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ABSTRACT

Calculations are performed on the \Sg. ground states of

+
the Ha, and H molecules using a basis set of non-integral

s
elliptical orbitals. Different vafiational wavefunctions constructed
for Hz_ involved one parameter to three parameter yariatﬁon.

In order to reduce the number of parameters in most commonly
used basis orbitals set, the importance of the term (547“?5-
over the term /;\ where n is a variatiocnal parameter and the value
of g~ may be given by boundary condition or cusp conditicn is
outlined in Chapters II and III. It is found that the two parameter
wavefunction for ﬁ; including the ternm (h+/4fr; o~ given by the
boundary condition, gives lower variational energies than any wave=-
function published to date for small and moderate internuclear
separations.

Tn order to find out the importance of the term (1-+x)°
over /un for the two electron problem, the variational energy is
computec for the Hz' molecule from unrestricted two parameter
closed shell wavefunctions including the term (ybu)a_ where the
value of G~ 1is obtained from the boundary condition in one case
and from the cusp condition in the second case.

In order to take into account in-out correlation partially,
open shell calculation for the ground state of the hydrogen molecule
for R = 1.4 (equilibrium internuclear separation) is performed.

The results are excellent.



Chapter I

INTRODUCTION

In most of the quantum mechanical studies on
diatomic molecules using basis orbitals expressed in terms
of elliptical coordinates, excellent results have been

obtained.1'6 The most commonly used basis orbitals are
| | 18/R
5. m,8) = A -2 )] X
HPLSA—M9+i¢¢) )

In equation (1), ,/Q and ?Q are the usual spheroidal

coordinates, given by the following expressions: |
/“:(ﬁf+ﬁ9/ﬁ @
Y = ( #a ‘%955)/1( (3)

¢ is the angle of rotation about the internuclear axis.
The elliptical orbital basis functions have the
advantage of describing the axially symmetric charge
distributions associated with valence electrons, This is
perhaps one of the main reasons for using the elliptical orbital
‘basis functions. At the same time, it is more difficult to

describe the representation of the spherical atomic



distributions. (See Fig. 2, Chapter II).

As early as 1933 James and Coolidge7 calcqlated the H‘i
molecule energy using a wavefunction depending upon M, ,2 , /QJ)—Diand }?—tz
and containing a number of variational parameters. The need to account
for the correlation of the two electrons makes it necessary to include
the term 7,4, « Their wavefunction involved a factor éd(/ul“%; imes
a polynomial in the five variables chosen in such a way that it
represents the correct type of symmetry to describe )\3‘8 state. They
- minimized thg Hg molecp.lar energy ‘py varying the ’variaft,ional para-
meters.,

They used three different variational wavefunctions, one
of 5 terms, one of 11 tems and finaq.ly one of 13 tems. Their 5

term wavefunction (4) gave the energy of -1.166 a.u. which is quite

in agreement with the experimental value of =1,1744 a.u.8

\

_0'76(/’(.4’/‘(’{2 j —_—

2 2
¢2:llf = o & )[Q-§377‘?+ 0-804#35(9»*'772
T ooeam
) &)
6.5699 9 P2 = 0. 60985 (M +H,) + 0056906 )2\:1

After James and Coolidge, a number of quantum mechanical

calculations were performed using elliptical orbital basis functions

and excellent results have been obtetined..l-6
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I

In a contrast, Slater type orbitals provide very
good representation of essentially spherical charge distri-
butions near atoms in the molecules, but they have the
disadvantage of not describing the valence electrons well,

Browne =10

has carried out calculations using a mixed basis
of Slater and elliptical orbitals.
The basis orbitals given by. the expression (1)

o ,
involve the term /1 where Y\ is a variational parameter,

Using the above set of basis functions Hoyland11 constructed
a variational wavefunction (5)
n -au ‘
W= U e CoAﬁ( 59) (5)

where n; a and b are the variational parameters and
‘computed the energy for H; and Hzmolecule.

In order to reduce the number of variational para-
meters in the above ellipticalvbasis functions one can
replace the term ’XIA by (1 +,¢4%— where G- 1is not
a variational parameter but a function of other parameters,
and see if it gives results comparable to wavefunction
involving /Un . The analytical expression for g—
and the importance of the term (1 + /U.?— is described
in the next chapter., | , -

We investi%?fe the wavefunction‘(G) for Hy using
the term (1 + A4).

0 _aum
’\P:(l“i”/“) e Co/sﬁ(b’?) o (6)



As described in the next chapter the above wavé-
function gives better results than Hoyland's three parameter
wavefunction for HE and most of the other variational
wavefunctions for small and moderate internuclear separation.

Later on,in order to see how this basis orbital_ 

works for a two electron probiem, a simple product
wavefunctioh is constructed for H2~molecule and the energy

is computed.



Chapter II
+
Hp
A. Exact Solution
On the basis of the Born-Oppenheimer approximation |
| (Appendix I) the Schrodinger's equation for the electronic
wave function of H; is'given_'by equation (1) |

L 2 E . | 1L

NV W H(E+ g ¥ =0 (1)
2

where v is the Laplacian operator, "} the wavefunction,

E the electronic energy in atomic units, R the

internuclear distance, and %, and }% are the distances

"of the electron from nucleus A and B respectively. (See

Fig. 1). In equation (1) atomic‘units‘lza:re used ( k= m=e=1)

Figure 1

2

A

Radial coordinates for the two centre problem

5



' If the coordinate system in equation (1) is

expressed in spheroidal coordinates, the laplacian operator

R
§;7 is given by

Vz—-_— 4 120 p=1) 2 Q{(";)Q}%*
Ki(/}—_pz)x S (/U )é;u —}—9)7 oV ,
| % (2)
(A= B2
In the above equation & and 7 are the usual
spheroidal coordinates,13 gﬁ is the azimuthal angle and

/& and '3> are given by the following expressions;

(See Fig. 2).

o= (%o + ﬁb)/K | (3)

v = (ke — )[R (4)

) Figure 2 | u‘ |
ConRe"

ConAtant

Spheroidal Coordinates
for the two-centre problem



R
In equation (1) by putting the value of v

from equation (2) and the value of %4 and %, in terms
of L and 7 , the following equation is obtained:

21403 30 {9 -5 2
| +{%E(ﬂa—9a)+aﬁ,ﬂ}ly20, ®

We now try to find a solution of the form

u,(/uj?,¢)::M(/*)N(’9)§(¢> (6%
: \
because the variables are separable. :

We separate the equation (5) into ¢ dependent
part and the remaining part which depends upon A and )

by equating
2
d ¢ . ma¢ |
In the above equation — YY3 is the separation parameter.

The remaining part of (5) which depends upon 4
and 2 can be fubther divided into & and

dependent part by making use of the separational parameter

A so that M( u)and N(P) satisfy

d

S {(4) 4] 4

2 2 2 | (8)
{A—&—EK/A——-P/“’—E- } =0

(&0



and
a 2 2 2 2
d I 3y an _
5 {(-9) oA+ F =0 @
a 2 '
where P =-K E/R _ (10)

These differential eqﬁations will have
satisfactory solutions only if the separation  parameters
A and m as well as p have certain definite wvalues.
Obviously, the solutions to these equations yield the Hz
wavefunction by equation (6).

From equation (7) we at once get
img ,
P(p)= ¢€ (11)

The equation (9) for N (V) is quite familiar as
it appears in many problems of wave-mechanics in spheroidal
coordinates. This equation has been discussed in great
detail by Stratton, Morse, Chu, and H*..m't:er.14 They have
shown that for given value of p and m, proper solutions
exist only for certain discrete values of the constant A,
They have also shown that the function N(77)' can be

expanded in the form
o0 :
N(ﬁ,m,blﬁ):z FA(Q,T“,]D) ‘ﬁi},(” (12)
: , S=0 ; :

S even R even
- § odd Q odd



where PMY:\/S (77) are the associated Legendre polynomials,
and f's are the expansion coefficients. ,@_ is a running
quantum number which describes the various -eigenfunctions
of the equation (9)., Stratton et al‘”" have published tables
giving the separation constants and expansion coefficients

as functions of pv for the lower values of ﬁ and m,

Now consider the remaining differential equation

O\ ‘2—. ) 2 2
o [ A=1) d:‘/ﬁ” +{A+3Kﬂ—P/*}M(#>:O (13)

which is equation (8) for m = O, This corresponds to a
G~ state because the component of the angular momentum
along the nuclvear axis is zero,
In equation (13), M () is the radial dependent

wavefunction and is of the form
-PA
MW = e Y o (14)

where 8 (/U> is still to be found.

Now from the above equations it can be shown that the radial

dependent differential equation becomes
2 " 2 /
(A1) ¥+ {—-2#(/*-') +9/‘} J +

E P _era At 20alY = O (1)
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where }j/ P d\d/dlu

)

2 2
and 3 = dls/ d/A
Equation (15) comtains A = X1 as regular
singular points and &2 as the irregular singular point.

It can be shown that the transformation

U = (/U—l)/(/uﬂ) (16)
where |l is an independent variable, transforms the
irregular singularity to =1 and regular singularities
to w=0 and U= 09,

Under the transformation (16), equation (15) takes

the following form
o, .

(I—U>“%l+{\—lf-—‘—lub _gzu(a-—u)} %%—'r—

(ae2b(w) [ (1w +a-Fly =0

Since U= /é‘/._a:;’:l and M varies from 1 to infinity,

U can vary from O to 1, We also know that our differen-
tial equation (14) has the singularity at u=1, We
must therefore look for substitution for y in terms of
u  which will remove the singularity at u =1 in equation
(17).

It can be easily shown that the following power
series expansion of ¥y in terms of wu about the point

u =0 does not converge at u = 1
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Y= “%Z Oy U (18)

8:<|—’U) Z(UD (19)
in equation (17), the singularity at u = 1 can be
removed. That is, we can find out the indicial equation
of the differen‘bial-equation (17) by equating to zero the
coefficients of the lowest power of (1 = u)., It is necessary
to find the indicial equation in order to get the value of 7
- & for which singularity at u = 1 is removed.

The value of ¢ 4is found to be

X = 1= R/} (20)

From the above d;i.(scussion'it is clear that we must
includeR/the term (1 - u) which is equivalent to
P
(14+0) in the wavefunction M (A) 1in order to
remove the singularity at u=1 ( U —o0d ).
In summary, the radial wavefunction for o

states is of the form - R/b

M(A) = éPﬂ(l—D) Z () | (21)

which combines (14), (19), and (20). By virtue of removing
the singularity at uw =1, Z may be taken as a single

power series in u,
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)

K
Z(w=, gn (22)
K=0 o

The g's are the expansion coefficients. The above two
equations are the exact radial wavefunction.

The exact energy may be calculated by plotting
A versus p satisfying the differential equations (8) and
(9) separately for the given value of R and m. The
points of intersection correspond to different excited
states and exact energy may be obtained by making use of

equation (10),
From the above discussion the exact wavefunction

for HE ground state is given by
s 24

—o 20 —ap
Y(4uP) :{-l-—u) {Z 8KUK} o { %)7
k=0 ‘ =0

where A and 3 are the usual radial and angular
spheroidal coordinates, W = (=D (pf+1)
| 2 A
=R = 1), a=-(Re/r) |
R is the internuclear separation, and E +the energy.

The g and £ coefficients are calculated from recurrence

formulas from the energy and separation constant.'l.6
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B. Construction of Variational wavefunctions for the
ground state

1. Unrestricted two-parameter wavefunctions (28) and (29)

Obviously, an approximate (variational) wavefunction
should as much as possible reflect the exact wavefunction,

Thus, let the approximate wavefunction be of the form (6):

Y =MW NG LA | O (23)
For the radial function, //L , We assume
a _au , o .
M =(1+4) e (24)
with )
g — K/CI ._.1 (5)

because of (21) and (22), 1In equation (25), "a" is a
variational parameter,

For the angular function, N(?), we assume

CN(P) = Cosk(bY) (26)

or 2
N() = (1+67) | (27)
because of (12). That is, (12) is an infinite series
involving even powersof %  when m = 0.

For @ , we take \imi'ty, for m =0 (11)

Two wavefunctions are possible; i.e. (24) and (26)
or (24) and (27).
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) ;
U = (1+p) e #Co/sﬁ(bf) [Q" =R/ - '] (28)
vz by & GreP) [o=tam1] )

We emphasize that g~ is given explicitly in terms of a,
so the above wavefunétions have only two variational para-
meters, a and D,

The expectation value of the energy, E , is given
by the following expression

E_—_flfmd*r/flfd”r | (30)

2
The term .[1*dT- in the denominator of equation (24)
accounts for the normalization. (The tomputation is described
in Appendix II). Results obtained are given in able I,

It is quite clear from our results that when the 7/

dependent term of the wavefunction was changed from aQSh(bi7A

28

to (1 + b??z)‘ it did not make any significant energy change. -

This is not surprising, because taking into account the
variational parameter b, both the terms osh(b») and
(1 + bf?z) are similar to the </ dependent terms
in the exact‘wavefunction.

We found that the energy calculated from two para-
meters wavefunction (28) for the range of small and moderate
separations are even lower than those obtained from three

parameter wavefunction of Hoyland1ﬂ equation (31),and



TABLE I

+3,
Hy

for wavefunction (28) & (29)

Energy and parameters for |Sg-ground state of

s
S

Two parameter variation

Two parameter wvariation

R/a, -EP | -E® a b -g¢ -E° -t a b
(Exact) (Hoyland) (Clark &
‘ Stewart)

0.2 1.9286203 1.9286203 .1964 1135 1.9286203 .1964 .0064
0.4 1.8007540 1.8007540 .3795 .2202 1.8007272 1;8007540 #3795 .0243
0.8 1.5544801' 1.5544797  .T7047 .4137 1.5544656 1.5544793 .7047 .0866
1.0 1.4517863 1.4517856 8511 5034 1.451780  1.4517763 1.4517842 . .8511 .1289
1.2 1.3623078 1.3623066 »9890 .5899 1.3623005 1.3623026 .9890 .1783
1.6 1.2159372 1.2159331 1.2451 .7566 1.2159306 1,2159150 1.2450 .2980
2.0 1.1026342 1.1026237 1.4815 .9192 1.102623 1.1026227 1.1025665 1.4810 «4480
2.4 1.0132203 1.0131977 1.7035 1.0800 . 1.0131974 1.0130551 1,7040 .6332
3.0 .9108962 .9108419 2.,0183 1,.,3270 910840 9108420 .9104120 2,0180 «9930
4.0 .7960849 .7959439 2.5149 1.,7600 «7959441 .7942059 2,5150 1.9077
5.0 01244203 . 7241933 2,9987 12,2340 ,724192 «7193004 2,9990 13,4863

15
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Table I (continued)

. The energies are given in atomic units and do not include
the nuclear-nuclear energy 1/R

be. Ref, 21

¢c. Equation (28)

d. Ref, 11

e. Ref, 17

f.‘ Equation (29)
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Clark and Stewart's!’ equation (32).

W — u exbl=ou) Codf (67) | (513

v = (H—C/l) exb (—au) ok (b7) } (32)

The main difference between Hoyland's wavefunction (%1)
and wavefunction (28) is that the latter makes use of the
term (1 +‘/[§; where g~ is a function of variational para-
meter "a'", whereas ﬁoyland's wavefunction uses the third
parameter ¢ in factor /blC o In the same way, Clark and
Stewart also make use of third parameter ¢ for the term
(1 + c u ) in their wavefunction (32). '

In the earlier discussion of this chapter it was
shown that it is necessary to include the term (1 + )
in the exact wavefunction, and is further verified by our
two parameter variational wavefunction givinga lower
energy than Hoyland's and Clark and Stewart's three parameter

- wavefunctions.

2, Two parameter cusp-condition wavefunction (38)

In contrast to the condition on s~ given by (25),
its value can be given to satisfy the "cusp-condition®
instead.

Consider the H} Schrodinger equation
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HY — BV (33)

5 ] |
"= _KW)L%{(/“Q" ) 9'3*} +5;277{<' -7) %} *""/@ (34)
(again assume 7 is independent of (b ) .
The right hand side of the equation (33) is finite
but the left hand side becomes infinite when A =1 and
YV = :1, because the denominator (,u2 - 92) becomes zero.
In order that Hl be finite for 4 =1 and 5/ =31 |

the numerator of HUY must be equated to zero at these points,

This necessary*restriction is known as the "Busp Condition®,18

Therefore
) , 5
2 2 2 (-2 _
[5;,{(/‘—-‘)5—/;} +aa7{<‘ )aiﬁ‘*‘?/‘qul—-O (35)
Upon simplification: . o
0w v |
m{ 37 a/u} =1 | o8
By putting the values of %01_# and %l«; in equation (36)and
using "} given in equation (28), we get
T = 2{—@ +a +bJECmR(b>} ‘ (37)

In this case ¢~ is found to depend upon both the

variational parameters "a" as well as "b",
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'The results for the following two parameter Cusp

Condition wavefunction are found in Table II,
G

Y=(1ap) e CoP) [TEmen]

where (¢~ is given by (37).

It can be seen from Tables I and II that for very

small values of R tl;e cusp condition wavefunction gives the

same results as wavefunction (28) but as R increases, the
wavefunction (28) gives better results than the cusp condition
wavefunction. From the results obtained it seems that
boundary condition is more important than Cusp Condition.
This problem requires further investigation in order %o
explain why,

3, Three parameter wavefunctions

For additional flexibility, we may introduce three

parameter wavefunctions. ) K
iew of the term —
In view o e term Z 3,({(/1 I)/(/‘-H)]
K=o |

in the exact wavefunction (22), the following wavefunction
which has a more complex (L dependence is tried. The wave-

function used is as follows:

‘ o -au
u:[ \+3(|—/J)J (|+,U) e Coxsﬁ(b'P) (39)
Crm)- | |



+a

TABLE II ‘Energy and parameters for |Sg- ground state of H2 for the
Wavefunction of Equation (28), with o~ given by
Equations (25) and (37)

Two-parameter variation Two~-parameter variation

R/a -EP -E° a b g a b
(Exact) /
0.2 1.9286203  1.9286203 1964 L1135 1.9286203  .1964  ,1135
0.4 1.8007540 1.8007540 . 3795 .2202 1.,8007540 .3796 .2203
0.8 15544801 1.5544797 « 7047 4137 1.5544797 . 7054 4152
1.0 1.4517863 1.4517856 .8511 5034 1.4517849 .8514 «5061
1.2 1.3623078 1.3623066 9890 «5899 1.3623042 - 9881 5940
1.6 1.2159372 1.2159331 " 1.2451 7566 - 1,2159227 1.,2369 .7643
2.0 1.1026342 1.1026237 1.4815 .9192 1.,1025964 1.4561 «9305
2.4 1.0132203 1.0131977 1.7035 1.0800 1.0131444 1.6485 1.0960
3.0 9108962 .9108419  2.0183  1.3270 9107373  1.8934  1.3475
4.0 .7960849 7959439  2.5149  1.7600 .7957618  2,2271  1.7884
5.0 7244203 . 7241933 2.9987 2.2340 .7239979 2.5555 2,2670
= ———— e e e e e ————
a. The‘energies are given in atomic units and do not include nuclear-nuclear
repulsion energy 1/R

b. Ref. 21 |
c. Equation (28) where value g— is given by equation (25)
a. is given by equation (37)

Equation (28) where value (f%

20
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where g, a and b are variational parameters and the
energy is calculated as before,

Table ITI gives the energy as a function of R
for optimized values of g, a, and b, " q—” is given
by equation (25), the boundary condition.

A second possibility uses wavefunction (28) with

a being third variational parameter instead of being
a function of a; b and R. The energy is computed and
the results are givén in Table III,

Surprisingly the three parameter wavefunction (39)
gives exactly the same results as the three parameter
wavefunction (28), using ¢~ as variational paraméter.
This means that additional flexibility introduced into the
wavefunction (28) by allowing the independent variation of g—

(4 n)]K
K=o (/J‘H) '

accounts for the first two terms i 8
| K[

The value of the parameter g in wavefunction (39)
is found to be negative (Table III), as expected, because
g 4is positive for the exact wavefunction.

Inspection of Tables I and III show that the three
parameter wavefunctions give little 1mprovement over the

two parameter ones.




TABLE III  Energy and parameters for | g~ ground state of

. 7244203

H;a for three parameter wavefunction
[ inee
Three~parameter variation Three-parameter variation

R/a, (;ngct) ~£° a LI -g4 a b o
0.2 ,1.9286203 1.9286203 .1964 .1135 0257 - 1.9286203 . 1964 1135 .0184
0.4 1.8007540 1.8007540 «3795 2202 0957 1.8007540 <3796 02202 .0548
0.8 1.5544801 1,5544800 « 7053 L4137 « 3280 1.5544800 . 7059 4137 1392

1.0 1.4517863 1.,4517860 8519 .5034 4760 1.,4517860 «8530 5134 .1814
1.2 1.3623078 1.3623070 «9903 5899 .6393 1.3623070 9919 «5899 2224
1.6 1.2159372 1.2159337 1.2475 .7566 11,0001 1.2159337 1.2503 7566 .2998
2.0 1,1026342 1.1026242 1.4849 .9192 1,393%6 1.1026242 1.4890 9192 «3706
2.4 1,01%32203 1,0131982 11,7082 1,0800 1,8092 1,0131982 1.7136 1.0800 4352
3.0 .9108962 .9108423 2,0245 1.3270 2.4582 9108423 2.0317 1.3270 .5206
4.0 . 7960849 . 7959442 2,5234 1,7600 3,5697 7959442 2,5331 1.7600 6350
5.0 .7241935 3.0087 2.2340 4.6788 7241935 3,0202 2.2340 .7183

—
. EEEE

a,
b.
C.
d.

The energies are in atomic units and do not include nuclear-nuclear repulsion energy 1/R

Ref, 21

Equation (39)
Equation (28) where

a, b and G are treated as variational parameters,
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4, One parameter variational wavefunction

To take into account the "Cusp Condition" (37) and
"boundary condition" (25) on g~ , we may introduce a ome
parameter wavefunction (42). |

From equations (37) and (25)

U’:K/&——i—_—;?{—ﬁ—k@'fbt““mb)} )

| 9 %
, ‘r{g _btanh(b) “E} -+ BR] ) " (41)

We can neglect the minus sign in (41) so that a is positive.

o o= 5([ R —btank) — 5] 4

Using equations (40) and (41) in the following

wavefunction,

0 =o (b)
(42)

= (|+,00; e-a/uCoARwa { o = a(b)

the calculated energy is listed in Table IV. We emphasize
that a is a function of b in equation (42).

From'Table IV it can be seen that for low and moderate
internuclear separation, one parameter wavefunction (42)
gives better results than Hirschfglder's19 two parameter
wavefunction (43). ‘

U = Ny é—a/uCo/sR(bV) ) (43)

It is also found that at higher wvalues of R the

20

two parameter geometric mean wavefunction™  gives better




TABLE IV

+a
HZ

One parameter variation

Energy and parameter for

| So—

for one parameter wavefunction (42)

Two parameter

ground state of

Two parameter

variation variation
(Hirschfelder) (Geometric mean)
b c d e
R/aO (Exgct) E b | E E
0.2 1.9286203 1.9286203% 1134 1.92854
0.4  1.8007540 1,8007540 ,2199 1.80053
0.8 1.5544801 1.5544796 4147 ’
1.0 1.4517863  1.4517849 . 5060 1.45149 1.451485
1.2 1.3623078 1.3623041 «5946 :
1.6 1.2159372  1.,2159199 . 7672 1.21571
2,0 1.1026342 1.1025835 9372 1.10244 1.102447
2.4 1.0132203 1.0131090 1.1075 | ,
3.0 .9108962 .9106434 1,3673 0.91074 0.910765
4.0 . 7960849 .7955527 1.8213 0.79588 0.795967
5.0 . 7244203 .1237576 2,3086 0.,72415 0.,724298
a. The energies are given in atomic units and do not include nuclear-nuclear
repulsion energy 1/R
b. Ref, 21
c. Equation (42)
d. Ref., 19
e, Ref, 20

24
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results whereas at low values ofR a one parameter wave=-

function (41) gives better results.

5. Summary and Conclusions

Let us now conclude this chapter with a short summary.

In this chapter we>have learned that a clever two
parameter wavefunction can give better results than some
three parameter wavefunctions. For example, two parameter
wavefunctionA(ZS) gives better results than most of the three
parameter wavefunctions, and the (two parameter) geometric
mean wavefunction gives the best results at higher jalues
of R. As the molecule dissbciates, it becomes more import-
ant to take into account the probability density at moderate
electron distance. This fact is taken into account by
geometric mean function with the fesult of that it gives
better results as R increases, in fact it gives better |
results at large R +than any other variational wavefunction.l

- We expect that the results could be further improved

if we introduce more flexibility by putting an additional
parameter into angular dependent partﬂof the wavefunction
(28). |

To the best of our knowledge wavefunction (28) gives
lower variational energies than any wavefunction published
to date for sméll and moderate internuclear separation. iy,

In order to extend this work further, we dealt with the

two electron problem, Hz molecule, which involves correlation.




'Chapter ITI

H2 MOLECULE

In the previous chapter, we dealt with HZ, a single
électron moving about two protons., If we want to consider
any molecule or ion with more than one electron, we come across the
many electron problem and it is necessary to handle it by
approximate methods., In this chaptér we will be dealing with
hydrogen molecule H2, with two electrons which is the nex?t
most complicated prqblem after HZ. Purthermore the two electron
systems provide a bridge between comparatively simple one
electron systems and those with many electrons,

This problem has been studied in great detail by many
workers, When we deal with this problem in detail, we meet |
most of the methods which are applied in many more complioatéﬁ'
cases of molecular structure., It will be worth mentioning
that this problem is a celebrated one in the'field of
- molecular theory as well‘ as in the understanding and the development

of many electron wave mechanics,

A, Two parameter unrestricted closed shell
wavefunction (3)

Now we will construct the simple two parameter varia-
tional wavefunction,
Consider the behavior of a system consisting of two

electrons., If we describe one of them by a wavefunction

26
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£( /U‘,‘Dl) a function of spheroidal coordinates

of this particle and the other one by a wavefunction f(/(z,%),

the product of these two will represent a wavefunction for the

system, (We assume a 0~ state where f is independent of ¢ .)v
In order to see if the term (1 +/LS- plays an important

. role in the wavefunction of the Hp molecule thef(/»)is taken to be

of the form ‘
T -Gu |
£ p,P) = (1 +p) @ Cosh(b ) (1)
where /Uand 2/ are the usual spheroidal coordinates, a and
b are the variational parameters and the value of ¢ is

- given by the following expression

o = Ra -1 ‘ .' | (2)
where R is internuclear separation.
From the above discussion the wavefunction 'L}« for the

hydrogen molecule is given by
o= W

| — (3)
where 'q,‘ = (1. +/,(|> e'a/u' Cosh (b'?,)

and 111:2= (1 +/l§)‘ e"2Ma cosh (b 9,2)

The symbols have the same meaning as described above,
For hydrogen molecule, the Hamiltonian operator, in

atomic units, is

2 2
H._:__.iv__\v__L [ I s R A
"V TR 2 o s b %eap 2 R (4)
where the subscripts 1 and 2 refer to the electrons and the

subscripts a and b refer to the nuclei as shown in the figure(3).
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Tigure 3

e €,

9z
e 0 Feay,

Coordinate system of H2 Molecule

2 2 3
In the equationy)\ / and \ / are the ylacian operators
‘ |
and their value in spheroidal coordinates is given by the

following expression.zs

V‘ T“av) 3/‘{( 1 '>%«. +§’m{( ”f)aa +

(W) S 5)
D U-5) 5’¢, s |
Similarly : .§;7 can be obtained by changing the

2
subscript from 1 to 2, Further 5%1a9 }Q1b’ '%2a’ ‘%?bﬁ are
related to usual spheroidal coordinates by the following:

expressions.
Y (&)

Pr o= Sy ey (1
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In the same way if we replace the subscript 1 by 2, we can

obtain relations between - 912.0 ' and

/(2’ 92’

The hamiltonian H given by equation (4) can also be

written as

H = H1 + H2 + 1
12

neglecting 1/R, where

- and similarly

[ 1
- e =
Hy = —;Va Sega  Seab

- In equation (8) Hy and H, are simply -

the hydrogen molecular ion.

(8)

(9)

(10)

-hamiltonian operators for

Gonsider & variational wavefunction W = 4 %

given by equation (3) and minimize the corresponding expectation

value of the energy, which is given by

A 2
B =f7+H1fd’r“/fua\“r (11)
2

In the above equation (11) the term f1+dT in the
denominator accounts for the normalization of 1# .

The value of energy E is found to be

. 4oL uy 4% 4%
E = QE|+J‘—Q’| 2 ,Ll")_ UL X (12)

22
v[ Y, Y, AT AT,
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where E1 is the expectation value of the energy for H;.
The Coulomb integral f’z—h’%——/’q’zlﬁ 4,47 dT, accounts
for the Coulomb repﬁlsion between the two electronic distribu-
tions. The computation of this two centred integral will be
discussed in Appendix IV,

The energyis minimized by varying the variational para-

meters "a" and "b", The values of energy and the optimized

values of the variational parameters are given in Table V.and VI,

B. Two parameter Cusp-Condition closed shell
wavefunction (14)

Instead of using the value of ¢~ given by equation (2),
we can use the :value of g given to satisfy the "Cusp
Condition" described in the last chapter. The value of 0
satisfying the Cusp Condition is given by the following

“expression (13).

g = 2 [-R+a+btanﬁ(b)] (13)

Consider the Cusp Condition closed shell wavefunction

¢ =UY, | (14)
where Y = ‘(1 +/{,(G)‘ e™®* Gosh (b7)

and value of ¢~ is given by equation (13).
The value of energy for the two parameter cusp condition
wavefunction (14) as a function of internuclear distance R

is given in Table V,
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It can be seen from the Table V that the values of
energy obtained from Cusp Condition wavefunction are better
than the wavefunction (3), which clearly shows that Cusp
Condition is more important in the case of hydrogen molecule
which is in contrast to H; where the results obtained from
boundary condition J— are bhetter.

The most ready explanation for this is the presence
of the 1 term in the Hy Hamiltonian, which is not

5212
found in Hg. This term prevents the separation of the /0
and ) variables, and hence the HZ boundary condition on |
o~ 1is, strictly speaking, not valid. | |

We further discuss the closed shell results at the

énd of this chapter.

C. Open Shell Wavefunction

Now we will‘consider the H2 problem in more detail.
As we know that in many cases the numbers to be calculated by
quantum mechanical calculations are already known from experi-
ment, In order to gain more, the results should lead to
physical insight which may lead to new and more powerful
calculational methods.

In order to get reasonable agreement with the experi-
mental numbers, many quantum mechanibal calculations

in molecules make use of large number: of configuration inter-

actions.,
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The concept of configuration interaction arises from
the fact that there are several electronic states with energies
close to those of the states which are under consideration,
Moreover, some of these states have the same symmetry, so thati.
they can interact. This means that in order to get a good
approximation to the ground state, one must make use of an
improved variational treatment which mixes together these
configurations., ©Such an approach is known as configuration
interaction. |

As the number of onfigurations increases, the results |
become better but at the same time the understanding of the \
true nature of the wavefunction becomes more difficult. In o
order to avoid this difficulty, one can instead make use-of
the open shell technique coupled with extensive variation of
non linear parameters in a highly flexible molecular orbital.

In open shell technique, the two electrons in the hydrogeh.
molecule are assigned different orbitals in order to seﬁarate
their charge distribution to some extent. This is perhaps the

simplest method of describing electron repulsion. l

The method described above has the advantage of giving .
results comparable to a number of configuration interactions
and hence the physical interpretation becomes much simpler,

It is worth mentioning at this point that the
amount of calculation needed'for open shell technique is much

greater than that of closed shell method.
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In order to make use of the variational method, we

choose the following open shell wavefunction (15).

T — W) P 4 O Y (2)
=W da+ Uy | )

where

Y = (l+/f§ éapCOAR (b?) | (16);"

and - _du ’
P = Li+p) e~ ColR (6?) | (17)
In the above equations (16) and (17) M and 5 are
usual spheroidal coordinates. a, a', b and b' are variational
parameters and value of g— is given by equation (13).
Similarly, the value of q¥! will be given by the right hand
side of the equation (13) if we replace a by a' and b by
bt.

In order to simplify thelwork, ’ we assumed that

the wavefunction (15) is based on a sum of products of one

electron functions.

The quality of the results expected from wavefunction
(15) depends upon the degree to which this wavefunction can be
made to approximate the actual molecular wavefunction, There-
fore in order to get better results the wavefunction should
have enough fiexibility. In particular, we avoid all un-

necessary restrictions on the wavefunction and allow the
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computer to find the collection of orbitals which represent
the best possible wavefunction of the chosen parametric form

by varying the variational parameters a, a‘', b and b',

D. Electron Correlation Problem

Another distinction between a2 closed shell wa.Vefunctionﬁ_ |

(14) and an open shell wavefunction ‘(15)‘ comes from the phendmeha of
correlation. In the case of K, , there can be three kinds of

correlation: in-out correlation, left-right correlation and

- angular correlation.

In the case of in;out correlation the electrons tend
to repel each other in such a way that one electron is near
to the axis (nuclei) and the other is furfher out radially.

The open shell wavefunction (15) has enough flexibility
in order to account for in-out correlation mrtly by making the
function lh corresponding to an orbital concentrated near to
the axis where as the-function ¢2 corresponding to more
spread out orbital., In this way, this part of the wavefunction
is large when one electron is near to the axis and the other
is further out radially.,

In the case of left-right correlation, one electron
tends to be on the 1eft hand atom when the other electron ig
at fhe right hand atom. Unfortunately, the wavefunction (15)
does not take into account this kind of correlation, because
it does not have a nodal plane between the nuclei.22

Finally we have to consider angular correlation in
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which both the electrons tend to keep the opposite sides of
an axial plane, If both the electrons have the same value s
of ,44 and 9 , which means that both of the electrons are
confined to the same circle in a plane normal to the nuclear
axis, then they can move in such a way that they are touching,
or at opposite ends of a diameter, or anywhere between,
Obviously, we require the electrons to be at opposite ends of
the diameter, To do this, thereby taking into account this‘
angular correlation, we must use a correlated wavefunction!®
which involves the term 5212 explicitly into the wavefunction
or a configuration interaction involving @ dependence.22

It has been found that the wavefunctions involving
direct dependence on ﬁi12 are more successful as compared to
the configuration interaction method, because in the case of
configuration interaction we are trying to expand this cusp-
like behavior in Fourier series,'which is a relétively slole
convergent expansion, On the other hand, the correlated wave-
functions have the disadvantage that it is extremely difficult
to give them any simple physical interpretation, In addition,
it is more difficult to generalize this approach to many electron
systems,

To summarize, the open shell wavefunction (15) takes
into account in-out correlation, buf not left-right or angﬁlar

correlation,



TABLE V Energy for |SJ” Ground State of nt

2
closed shell wavefunctions open shell wavefunction .
R/ag -E® -EP -EC -4 -E®
: (Hoyland) (Hoyland)
1.30 1.13165 1.15201 1.13711
1.35 1.13297 1.13338 1.13817 |
1.40 1.12777 1.13316 1.13209 1.13361 1.13827 |
1.45 1.13238 1.13288 1.,13708
1.50 1.13078 1.,13134 1.13526
a, Equation 3
b. Equation 14
c. Hoyland's closed shell results with integral n values, Ref. 11,
d. SCF energy from Hoyland, Ref, 11
e. Equation 15
fo All numbers are in atomic units,
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TABLE VI Parameters for |3S¢" Ground State of H;
SUS— — —

R/ag a® ] V 1 ad bd‘ a® 1 at® p1®

1.30 L6705 L6884 L9313 691 L6460 .9779
1.35 6859 .T115 o950 4913 6619 1.0008
1.40  .9865  .7057  ,7009  .7345  .9858  .5344  .6561  1.0051
1.45 L7152 JT5T2 L9829 «531 .6928 1.0465
1.50 L7290 LTT9T L9971 o5549 7078 1.0692

C.
d.
e.

f.

Wavefunction (3)
Wavefunction (14)
Wavefunction (15)

All numbers are in atomic

unitse

37
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Open shell results
Consider the open shell wavefunction (15). The

expression for expectation value of energy is found to be

€ :U ¢9d'rflfa\'r.5,+fxfmj¢ﬂwr E, +

f@,%?’;‘z%% am AT, —&—ﬂJUH. ¢d"r.fu¢4r+

fmh b %, U by dT;_} /{J'lfo\'li ¢2av+qu¢n§} (18)
E, = [Wnwar/ [vyar
Eazf¢*na¢m/f¢¢m

The .energy is computed only for R = 1.4, the equilibrium

where

and

distance and the value of energy, along with optimized

variational parameters a, b, a', b' are listed in Table V.and VI,

Consider the simple molecular orbital wavefunction

(19) for H, molecule.

u:{nam +7+b('>}{ Y () +‘h}2)} o (19)

— ’Ll-a(‘)l}-a(z) +1}a(l)—q‘b(:’-) +1Lb(')"+a(-2) + I}b(')—u’b(ﬂ)

where - %taq
y =L e
Jll
) = L &M
L) = = ete. - (21)
Hellman24 found the dissociation emnergy of the ground

(20)

state of hydrogen molecule using the above wavefunction (19) to

be —— 2,65 a,u, and the equilibrium internuclear distance to

be R~ 1.6 a.u.
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It can be seen that these values are not in agreement

with the experimental values D = 4.72 e.vlz

and R = 1.4 a.u,.
Thg reason of disagreement is due to the presence of ionic
terms which corresponds to unstable ionic states in the wave-
function (19). The better representation of the ground state
of hydrogen molecule may be‘obtained by dropping these ionic‘
terms. This leads to the .= - famous function (22) used by

Heitler and Lonclon.25

Y = (0, RO (22)

The wavefunction (22) leads to dissociation ehergy,
3.14e 4v.nd inteénucléar distance R = 1,64, It can be seen
that the value of dissociation energy obtained from Heitler
London wavefunction is slightly better than that obtained from
molecular orbital wavefunction (19).

Later on the wavefunction (22) was modified by intrdi’

ducing the variational parameter o¢ , that is

308 —A iy '
M= (L) ¢

- where K is the variational paraﬁeter.

Using the value of & = 1,17, the wavefunction (22)

gave the value off D = 3,76 e.v.26
As early as 1933 James and Coolidge introduced a

variational cofrelated wavefunction which was wriften as a

function of elliptical coordinates including the 5512 term

explicitly., Their thirteen term function gave R = 1,40 and

D = 4,698 e,v, which is in'essentially complete agreement
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with experiment,
From the Table V it can be seen that the energy cal-
- culated from two parameter closed shell wavefunction (14) is

11

better than Hoyland's two - parameter closed shell wave-

function (24) with integral values of n.

- N -Gl
U :/Uy.\ aalu'CO/sRCb?u) My € Cosk (b72) (24)

It is also found that the closed shell wavefunction
(14) gives better results than closed shell wavefunction of
" McLean.?? |

The open shell wavefunction (15) does not improve the
results much better - about .1 e.v., It will be worth mention-
ing at this stage that Melean??  and Walliszq also found that
their open shell wavefunction improved the hydrogen molecule
energyvabout 08 e,v., over the closed shell wavefunction., This
slight improvement is obtained because the open shell wave-
function (15) takes into account partly in-out correlation
which is found to be approximately 0.25 e.v. by .Mclean.22 -

It is found by Mclean. = that the greatest improvement
in B.E. comes from 1eft-right correlation (.5 e.V.). When |
they take left-right correlation into account, they get a
'B.E. of 4.0858 e,v. They also find that the angular correla=-
tion accounts for about .3 e.v.

It is found that the open shell wavefunction (15)
giﬁes better results than Mcleans open shell wavefunction,

even ‘+the closed shell wavefunction (14) gives better results |

|

iy,

than Mclean’s open shell wavefunction.
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It can be seen from Table V that the closed shell
results obtained from wavefunction (14) as well as from
closed shell wavefunction of Hoyland are comparable to
S.C.F, results obtained by Hoyland.11This is probably due to
the fact that in both cases the effect of correlation is not
taken into account., On the other hand, the results obtained
from open shell wavefunction (15) are better than the S.C.F.

resﬁltsqas expected,

E, Summary and Conclusions

Let us now conclude this chapter with a brief summary.

In this chapter we have seen that the two paiameter
closed shell wavefunction (14) involving the term (1’+/J§“
gives better results than Hoyland!s two parameter closed
shell wavefunction, It again shows the importance of (1'+,u§‘
over the term /un even fbr two electron. problemdé

We have also seen the slight improvement in results
obtained by open shell wavefunction due to correlation.,

This work may be further extended by performing the
S.C.F, calculation and by computing the energy for the system
HeH', Tt may also be extended by performing the configuration
interaction calculation, in order to take into account the
different types of correlation, This will obviously improve
the results to a great extent., |
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Appendix I

THE BORN-~-OPPENHEIMER APPROXIMATION

Consider the Schrodinger equation (1) for a system

of n electrons and N ©Nuclei.

HY = EY (1)

where 'L;, is the wavefunction of the system and H is

the exact Hamiltonian given by the following equation (2).
2

Vo + Ve + Vee

In equation (2) m is the mass of the electron and

(2)

|
 is the mass of the (X muclsus, V,, is the potential
‘energy due to nuclear interactions whereas vne and Ve e
represent contribution to the potential energy due to nuclear=
electronic and electronic interactions respectively., The
first two terms in equation (2) correspond tb the kinetic

energy of nuclei and the kinetic energy of the electrons respectively, l

\

If we make the assumption that the nuclei are fixed,

the Hamiltonian, Hé, for electrons is given by :
2 o

D N S
Re = z 'Q-rv\v, + Vne. - Vee (3)

If we represent Hn by

& 1;3 2 | | |
P :’"‘Z 25 Ve TV | ()
K=1 X

44
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we at once get from (2), (3) and (4)
H = He+ Hn | (5)

In order to solve the Schrodinger equation (1), the
wavefunction, 1$ » is approximatedby a simple product ofan

electronic wavefunction and an nuclear wavefunction lﬁq .

U =Y 4, | | (6)
In equation (6) 1hL is the electronic wavefunction
which is the eigen function of H, so that
He Up = Eette | (7)

and .un,is the nuclear wavefunction, which is a function
of nuclear coordinates only.

Equation (6) is known as Born=-Oppenheimer Approxima-
1 ‘ .

tion. '
From equations (1), (2) and (6)
‘N 2 '
S —h | 2 N 2 2 |
{Z(s—@m{(gm}wﬁ— \
o= =1 | (8)

( Von F Vne - Vee) ’Ureun =E 1}31}“

It can be easilj shown that
2 x 2
VA A VAVAL A DIEL AVA
> 2 | ,
R\LYe N 1+ Ye\[ W, - (9)
and

' 2
VARTER T (1



From equations (8), (9) and (10)
N 2 N 2

{_}]%K)Vﬂ?zv‘z— ’(';,—%MVKQ%}—%—

,-'

2 2 =Ii; 2
L ——;‘?K/\KYZC Y, T uz—?mv Yo T

K=l

( vm—rvy\eﬂ—Vee_) Uelfn'—' E Ye Un ()
If we neglect the terms in bracket { } ) e get
N VA SR YR Ay S
e;(:i 2M at.j;” 2 am Vi €
(Vne+ve¢>1*eeJ = E Ut Vion e n | (12)

From equations (3), (7) and (12) it follows that
(Hp+EJ W= EW. (13)

It should be noted that equation (13) which is a
Schrodinger equation for 1},\ is obtained by neglecting the
terms in the bracket of equation (11) which represents a
coupling of the electronic and nuclear motion,

From the above discussion, it is clear that Born-
Oppenheimer Approximation is valid only if the terms in the
bracket of equation (11) which are neglected, are J
small  compared to the smallest term ou‘tside the bracket,
that is, | | °

N 2
DE )% Ly, .
=1
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This term represents the kinetic energy of the nuclei,

K;Z‘qh , because 1kﬁ is only a slowly varying function

of the nuclear coordinates, the Born-Oppenheimer Approxima=-

tion is usually valid,

Since 1+ is usually very small as compared to
| vp(’;



- Appendix II

COMPUTATION OF HZ ENERGY FOR 1Sg- STATE

The expectation value of the energy E, for H; is

given by the following expression (1)

fal“rwﬂ%
E —

(1)
2
I
In the above expression the wavefunction is
6_-—&,0 :
Y= (1+M) e Cork LbV) | (2)
naving ¢ = K/a -1 (3)

The hag}ltonian is

" , 2 2R
f= =R :‘2—(/02‘0% +%(|‘7§)9‘P+ /a} (4)
) M

R* (M- M

and

+l, od 3
v 2 2
fd'r_—_ :zrrfﬁfd/*—g(/“—”) (5)
From the equations (1) = (5), it can be shown that

o0 2q ,_,Qcpu‘ N :
E= — 5% {fd/u(i—r,u) e (g—___eza/u + O‘(/U-I)——
< | | | C1+p)

+1 9
f A9 Cosk <w>} N

=\

2
Qou6 +240 +a2/,~'2_-a+9K,u)
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+i
200 _ Qa

od,
2T an 0esd S 0905 cod (49 -

L
3 [ap ey & fdo ) Sk (69) Cort (69|
l

+i :
{faﬂ P Cosk C"”fd/l - (w“) diCoAf(W)fd/J/‘e L»+,u)} -
-]

o (6)

or
E = HCOF(1) * SUM(1) + HCOF(2) * SUM(2)
+ HCOF(3) * SUM(3) + HCOF(4) * SuM(4)

* HCOR(s5) * SUN(5) / [S00F(1)%SUM(1)+ SCOR(2)*sT(s)]  (7)

In the above equation
HCOF(1) = (9™+ 2aq+ b? - a?) BNU(1) - b2¥BNU(2) - 2b*BNU(3)
HCOF(2) = 2(R = a - ag-) * BNU(1)
HCOF(3) = g=2 * BNU(1)

HCOF(4) = - g2 * BNU(1)
HCOF(5) = a® * BNU(1)
SCOF(1) = BNU(2)

SCOF(2) = =-BNU(1)

BNU(1) =fd{)CoAR(69): Sink (2b)
T ab

BNU(2) =+'
dy » Co/sﬁ Clpﬂ)

+ 5 {( §+-§)Smﬁ (2b) — b Cosh C%)}
. 25
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+1

BNU(3) -fd;? PSinR (59D Cosl ( b7)

-1

‘_.

bCosh (2b) — ':‘Z SmR(%)}

2
0 297 _ gap

SuM(1) = duli+p) e

at)

200 _
STM(2) = 7 ap s ieps) 52
29— _
SUM(3): jdﬂ“"‘/‘)/u 20M
2¢=1 - 24au
SUM(4) = d,u(l+,u) e

%f‘,gqfi
SUM(5) = fd,u/A O+4) e

For computing energy of HZ all angular integrals

‘are calculated analytically as indicated. The radial integrals

involved are of the following general form

o0
m -2

I = |(Moe U+/u)d,u
|
where b and a are non integers and m is an integer,
Because this type of integral can not be evaluated analyti-
cally, all radial integrals are evaluated numerically in
double precision uSing a Gaussian quadrature (Appendix III).

Since /U varies from one to infinity, the technique of

mapping an arbitrary range into (-1, 1) with a side condition

involving the use of Gauss-Legendre is used.2
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Normally we used 32 points of Gaussian Quadrature 
data, but to verify the accuracy of the integrals, a few of
the integrals were computed by 50 points of Gaussian
‘Quadrature data, They were found to be in complete agree-
ment., Thus all radial integrals calculated numerically are
expected to be correct at least up to nine significant
figures.,

Since the variables are separable in’HE problem,

5 as well as our wavefunction had the

and since Rothstein's
same angular dependence, the value of the parameter b will
be the same in both cases. So while computing the variational
energy we took the optimized values of b for différent
values of R and calculated energ& as a function of a,
b and R. While computing the energy for the wavefunction
having different angular dependent term than Cosh (b{Q)9
the variational parameter "b" is varied independently. The saume
procedure is used for computing the energy for the wave-
function having g— as a function of .a and /b .

To minimize the energy by varying the parameters for
the given value of R, the function minimization program,
No. 60 of Quantum Chemistry program exchange (Indiana Univer-
sity)is used.

We expect the value of the variational parameters

to be correct up to at least four significant figures and

the value of energy to be correct to at least seven significant figures,



Appendix III

GAUSSiAN QUADRATURE INTEGRATION

In this appendix we outline briefly the principle
of Gauss's Quadrature formula which is used for numerical
integration of radial integrals.

If we want to evaluate the definite integral

jﬁtx)dx. from a given number of values of f(x) we
hgve to see where these values should be taken in order to
get the maximum possible accuracy. It is found that the
points in interval (a, b) shbuld not be equidistant, but
they are symmetrically placed with respect to midpoint of>
the intervai of integration. |

According to Gaussian quadrature formula4

fﬁ(x)c\%fvz A £ O .

where )¢; are called the points of the formula and the Ay

- are called coefficients or weights.
Quadrature formula is said to have degree of precision

m if it is exact whenever £(X) is a polynomial of degree
< m and i‘l; is not exact for £(X) = x m+] It can be

shown that? if £(X) is a polynomial of degree not hlgher

than (2n - 1), then X,,>,,----- %, are the zeros of the

orthogonal polynomials in (a, b). ‘The value of the co-

efficients Ay ai'e determined by the integration of these
‘polynomials.
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Appendix IV

COMPUTATION OF H2 ENERGY FOR |1Sq STATE

In this appendix we describeﬁthe calculation of
variational energy for H2 molecule closed shell wavefunction.
We also describe the computation which mainly involves the
evaluation of the Coulomb Integral.

The expectation value of the energy E is given by

expression (1)

2
- =f”””d”r/f”d* | (1)
In the abo#e equation the closed shell wavefunction is
- Y =¢i¢, o (2)
where
o Q——G/Ll .
¢ = (1+M) e Cosk (bD) | (3)
and
o = R/a -1 | | (4)

The hamiltonian H for H2 molecule is

. R I SR A
H}“‘_EV.—JEV,{’EG— Sup,  Je2a Mep T2 (5)
The value of E is then found to be
\ T aT-
E = S?E}: +;]q§ba(¢ﬂ.352 ¢N‘¢2 4T, ATy
| * (6)

2 2
Jr‘ﬁl ¢a»crﬁ<41}

where EH+' is the hydrogen molecular ion energy.
2
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A, Computation of the Coulomb Integral

In the energy expression (6) the value of Egt
2
(hydrogen molecular ion energy) is computed as described
in the previous appendix on HE.

For evaluating the Coulomb integral

U qa_}—{guu chﬁT, the :f.‘ollowing Neumann expansion in

sphero:.dal coordinates is used,

2
(—ocsu«r:) (K=1mit)
%\1 I3 Z‘)Z { (K+1mit)
m imi M(¢: ¢:>
1] G [ ] f o B ) )e 2

where U, .7 , ¢, and M, , 9, , @, are the coordinates of
.the two electrons and M is the lesser of 4, and A,
and A5 is the greater of [, and Mg« The PK”NZ
are the associated Iegendre functions whereas @é’“‘/g are
the associated I;ege'ndre functions of the second kind.

Finally the calculation of the above Coulomb integral
requires the following two general kinds of radial double |

integrals
o0 ' M
- Qa A, 2a

~ 244 -
dM (l+/4) /u, &K(/‘W dpy & Crepa) fi CH2)
» |

od (7g¢)
-4, 20" -0/ 2

n ‘%TYY\
die " Cap) gy BCR) [dis e Civme) py Q (4 (g

x
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The above double integrals involve two variables
and A/, in which  is an independent  variable and it
varies from 1 to infinity, whereas /a,‘z varies from 1 to 4 .

In order to evaluate this integral we have to evaluate

{’ s
e ) g Q)

l
and for each value of /0, we have to evaluate

M
-26 gy 2q”
fcwﬁe COap) (M)

This double integral is evaluated by numerical
integration. From the above discussion it is clear that
for the evaluation of integral (8) we have to make use of
a second DO loop within adO loop. The second DO loop
evaluates the integral /u'fd/zﬁ-}" (,(,(2) numerically for the
given value of A, . ' Now in the first DO loop we
vary /A, by mak:Lng use of Gaussian Quadrature data, and we
evaluate the £( 4, ) and f-gf(/lg J,LI'? for the given
value of /I, . Flnally we sum over all values of 4f, .
The exact listing of this procedure may be seen under. the
heading "Start of radial integration® in Subroutine R1 COUL
or R2 COUL (Appendix V).

In the Neumann expansion it can be seen that K varies
from O to infinity, while it is found that significant
contribution to Coulomb integral comes only from small
vaiues of K. In order to save some computation time, we

computed energy using K = O, 2 and 4 and minimized E by
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varying the variational parameters. Once nearly optimal
parameters are obtained the energy is computed using
K =0 to 8 (even X), and it is minimized again,

To evaluate the Coulomb integral we also have to

evaluate angular integrals of the form fﬁ((g) 9 a7

where n is an integer.

A separate subroutine FINDA is written to evaluate
this integral. Although this integral can be evaluated
analytically for the given value of K and n, since K
changes‘from O to 8 the number of integrals to be evaluated
is very large. Hence the method of numerical integration
using Gaussian Quadrature data is used.

In order to generate PK(X) and QK(X), a separate
subroutine, XLEGRE, is written and {the listing of the sub-
routine may be seen in complete open shell listing,

(Appendix V),

B. Open-Shell Computation

The energy expression for the open shell wavefunction
is given in Chapter III, equation (18).

This requires modification of the closed~-shell
computer program by requiring the éubroutine FIHPSI and
OVRLAP, The former evaluates .[¢n1y—d7' s Where
1%::U+ﬂ§-éop6wdicbv)

!

¢ = (+ﬂo>— e

- Cp Corb (BD)
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The latter evaluates the overlap integral, f U ¢ Q{’r ’
for the given value of the parameters.
Otherwise the open-shell calculation is the same

as the closed shell ealculation.



APPENDIX V

listing of Open Shell H, Program and Computer Time.

2
A1l calculations were carried out on the Brock University
B5500 computer.
The computer time required to optimize the four parameter
open shell wavefunction for H, was 90 min. for a single value of R.
Single precision is used throughout except for some sub-
routines which required extended precision.
The above figure should give the reader a feeling for the camount
of computer time required for the other calculations described intthe

thesise.



59 | \

LABEL OOOOOOOOOFHRTRQNOOl/1?15?)%6Q##ﬂﬂ##ﬂ#}CUMP[LF H)PAR??/C:GHPTA

FILE
FILE

BS 500 F N RTRAN cnoMpP I LATION XII. 3,

S=CARD,UNIT = READER
A=PRFILESINIT = PRINTER

c
C'...

c

Cooos

THTS PRUGRAM STUNDTFS W2 WITH
PST=CL+MUI**STAMARFEXP (=A*H11)COSHR*NI)
WHERFE A»B  ARE VARIATIONAL PARAMETERS

@ 8 90 00 @0 ¢ 00 000 0 9 06000 00 060 4 8800 D O PN OE o0 E s DR

START NF SEGMENT *hwshkudnd 1.7 '
CNYMON W “ . _ |

COMMAON /S/R4sTslls Rs NN2? . £
COMMON /G/ TIFLAG f
DIMENSTON X(5)sF(5)sWC40)»T(30)sUC30) J
NRND= §

NWT= 6

READ (NRDs?2) NO2s RM

2

c....

C '. ® e

. (SEFE TeBaMs JDURNALs MAY 196%5»12203).

FORMAT (T3, F5.1)
e?%NO?2 IS THE GAUSSTAN INTEARATION GRID STZE
RM_IS THE WETGHTING FACTOR IN THE MC LEAN AND YOSHIMINE SECTION

READ(NRO»3)Y (TcI)» UCT)»[=1»N02)

133

" 135

134

FNORMAT (1Xs F2N,17» F20,17) o
WRTTE (NANT»133) %
FORMAT (1Hd1» 30X, *GAUSSTAN QUADRATURE DATA™) .
CWRTTE(NAT134)CT»TCTY» I=1,N02 )
FORMAT (1H » 2HTC(s T45,2HY=» E144,8)
WRTITE(NAT»135)¢TIoUcId)s I=1-ND2 )

_ARTTE(NWT»131) 020 RM

FARMAT (1H » 2HUCs Ths2H)=» {14,8)
WRITECNWTS1) : :
FNRMATCLIHO 30X, "VARIATIONAL CALCULATION ON H2 MOLECULE ")

FORMATC 14 sA7X» "GRID SIZE IS 2%%, I3, "=m= RM= "yD14,48)
WRITE (65208) _
FORMATCLIH 230X, RA= 1 + (MuUt=1)>/3 AND RP = 3I«MUL/2")

READ (NRDs5) NR
FORMAT (15)

CNR IS THE NUMBFR 0OF R VALUES REQUIRED

IFVT TS THF NUMBER OF R VALUES TAKEN
ICNT=D)
READ (NRD»205%) SPALF’IP&[VT»IFON) MAXIT

209
100

e

207

FORMAT (E10e4s 315)
CONTINUE '

READ (NRD»4) NsRs  EXACT
FARMAT (13,2Xs (F1N044s5X)s FL17,11)
READ (NRD»207) (X(I)sFE(I)sI=15N)

FNORMAT (2E2044)

CQQO.

c'.'l

202

.X(1)=A
e X(?)=

4RTTF(VWT’?0?) Rs - EXACT

FORMAT (1HO»30X»22H%x*xx IR THIS CYCLE R=,N8,25 : 7TH
TEXACT=»E17,11s SHéxnxx )

HRITEANWT»203)

203

103

201

FORMAT (1HO212Xs 1HA» 23X 1HR s 23IX» BHH2ENERGY» 23X, 4HCOUL)
IFLAG =0

CONTINUE

CALL VAO4A CXsFsN»ENGALSESCALEs IPRINT» ICONsMAXIT)
WRITE (NWT,201) RsFXACT» ENCAL

TNRMAT (20244148, E24,14)




60

104 CcandTINNE
WRTITE (NdT»208) X(1)sX(2)

206 FORMAT CLHO"™ACOPTTAALY="5N24 14 "3(OPTIAAL)=",D24,14)
WRTTE (NAT»209) X¢3)eX(H)

200 FORMAT (L1HO»"ADCOPTIMAL)Y="N24,10,"BPCOPTIMAL)="»D24.14)
[CMT= TONT+1

IF (ICNT=NR) 100,101,101
101 CONTINUE
_STnp

FND :
SEGMENT 1 1S 295 LONG

START 0OF SEGMFNT Sk hkh k& dk 2
T SURROUTINE VAOAA (X; S NsFsFESCALES TPRINT,TICON,MAXITY 7y

PO 0 90000 0 0000 000 92000 E P Q0 SO GC N0 00000000 PR0 60000000 0N R OEDPOENO0O0 NG TEEOOO

THTS IS PROGRAM = 60 FROM QeCaPoFoe

_THUS SUBRNDUTINE FINDS THE MINIMUM OF A FUNCTION OF SEVERAL
VARIABLES '

THE METHOD USED TS MeJeDe POWELLs COMPUTER JOURNAL 75,303(JAN, 1965

THE ARGUMENT LTIST IS *
N THE NUMBER 0OF VARIASLES S
X AND F ARF ONE=DTMENSTONAL ARRAYS. 0N ENTRY TN THE
SUBRNUTINE X(T) MyYST BE SET TN AN APPROXIMATION TO
TYUE [~T4 VARTABLE AND E(I) T3 THE ABSOLUTE VALUE

ACCURACY TO 4HICH ITS OPTIMUM VALUE IS RCAUIRED.
AN FXTT X(I) «ILL BE SET TN THE CALCULATED OPTIMUM
VALUF. OF THE T=TH VARIABLE,
TF WILL BE SET TO THE HINUMUM VALUE OF TAE FUNCTIAWN
ESCALE LUATTS THE MAXTMUM CHANGE IN THE VARTABLES AT A
STNGLE STEP. X(I) WILL NOT 3E CHANGED BY MORE THAW

|
i
i

ESCALF*E(TL) - \

IPRINT CONTRNLS PRINTING. IF IT IS SET TN ZERO THERE wWILL
CBE NO PRINTINGe IF IT IS EQUAL TO ONE THE VARIABLLS
ANMD THE FUNCTIUN WILL BE PRINTFD AFTER EVERY NTHER
FUNCTION VALUE. SET TO TWO THEY WILL RE PRINTED AFTER
FVERY ITERATION,

ICON MHST BE SET TO 1 OR 2 DEPENDING ON CONVCRGENCE CRIT,

. SUBRROUTINES REQUIRFD™ CALCFX -

..'0.0.0.0....‘000.00.0.0.'..l............l...!....OO..DCOQ..DI.O’...O.

COMMON W

OO0

DIMENSTIUN X(5)sEC5)»dCA0)
DNRILE PRECISTNN F.FxCAlf.SCER;FHUlD;FKFFP;FPRFVnDL;SUMnrN FRsFC
CDOUBLE PRECISION FPsFTsNUAXs DOMAXsDMAGS DDMAGDACCDA»DB,0C,DDsDT
NORLE PRECISINN AsAAA»B,D
NYT= &
NDNMAG=N. LXESCALE ‘ 5

SCHR=0,05/ESCALE v '
JJSN*N+N ﬁ
ISNNRENNEY'E
=N+1 ,
NFCe=1
IND=1
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INN=1

NN 1 T=1,N

NO 2 J=lsN
W(K)=OQ }
IFCI=J)4,3e4
WCKY=ABSF (R (I

K=K+1

W(K)= ABSCECI))
WCT)=ESCALFE

CONTINUE
CONTINUE
TTERC=1

ISGRAD=2
CALL CALCFX(NsXsF)

_ FKFEP=ABSF(FI+ABSF(F)

FKEEP= ABS(F) + ABS(F)
ITONE=1
FP=F

DD 6 TI=1,N

Stit=0,
IXP=J

IXP=1XP+1
WCTXPY=X(T)
CONTINUE

DMAX=W(LLINE)

TDTRN=N+1
ILINE=1

NDACC=DMAX*SCER
DMAG=MINIF (DDUYAG, D4 1*DMAX)
DMAG=AMINI(DONDMAG» O, 1 *DMAX)

70

DMAG=MAX1IF(DOMAR»20,*DACC)
DMAG=AMAX1 (OMAR»20,*NDACC)
DOMAX=10,*DMAG

GN T (70s70,71)s [TONE
DL=0.
N = NMAG

S T

FA=F

FPREV=F
1§=5

DA=DL
DD=D=DL
NDL=D

K=T0DIRN
P9 I=1,N

KCT)=XCI)+DD*NCK)

K=K+1
CONTINDE
CAlLl. CALLCFX(Ns»X»F)

B
16

16
17

NFCC=NFCC+1
GO TN (10s11512513,14596)5T8
TFCE=FA)152 16224

IF (ABSF(D)Y=DMAX) 17,17,18
IF ¢ ABS(D)Y=DMAX) 17,1718
D=N+D

18

18

19

GO TO 8
PRINT 19

CHRTTE CNWT,19)

FORMATC5X» 44HVAOAA MAXTMUM CHANGE DOES NOT ALTER FUNCTION) .

Gn TN 20

b

e




15

24

62

FR=F
NR=
6N T 21
FR=FA
NR=DA
FA=F

21
.23

83

N=NB+NR=DA

DA=D)
GN TN (83»23)»T1SARAD

[S=1
GO TO 8

Nz=0,9%«(DA+DB=(FA=FRY/(NDA=NK))

25

18=4 ‘
TFC(NDA=D)Y*(D=DB)IIZ25+ 88
15=1

TFCARSF(N=NDBI=NDMAX)IA»Bs26

TFC ABS(N=DB)=NNMAX)Bs» 8,26
N=NB+STGNF (DNDMAX,DR=NA)

N
~

T DDMAG=DDMAG+DNDMAG

D=DB+ bIGN(DDMAX»DB NA)

IS=1
DNDMAX=DOMAX+DDMAX

IFC(DOMAX=DMAX)B58,5,27
DDMAX=NHMAX

13
28

29

G TN 8
IF(F= FA)?8’23123
FC=FR

NC=DR
FB=F
NR=D

GN TN 39
IF(F=F3)28,28531
FA=F

11

NA=D
GO TN 30
IF(F= FR)?Z)lO:lO

3?2

7

FA=FR

NA=DR

GO TV 29
nL=1.

DDMAX=5.

FA=FP

OA=~1.
FR=FHOLD
SEEL

D=1,
FC=F
Nnc=n

Az(DA=NCHIX(FA=FC)
R=(DC=NA)*(FB=FC)
TFC(A+BI*(DA=NC))33,33,34

FA=FR
DA=DAR
FR=FC

3n

NBR=DC
GO TO 26

D=0, 5*(A*(DB+DP)+Hk(DA+DC))/(A+B)

D[ DR
FI=F1
IFC(FB= FC)Qa»44,43

SR s T, €



F 43

44
85

. C 86

63

Ni=NnC
FI1=FC
GO T (B6+86285)» [TONE

TTAONF =2

GO TN 45

TF (ARSF(D=DT)=DACC) H1s41+93

4 86
cC 93
93
45
46

TF ¢ ABS(D=DI)I=DAGC) 41,541,973
TF CABSE(D=DI)=0.03%ABSF(D)) 41541545
T ((DA=DCHI*(DC=1)))
FA=FN
Na=nK

h7946546

IF (ABSEN=DIN=0.03%ABS(N)) Alsblpss

47

48

GoT2s

FR=FC
HB=D6

15=2
IF ((DB=D)*(D=NC)H)
15=3

4R»3,8

41

GO TO A
F=F1
N=N1=0L

PN=SARTF((DC=DRI*(NC=DA)*(NA=DRI/C(A+B))
NH= SARTC(NC=NBY*(NC=DAY*(NA=DB)I/(A+R))
DA 49 T=1sN

49

INTRE=TOIRN+A

XCUY=aXCI)+N*W(TOTRN)
WETINDTIRN) =DDAYCTDIRN)

CONT INUE
WCTLINE)X=WCILINEY/ZDD
TLINE=TLINE+1

¢ 50

52

20 WRITE(NWT»52) TTERCANFCCAFs (X(T)»I=1sN)

IFCIPRINT=1)51,50,51
PRINT S2,ITERCSNFCCsFa(X(I)sI=1seN)

FORMAT (/1Xs9HTTFRATION»IS,115,16H FUNCTION VALUES»

110Xs 3HF =2»F21,14/(5E€24414))

G0 TU(S1,53)» IPRINT

51
55

94
84

95

GN T (55»38)s TTONF
IF (FPREV=F=SUM) 94»95,95

SUM=FPREV=F

JIL=TLINE
TF CIDTRN=JJ) 757,84
G0 TN (92,7235 1IND

92

FHOLD=F
1S=6
TXP=JJ

DN 59 T=1sN
ITXP=IAP+1
WCTXPY2XCL)=W(TIAP)

59

¢c 112
112

G0 T0 53
96

CONTINUE
D=1,

GN TN (112,87, [ND
TF (FP=F) 37,91591
IF (FP=F) 3753791

91

a7

60

JJTLANSL

D= *(FP+Fm2  *FHOLD )/ (FP=F ) %7
TF (D*(FP=FHOLD=SUM)**x2=SUM) 8737537

[F (J=JJ) 60,60,61

DO &2 I=JrJd
KaT=N '

s et

AR



Y

64

62

97
61

WeK)y=w (D)
CONTINUE

DN 97 T1=JTL.sN
WCT=1)=W ()
CONTINUE
IDTRN=TUIRN=N

S IXP=0J

ITON=3
K=TDIRN

ANA=0
N 65 [=1.N
TXP=1XP+1

¢

64
67

CIF CANA= ABSCWCK)/FCT))) Ahe 67467
66

WCKY=W LX)
IF (AAA=ABSF(W(KI/ECT))) 662675067

AAA=ABSFCNCK)/ZECT))

AAN= ABRSCWCK)/ZF(CT))
K=K+1 )

65

37

CONTINUE
DOMAG=1.

_WEN)=ESCALE/AAA

TLINF=N

6N Y0 7

IXP=JJ

AAA=0O,
F=FHAOLN
N0_99 T=1sN

IXP=TXP+1
XCU)=XCI)=W(IXP)
TF (AAMA*ABSF(ECI))=ABSF(W(IXP))Y) 98:,99,99

98

.98

99

38

IF CAAA* ARSCECT))= ABSCACTXP)I)) 98,9999
ANA=ABSE(WCIXPY/ECT))Y

JAAA= ABSCWCIXPY/ZECT))

CANTINIE
Gn TN 72
AAASAAA*C1,+DT)

72
53
109
89
116

GN TO (72,106), [ND

IF CIPRINT=2) 535,5Nn,50

GO TN (Ll09,88),IND
IF (AAA=0.1) B89,89,76

GO TN (20s11A)s ICON
TNN=2

100

GN TN (100,101)» INN
INN=2
K=JdJ.J

nn 102 [=1,»N
K=K+ 1
W(K)Y=X(I)

102

FKEEP=F

XCT)=XCI)+10.*E(I)
CONTINHE

CALL CALCFX C(N,»XsF)
NFCC=NFCC+1
NNMAG=N.

i
if
4

76
78

g

80

PRINT 80

GO T 108
[F (F=FP) 35,78,78

WRTTFE(NWT»B80)

FNRMAT (5X»37HVAO4A ACCURACY LIMITED RY ERRORS IN F)
G0 TN 20 :




65

c

68
35
39

108

ITNDN=1

NNMAG=044«SQRTF (FP =)

DOMAG= Ax SQRT(FP=F)

ISGRAND=1 \
TTERC=TITERC+1 A \
TF (TTFRC=MAXIT) 5581 |

Yo

c

41
81
82

110

PRINT R2,MAXIT ,
WRTTE(NWT»82) 4AXTT "
FORMATCLS» 30H TTERATTONS COMPLETED BY VAO44)

[F (F=FKEEP) 20,205,110 -
F=FKIEP

NN 111 I=1,N

111

101

JJJd=JJI+1
XCTY=W(JJI)
CANTINUE
GN TN 20
JTi=1
FP=FKEFP

104

Fp=F

105

IF (F=FKEEP) 1052785104
JTL=?

F=FKEEP
IXP=JJ
DN 113 I=1,N

IXP=TXP+1
K=TXP+N

GO TA (114,115) 11,

WCTXP)=W(K)
G0 TN 113
WCTXPY=ACT)

LJTL=2
GN TN 92

XCT)=A(K)
CONTINUE

IF (AAA"Q.1) 205205107
RETURN

INN=1
GO 70 35
END

START OF SEGMENT #kawwwssss 4

EE NP

SUBRNUTINE CALCFX (N»RXsF)

L I Y )

000 00 000 000060 00 ¢ 0000 00000 0000 006000000000 00000000000 P0e 0

THTIS SUBROYTINE EVALUATES FENCALL FOR SURBROUTINE VAD4A

ARGUMENT LTIST"™ .
N IS THFE NUMBFR 0OF VARIATTONAL PARAMETERS  «

RX IS THF ARRAY NF VARTIATINNAL PARAMETER VALUES
ENCAL IS THFE RETURNFED VALUE OF THE FUNCTION

¢
C
¢
C
c
c
c
¢
c
c
c
¢

LI

SURRNUTINE REQUIRED NONE™

L] ....._....’..,.« .0 .M.,‘.‘e » 00 .... ® 6 60 009 0 0o C. .‘.. LN ® 0 0 000 . e 000 LN

COMMON /S/RM»sTpt)s Ro» ND2

DIMENSTON RX(S5)»T(30)sUC30)
NWT =6

Erp A
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‘PI‘B 14159265

R=RX (1)

BP =RX(2) .
A=RX(3) ) ‘i
AP =RX(4) |
CALLL OVRIAP (A.B»A BsPST PSIs»0)

L
CALL NVRLAP (AP, BPsAPSBP,FT FI10)
CAlLL FIHPST (A,H4sAP,8P, RIHPSI,PSI FI)

_CALL _RICOUL (A»3»AP»BP»PF1212)

CAILL FH2P C(AsR+FNCL1T)
CALL EH2P (AP»RPs FNGCL2)
CALL R2COI. (AeBsAP2RIP»PF11272)

202

F =(C(ENCL1I%#PST PSI*FT FT) +(ENCL2*¥PST PST*FI FT)+(PF1?12)+

L(PST FI*RIHPSI) +(PST FI*RIHPSI) +(PF1122))/
20(PST PST*FL F1) + C((PSL FI) *(PST FI))) *1e/R .

WRITE (NAT»202) FrPF1212
FORMAT (1H »"H? ENERGY= ",E24,14,"CO0UL INTEGRAL=",E24.14)
WRTTE (NWT,700) RXC1)»RX(2)sRX(3)sRX(4)

700

FORMAT (1H »4(E24, 14))
RETURN
END

SFGWFNT 4 1S 83 LONG

START QF SFGMFNT AARERLA LS 5

SHRRQHTLNF EH2P (AsR,ENCL)
COMMON /S/RiMs Tseit)s Rs NO2
DIMENSTION RX(5),SUM(30)» SCUF(10)’BNU(3)’T(30) UC30)»,HCOF(C10)»

1TERMC10)

. B2=B*B

NWT =6
P1=3,14159265

B3=B*82

C'OOOOTHESE ARE THE NU [NTFGRALS..Q....OO

9

BNU(CT) INTEGRAL NF COSH(HB*R*NU/2)YCOSH(B*R*NU/2)

¢
¢
c

RNU(2)
BNUC3)

TNTEGRAL OF COSH(B*R*NU/2)COSH(B*R*NU/2)INU?2
INTEGRAL OF COSHCB*R*NU/2)SINH(B*R*NU/2)INU 0

i uu

COSH?= +5E0%( FXP(2.F0%B) + FXP(=2,E0%8) )
SINH?2= «SE0*( EXP(2.F0%x  B) = EXP(=2,F0* B) )
RNUCLY= (SINH? + 2.E0%  B)Y/(2.E0 *  8)

BNIC2)=(1aF0/3.E0)+a5F0%(1,E0/B3)*(  (B2+.5E0)*SINHZ2 = B*COSH2) i
BNUC3)= oSEO*x(1.FO/B?2)*x ( BxCOSH? =.5E0*SINH2) o

L SINHS = (EXP(B)Y=EXP(=B8))/2, — B 8
COSHR = (EXP(BI+EXP(=B))/2,

RO ——,

STOMA = 2.%(=R+A +3*STNHB/CUSHR) i
HEOFC(1)= (SIGMA+2 JFO*A*STGMA4B2=A*A)*BNUC1)=B324BNU(2) =2 EO*3*BNU( .

_HCOF(3)= STGMAXSTGMAXRNU(1)

13)

HONF (2)=(2,E0%R=2,FO*A=2, EO*A*STGMA) *BNUC1) 4

HCNF(4)Y==STGMA*STGMA*BNU(1)
HCOF(5)= AxA+BNUC1)
SCAFCIY= BNUC2)Y

OO

CNn=1

SCOF(2)==BNU(1) i
START THE MC LFAN AND YOSHIMINE SEPTION . B
CTHIS ZEROS THF TINTEKGRAL SUMS 4

SUMC1)=0, ’ - ' o ’

(—

SUM(2)=0, ‘ . : V3
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{ SHUM(3)=0, |
SUM(4)=0, i
SHM(5)=0, |

10 CONTINUE |
nn 7 T=1,N02
TI=7T¢1)

W22, C0*xUCTIY*(RM=1,FOY/((1.,FO~T1T I*x(1L,E0=TI1 M
RMU=(RM* (1 HEO+TI Y2 L0*TT Y/(1E0=TI )
CTRAP= 2 EOxA#*RMY e
[F (TRAP=1,00E2)70s70»7
70 FACT=( EXP(~TRAP ))aH
TFRM(1YI= FACTH(1FOFRMII** (2, FO*STGMA)
TERM (2)= TERM(C1Y*RMI)

TERMC4A4Y= FACTH* (1 FEO+RMI)** (2. E0*STGMA=]1,E£0)
CTERM. (3)= TERM(4)I*RMI)
TERM (5)= TERM(C2)*RMIlI
SUMC1Y= SUMCI)+ TERM(D)
SUM(2)= SUM(2)+ TERM(2)
SUM(C3)=s SUM(3)+ TERM(3)
SUMC4Y= SUMC4d)+ TERMIA)
SUM(S)Y= SUM(S)Y+ TERM(S5)
7 TCI)==T(I)

NO = NN+ \

TF(NII=2) 651056 . |
6 CONTINUE , | |
HSHM=0, ‘ o .

DN 1S IS N . - i
15 HSUM= H§u1+u(n+(1)~§JM(I)

v SRUM=SOUF 1Y *SHUMC 1Y +SCOF (2)*SUM(S) ;

CENCL IS THE VARTATIONAL ENERGY CAICULATED FﬂR HT1+ EQUAL TN HSU!/SQUM

ENCL = 2.FE0xHSIM/(SSUM*R*R)
WRTITE (NWT,203)
203 FORMAT (1H 295X "ENCALMs 24X r"B"-?ux:"HSUM"»)?X»"%SUM")

WRITF (NWT,»,201) ENCL ;B,ASUM»SSUM

201 FORMAT (4D24,14)
WRITE (NWT»204) BNUCI)» BNU(2)e BNUC3)

204 FORMAT (3E24.14)

- RETURN

END

SEGMENT 5 IS 283 LONG

N

START 0OF SEGMENT ********** 3

_SUBRAOUTINE FIHPST (A» Bs AP» BP» HSUMsSSUM )

c THTS SUBROUTINE EVALUATES FIHPSI IWTEGRAL FOR SUBROUTINE CALCFX -
c ARGUMENT 1LIST i
C AsRsAPsBP» ARETHE VARTATIONAL PARAMETERS
c SURROUTINE REQUIREN NONE \ ‘
COMMNAN /S/RMsTsU>» Rs NO2 i
_  DIMENSTUN RX(5)sSUM(30)s TERM(10)sBNUC3)»T(30)sUC30)sHCOF(C10)s
1SCOFC10)
NWT =6
P1=3.14159265
D=AP R
G =RP ‘ ¥
. B?2=B+*8 ' P
B3=R*R?2 :
Cowass THESE ARE THE NU INTEGRALSsvsovoees R

g c RNIIC1Y =TNTEGRAL OF (COSHC o : . LA
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BMNUC2)
RNTIC3)
CNSH?2=
STHNH?=
CNSHi=

=INTEGRAL
SINTEGRAL 0F
fSHENX( EXP(I+G)
HEOX FEXP(R+G)
«HFEQ*( EXP(R=G)
SINH3= «SE0*( EXP(R=()

EXP (=i3=~G))
CXP (=i3=(G))
EXR (=i}+G))

EXP (=13+G))

1+ 1 +

Y

1/0(R+6 )

BND(LY = (SINH?2/(8+G))
BNUC2) =(STNH2/(R+G)Y =
*x3))+ (STNH3I/Z(B=G))
14 (2 *STHH3/((RB=G)*%x3))
BNUC3)=(COSH? /(B+1)) +(COSH3I/Z(B=GI)I*(SINHZ2/((RB+G)*%*2))
I=(SINH3 /((B=G)**x2 ))

FCSTINH3/(B=5))
(2.%COSH2/C(B+G) *(B+G)I)I)  +(2,
=(2+ *COSH3/C(B=HI*(3=6)))

*STINH2

STHHR (EXP(3Y=EXP(=~3))/2,

CNSHA (EXP(B3Y+FEXP(=B))/2.

STOMA = 2 #(=R+A +R*STNH3/COSHR)
STNHG (EXP(RY=EXP(=G))/2.

CNOSHG (EXP(GY+EXP(=GQ))/2.

STAMAP= 2% (=R+D +A4*STNHG/COSHG)

oo oA

HEOF (1)Y= (STGMA+?2, FO*A*S[G4A+B? A*A)*BNU(l)'BZ*BNU(?) 2.E0*B*BNU(
13
HCOF(2)=(2,F0%R=2 FO0*xA~2  EO*xA*STGMA)*BNU(C1)

HCOF(3)=
HCOF (A)==STGMA*STGM
HCOF(5)= AxA*BNU(1)

STGMA#STGMAxBNUC1)
Ax*BNUC1)

(@]

SCAOF{1)=~BNUC2)
SCAF(2)= BNUCD)
START THE MC LEAN AND YOSHIMINE SECTION

THIS ZERUS THE INTEGRAL SUHMS
NO=1
SUM(1)=9,

10

SUM(2)=0,
SUM(31=0,
SUM(4)=0,

SUM({5)=0,
CONTINUE
NN 7 I=1,N02

70

TI=TCI)

W22, FOAUCTII*(RU=1,FOY/ ({1 ,FO=TI
RAU=(RM* (1, EO0+TI  )=2.EO0*TI
TRAP =(A+D) *xRMU

IF (TRAP=1,00E2)70,70s7
FACT=C EXP(~TRAP Y)xW

Y*C1.E0=T1
)/ C1.E0=TI )

))

 TERM(4)2 FACT*(1., FO+RMU)**(5IGMA+ SIGMAP=1,E0)

TERMC1)= FACT*(¢1EN+RMUI**(SIGMA+SIGMAP)
TERM (2)2 TERMC1)*RMU

TERM (3)= TERU(4)*RiAY
TERM (5)= TERM(2)*RM
SUM(Id= SUMCId+ TERM(I)

_SuUMeH =

SUMC3)= SUMC3)+ TERM(3)
SUMCP2)= SUM(2)+ TERM(C?2)
SUM(4)+ TERM(A4)

SUM(5)= SUM(S)+ TERM(S)
TCI)==TCI)
NN = NN+1

IF(NN=2) 61056
CONTTINUE
WHg”M—-Oo o

no 15 1=1,5 ,
HSUM=HSUM+HCOF (I *SUM(T) . .

SSUM=SCUM (1) *SUM(1I+SCOF(2I*SUM(S)
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SSHH =SOUM *PIx2,EN % ((R/24E0)**3)

WRITE (5+201) INUCLY» BNUC2Y»BNUC3)» HSUM

201 FORHMAT (4E24414)

HStM = = (P[*R «HSYUM)Y /2,
WRTTE (4,207) HSUM

202 FNORMAT (E24,14)

HRITE (6,204) SSUM

204 FORMAT (£24.14)

. RETURN
END

SFEGHUENT

293 LONG

CSTART OF SEGMENT #khasknnss 7 )

CSUBRNUTINE RICOUL (As Bs APs BP» RESULT )
INTEGRALS

THIS SURBRROUTINE CALCULATES COULDMA
COMMON /S/RMsTs Vs Rs NO2

e REAL LFACT

COMMON /G/ IFLAG

NIMENSION ANUC 52),72¢60)s IFACT(4)»T(30)5U(60)5S5UM(B)I»V(30)

C=A
N=AP
G =RP

SINHR (EXP(BY=EXP(=B))/?.,
CNSHA (EXP(BY+EXP(~B))/2.

SINHG (EXPCGY=EXP(~G))/2.
COSHG (EXP(GIY+EXP(=G))/2.
STGMAP= 2.%(=R+N +G*STNHG/COSHR)

STGMA = 2ex(=R+C +B*SINHB/CASHA)

P1=3.14159265
RESULT=0,
DN._180 J=1,N0O2

Uedy = Vo

180 7¢J)=T7CJ)

D018l J= 1,N02

P S

HCJEND2) = V(D)

181 Z(J+NN2) ==T(J)

NOPP=2*N02

IFCTIFLAG LEQeQ)Y KP =0
IFCIFLAG ,EQ.1) KP =0
00 102 K=0sKP»2

¢

e DINU=E0

BN =Oo
CN”=0.

ENU=0,
FIND BNU AND CNU FOR GIVEN VALUE OF K
DO 120 L=0s19 o1

CALL FINDA(Ks 2%l sX)

Coeeas ANII TSNUINTEGRAL WHICH WE DENOTED A(KsN)

c

<
¢
¢

ANUCT) LS A(K»D)

ANUC2)Y IS A(K»?)
ANDCLO+1) IS A(K»2L0)
FTC

AflcL+1)=X

120 CONTINUE

D0 30 L=0,18,1

RL=L
X=?.O*RL+1 .
CALLL GAMMA (X,FACT)
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TFRM=( (2 *RI*A(2*x| V)/FACT
R =N +TERM*ANU (L +1)
CNIT =CNU+TERM* AN CI +2)
TERME((2e*xGIX* (2% VY)/FACI
DN =DNU +TERM#ANUCL+1)
CNH =FNU+TERM*ANU()L +2)

30 CONTINNE
GO TN 802
WRITE (65116) L

116 FORMAT C1HOs"™ BNU AND Cilly NOT CALCULATED TO PREVENT UNDERFLOW

LAT ="y [5)
WRITE (65117) TERM,ANU(L+2)

117 FORMAT (1H »30Xs "TLERM=",E24.14,"ANUCL+2)="5E24.,14)
802 CONTINUE
CWRTITE (65111) ANUC1Y»ANUC2) BN »CNU

111 FORMAT ClH »"ANUO= Wa F2h.14s"ANUZ=", 244145 "BNU =", E24 14,1

LCNU=", E24,14)
WRTITE (65118) DNU,ERNU

o

118 FORMAT(2F24.14)
NON THE VALUE NF BNU ANDCNU IS KNOWN
 SUM1=0.
SuUM2=0,
SUM3I=0,
SUM4=0,

<

SUUMS =0,
SUM6=0.
. SUMT7=0.

SUME=0, ‘
START NOF RADIAL (M) INTEGRAI. SECTTION
DO 40 J=1,nN02P

Ud=ucd)
2J=70J)
L XMUL=(RM*(1.F0+7)  I=2,E0%7J Y/(1.,E0=ZJ )

Wi=24F0 *UJd *(RM=1.F0)/CC1eF0=ZJ d*x (1,E0=ZJ )
TRAP = 2.%C*XMI]
TF (TRAP=1,00E2)Y70,705s71

70 FNX=EXP(=TRAP) * (L4 XMUL)** (2, *STGMA) I *W1
CALL XLEGRE (XMuUlsKs2,VALQ)
XTEMP2=F NX*VALQ v
XTEMP1= XTFEMP2*XMU1*XMU1
CALL XLEGRF (XMU1sK»1»VALP)
XTEMPA=FNX*VALP

XTFMP3= XTEMPA4*xXMU1L*XMU1
nn 50 L =1,NO2P
U XMU2 FOR TWMTEGRALS WTTH LIMITS 1 T XMUL
RQ = 1e+ (XMUL=14)/3,
BETA =C((XMUL+1,)=2,*%RQ)/(XMUL1=1.)

BETA2=RBETA*BETA

Z1.=7 (L)
ub=tcL)
XMU2 =01, /(2% BETA) ) > (1L =XMUT)+BETAX(XMUL+1, )+ (XMUL=1,)

1x(1=BETA2)/(1.=BETA*ZL  )) o
Wo =1L K (XMUAL=1 I *(1a=BETA2)/(Re*(1e=RETA*ZL ) *%2)
FMYZFXP (=2 *D*XMU2 Y% ( (14 +XMU2I** (2, %xSTGMAP))* W2

CAaLL XLEGRE (XMU2sKs1sVALP)

YTEMPL=FNY*VALP
__TEMp_=XTEMP1*YTEMP1

SUM1  =SUML + TEMP , *XMU2%XMU2

SUM3  =SUM3I  +XTEMP2xYTEWP1

SUMS  =SUMS  + [EMP '

s N
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TEMP =2XTEMP2AYTEMP Y *XMII2 x X412

SuH7 =51IM7 + TEMP

XMUI3 FNR OINTFGRALS WITH LIMITS XMUL TD INFINITY
RP = 3.%XMU1/2,

XM = (RP*(1a+/1. D=2« XUUI*7L Y/ (Lla=7L )

H3 = Parl *(RP=XMU1)/((1,~7L Yx*2)

RYAUS

TRAP = 24%xD*xXM!3
TF (TRAP=1,00E2) 170,170,171
FNY?2= EXPC=TRAP) % ((1a+ XHMU3)#* (2, *#STGHAP)I*H3

CALL XLEGRF (XMU3»K»2,VALQ)
YTFMP3= FNY2*VALA
TEMP =XTEMP 3*YTEMP3

SHMY =SUM2 + TEMP * XM 3I*XMU3
StiM4 =SHUM4 +XTEMPAXYTEMP3

CSUME  =SUMG6 + TFMP

171

TEMP =XTEMPA*YTEMP3I*XMU3«XMU3
SIUMB  =SUMB + TEMP
CONTINUE ‘

50
71
40

CONTINUE ' \
CNANTINUE ) s y
CONTINUE e o

SUM (1) =SiMl
SuM (2) =81IM2
SUM (3) =SUM3

SUM (4) =SUMAa
SUM (5) =51IMS
LSHM (6 =SUMA

SuUM (7)) =SUMT7
StM (8) =5UM8
WRTITE (65112) SUM

112

FORMAT CLH »" SUMI=  "s F24.145"SUM2=", F2h414," SUM3=",E24.14/
LIH »1XsMSUMA=",  F24,145"SUMS="s E24.14, "SUM6=", E24,14/
L1H »1Xs"SUM7=",  E24,14,"SUMB="s F24,14/)

o

ANUZ 1S ANUC(C2)

ANDO TS ANU(CD) SEGMENT 8 13 117 Long |

TIFACT(2)

114

IFACTC(L) CCANUCL)Y #BNUY *#CANUCTY +DNUY *#(SUMCL)I+SUMC2)))
CCANUC2) +CNU) *(ANUC?2) +ENU) *(SUMC3)+SUMCA)))

IFACT(3)
IFaCTCL) CCANUCTY +DNU) *CANUC2) +CNUY *(SUMC7)+SUM(ARIII*(=1.)

WRITFE (6s114) [FACT

Wononou

CCCANUCLY 4BNUDY * (ANDC2) +ENU) *CSUMCS)I+SUMC6))I*(=14)

113
102

FORMAT (1H » "IFACTI=", F24.14, "IFACT2s", E24.14, "IFACT3I=",
LEPA AAs "IFACTA="ERA, 14) |

Rk =K
RESULT=RFSULT+(2, *RK+14 )% C[FACT 1)+ TFACT(2)+IFACT(3)+IFACT(4))

WRITE(62113) KsRESHLT :
FORMATCLIH » "RESULT(", T3, ") = ",E24.14)
CONTINIE el

L END_

RESULT=RESULT*PI*PI*(R**5)/8,
RETURN

SEGMENT 7 1S 424 LONG

¢

START OF SFGMENT ok ko 9

SUBROUTINE R2COUL (A Br APs BPs RFESULT ). .

THIS SUBROUTINE CALCUILATES COULDOMR . INTEGRALS
COMMON /S/RMsT,sVs ks NN2 -
CnMmnN /67 TFLAG

A S U S
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i

12

DTMENSTON ANUC 52397¢60)s  IFACTC3)»TC30)sU(60)sSUMCEIPV(30)

RFEAL [FACT
C=A
D=AP
.G =HP
STNHR = (EXP(RY=EXP(=B))/?,
COASHPY = (EXP(BY+FXP(=B))/?2,
STGHMA = 2.%(=R+C +R*STINHB/COSHR)
CSTNHG = (FXP(GY=EXP(=G))/2.
CNSHG = (EXP{GY+EXP(~G))/2.

STOMAP= 2% (=R+N +G*STNHG/COSHG)

PT1=3,14159265

RESULT=0.,
NN 180 J=1,N02
UCdy = Vedy

180 2¢J))=TCd)
D181 J= 1,N0O2
UCJ+NN2) = V.

161 Z(J+NQO2) ==T(J)
NO2P=2*N02 .
CIFCIFLAG LEQ.0) KP =0

TEFCIFLAG LEG,1Y KP =0
DO 102 K=0,KP»?2
R MY =0,

L3 )
¢

CNI=0,
DNU=0,
CENU=0.

DO 120 L=0,19 »1i
CALL FTINDA(K2Z2%L»X)

FIMD BNU AND CNU FOR GIVEN VALUE OF K

ANUCLY IS ACK»0)
CANIC2) LS ACK»2)

eeseo AN TSNUINTEGRAL WHICH WE DENOTED ACKsNY

ETC
ANDICL+1)=X

ANUCLO+1) IS A(K»21.0)

120 COMTINUE
D 30 L=0s1bs1
RlL=L
X=2,0%*RL+1,
CALL GAHMMA (X»FACT)

JFRM=((B+G D** (2% V) /FACT

BN =B N +TERM*ANUCL+1)

CNU =CNU+TERMxANUCL+?

ENIT =ENU+TERM*ANUCL+2
30 CONTINUE

)

VTERM=(C8=6 )*x*x(2*%L))/FACT

)

Dt =DNU +TERM*ANUCL+1)

GN 170 802
WRITE (6,116) L

116 FOPMAT (1HO0,"™ BNU AND CWND NOT CALCULATED TO PREVENT UMDERFLOW

LAT L=",15)

WRITE (6,117) TERM,AMU(L+?)
117 FORMAT (1H »30Xs "TERMaM",E24, 14, "ANUCL+2)=",F24,14)

802 CONTINUEL

WRTYF (65 111) ANUCT)»ANUC2)sBNU 5 CNUI
L A1 FORMAT CIH »MANUO=

"’

E24.148,"ANUZ2=2"» F24,140

"RNU

=",

E24,10,"

1CNU=", E24.,14)
WRITE (6,118) NDNU»,ENUY
118 FORMAT(2E24.14)

e et
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MOU THE VALUF NF BNU ANDCNU TS KNOWN
StM1=0,
SUMP2=0,
SIHM3=0,
SIIMGa=0,
SUMS=0,

nao4n

StiMe=0,

START 0OF RADTIAL. (MUY INTEGRAL SECTION
JEIsNO2P.
INEIU D!

70=720C0)

XMII=(RM* (1, FO+Z0 )=2,E0%72Jd Y/ (1.,E0=ZJ )

W1=24E0 *UJ *(RM=1.F0)/((1.E0=ZJ J)* (1,E0=2J.

TRAP = (C+D)*XMU1L

IF (TRAP=1,00F2)70,70,71

FMX=EXP(=TRAP) *( (1 +#XMUL)**(STGMA +SIGMAP))
CALL XLEGRE (XMU1sKs2sVALA)
XTEMPR2=FNX*xVALQ

_XTEMPA=ENX*VALP

XTEMPL1= XTEMP2aXMU1 *XMUI1T
CALL XLEGRE (XMU1sKs1sVALP)

YTFMP3= XTEMPL4*XMUTL*XMUI1
PO S0 1L =1,NNPP
XMU2 FOR INTEGRALS WITH LTMITS 1 TN XMU1

RQ = 1e+ (XMUI=14)/3,
BETA =C(XMUL+1,)=2,*RQ)/(XMU1=1,)
BETA?=RBETA*BETA

Zl=2C(L)
L=t (L)
XMI2

Tl /(20 *BETAII* (1 a=XMULI+BETA*(XMUL+1 )+ (XMILI=14)

1

*(1=BETA2) /(1 =BETA*7L )
W2 =UL #(XMUL=1,)%(1.=RETA2)/(2e%(14=BETA*ZL
TRAP = CCHDI*XMUZ

Yxx2)

FNY=EXP(=TRAP) *( (1 #XMUPI%*(SIGMA +SIGMAP)Y)

CALL XLEGRE (XMU2sK»1sVALP)
YTEMP1=FNY*VALP

* W2

LSUM3

TFMP =XTEMP1*YTEMYP1

SUM1  =SUM1  + TEMP *XMU24%XMU2

ZSUM3._ +XTEMP2%YTEMP

=SUM5  + TEMP

XMU3 FOR INTEGRALS WITH LIMITS XMU1 TO TINFINTTY
RP = 3.%XMUL/?,

SUMS

170

Y/ (le=ZL )
Yxkx2)

XMU3 = (RP*(1a+Z1 D=2, %XMUL%ZL
W3 = 24%UL % (RP=XMU1)/(C(1.=ZL
TRAP = (C+DI*XMU3

TF (TRAF=1,00E2) 170,170,171
FMY2=FXP(=TRAP)
CALL XLEGRE (XMU3»Ks25VALR)

F((1e+XMU3I**(SIGMA +STIGMAP)) *W3

171

YTEMP3= FNYZ2*VALQ
TEMP =XTEMP3I*YTEMP?3

SUM2  =SUM2__ + TFMP _xXMU3*XMU3
SHMY =SUMy4 +XTEMPU*YTEMP3 :
SHIM6 =SUM6 + TEMP
CNNTINUE

50
1
A0

_CONTINUE

CANTINUE
CANTINUE

SUM (1) =S5UM1
SUM (2) =SUM?

SUM_(€3) =5UM3

e e

e

e e A



T4

SUM (4 =S1114
SUM (5) =SUMS
St (6) =SUk6
RITE (65,112) SUM
112 FOPMAT (11 " SUMI= ", E24.14,"SUMP=", FRU. 145" SUM3="s(24,14/
11H » 1Xs"SUUMA=EY, E24,14»"SUUMD =" E24,14, "SLIM6=") E24.14/7)

c

C AN TS ANUC(?)
ANUJO IS ANUC1)
_IFACT(1)=CCDNU +RN1) Y**2)* (SUMC1I+SUM(2))
IFACT(2)=((CENU FONIDI*+2)*(SUMC4)+SUM(3))
TFACT(3)=((DNU +RNII Y* (ENU +CNU) *2¢)% (SUM(S5) +SUM(6))
1*(-1.)
WRITE (62114) TFACT
114 FORMAT (1H » "JTFACT1="s E24.14, "1FACT2=", E24.14, "IFACT3=",
.152’*-14_),w R
RK=K
RESULT=RESULT+(2*RK+1 ¢ )*C(IFACT(1)+IFACT(2)+IFACT(3))
NRITF(A2»113) K,RESIHLT
113 FORMATCLIH » "RESULT("» 13, ") = "sE24,14)
102 CONTINUE : :
 RESULT=RESULT*PI*PT*(R**5)/8, i o
RETURN
END
SEGHENT 9 IS 403 LONG
B TSTART OF SFGMENT Hkkkkkdekrk 10
SURKOUTINE XLEGRFE (XsN»INDEX»VAL)
¢ X 1S THE VALUF 0OF ARGUMENT
¢ N IS THE DEGREFE 0OF POLYNOMTAL
C

VAL TS PN(X) OR QN(¢X) » DEPENDING IF INDEX IS 1 OR 2 RESPECTIVELY
CDIMENSTON P(B80) -

TF (NLE&.0) GN TO 40

PCI)Y=X

P(2)=1.560%X*X=,5F0 \

DO 10 K=3,N - \
RK =K '

10 P(K) =X*P(K~ 1) P(K=2)+X*P(K=1)=(X*P(K=1)=P(K=2))/(RK)
1F (INDEX.EQ.2) GO TN 20
VAL =P (N)
RETURN

20 CONTINUE
TEHMR = ABS((1.EO0+X)/(C1.E0=X))
CTERMI=OFO0*P (NY*ALDG(TEMNP)
TF (N.Ew.1)Y GO 70 70
TF (N,E&,2) GO TN 60
TERM2=P(N=1)

MM=nN=1
RMzpM
NO 30 M=2,MM
RM=M

30 TFRM?=TERMP+ (1, E0/PRMIXPIM=1)I*P(N"M)
VAL =TERMI=TERMP2=(1 ,EQ/RN)*P(N=1)

RF TURN

40 TF(INDEX.FQ.2) GO TO 50

VA=l

RETURN | :

50 TEMP = ARSC(1.FO+X)/(1.E0=X))
VAL=.5S*ALOGCTEMP)




60

70

75
RETURN
CNMTTINHE
TERND? =(3,/2.)%P(N=1)
VAl = TERM1=TERM?
RETURN
VAL =TFRMI=1,

RETURN
END
SEGMENT 10 IS 126 LONG

START OF SFOGMFNT whwnsawssn 11

o O

SURROUTINE GAMMA (XTEMP»VALUEP)

_THTS RNUTINE CALCULATES THFE GAMMA FUNCTTON OF X IN DGUBLE PRECISTON

VIA THE CHEBYSHEV EXPANSTION GTVEN IN MATH.COMP,152195(1961)

VALUE TS THE VALUE OF GAMMACY)
DOUBLE PRECISINN XsYsF1sAC18)YsP»VALUE

DATA AZ0442278433500846722044811800330426430650,081576914924752885
00742400107 82004002,=.000266981R887403832,0,01115404382906992
5=, 002852631R6470211950.002103R857920672205,=,0009192675950399503
»0.0004804361069081046,=,0002386428337526365
2 0.0001173283102240940,~,00005431838628013509
»0.00002281404115366023,=,000008052343363483095

~NOoU A W -

_X= XTEMP

»0.000002174177495455326,=,0000003889700573876955
».0000000339818010181043/

F1=1,000
Y=X
CONTTINUE

IF(Y«LEs1,0D0)G0 TN 2

F1=fF1xY
6o TN 1
CONTINUE

JIT=19=1

TF(Y.LT+0,000)60 TO 4 : ;
P=0,000 .

. d

|
: , F
Y=Y=1,000 | i;

DN31=1»,18 ‘ t ';

Pz(P+ACII)I*Y
P=1,0D0+P
P=P/(Y*(Y+1,000))

U

LRETURN

VALUE =F1x%P
VALUEP=VALUE

CONTINUE
WRITE(625)X

FNORMAT(46H FRROR TN DGAMMA ROUTINE, VALUF OF ARGUMENT IS »024.16)

SEGMENT 12 18 123 LONG
VALUEP=VALUE
RETURN
END

SEGMENT 11 Is 111 LONG

 SURRNUTINE FINDACK»NsVAL)

START OF SEGMENT *#sksskwrs 13

COMMON /S/RMsTsrU>» R» NOP?

DIMENSIUN UC301,TC303,UPC30)»TP(30)

S o T e S s e e e e e

]

e



REAL N1
20 T =1,N02
UPCTY =UCl)

20 TP(IY =TCD)
NO=1
ValL=0,

76

10 CONTINIL
Do 7 1=1,NN2

_NU= (1.E0 4TP(T))/2.F0

W =UP(I)/2.E0

CALL XLEGRE (NisKs1,PK)
VAL =VAL +WaPK*(NUx*N)

"6 CONTINUE

7 TPCIY)= =TPCI)
NDCE NN+
LTFINO=2) 651026

RETURN
END

SEGMENT 13 1S

START 0F SEGMENT #swkannnas 14
SURRNUTINE OVRILAP (A, Ry AP» BPR» SSUMsITAG)

60 LONG

OO OOOOD

THTS SUBROUTINE EVALUATES NVFRLAP INTEGRAL FNR SURROUTINE CALCFX

ARGUMENT LIST

Ns3pAP»BP» ARETHE VARTATTIONAL PARAMETERS
SURRNHUTINE RFQUIRED NONE

COMMON /S/RMsTslls R» NOZ2

DIMENSTUN RX(5)»SUM(C30)»

NWT =6

ANUCA)»T(30)»UC30)» TERM(10)

PT=3.14159265
N=ApP
G =8P

Ro=B*3
33=R3*xB?2

Cooe opTHFSE ARE THE“NU

BNu(l),=INTEGRAL
BNU(?2) =INTEGRAL
BNIIC3) =INTEGRAL

v[NTEGRALS-o-....‘o-
NOF (COSH(B+BP)I*NU)
OF (COSH(B+BPI*NUI*NUXNU
0F ¢COSH(R=RBP)Y*NIJ)

QOO

BNUCA) =INTEGRAL

OF (COSH(B=BPI*XNU)*NU*NU

COSH?2= «5E0%C EXP(R+G) + EXP (=B8=G))

STNH2= oSEOX( EXP(B+G)

= EXP_(=8=6G))

CNSH3I= «S5E0%x( EXP(RB=G) + EXP (=B+G))
STNH3= «5FE0x( EXP(R=G) = EXP (=B+G))
BNUCTY =(STNH2Y/(B+G)

RNU(2) =(SINH2/(B+7))

1/7¢(B+G ) *%x3))

CJFCITAG LEQ. 05670 T 15
BNIC3) =(SINH3)/(B=6)

- (2.*CDSH2/((R+G)‘*(B+G))5 +(2. *SINH2

ANUCAY =CSINH3/Z(B=G)) = (2.*%CNOSH3/((B=G) *(B=G))) +(2. *SINH3

1/¢(B~G ) *%x3))

G T 16
15 CONTINUEL
_BNUC3) =1,

BNUCA) =1,4/3,
GO TN 16
16 CANTINUE

i i



7

STMNHN
ONSHA
STGMA

(EXP(BY=FXP(=1))/2.

(EXP(RY+EXP(=3))/2, : \
2o*(=R+A FR*STINHIBI/COSHB)
STNHG (FXPCGY=FXP(=G))/2.
CNSHAG (FXPCGI+FXP(=())/2,
STAMAP= 2,k (=R+D +G*5INHG/CISHG)

i oiou uou

START THE MC LTAN AND YOSHIMINF SECTTON
THIS ZERUS THE TNTEGRAL SUMS
Ni=1

OO

Ik )g()'U,W‘WWWMMWWWWmevw
SHM(?2)=0,
10 CONTINYUE

D7 T=1,NN2
T1=TCD)
M2 FOXUCII ¥ (RU~1,F0)/((LEO=TT D*(1,E0=TI )

Rull=(RM*(1LENHTT =2 ,FE0*TT )/(1.EQ0=TT )
TRARP =(A+D) *RMi
TF (TRAP=1,00E2)70,70,7
70 FACT=( EXP(*TRAP ))*W - |
TERM(1)= FACT* (1 E0+RMU)>»*x(STGMA+STIGMAP) ‘ ;
CTERM_(2)= TERM(1)*RMU«RMIJ S
SHMCOLY= SUMCL)+ TERM(1)
SUM(2)= SUM(2)+ TFERM(?2)
7 T(1y=a=T(D)
N = NO+1
[FIND=2) 65,1056
6 CAONTINUE e e e
SSUM =C(BNUCT)Y +BNUCIY ) =SUMC2) =(BNUC2)Y + BNUC4)II*SUMCL))
1% (P] *R*R*R/4,)
WRITE (65,201) BNUC1)s BNUC2)»SSUM
201 FORMAT (3E24.14)
RETURN.
FND

TSEGMENT 14 1S 193 LonGg

SEGMENT 15 1S 13 LONG
SEGMENT 16 IS 138 LONG
o SFGMENT 17 1S 55 LING
START NF SEGMENT *kaksrsnrt 18
SEGUENT . 30 TS 7 LONG

SEGMENT 18 1S 18 LONG

NUMBER AF SYNTAX ERRNRS NDETECTED = 0,

PRT SIZF = 1163  TNTAL SEAMENT STZE = 3508 WARDSS

ESTIMATEN CORE STORAGE RFAUIREMENT = 7232 WORDSS
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