

samples average 29,800 ppm and those at depth average 38,860 ppm.

Table 10. Statistical analysis (p-values) of metals in Marlatt's Pond sediments with depth
and location. Statistically significant differences are in bold.

Al Cd Cu Cr Ni Pb Fe Zn

depth 0.071 0.806 0.227 0.026 0.176 0.279 0.821 0.228

location 0.001 0.496 0.109 0.257 0.031 0.670 0.034 0.013

There is no significant difference between metal concentration and location for Cd,

Pb, Cr and Cu (Table 10). There are, however, significant differences between metal

concentration and location for Al (p==0.001), Fe (p==0.034), Ni (p==0.031) and Zn (p==0.013).

The highest Al concentrations are 108,590 ppm in core 4, 80,000 ppm in core 8 and 72,300

ppm in core 37a (Figure 37).

The highest Fe and Ni concentrations occur at the Beaverdams Road and WeIland

Canal Outfall locations, whereas the highest Zn concentrations only occur at the Beaverdams
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Figure 37. AJ concentrations in Marlatt's Pond sediments. Core 4 has the
highest AI concentration approaching 11 a 000 ppm. Other hotspotsare
core 8 (by Beaverdams Community Center) and core 37a (by an outfall).
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Figure 38. Fe concentrations in Marlatfs Pond sediments. Of the 17 cores~

11 exceed the SEL guideline of 40000 ppm. Fe is an environmental
concern in these areas.
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Road location. Samples exceeding the SEL guideline for Fe are 1-9, 37a and 39a (Figure

38). Cd concentrations exceed the LEL guideline at sites 1, 11, 12, 13 and 14 (Figure 39)

while cores 6 and 7 show prominent peaks exceeding the SEL for Pb (Figure 40). Cr

concentrations in the samples ranged from 27 to 250 ppm (Figure 41). The highest Ni

concentrations occur in core 1 which was taken by Beaverdams Road and core 39a which

was taken by the WeIland Canal Outfall (Figure 42). The highest Cu concentrations occur

in the following samples: core 1 ( located by Beaverdams Road), core 9 (downstream from

the Community Centre), core 10 (located near the comer of Kaye Ave and Beaverdams

Road), and cores 11,12,14 and 39a (all in the vicinity of the Beaverdams Community

Centre; Figure 43). Zn concentrations exceeding the SEL occur in cores 9 and 39a, both

are located downstream from the WeIland Ship Canal Outfall (Figure 44).

Metals - Lake Gibson

Overall 298 samples were studied, each ofwhich was analysed for 8 metals and TPH,

for a total of 2,384 analyses (Appendix 4). Samples from Marlatt's Pond were analysed

with a different chemical extraction method than the Lake Gibson samples, they are not

included in the following discussion.

There is no significant difference between metal concentration and depth for AI, Cd,

Cu, Cr, Ni, Pb and Zn. There is a significant difference between metal concentration and

depth for Fe (Table 11), with surficial samples averaging 25,480 ppm and samples at depth

averaging 28,150ppm. Cd concentrations in surficial samples averaged 0.65 ppm and

samples at depth averaged 0.50 ppm.
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Figure 39. Cd concentrations in Marlatt1s Pond sediments. Core 13 contains the
highest Cd concentration, the next highest concentration occurs in core 1. Of
the 17 cores only 5 are above the LEL guideline of 0.6 ppm.
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Figure 40. Pb concentrations in Marlatrs Pond sediments. Of the 17 cores, 4 are
above the SEL guideline of 250 ppm. Cores 11 and 6 are a concern as Pb
concentrations are particularly high.
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Figure 41. Cr concentrations in Marlatt's Pond sediments. Of the 17 cores, 5 are above
the SEL guideline of 11 0 ppm, 12 are above the LEL.
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Figure 42. Ni concentrations in Marla1fs Pond sediments. Of the 17 cores,
none are above the SEL guideline. Cores 1 and 39a are above the LEL guideline
of 110 ppm.
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Figure 43. Cu concentrations in Marlatt's Pond sediments. Of the 17 cores, 7
exceed the SEL guideline of 11 0 ppm, 10 are above the LEL guideline.
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Figure 44. Zn concentrations in Marlatt's Pond sediments. Cores 9 and 39a
exceed the SEL guideline of 820 ppm. Of the 17 cores, 12 exceed the LEL
guideline of 120 ppm.
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Table 11. Statistical analysis of metal concentrations in Lake Gibson sediments with
respect to depth and location (p-values). Statistically significant differences are
in bold.

Al Cd Cu Cr Ni Pb Fe Zn

depth 0.827 0.088 0.469 0.136 0.122 0.537 0.044 0.658

location 0.000 0.008 0.000 0.000 0.000 0.006 0.000 0.000

There is a significant difference between metal concentration and location for all

metals (Table 11). The highest Al concentrations occurred in samples taken from the cream-

colored stream, averaging 59,580 ppm. Other samples containing elevated Al

concentrations occurred near the Old Abandoned Road/WeIland Canal Outfall (46,080 ppm)

(Figures 45 and 46) and the Beaverdams Community Center (40,720 ppm). The majority

of the samples contained less than 50,000 ppm of AI. The exceptions to this are the G2

samples which contained over 140,000 ppm of Al (Figure 47).

There is a significant difference between Fe concentration and depth (p==0.044), with

surficial samples averaging 25,477 ppm whereas those at depth average 28,152 ppm. There

are also significant differences with respect to Fe concentration and location (p==0.000). Fe

concentrations averaged 35,700 ppm near Beaverdams Community Center, 32,580 ppm in

the cream colored stream, 31,500 ppm near the Old Abandoned Road, and 30,000 ppm in

the section of lake between Highway 406 and the Merrittville Highway. Cores 17,18,21,

23, 24, 29,32,45,46, 53, 54, 56, C3 and PI have Fe concentrations which exceed the SEL

(Figure 48). Only cores 36, 43, 60 and G2 had concentrations below the LEL. Out of219
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Figure 46. \\7ater level of Lake Gibson is controlled, in part, by channels and pipes
under the jurisdiction of Ontario Hydro.
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Figure 47. AI concentrations in Lake Gibson sediments. Although
there are no guidelines for AI, concentrations at G2 may be a cancem.
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Figure 48. Fe concentrations in Lake Gibson sediments. Of the 49 cores, 13
exceed the SEL guideline of 40000 ppm, 32 are be1ween the LEL and the SEL.
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samples, 18 exceed the SEL and 169 exceed the LEL guideline for Fe.

There is a significant difference between Cd concentration and location (p=0.008).

The highest average Cd concentrations ( 0.9050 ppm) occurred in samples taken near the

Beaverdams Community Center. The highest Cd concentrations occur in cores 16,24,30,

31,42,47,52, 60, C3 and PI (Figure 49).

There is a significant difference between Pb concentration and location (Table 8).

The highest recorded Pb concentrations were 108 ppm near the Beaverdams Community

Center, 63 ppm just downstream from falls in southern arm of Lake Gibson, and 59 ppm

near the Old Abandoned Road. Sample 30 exceeds the SEL guideline and samples 17

through to 31, 39b, 42, 44, 47,52,60, Bl, C3 and PI exceed the LEL guideline (Figure 50).

There is a statistical difference between Cu concentration and location (p=0.000).

Samples taken near the Beaverdams Community Center, cream colored stream and just

below the intake waterfalls contained 107 ppm, 74 ppm, and 12 ppm of Cu, respectively.

Cores 19, 30, 31,42,47, 52, Cl, C3, E4 and G2 all contain Cu concentrations which exceed

the SEL guideline (Figure 51).

There is a statistical difference between Zn concentration and location (p=O.OOO).

Samples contained, on average, 492 ppm ofZn in the cream colored stream, 397 ppm near

the Beaverdams Community Center, 280 ppm near the Old Abandoned Road, 240 ppm in

the vicinity of the equalization channel and at the western end of Lake Gibson. Zinc

concentrations in cores 19, 31, 47, C3 and PI exceed the SEL guideline (Figure 52).

There is a statistical difference between Cr concentration and location (p=O.OOO).

The highest Cr concentrations occurred in samples taken from the cream colored stream,
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Figure 49. Cd concentrations in Lake Gibson sediments. Of these samples,
23 exceed the LEL guideline of 0.6 ppm. The highest concentrations occur
at sites 16, 24 and 31 .
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Figure 50. Pb concentrations in Lake Gibson sediments. Concentrations in core 30
exceed the SEL guideline of 250 ppm. Of the 49 samples, 23 are above the LEL
guideline of 31 ppm.
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Figure 52. Zn concentrations in Lake Gibson sediments. Of the 49 cores, 5 exceed
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averagIng 146 ppm. Samples taken near the Beaverdams Community Center and Old

Abandoned Road contained 60 ppm and 51 ppm, respectively. Cores 1, 30 and G2 contain

Cr concentrations that exceed the SEL guideline of 110 ppm (Figure 53). Out of219 samples

5 were above the SEL and 198 were above the LEL.

The Ni concentrations averaging 61- 69 ppm were located in samples taken across

from the equalization channel, near the Beaverdams Community Center, in the section of

Lake Gibson bounded by Beaverdams Road and Decew Road, where a siphon/pipe goes

under Beaverdams Road, and in the ·area opposite the Beaverdams Road bridge. Cores

containing Ni concentrations exceeding the LEL guideline are 26, 37b, 38b, 50, 52, 54 and

55 (Figure 54).

DISCUSSION

Increasing awareness ofenvironmental concerns calls for industrial development and

sustainability within sound ecological and environmental strategies. To fulfill this mandate

a database must be established that identifies areas of environmental concern. These

concerns may address present-day events, events in the past, and events that have longer

temporal aspects (Persaud et al., 1992 ). The Lake Gibson aquatic environment is one that

deserves study as it serves many purposes, these being recreational, municipal and

industrial. Furthermore, the drinking water source for St. Catharines and the surrounding

area is the same as the source of water for Lake Gibson. Thus discharges to the lake, either

past or present, may have direct or indirect effects on human health and on the lake's

ecosystem. In order to assess the environmental status of Lake Gibson, several parameters
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were utilized, including water quality, metal content and TPH.

Water Quality

Temperature, pH, dissolved oxygen and other water quality parameters were taken

at different sampling locations throughout the study period in order to assess the water

quality of Lake Gibson. Although a one day reading is not an accurate indication of what

occurs on a yearly basis, some measurements can be useful as they are a snapshot of the

events that occurred at a particular time.

The normal pH range for aquatic systems is 6.5-8.5. Most living organisms, plant

or animal, function most effectively at neutral or near neutral pH values (Berkes, 1979). The

MOEE station at the bridge along Beaverdams Road records the pH of Lake Gibson at that

particular location and the readings are fairly constant. The pH readings taken during this

study varied from location to location and thus can be a good indicator of localized

problems. The pH readings taken at Lake Gibson ranged from 5.98 to 9.57, overall the pH

is neutral to slightly basic. There were, however, a few areas of concern. The lowest pH

recorded was 6.05 at station 15. A pH reading of 6.72 was taken at site 16 (Figure 55), and

both of these sites are near the "leak". The pH of the leak was 5.98 and the lower pH

readings at sites 15 and 16 may be the result of the leak mixing with the waters of Lake

Gibson. Another low pH reading was recorded at site 3 (pH 6.3) which is next to an outfall.

Sites corresponding to pH values greater than 8.5 were taken by Highway 406, Marlatt's

Road, the WeIland Canal Outfall, near sewer outfalls, by Kaye Avenue, along Beaverdams

Road, and by the Merrittville Highway. The MOEE data taken at Beaverdams Road does
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Figure 55. The "leak" flows through a pipe into a creek, which empties into Lake
Gibson.
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not show fluctuations within the lake, thus large scale sampling is better at distinguishing

problem areas. There are areas of concern within Lake Gibson that have pH readings above

8.5 or below 6.5, which can be attributed to sources of anthropogenic impact.

Temperature measurements are an important aspect of water quality as temperature

significantly affects the solubility of gases (e.g. dissolved oxygen) and directly affects

biological and chemical reaction rates (Berkes et al., 1979). High temperatures can have

deleterious effects on receiving waters and aquatic life. This may be a factor as Lake Gibson

receives discharges of cooling water from local industries (Acres International Limited,

1996). Temperature readings at sites 1,2 and 4 through 9 were taken on July 24, 1995,

between Ipm and 3 pm. Temperature readings for sites 3 and 10 through 24 were taken on

May 27, 1997, between 10 am and noon. Sites 1,2 and 4 through 9 had warmer water

temperatures because the readings were taken later in the day. On July 24, 1995, the sun

was shining all morning long and thus the shallow water had ample time to warm up. The

readings taken in May were taken early in the morning. Temperatures in May were cooler,

and as it was early in the morning the sun had not as yet heated the water. The differences

in lake temperature can be attributed to seasonal and diurnal variations.

Electrical Conductivity is defined as the ability of a solution to conduct electricity

(Manahan, 1993). Ionized chemical compounds present in surface waters, either naturally

occurring or as a result of man's activities, contribute to electrical conductance. Thus

conductivity serves as a control parameter and is an excellent indicator of water quality

because it is highly sensitive to variations in dissolved solids (Berkes, 1979). Sites 2,3,6

and 15 all show elevated electrical conductivity readings. Sites 2 and 3 are by storm water
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outfalls which tend to contain ions. Site 6 is a small pond which contains pieces of rusting

metal and other refuse which may influence the ion content of the water in that area. Site 15

is the "leak", a small pool ofwater which flows through a pipe, under Beaverdams Road and

into Lake Gibson. Iron-colored debris is visible at the bottom ofthe pool. The ions in storm

water and in the leak may be influencing the electrical conductivity of the water in those

area.

Ample dissolved oxygen (DO) is necessary to maintain satisfactory conditions for

fish and other biological life in aquatic systems (Mason, 1991). Ideally, dissolved oxygen

levels should be between 5 mg/L and 9.5 mg/L. Sites 6,8 and 15 have DO readings below

this criterion. There are many factors which affect DO levels. For example, DO decreases

as temperature increases. In summer the sun heats shallow waters, thereby decreasing DO.

In areas where leaf litter accumulates, DO decreases as a result of decomposition and the

presence of microorganisms. In stagnant waters there is a lack of aeration and hence low

DO. DO will decrease in areas where there is bio-oxidation of nitrogenous materials and

where there is sewage and bacteria. All of these are plausible explanations for the low DO

levels occurring in the frog pond. At site 15 the water is flowing, so a lack ofaeration cannot

be the reason for low DO levels. It is possible that the "leak" is leachate leaking from a

nearby closed waste disposal site. A unique characteristic of leachate is that regardless of the

ambient temperature, it has a temperature of about 11°C (U. Brand, personal

communication). At site 15 the temperature was constantly around that mark. The other

possibility is that the "leak" is coming from the nearby sewage pumping station as the

bacteria in the sewage would decrease DO levels.
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Eh is the EMF (electromotive force) generated between an electrode in any state and

the H2 electrode in the standard state (Manahan, 1993). Another way of saying this is that

Eh defines the redox potential. A positive Eh implies that the environment is a weaker

reducing agent than the standard H2 electrode, and therefore is an oxidizing environment,

having the ability to accept electrons from electron donors. Environments having a negative

Eh are stronger reducing agents than the standard H2 electrode. Therefore they function as

electron donors and the environment is a reducing one (Faure, 1991). Water should have a

positive Eh. The Eh at all but one site in Lake Gibson is positive, as it should be. Site 15 has

a negative Eh, implying a reducing environment. The negative Eh at this site indicates that

the fluid at this site is not "normal water". The low DO at this site also confirms this

observation. For many sites around Lake Gibson the Eh is greater than 150 mV. At six sites

the Eh is slightly lower than that, ranging from 90 to 120 mV. Site 16 is across the road

from the leak where the leak mixes with water from Lake Gibson. The Eh at this site may

be lower due to the impact of the leak. Site 17 is by an outfall and hence the discharge from

the outfall may be affecting the Eh.

Turbidity is caused by the scattering of incident light by colloidal or suspended

materials such as algae, bacteria, detritus, clay and other mineral substances. These materials

decrease light penetration and thus inhibits photosynthetic organisms. Turbidity readings

are highest at outfall sites, at the leak, downstream from the Beaverdams Community

Centre and by the WeIland Canal outfall. The Aesthetic Objective Guideline for Turbidity

is 5 NTU. All water quality sampling locations within Lake Gibson exceed this objective.

The Aquatic Life Guideline for fish is 40 NTU and several locations within Lake Gibson
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exceed this guideline. Water quality data from other sources indicate that Lake Gibson

waters are "somewhat turbid' (SNC/Sandwell, 1990).

Total Dissolved Solids (TDS) is a measure of dissolved materials in water. Common

sources of TDS are sewage treatment plant effluents, municipal storm drainage, industrial

discharges and erosion of soil (Berkes et al., 1979). The area between the Old WeIland Canal

and Lake Gibson has been used as a disposal site for excavated soil material (SNC/Sandwell,

1990). Dissolved solids such as wood sugars, lignin, cellulose and organic material from

pulp and paper mills also decrease DO levels (Steele et al., 1979). Historically, such

effluents have been discharged into the Old WeIland Canal and Lake Gibson (Steele et al.,

1979). Elevated TDS measurements were recorded at sites associated with the leak, with

the Ontario Hydro Outfall and with municipal outfalls.

Eutrophication is the enrichment of waters by nutrients such as nitrogen and

phosphorous. Sources include sewage treatment works, untreated sewage from farming

activities, fertilizers, industrial wastes and storm drainage (Mason, 1991). Figures 34 and

35 illustrate the effects of nutrient loading in Lake Gibson. Lake Gibson is a eutrophic lake

as classified by the result of a phosphorous loading plot. It contains moderate amounts of

nutrients as compared to Southern Ontario river systems (SNC/Sandwell, 1990). The

eutrophic nature of the lake is confirmed by the dominance of oligochaete and chironomid

species. Furthermore, the Village of Beaverdams was not serviced by the municipal

Pollution Control Plant until the early 1990's and drainage from septic systems entered the

lake (Acres International Limited, 1996).

Industrial areas can have negative impacts on the environment. A good example of



82

this is the industrial area along Beaverdams Road. One can see vegetative stress and the loss

of aesthetic appeal (Figure 56).

There are several factors which affect toxicity, some of those factors are water

hardness, temperature, pH and salinity. The temperature fluctuations within Lake Gibson

can be attributed to seasonal and diurnal fluctuations, with the exception of the leak. Large

scale testing for pH and other water quality parameters has highlighted the areas of Lake

Gibson which are impacted by roadsalt, sewer outfalls, as well as municipal and industrial

uses of the lake.

TPH QAlQC Discussion

A total of 11 duplicate samples were run on the Lake Gibson sediments analysed for

TPH content, and the average precision was 14%. The TPH extraction was carried out on

sediment samples which were spiked with known quantities of waste oil and engine oil. The

average recovery for these samples was 87%. The TPH blanks were high in TPH content,

averaging 1,500 ppm. This value was subtracted from the original TPH concentrations to

account for any impurities.

TPH Discussion

The Guidelines for the Protection and Management of Aquatic Sediment Quality of

Ontario (Persaud et al., 1992) set a guideline for oil and grease content at 0.15%. This

includes vegetable, animal and mineral oils. Instead of the oil and grease test, TPH (Total

Petroleum Hydrocarbons) is a more definitive test of organic pollution as it determines only



Figure 56. Industrial areas along Beaverdams Rd. depicts two obvious impacts:
vegetation kill and the loss of aesthetic appeal.
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the non-volatile and non-polar hydrocarbon content (i.e. mineral oils and greases) in

sediments. Since the oil and grease guideline includes TPH and no guidelines have been set

for TPH, it is reasonable to assume that one could apply the 0.15% oil and grease guideline

to the TPH determinations in order to reveal impacted areas.

In order to bring the sediment sample database down to a more manageable level, the

lake was subdivided into different locations (Figure 57) . Table 12 contains the breakdown

of areas as for statistical purposes.

Table 12. Sediment core classification scheme by location within Lake Gibson.

Area Groups Core Numbers

I Gl
J 46,47,48,49
K 53,54,55,56
L 44,45,61,51,50
M 10
N Bl
0 Cl, C2, C3, G2
P E4

Q 37, 38, 1, 2,3, 5, 6
R 18,19
S 7, 8, 9,11, 12, 13, 14, 16, 17, 20, 29, PI
T 21,22,23,24,25,26,27,28
U 40
V 60
W 42,43
X 33,34,36
y 30, 31, 32, 37b, 38b, 39b,P2
Z 4
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There is a significant difference (p==O.OOO) in TPH concentrations throughout the

lake. The highest concentrations are in areas R, S, T and Y, which correspond to cores taken

near the Beaverdams Community Centre and by the WeIland Canal outfall, near the

equalization channel, between Highway 406 and the Merrittville Highway, and a small area

located in the southern portion ofthe lake (Figure 58) . These represent areas ofconcern with

respect to TPH as they exceed the oil and grease guideline of 1,500 ppm. Campbell, (1996)

also reports TPH concentrations exceeding the MOEE guideline in the vicinity of the

WeIland Canal Outfall and Beaverdams Village. Water flowing from the WeIland Ship

Canal and into the area near the Beaverdams Community Center may contain ballast water

from ships which traverse the WeIland Canal. Ballast water may contain oil and grease

which ultimately ends up in Lake Gibson (personal communication, local residents). There

have also been train derailments in the vicinity of Lake Gibson, one in particular was said

to have dumped railway cars full of crude oil into the lake (personal communication, local

residents). Some of the TPH found in Lake Gibson sediments may be attributed to such

historical events. The section of lake bound by the two highways may be impacted by oil

and gasoline leaking from automobiles which enters the lake via runoff from rain or melting

snow. In fact, the Spills Action Center of the MOEE reports that oil leaking from a car was

directly discharged into Lake Gibson, (Acres Environmental Limited, 1992). The samples

used for TPH were also analysed for Pb and Cd content. Cd concentrations were highest in

areas R, S, T and Y, having 0.57,0.84, 1.00 and 0.72 ppm, respectively. This is similar to

the TPH concentrations, although there was overlap in the standard deviations. Pb

concentrations were highest in the same four areas, having 33, 64, 37 and 36 ppm
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respectively. This indicates that the Pb and Cd are associated with the oil and grease in these

four areas. As Pb and Cd are components associated with gasoline and automobile exhausts,

it is reasonable to assume that some of the TPH impacts in the lake are due to the impact of

roads/transportation.

TPH average concentrations below the 1,500 ppm guideline occur in areas I, K, P and

V. These correspond to cores G1, 53-56, E4 and 60. Core 60 was taken in the Old WeIland

Canal system, just before the falls. This indicates that sediments in the area prior to Lake

Gibson have low oil and grease content. This could either imply that the sediments from the

WeIland Canal have a low TPH content, or that water at this point is flowing so quickly that

the sediments (and ultimately the oil and grease) do not settle out. The core labelled E4 was

taken from a creek right across the road from an industrial complex. It is interesting to note

that the average TPH of this core was 1,453 ppm, while the cores taken further upstream

(less than 20 m away) averaged 2,712 ppm. This raises the question "why does the TPH

content drop off so rapidly when the creek barely flows?" The answer may be that although

water flow in the creek was low at the time of sampling, there might have been higher water

flow/discharge in the past. Cores 53-56 were taken in the western end of the lake, between

Beaverdams Road and the 406. Water flow is quite rapid through this section and as a result

the sediments (and TPH) do not have time to settle out in this area. And lastly, core G1 was

taken at the very end of the lake, prior to Lake Moodie. It is the only core taken in this

section as it was impossible to get a core from shore due to large rocks and the engineered

shoreline. Furthermore, obtaining a core from the inflatable boat was impossible due to very

dangerous water flow conditions. At site G1, the water flow was less turbulent than in other
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sections of the lake. The core has an average TPH content of 1,373 ppm, which is below the

1,500 ppm guideline. Once again the implications are that at this point the sediments (oil

and grease) have settled out by this point and hence would not flow into Lake Moodie nor

Twelve Mile Creek. Another explanation is that the currents just prior to this area are strong

and hence the sediments (oil and grease) are carried out into Lake Moodie and they do not

settle in the G1 area.

The sediment samples used for the TPH extraction were divided into two categories,

surficial samples and samples taken at depth. Although there was no statistical difference

(p==0.909) between these two categories, the average concentration of the surficial samples

was 5,016 ppm and the average for deeper samples was 4,910 ppm. This implies that TPH

contamination of the sediments is not a historical problem, but one that continues to the

present day. The TPH loading of the lake has not decreased over the years.

In summary, 67 out of 87 samples exceed the Open Water Disposal Guideline of

1500 ppm set by the MOEE. The historical and present day use of Lake Gibson have

negative impacts on the sediments, as shown by elevated TPH concentrations which exceed

provincial guidelines. The only two exceptions are samples taken from the WeIland Canal

and G1. The low TPH content in these samples may be attributed to water flow and

sediment dynamics.

Contaminants can be transported and as a result they are not necessarily deposited

near their source of origin (Yappa et al., 1994). Once in a river or lake, they can travel over

large distances. The oil and grease levels observed in Lake Gibson sediments may be

attributed to oil spills that occurred in the "Old" WeIland Canal, or to industrial dumping,
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or other mishaps/accidents such as train derailments and point sources such as roadways.

Metals QAlQC Discussion

A total of 27 duplicates and 17 NBS samples from Lake Gibson were evaluated by

U.S. EPA method 3050. Metal concentrations occurring in the majority ofthe blank samples

were below 1ppm, indicating the purity of water and acids used as well as good laboratory

procedures (i.e. no cross contamination). The average ofthe blanks per metal was subtracted

from each sample in order to account for any impurities.

With regard to Cd there is an average of 14% difference between the duplicates. The

lower precision may be explained by the facts that Cd is easily volatilized and that the

concentrations in the samples were low. An explanation for the lower precision in the Pb

and Zn duplicate samples may be that the sediments were not homogeneous and as a result

the extraction of those particular metals was affected. With regards to recovery, Al is

trivalent and hence getting more than 35% recovery is unusual. Al recovery from NBS

samples tends to vary depending on the digestion procedure used and depending on the

laboratory used, thus having slightly more than 35% recovery would not be unusual

(Johnson, B., personal communication).

Metals

Marlatt's Pond

In Marlatt's Pond there is a significant difference between metal concentration and

depth for Cr. Surficial samples having an average Cr concentration of 97 ppm and samples
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at depth having an average concentration of 72 ppm, implicating that Cr deposition is

relatively recent. The concentrations of AI, Ni, Fe and Zn vary significantly between

sampling locations. The intersection of Beaverdams Road and Kaye Avenue has high

concentrations of AI, Fe, Ni, Zn and Cu. Similarly, samples taken from the Old Abandoned

Road contain high concentrations ofAI, Fe, Ni and Cu. Samples taken near outfalls contain

high amounts of AI.

Lake Gibson

Overall 298 samples were collected from Lake Gibson, each of which was analysed

for 8 metals and TPH (Appendix 4). Samples from Marlatt's Pond were analysed with a

different chemical extraction method than the Lake Gibson samples, they are not included

in the following discussion.

There are no Ministry guidelines set for AI. Despite that, it is well known that

aluminum toxicity increases with decreases in pH, thus Al concentrations are a more of a

concern in lakes with low pH (Sulzberger et aI., 1990). Furthermore, aluminum in

freshwater systems can bioaccumulate and have toxic effects on fish, as well as other biota

(Kramer, 1993). This is especially important in stagnant waters where aluminum and other

elements are not readily flushed out. For example, the Frog Pond is an enclosed water body.

DO readings taken on July 24, 1995, confirm the stagnant nature of this pond. The sample

with the highest recorded Al concentration comes from the intersection of Kaye Avenue and

Beaverdams Road, containing 108,590 ppm. Other hotspots include the area just down

stream from the Beaverdams Community Centre, the outfall along Beaverdams Road and
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the cream colored stream. The cream colored stream contains a fair amount of leaf debris.

When the debris is disturbed, black water and oil sheens become visible, as does the escape

of gas (Figure 59). The surrounding waters in this area have been described as "grey with

floating bottom matter and a great deal ofH2S and CH4 " (Ministry ofNatural Resources,

1974). Possible sources of Al may be accidental, from the WeIland Ship Canal, discharge

from pulp and paper mills, or industrial complexes. In February of 1992 there was a

reported spill of chrome-aluminum alloy which directly entered Lake Gibson ( Acres

Environmental Limited, 1996).

The lowest Al concentrations occur samples taken from the WeIland Ship Canal.

Reasons for the low concentration may be due to water and sediment dynamics. Water flow

is high in this area and as a result the metals may not have enough of time to settle out.

Another feasible explanation is that the incoming sediments may not be contaminated.

Lastly, the amount and type ofclay in the area may be influencing adsorption rates. Another

area of low Al concentrations corresponds to the southern arm of the lake. This could be

because there is another outfall on that side, which means faster flowing waters which would

not allow for the metals to settle out in that area. There is a big drop in water level of 1m or

more at the bridge at Beaverdams Road. In this area the water flow is fast, whirl pools are

forming and there may be little or no time for sediments (metals) to settle out. There is

a statistical difference between Fe concentration and depth (p==O.044). Surficial

concentrations average 25,477 ppm whereas those at depth average 28,152 ppm, indicating

that Fe loading in sediments has decreased over time. Furthermore, Fe concentrations vary

with location. The highest concentrations occur near the Old Abandoned Road. Perhaps



Figure 59. This stream is cream-colored and covered with leaf debris. Disturbance
of this top layer reveals black bottom sediments, and allowed the
escape of gas and the pooling of an oil sheen.
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the road acts as a barrier and sediments settle out on the opposite side of the barrier, thus

being protected from fast flowing waters from intake pipe. Other areas of concern include

the vicinity of the Beaverdams Community Center, the cream colored stream and the section

of lake located between Highway 406 and Merrittville Highway. The lowest Fe

concentrations occur in the WeIland Ship Canal, prior to entry into Lake GibsOl1. The reason

for the low Fe concentration may be that water flows are high at this point and the metal does

not have time to settle out, or that what is incoming to the lake may not be contaminated at

this point.

The crustal abundance of Cd is around 0.2 ppm. Levels found in sandstones and

limestones range from < 0.001 - 1.6 ppm (Fergusson, 1990). There is some association of

Cd with organic matter, higher Cd levels are found in peat (0.37-190 ppm) and crude oil

(0.01-16 ppm) (Fergusson, 1990). Cd is used in electroplating, anticorrosive coatings,

pigments, as a stabilizer in PVC, in Ni/Cd batteries, in alloys, and in control rods for nuclear

reactors. Cd has a residence time of 360-720 days in lakes (Fergusson, 1990.) Cd is a

relatively mobile element in the environment, and the cation Cd 2+ persists over a wide range

of pH values. Cd is a cause for concern, as its toxicity may be either acute or chronic. A

general increase of trace metal levels in lake waters may be ecologically hazardous as

elements such as Cd and Cu might cause negative effects even at concentrations slightly

above natural background levels (Borg and Johansson, 1989) Even at very low

concentrations Cd can accumulate in tissues and cause developmental abnormalities in fish.

Furthermore, crustacea and algae tend to be particularly sensitive to Cd (Hellawell, 1988).

Urban runoff may contribute Cd as it might contain metals released from the corrosion of
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alloys and plated surfaces and from electroplating wastes (Schmidtke, 1988). The highest

Cd concentrations in Lake Gibson sediments occur downstream from the Weiland Canal,

near the equalization channel, in the cream colored stream and near the Beaverdams

Community Centre. The sources may include the past and present uses of the WeIland

Canal, as well as industrial effluents.

Pb is used in batteries, as a petroleum additive, in rolled and extruded products,

pigments, alloys, cable sheathing and ammunition (Hellawell, 1988). It may be introduced

into water from various wastes including industrial effluents and automobile exhausts

(Berkes, 1979). Pb has a residence time of 25 days in lakes, and 400-3000 years in soil

(Fergusson, 1990). Gasoline and pigments found in painting and staining products are often

the sources of Pb found in urban runoff (Schmidtke, 1988). One would expect that Pb in

a mineral phase would leach down into the deeper sediments (Borg and Johansson, 1989).

Pb concentrations vary throughout Lake Gibson. The highest concentrations occur near the

Beaverdams Community Center, the Old Abandoned Road and the western end of Lake

Gibson just before it enters Lake Moodie. The latter site experiences lower flow rates and

thus it could be that the sediments (metals) are settling out at this point. It is possible that

lead is a heavier element and thus can settle out more readily than the other metals.

The source of Cu in urban runoff may be from the corrosion of Cu plumbing and

from electroplating wastes. Cu is commonly used as an algicide and Cu compounds are

highly toxic to aquatic life (Berkes, 1979). The toxicity of Cu is affected by temperature,

dissolved oxygen concentration and pH (Hellawell, 1988). The highest Cu average

concentrations occur in samples near the Beaverdams Community Center, cream colored
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stream and by the intake pipe just below the waterfalls. Cu is an environmental concern for

Lake Gibson.

Zn occurs only in trace amounts in surface waters as the Zn ion is believed to adsorb

strongly and permanently on particulate matter which settles out of suspension (Berkes,

1979). Zn is commonly found in urban runoff as it is a component of automobile tires and

a common ingredient in road salt. It is also a component ofpigment in painting and staining

products (Schmidtke, 1988). Zn concentrations also vary with location with the highest

concentrations occurring in the cream colored stream across from an industrial complex.

Other areas of concern are the Beaverdams Community Center, the Old Abandoned Road,

areas near the equalization channel, and at the end of Lake Gibson prior to Lake Moodie.

Ironically this last area was thought to contain "cleaner" sediments as flow rates are low and

other metal concentrations were relatively low in this area.

Urban runoff may contain Cr as this metal is released from the corrosion of alloys

and plated surfaces and from electroplating wastes. Cr is also used in pigments found in

painting and staining products (Schmidtke, 1988). It is used as a tanning agent in the leather

industry and in the manufacture of dyes, explosives and paper. As mentioned previously,

there is a reported spill ofchrome- aluminum alloy which directly entered Lake Gibson. The

highest Cr concentrations occur in the cream colored stream, and exceed the SEL guideline.

Other areas ofconcern include the Beaverdams Community Center area the Old Abandoned

Road. Out of 219 samples 5 were above the SEL and 198 were above the LEL, thus Cr is

an environmental concern for Lake Gibson.

Ni concentrations do vary with location, the highest being in the WeIland Canal prior
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to entry into Lake Gibson, near the equalization channel, near the Beaverdams Community

Center and the section of lake where the submerged culvert passes underneath Beaverdams

Road. The majority of samples are below the LEL guideline for Ni and therefore Ni are not

an environmental concern. This may partially be due to companies complying with

government guidelines and regulations. In instances where metal concentrations exceed

the SEL, acute toxicity testing is suggested (Table 13).

Table 13. Summary of areas within Lake Gibson whose sediments should be tested for
acute toxicity.

Metal Core Number Areas of Lake Gibson

Cr - 1, 2, 5, 8, 9, 10 - intersection of Beaverdams Road and Kaye Ave
- 30, 39a - near Beaverdams Community Center
- C3, G2 - cream colored stream

Cu - 1, 9, 1O - intersection of Beaverdams Road and Kaye Ave
- 11, 12, 14,30, 31,39a - near Beaverdams Community Center
- 19 - near Old Abandoned Road
- 42, 47 - between Highway 406 and Merrittville Highway
- 52 - near submerged culvert

Pb - 6, 11, 12 - intersection of Beaverdams Road and Kaye Ave
- 30, 39a - near Beaverdams Community Center

Fe - 1 - 8, 37a, - intersection of Beaverdams Road and Kaye Ave
- 9,17,18,21,23,24, - entire area heading west from old abandoned
29,32,39a,Pl road towards Beaverdams Road

- 45,53,54 - area bound by Beaverdams, Decew and Hwy 406
- 49 - between Highway 406 and Merrittville Highway
- C3 - cream colored stream

Zn - 9, - intersection of Beaverdams Road and Kaye Ave
- 19 - near Old Abandoned Road
- 31, 39a, PI - near Beaverdams Community Center
- 47 - between Highway 406 and Merrittville Highway
- C3 - cream colored stream
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All samples taken from Lake Gibson were classified according to depth for statistical

evaluation. In all cases, there was no significant difference between metal concentration and

depth. It does appear that Cd, Cu, Cr and Zn concentrations are slightly higher in surficial

samples and lower at depth. Conversely, AI, Ni, Pb and Fe concentrations appear to increase

with depth.

The accumulation ofmetals and TPH in certain locations may be a function of past

and present point sources and non-point sources of contaminants such as industrial effluents,

storm water drainage, train derailments, sewage and other sources of contaminants. There

are several areas ofenvironmental concern throughout Lake Gibson, most notably the cream

colored stream, the leak, and the areas near the Old Abandoned Road and the Beaverdams

Community Center.

CONCLUSIONS

A Shelby Corer was used to obtain 66 cores of sediment from Lake Gibson, which

were classified according to lithology and other parameters into 298 samples. A suite of 122

soil samples was collected in the region and vicinity of Lake Gibson. All were tested for a

set of metals and some for Total Petroleum Hydrocarbons (TPH). Evaluation of the results

leads to the following conclusions:

1. Metal concentrations ofAI, Cd, Cu, Cr, Pb, Ni, Fe and Zn in soils from the Niagara

Region are well below background limits set by the Ministry of the Environment

and Energy (MOEE) for provincial soils.



99

2. There is a spatial and depth difference for some of the metals within the various

soils. The Cr, Ni and Pb contents of soils vary throughout the region (p<0.05). In

addition, Pb contents tend to be highest in surficial soil samples (p<0.05), an

observation consistent with deposition by airborne particulates.

3. The Ni contents ofsediments from Lake Gibson fall below the LEL (Lower Effect

Level) guideline specified by the MOEE for aquatic ecosystems.

4. All other metal contents exceed the LEL, and in some instances they also exceed

the SEL (Severe Effect Level) guideline. In this instance acute toxicity testing of

the sediments is required to assess impact on the aquatic biota.

5. Specifically, areas associated with outfalls, roadways, railways and industrial

activities are all degrading the local ecosystem.

6. Mineral oil and greases are a major environmental concern in the sediments of

Lake Gibson. Of the 240 samples tested for TPH, 200 samples exceed the MOEE

Open Water Disposal Guideline of 1500 mg/kg.

7. Four areas within Lake Gibson are especially degraded with respect to TPH. One

area is just downstream from the Old WeIland Canal divergence point and

waterfall. Other areas of concern are located just south of Beaverdams Road and

just west ofthe Ontario Hydro control pipes; south of the Village ofBeaverdams.

The fourth area of environmental concern and TPH impact is located between

Highway 406 and Merrittville Highway.
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Appendix # 1 - Water Quality Data

Date Site# 1 2 3 4 5 6 7 8 9 10 11 12 13 14

May 6/97 Temp. 8.7 8.8 10.5 12.7 12.1 11.9 10.6 15.9 11.1 13.9 13.6 11.5 8.4 8.4

pH 8.3 8.74 8.36 8.6 8.54 8.58 7.64 8.87 8.58 8.76 8.79 9 8.81 8.82

Salinity 0 0 0.01 0.01 0.01 0.01 0.07 0.01 0.06 0.01 0.01 0 0 0

Conductivity 0.239 0.233 0.32 0.407 0.304 0.315 1.6 0.327 1.49 0.33 0.345 0.258 0.239 0.24

D.O. 10.16 10.33 7.01 7.05 7.15 7.78 0.61 8.44 8.06 7.4 8.28 9.85 11.04 10.63

Turbidity 65 21 95 30 55 85 7 44 25 47 19 61 24 15

Eh 222 218 219 222 230 223 -79 159 167 188 176 200 190 202

May 20/97 Site# 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Tenlp. 10.1 10.7 10.7 12.9 12.9 14.5 10.8 18.1 11.5 14.4 15.3 13.9 II 10.2

pH 8.63 8.68 8.1 8.67 8.65 8.89 7.65 8.74 8.41 8.57 8.85 9.57 8.79 8.37

Salinity 0 0 0.05 0.01 0.01 0.01 0.07 0.01 0.01 0.01 0.01 0 0.01 0

Conductivity 0.231 0.231 1.24 0.383 0.382 0.306 1.62 0.387 1.66 0.329 0.383 0.225 0.233 0.231

D.O. 10.28 10.77 5.24 8.33 8.55 10.59 0.8 9.94 8.5 7.69 9.32 14.8 10.1 10.04

Turbidity 35 33 16 35 30 61 3 30 21 36 14 50 67 14

Eh 194.4 195.5 188.1 210.6 180.5 188.5 -101.6 93.8 133.4 162.2 181.7 122.6 188.6 186.9

May 27/97 Site# 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Tenlp. 11.4 11.4 11.8 17.6 17.3 16.9 11.9 20 17.3 19.8 19.8 21 17.1 10.9

pH 7.01 7.18 6.45 7.27 7.19 7.56 6.05 7.4 7.39 7.36 7.38 7.18 7.69 7.09

Salinity 0 0 0.06 0.01 0.01 0 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0

Conductivity 0.25 0.25 1.37 0.363 0.364 0.234 1.59 0.318 0.385 0.279 0.274 0.231 0.237 0.25

D.O. 11.7 11.68 4.93 10.42 9.81 11.24 0.46 10 10.8 10.55 10.35 9.6 12.82 11.57

Turbidity nla nJa n/a n/a nla nJa nJa nJa n/a n/a n/a nla n/a nla

Eh 199 204 194 186 184 169 -84 87 106 107 118 122 99 195.6

June 10/97 Site# 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Tenlp. 14.2 15 18.6 23.4 24.5 21.9 12.3 26.1 24.9 24.5 24.8 19.4 21.8 n/a

pH 8.22 8.4 7.87 8.15 8.79 8.25 7.07 8.57 8.06 8.33 8.34 9.24 9.15 n/a

Salinity 0 0 0.01 0.01 0 0 0.07 0.01 0.01 0.01 0.01 0 0 nla

Conductivity 0.212 0.212 0.444 0.337 0.248 0.22 1.59 0.322 0.465 0.328 0.329 0.197 0.203 nla

D.O. 10.75 11.45 8.66 7.5 12.67 8.51 -0.18 9.46 7.89 8.85 8.81 17.08 16.04 n/a

Turbidity 41 204 86 17 107 51 412 46 40 31 33 30 78 n/a

Eh 155 156.1 162 163 162 155 -54 175 95 113 122 158 129 n/a
~

0
~



June 24/97 Site# 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Temp. 18.2 18.4 18.4 25.7 n/a n/a 12.4 n/a 21.8 26 n/a n/a 19.1 17.5
pH 8.25 8.32 7.91 8.48 n/a n/a 6.9 n/a 7.68 8.47 ilIa n/a 8.56 8.39
Salinity 0 0 0 0.01 n/a n/a 0.06 n/a 0.04 0.01 n/a n/a 0 0

Conductivity 0.211 0.214 0.238 0.352 n/a n/a 1.53 n/a 1.05 0.324 n/a n/a 0.215 0.212

D.O. 9.4 8.78 6.32 8.34 n/a n/a 0.06 n/a 6.45 10.56 n/a n/a 9.8 9.18
Turbidity 95 41 99 8 n/a n/a 385 n/a 84 20 ilIa n/a 30 89
Eh 169 189 207 182 n/a n/a -7.6 n/a 115 138 n/a n/a 186 181

July 15/97 Site# 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Temp. 22 21.8 23.8 26 26.4 n/a 13.1 31.4 24.2 n/a n/a n/a 21.7 21.1
pH 8.19 8.2 7.93 8.66 8.41 n/a 7.25 9.06 7.91 nla n/a n/a 8.25 8.23
Salinity 0 0 0.01 0.01 0.01 n/a 0.07 0.01 0.01 n/a n/a n/a 0 0
Conductivity 0.191 0.192 0.281 0.294 0.291 n/a 1.53 0.327 0.455 n/a n/a n/a 0.194 0.191
D.O. 8.45 8.56 6.64 8.8 8.3 n/a 1.78 15.1 7.83 n/a ilIa n/a 8.64 8.12
Turbidity 100 28 195 15 2 n/a 350 40 9 n/a n/a n/a 70 96
Eh 153 154 150 151 139 n/a -60 68 140 n/a n/a n/a 150 141

~

o
v-.
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Appendix 2 - Soil Data for Lake Gibson (Alluvium, Beverly, Brantford and Toledo Soils)

AI Cd Cu Cr Ni Pb Fe Zn
Table A na 3 150 750 200 150 na 600
Table F na 1 56 67 56 43 na 150
Sample
1-1 43167 0.43 13 49 6 25 23971 64
1-2 38903 0.41 16 44 9 25 26716 68
2-1 23486 0.47 13 34 8 17 20177 60
2-2 58836 0.52 25 61 4 39 36964 68
3-1 42284 0.47 16 45 8 25 30003 72
3-2 59745 0.4 29 67 2 42 36860 64
4-1 35512 0.61 17 42 14 32 24785 78
4-2 46570 0 28 57 1 39 31'607 62
4-3 39681 0 17 39 0 22 24940 51
5-1a 31522 0.11 16 42 11 22 22325 109
5-1b 40948 0.11 18 46 16 24 25652 91
6-1 26616 0.16 13 42 11 25 21112 88
6-2 38229 0.09 12 45 5 26 21089 72
7-1 30718 0.21 14 43 8 26 22267 70
7-2 48714 0.06 24 57 1 39 32619 65
8-1 21297 0 26 39 9 24 19784 74
8-2 29785 0.05 9 39 2 16 18771 59
9-1 20291 0.41 13 31 22 33 17284 92
9-2 43882 0.05 21 53 6 25 26050 51
9-3 35850 0.1 10 42 7 22 21227 53
10-1 28448 0.16 11 41 14 25 17399 82
10-2 26042 0 6 38 4 11 19213 49
10-3 67170 0.06 28 75 4 40 34156 82
11-1 45720 0.14 14 52 11 27 25419 69
11-2 45991 0.16 23 57 7 32 26897 52
12-1 80496 0 17 67 4 33 27797 80
12-2 87385 0 22 67 5 37 28649 74
13-1 49680 0 32 64 4 38 35103 72
13-2 15035 0.01 7 26 2 12 13909 37
14-1 47825 0.01 13 52 12 31 29415 83
14-2 81515 0.1 27 68 5 45 38967 70
15-1 25697 0.21 15 42 15 21 19288 82
15-2 50054 0 33 67 7 43 34888 71
16-1 34416 0.16 14 47 10 19 24038 80
16-2 47620 0.3 25 55 9 36 31177 71
17-1 33661 0.11 12 45 16 21 19530 74
17-2 41715 0 27 49 4 32 24004 58
18-1 60655 0.39 24 63 16 28 28387 85
18-2 31076 0.11 23 53 4 17 21504 73
19-1 54574 0 27 64 5 42 33358 74
19-2 17428 0 27 43 0 41 18473 65
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Appendix 2 - Soil Data from Viticultural Areas
AI Cd Cu Cr Ni Pb Fe Zn

Table A na 3 150 750 200 150 na 600
Table F na 1 56 67 56 43 na 150
Sample #
1-1a 12950 0.19 27 18 7 68 16458 48
1-2a 10955 0.21 26 35 12 53 16898 32
1-3a 12676 0.04 25 25 10 3 18295 28
1-1 b 21561 0.55 75 32 9 20 21272 84
1-2b 19095 0.4 74 24 8 16 20993 80
1-3b 18783 0.39 30 26 15 5 20564 40
1-1c 25217 0.28 23 30 13 11 24733 68
1-2c 40392 0.53 26 45 19 14 32388 69
1-3c 49110 0.3 9 47 27 1 33211 57
2-1a 39690 0.2 30 47 23 6 31256 76
2-2a 44570 0.2 33 53 28 3 34593 64
2-3a 44052 0.04 33 57 31 2 34717 83
2-1b 30621 0.04 28 42 22 6 27487 85
2-2b 40681 0.27 26 45 20 5 27893 51
2-3b 41462 0 25 46 26 2 28657 52
2-1c 33255 0.42 21 36 15 5 25540 84
2-2c 21127 29 15 33 11 10 22495 70
2-3c 30608 0.08 19 35 13 2 25796 48
3-1a 37078 0.21 26 42 18 8 28942 69
3-2a 40155 0.23 33 51 30 9 32393 59
3-3a 38374 0.04 30 47 26 1 30281 51
3-1b 30248 0.14 21 37 15 7 28220 57
3-2b 34295 0.19 24 46 18 7 27835 59
3-3b 32930 0.13 28 41 21 2 25592 51
3-1c 27939 0.33 23 36 12 10 25671 74
3-2c 35098 0.52 15 45 14 7 28033 60
3-3c 41016 0.22 31 52 32 4 32296 63
4-1a 22516 0.4 8 31 7 8 23737 28
4-2a 36335 0.19 17 45 12 4 31262 25
4-3a 35986 0.39 18 45 15 5 31135 24
4-1b 30007 0.33 11 33 10 8 25258 66
4-2b 29383 0.32 9 36 13 5 26982 53
4-3b 31613 0.08 15 41 16 3 30830 42
4-1c 38736 0.17 24 46 26 5 34147 58
4-2c 45227 0.04 26 49 32 6 33066 58
4-3c 18129 0.14 19 36 18 4 18067 42
5-1a 30309 0.22 12 34 13 11 23878 62
5-2a 46065 0.13 27 55 27 5 37457 65
5-3a 45985 0.03 29 58 33 3 36231 67
5-1b 34075 0.14 16 39 11 5 27248 55
5-2b 34410 0.29 21 50 18 8 35151 69
5-3b 45814 0.22 33 57 28 4 37679 67
5-1c 32782 0.26 18 38 12 8 26610 74
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5-2c 34877 0.28 19 42 15 6 27536 57
5-3c 38352 0.19 25 49 20 4 31658 55
6-1a 32500 0.45 48 40 14 7 24737 64
6-2a 30153 0.43 28 39 15 6 27193 57
6-3a 32595 0.13 27 45 33 6 31047 51
6-1b 31769 0.33 26 40 18 5 27631 51
6-2b 38817 0 29 49 24 1 32552 52
6-3b 34247 0 27 42 19 1 31133 50
6-1c 31097 0.15 60 42 22 8 28948 66
6-2c 36470 0.04 28 46 22 2 31521 52
6-3c 36115 0 31 49 32 3 34294 58
7-1a 18760 0 14 27 11 4 19330 65
7-2a 25123 0 14 48 22 1 21881 49
7-3a 21355 1.2 17 32 15 1 19942 48
7-1b 14656 0 9 15 10 4 16201 42
7-2b 27200 0.78 14 43 21 3 23665 42
7-3b 22366 0 18 32 18 2 22573 40
7-1c 14669 0.17 13 26 12 5 20266 62
7-2c 16147 0.15 14 33 12 9 20347 60
7-3c 24768 0.14 19 39 17 6 28402 27
8-1a 16025 0.3 32 37 18 15 21047 44
8-2a 15130 0.18 42 32 13 20 18778 56
8-3a 22726 0.19 29 34 16 4 26822 33
8-1b 14239 0.11 27 28 12 11 21927 70
8-2b 16138 0.12 18 35 17 8 20567 25
8-3b 10921 0 11 27 14 5 16816 19
8-1c 9029 0.11 13 19 7 11 12528 20
8-2c 11571 0.08 11 20 9 4 18775 18
8-3c 27000 0.09 23 40 26 5 33439 55
9-1a 17061 0.12 17 29 14 9 17544 67
9-2a 16412 0.1 11 26 9 2 13464 50
9-3a 34064 0.23 29 46 35 2 36261 64
9-1b 12284 0.07 15 21 10 12 16312 50
9-2b 12175 0.1 15 28 13 6 19560 32
9-3b 20333 0.09 20 33 17 5 23130 46
9-1c 13099 0.14 22 18 12 4 20924 22
9-2c 9854 0.14 20 21 11 1 11344 13
9-3c 10659 0.13 22 40 23 0 17003 19
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III
STRATIGRAPHIC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: December 27, 1996. Field Supervisor: DB Core Method: Shelby Tube Corer

Location: Lake Gibson, Thorold, Ontario (Cores 16, 17, 18 and 19)

17-2

17-3

17-4

17-5

Light hrown to grey clay

Light hrown to dark: hrown
silty clay

Black silty clay
Slight hydrocarbon odour

Light grey clay

end of core
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E 12
Q
@ 14
0
0

a 16

£ 18a.
~ 20

22

24

26

28

30

32

16-4

16-2

16-3

16-5

Dark brown silty clay

Dark brown to black silty clay

Light hrown clay

Light hrown clay

end of core

Description sample # Description sample #

0

Dark: hrown silty clay 16-1 Light brown silty clay 17-1
Green algae

10

E
12Q

@
140

(J

a 16

:E
18a.

Q)
0

20

22

24

26

28

30

32

Core #16 Core #17

Description sample # Description sample #

0

Dark: hrown to hlack: silt 18-1
Light brown silty clay 19-1

Organic material (wood pieces)
Hydrocarbon odour

Golden glitter/shine
18-2

Black: silty clay
Hydrocarbon odour

Black: silty clay
10 10 19-2

E E Strong Hydrocarbon odour
Q 12 Brown to black: clay 18-3 Q 12
@ FerrOLL<i colored flakes ~
0

14 0 14 Black to grey clay 19-30 0

a a Hydrocarbon odour
16 16

:E end of core .t::.
a.

18 a. 18 Black to dark: grey clay 19-4
Q)

~0 Organic material (roots)
20 20

Dark grey clay 19-5
22 22 Organic ffiateriaJ (roots)

24 24 Light black/grey clay 19-6
Lot.. of organic matter (roots)

26 26
end of core

28 28

30 30

32 32

Core #18 Core #19



STRATIGRAPIDC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: December 27, 1996. Field Supervisor: DB Core Method: Shelby Tube Corer

Location: Lake Gibson, Thorold, Ontario (Cores 20,21,22 and 23)

Description Sample # Description Sample #

Light brown to lighter brown clay 21-4
Ferrous streaks

o

10

E
12Q

~
140

()

'0 16

~ 18a.
Q)
0

20

22

24

26

28

30

32

Dark black '\ilty clay
Strong hydrocarbon odour
Green algae
Organic material (roots)

Black to dark brown silty clay
Hydrocarbon odour
Organic material (roote;)

Black: to bro~n silty clay

end of core

20-1

20-2

20-3

10

E 12
Q

~ 14
0
()

'0 16

.c. 18a.
~ 20

22

24

26

28

30

32

Brown silty clay

Dark brown to black
silty clay

Light brown to grey silty clay
Slight hydrocarbon odour

end of core

21-1

21-2

21-3

Core #20 Core #21

Description Sample # Description Sample #

0

Dark brown to black silty clay 22-1
Light brown silty clay 23-1

Slight hydrocarbon odour
Hydrocarbon odour

Light brown to dark brown silty clay 22-2

10 10 Black silty clay 23-2

E E Strong Hydrocarbon odour
Q 12 Q 12
~ Light brown to black 22-3 ~
0 14 0 14 Black to grey clay 23-3() Silty clay to clay ()

'0 Hydrocarbon odour '0
Hydrocarbon odour

16 16
f; Golden oily shine £a. 18 a. 18 Black to dark: grey clay 23-4
Q)

~0 Light brown grey clay 22-4 Organic materia! (roots)

20 20

22 22

24 24

26 26
Light brown to grey clay 22-5

28 28

30 30
end of core

32 32

end of core

Core #22 Core #23



113
STRATIGRAPHIC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: January 7, 1997. Field Supervisor: UB Core Method: Shelby Tube Corer

Location: Lake Gibson, Thorold, Ontario (Cores 24, 25a, 25b and 26)

Description sample # Description sampfe #

Dark brown silty clay 24-1 Grey to brown clay 25-1a
Hydrocarbon odour

Light to darker brown silty clay 24-2
Hydrocarbon odour

10
Golden glitter

10 Light hrown clay 25-2a

E E Pehhle~

Q 12 Q
12 Organic material (roots)

@
14 Black silty clay 24-3 ~ 140 0u Hydrocarbon odour 0

'0 16 '0 16

~ 18
.c 18a. 0.(])

~a
20 Dark black silty clay 24-4 20 Light brown to black clay 25-3a

Hydrocarbon odour Pebble~

22 22 Hydrocarbon odour

24 24

26 26
end of core Light brown to black clay 25-4a

28 28

30 30

32
end of core

32

Core #24 Core #250

Description sample # Description sample #

0

Light brown sandy clay
Dark: brown clay 25-1h

26-1 Strong hydrocarbon odour
Hydrocarbon odour

Light brown clay 25-2b
Light to dark: brown clay 26-2 Strong Hydrocarbon odour
Black streaks Pink tint

E
10

E
10

Q 12 Q 12
@ ~0 14 0 14 Light brown clay 2S-3bu 0

'0 Black clay 26-3
'0

Strong hydrocarbon odour
16 Strong hydrocarbon odour 16

li
18 a 18

~ ~
20 20 Dark brown clay 254b

Hydrocarbon odour
22 end of core 22 Organic matter

Golden glitter
24 24

26 26
end of core

28 28

30 30

32 32

Core #26 Core #25b



STRATIGRAPmC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: May 2, 1997. Field Supervisor: DB Core Method: Shelby Tube Corer

Location: Lake Gibson, Thorold, Ontario (Cores 27, 28, 29 and 32)

o

10

E
12Q

m
140

U

"6 16

£;
18a.

(])
0

20

22

24

26

28

30

32

Description Sample # Description Sample #

0

Dark brown silty clay 27-1 Dark brown silty clay 28-1
Hydrocarbon odour

Lighter brown silty clay 27-2 Light brown silty clay 28-2
Strong hydrocarbon odour Strong hydrocarbon odour
Golden oily shine

10

E 12
Q

~ 14
Light brown to grey black 28-3

Dark brO\~n silty clay 27-3 0 silty clay
Strong hydrocarbon odour u

"6 16

r:. 18
Black silty clay 27-4 a.
Strong hydrocarbon odour ~ 20 Black silty clay 28-4

Golden shine
22

24
end of core end of core

26

28

30

32

Core #27 Core #28

Description Sample # Description Sample #

0

Dark hrown silt clay
Light to dark brown clay 32-1

29-1 Strong hydTOcarbon odour

4
Hydrocarbon odour

6 Dark: brown to black clay 32-2
Light brown silty clay 29-2 Strong Hydrocarbon odour
Strong hydrocarbon odour

E
10 Organic matter 10

E
Q 12 Q 12
~ ~
0 14 0 14 Black to dark brown clay 32-3u u
'0 Brown to grey clay 29-3

"6
Hydrocarbon odour

16 Strong hydrocarbon odour 16
£; Organic matter (roots) r:.
a. a. 18Q) 18

~0

20 20 Black to light brown clay 32-4
Organic matter

22 end of core 22

24 24

26 26
32-5

28 28
Light brown to black clay

30 30

32 32 end ofcore

Core #29 Core #32
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STRATIGRAPHIC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: December 27, 1996. Field Supervisor: UB Core Method: Shelby Tube Corer

Location: Lake Gibson, Thorold, Ontario (Cores 33,34, 36 and 39b)

o

6

10

E
12Q

@
140

()

'0 16

:G 18a.m
0

20

22

24

26

28

30

32

Description Sample # Description Sample #

Light hlack. silty clay 33-1 Light bro\.Wl to grey silty clay 34-1
Manure odour Pehbles
Organic matter (wood pieces) Ferrous streak

Manure like odour

34-2

Light brown to black. silty clay
Light hlack: clay

33-2 Golden shine
Black. flakes 10

Organic matter (wood pieces)
Organic matter (wood pieces) E 12

Q
~ 14
0 Light hlack to grey silty clay 34-3()

Light brown silty clay 33-3 '0 16 Organic matter (wood pieces)

Organic matter (roots) .c. 18a.
~

Light brown silty clay 34-4
20 Raw sewage-like odour

Pebbles
22 Organic matter (roote;)

Light brown to grey clay 33-4
Organic matter (wood pieces) 24

26
end of core

28

30

end of core 32

Core #33 Core #34

Description Sample # Description Sample #

0 0

Ferrous to hlack. silty clay
Dark brown to black sandy clay 39-1b

36-1 Organic matter (leaves)

4
Organic matter (wood pieces)

6
Light brown to black. sandy clay 39-2b

Light brlack clay 36-2

E
10 Organic matter

E
10

Q 12 Q 12
~ ~0

14 0 14() () Dark. brown ~dy clay
'0 '0

39-3b
16 16 Organic matter (wood pieces)

:G .c.
a. 18 a 18
~ ~ end of core

20 20

22 end of core 22

24 24

26 26

28 28

30 30

32 32

Core #36 Core #39b



STRATIGRAPHIC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: April 29, 1996. Field Supervisor: DB Core Method: Shelby Tube Corer

Location: Lake Gibson, Thorold, Ontario (Cores 40, 42a, 43 and 44)

Description Sample # Description Sample #

0

Light to dark brown clay 44-1 Light brown silt 42-la
Yellow oil like shine FermLLc; streak

4
Organic maner (wood pieces) Pebbles

Organic matter (roots)

6 Brown to black silty clay 44-2
Organic ma.ttet" (wood pieces)

Light brown clay 42-2a

10 10
FerroLLc; mottl~
Pebbles

E
12 E 12 Organic matter (roots)

Q Q
~

14 @ 140 0u Dark brown silty clay 44-3 u
'0 16 Yellow shine '0 16 Light brown to grey clay 42-3a

Ferrous mottles
£;

18
Organic matter twood pieces) .c. 18 Black streaks in center of corea. a.(])

~0
20 20Brown to yellow clay 44-4

Ferrous palches end of core
22 Organic matter (wood pieces and roots) 22

24
Hydrocarbon odour 24
Oil like shine

26 end of core
26

28 28

30 30

32 32

Core #44 Core #420

Description Sample # Description Sample #

0

Yellow grey clay
Light to darker brown silty clay 43-1

40-1 Organic matter (roote;)
Pink tint

Light brown to grey clay 40-2 Black to light brown silty clay 43-2

E
10

E
10

Q 12 Q 12
~ end of core

~
0 14 0 14U U Light brown clay 43-3
'0

16 '0 16
£; £;a.

18 a. 18(])

~0 end of core
20 20

22 22

24 24

26 26

28 28

30 30

32 32

Core #40 Core #43



STRATIGRAPHIC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: August 12, 1997. Field Supervisor: DB Core Method: Shelby Tube Corer

Location: Lake Gibson, Thorold, Ontario (Cores 45, 46, 47a and 48)

Description Sampe # Description Sample #

0 0

Light brown to yellow silty clay 45-1 Light brown to yellow silty clay 46-1
Organic matter (wood pieces) Organic matter (roots)

4 4

6 Darker brown to yelow silty clay 45-2 6
Yellow-brown to dark brown clay 46-2

Center of core hlack 8 Pebbles
Organic matter (wood pieces) Pink tint

10 10

E
12 E 12 Dark yellow-brown clay 46-3.2- .2-

~
14 ~ 140 0u Dark brown silty clay 45-3 () end of core

a 16 Organic matter (wood pieces and roote;) '0 16

€ 18 ~ 18a. end of core
<D

~a
20 20

22 22

24 24

26 26

28 28

30 30

32 32

COfe #45 Core #46

Descrip1ion Sampe # Description Sample #

0 0

Dark: hro""n silty clay
Light to darker brown silty clay 48-1

47-1a Organic matter (roote;)

6
Dark brown to black silty clay 47-2a Black to light brown silty clay 48-2
Organic matter (roots)
Hydrocarbon odour

E
10 10

E
.2- 12 .2- 12
~ Black to dark brown silty clay

47-3a ~0
14 0 14U () Light brown claya end of core 48-3

16 '0 16= €a.
18 c. 18Q)

~a
end of core

20 20

22 22

24 24

26 26

28 28

30 30

32 32

Core #47 Core #48
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STRATIGRAPHIC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: June 9, 1996. Field Supervisor: DB Core Method: Shelby Tube Corer

Location: Lake Gibson, Thorold, Ontario (Cores 49, 50, 51 and 53)

Description Sompe# Description Sample #

0
Dark brown to yellow silty clay 49-1 Black grey sandy clay 50-1
Zebra MLLc;se1 Shells

Yellow brown sandy clay 49-2
Organic matter (roots)

Grey-yellow brown sandy clay 49-3 Grey brown clay 50-2
10 Pink tint

E
Hydrocarbon odour

Q
12

Yellow bro'An clay 49-4 ~ 14
0
U

0 16 Black grey clay 50-3
Yellow grey clay 49-5 li 18 Hydrocarbon odour

Golden shine
~ 20 Grey clay 50-4end of core Golden shine

22 Hydrocarbon odour

24
Grey hlack clay 50-5

26

28

30 end of core

32

o

6

10

E
12.£

~
140

u
0 16

G
180..m

0
20

22

24

26

28

30

32

Core #49 Core #50

Description Sampfe :# Description Sample #

Black silt 51-1 Black to light brown sandy clay 53-1
Organic material (leaves) Pebbles
Golden shine Organic matter (root~)

Hydrocarbon odour Pink tint to sediment

Black grey ~ilty clay 51-2
Hydrocarbon odour
Organic material (leaves)

10
Golden shine Light brown to yellow sandy clay 53-2

E E
10

Golden shine
.£ 12

Grey hlack silty clay 51-3 Q 12
iD Golden shine
0 Hydrocarbon odour ~
u 14 0 14 Yellow to brown clay 53-3u
"6 0

Golden shine
16 16

a. J:::.

18 a 18 Yellow black sandy clayiD
~

53-4
0 Grey clay

20 Golden shine 51-4 20 end of core

22
Hydrocarbon odour

22
Organic matter (leaves)

24
end of core

24

26 26

28 28

30 30

32 32

Core #51 Core #53



STRATIGRAPHIC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: October 7, 1997. Field Supervisor: DB Core Method: Shelby Tube Corer

Location: Lake Gibson, Thorold, Ontario (Cores creaml, cream3, park and 39a)

Description sample # Description sample #

o

6

10

E
12Q

~
14a

(J

'0 16

:G
18a.

lD
0

20

22

24

26

28

30

32

Browm cream sand
Organic matter (leaves, stems)

Light yellow brown clay
Organic matter (roots)

Yellow brown clay
Organic mancr (roots)

Grey sandy clay, Golden shine
Organic matter (roots)

Yellow brown sandy clay

end of core

cream I-I

cream 1-2

cream 1-3

cream 1-4

cream 1-5

10

E 12
Q

@ 14a
()

'0 16

~ 18li
~ 20

22

24

26

28

30

32

Dark bro",," sandy clay
Organic matter (leaves)
Pebbles

Dark brown to black sandy clay
Organic matter, pebbles

Grey black sand

Black to light brown sand
Organic matter

Yellow brown clay

Yellow clay

end of core

cream3-1

cream3-2

crearn3-3

crearn3-4

crearn3-5

crearn3-6

Core #cream1 Core #cream3

Description sample # Description sample #

0
Brown black sandy silt, Pebbles park-l
Organic matter (wood pieces) Dark brown clay 39-la

Strong hydrocarbon odour Pebbles

4
Black sandy silt.. Pehbles park-2

6 Strong hydrocarbon odour
Dark brown to black sandy clay 39-2a

10
Black to yellow-brown sandy clay park-3

10
E Strong hydrocarbon odour E
.2- 12 Q 12
@

Dark brown to black silty clay
@a 14 park-4 a 14()

Strong hydrocarbon odour ()

"6 '016 16 Light grey clay 39-3a£; £;a.
18 end of core a. 18cD

~0

20 20

22 22

24 24 Light brm."TI clay 39-4a

26 26

28 28

30 30 Dark brown clay 39-5a
Very high in peat

32 32 end of core

Core #park Core #390



STRATIGRAPHIC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: October 7, 1997. Field Supervisor: DB Core Method: Shelby Tube Corer

Location: Lake Gibson, Thorold, Ontario (Cores creaml, cream3, park and 39a)

o

6

10

E
12Q

~
140

u

'0 16

~
18C-

O)
0

20

22

24

26

28

30

32

Description

Golden grey silty clay
Waterlogged

Grey hlack: clay
Golden shine
Hydrocarbon odour

Brown to grey clay
Golden shine

Black silt
Golden shine
Hydrocarbon odour
Organic matter (root~ and leaves)

Darker black silty clay
Golden shine

end of core

sample #

54-I

54-2

54-3

54-4

54-5

10

E 12
Q
~ 14
0
(.)

'0 16

~ 18a.
~ 20

22

24

26

28

30

32

Description

Dark brown sandy clay
Organic matter (roots)

Dark to light brown silty clay

Light brown to yellow clay

Light to dark. bro\\TI clay

Black silty clay
Golden shine
Organic matter (wood chips)

end of core

sample #

55-1

55-2

55-3

55-4

55-5

Core # 54 Core # 55

Description sample # Description sample #

0

Light yellow-brown clay 56-1 Brown silty clay 60-1
Organic matter

4

6
Yellow-hrown clay 56-2 Grey black silty clay 60-2

Orange flalces throughout

10 10
Hydrocarbon odour

E E Black. to grey silty clay 60-3Q 12 Q 12 Hydrocarbon odour, roots
~ ~ Black. silty clay, roots 60-40 14 Grey-yellow clay 56-3 0 14u U Orange flakes, pehbles
'0

16 '0 16
i: ~

Brown black silty clay 60-5
0-

18 a. 18 Brown black silty clay, pehbles0)
~ 60-6

0 Yellow to light brown clay 56-4 Organic matter
20 20

22
Brown black silty clay 60-7

22 Organic matter

24 24

26 26
Black hrown silty clay 60-8

28 28

30 end of core
30

32 32
end of core

Core # 56 Core # 60



STRATIGRAPHIC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: July 24, 1995. Field Supervisor: VB Core Method: Shelby Tube'Corer

Location: Lake Gibson, Thorold, Ontario (Cores 1, 2, 3 and 4)

Description Sample # Description SCrnpie #

0 0
-sand 1.1 - silty sand 2.1

2 - black ~ith ~hite 2 - very'coar~e grained
pebbles - black to dark bro'\.Vn

4 4

6 6 - silty sand 2.2
- finer grained than

- sil'tV sand sa..xnple above
8 - bl~k \.Vith 1.2 8 - black

cream and
10 orange pebbles 10

E - ~ilty clay 2.3

12
- black to bro\.vn

Q 12 to grey
Q) E0 14 - sil~ sand 1.3 14 end ofcoce
() Q

- dark bro\.Vn to
~'0 16 black
U

16
.c. aa. 18 end of core 18
Q) .c0

20 1 0-
m 20
0

22~ 22

24 24

26~
26

28 28

30 30

32 32

Core #1 Core #2

Description sample # Description Somple #

0 0
- ~ilt 3.1 - sand 4.1
- crumbles readily 2 - dark bro"\Wn
- black.

4 - olfactory evidence 4
of hydrocarbons - sandy clay 4.2

6 - silty clay 3.2 6 - bro'\ND to yelloW'

- dark. bco'\NJl to black
8 8

10 - clay 3.3 10

E
- bro,"vn/black

E
.Q. 12 .Q. 12

~ <D - clay0 14 <5 14 4.3
u - clay 3.4 u - dark bro\N" \Nith

'0 16 - light bro""n to grey '0 16
ferrous colored strea.k.s

£ .c. - clay 4.4
Q. 18 0. 18 - yelloW' to light beo",,"
~ ~

20 20
- clay 3.5

22 - light bro,-,'Il 22 end of core

24 24

26 end of core 26

28 28

30 30

32 32

Core #3 Core #4



STRATIGRAPHIC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: January 16, 1996. Field Supervisor: DB Core Method: Shelby Tube Corer

Location: Lake Gibson, Thorold, Ontario (Cores 13, 14, 37a and 38a)

Description Sample # Description Sample #

0 0

- blacldbrown silt 13-1 - brown silty clay 14-1
- organic material - organic material
- olefactory evidence of - olefactocy evidence of

4 hydrocarhon~ hydrocarbons
- anthropogenic material

6 - bro'WTl to grey clay 13-2 6
- organic lTlatcrial - light brown ~ilty clay 14-2
- olefactory evidence of - organic material
hydTocarhon~ - oleractory evidence of

10 10 hydrocarhon~

E - grey clay 13-3 E - bro\NTl silty clay 14-3

Q 12 - organic material Q 12 - organic material

@
- olefactory evidence of

@
- olefactory evidence of

0 14 hydrocarhon~ 0 14 hydrocarbons
0 0 - anthropogenic material

"6 16 - grey clay 13-4 "6 16

:E
- organic matter - brown silty clay 14-4

18
- olefactory evidence of :E - organic matter

Cl. Cl. 18

~
hydrocarbons Q) - olefactory evidence of

20
0

20
hydrocarbons

- grey to brown clay 13-5 - hlack/brown ~ilty clay 14-5
22 - organic material 22 - organ ic material

- olefactory evidence of - olefactory evidence of

24 hydrocarbons
24 hydrocarhon~

26
- brown/grey clay 2613-6 - blacklbrown silty clay 14-6

28 - organic material
28 - organic material

30 end of core 30 end of core

32 32

Core # 13 Core # 14

Description SOrTlple :#
Description sample #

0
- sandy clay 37-1
- dark. black. - sandy cJay 3R-1

- black

- clay 37-2
- light bro"," clay
- interlaced 'oVith thin - clay 38-2

lenses of dark black - black
sandy clay

- high in peat
10

E
12 - sandy clay 37-3 EQ - bro\Nn - sandy clay 3R-3

~
Q - light hrown

0 14 - minor pehhle content
~

U 0

0 16
u
0

f:
18 .c. cnd of core

a.
~ end ot"core C. 18

~20 20

22 22

24 24

26 26

28 28

30 30

32 32

Core #37 Core #38



STRATIGRAPHIC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: July 24, 1995. Field Supervisor: DB Core Method: Shelby Tube-Corer

Location: Lake Gibson, Thorold, Ontario (Cores 5, 6, 7 and 8)

Description Sample #

Description Sample :#

- silty sand
- black

6.1

10

E
12Q

~
140

()

'0 i6

.c.a. ; 8

~
20

22

24

26

28

30

32

- silty clay
- light bro","

- silty clay
- li6Jbt to dark bro","

end ot"core

5.1

5.2
10

E
12.£

<D
0 14
u
a
.c.a. 18

~
20

22

24

26

28

30

32

- silty clay
- black to dark brown

- clay
- dark brown

- silt
- brown
- rich in organic

material

end of core

6.2

6.3

6.4

Core #5 Core #6

Description Sample -# Description Sample #

end ot"core

- silty clay 73
- bco",n
- crumbles more

readily than sample
above

R.I

R.4

8.2

8.3

- bro'-Vt1 sand

- broW'n clay

- silly clay
- organic mattcr
- iron likc rusty

streaks

- silty clay
- bro"vn

cndofcon:

10

E
12Q

~ 14
()

'0 16

t 18

~
20

22

24

26

28

30

32

7.1

7.2

- silt
- hlack to dark

bro",o

- silty clay
- light bro","

10

E
12Q

(I)

5 14
()

'0 16

ti
18a.

<D
0

20

22

24

26

28

30

32

Core #7 Core #8



12
STRATIGRAPIDC, SEDL\fENTOLOGIC AND INSTRUMENTATION LOG

Date: July 24, 1995. Field Supervisor: VB Core Method: Shelby Tube. Corer

Location: Lake Gibson, Thorold, Ontario (Cores 9, 10, 11 and 12)

Description sample #

Description Sample II

- brown sand 9.1 - black. to dark. brown 10-1
silt and sand

- organic material
- sand 9.2
- dark brown

- black to dark brown 10-2
silt and sand

- organic material
- silt 9.3

10 - brown/yellow 10
E - olefactory evidence of

E - black to dark. brown 10-3
Q 12 hydrocarbons

Q 12 silt and sand
Q) - silt 9.4 Q)

- organic material

<5 14 - black <5 14
U - olefactory evidence of U

'0 16 hydrocarbons '0 16 -day 10-4

.c end of core :G
- brown to light grey

0. 18 a. 18

~
Q)
0

20 20
- clay 10-5

22 22 - brown to light grey

24 24

26 26 end of core

28 28

30 30

32 32

Core #9 Core # 10

Description Sample # Description Sample #

0 0

- brown silt and sand 11-1
- brown silty clay 12-1

2 - olefactory evidence of - ferrous streak."

hydrocarhons - olefactory evidence of
4 hydrocarbons

6 - darker brown silt and 11-2 6 - brown silty clay 12-2

sand
- ferrous streak

8 - organic material - organic material

- olefactory evidence of
- olefactory evidence of

10 hydrocarbons 10 hydrocarhons

- clay 11-3 E - brown silty clay 12-3

E 12 - black to grey Q 12 - organ ic material
Q

- olefactory evidence of @ - olefactory evidence of

~ 14 hydrocarbons 0 14 hydrocarbons
u U

0 16 - clay 11-4 '0 16 - dark brown silty clay 12-4

:f - black to grey ~
- organic matter

a. 18 - olefactory evidence of
~ 18 - olefactory evidence of a.

hydrocarhons ~ hydrocarbons

20 20

- clay 11-5 - silty clay 12-5

22 - yellow/grey 22 - dark to light brown

- organ ic material - organic material

24 - ole factory evidence of 24 - olefactory evidence of

hydrocarbons hydrocarbons

26 end of core 26
- hrown/grey clay 12-6

28 28 - organic material

30 30 end of core

32 32

Core # 11 Core # 12



STRATIGRAPHIC, SEDIMENTOLOGIC AND INSTRUMENTATION LOG

Date: October 7, 1997. Field Supervisor: UB Core Method: Shelby Tube C~rer

Location: Lake Gibson, Thorold, Ontario (Cores 61, bxo, grab, gib and cream2)

10 10

E
12 Grey brown silty clay 61-2 E 12Q Q

!!?
14 !!? 140 0u Grey brown silty clay 61-] u

'0 16 Black and orange streak: '0 16

:E
18 Grey hm"n silty clay 61-4 .c 18a. li(]) Black and cream streaks ~0
20 20

22 22

Brown silty clay 61·5
24 Black flakes throughout 24

26 26

end of core
2828

JO 30

32 32

o

Description

Black grey silty clay
Blaek ~treak...

sample #

61-1

Core #61

Description

Dark brown sand
Organic matter (leaves)
Pebbles

Dark brO\~n sandy clay
Organic matter (leaves)

Light bro\\n to grey clay

Black: to brown clay

end of core

sample #

bxo-l

bxo-2

bxo-]

bx0-4

Core #bxo

Description sample # Description sample #

E o~Q Black sand grab--l Yellow brown sandy clay gib-l
!!?

:IJJ
Yellow sawdust· like material

0 Pebbles
u
'0 Black sand grab-2

t
Strange odour Yellow brown sandy clay gi~2

(J) Organic matter (roots)
Q end of core

Core #grab
E

10

Q 12 Yellow brown clay gih-3
!!? Black SL-eaK throughout
0 14u
'0 16
:E Yellow brown clay gih-4a. 18
~

20
end of core

22

E 2~ Dark brown to cream silty clay cream2·1 24

Q Organic matter (leaves)
26!!? :tJ Pehhles

0
u Cream to light hrown silty cia)" cream2-2 28

'0 Organic matter (leaves)
£;

30

a.
(J) 10 32

Q end of core

Core #cream2 Core #gib



APPENDIX 4

1. Marlatt's Pond Sediment Data
2. Lake Gibson Sediment Data
3. TPH Data
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Appendix 4 - Marlatt's Pond Sediment Data
AI Cd Cu Cr Ni Pb Fe Zn

LEL nla 0.6 16 26 120 31 20000 120
SEL nfa 10 110 110 820 250 40000 820
Sample
1.1 15067 <mdl 77 102 66 81 39565 246
1.2 13362 4.37 180 92 76 164 44387 315
1.3 55052 <mdl 87 110 121 111 55052 306
2.1 5827 <mdl 46 71 46 51 26967 298
2.2 11928 <mdl 50 71 71 86 34573 457
2.3 20520 <mdl 55 111 84 66 42747 392
3.1 13236 <mdl 65 106 70 94 29650 540
3.2 8619 <mdl 27 60 38 25 18787 113
3.3 57184 <mdl 44 79 67 <mdl 41793 213
3.4 30298 <mdl 29 61 54 <mdl 34436 276
3.5 48303 <mdl 26 56 49 <mdl 32232 158
4.1 26099 <mdl 17 37 34 79 20168 88
4.2 56011 <mdl 13 54 40 <mdl 21551 72
4.3 50204 <mdl 12 37 32 <mdl 21761 60
4.4 108585 <mdl 34 87 69 <mdl 49687 118
5.1 24880 <mdl 38 100 70 50 48734 197
5.2 50123 <mdl 55 119 102 <mdl 65506 199
6.1 19316 <mdl 47 84 60 73 44487 318
6.2 10980 <mdl 52 70 59 499 29716 279
6.3 8645 <mdl 35 45 42 839 22823 417
7.1 41478 <mdl 52 84 102 <mdl 48080 481
7.2 28812 <mdl 54 107 90 <mdl 57235 388
7.3 33504 <mdl 46 103 81 <mdl 46893 584
8.1 45869 <mdl 43 100 68 3 39572 361
8.2 65510 <mdl 71 120 82 74 40205 759
8.3 80008 <mdl 44 122 93 70 51644 461
8.4 37534 <mdl 37 104 76 15 53294 190
9.1 54929 <mdl 105 106 98 82 33523 572
9.2 59343 <mdl 99 121 100 65 39927 589
9.3 36928 <mdl 131 116 95 154 34239 1026
9.4 63122 <mdl 75 103 113 50 51021 603
37-1 30113 <mdl 33 56 55 <mdl 18589 91
37-2 72312 <mdl 38 87 77 <mdl 49688 132
37-3 21894 <mdl 28 65 58 <mdl 33529 109
38-2 45849 <mdl 24 61 49 <mdl 32000 83
38-3 48071 <mdl 25 55 54 <mdl 30554 88
39-1 42246 <mdl 180 189 136 169 35083 1849
39-2 43234 <mdl 257 131 67 329 28505 1476
39-3 56648 <mdl 220 161 170 360 52473 1374
39-4 40113 <mdl 74 47 50 56 25238 356
39-5 35905 <mdl 107 86 95 211 32888 620
10-1 39184 0.15 116 255 51 20 25889 3
10-2 39640 <mdl 81 77 55 7 21857 147
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10-3 27130 0.13 26 44 44 <mdl 20928 101
10-4 30563 <mdl 19 46 25 <mdl 22522 ,60
10-5 32161 <mdl 20 43 24 7 22215 51
11-1 30341 1.6 120 71 48 142 18010 634
11-2 29845 0.19 72 53 53 1206 18297 239
11-3 30969 <mdl 18 44 20 101 18940 115
11-4 37563 <mdl 27 48 28 7 23239 59
11-5 37443 <mdl 30 56 36 5 29717 59
12-1 26801 1.11 150 79 62 184 11056 563
12-2 27943 1.37 155 67 65 210 12292 214
12-3 34315 0.32 150 68 57 256 14284 315
12-4 39489 0.91 194 80 70 301 12383 396
12-5 39714 <mdl 50 46 29 43 19535 97
12-6 39208 <mdl 26 47 30 3 29284 ~6

13-1 34443 0.36 60 59 35 51 14822 94
13-2 31192 <mdl 12 41 19 5 19260 43
13-3 43929 <mdl 21 56 23 2 24765 49
13-4 44527 4.9 26 57 32 2 24585 53
13-5 39882 <mdl 23 53 30 1 25552 40
13-6 35011 0.9 22 43 32 <mdl 23175 50
14-1 27442 0.77 72 49 47 51 13180 154
14-2 27997 0.77 76 58 46 87 12175 241
14-3 34637 0.92 117 70 40 150 9998 556
14-4 28079 0.45 33 44 27 47 15851 3
14-5 26421 0.15 12 33 21 12 6621 45
14-6 23127 0.32 36 34 27 31 16308 82
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Appendix 4 - Lake Gibson Sediment Data

AI Cd Cu Cr Ni Pb Fe Zn
LEL n/a 0.6 16 26 120 31 20000 120
SEL nfa 10 110 110 820 250 40000 820

Sample
16-1 33425 0.75 57 45 56 37 25659 379
16-2 36458 0.91 50 43 65 40 31688 268
16-3 37124 0.5 10 36 21 5 25137 69
16-4 40771 0.51 11 38 23 3 37683 80
16-5 53088 0.65 23 55 31 0 37988 54
17-1 38400 1.14 78 57 57 75 22993 428
17-2 37525 0.89 109 50 66 137 38263 544
17-3 39430 0.48 32 41 40 34 39189 222
17-4 39561 0.29 9 38 18 5 37672 83
17-5 34472 0.24 13 37 20 3 41864 53
18-1 52426 0.51 53 53 37 57 40462 223
18-2 53431 0.37 62 57 40 45 30223 185
18-3 38724 0.39 38 37 23 23 47166 189
19-1 53546 0.94 98 70 32 117 23320 915
19-2 53800 1.09 127 84 47 219 24729 594
19-3 45654 0.46 63 49 29 55 27767 154
19-4 37408 0.5 19 39 21 7 28085 92
19-5 34861 0.41 13 36 20 4 33826 84
19-6 44870 0.48 10 38 16 4 27977 71
20-1 36954 0.6 80 53 57 81 29828 455
20-2 28685 0.71 87 60 107 130 28461 329
20-3 41782 0.64 68 47 46 69 32608 509
21-1 34959 1.11 79 53 66 74 29908 410
21-2 40150 0.59 66 49 77 63 30825 330
21-3 59417 0.11 11 53 24 7 44017 101
21-4 66429 0.15 13 58 23 2 44412 62
22-1 38453 0.65 57 55 50 43 30930 350
22-2 38843 0.75 74 61 57 76 28612 472
22-3 29970 0.42 55 49 65 50 28779 188
22-4 32315 0 15 38 30 2 29559 49
22-5 32076 0.06 11 40 26 0 22794 40
23-1 59548 0.27 29 47 48 11 43776 137
23-2 46027 0.69 79 58 58 92 29351 354
23-3 40861 0.19 10 38 16 3 26414 57
23-4 46480 0.28 13 41 19 5 25851 59
24-1 40053 7 38 44 35 15 25216 198
24-2 48947 0.6 57 55 48 54 30765 268
24-3 37840 0.28 39 46 67 23 29610 145
24-4 56947 0.25 35 56 46 16 41089 123
25-1a 21499 0.61 24 28 66 14 18350 71
25-2a 19756 0.63 24 27 65 15 17328 ·74
25-3a 17964 0.68 21 26 52 12 15309 69
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25-4a 15792 0.33 17 21 32 4 13621 51
25-1b 40527 0.72 64 55 51 53 26634 405
25-2b 35664 0.88 81 58 59 95 27123 503
25-3b 31262 0.68 62 55 64 73 28209 337
25-4b 36972 0.99 94 60 73 115 24826 311
26-1 38027 0.81 60 55 52 67 28653 560
26-2 36657 0.89 75 57 70 87 26546 379
26-3 38894 1.09 95 78 149 144 28320 368
27-1 33240 0.37 48 50 45 30 27216 451
27-2 32850 0.53 65 55 76 61 27209 340
27-3 31341 0.53 42 49 78 56 31281 152
27-4 35955 0.59 42 50 56 51 33614 156
28-1 39600 0.66 50 49 40 27 31470 288
28-2 37723 0.58 70 55 49 76 26877 356
28-3 36174 0.75 93 72 116 98 31770 462
28-4 42440 0.5 66 52 46 65 30508 200
29-1 54370 0.74 74 60 61 71 43106 580
29-2 37830 0.66 60 49 44 51 32347 271
29-3 48676 0.25 18 44 27 2 44464 67
30-1 37113 0.8 64 55 38 39 28761 283
30-2 38647 0.65 58 61 40 56 27410 433
30-3a 43969 0.9 64 69 52 66 32796 639
30-3b 37951 0.78 88 71 41 122 21618 757
30-3c 35786 0.87 100 67 58 107 24107 463
30-4 38166 1.55 172 130 91 296 19438 488
30-5 41953 0.82 111 66 46 118 27762 282
31-1 28262 1 57 42 32 51 21337 257
31-2 25967 1.28 61 38 29 41 29111 223
31-3 39987 2.55 79 62 44 99 23068 870
31-4 25837 2.36 119 79 53 191 15512 381
31-5 21880 1.9 77 33 23 82 17997 163
32-1 23797 0.45 31 36 59 19 25933 108
32-2 24843 0.5 44 41 88 28 26596 141
32-3 25948 0.26 31 38 113 22 30614 ,108
32-4 31296 0.29 30 46 118 26 39192 110
32-5 42503 0.24 27 57 50 5 46676 71
33-1 20837 0.74 12 23 32 5 23548 53
33-2 25269 0.63 16 29 71 5 26960 68
33-3 28130 0.33 15 30 42 3 28830 50
33-4 33930 0.35 7 36 15 3 31692 52
34-1 20779 0.53 15 29 47 6 20409 50
34-2 54413 0.14 10 50 25 10 31317 71
34-3 30561 0.35 12 30 30 9 24254 73
34-4 20202 0.37 13 24 30 5 17235 55
36-1 17689 0.41 11 19 24 4 14063 47
36-2 16971 0.53 12 20 34 5 15862 66
37-18 19219 0.29 27 30 41 8 20776 65
37-28 21259 0.58 26 36 64 9 23119 92
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37-38 15934 0.42 33 31 115 18 19070 113
37-48 29359 0.39 42 45 269 23 32236 154
37-58 45371 0.2 25 57 38 5 36228 101
38-18 28456 0.43 25 39 46 8 27830 84
38-28 30077 0.45 28 41 54 12 29709 152
38-38 26564 0.28 25 38 53 8 27275 84
38-48 29827 0.64 33 44 85 18 29535 131
38-58 28742 0.39 38 45 127 19 30350 134
39-18 11207 0.53 27 20 56 13 12651 79
39-28 9290 0.49 27 21 77 20 12939 92
39-38 9081 0.74 34 25 103 28 14248 138
40-1 38195 0.07 32 48 41 4 30850 69
40-2 36468 0.1 13 44 34 2 28744 46
42-1a 13221 2 13 21 56 8 15810 64
42-2a 17905 1.48 12 25 56 11 20973 49
42-3a 23117 0.16 11 27 19 1 22050 30
42-18 35248 0.81 75 47 37 55 25846 318
42-28 38540 0.84 72 52 42 51 27596 374
42-38 32772 1.02 75 49 39 52 25254 334
42-48 35086 1.29 161 73 30 236 19732 434
42-58 27567 0.5 103 41 26 182 20009 314
42-68 26748 0.5 111 42 26 133 21199 249
42-6b2 18743 0.44 64 30 20 85 17524 167
42-78 22037 0.24 73 37 25 92 19695 148
42-88 35289 0.16 25 45 35 11 30790 99
43-1 10936 0.18 9 19 47 6 14832 49
43-2 12622 0.25 11 22 54 12 15515 56
43-3 15191 0.44 18 28 81 17 17468 93
44-1 32070 0.25 21 40 41 18 28193 128
44-2 32260 0.35 32 43 58 33 26792 187
44-3 29855 0.36 45 43 85 58 27447 176
44-4 43667 0.18 8 51 30 10 39272 82
45-1 21277 0.08 11 31 27 7 23291 58
45-2 31927 0.16 13 40 48 17 35456 72
45-3 38669 0.25 15 46 56 16 42923 73
46-1 27228 0.02 16 35 25 8 25244 40
46-2 31170 0 14 38 27 9 25528 56
46-3 25802 0 20 35 25 4 29132 35
47-1 34672 0.68 90 50 40 76 25481 346
47-2 36710 0.7 122 69 56 156 20961 344
47-3 32150 1.26 55 45 31 51 16232 355
47-4 42072 0.95 84 66 47 108 23341 892
47-5 35531 0.72 98 51 34 89 24895 306
47-6 37015 0.61 90 50 36 78 25588 361
47-1a 25865 0.24 16 35 35 10 24523 80
47-2a 25899 0.22 18 36 36 13 24857 85
47-3a 31378 0.15 18 41 51 13 27475 77
48-1 26334 0.29 27 28 53 9 26894 61
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48-2 32878 0.38 16 34 61 17 36930 56
48-3 39806 0.2 12 44 26 5 38569 68
49-1 36043 0.39 21 37 30 2 28764 68
49-2 34625 0.36 20 35 31 4 25241 70
49-3 23744 0.27 21 36 31 3 30314 68
49-4 39933 0.27 26 46 31 0 40603 60
49-5 34655 0.26 22 36 25 0 29921 44
50-1 14896 0.37 17 22 37 13 14397 61
50-2 21687 0.58 23 28 64 14 19594 74
50-3 26160 0.36 27 30 99 23 22393 90
50-4 22807 0.33 33 29 148 18 20670 91
50-5 27186 0.36 31 33 187 19 25487 134
51-1 20350 0.29 26 27 43 23 19614 96
51-2 29690 0.3 26 34 62 26 26222 ' 127
51-3 29780 0.09 28 37 108 21 28832 91
51-4 37395 0 15 41 31 13 36606 67
52-1 34091 1.4 125 72 119 171 24006 360
52-2 36809 1.19 113 61 108 113 26359 462
52-3 30583 0.93 100 47 70 93 25718 321
52-4 37919 1.17 164 66 70 122 27713 470
52-5 36424 1.17 204 69 68 124 26725 481
52-6 34112 0.95 185 66 66 107 28281 481
52-7 37842 0.94 137 55 60 84 28714 416
pink 29864 0.4 34 46 52 31 32249 169
53-1 10295 0.41 19 17 22 7 13038 116
53-2 42266 0 30 49 37 3 38614 66
53-3 38595 0.08 29 44 34 5 41950 61
53-4 30843 0 26 39 30 4 35036 54
54-1 16205 0.22 20 21 32 7 15203 58
54-2 17310 0.51 21 24 51 13 17378 67
54-3 23992 0.59 25 29 80 14 21944 87
54-4 31151 0.48 33 36 192 27 30876 287
54-5 54788 0.5 23 56 50 19 45433 89
55-1 27561 0.35 23 32 57 11 242-80 71
55-2 18664 0.38 23 28 54 14 19851 82
55-3 26594 0.41 23 31 61 12 24238 74
55-4 27288 0.48 35 37 162 20 24951 137
55-5 21489 0.38 24 31 108 17 24377 79
56-1 36846 0.15 28 41 27 2 39888 52
56-2 34925 0.15 28 38 26 2 37129 58
56-3 25154 0.28 24 29 21 0 28702 45
56-4 30014 0.12 23 33 22 0 30819 48
56-5 32597 0.22 24 38 26 2 36371 55
60-1 16623 0.35 77 25 69 12 19469 145
60-2 10508 0.5 32 21 79 15 15150 84
60-3 8738 0.61 14 17 42 16 12618 143
60-4 8378 0.56 14 16 37 11 10922 74
60-5 7331 0.88 13 17 52 27 9432 107
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60-6 6678 0.74 17 14 62 17 8231 153
60-7 6659 0.76 25 16 107 28 8657 162
60-8 7481 0.68 23 16 127 22 10783 135
61-1 22501 0.49 24 29 37 16 25095 96
61-2 42231 0.13 23 42 33 10 31538 64
61-3 35531 0.12 27 39 34 18 30883 68
61-4 35578 0.19 20 36 28 13 34092 57
61-5 26869 0.11 8 27 16 2 19930 58
bxo-1 27425 0.48 69 89 42 44 27154 28
bxo-2 31345 0.28 15 49 17 5 26687 109
bxo-3 36907 0.24 11 45 20 1 33644 104
bxo-4 30719 0.4 7 31 17 3 28325 82
cream1-1 11648 0.32 22 22 14 32 12164 128
cream1-2 27417 0.41 22 48 26 21 25940 346
cream1-3 29449 0.28 21 34 26 6 31238 54
cream1-4 36268 0.44 21 36 26 8 27336 70
cream1-5 36411 0.34 18 39 26 7 26053 75
cream2-1 41865 0.25 65 71 28 8 31974 159
cream2-2 45191 0 16 62 43 2 36033 103
cream3-1 43260 1.01 181 737 74 102 33561 774
cream3-2 48290 0.78 106 174 45 79 49563 1461
cream3-3 32968 0.17 55 74 63 24 32998 1190
cream3-4 36877 0.36 19 44 28 7 34315 286
cream3-5 38317 0.29 13 36 28 3 34096 106
cream3-6 39304 0.38 12 38 27 2 35654 309
ex 4-1 54201 0.28 111 71 25 28 23524 135
ex 4-2 28174 0.39 19 33 21 1 26188 58
ex 4-3 23184 0.13 21 32 24 8 25605 58
ex 4-4 28534 0.15 21 34 26 3 28125 52
ex 4-5 26319 0.29 20 37 27 4 25069 50
ex 4-6 30039 0.09 20 36 27 2 24862 46
ex 4-7 39007 0.14 20 47 31 1 30248 53
ex 4-8 28449 0.04 22 39 30 1 27384 52
gib1-1 21782 0.04 10 24 20 10 27314 57
gib1-2 23232 0 7 23 14 3 24614 56
gib1-3 21991 0 6 22 12 1 21107 52
gib1-4 28110 0 8 26 16 3 28902 57
grab 1 141501 0.27 201 114 16 18 19278 379
grab 2 128207 0.39 200 109 16 17 18296 157
park 1 40534 0.71 94 60 53 175 36149 487
park 2 38337 1.12 89 58 50 224 64438 560
park 3 55965 0.36 32 64 41 5 51273 84
park 4 46539 1.08 102 64 56 163 40453 841
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Appendix 4 - MOEE Open Water Disposal For Oil and Grease 1500 ppm

Sample TPH Sample TPH Sample TPH

1.1 9389 16-1 7299 37-4 6234
1.2 9429 16-3 2142 37-5 3078
1.3 3211 17-1 14404 38-1 5929
2.1 2345 17-3 3479 38-2 7050
2.2 1343 18-1 9262 39-1 1121
2.3 2298 18-2 5701 39-2 7767
3.1 4247 19-1 22831 40-1 2604
3.2 2386 19-3 6142 40-2 1838
3.3 969 20-1 17045 42-1a 1199-
3.4 697 20-2 13410 42-3a 1684
3.5 970 21-1 13782 42-2b 9644
4.1 6219 21-2 8615 42-8b 2293
4.2 683 22-1 5096 43-1 1346
4.3 595 22-3 4510 43-2 1795
4.4 370 23-2 9805 44-1 2104
5.1 388 23-4 1510 44-4 1006
5.2 685 24-1 4058 45-1 2761
6.1 1408 24-3 3948 45-2 1780
6.2 2598 25-1a 6587 46-1 790
6.3 1910 25-3a 8307 46-2 1022
7.1 2891 25-1b 8609 47-1 6336
7.2 2131 25-3b 6811 47-2 18523
7.3 2117 25-4b 12417 47-4 13789
8.1 5364 26-1 7517 47-2a 1514
8.2 5268 26-3 7119 47-3a 784
8.3 782 27-2 6903 48-1 1176
8.4 807 27-4 4465 55-2 1268
9.1 27611 28-1 5214 55-5 1297
9.2 3228 28-2 10839 56-1 1200
9.3 12072 29-1 8767 56-2 1847
9.4 7060 29-2 7733 bxo-1 .2328"
37-2 1013 30-2 8632 bxo-2 1191
37-3 688 30-5 7875 cream1-1 6735
38-1 3415 31-1 7908 cream3-1 834
38-2 1244 31-3 5637 cream3-2 1264
38-3 648 32-2 15933 ex4-1 2031
39-1 44609 32-3 10026 ex4-3 876
39-2 49041 33-1 2078 gib1-1 1088
39-3 13504 33-3 889 gib1-2 1659
39-4 5602 34-2 1553 grab1-1 1081

34-1 1952 grab1-2 1495
36-1 1281 park-1 1232'S
36-2 2328 park-2 5979-

park-4 11424


