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ABSTRACT

Expressions for the anharmonic Helmholtz free
energy contributions up to 0(N),valid for all temp-
eratures,have been obtained using perturbation theory
for a crystal in which every atom is on a site of
inversion symmetry. Numerical calculations have been
carried out in the high temperature limit and in the
non-leading term approximation for a monatomic face=-
centred cubic crystal with nearest neighbour central-
force interactions. The numbers obtained were seen to
vary by as much as 47% from those obtained in the
leading term approximation,indicating that the latter
approximation is not in general very good. The conver-
gence to O(X) of the perturbation series in the high

temperature limit appears satisfactory.
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1. INTRODUCTION

The harmonic theory of crystal lattices fails in several respects.
It incorrectly predicts no thermal expansion, a constant high temperature
heat capacity, equal adiabatic and isothermal elastic constants which are
temperature and pressure independent, and no phonon-phonon interactions.
These failures may be attributed to the neglect of anharmonic interactions
in the crystal.

Mie (1) and Gruneisen (2) .-first allowed for anharmonicity by
assuming a temperature-dependent lattice constant in the development of
their equation of state. Born and co-workers (3-6) later studied the
high temperature dependence of the elastic constants of simple cubic
lattices using the quasi-harmonic approximation (volume-dependent
vibration frequencies). Born and Brody (7) first investigated the
influence of anharmonicity on the caloric equation of state for high
temperatures. Later Leibfried (8) employed the perturbation theory
of Nakajima (9) and derived expressions for the free energy containing
both thermal and caloric equations of state by treating anharmonic
effects as perturbations. Peierls (10), Klemens (11), Leibfried (8 and
12) and Schl®mann (12) have discussed the anharmonic effect of thermal
conduction in insulators.

The traditional perturbation theory approach to the study of
anharmonicity is based on the expansion of the crystal hamiltonian in
terms of Van Hove's (13) ordering parameter, A, which is equal in
magnitude to a typical atomic displacement divided by the nearest-neighbour
distance. The lowest-order anharmonic free energy contribution is then
found to be of order A%. Previous perturbation studies by Leibfried

and Ludwig (14) and Maradudin, Flinn, and Coldwell-Horsfall (15) were



carried out only to this lowest order of perturbation. Maradudin et al
performed their calculations for a central force nearest neighbour face
centrered cubic crystal using the leading term approximation in which only the
highest ordered radial derivative of the interatomic potential is retained.
Feldman and Horton (16) performed similar calculations in the non-leading
term approximation. The specific heat at constant volume was in both cases
found to be linear in T at high temperatures but this temperature dependence
was found to be inadequate to describe several materials (see ref. 17). For
rare gas solids at high temperatures the experimental specific heat rises
steadily above the Dulong-Petit value while the theoretical curve drops
linearly from it. Recently Shukla and Cowley (18) used a diagrammatic method
to calculate the contributions to the Helmholtz free energy up to order A4 in
the expansion of the anharmonic hamiltoniéﬁ. Their calculations were restricted
however to the leading term approximation f;r a central force nearest neighbour
f.c.c. crystal.

For this thesis the pertﬁrbation treatment of Maradudin et al (15)
was extended to order X4 and all calculations were performed in the high
temperature limit without using the leading term approximation.. As a result
an assessment of the validity of the leading term approximation could be made.
It was also desired to determine whether or not there was a contribution linear
in T to the high temperature specific heat from terms of order A4.

The anharmonic hamiltonian will be introduced first and then used
in the expansion of the partition function from which are derived the anharmonic

free energy contributions. Details of the numerical evaluations of these

contributions are then given and followed by a discussion of the results.



2., THE ANHARMONIC HAMILTONIAN
Consider an infinite non-conducting ideal crystal whose lattice

points are defined by

-Q A N { .
=4+ daQ.+Jaqts (]”quja '"*eﬂePS)

where =] aj da are the primitive translation vectors.
The lattice thus consists of an infinite number of cells of the direct
lattice which are parallelepipeds having edges A 9 L2y 23 and

which can be indexed by the sets of integers A= <Q”.135.Q3) .

+
Denote the equilibrium position vector of the Kth atom in the Rh cell

by
2 ¢

’I\K: 2 + ’x\K (1)
where Xy gives the position of the atom K with respect to the cell
origin (&g Loy da) . At any instant the moving atom K in the

th
2 cell will be displaced from equilibrium by the vector Qi
The total kinetic energy of the lattice is
.‘i a
T=47 M) (2)

AK~

where M is the mass of atom K and = denotes the Cartesian indices

K

x, v and z and the summation over K extends over all ng atoms in a unit
cell. If the total potential energy of the crystal, § s, 1s some
function of the instantaneous atomic positions, a Taylor's expansion in

powers of the displacements yields
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=7 W) &,

( 21000 Sin I L
0
n=2 4x= !

Kyie, Kh) u"'(lkr”' LL:"-H‘TA (3)

free o

QhKndn



where

B i)
) Uk, ...éuﬁnk“ o

The subscript zero above denotes that the derivatives are evaluated in
tﬁe equilibrium configuration of the lattice. In the above expression
for § the first two terms of the Taylor series have been omitted
because the first one is zero if the zero of potential energy is taken
to occur for the equilibrium configuration while the second term vanishes
because the force on any particle in equilibrium must be zero.

In the above energy expressions the summations over the cell
indices "{" extend over the infinite cryétal. Suppose now that we
subdivide the infinite crystal into ”macroérystals" which are parallel-
epipeds having edges La .4 Lag and L as and assume

the cyclic boundary condition

L 2
Ry = Wy (&)

where  2+L.  denotes a cell at a position

2 ; .
£+ LM+ Mg dy+ gy Q) (miyma, My integers)

Any one of these macrocrystals can be taken to represent the real finite

o

crystal under study with inappreciable error for large L (19 ) .
We now introduce the following transformation (A) to creation

and annihilation operators:

2 e;x(Kl ) + 2
“«x"(m\jp ) Z % (a.é,-a_‘&;)e (5)
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The allowed values of the wave vector A& are determined by the cyclic
condition of Eq. (4) and are uniformly distributed throughout one unit

cell of the reciprocal lattice. They are given by

8 _ h ! s I =1 s
A b +%Ra““ L ke (hivhasha=1a25000l) (6)
where the primitive translation vectors §.¢ b35 E? of the

reciprocal lattice are defined by

and a reciprocal lattice vector is

O'("')= -;"l ,L\N'i" L\: éz""’ig i)\g ()ﬂo,{ﬂ“;.hg ;H+Q?Er's) (7)

~

The eigenvectors 6;‘(K!f) and eigenvalues W, satisfy the
& '\J

equation

; D«F(];kﬁ’)e(K,‘k) wﬁ (Kl (8)
Kp

where we define the dynamical matrix by its elements

D*F(kﬁk) (___EZ §°{P( ) ~ani k.2 () 9)



The periodic boundary conditions were used to obtain the result

Lr, (3= Lr( AL hﬁ( -y (T=4-L)

The number of units cells in the crystal is assumed to be N
(:L?)‘ The branch index j takes on the values 1,2,...,3hbwhere each
integer labels a particular solution of Eq. (8).

The operator a%j and its Hermitean €Ol jugate q;J obey the

following commutation relations:

‘- ' (10)

where g-q is a Kronecker delta while

A(x) =1 for k=p or a reciprocal

lattice vector

0 otherwise
When these operators are applied to the "3qy particle'" orthonormal

+
eigenstates In) of the operator a,.qa,. specified by the 3nN

<

quantum numbers [ni,z where ng. is either zero or a positive
~d '\‘J
integer we get
+ —
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¢ < ¢ (ll)
® ]
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. . . . . & .
Also, since the dynamical matrix is Hermitean and hence tu&, is real,
d

we can consistently satisfy the requirement that Qiﬁ be Hermitean

by assuming that
e (Kl j%) =~ ei(xrf) (12)

Using the transformations of Eq. (5) and retaining only the first five
terms of the expansion for .ﬁ the hamiltonian of the anharmonic lattice

becomes

H=Ho+ Y N7 H, (13)

Ho= ) fw, (@, a + &) (18)

and

Ho= T VO ) Ay, e Ay,

\ -5 , n L
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Ay = %7 g B il = ek ;%5) ’

L= l’Q)au)n
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'

the summation being over the N cells in the "macrocrystal'.

The order of magnitude relations

3 ‘Q ‘92 -Q ) rq = Q {-" :'- _{‘.’
Q&(F. ( Kl. Kz) ™~ Uo @u?{( ;"{: ﬁi{;)w d, §qfs‘(€(\<'|;;k; Kq)"\”‘ eue

where d  is the lattice paramater, suggested the use of an order
parameter ) in Eq. (11) to indicate the number of factors %E

contained in the Hn relative to Ho' At the end of the calculation

X can be set equal to unity.



3. ANHARMONIC FREE ENERGY

The anharmonic Helmholtz free energy is obtained from the partition

function defined by

I

- i
N (18)
%

where the anharmonic hamiltonian H will be defined by Eq. (13). If we
work in the diagonal representation of Ho’ we will need to express the
exponential in some form containiné e-ﬁHO as a factor. This is
done in Appendix A, where the exponential is expanded in powers of )
using an iteration procedure (2Q). Having retained terms in the hamiltonian

4
(EQ.13) only up to order N\, to be consistent we must do the same with

the expanded partition function. The result is

Z= 2+ N (202 F W (Bat Byt A E)) (19)

=0

where

- -pHo
Z,= Tre P (20)

- i l " 7l -<
Z, = ‘F’TP& PﬂO(ﬁdS, eSIFH‘c H’L’\e SQFH'O
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whe ol

Terms of order ) and Y make no contribution to the pgrtition function

(see pe2l). We now use the eigenvalue equation

Holmy= {1 )“‘“,QJ- (”gé‘*%\3'">=En‘“> (21)
~¢
which follows from Egs. (11) and (14).

From Eq. (21) we get

QNFHO Iny = e“an.a‘n> (22)

and the adjoint equation

En

e Ble - P (23)

With the aid of the cyclic thecrem for traces, an inversicn of the

orders of integration, and Egs. (22) and (23) (see APPENDIX B, we get
Z=y e PEn

T (24)

Z=-p ;e-PE“ <n)Hy [n)
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m < PEWEn) < RLEp-EN)
z = %(E TE (B E "‘)E (B En)(t:j,;L:_‘,,)2 T ~Ep) (B f,l)
. CPEE) | CPEED | . cFEE )
(Er"EZ) (Eni~ EZ(E EZ) (EP-EM)(EM‘EF)(EH*EM) (ET,_EZ) (Em—z%)( EE,)
e PEBa) _ . o FEWES) _

(EM-E P) (Em‘ Ef)(Er,_'%) (E}Q‘EZ) ( Ew—,‘E}O)( Eu.,‘E VT) §

The Helmholtz free is defined as

FFJ—J/YLZ_
B
Using the definition of Z in Eq.(19) and expanding the logarithm
up to terms of order = we get
F= F+>(F+F§+X*ZF 73#(_1;22) (25)
where
I
Fg:—?\_‘a\,\zo

=
— =h nN=j . O
" P Z T
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Assume now a monatomic crystal with central force interactions.

Write the total potential energy of the lattice as
’
:-—L. 'M'
$=20 ¢(r) (26)

where the prime indicates that we do not consider terms for which

the indices ﬂ,)' refer to the same cell. The factor-% is included

so that the interaction between two atoms is counted only once.

The instantaneous separation between two atoms in the cells.Q and
Q' is
I

\ | | o'
rﬂ = (,XOM‘+u_£1 )2'*'(539“‘“3[ )2+(§£J + u? ) ]

%

‘

where
o 4
-Xoﬂ = Ko ~Ky ete.
i {
WL
U"X' = ux"uax ) eTC.
1£ is the x-component of the equilibrium position vector

of the ﬂ.th atom of the crystal relative to an origin located
at some atom., Wy has the same meaning as before except
that the atomic index K has now been omitted because there is
only one atom per primitive cell.

Put

1 .
rré = % <‘Q‘)"Q“)"Q3>
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where the integers Q‘ s 'Qz 5 ;QB are all odd or all even for a body-

centered cubic lattice and whose sum is even for a face-centered

cubic lattice. a, is the lattice parameter. If we now expand

: S o
the two-body potential c')(r ) in powers of U, , o(:fxg,g_

up to terms of degree six we get

/

: ‘ ]
= Z (TIQ‘ Z z %)T qug'“_a»(n(.wt) U:E;'i -HUQJMI

~n
n=2 00" uxn

with Xy qeecyXn each running over the cartesian indices

X, v, z and

!
d
r=y, .

= { X[ ¢l (1= L o]+ S el

!
rerd

= {1%}[_4; 0-2¢0+3 0]
(g B+ 845 % + Sug WLt

M!

r=te

(27)
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+[,§§W(§7WS u+£7%§ v)‘*‘ Xxw(%u ;v*&* Jt&;;'u—)

+ §3_w (;Xu. S§v+%mc§%@-}+§;§(iwwg)xv +§x‘uéw@>>
+ ngf ( 'S‘wu l&v + %u&. cfwv)“i“ :(g( wik gg;u— +~”;§m§\u.:b“ |
o ng (&x; iéw + (%é wa + 57(2)7 S;u\) 3 [43 (r‘)-%?b ) -'I-'%L‘i)(v‘]}sr: rim‘

The deltas are Kronecker deltas and each of x,y,z,u,v,w extends over
the three Cartesian indices x, y,.z. The first two terms in the
Taylor's expansion of the potential are zero for the reasons
previously stated. The derivatives are evaluated at the equilibrium

separation

]
oy

e (g2 T

i

{ i
20 ) 04
=L (<M Y+ (yo

The transformation to normal coordinates in Eq. (5) becomes in this

case

Substituting this last expression into Eq. (27) and comparing the
resulting expression with the corresponding terms in the hamiltonian
of Eq. (13) we get
. (28)
8000 = 3o TL el G W (=€ Wiy

“{;sa:"’(n

~2TT L 8 ,hf
X (h-e AT 1 Bn oL )
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In the above expression the ,Q - summation extends over only nearest
neighbour lattice vectors of a given lattice point, (see DISCUSSION)
Zy

We now return to the evaluation of the terms Zs 9 N=l0.., L0

which contribute to the free energy (Eq. 23). Consider first the term
A ~BEn_ . 1.
23=-F'Zefg <niHlnd
n

Using the definition of H

. in Eqs. (13-16) get

3

" _ _ «
Zg= _,P T‘m 2‘ A(:@;.+&Q+w ﬁ;&i(,) @u.)r” é)

Nysec 6

|

X W %@\FEY\<“IA),A)1«HA>\6M\/

where LUz = (_A))\:

and as before >\: denotes the index pair ji:_j; while v)\;
will denote the pair ‘nk;j: . If we expand the product A)n A)z A)B
x/é\}\uA'/\‘s A)\Q we get a sum of terms each of which is a product of six
creation and annihilation operators d)z and O:H . But
because of the results of operating on some eigenstate in) with

these operators (see Eq. (11)) and the orthogonality of different

(29)
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states |In) , the only contribution to the matrix element (nIAL“tA)er
comes from those terms containing equal numbers of creation and
annihilation operators. Moreover, each creation operator must be
paired with an annihilation operator such that the result of all the
operations on the state |nY is same numerical factor times

the same state |n). A typical contributing term is

.l.
<ﬂ!CL Q c a. <1 a Iny

2 X M s e
A(Ri+ k) A kat+Jig) A( &%)5 J
lJIG- & 39 J-%JG
where h, = n} , is the number of phonons in the
19 6 o
"“I-JL

single-particle state labelled with the index pair jgj{ .
The number of different ways in which we can pair the indices

X,?“‘9 )G to give non zero matrix elements is easily seen to be
15. Moreover for each pairing scheme the contribution to Z3 is identical
since we can always interchange the labels Ai without affecting the

summand (note that §(Xla-v-a>‘6) , by its definition, is

invariant under permutations of the XZ )



}od

It should be mentiocned here that there are no contributions
to Z corresponding to odd powers of ) since in such cases the matrix
elements involved contain an odd number of operators A% so that when
we pair creation and annihilation operators we are always left with
an unpaired operator. Hence all such matrix elements are zero.

The final expression for Z3 becomes

3 . i ~pE . : :
Z,= -Fgﬂ.ﬁ XI5 %y 3 O\ )1.)2)3.-)33“@ xze PER ani)ngri)(ang )

Al X;)S

Use has been made of the easily proved property of the normal mode

frequenciesli.that Qy’“’-‘ The corresponding contribution to the
) Y
free energy is

I’

Fg::-

N

N
P

(<]

We thus need to evaluate the quotient

Y € PE™ @anai(zngs n@ang )
n

y o PE

n

This is done in APPENDIX C, the result being
(@1 +1) (20+ 1) ( 25 +1)

where we now define the mean phonon occupation number ni by

~ {
Ne = ———
[ QMW:‘I
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We get
/hs .
i - & ._-——_—~l -
FB = m X 5% z ﬁug‘); 32‘/‘2)3“)3) Wwalwsz (32)
A(Xﬁ)'}
¥ (2h+i)(204+1)(2hs+1)
Using the definition of §()‘“c,\|é’) in Eq. (25) and substituting
for 437( . (Q) from Eq. (23) we have
3
i’@ﬂ, ;\2‘); )3*%) 3 (33)

o o | 6
= o () For x eeeilfnealn e
— fﬁ N LA/ ¥ 2 2 2
Y s E(V‘a)"[(,e\l’%d)(ﬂ"ga)(ﬂ"§23) +(€2- 8a)0-@)) (0-€a)
2. 2 : , 9
+ (3:.23)(1-81) (0-€2)" + H(81-)W-S1)(k-€2) (1. €3)

+ (g3 (e (nega) (0 23) + 4(€a- 2aXn-€1) (1 et €2))
) =2
Q"O) Q. ) X
- : F; E N?w‘ézf(x\»ga)z + 2(Sl‘ﬁ_ﬂ)(gieaga)(ﬂ‘ga)(,'{'@a)

+ (g, -22)(€ °§a')(ﬁ“,€(9)2 Y (Ra-Q2)(€ 1302 (7 -C3)
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+ U (eaeslle «2)(0.La)(R-€3) + 8 (S2-€3) (- (-2 N-L3)
: . 2
t 8 (Srss)(nes) (1gl(n-gadt (82:%)(8-%) (1-Ra)
t 4 (22.03)(S1082) ()0 €2) + 6 (81-C) (S~ 2a)(1-22XR *K2)

a a2 J 2
+ 2 (g23) (-9 + (23-99)(L202) (2-9)

2. 2 Ce)l 2
+ 2(82:¢3) (n.21) j b FtlLa 7%)[Q(§3‘§5>(§i°52)

2
+ (8,21 )(e3-29) T 2 (€2-22) (S +£3)

2
+ % (r2a)lsi - ea)(Sa 89 + 2SS gar 3 ]

X (1~ 0-a T &y« 0)(1= coaTicty hg )1~ i T K3 . 2)

The above summation is over the nearest neighbour vectors for seme
atom and r, is the nearest neighbour separation. The dimensionless

vector n is defined by

I";Q:- % n (ao is the lattice constant) (34)
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We have also made use of the following definitions:

cm)= { 9" -2 ¢"0)+ B o]

rETy,
D= 146 - £ ¢+ 5 ¢~

)=} ) - ‘-3‘#"’(!‘ + 45 ?5“‘() ‘05¢
105 d)( 3‘

=Ty

Flr)={¢ - %ﬂm 0F ¢ - 1229

+ 38 ¢ - T2 403,

For future use define also
B { $le- 7 ffl

Z. can be evaluated in exactly the same way as Z

5 q)’(r)}]r: .

i

(r)

This time we need

1 3°
to evaluate a matrix element of the form
<nlAY A, A n
The number of different ways in which we can pair the )L to get

a non-zero result is 3. The contribution from Zl

to the free energy

(35)

(36)
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is easily calculated to be

£ -%— =3 (37)
%NXBYX ®(¥-), )2 a)ww (2R FN(2F,+1)
52
From the previous definitions of §1M)1)3LQ and *j%“tn
we get

SO (38)

= 7 Lo ) 0x et eals 2;41 wcv )

)#\4

2 ;
x [ U (0-2)0-2a)(€1-82) + (N -Qu) (e2-€a)+ (4-22) (8-S ]

+ W“ﬁ ?:f‘ () [2 (gi.czaﬁe- (1 - Q)(€2-Ca)] (1= 0aTio &y -0 Mi- 04Tz 1)

One can show analytically that the terms Z:Z”,and Zm do not
contribute to the 7, (APPENDIX H)Consider first Zyeand Z,, In
APPENDIX D it is shown that they are identical. The exact
expression for Zq is

. ~BE, <nlHzimy<m|Hsln>
Zy=p © PSS (39)
mn m =N
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We shall also ignore Z" and Z"'in the other Zi's. The only non-zero

15
contribution to Z, occurs when the three A) in H, are paired

4
9
with three AA. in H

3

5 and the remaining two being paired. This

can be done in 60 different ways. Following the same logic as was

used in evaluating F, we get

3

i
Fu"‘fg 2, (40)

== o XQOXZ A(:&l*—'ﬂﬂ +&3)
315N ’\'11\1)3)»

i
W) Wa Ws Wy

% 00 FE)dg=ds-d ) =

. ()Mo +) <Nl (i s = 0 iaa+1)
x(-ifhﬁ")[ : Lul+td:z+u)3:2 +3 w,+w:'~wa ]

Although each of H3 and H5 contains a delta function, one of
them becomes redundant as a result of the pairing of operators so that
only one remains in F4. The term in the square brackets has been
reduced to its present form by using the fact that the rest of the

summand is invariant under permutations of A., Ai and Ag .

We have
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B(h-dg-ds ) ) (41)

. ) '
. %i & enean cApse) + M %

5/.2 r 4

x[2 (e .en.ea) .64 + 2l - S (1 . c0)

+ 2 (3.0 e N€a) -G+ (Qy-SH(1. <) 1-Ca)( - gs)

. { s 2

t (SarS)0R)U29)° + (e eaa-ealt-g4) +s aln-catief]

C(rz,)
M2 r% [2(,\ n-Qa)(Ssigule.eu) + 2n-glles-ru)ez-2y)

RN e -Clea.gy) + 200 Sul(€2-23)(S)- Sy
+ (RS2 e3) Q%) + 210 ew(&i-89) (%284

+(0-22)(S0-S2) (S-8y) + 2 (1-84) (8- €2) (€3 £4)
e 3 T by
ﬂ~§9X§|-§z)(§w-§4}]}<l‘wmo£wfﬂ)7T (ime 77507
‘_:'
d

Ced ‘
@Q,‘M;):g - (rf (n-e)(nea)ln-g3) + -B% =

x[ (- e2)(1-%9) + (S2:€2)(0.2) + (Si-22)(A- Qqﬂ}

X ~u-. (&_ ‘Taoc@ (Q)
d-:-l

Next consider the term ?22. The exact expression is

~pE, 1 i
P <n|HEsL '?ém‘ Nalw (42)

ZQ=F7§ Qe
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as
The only contribution occurs when each of the ‘AX‘ in one of
the H3's has its index A, paired with that of an Ah- in the
other H3. The number of distinct pairings is 6. Thus
] t
F= - 7 = (B3)
gz
T - / vy oy )R]
ey ){ZH Al et ) 300 s
1A243

© RN+ 1) + Nzils 0,7+ 0 15~ Na g+
X ) = 2 {313 {
E Wy Wi+ W3 +3 Watws -W) J

Use has been made of the property
- ] ¥ o
$62907))= = € 0,).)s) (4)

which follows from the definition of §()‘)2);) in Eq. (28)
The * denotes complex conjugation. The summation indices ),7 Xqﬁ Az
were permuted to reduce the term in the square brackets to the form

shown. Again, only one delta function is needed.
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The other possible scheme of pairing indices is to pair only one of

3 3

because one gets a factor §()FQ|XJ

the Ay, in one H, with an Ax' in the other H,. However, this
& A

gives no contribution to Z2

which can be shown to be zero for all Bravais lattices as well as for

any lattice in which each atom is at a center of inversion symmetry (21).

Consider now the term 25 where we take

Z_ = ~PEn _<nlttul my<mi Hulrd
5 ﬁ%e ~ T Ey (45)

One contribution to 25 arises from the pairing scheme in which each

of the four operators AA, in one of the H4's has its index paired
3

with that of an ‘AX- in the other H4./ The number of different
L

ways in which this pairing can be performed is 24. The free energy

contribution from +his scheme "a" is

a i zﬂ

- _1 Zs
Fs = F 2o (46)
PaL
=T WENT YR T Al et gahe)
) X)Z)B)l{,

e 2 i Azt DAz )iy+H) = 012131y
X } $()h)u)l?/\*f)l Wy Wa Wa Wy [. ' W +wa + Lug-ru‘)q;

H.(E,H)(ﬁﬁ;)('v'igﬂm-ﬁ,ﬁaﬁg(ﬁvi) +3 (g XD D=7 2t Xy t) <
Wy W2 tuW3~Wy Witwamwa~Wyg |

) o6 D) i 4 i 3 ( }+7)
vhere - BOAM ~§i () weltcansrren+ S 3 [anstesay
+ (&)1 Ru)(€2:3)+(1 €20 L 1-SA +( &)1 £2 )& Q) T UK €2 C2- &)
. . V‘o) ¢
+ (1R S «:a]+5%r@- (@re2Y S8 (8- 228 80+l 82§

4 i { e T ! &
)( i‘l_“(‘\e Trq(;(.%eﬂ )(l~e~rq°‘%'!$)
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Another contribution to 25 arises by pairing only two A)- from

L

one H4 with two A), in the other H4 and pairing the remaining two
in each H4. The number of distinct pairings is 72. The free energy

from this scheme 'b" is

Erao L =
5 P Z, (48)
2~u
== wvoe ¥ 72X L B0 B0uk-)-))
’ NEVES 4
 (ERaNER. Tz M5+| N3= 1
X NI (an,+|)(an4+|)[ Gtz T TWrws ]
In this result h; denotes the index pair —}éés . This is due

to the fact that our pairing scheme yields a delta function of the

form O kg+fs) and from the relations

)= E(f) (49)

4
which follow from the form of Uee assumed. (see (13).
In the above k is restricted by the periodic boundary conditions (Eq. (6))
and J is a reciprocal lattice vector defined in Eq. (7). The §
. b , , . vy
factors in F.~ can be obtained from the previously defined ﬁ(,\,h)a)q)

by suitable sign and label changes.
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Turning now to the evaluation of Z,,Z¢,and Z9 we note that

Z7 and Z7 are in fact identical (see APPENDIX D) but that Z%is in

general different. We take

_ " PEn _nlltsm)<m]fts 1Py <p) Hulny
= FZM (L ~En) (Elm tn) (50)
) )f
Z ~Ft:,\ <n!H3lM"><MlHqIPXPIH3M7
=%, p~Ea)(EwEn) (51)
There are only two contributing pairing schemes. In the first
one we take two Am from H, and pair them with two A, in one
of the Hs‘s, Then we pair the remaiﬁing two A» in H@ with two
A» in the other H,. This leaves one A), in each H; which are then
paired, The number of possible pairings in this scheme "a' is
216. The free energy contributions are
@
a,
Fo=-l Zg
7 P Z (52)
2k
=R KRN T Al ha R ACRs Ay + ) B0 EE), N e)
")‘1)3
WE o e
x" (_)_ ’_) 2 i X naﬁq_ﬂs’ ns("qj'l)(”g""‘
i i )2 4 }5} quwswq.bw [ghws\wu‘%ws + TWatwy rals
O3 (y+i) A 3y (5+1) } Wyilg . Ayliati) . (@, +1) Iy
~W3tWy=wWs = ~Ws~Wy+ws {‘Wu*wa“ws —Witwz- W3 wWieihy— w3

m.w)(nu%j i(%%i}ﬁtpk 1 a0 (Vg1 Ay (lis+1)
Wytwz ~ W3 w3 -Wy =Wy W3 +wy~Ws Wa~Wy +Ws

(Ws‘i-l)(”q.fl)(ns"fl)g{ Hl 7’_{ " ﬁl(ﬂ;@""[) + (VTH") Wo’(
Wz twy +Ws SWtWa +W3 T~y Wz +w3 Wi~ Watw3

o (-ﬁl'ﬁl)(—ﬁefl) 'f
wWitwz+W3 ]
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oo L%
g P Z . (53)
Lk
= JaNT CAex Y Al ket k) Al + fu 4 )

teeds

X B0Ma)2) B dde) TN ede) T

x[i n3+1 }Sl Niflafy g _WBaffyr)) s
=Wy 'U&l— 003 ~Ws Wyt wa ~Wrly Wy Wy SWTWg TWy—ws

r\,nxm(ngw) nn;(u.p-n(n;ﬂ)} % Ag+l %
Wq.‘fu)g =W W Wy TWs W.-wa~w3 Wi=uwat Wy

(itf) M2 Ny g B lia(Mgti) s (Wye1) Ba Mudis+) (W.+t)ﬁacr‘m+»)(v7s+l)§
wrw'z‘Wq*uls Wr‘WQ‘FWl}‘wS WrUJ;LUq.‘l‘WS' Lu"w:! +LU4.'|'LU5

‘

N3 g+ ()Y Pt Py " (A D) H ) s
WyrWa~s Wu*“’.a.+ﬂ/a§§ Wyt~ Wy~ Wi WU Wy~ We

M1 X A1) D (l-+H) (n.u)(ﬁm)mﬂ)(ﬁsﬂ)g {
Wyt Wa~ Wi+ W W+ Wa + Wyt Ws ~W “"‘U.z w3

+ Dot } 1, (fz+1) Wy s + Wi (W) (FigH) Wi +ﬁo(ia+l)ﬁ4(;"_5+))
=W Mzt WU Ws T -t Wy ~Ws - W W Wyt s

(it (gt 1) (st 1) } .

=Wty tWyt Wy
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The total contribution to the free energy from Z Z. for this

7> g2 Zg

pairing scheme is

a oA QL
F?Sq - Qt‘7 4 Fg (54)
:2-5'*13 )
= S 032X L AUkt de) Aot ket o)

A5

I

X §(A.)\a>\3)§(‘)3)\4>15)Tf(‘)ﬁ»a‘)#“%) W,y W W3 Wy W5

"H D (gt (g )=, 0205 - (?J,M)(Tlgﬂ)ﬁa—i.ﬁg(ﬁgﬂ).}

Wy+wz+Wws Wi+~ w3
. My+ M5 + | ¢ Mg =Ty _ y+is 1
(.t‘u| tWa Wyt Wyt Wo +Wye s W+ wa—we—Ws j

M+ Ml = Wy (N g+ )(At)

- i (B (M3 +)= T (gH) T3

W= Wa + Wg + Wl‘ Wa=Wsa
y N ‘ ﬁq‘.‘ VTS + | ) W4—W5 - Wq_‘i- 'V_ls + | —&
(‘"wﬂ FWz Py s =Wy W~y +is ’“W‘ + w-_Q‘Wq.‘(USJ

The pairing scheme yields three delta functions, the two above and also
one of the form ZSCEQF!@‘J@+‘£&9 . This last one, however, is
implied by the other two so it is omitted from the summand.
In the other contributing pairing scheme we pair one of the
A}z in each of the H3's with different ‘AAZ in the H,.
The remaining two Ah; in each of the H3's and‘H4 are then paired.

This pairing scheme "b" also can be realized in 216 distinct ways.



The contribution from Z_ is

7

-5.,3
2 v
= m};}\?—x:&l@xv AUy +&a+ ) ﬁ;i Maly

A"“ ),5-

* T ds-))) TammeTe

+ Wiz (My+i) + N(N3+1) Ay +
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@) [ § —e -

.Y—h (ﬁgﬁ-l)(ﬁq +i)

) & (-3

"‘-()l‘b\)? "Uq.

“wl‘W3+u}q_ ‘Wl“l‘ws‘buq_

=~ W, tUg W

1) Vi [(y+i)

}{ w,-n-w_z

(ﬁﬁi){ﬁg‘i‘l)ﬁn{-

g+ ¢+ Dy
+ } Wr-bU;;*-wq, T

U\h\ w-’i

W~w3twiy

AETTRNTEENTIY

where )2 denotes the index pair
pairing scheme results in a delta function of the form ‘A(Qr.

Only one delta is required in this case.

(ﬁ(ﬂ)(@w)l?&*l)} {
w e

This is because the

(55)
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From Z, get

b S
F, =~ — 29
1T P %

thzkg

= W x 216 XS%)g A(‘&[ ‘*’!&3"’ ,\Q\})§O,)3)q)§(_kn‘)3‘)4)

: V) T (20 fia i3
x $0)s )5 1)) Wy Wz W3 Wy W (2n5+x)§:{ m

_ (g3 Ay }{ nt| K
L‘U:\\‘WS_ wq_ ‘UJ‘*W':‘)“"WLF Wr*UJg—bdq,

+§ fanz (M +) _ cﬁqﬂ)ﬁg(‘ﬁ;ﬂ)EE Y
Wat Wa~Wy Wa=ws3+wy - 'Wa*wq- Wy —Wa+Wy

* { Aoz} Ny - Cﬁgﬂ)m;*lm{‘g i 0 i-}-i }
Wa—Ws +Wy WaHuz =~ Wy W +W3‘U}q. Wyt wa=-Wy
45 Na(iz+0(Tytl) _ Lﬁa,*lXWgﬂXﬂﬂ); S Nt 1]
Wa~ul3 =Wy Wa+W3+Wy v TSy W wat Wy

Again >\9. denotes the pair \&‘j’q‘ .

The total contribution to the free energy from Z7, Z8’ 29 for this

pairing scheme is
b ak :
Free™ Jaan® X %’“AZ | Al
5

(56)
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* B0 EG250) EGsds-) ) (TWsr)

( | | M )T DT+t = A Ty,
X w,+ Wa Wa= W { miuﬁ,ws_f_wq_

(e Witz +) Ty~ 113 Nyt1) + (T DAz ()~ (i) By
Wy + W= Wiy W~z +Wy

+

. (n,rl)ﬂaﬂq [HER) th)}
W%-Wq_

Consider now the last term ZlO' We take .

0= p ¥ < PEn <analM><MlHalePlHal?X?)Hsl'?
n,m,}o,i (Ez En) (E En) (Em En)

One contributing pairing scheme is that for which no two A),
i

in the same H3 are paired and where each of the three A). in

same H. is paired with an A% in a different H,. Hence no two

3 3

H3's have more than one pair of AK- in common. The number of
&

distinct pairings in this scheme is 1296, and we get

~6 .6
= i * 96 AU ks A )
oo
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X Az~ &+ 2 )AL Ra =&y=) T )03) EE Ads)

X @(‘)‘2‘)}7;@,)§(‘)3“)4‘)&) Wlewalwquswb

<5 e PEn <A A), Aralndm| Ay A)qAXslPXP‘A—A;A.)B /‘QJC/XC]IA_AB A .;A-AJ"D
"  -En) (BpEn) (By=En) ©

The only other pairing scheme is the one in which again no two A).

in the same H3 are paired but now we consider two sets of two H3's
In each set we pair two AAX‘ from one H3 with two in the other H3.
L
This leaves two unpaired A). in each set of H3's, which are
18

then paired. The number of distinct pairings is 324 and we get a

typical contribution::

b
Z, = FW y 32%2 Aot R+ I ) A~ B+ k) A Byt Rt RIAUR -+ Bs 14

* 200 El W EC ) A @ T

Y P <”f4A AR A D AP IR ANsAASToGA-) A N5 ANl
n,m,r,i (Epm- En)(h ~En) (‘:2 Enf

There are actually six contributions like the one above because

two sets of two H;‘can be formed in only 3 possible ways and for:
each way there are only two possible ways of pairing the final two
unpaired Ah; of each set of H;‘. We are thus left with the evaluation

of the following sums:
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‘an,m*aA)(aAXQIMX”M—MA-;\‘;A)JPXPIAMJEA/\JZ><7IA~/\ A~A5A ,\.Jn>
(E En)(Ef“En EZ En) -

n)"";rvz

Z ‘fll:n &lAyA), Az\%f"'Xm’A-)a -XBAM’PXPM"): AM?X‘?‘ AuAsA )(J">
"’M’r’7 {EwiEn) (Elo EVS(E“E”\

X 'FE") LAY A Ay Lyl AY, A) A)é’P)Q"A‘A:A*);A‘)'}\?quA')l A-xs A )(.‘ n>
V\,m_‘o)i (EwEn)(E En)(LlZ En)

5 N <nlAy, Ay A gl A~ x.AzaAMIPXPIA-AQA-)aAM‘iX?!Aq\l; s A
npg (BB B E,,Ez Ev) o/

~pn S0l A Xl Py Wl <Ay s Al A Acydny
(EwE nl(Ep E)(EZ Ea)

Le
”)'“)r’ z

f a ~PEn <nlA\,A)JA)aIMXMIA-LA,\,,Ag,If_)gﬁlAggAin zgl‘%?l»‘f—)u/\ X Ahln?
"M (B, Ew)(E‘o En)(E En)

Due to the complexity of the algebra involved in evaluating these
contributions and also the fact that in order to obtain meaningful
results an exceedingly large amount of computer time would have
been necessary(see next section),the contributions from Zi, and

b . .
%2, were not obtained.
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The harmonic free energy is(15):

In the high temperature limit the free energy contributions are

as follows:

f

Fo= }%TZ JmFﬁw + &ol 2[24 ﬁw%) 2380(—2—:;%} ] (58)

F!= ‘S—N % @(‘M:‘)a)z) W x[(‘%}")‘l + l_Uj

e

i ) . ) 2
+ 5 (2t ) - ]

e~ AL A B0 (4
% 2
- %) o]
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In performing these high temperature expansions it was of primary
interest to determine whether or not there were any free energy
contributions of order x‘which were proportional to Ta, since they
would contribute a term linear in T to the high temperature specific
heat. There were none. For T->0 each of the ﬁi tends to zero. Thus
we can easily find the low temperature limits of the free energy
expressions.

It should be pointed out here that in each of Z5,Z7,Z9, and ZlO
it is possible to find pairing schemes such that not every operator
Hi will be linked to every other operator Hi contained in the matrix
element by means of paired operators A& o Terms arising from such
pairing schemes and also the last term in Eq.(25) do not contribute

to the free energy since they do not cérrespond to "linked clusters”

(see ref.(22) and APPENDIX G).
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4, NUMERICAL CALCULATIONS

The anharmonic free energy contributions in the high-temperature
limit were evaluated for a face-centered cubic monatomic crystal with
nearest neighbour central force interactions.

For our model the harmonic dynamical matrix is a 3 x 3 matrix

with elements given by (15)

&
< | -ﬂTTL
g, 4) -M_Z ch(y& (“ ) (60)
where the l-summation is over the 12 nearest neighbours for the f.c.c.
structure. Using the definition of ¢% @) in Eq. (27) and the
already mentioned assumption that '¢kg):c3 where r, is the

nearest neighbour distance we get

Dy ()= [3’_%“1] {:g - %4700431 (,amw%kg + Codmolbé)} 61)

Dy (1= B ] T, b Ty

The other elements of the dynamical matrix are obtained from the above
by change of labels.
The eigenva&lue equation (Eq. (8)) for the normal mode frequencies

becomes

XD"Z‘ k)ej by 2 w ex()

b )

e )
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For convenience we introduce the dimensionless frequencies

¥ defined by
e
J
A M 2
K ¢ = —:—‘_"_ w L4
.QJ 26 () «,ﬁ;g (62)

These are the eigenvalues of a dimensionless dynamical matrix
which is derivable from the previously defined elements

"
upon division by hgﬁ%ﬂﬁ

The dynamical matrix is now real (and symmetric) so that we have

from Eq. (12)

& -k
(P = - () (63)
This shows that g is odd in k. Without loss of generality we can
also assume that e transforms in exactly the same way as k does.
Since the eigenvectors of a real symmetric matrix can always be
made orthonormal we get the important relations
~ Bya (&
Ei €y ')e = 513
and
b ,
e (%)e' = 8o,

Here j takes on only three labels since there are only three normal
modes. Using these orthomormality relations and the fact that g

transforms as k we easily derive the relation (15 )



I,
)eﬁfi)fqa (1= coatrog hogd) = D

UE W €)= Ty (66)
where E‘Q—. <x3,)jﬁﬁ§£> is a nearest neighbour vector,

x and y run over the Cartesian indices x, y and z and the sum over
,IE extends over the permitted wave vectors in the first Brillouin

zone. Another useful relation which can be derived is

b (b (&
2 z Xo (;ie ex(vh}eg(dia) (I*WQW\,&‘PJ?}“ M_. o
j 2 et Y 2
w,, W, ) o
'xy Q "&J' \@‘;2 o ¢) ) (67)
the A -summation being over nearest neighbours. A theorem of great

importance in what is to follow is Born's theorem (APPENDIX E)

~p (68)

Y =St < [0W]
4 P ’
§
where D—l(kj)is the inverse of the harmonic dynamical matrix D(k)
discussed above.

In order to evaluate the contributions to the free energy it

was necessary to evaluate sums of the form

¥ evc(f)ae?(?) Mg‘ﬁ
8] LIy (69)
where %:'ﬂaok and k, lies in the first Brillouin zone. Such sums

were evaluated in the following way. Each of the forty-eight

symmetry operations of a cube was applied to the vector q of the

summand. Use was then made of the fact that g(f) transforms

like k itself. Thus forty-eight new summands (many identical)

were produced, each of which when summed over q and j yielded the
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original sum. This is because the components Qs qy, q, of q are
merely permuted or have their sign changed so that when the summation
over ¢ is performed the same combinations of Qs qy, q, occur as

for the original summand. If we add all these new summands together
we obtain a term which is invariant under the 48 symmetry operations
of a cube. Assuming that the wave vectors k are symmetrically
distributed about the origin we need only sum this invariant "total"
summand over l'-—-of the Brillouin zone, introducing for each vector

48

q in this portion a multiplying weighting factor to account for the
N

number of q's equivalent to it by symmetry, special care being taken
in assigning weighting factors for vectors on the zone boundaries.

The result is 48 times the original sum. For example we get the

i

following:

( ) . ) ‘
T [ (D7) S04 e (0t 7 gy cod 7505

+ coagany coagy n?)«&({)“‘ )}’}’ odgyhy (e 73"y 4T
+ oagny m%n}) + (D“‘);;L ELMZ:‘HX(NZXYI; P4 gyt
+ Cdgyty wzxng)]
| He (B
S%;:Z ex(égze'#(d) Mﬁi‘n

%R

== [_(D myéng(m?m,mmn}

(70)
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+ m Py M‘Z}”") ﬂDﬂ)‘;’? LMZXW?(M%W@W?.«}

i g MZ_;”; + (0 )“;(M Iy WB(M?”MM%%
+ 2 gy i 9]

Vs
The summations 2 are over a zg-portion of the entire Brillouin

zone and W(%) is the weighting factor for the vector q. The factors
- ~4 -

are elements of the inverse of the dimensionless dynamical matrix

and arise here by the use of Born's theorem. Other sums, Syy’ sz’

etc. can be derived from the above by proper interchanges of the

components n_, ny, n, of the vector n (recall that E§= ;f [4 )
Another type of sum which was required was of the form
Eledd Jes(t)
) eﬁk leis’ @é
SWF‘(S = 2 Z z A pl NE: BE Cod %"ﬂ (71)

% ‘}‘ 012 X X?éa

As before we generate a summand which is invariant under the point
group of a cube and then émploy Born's theorem to eliminate the sums

over 4 and 52 , getting, for example

2 f%
Sxxxx %}Z—Rexx) ; Q) m%‘ﬁ (72)
J’Z
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- ex() (%) (2)6‘[’(‘%)
ij,xg %}2 (%M 2V g7 W%ﬂ

3 ?J”
-@[(p wign QCMZ Ny C(M.Z} %“LMZ;”“WZ%}L
*(D"")xéwzyn}(m gl oty + o4 wﬂj;”})

+(])" J% umzxn}( (84Gy/1x 623y + 1 9 CMZ%”Q’)]
S«yx}“iii )e ( ')6“(“) o5 eeR
1 ¥ 9 i} X

»_@? Wairen "), (e ,
= L fé%a[(D 1(E;(D g Z,,; XMZ?V};M%V]}

+ (D fx;(.D ;?W%"’szxn ny ;+(D 3(0—4);

X z;"h{ M"‘?j'ywﬂf\fz'xﬂ} “+ (D“()'x}(om )'x} ‘:fon?(

X .a,m%g A‘}i ;+(D )"(;1 %ngnxxm? ;

X vébmbm} +(D*’)ZL;(D_'I)'X}W%“’X“’Q";"‘Zgﬂg o i""’ W;j

Using these six sums we can, by suitably interchanging n_, ny, and n

generate all twenty-one of the possible distinct sums of this type.
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For computational purpose a simple cubic lattice of points in k-space

was used with the components of k being given by

o]

For L = 7 this yields a mesh of 1372 points in the entire zome,
including the origin (0,0,0). The previously discussed types of
48

sums S;,‘.F 5 SNFXS were computed for the Hm-portion of the

zone defined by

LZpxz py2ps>0 ; P«+r3+ Ps< gL

and were tabulated for a large number of vectors p. The origin was
omitted from the sum over k since both e (?) and iL&‘ approach
zero as & — (c,0,0) .

The sums were therefore normalized by dividing them by a factor 1371.
In the expressions for the anharmonic free energy contributions

(Egs. {(58)) only the leading terms in T were calculated. In Fl and F3,
if we substitute in full for the §(L“.XH) functions and factor

out sums over different Aé we get respectively a single and double

summation over nearest neighbours. In each case the summand is some

function of the sums SNF . For Fl the computed result is
N (kaT) :zCn,J 8 ro)
‘—L‘@—'éq[ =y {D(ro) (S1AY + =+ ( (s1e)+ +272 (s1c)§
de
where we have used Vo= —=

(73)

(74)
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The coefficients S1A, S1B, S1C are given in APPLNDIX ¥

I" analytically.
The numerical result is:S1A = 12.00000
S1B = 67.05850
S1C = 64.73280

(The sums which follow (i.e. S52A,...,58I) are all given in analy-

tical form in APPENDIX F)

S1A is also an exact result as shown by Maradudin et al. (15 ).

We note that if in sums like Sdr) and S,(,F'Kg we put X’zjaq

we can use the orthonormality relations for the eigenvectors e

and get sums of the form

% /E coagen = Co<
% o~ eplf) coagon %S"‘P (2 (75)

= SQ(F NA(R)

% iqex(‘%)eﬁ(ﬁ) ex(ga) eg(};) Ood-%.n =£°‘F SXSNA(Q-)

where use has been made of the fact that

4R PR
e = NA(Q)
g N (76)

"

and A(n) 1 if ps<o,00y

]

0 otherwise

(E has the usual meaning)
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Hence if we put 3%5:! (which is equivalent to putting

(D*'Lx?: &Nﬁ ) in our computer program for calculating, say,
S1B, and compute the result we can check this number against the analytical
result which we can now easily obtain. Thus we have a way of testing the
accuracy of the terms being computed, such as S1A, SiB and $1C, as well as
our summation procedure. All of the terms computed above and those which

follow have been tested in this way. In the case above the test sums

corresponding to S1A, S1B and S1C are TS1A, TS1B and TS1C respectively,

where
TS1A = 48
TS1B = 240
TS1C = 180 '

For F3 the result is

3
Foe —e Tl t k) som + 2B (s50)

,768[4)“@025? (77)

ML 31N 8 Clr)

e <) o+ T (SBD)}

The sums S3A, etc. along with their corresponding test sums TS3A, etc.

are given below

S3A = 12.00000 TS3A = 96
S3B = 136.5878 TS3B = 1008
S3C = 395.3739 TS3C = 2520
S3D = 273.9112 TS3D = 1260
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The analytically evaluated and the computed test sums were identical to
at least seven significant figures in the above cases and in all that
follow. As a second test of the computations the term S3A was calculated
analytically using Eq. (66) the result being exactly 12.

s F and F.? each contains a delta function
27 " 46 5
of the type A+t R . We can express the delta function by

The expressions for F

Atkl= 4§ e Teiden

n

L

the summation being over the N direct lattice vectors %f;1 of the

L
"macrocrystal'. For each of the above, we thus have a double gsummation
over nearest neighbour vectors from the two § functions as well as a
summation over the N lattice vectors. The summands are again functions of

the Sdf .

The expressions are of the form

L (0,04

i3
s

where R, R, range over the twelve nearest neighbours and 'F&LQHQQ

2
can be expressed in terms of the S“P for fixed Q.1 and Ry,
The actual calculation was carried out as follows. For a fixed vector
n the sums over 2, and Qz were carried out. Then, noting that for
each of the above three cases the result of summing over nlqnd R,

was an expression having cubic symmetry in the components of f s

the result was multiplied by the number of lattice vectors R  equal
in magnitude to the fixed one. Then the next larger pn was selected,

and so on until a suitable number of p vectors had been used; Thus,

by exploiting the symmetry of the integrand, it was necessary to use

only one g vector of each magnitude (or 'shell").
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The result for F? is

N (T’
Fa = TG 1 € (sam)

Y. NES
* R B0ICE (528) + 1 Bl (520)]

The terms S2A, S2B, S2C have been computed for n vectors in the first
seven shells (i.e. up to the vector n::(a;hg) and the results
are given in TABLE I. Also given are the corresponding computed

test sums TS2A, TS2B, and TS2C.

we have

For F46 ,

3
N (ke ,
Fio=" (;q.z)(g;)‘[ ;,.m}]q LCRIER) (s4h) + 2 C D (suB)

+ ;ﬂ C(ro) (suc) + = Q Bl Et.) (sud)

+ 5 Braded) (suE) + 5 B(r)C(r><s+H§

0

In TABLE II are given S4A, etc. for seven shells, as well as the
computed test sums TS4A, etc. Analytically we get S4A = S2A, which
is also the numerical result.

For FSa we get
q
Fs= (64)(11,)}4%;, i iD&\ (5A) + 2 D) Cld ($58) + :W&”“W

T (55¢)

A 2
+ 4 SY (s50) + B Beice) (sss)+%f Be) (S5F)}
r : x

(78)

(79)
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The results for S5A, etc. and the test sums TS5A etc. are given in

TABLE III,
. b b .
Next consider F5 and F789' In these expressions sums of the type
SdFXg arise as well as SNF . In the case of F? in which

there is no delta function, there is only a double summation over nearest

neighbours. We have

b N(&‘rf > 3 4 ) (
Fs= = Tioan [B‘P"(n)]'* { D) §56A) + <= Do) Clee) (s6B) (80)

4+ —r Bir,) D(r) (sec)+ s Lm) (seby + g B(ro) Cire) (SeE)

]

6 =2
+* ";;1 B(r.) (SGF)}

Below are given S6A, etc. along with their corresponding test sums TS6A, etc.

S6A = 48.00000 TS6A = 960
S6B = 268.2340 TS6B = 4608
S6C = 258.7215 TS6C = 3120
S6D = 1524.376 TS6D = 22368
S6E = 1246.314 TS6E = 12792
S6F = 1632.251 TS6F = 11700

The expressions for F729 contains only one delta function and three §

functions, so that we get a sum of the form

Z YL g, ng)

nu ng Vl-a
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where LT Ql and gg extend over nearest neighbours and
¥ over general lattice vectors. Again the symmetry of the summand

required only one m from each shell.

We have
b N(ﬂ’eT)g 2
- - 6N - Lo .
F“TW = BT ED(R)C%KS 7A) + EBW Cra D& (S78) (81)
4 2 2 B 3 2
+ =3 Bln) (v} (STC) + —=Cl.} (STD) + =5 Blr)C (R){STE)
2 % %
g a W26 2
+ -3 B(riCR) (S7F) + —z BRIC () (STC) + = Bl Qr)(STH)
o 4 1)
+ 16 3 X ‘
+ & B st §
[4]
secause vl Limliations LwpoSed LY Lil€ aVALLAaDLle COlpUCLiing IaCillliies
it was feasible to get contributions oply from the m vectors
6,0,0) , <ha1,07 and {2,0,0% . The results for S7A etc.,

along with the test sums TS7A, etc. are given in TABLE IV .
We note that S7A can be obtained analytically from S2A if we
use Eq. (67). The result is S7A = (4)xS2A = 688.949. .

The result in TABLE IV for only three shells thus looks reasonable.
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In F7§9 there are two delta functions and three §. functions

so that we get a sum of the form

T LT T glnm,me, ng, )
My

W N2 Na

where ", N2, extend over nearest neighbour vectors and

m | My are over general lattice vectors. The numerical evaluation
of this sum was seen to be very time consuming so that only the
contribution from m=m,=<00c) was obtained. We have

3
F-,W = m {D(«)C(ra) (S%A) + - B(*)C) D) (S€B)

+ ':?‘ 8%) D) (s%2) + é. S (r) (seD) + -% B@JC:t*J(Sz?E)
: 2 2
+ & BCea (s7F) + i BE)C(r) (586) + - BrICEI(seH)
V’o o a

‘

16 3 N
+ o5 B0 (sex) §

where S8A, etc. and the test sums TS8A are

S8A = 349.9122 TS8A = 10176
S8B = 522.2178 TS8B = 15552
S8C = 866.9633 TS8C = 24960
S8D = 1085.052 TS8D = 32256
S8E = 1953.876 TS8E = 54528
S8F = 4169.629 TS8F = 106368
S8G = 353.4028 TS8G = 10368
S8H = 727.9011 TS8H = 19008

S8I = 2245.212 TS8I = 47520
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about 350 while the total result obtained by Shukla and Cowley(18)
is about 1285, Hence we can multiply S8B,gtc. by l%%g to obtain a
rough estimate of the full contribution., The results for both the
roughly estimated full calculation as well as for the leading term
approximation are given in TABLE V. In the case of F;Sg ¢ Where
there were summations over g, and g, and three sums over nearest
neighbours the number obtained required about 25 minutes of com=-
puter time. This was for only one combination of n, and m,. As was
mentioned previously the omitted calculations for Fio and Fio
would have required a great deal of computer time because we would

have had a triple summation over general lattice vectors Qa’ﬁa'ma

and a quadruple summation over nearest neighbour vectors.

f
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5, DISCUSSTON

In TABLES I,II,and III the sums have been evaluated for
n-vectors up to 23(2,2,2). As was pointed out by Maradudin et al
@5) the contributions from successive shells to the sums closely
parallel the contributions to their corresponding test sums,
being large where the test sums are large and small where the
test sums are small. Since there is no contribution to the
test sums from n-vectors lafger than (2,2,0) (this follows as
a result of using Egs.(75 and 76) we expect rather small
contributions to the (non-test) sums from such n-vectors. This
is indeed true for n=(3,1,0) and #;1(2,2,2) so that cutting off
the p-summation at n=(2,2,2) should not significantly affect
the values of the sums. It was found that using a mesh larger
than 1372 points in the full zone did not appreciably change
the values of the computed sums. All of the tabulated sums are
believed to be accurate to at least three significant figures.
For illustrative purposes TABLE VI gives some numbers which
were evaluated for a mesh of 256 k-vectors in the whole
first Brillouin zone.Increasing the mesh size tends to ilncrease

the values of the sums.

Looking at TABLE V it is apparent that the leading term
approximation in the high temperature limit is not in generel

very good. The corrections to the values from the leading term
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approximation range from 0.3% for F, to 47% for F;. The largest

2
contribution of order Au comes from F$89 but the number given is
only a crude estimate. Also, as was previously mentioned,we have
neglected contributions from the terms Z?O and Z;O . Had they

been included the incomplete total for 2 given under TABLE V,
F(f):0.25 N(kBT)B/EE,would probably have been reduced somewhat.
This follows from the results of Shukla and Cowley, since their
leading term numbers (2(f) and 2(h) in their TABLE II) are both
negative. The trend in TABLE V seems to be a decrease in mag-
nitude from the leading term numbers to the full term numbers

and where there is an increase it is small. It seems likely
therefore that the decrease in the tatal for X* from these
neglected contributions should be somewhere between 0.5 N(kBT)5/€2
and 0.2 N(kBT)B/Ee (assuming a 50% maximum decrease in mag-
nitudes) so that the maximum value of the ratio of the total
contribution of order X‘to that of order.f would be about

NS
%%1-%- ==0,7 k.BT/e

In the leading term approximation Shukla and Cowley obtained

4
D) -0.55h K T/

For the inert gas crystals the potential well depth € is approx-
imately twice the melting temperature so that in the high temp~

erature limit both the full and leading term calculations
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indicate satisfactory convergence of the perturbation series to this order
if the temperature is less than approximately 1/3 of the crystal's melting
temperature. It should be emphasized that the magnitude of the ratio
for the non-leading term approximation given above is an estimated
maximum value. A more realistic estimate would make the ratio close to
zero so that convergence should be good even for temperatures close to
melting. The model chosen for these calculations was the same as that of
Shukla and Cowley since it was desired to assess the reliability to the
leading term approximation which they employed in their calculations. The
restriction to nearest neighbour interactions considerably simplified the
calculations and for the inert gas solids this approximation is expected to
be good. As was mentioned previously, there is no contribution linear in T
to the high temperature specific heat from terms of order Xé in the free
energy. Experimentally the specific heat at high tempeatures rises steadily ab-
ove the Dulong-Petit value. Calculations using second order perturbation
theory (22) result in a theoretical curve which falls below the Dulong-
Petit value for high T(4O—6OOK). Attempts to account theoretically for
the experimental specific heat evidently involve at least sixth-order
perturbaticen theory.

An important objective of this report was the determination of
the feasibility of calculations of the free energy using higher order
perturbétion theory. It was found that the computations were made
practical by the generation of the invariant summands (as described on
page 44) so that only summations over 1/48 of the Brillouin zone were

required.
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The theory given in this thesis can be used to perform similar
calculations for other types of lattices. In the case of b.c.c.
lattice it would be necessary to include the effects of more neighbours

(at least next-nearest).



 (0,0,0)
saa | 9085683
S2B E 46.,65683
sac | Lo8. 4331
TS2A ? 672
TS2B § 336
TS2C | 2520

a0

178.1563

100,3290

816.1218
1296

720
5400

TABLE T

(2,0,0)

178;2009
100.,2629
817.2104

1296
720

5400

n
~

(2,1,1)

176.0530“

94,00965

767.3066
1248
624
4680

172.4018

92.15313

743.0359
1152
576
4320

(3,1,00

172.4057

92.14101

742.7789
1152
576

4320

(22,2

172.4021

92,13481

742,5510
1152
576
L320

The entries in each column are the contributions to the sums S2A,etc. from

the shell ~f vectors n labelling that column plus the contributions to the sums

from all inner shells, The same is true for TABLES II,III,and IV. The numbers

above were obtained for a mesh of 1372 Eﬁvectors in the whole zone..



Sha
SLB
she
SkD
SLE

SL4F

TSLA
TSL4B
Tshc
TSUD
TSLE

TSLF

©(0,0,00  (3,1,0)
? 90,85683  178.1563
é 575.5476  1155.087
 532.1605  1151.717
139.9705  300.9871
E 1079.466  2259.086
- 1608.345  3204.642
1344 2592
8064 15984
7056 15120
2016 4320
14112 30240
17640 37800

1155.103
1150.875
300.7888
2259.223

3209.163

2592
15984
15120

4320
30240

37800

TABLE 1II

n

~

@y

176.0530
1126 .046
1075.269
282.0290
2119.383

3013.232

2496
14976
13104

3744
26208

32760

(2,2,0)

172.4018
1102.972
1054.112
276 4594
2068.411
2916.407
2304
13824
12096
3456
2k192

30240

(MESH=13%72 k-vectors in whole zone)

(31,00

172.4057
1102.95k
1053.961
276 .4230
2067.980
2915.3%72
230k
13824
12096
3456
24192

30240

(2,2,2)

172.4021
1102.918
1053.887
276 . hokk
2067.663
2914.453

2304
13824
12096

3456
24192

30240



S5A

S5B

S5C

S5D

S5E

S5F

TS5A

TS5B

TS5C

TS5D

TS5E

TS5F

!

|

©.0.0
195.8047
101.9095
147.1828
496.5243
468.0906
572.0707

3360

1824

2592

1 7680

| 6480

| 4860

(131,0)
396.0105
212.1757
374 .4824
1046.802
1198.260
1443.625
7056
4032

6624

17424
16560

12420

(MESH=1372 k-vectors in whole zone)

(2,0,0)
396.0197
212.1930
383.9826
1051.578
1224.560
1470.364
7056
4032

6816

17520

17040

12780

TABLE III

n

~

RN

397.0576

214.8647

398.2438

1067.409

1267.929

1518.485

7104

4128

7200

18048

18000

13500

(2,2,0)
399.6691
216.1978
399.7622

1074.899

1273.812

1530.147

7206

4224

7296

18432

18240

13680

(3,1,0)

399.6693

216.1985

399.8319

1074.912

1273.979

1530.405

7296

4224

7296

18432

18240

13680

2,2,
399.6699
216.1995
399.8369
1074.924
1274.009
1530.476
7296
4224
7296
18432
18240

13680



S7A
S7B
S7C
S7D
S7E
S7F
S7G
S7H
S71
TS7A
TS7B
TS7¢C
TS7D
TS7E
TS7F
TS7G
TS7H

TS71

TABLE IV

I

294 .6544

457.2632
1356.750
1679.922
2563.639
7796.019
1692.226
2545.925
6598.644
13152
19584
47136
63216
93888
228336
42960
63360

139392

.,(6;0;05_,, o

294624

Lano
707.0442
1199.701
3187.813
3985.039
6609.646
17975.55
3917.471
16§87.565
14424.49
25344
42048
103104
121536
200736
494784
82080

133920

(MESH=1372 k-vectors in whole zone)

(2,0,0)

707 .7844
1200.117
3200.699
3989,177
6611.821
18064 .63
3921.459
6392.879
14538.78
25344
42048
103104
121536
200736
494784

82080

133920

294624



TABLE V

T ——— ? S
| TERM 1 FULL g LEADING |
| | a ! 2
Fy , 0.691 N(kT)/e ; 0.966 Nk T\/e
f A
F, ~0.342 N(iT)/e -0.344 NT)/E
3 f 3 .
r, 0.205 N(kT)/E" | 0.345 NI{&.T)/e
o ) ', i
Fpe -0.601 ' ; ~0.732
F? -0.227 " C-0.216 !
b u . H
F, -0.663 ~1.244
Fogg 0.63 ) - 0.619
F oy 0.9 "’ o 1.328 )
The full contribution from terms of order :\;‘ is

2 .
0.349 N{J'(’;'\'/é The total from terms of order Aq is

0.25 N(#:T)/e.



TABLE VI

n

~

(0,0,0) (1,1,00  (2,0,00  (2,1,1)
S5A ! 195.,9540 396,461k  396,4695  397.5151
S5B ! 102,0387 212.5659 212.5826 215.,2991
s5c 2 147,7120 376,0192 385.,6339 400,271.2
S5D ? 496 ,8803 1048.263 1053.087 1069.178
S5E ; 469.2563 1201.669 1228,269 1272.824
S5F % 5725414 1445,830 1472.773 1522468

%

KA | 90.70057  177.6317  177.6995  175.479%
S4B % 5741428 1150.649 1150,632 1120,965
ske % 5299306 114k, 753 1143.916  1066.70k4
shD g 139.4676 299.3632 299.1649 279.9941
SLE ; 1074.678 22kk,369 2244, 359 2101.396
SLF % 1598.738 3176 .937 3180,.846 2980.373
S2A % 90,70057  177.6317 177.6695 175.4794
S2B L6 ,48921 99.78774 99.72164 93.33135
s2C 406,.2910 809.6947 810,6355 759.5473

,Q?Jg'O)M

400,2692
216,7039
Lo1,8641
1077.075
1279,010

1534,803

11716517

1096.775
104k ,502
274, 1474
2047,998
2879.205

171.65;7
91.38247
734, 1684

(MESH=25% k-vectors in whole zone(origin om*}{:ﬁeC!)

(3,1, (2,2,2)
400,2694 400,2699
216, 7046 216.7056
401,9347 401,9395
1077.088 1077.099
1279,181 1279.211
1535.084 1535,160
171.6540 171.6493
1096 ,748 1096.701
104k ,346 1044 ,252
274.1097 274,0861
- 2047,.502 2047.141
2877.934 2876.93%8
171.6540 171.6493
91.36989 91.36203
73348533 733%.,6060
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APPENDIX A

. e s . . ~pht
In this appendix it will be shown how the exponential e
was expanded to yield the partition function of Eq. (19), H being the

anharmonic hamiltonian defined in Eq.(13). TFor convenience put

H=H,* Hs:

where

& -
le Z )l’\ Qan
n=3

Since H0 and H_ in general do not commute we cannot simply factor out

I

. -pH .
e PH" from e P as would be possible if we were not
dealing with operators. Instead let us define a function S(P) such

that

e P - &P s(p)

We now must determine 3@ . If we differentiate both sides of»

Eq. (A.1) with respect to F we get

‘H ‘.Ho ;S
~HIeP =eP :SF

or

- ﬁI(P) S(f‘) = %% 5 (ﬁz(f’): o Bl Hee PHq)

Thus

S(f;) = |- (? EICP’) S(Fl) dfa’

(A.1)

(4.2)



A2

Eq. (A.2) satisfies the condition Se)= | which follows
from Eq. (A.1).

Iterating Eq. (A.2) we get

spi= 1= g + (P R o

F PI . pi//\ ~ —~
- AF’g cl{) (O HI(;z'} HI(F") HI(F"’) dfa”’

o ¢/
il

i i
+ ng{;(PdFvl EJF OLF.'I/ g: H}(Pi)ﬂl(F,)‘HX(FW)HI(FW) CJFN

[+ [«

+°ﬁ“

L

Using the definition of HI we have

i:ATr‘ev-riH
=Tr‘e~m+0._, T\*~ e_r;Hcgﬁes‘PHa Hx e~S'FHO
P 5
—iat - I Y H\Q 'S“] HO p -
+€T‘“Q Fﬂosods.gsdsz es.fa Hte( T SOp ‘Hle Sapho

- FaTr N H"gids,s " gs‘zdsg @S‘f‘ Ho Hy Q(SA‘S})FRQ Hleis‘a'SJ)FHcHIé Saptto

(] a o}

I 2 (53 ST (s75)8lHo E3-s2pHo
+F34 Tre Fﬁcsodsagjds;z( ’{JS‘BS ds, @ P 'HIQ 2 F HIE". 3 FH
o o

(S’ ~-S ) Ho ) ~S HQ
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APPENDIX B

We here show how the terms ZO’ Zl""’ ZlO of the partition

function were reduced from their forms in Eqs. (20) to those in Egs.(24).

There is only one term of the form ZO’ and using the definition of a

trace and Eq. (22) it is

Z = TrPllo =¥ <nje Plony=y o f5n
n

9

where the eigenstates [n} of HO were assumed to be normalized. The

terms Zl and Z3 are of similar form and are easily reduced if one uses

the cyclic property of a trace, i.e.

TrABC = TrCAB = TrBCA

where A,B,C are some operators.

Hence

z‘ - ‘“FTY - FHOE;:C‘S‘ eg'PHQHL}e\ Sipta

= -FTr e—FHOSid:‘Hq

<L e Pl

=" 3 & 5 <nltiylny
n

(Bo1)
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The terms 22, 24, ZS’ and Z6
of the trace and a change of integration variables.

we wish to evaluate a double integral I of the form
] S "
Is g dg,S ds, +(Q-QJ
(<] o

Introduce new coordinates SHS2

In Eq. (B2) the region of integration in the s§,s,

shaded region below

S:u&
(o~ -~~7,
AL
Ciyo) S,

can be evaluated by using the cyclic property

First suppose that

(Bo2)

(Be3)

plane is the

The transformation defined by Eq. (B3) maps the above region into the

shaded region below




B3

Since the magnitude of the Jacobian of the transformation is unity we

thus get

i

T={ 4 " fey

it

Sl dsi (S; ds,

Using this result we have

2 b ] $ (s,~52) g lf (Sq=Siipte
ZQ= F Tre Whgdﬁg'dsge §x4p Ghae 2 %F H3

(6]

2 —eity (', (! ﬁﬂf\h‘o -sgfaﬁo
= F T‘\ e F LdS‘Q gs’ ds’le ‘ng Hg

2
= FQ Tr e‘fm“ﬂ ds(1-s)e SPHQ FHO

2 - t'n SPEa X ~3 H‘og
FZQF gJS(FS)eF <Mz e f Hal W

n
We now make use of the resolution of identity for the complete set of

states In)

1= % |nXn]

where 1 is the identity operator.

Thus

Z,= F;QE ¢~ FEn (lds t=ste P <hltsimsmte P eHalny
n o

En~Em
=P Z ~PE "<Y\JH3)M><M|H3}H)§ ds(i~s)e SpEE )

nm
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If the integration is performed the result is that of Egs. (24).

The remaining terms Z are reduced by using the resolution of

7,...,210
identity as for Z7 below

o —pHamS)  Grspphe | (SamSalpile
aje P M e T P il e P,

Z,= - Fg S; ds, Sg‘dszﬁds; 2 P>

< (o] HQM'F

X <{>]H4 e‘sﬁfﬁ"ln)'

B¢ PR (% En
=-p) e PEnsal Halm?\mlHazfolH@irx)S(:ds,S)'dsng&cJSaeFS‘
o g

P
‘e p(S}?S])Em o F(Ss'“*.ﬁh)gf:e-—rgssi_:n

The final result is stated in Eqs. (24).
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APPENDIX C

Here we evaluate the guotient

z;e{-PE”(QWﬁi)(Qﬂa+|)(2n3fi)
% e PEn

(Co1)

where the summations are over all sets in,Ny~.§ of 3N positive

integers(including zero)which are used to label the eigenstates

{ay,. I N of the system of phonons.In Eq.(21) we have defined

the harmonic energy of the lattice to be

E,= % Jv’\w% (YI%}*%{)
Thus we can make the following factorization:

—pEn ~phu,n, ~ghuwgn, | ~phuw n,
Xnep :(%e )(%e 2 )“a(%me N u)

(C.2)
" e“(Pk/’-l)(wl"‘ wt Wsn)
Similarly

Y & PSR @ @ngti)(angti)
[}

= {; e\f*}ﬁwm. Q"#””; e‘F’ﬁwanxmmH)}iz—se‘p’ﬁwgng(ng+ ”'g
! 3

(C.3)
o g ~ ~(ph/2)(w, + et W3n)
y {; e-ﬁqu,n*ix«“l,(i'\; e F)ﬁ“zaw“su'g e P 3N
4 3N

The quotient in Eq.(8.1) thus becomes

T ny

7§ R o P anen )
—-piw:n;
= 7,7:@ F ‘

All we need to do now 1is evaluate the quotient
2; nie‘r’hwz”z
L
2 e~p’ﬁuugn;

The denominator is an infinite geometric series which has the
~ghwn.
sum Z e Pﬁ (e = _—
o mpﬁwv
)’lL |- e ¢

(c.4)



cz2

Consider Zrﬂ;e:gﬁwﬁu «Since this series is uniformly
convergent‘for all p>o and e“ﬁ“kni is a continuously
differentiable function of p + We can differentiate under
the summation in Eq.(C.4) so that differentiating both sides

with respect to F we get

nz (1~ < Phw)
Hence .
~ s e
n. s ~phw:
§E e ) e F’ﬁ . |
o TPRWIN: [~ e FAWE oWl _

SM

|
’

so that using the new notation nﬁ:“ﬁ%ﬁf‘"_”
@™o -

the quotient

in Eg.(C.1l) becomes

an#+0(an+1)(Ans+1)
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APPENDIX D

Consider a term of the form

" = PEn_ <niHu}mysm| Haln)
T Rhe Em-En (D.1)

where w,rg are integers 3, 4, ...... Then

_ ~PEn  <n|HgImX(m|He|n)
Tpe= 1le i PEE, (D.2)

= z z NI <M3HNJ_”7<VQHFIM>
WM Ewkn
Now M~ contains the operator product
A)u A):z oo A%q( !

Using the resolution of identity

=7 Il
get ,
<M\A)\’».«A,\w|n>= XL .. ,z O"IAX.lFI><P1!A;\QIr’a> o <)?,<-,M,\‘WIYI> (D.3)

PR

By the definition of A, and using Eqs. (11) we get

A

Ay, I = = <mlAy [ny (Do k)



D2

From D.3, D.4 and the fact that the AX» commute we have
« e
LAY Ay e oA =60 A Ay, Ay

Thus <M Hog |0 = 1) <] | )

Returning now to D.2 we see that

X+ +
T,. =€) T
p= “f
Hence in Egqs. (24), 26 = Z4 because <¥1-F is even.

If we have another term of the form

= =PEa i Hulm)y<m|Hp | p)<pl Hxlm)
TNFK E'ﬂ:;-% © (Ef"En)( ém"'Eﬂ)

the previous results show that

H+R+ Y
TK *Ff“r-

so that in Eqs. (24), 29 = Z7.
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APPENDIX E

It is shown that

where D_l is the inverse of dynamical matrix D. We start with the
eigenvalue equation
é.
)-w e
. ~17
Since Z;[:D ]dm,D%y = §;y by definition, then
multiplying both sides of E.1 by [[y”]qx and summing over

X we get

2
Divide both sides by “{k‘ , multiply by e ) and sum over j,

[ )%=-

el
getting
e(fleg(¥ B (40 PRt
} —'?"w—a&f? = ; (}G‘xkj)er(fpf\) l«x

But we also have
Z ( Je ( ) {Sﬂ(
] Pt =oF
from the orthornormality of the eigenvectors g(f)
Thus

8 (h
v slledi) iy 5 - po

5 (Uég - PX 4F

(E.1)
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APPENDIX F

In this appendix are given the analytical expressions
for the sums SlA,etc. which are tabulated in the section
"NUMERICAL CALCULATIONS", The notation used is the same as
that used previously except where otherwise indicated. As
before K;‘j:%%)wzd.;%:Wdaé and ) denotes the index pair &J .
Whenever we write € or ¥ we mean g(‘f)and ij' respectively.

In the case of S1A,S1B,and S1C, and SéA,..g,SSD,the

n-summation is over nearest neighbour lattice vectors.

Put

i
T:X =—"‘—2_ X7 Cfo(ef,(hum,%m)g)
where «x,p:'x)y,é_ énd N is the number of gllowed_g—veéﬁors
Then

S1A=) (T:L)a

N

sip= Y [ 45 (To) +2(T(T2)]

sic=y [V 1 ("rc,<,;,):Z + (T2) ]
Ty



F2

S3A = Z (Ti
n

s3B=% [ 3 (T:;z)(“l‘i)2 +12) (Ti‘)(T«'}Q]
Py

n

~

sac =y [3(T(TaF +6(12) 53 (Tp)

+a1) ) (LT (Tug) +122 L) (T2)]
“f
S3D= L[ 6 (T2) 22 (T°<F)Q+ (‘1‘22)3
“f

+ 8 Z | (Teeia)(To(‘o’)(T x)]
e(,)s)zf “

In the following for 32A,etc.,ShA,etc.,S5A,etc. the sums over
ny and n, extend over nearest neighbours but the sum over n -
extends over general lattice vectors.

First define the following:

H= amf.p\~ C,Mf.(n-o-,l’le)‘ C»o-dzcza(!l\—ﬂ,)ﬂ- Wz-(ﬁ"\*ﬂ;+ﬁ2)

Hi=ﬁ§ ¥ (eSX2 -9 H



{
Q«;"ﬁ; ¥ S=sp - wiw)

sue=T 77 [ 6 (1)L (NLQu)+ 3011 INLY

+ (HLY (H3) ]
sic=Y ¥ T § 3T.(N2,)" x HL < H2 ]
NV , =



Fh

0o,

Sub=) ) | [IQZF Wog)(N2 )(Hl)Q

+eT T (INLINZ,) Qu +6 (L] 020 Ny
< B =

+3 («Hi)(HiZ)Z% (N*F)Q +3(441)(H3); N2 ]

suE=) 7 L 12y (N (Ni 2(C;érﬂf

h‘ nl nQ O{)f)F .

fﬁ%‘ (H1) N“F Noe Qs + miﬁx Nocg Noow (N15) Qo
Y —u{ (N2, )(N4

oy (NLYQ (N, N (HB)

N:fax F
+3(H1)(H3)V No()g) ]

Fre

SUR=) 2 Y [@(Hi)z (Ni Y(NLY) Q“F

ANy hy

€ (NL)(NA) QF"*-'% (Hi)(%); <N10<)2]
P

S54=) S ¥ (Hi)lIL

N Ng



F5

s56=Y n;z{(Hi) T (N1

s5c=Y TS VY (NL (NiF)2
A I 2 2
5= %;%g CHD (N ) +§%<NQ,<)(N1F)

FUTY HONL NI )]
“F

L (ML Ngr) +2 O NN Noy]

sF=177 L 230 () g ng% 12 NN |

Tl SR

In S6A,...,56F there is a double summation over nearest

neighbour vectors. We now define the following sums:

k3= ;7 (g-¢)- ‘Mil )
PL=gY T2 (N8 RO @l )

p?\:%r N (QQ,Q) ({»ME»K‘\?.)

QuepY < (a-g)ex U= WZM
P‘&Z Lj exCp (1= LMZ@ ,\,
Below we *a dopt the notation

o

(e‘:g(‘}“ ;?;:f%(%Ee -e( ) Q((:)

hadP -
A
o

N
i

Y
=
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Define

P3= ZZ"‘E}T (n. 63(”2 (- el)(”z e (1-wa g. 0 )(i- wa §.ny)
%3' ‘%" YC,Z A

F%}l‘}l W pe)( ) e e zF WZ’Q‘)('”MZ?*@)

P55V ) P -200m (- g2) S (1= caag. )1~ wa g h
%}}12{'1 AR & i

F%E& W (V) G)(r’) e')ﬁﬂw"eﬁf(l MZ ,)(;-w-gzg wz

!
R‘*F‘CS:ZZ Xibﬂz elxegfae:l'zf Sas U":@%Z»f’\ﬂ(’“ Q"d}?i”g}

P70(FX’:ZZ 5,2{32 (Vlg e)G"D( :ZF 26’ (1~ L(M.Z ﬂ,)(l’\émaj W;)

PE = ZZ 5’252 (h2+€)(N2-€2) € 4 S (1 “MZ? ) (1= Mz‘fi?)

= ¢

2”2
P?@(:‘ 22 E-Zx.’z (nf Q \)(@\Q cgs)[nzp’%)eao(ﬁ”WZ-!\'I)(I“(—Mng’?)
op R
=) 7 .
R1 ' T2 (01-€) €o¢ S5, €2 (1= 02q -1, )( 1= .
~<pv M LR Sy j'.’l)(' “ig Y2)

%;L.z R 2,? (n-¢ (142 eg » zf;(l CM]? N~ awz? )
¢
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Thus we get

S6A= ZE (PL)(P2)(P3)

V)gz

ses=Y ¥ [(m(m)z (Phe) 4P (Q)(PS,)
ot

1")2

+ (P1)(H3)(P3) ]
sec= Z}j R(P(H3)(PY ) N(Pi}MQ )]

se=Y Y LZ(P.’L)(F’Q) m% BERICY Z(QF)( P7

4]
g

otp)
+ zZ( PO(H3)(PS,) + 92 (@)@P, (Ps,, f)
WZ () (@F ) (R2 o() * ng JH3)(P.,)
+ (HS)(K’S)(PB)]

SeE = szz (Pi)(%)(&lmf +2 ZF GUCAVILIE

+ Lagf ) HB)(MFMF) H;%X(R,{) QPK)( mﬁqg
~§~Z(R€~3 (H3) (R2uer) +22 (R3) Q«f (PL’L“F)]
SEF = ZE E(Rs)(ﬂﬁ)(ﬁwqu) t J‘Z (RB)K\)PU)(RN*FMK)

v \ W:z ) )&9}

+ q.%x}g (Rep)( PusdRusps |
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In S7A,...,87I,there is a triple summation over nearest
neighbour vectors n 2.nz, and a single summation over general

lattice vectors n. We must first define the following:-
L= (- CN?-QB)[ (-M,Zczg -~ mg.(ﬂ+ﬁz)~ca<§.(t’(*ﬂ.)

+ U f-(?\,\[\)l +ﬂ2)}

' - l
L1=R) L a2 (0 8)03-2))(1-€2) (M3-22) L
%}b}z b2

L= ? -« (M3.8) “u- LMZzJQ\g)

L3 »QZ ;;a T WrR-8) oy (5820 L

Fop
Lh= Ja U9V (1~ eege )
; A
L’:To‘(*'ﬁ'zz ”?"(5,3 (Ny- S )Nz-81)(N3-8z) @m0 L
Zf}yz 1 97
I
L& :ZZ KQ Yayz € (s e()egF(Wa -C2) L

fﬁwz ‘

%2 xzxﬂ e U3-81) QF(na -€3)L
A

sz-p;; ;;2 (§°§)(1~LM§.Q3)



HEN LY 357 () etz et ea) L
i &l&ﬁ [
Cew

u:zb,(égﬁé}\ T R0 (z:Sa) @ap L
d¢°

. - ]

ngdF%%}‘l bf)lxz (i),&?\ﬁ}(“’_?‘,e;ﬂ) Q:ZO( e:lF L
d

MR L YR7 (R (Mpesa)ap

UB;( ‘1'«*22 ¥ (-2 <)« Sap 2y L
i N
Lle dfh’ N>ELZ }')2 Mﬁ’* SERIAIW e:zfa €Ly L

1
z><]e?r§ ‘N’ZX Y3 e,,{fi,ﬁ %y 2§ L
Fogp 7

f ,
L7 ”WE 2 :z 7 (N3-€)e (Qz’ia)egf L
gy

«F*("NXE "T‘z (Qﬂ*gi)e“m( QQFE’Q\@ L
ig\z

L19=%Y =5 en €, (1-ceg - 13)
N§ ¥ o j ~3

¥
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Thus

STA = }j_z (L_M(Hi) (L2)

s
)a

s18=y ) }j 2y (3. ) INL ) (H2)(L2) HLDsy (Nioﬂ
{a% (L) Mo (HAD) +27 (LSD()(NO(F) NiF)(L:l)

+2 L(,(xﬁ) NQ‘X)(MF)(LQ)MZ (L3 W"‘F (NZ2,)(L2)
LY @) NGR )]

STD :;;'qz [QLi)(Hi)Q(LE?) + 22; (L7.) CORALN
A f\f\;

+22 (LH,,()(M)Q(uoO(HZ (uzw)mi)q(&)]

S7E= ZZ [2Z(L3o<)(N1°<)(H1 (L8) +T (LDINL) (L)

+ L&ZF (L Ni@(\Hi)(UOHQ%(L‘? L) (Ligg)
+ 4y (Lt NM(M)(UOFM:&Z (LN w 0e)

P
P27 (LS )(NQ)(H:D(LZ)"%Z (L'QFPYN"‘) (Lfl)]
P



Fll1

SLE) [22 (L7.p) () (42 P+ ()0 I
Aina )]9

~ 7 V)a df)

i %%0 (L MF\@)(qu)(HI)(LQ) +2§f(L50<)( g NILE)

Y (Wi (N“(F)(N igg)(tmK +22 (LI mRNocf)(N!F)(L-z)
dfb’

+ :22 (13 )Q\ldf)(NQM)(LX) + 81 (L13 K)(NXF) N2, XL10y)

+ gz CLANURIERIE +Z (LDt (L)
o(dgh’
Fuy (L?K)(Nﬁ,) (Liog) +¥ La:zw)(rw)';Z (L2)
MF “v?
HZF (L6 (NN (18) +z>%9 (Ll )N LR L10,)
FAL (Laqpr) (NN, )2 ]
x'ef
, 2
cr6:Y Y [2(Li20(°< ) (1 LP) +”Z(U?o«¢a>(”0 <uc7°</s)]

“ V]WQ f
”?

STH=Y ¥ [22 (L5 QNI 145 (LIS, NI L)

A "" oﬂda‘(

+ T (Li2ga)i, Ve +25 W2 D«)(N!q)(uqfx)]

“f e F



riz

S7r=) Y [Z (wa,() qu) #1) (L) +sz (Lig m(
S

BN

X(Na‘g)(Nl )LD +2 :LFX(L%FX\)(NQM)(NIF)( L?)

42 ,,mfg M) (1) (L1 5)

N ““"M (No) VL) (L1 g) +LLZ ( qugoc)(mc()(mf)(m%)
i . 7
+ %ﬁ (L1250) (Nxf)Q{LP) +2pr (UQ“(&XNo«f)&(L)C]“ﬂ
vs

In S84,...,38I there is a triple summation over near-
est neighours N, ,0,,05, and a double summation over general

lattice vectors m gnd m,. We introduce the following defin-
itions:
W= Cod g (01 = od . (4=t 112D~ Coa 2 0T~ em)
+ C&df(% “@\Q“ﬂ)+ﬁ2)

X= Wf Ma - M?-(ﬁz+ﬁ3)"W?‘(ﬁa“ na) Wz?'(ﬂp"‘f\q*ﬂa)
V= mzqg.m,- Wf«(@\/+ﬁa)" CMz?«('erm )+ MZ?-/V,V/J‘Q'WJ@)

X
W=y \J%/i (n-2)nz-€) Xfﬁ; 32 (- )2 8)
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W
.€)(ny-£) ; Wu;% ¥ W) ey

)
) W
w:-g,—%‘ Jéa (n-€\(ns.g) ; we‘gﬁg_? (N2-2) €o
Y3=R) wu (Ma-)(M3-8) § WoLrkY %}’a (n3:%) [ex
N
Xuﬂ:&-\% *§j (nl‘g)ec{ 3 YL}' A El U?, ) o
X

XEJ%X 2y Y5% :N".E)\ %(2 (ng.€) e

Yoo =y L (13-2) e
=4 NX ?5'

Using the above we get

A=Y W) (x3) (12)”

s38= Y [(Wi NCCPR\LE ) +2 (wa) (YQ)Z(XS«)(W]

Rtz A e
sgc=y S [4(wa)(Y?)Z (W (X )T Hp)
pdnd '3;'13 <P

2(W1) Y (WX (Y F) +2(YR) ZF(WM (X5g)( Yikg)
O()IQ
+(3) 3 (W3 L (V8% ]
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s90=1 T BT (x3)} (Yoo +4 (W) (X3XY2)

-~

,\,\
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APPENDIX @

First we define the following:

- gl ,
Tre F"ABC..‘}Z i FH"

. = = T
Tr e\PHO ~z0 '\e ABC 7.’

(ABC.. 2 =

for operators A,B,Cy...Z.Then we can write(see(22))

z 2 i ~ ~
3 = fzﬁjg£&3<TH¢mH¢w>

where the Dyson chronological cperator T orders a set of
operators from right to left in order of increasing argument

and where
~ ) ﬂ Ho
Roys el u el

Substituting for Hq from page 7 get

P CTVL A R N
% - -% X Z \/()p)z X:ﬁq) VOS' M )7 AS’) AS‘,AS. gods.Z(TAA('sl) e AAL(;S‘)AA(:}) A§§2)>

A
LERLIDTOY
sptb fto
where A (5,’ P AAG °F
’s
In the terminclogy of ref(22) the contribution to —= from
0

unlinked clusters is

(&)

alinked Z Vil ) V0 >3Au‘))8!als.§:dsg

)3 )4
X ¢ (TA) si) s,))(TA (SM_f"XTA;@ﬂA (SZ‘XTA)‘(SD]A §sl)>

where the factor 9 arises when we interchange indices and

combine terms.
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(%)W,‘M EF}%Z VO A27)g) fa (3)<TAA (SJ><TA}(51)A/S(S »j
But
%i‘ -p g ds, <TH4($ )~«Fz) V( )al\z)ngmg d"’; {TAAS,)A(S,} AAS )\Efb
:x‘aiq

Again from ref(22)

%L“ z VORI | s, (3)<TA \OV A TAER ) ey

Thus we have

Consider now

Z + 1 } I
Ze. & (o I godg.z §c i<, iag@ T Hyls) HafSa) Halss) H5(54))>

As above we can expand the integrand and interchange summation

indices,getting the unlinked contribution

Zie _ o I i
(—i’)unl;nked - ]% 2 S Ag‘ g Joln g Jfa gum V”, )2)3)\/(‘), ‘Aq‘)a)V()q)sAg)
Auka)g 54)5 é, ¢ ¢ 6 0

¥ NEW)s 7)) * (108) <T2((SHA (a)}(TA(snA (sa)(TA (s )52}

x <TA (s (st,\><“‘rAx (A (Sﬁ)(TA,\(sg)A >.f'*>
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But
, 2
25 b ( ds, <T iyt Fatey
]
2 | I - ~ _
ik x%,xs Z}M VIV ds | deu TR AR )
* Ryl A GIA G
2 |
= YT VOO b, [ ds, (6) STAE G0y
’ Ai)»:z))g 0 0 ) ’)l
X <T§)2(SJ A’\‘:Aisa )><TX)‘3(S']K\A(;:)>
Thus

@O)m: nked ) é (%)

Next consider

3
(3;1) = - gl, g:dg‘jidszj ds, < T Hys) Halsa) ooy
3
= - 'ET )1)3 )) )5 E) V‘)V)Q)B)Vh )5)(, \/st)v }la)

)‘7)10

l I ] o~ ~ ~ o~ g -~
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Z.) B Vo) Vi b dohs
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CE TR ofiked %o

and the total free energy is

e P ot 30 (29 %)

linked ®
2
= F . ~7!.[i5+%l7+2? Z".&%ﬁ] A 2,2,
linked =z, TE.t s + = “1‘—-)
(4 ‘ZU Za un !:n“‘ch F { 2‘ 2
= Fiiked

s > W 3 by
vhere Flinke& denotes the contribution to F from “"linked clusters

only.
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ArrENDIX H

in Equatiens(24) we have defined

Z, _ e— P(EM‘EV\) - l
P (Em~ Ey\)

¥We now define the cquantity

— aE /
T = F,Z_ e P=n Ei—E‘ <ano(lm><mlH{a,ln>2
)V‘. m n
* T 'Tn
Qi mxntighy - pE?
where E (By,-E }-2,

Interchanging the lzbels m and n and using the fact that <mIH,(ln7:(~(§’< N1 Hee M)

(see APPEND1X D), we get

'

' _
<N e lhglny —— o fEnr
g’n x|my<m B (Em"En’)"

i

T

it

\
-.pEM
Y LNlHImy<miHglny EER © =T,
min

if =<+p is an even integer. Hence 7' makes no contribution to Z ,Zq‘,zs_,or Zé'.
Consider now Z" where

Z“= e‘P(Em‘En)_l _ [ePLEn" F)-[](EM-EV\\ _ eP(En‘Em)-‘
B (Ew-En) B (EM‘EPKE,,FEF) 2 (EM-EF)

Writing <mliglny=(H,), ~ the contribution of z'to z,is T, where

. -P:n < PEP_ BER
- Z (HB)V\M 3>mF(Hq.)rv\,[E E *

MI’\ Em!a E;:'l
_ e TPEm PR 1
Ef’"‘ E mn EMF

where E <E -E,  etec.



‘the contribution to Zgis

( ° TPEm_ SPS ~PEp_ - E—ﬂ “BEm_ ~PEn
-3 (), (H“)’"rwa)r’“[e? S i - AN o SN
n?m;r

P E::m EMF E n EF"" Emn Ew'f
= Z (Hs) (H ) e‘PEn_e‘PEm+ e Pr_cFEm o PEn e P

where in the last step the lsbels m and n have been interchanged and we

¢
have used (Hx)mn=(‘”(H«)m,° In a similer way the contribution to beecomes

Y ‘ n ~PEm _ ~pEa —BE -BEn
- Z (Hs)nm (HS) (H FW[QF FL‘ P + € F -eP - QP Pm.eF

np ign Epm E:m Emn Efm E’om
the sum of these three contributieons is
_ | ~p ‘PEn ~FEp - e‘FEm
T7+ T3+T7 == L (‘H3)nm (H3)mr (.H!-})Fn E + - E B
0P fn mh P

PP PR PR PRSP P P PR P 1
"'f f’" Ewmn E‘:n E'on EMnEnf Epm anl':'n',o Epmn Efm Ef)m

Yhe first snd second g_i_d third and fourth terms cancel one snother if we

meke use of the lsbel interchange p@n. Hence we get from the last three
T_,-\- Tg*-'ly = z (H3)hm (Ha)mr (Hq.)rv\ E o [ ‘PEm FEn) +(e Ptm_e P‘Er)]
h,m,r Ehf

tgain using the interchange ngp we get finally

‘i‘.i+ Tg* ‘I<,=0
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Finally consider Z . Using the expressions given in Eqs(24) we

7] tiy

find that the contribution to Z16 from Z is ZlO where

i
ZlOz TlaT2+T3~T4+T5—T6

- = fad
Ty 7 Campa®1

mmﬁz
Cnmpq= <MH31M><M'Haif)(f”HB)Z?(ZiHa]n} _
~BEm -~ gE "PM
5 - e-pEm e PE o FEm o

- +
1 E Y'LE V\-E: " Eziﬂ E nEn E”+ E nE’a E Ewm E n Ef? EWI Emn
A [ 271 7 F

—gE - ~BEn "PE“
epbn' QPEVL + CF + =

8. =

— — + .
2 E“,z Emz EnZ ?ZhErz E,ZEM. EZnEm/nEnfEr? EZnEﬁEm‘pEmn

: - <fF TP
EmrE%p|Emf %anEWPEﬂfE%?
‘PEVL - Ep\'
o EeE er " ee’:‘PE E
M,o Zn h/a %VL /on mf) nm
L
> EpnEp Emy
~pE
86 = £ e: P 21

The ceefficients Cnmpq are invariant under cyclic permutations of

the set of summation indices n,m,p,q i.e.

= = ¢ = C
Campa” Capan Coqnm = Cqnmp
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Hence, cyclically permuting the summation indices of T2 in the

following way: n-sm,m—>p,p—>q,q~>n we easily get

Also, applying the cyclic permutation n—-p,m—q,p—n,q—om to T4

we get

and applying the permutation n-—»q,m—n,p—m,q—p to T6 get

T6=T5

Thus we get the final result

"
=0

Z10 =



10.

11.

12,

13.

14.

15.

16.

REFERENCES
G. Mie, Ann. Physik [4], 11, 657 (1903).
E. Gruneisen, Ann. Physik [4], 26, 393 (1908).
M. Born, J. Chem. Soc. 7, 591 (1939).
M. Born, Proc. Cambridge Phil. Soc. 39, 100 (1943); M. Born and
M. Bradburn, ibid. 39, 104 (1943).
M. Bradburn, Proc. Qambridge Phil. Soc. 39, 113 (1943).
M. Gow, Proc. Cambridge Phil. Soc. 40, 151 (1944).
M. Born and E. Brody, Z. Physik 6, 132 and 140 (1921).
G. Leibfried, in ''Handbuch der Physik" (S. Fliigge, ed.), Vol. 7,
Part I, pp. 104-324. Springer Berlin, 1955.
S. Nakajima, Advances in Phys. 4, 363‘(1955).
R. Peierls, Ann. Physik [5] 3, 1055 (1929); Ann. inst. Poincaré 5,
177 (1935).
P. Klemens, Solid State Phys. 7, 1-~98 (1958); Proc. Roy. Soc. A208,
108 (1951).
G. Leibfried and E. Schl6mann, Nachr. Akad. Wiss. Gottingen Math.-physik.

Kl. IIa, No. 4 (1954).

L. Van Hove, Quantum Theory of Many Particle Systems (W. A. Benjamin, Inc.,

New York, 1961).

G. Leibfried and W. Ludwig, Advances in Solid State Physics, Vol. 12,

p. 275, Academic Press, New York, 1961.
A. A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfall, Ann. Phys.
(N. Y.) 15, 360 (1961).

J. L. Feldman and G. K. Horton, Proc. Phys. Soc. (London) 92, 227 (1967).



17. C. R. Brooks, J. Phys. Chem. Solids 29, 1377 (1968), A. J. Leadbetter,
D. M. T. Newsham, and G. R. Settatree, J. Phys. C 2, 393 (1969).
18. R. C. Shukla and E. R. Cowley, Phys. Rev. B 3, 4055 (1971).

19. M. Born and K. Huang, The Dynamical Theory of Crystal Lattices, Ch. 6

(Clarendon Press, Oxford, 1954).
20. M. L. Goldberger and E. N. Adams II, J. Chem. Phys. 20, 240 (1952).

21. R. E. Peierls, Quantum Theory of Solids, p. 37 second footnote

(0xford Univ. Press, Oxford, 1953.

22. G. Rickayzen,Theory of .§uperconductivity,Appendix 1 (Interscience,

New York,1965).



