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ABSTRACT

for the anharmonic Helmholtz free

,valid for all temp-energy contributions up to

eratures,have been obtained

for a crystal in which every atom is on a site of

• Numerical calculations have been
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non-leading term approximation for a monatomic face­

centred cubic crystal with nearest neighbour central­
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1. INTRODUCTION

The harmonic theory of crystal lattices fails in several respects.

It incorrectly predicts no thermal expansion, a constant high temperature

heat capacity, equal adiabatic and isothermal elastic constants which are

temperature and pressure independent, and no phonon-phonon interactions.

These failures may be attributed to the neglect of anharmonic interactions

in the crystal.

Mie (1) and Gruneisen (2) .first allowed for anharmonicity by

assuming a temperature-dependent lattice constant in the development of

their equation of state. Born and co-workers (3-6) later studied the

high temperature dependence of the elastic constants of simple cubic

lattices using the quasi-harmonic approximation (volume-dependent

vibration frequencies). Born and Brody (7) first investigated the

influence of anharmonicity on the caloric equation of state for high

temperatures. Later Leibfried (8) employed the perturbation theory

of Nakajima (9) and derived expressions for the free energy containing

both thermal and caloric equations of state by treating anharmonic

effects as perturbations. Peierls (10), Klemens (11), Leibfried (8 and

12) and Schlomann (12) have discussed the anharmonic effect of thermal

conduction in insulators.

The traditional perturbation theory approach to the study of

anharmonicity is based on the expansion of the 'crystal hamiltonian in

terms of Van Hove's (13) ordering parameter, A, which is equal in

magnitude to a typical atomic displacement divided by the nearest-neighbour

distance. The lowest-order anharmonic free energy contribution is then

found to be of order A2 • Previous perturbation studies by Leibfried

and Ludwig (14) and Maradudin, Flinn, and Coldwell-Horsfall (15) were
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carried out only to this lowest order of perturbation. Maradudin et a1

performed their calculations for a central force nearest neighbour face

centrered cubic crystal using the leading term approximation in which only the

highest ordered radial derivative of the interatomic potential is retained.

Feldman and Horton (16) performed similar calculations in the non-leading

term approximation. The specific heat at constant volume was in both cases

found to be linear in T at high temperatures but this temperature dependence

was found to be inadequate to describe several materials (see ref. 17). For

rare gas solids at high tempe~atures the experimental specific heat rises

steadily above the Dulong-Petit value while the theoretical curve drops

linearly from it. Recently Shukla and Cowley (18) used a diagrammatic method

to calculate the contributions to the Helmholtz free energy up to order A4 in

the expansion of the anharmonic hamiltonian. Their calculations were restricted

however to the leading term approximation for a central force nearest neighbour

f.c.c. crystal.

For this thesis the perturbation treatment of Maradudin et al (15)

was extended to order A4 and all calculations were performed in the high

temperature limit without using the leading term approximation. As a result

an assessment of the validity of the leading term approximation could be made.

It was also desired to determine whether or not there was a contribution linear

4in T to the high temperature specific heat from ternlS of order A •

The anharmonic hamiltonian will be introduced first and then used

in the expansion of the partition function from which are derived the anharmonic

free energy contributions. Details of the numerical evaluations of these

contributions are then given and followed by a discussion of the results.
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2.. THE ANHARMONIC HAM:ILTONIAN

Consider an infinite non-conducting ideal crystal whose lattice

points are defined by

(

where are the primitive translation vectors.

The lattice thus consists of an infinite number of cells of the direct

lattice which are parallelepipeds having edges , and

which can be indexed by the sets of integers

thDenote the equilibrium position' vector of the K atom in the cell

by

(

where gives the position of the atom l( with respect to the cell

origin At any instant the moving atom K in the

cell will be displaced from equilibrium by the vector

The total kinetic energy of the lattice is

where ~ is the mass of atom K and denotes the Cartesian indices

x, y and z and the summation over K extends over all n atoms in a unit
o

cell. If the total potential energy of the crystal, , is some

function of the instantaneous atomic positions, a Taylor's expansion in

powers of the displacements yields

(



where

The subscript zero above denotes that the derivatives are evaluated in

the equilibrium configuration of the lattice. In the above expression

for ~ the first two terms of the Taylor series have been omitted

because the first one is zero if the zero of potential energy is taken

to occur for the equilibrium configuration while the second term vanishes

because the force on any particle in equilibrium must be zero.

In the above energy expressions the summations over the cell

indices n extend over the infinite crystal. Suppose now that we

subdivide the infinite crystal into "macrocrystals" which are parallel-

epipeds having edges

the cyclic boundary condition

L and and assume

(

where denotes a cell at a position

Anyone of these macrocrystals can be taken to represent the real finite

crystal under study with inappreciable error for large

We now introduce the following transformation (A) to creation

and annihilation operators:
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The allowed values of the wave vector are determined by the cyclic

condition of Eq. (4) and are uniformly distributed throughout one unit

cell of the reciprocal lattice. They are given by

:::::
6)

where the primitive translation vectors

reciprocal lattice are defined by

and a reciprocal lattice vector is

of the

(

The eigenvectors

equation

(

and eigenvalues satisfy the

(

where we define the dynamical matrix by its elements

(



6

The periodic boundary conditions were used to obtain the result

1( ~
( ~

K

The number of units cells in the crystal is assumed to be

The branch index j takes on the values 1,2, .•. , where each

integer labels a particular solution of Eq. (

following commutation relations:

The operator and its Hermitean obey the

(

where is a Kronecker delta while

or a reciprocal

lattice vector

= 0 otherwise

When these operators are applied to the "3q,N particle" orthonormal

eigenstates of the operator specified by the 3nl

quantum numbers where

integer we get

is either zero or a positive

(
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Also, since the dynamical matrix is Hermitean and hence is real,

we can consistently satisfy the requirement that be Hermitean

by assuming that

Using the transformations of Eq. (5) and retaining only the first five

(

terms of the expansion for

becomes

the hamiltonian of the anharmonic lattice

where the harmonic hamiltonian is given by

( )

+ ( )

and

N (

(16)
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In the above, use has been made of the result

(

the summation being over the N cells in the "macrocrystal".

The order of magnitude relations

where

parameter

is the lattice paramater, suggested the use of an order

in Eq. (11) to indicate the number of factors

contained in the H relative to H. At the end of the calculation
n 0

can be set equal to unity.
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3 • ANHARM:ONIC FREE ENERGY

The anharmonic Helmholtz free energy is obtained from the partition

function defined by

(

where the anharmonic hamiltonian H will be defined by Eq. (1!). If we

work in the diagonal representation of H , we will need to express the
o

exponential in some form containing as a factor. This is

done in Appendix A, where the exponential is expanded in powers of A

using an iteration procedure (,~. Having retained terms in the hamiltonian

(EQ. only up to order , to be consistent we must do the same with
(

the expanded partition function. The result is

= ( )

where

e ( )

=-
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e

e Hit

H



)

~1 1; ~1))1

( ( )

(

eq

e

- e

e

(22)

the aid trac an

n

( (see

(24)
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1

\ .+



-+

The free is defined as

the definition of in • ( ) and the

up to terms of order we

+ ( (

where

p

--.
""c 1Or )
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Assume now a monatomic crystal with central force interactions.

Write the total potential energy of the lattice as

( )

the indices

where the prime indicates that we do not consider terms for which

, refer to the same cell. The factor ; is included

so that the interaction between two atoms is counted only once.

The instantaneous separation between two atoms in the cells and

is

(

where

--

is the x-component of the equilibrium position vector

of the
th

atom of the crystal relative to an origin located

at some atom.

that the atomic index

has the same meaning as before except

has now been omitted because there is

only one atom per primitive cell.

Put



where the integers

15

are all odd or all even for a body-

centered cubic lattice and whose sum is even for a face-centered

is the lattice parameter. If we now expandcubic lattice.'

the two-body potential

up to terms of degree six we get

in powers of

with

( I

n each running over the cartesian indices

x, y, z and

[ +
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)
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w
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,+ (

(

[ (

The deltas are Kronecker deltas and each of x,y,z,u,v,w extends over

the three Cartesian indices x, y, z. The first two terms in the

Taylor's expansion of the potential are zero for the reasons

previously stated. The derivatives are evaluated at the equilibrium

separation

[

The transformation to normal coordinates in Eq. (5) becomes in this

case

(

Substituting this last expression into Eq. (27) and comparing the

resulting expression with the corresponding terms in the hamiltonian

of Eq. (13) we get

(28)
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In the above expression the ~ - summation extends over only nearest

neighbour lattice vectors of a given lattice point, (see

We now return to the evaluation of the terms j » ()

which contribute to the free energy (Eq. 23). Consider first the term

Using the definition of in Eqs~ (13-16) get

x

where

If we expand the product

and as before

will denote the pair

denotes the index pair while

we get a sum of terms each of which is a product of six

because of the results of operating on some eigenstate

creation and annihilation operators and But

with

these operators (see Eq. (11)) and the orthogonality of different
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states , the only contribution to the matrix element

comes from those terms containing equal numbers of creation and

annihilation operators. Moreover, each creation operator must be

paired with an annihilation operator such that the result of all the

operations on the state is same numerical factor times

the same state A typical contributing term is

is the number of phonons in the
•

'"...
single-particle state labelled with the index pair

where

The number of different ways in which we can pair the indices

, to give non zero matrix elements is easily seen to be

15. Moreover for each pairing scheme the contribution to 2
3

is identical

since we can always interchange the labels At without affecting the

summand (note that , by its definition, is

invariant under permutations of the )



be ioned here are ions

to Z o since

f

been of the-



We get

22

Using the definition of

for

in Eq. (25) and substituting

fro~ Eq. (23) we have

( )

+
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+

+

+

The above summation is over the nearest neighbour" vectors for same

atom and r is the nearest neighbour separation. The dimensionless
o

vector is defined by

(a is the lattice constant)
o
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We have also made use of the following definitions:

For future use define also

Zl can be evaluated in exactly the same way as Z38 This time we need

to evaluate a matrix element of the form

The number of different ways in which we can pair the to get

a non-zero result is 3. The contribution from Zl to the free energy



is calculated to be

From the

we

ous definitions of and

( )

x

+

that the terms ,Z and Z do not1 One can show analyti

contribute to the

D it is shown that

I"n

are identical The exact

for Z4 is
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We shall also ignore Z" and Z'" in the other Z. 's. The only non-zero
1

contribution to 2
4

occurs when the three in H
3

are paired

with three in HS and the remaining two being paired. This

can be done in 60 different ways. Following the same logic as was

used in evaluating F
3

we get

=: +

(40)

)

Although each of H3 and HS contains a delta function, one of

them becomes redundant as a result of the pairing of operators so that

only one remains in F4 . The term in the square brackets has been

reduced to its present form by using the fact that the rest of the

summand is invariant under permutations of

We have

and
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(

+ +

+

(

Next consider the term ~2. The exact is

(
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The only contribution occurs when each of the

the H 's has its index paired with that of an
3

other H3 - The number of distinct pairings is 6. Thus

in one of

in the

(

::

Use has been made of the property

(

which follows from the definition of in Eq _ (28)

The * denotes complex conjugation. The summation indices ~I

were p,e::rmuted to reduce the term in the square brackets to the form

shown. Again, only one delta function is needed.
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The other possible scheme of pairing indices is to pair only one of

the in one H
3

with an in the other H
3

• However, this

gives no contribution to 2
2

because one gets a factor

which can be shown to be zero for all Bravais lattices as well as for

any lattice in which each atom is at a center of inversion symmetry ( 1).

Consider now the term 2
5

where we take

One contribution to Z5 arises from the pairing scheme in which each

of the four operators in one of the H4 's has its index paired

with that of an in the other H4 . The number of different

ways in which this pairing can be performed is 24. The free energy

contribution from 1:,his scheme "a" is

(

(46)

A

where
(

+

-+
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Another contribution to Z5 arises by pairing only two from

one H
4

with two in the other H4 and pairing the remaining two

in each H
4

• The number of distinct pairings is 72. The free energy

from this scheme Hb" is

(

=.----.....

)(

In this result denotes the index pair This is due

to the fact that our pairing scheme yields a delta function of the

form ( and from the relation~

which follow from the form of assumed. (see (

( )

In the above ~ is restricted by the periodic boundary conditions (Eq. (6))

and is a reciprocal lattice vector defined in Eq. (7). The

factors in FS
b can be obtained from the previously defined

by suitable sign and label changes
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and

now to evaluation of ,and

are in fact identical (see APPENDIX

fferent. We take

we note that

but that in

e (

(

There are two

one we take two

the

leaves

s Then we

the other

of the

It The numbe,r of in this scheme

energy contributions are

(

+ '+-----
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( )
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The total contribution to the free energy from Z7' Z8' Z9 for this

pairing scheme is

( )

x

+

+

The pairing scheme yields three delta functions, the two above and also

one of the form This last one, however, is

implied by the other two so it is omitted from the summand.

In the other contributing pairing scheme we pair one of the

in each of the H3 's with different in the H
4

•

The remaining two A in each of the H3 's and ,H
4

are then paired.

This pairing scheme "b" also can be realized in 216 distinct ways.
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The contribution from Z7 is

(

------ +

where denotes the index pair This is because the

pairing scheme results in a delta function of the form

Only one delta is required in this case.
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From 2
9

get

--~-x

x

----+-----

Again denotes the pair

The total contribution to the free energy from 2
7

, 2
8

, 2
9

for this

pairing scheme is
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x

Consider now the last term Z10. We take I

10

One contributing pairing scheme is that for which no two

in the same H
3

are paired and where each of the three in

same H3 is paired with an in a different H
3

. Hence no two

H
3
's have more than one pair of in common. The number of

distinct pairings in this scheme is 1296, and we get
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The only other pairing scheme is the one in which again no two

in the same H
3

are paired but now we consider two sets of two H
3

's.

In each set we p~ir two

This leaves two unpaired

from one H
3

with two in the other H
3

.

in each set of H
3
's, which are

then paired. The of distinct 324 we a

typical

There are six like the one above because

two sets of two can be 3 ways

each way there are two ways of the final two

of each set of We are thus with the evaluation

of the sums:
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Due to the complexity of the involved in evaluating these

contributions and also the fact that in order to obtain

results an exceedingly amount of time would have

been see next section),the contributions from and

Co were not obtained
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The harmonic free energy is<1S)

=: -

In the high

a.s follows:

limit the free energy contributions are

+

'+

(
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+ +

{ + (

>: [(.~

+

b

[(

J(



was of

or were any

of order were to , since they

a

were none.

in T

If'"'" 0 each

the

the to zero.

we can of the

eX'DreSS10n.S.

such

each of Z5' t and

such that every

in the

out

to every

means of

It should be

is to

.(25) do not

to

the last

do

schemes and

(see .(22) and G)
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4 NUMERICAL CALCULATIONS

The anharmonic free energy contributions in the high-temperature

limit were evaluated for a face-centered cubic monatomic crystal with

nearest neighbour central force interactions.

For our model the harmonic dynamical matrix is a 3 x 3 matrix

with elements given by

l-e ) (60)

where the l-summation is over the 12 nearest neighbours for the f.c.c.

structure. Using the definition of

already mentioned assumption that

nearest neighbour distance we get

in Eq. (27) and the

where r is the
a

(

The other elements of the dynamical matrix are obtained from the above

by change of labels.

The eigenvalue equation (Eq. (8)) for the normal mode frequencies

becomes
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For convenience we introduce the dimensionless frequencies

defined by

(62)

These are the eigenvalues of a dimensionless dynamical matrix

which is derivable from the previously defined elements

upon division by

The dynamical matrix is now real (and symmetric) so that we have

from Eq. (12)

This shows that ~ is odd in k. Without loss of generality we can

also assume that e trans~orms in exactly the same way as k does •
..~ A.

Since the eigenvectors of a real symmetric matrix can always be

made orthonormal we get the important relations

and

Here j takes on only three labels since there are only three normal

modes. Using these orthomormality relations apd the fact that ~

transforms as l we easily derive the relation )

64)

(
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where

( I

is a nearest neighbour vector,

(66)

x and y run over the Cartesian indices x, y and z and the sum over

k extends over the permitted wave vectors in the first Brillouin
""
zone. Another useful relation which can be derived is

the -summation being over nearest neighbours. A theorem of great

importance in what is to follow is Born's theorem (APPENDIX E)

J
(68)

where n-l@is the inverse of the harmonic dynamical matrix D(k)

discussed above.

In order to evaluate the contributions to the free energy it

was necessary to evaluate sums of the foxm

where and ,"t lies in the first Brillouin zone. Such sums

were evaluated in the following way. Each of the forty-eight

symmetry operations of a cube was applied to the vector ~ of the

summand. Use was then made of the fact that transforms

like ~ itself. Thus forty-eight new summands (many identical)

were produced, each of which when summed over q and j yielded the
""""
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original sum. This is because the components q , q ,q of q are
x y z

merely permuted or have their sign changed so that when the summation

over q is performed the same combinations of q , q ,q occur as
~ x y z

for the original summand. If we add all these new summands together

we obtain a term which is invariant under the 48 symmetry operations

of a cube. Assuming that the wave vectors k are symmetrically

distributed about the origin we need only sum this invariant "total"

summand over ~8 of the Brillouin zone, introducing for each vector

q in this portion a multiplying'weighting factor to account for the
#"\,0

number of ~'s equivalent to it by symmetry, special care being taken

in assigning weighting factors for vectors on the z6ne boundaries.

The result is 48 times the original sum. For example we get the

following:

( 70)

+ (

+ (

[c
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(

The summations

+

zone and

are over a Zs portion of the entire Brillouin

is the weighting factor for the vector~. The factors

(

are elements of the inverse of the dimensionless dynamical matrix

and arise here by the use of Born's theorem. Other sums, S S( yy' xz'

etc. can be derived from the above by proper interchanges of the

components n , n ,n of the vector n (recall thatx y z ~

)

Another type of sum which was required was of the form

As before we generate a summand which is invariant under the point

(

group of a cube and then ,~m~~_ Born.'s theorem' to eliminate thesums

over ;, , getting, for example

(72)
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(4L4

+

x(

--- ( (

(

(

+

(



+ (

48

+

x( (

x

(

( (

+(

x )
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b [

(

( t(

(

(

x

Using these six sums we can, by suitably interchanging n , n , and n
x y z

generate all twenty-one of the possible distinct sums of this type.
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For computational purpose a simple cubic lattice of points in k-space

was used with the components of k being given by

+ (

sums

For L = 7 this yields a mesh of 1172 points in the entire zone,

including the origin (0,0,0). The previously discussed types of

d f h 1 · f hwere compute or t e 48 portlon 0 t e

zone defined by

~ 0 ·

and were tabulated for a large number of vectors n. The origin was
iN'

omitted from the sum over k since both
"'-

and approach

zero as (

The sums were therefore normalized by dividing them by a factor 1371.

In the expressions for the anharmonic free energy contributions

(Eqs. (58)> only the leading terms in T were calculated. In F
l

and F
3

,

if we substitute in full for the functions and factor

out sums over different we get respectively a single and double

summation over nearest neighbours. In each case the summand is some

function of the sums For Fl the computed result is

where we have used

(
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The coefficients SlA, SIB, SIC are given in

The numerical. result is:SlA

SIB

SIC

12.00000

67.05850

64.73280

sums which follow ( e. S2A

tical form in APPENDIX

881) are all in

SIA is also an exact result as shown by Maradudin et ale ( ).

We note that if in sums like and we put

we can use the orthonormality relations for the eigenvectors e
".,.".,

and get sums of the form

where use has been made of the fact that

(

( )

and

o otherwise

(n has the usual meaning)
~



Hence if we put
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(which is equivalent to putting

) in our computer program for calculating, say,

SIB, and compute the result we can check this number against the analytical

result which we can now easily obtain. Thus we have a way of testing the

accuracy of the terms being computed, such as SlA, and SiC as well as

our summation procedure. All of the terms computed above and those which

follow have been tested in this way. In the case above the test sums

corresponding to SIA, SIB and SIC are TSlA, TSIB and TSle respectively,

where

TSlA 48

TSIB 240

TSle 180

For F} the result is

( J

The sums S3A, etc. along with their corresponding test sums TS3A, etc.

are given below

S3A

S3B

S3e

S3D

12.00000

136.5878

395.3739

273.9112

TS3A

TS3B =

TS3e

TS3D =

96

1008

2520

1260
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The analytically evaluated and the computed test sums were identical to

at least seven significant figures in the above cases and in all that

follow. As a second test of the computations the term S3A was calculated

analytically using Eq. (66) the result being exactly 12.

The expressions for F2 , F
46

and F
S

a
each contains a delta function

of the type We can express the delta function by

e

the summation being over the N direct lattice vectors of the

"macrocrystal". For each of the above, we thus have a double summation

over nearest neighbour vectors from the two functions as well as a

summation over the N lattice vectors. The summands are again functions of

the

The expressions are of the form

where £1' ~2 range over the twelve nearest neighbours and

can be expressed in terms of the for fixed J:1., and

The actual calculation was carried out as follows. For a fixed vector

n the sums over
~

and were carried out. Then, noting that for

each of the above three cases the result of summing over

was an expression having cubic symmetry in the components of

the result was multiplied by the number of lattice vectors equal

in magnitude to the fixed one. Then the next larger £ was selected,

and so on until a suitable number of ~ vectors had been used. Thus,

by exploiting the symmetry of the integrand, it was necessary to use
if

only one R vector of each magnitude (or nshell")~
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The result for F
2

is

(78)

The terms S2A, S2B, S2C have been computed for ~ vectors in the first

seven shells (i.e. up to the vector ~ and the results

are given in TABLE I. Also given are the corresponding computed

test sums TS2A, TS2B, and TS2C.

For F
46

we have

In TABLE II are given S4A, etc. for seven shells, as well as the

computed test sums TS4A, etc. Analytically we get S4A = S2A,which

is also the numerical result.

For F a we get
5

F
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The results for S5A~ etc. and the test sums TS5A etc. are given in

TABLE 111 1

b bNext consider FS and F789 . In these expressions sums of the type

arise as well as In the case of F~ in which

there is no delta function, there is only a double summation over nearest

neighbours. We have

(80)

·t

Below are given S6A, etc. along with their corresponding test sums TS6A, etc.

S6A 48.00000 TS6A 960

S6B 268.2340 TS6B 4608

S6C 258.7215 TS6C 3120

S6D 1524.376 TS6D 22368

S6E 1246.314 TS6E 12792

S6F 1632.251 TS6F 11700

b
The expressions for F789 contains only one delta function and three

functions, so that we get a sum of the form



where and
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extend over nearest neighbours and

over general lattice vectors. Again the symmetry of the summand

required only one

We have

=- -

from each shell.

(81)

J

was feasible to get contributions only from the vectors

and The results for S7A etc.,

along with the test sums TS7A, etc. are given in TABLE IV .

We note that S7A can be obtained analytically from S2A if we

use Eq. (67). The result is S7A = (4)~S2A = 688.949.

The result in TABLE IV for only three shells thus looks reasonable.
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aIn F789 there are two delta functions and three

so that we get a sum of the form

functions

where extend over nearest neighbour vectors and

are over general lattice vectors. The numerical evaluation

of this sum was seen to be very time consuming so that only the

contribution from was obtained. We have

a..
.+ (82)

(S

.+ }

where S8A, etc. and the test sums TS8A are

S8A = 349.9122 TS8A 10176

S8B - 522.2178 TS8B 15552

ssc 866.9633 TS8C 24960

S8D 1085.052 TS8D = 32256

S8E 1953.876 TS8E = 54528

S8F 4169.629 TS8F 106368

S8G 353.4028 TS8G 10368

S8R = 727.9011 TSBR 19008

S81 = 2245.212 TS8r 47520
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a

18)and

1285 to
350

The results both theof the

while the

1285. Hence we canis

about

full as well as leading term

TABLE V. athe Case of F789 t where

were over }@.1 sums over

the number obtained required about 25 minutes of eom-

puter time This was

mentioned previously

one and ..D!.2e As wa.s

a
and FlO

would have required a deal of computer we

have had a triple over lattice

and a over neighbour vectors.
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In TABLES 1,II,and III the sums have been evaluated for

ors up to (2,2,2) As was ed out Maradudin et al

the contributions from successive shells to the sums clos

the contributions to their test sums

large where

test sums are small

test sums are large and small where the

Since there is no contribution to the

test sums from ctors than ,2,0 (this follows as

a result of .C ) we rather small

contributions to the (non-test) sums from such This

is indeed true for (3,1,0) and (2 2,2) so that cut off

the at (2,2,2) should not significantly affect

the values the sums It was found that a mesh

than 1372 ts in the full zone did not appreciably

the values of the computed sums All of the tabulated sums are

believed to be accurate to at least three significan

For illustrative purposes TABLE VI some numbers which

were evaluated for a mesh of 256 k-vectors in the whole

termthat the

the mesh size tends to increasefirst Brillouin zone.

values of the sums

at TABLE V it is

in the temperature limit is not in

very The corrections to the values from the term
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range from 0 3% for ]'2 to 47% for The

contribution of order comes from 'but the number is

a crude estimate Also as was mentioned,we have

neglected
a b

from the terms ZIO and ZlO Ifad

been included the incomplete total for v,

F 2,would probably have been reduced somewhat

This follows from the results of Shukla and Cowley, since their

leading term numbers (2(f) and 2(h) in their TABIJE II) are both

negative. The trend in TABLE V seems to be a decrease in mag-

nitude the term numbers to the full term numbers

and where there is an increase i is small It seems

therefore that the decrease in the tatal for from these

neglected contributions should be somewhere between 0.5 N(kBT)
2

a 50% maximum decrease in mag-

nitudes) so that the maximum value of the ratio of the total

contribution of order to that of order would be about

In the term approximation Shukla and Cowley obtained

:F
= -0

For the inert gas crystals the potential well depth E is approx-

twice the melting t so th,at in the tem.~-

erature limit both the full and leading term calculations
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indicate satisfactory convergence of the perturbation series to this order

if the temperature is less than approximately 1/3 of the crystal's melting

temperature. It should be emphasized that the magnitude of the ratio

for the non-leading term,approximatioll given above is an estimated

maximum value. A more realistic estimate would make the ratio close to

zero so that convergence should be good even for temperatures close to

melting. The model chosen for these calculations was the same as that of

Shukla and Cowley since it was desired to assess the reliability to the

leading term approximation which they employed in their calculations. The

restriction to nearest neighbour interactions considerably simplified the

calculations and for the inert gas solids this approximation is expected to

be good. As was mentioned previously, there is no contribution linear in T

to the high temperature specific heat from terms of order A4 in the free

energy. Experimentally the specific heat at high tempeatures rises steadily

ove the Dulong-Petit value. Calculations using second order perturbation

theory (22) result in a theoretical curve which falls below the Dulong­

Petit value for high T(40-600 K). Attempts to account theoretically for

the experimental specific heat evidently involve at least sixth-order

perturbation theory.

An important objective of this report was the determination of

the feasibility of calculations of the free energy using higher order

perturbation theory. It was found that the computations were made

practical by the generation of the invariant summands (as described on

page 44) so that only summations over 1/48 of the Brillouin zone were

required.
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The theory given in this thesis can be used to perfoTIITl similar

calculations for other types of lattices. In the case of b.c.c.

lattice it would be necessary to include the effects of more neighbours

(at least next-nearest).



TABLE I

S2A

6

S2C

TS2A

TS2B

TS2C

The entries in each column are the contributions to the

vectors £ that column the contributi

S2A,etc. from

to the sums

1 The same is true for TABLES II,III.and IV. The numbers

above were obtained for a mesh of in the whole zone •.



TABLE II

(2 lt 2,2

•

(3,1,0)(2 2.0)

..
(2,0,0)

1102 9'54 1102.

. 11)

•

TS

7056

TS

TS

( Jl,.-£.L..J~ ~~4-- in whole zone



TABLE III

n
""

(0,0,0) (1,1,0) (2,0,0) (2,1,1) (2,2,0) (3,1,0) (2,2,2)

S5A 195.8047 396.0105 396.0197 397.0576 399.6691 399.6693 399.6699

S5B 101.9095 212.1757 212.1930 214.8647 216.1978 216.1985 216.1995

SSC 147.1828 374.4824 383.9826 398.2438 399.7622 399.8319 399.8369

S5D 496.5243 1046.802 1051.578 1067.409 1074.899 1074.912 1074.924

S5E 468.0906 1198.260 1224.560 1267.929 1273.812 1273.979 1274.009

S5F 572.0707 1443.625 1470.364 1518.485 1530.147 1530.405 1530.476

TS5A 3360 7056 7056 7104 7296 7296 7296

TS5B 1824 4032 4032 4128 4224 4224 4224

TS5C 2592 6624 6816 7200 7296 7296 7296

TS5D 7680 17424 17520 18048 18432 18432 18432

TS5E 6480 16560 17040 18000 18240 18240 18240

TS5F 4860 12420 12780 13500 13680 13680 13680

(MESH=1372 tors in whole zone)



TABLE IV

n

(0,0,0) (1,1,0) (2,0,0)

S7A 294.6544 707.0442 707.7844

S7B 457.2632 1199.701 1200.117

S7C 1356.750 3187.813 3200.699

S7D 1679.922 3985.039 3989.177

S7E 2563.639 6609.646 6611.821

S7F 7796.019 17975.55 18064.63

S7G 1692.226 3917.471 3921.459

S7H 2545.925 6387.565 6392.879

S71 6598.644 14424.49 14538.78

TS7A 13152 25344 25344

TS7B 19584 42048 42048

TS7C 47136 103104 103104

TS7D 63216 121536 121536

TS7E 93888 200736 200736

TS7F 228336 494784 494784

TS7G 42960 82080 82080

TS7H 63360 133920 133920

TS71 139392 294624 294624

( MESII=1372 tors in whole zone)



TABLE V

FULL LEADING

F1 0.691 0.966

F
2 -0.342 -0.344

F
3

0.205 0.345

F
46

-0.601 -0.732

So -0. ....0.216F
5

F
b

-0.663 -1.244
5

a 0.63 0.619F789
b 0.91 1.328F789

The full contribution from terms of order is

0.349 The total from terms of order is



TA'BLE V,I

(2,

s

102

E 211

2101.

S2A '90.70057 J.7f"1.b317 177.6695 175. 479L+ 171.6517 171.6

S2B

S2C 406.2910 ($09.6947 .63lJ5 759. J', (J ( J-r" • ..r...VV-T ( Jil

in



APPENDIX A

In this appendix it will be shown how the exponential

was expanded to yield the partition function of Eq. (19), H being the

anharmonic hamiltonian defined in Eq.(13). For convenience put

where

Since Ho and HI in general do not commute we cannot simply factor out

from as would\be possible if we were not

f

dealing with operators. Instead let us define a function

that

such

(

We now must determine

Eq. (A.l) with respect to

or

If we differentiate both sides of

we get

Thus

(

s (A 2)



A2

Eq. (A.2) satisfies the condition

frornEq. (A.I).

Iterating Eq. (A.2) we get

which follows

+ 0

Using the definition of

-f3e

H

we have
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APPENDIX B

We here show 110W the terms 20 , Zl'···' ZlO

function were reduced from their forms in Eqs.

of the partition

to those in Eqs.(24).

There is only one term of the form 20 , and using the definition of a

trace and Eq. (22) it is

where the eigenstates of H were assumed to be normalized. The
o

terms 21 and X
3

are of similar form and are easily reduced if one uses

the cyclic property of a trace, i.e.

TrABC = TrCAB = TrBCA

where A,B,C are some 'pperators.

Hence

(B



B2

The terms ZZ,Z4' 25 , and Z6 can be evaluated by using the cyclic property

of the trace and a change of integration variables. First suppose that

we wish to evaluate a double integral I of the form

I (B 2)

Introduce new coordinates

s
(

In Eq. (BZ) the region of integration in the

shaded region below

plane is the

The transformation defined by Eq. (B3) maps the above region into the

shaded region below



Since the magnitude of the Jacobian of the transformation is unity we

thus get

Using this result we have

e

We now make use of the resolution of identity for the complete set of

states

1

where 1 is the identity operator.

Thus



If the integration is performed the result is that of Eqs. (24).

The remaining terms Z7, ••. ,2 l0 are reduced by using the resolution of

identity as for 2
7

below

e

The final result is stated in Eqs. (24).
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APPENDIX

we the

where the are over all sets

(

which are to label

the harmoni of the latti

In ( ) we defined

Thus we can

e

e

thus

( .

is which has

sum
1- (c.



C'onsider Since this series is uni

for all o and is

differentiable of under

the (c so that di both sides

we

Hence

in (C.l) becomes

so that the notation the ent
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APPENDIX D

Consider a term of the form

(

where are integers 3, 4, .••••• Then

e (D

Now contains the operator produc~

Using the resolution of identity

get

By the definition of and using Eqs. (11) we get

(



D2

From D.3, D.4 and the fact that the commute we have

Thus

Returning now to D.2 we see that

Hence in Eqs. (24), 2
6

= 2
4

because

If we have another term of the form

is even.

the previous results show that

so that in Eqs. (24), Z9 Z78



APPENDIX E

It is shown that

h n-l. h· f d · 1 · Dwere 1S t e lnverse 0 ynam1ca matrlx .

eigenvalue equation

We start with the

(

multiplying both sides of E.l by

Since [

[

by definition, then

and summing over

x we get

Divide both sides by

getting

, multiply by and sum over j,

But we also have

':: ( [

from the orthornormality of the eigenvectors

Thus

J
[
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APPENDIX F

In this are the cal expressions

for the sums SlA tc. which are tabulated in the section

"NUMERICAL CALCULA'rrONS" The notation used is the same as

.A and A denotes the index

d As

,the

respectiveandmean

where otherwise

,SlB,and SIC andIn the case of

Whenever we write ~ or ~

before

that used

over lattice tors.

Put

) (1- )

N is the k-veetors
~

B (

5 :::
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(

D

)

+

(

but the sum over n

In the

and

S2A, tc

extend over nearest ne

,etc., , tc sums over

over lattice vectors

First fine the fo

(



H ( )

H

(

__ ~~.. _ the above definitions get

CH1

S~B:: ) (N 0( ]

::: (

( x



:::. [ (H

f:, (N

+ ( (
ci.f

( (

r
+ H (

S =: ( ~

(N (N

(



F5

8 f( x (N
c(

s N

(

[ (

(

In 9 •• ,S6F there is a double summation over nearest

neighbour vectors We now define the fa sums:

)

)eo< (1­

(l-~~

the notation



(1-

1- )

(1- rf-

( 1-

e't>{ (I

)( )

r-
o<p t J' D,QO;



we

)

s (

s H (

+

(

)

( ( (

)(

(

(Ii ( ) Q )(p

(



In ,.. @' ,there is a jon over neares

ne ...... _ .. ""'O.J_ c.tors , and summation over gene

lattice

(1-

the fa

~ - )

1

(

LLf ( (1-

J

)(

(

)



) L

J ~IO< L

Ll(,

)



FlO

Thus

) (,

)

( (

(

(

(l

(

+ 4- (



Fll

( (

(L N

, + % (ll {N~

(

( (

+ ~ (

(N

lIO~) + (LIQ'Ob'J (

(

(

[ (
0«0

~ (L6

( 'r) ~

"-
( Ll

(N ( + (ll

L Nl l



F12

( (

+ (N (

(l ) (

(L

( (ll

a over near-

a

.(

) X3'

~)



).(

( eo(

\,

,e 4Il

~ )

( Ii \
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"""

) t,
«

~

"'( 0(r
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f
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j
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(X(X(
S~D

4 (X

Y

x (X ( + (

s [

(



(x

ex

t

( CYO<f)~1

(X



G

we efine the

e ABC.~~l

Tr e -rHo

c * z

4 f" r'_ ~ dSa dS1
....,! " "'"
~.. 0 0

>

s

__ ....111.-_ of

/tv 5 f3 tIo. - S gft Q

HID (s) ~ e I -H. e J
i. l

I
~5" Ai>
~7 ~3

--- . sptb - sftto
A~.(sJ: e AA:e

(.
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.",,- .t\,.

'<' 9 <TAA(Sj) A
I

9 ses

combine
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I
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:::: -

Q
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In Equations\24) we have defined

We now define the quantity

where

Interchanging the lebels m and n and using the fact that

(see ApPEfiDIX D), we get

if is an even in,teger.. Hence mflkes no contribution to

Consider now where

, or

Writing the contribution of where

where



'H2

'l"he contribution to Zg is

=--

--

where in the le~st step the labels m and n have been interchanged and we

have llse.d, • In a sim11a,r way the contribution to Z, becomes

The sum of these three contributions is

(

+

The first and second nd third and fourth terms cancel one another if we

make use of the label interchange p n. Hence we get from the last ttlree

+- e

P~ain the interchange n p we get finally



consi::ler
Ilf

the in ( ) we

that the contribution to

1/1

from
III III

is where

=

:::

=

are under of

the set of summation indices n,m,p,q i

= =



Hence, the summation indices of T
2

in the

Also,

we

way: n4m,m p,p

the

::

we

p,

get

to

the n

=

m, to

we get the result

= 0
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