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Abstract ii

Abstract

High temperature superconductors were discovered in 1986, but despite considerable research ef-

forts, both experimental and theoretical, these materials remain poorly imderstood. Because their

electronic structure is both inhomogeneous and highly correlated, a full understanding will require

knowledge of quasiparticle properties both in real space and momentiun space.

In this thesis, we will present a theoretical ajialysis of the scanning tunneling microscopy (STM)

data in BSCCO. We introduce the Bogoliubov-De Gennes Heimiltonian and solve it nirniericedly on

a two-dimensional 20 x 20 lattice under a magnetic field perpendicular to the surf«ice. We consider a

vortex at the center of our model. We introduce a Zn impurity in our lattice as a microscopic probe

of the physical properties of BSCCO. By direct nmnerical diagonaUzation of the lattice Bogoliubov-

De Gennes Hamiltonian for different positions of the impurity, we can calculate the interaction

between the vortex and the impurity in a d-wave superconductor.
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Chapter 1. Introduction

Chapter 1

Introduction

After the discovery of superconductivity in mercury at 4K in 1911 by the Dutch physicist H.

KamerUngh-Onnes, a rush of interest led to the discovery of many other superconductors, mostly

piure elements or simple alloys. Fig. 1.1 shows the transition temperatiures of some superconduc-

tors and the year of discovery. Superconductivity seemed like a great technological tool, but the

temperature needed to operate even the highest Tg superconductor was prohibitively expensive to

attain, because one needs liquid helimn.

In 1973, the "record high" for a superconducting phase transition temperature was Tc « 23.3K

for NbaGe, and it was widely felt that this value of Tc could at best be improved by only a degree

or two in some exotic metalUc alloys. A very important breakthrough came in 1986 with the

observation by Bednorz and Miiller of superconductivity at aroxmd 30K in "LBCO" (a mixed oxide

of lanthanmn, barium and copper). By 1987, a compound of j^triiun, bariiun, copper, and oxygen

("YBCO") had been discovered with Tc > 77 K, the boiling point of liquid nitrogen. This increase

has enormous significance, because it means that superconducting materials are now accessible at

liquid nitrogen temperatures. Cooling by liquid nitrogen is considerably cheaper than cooling by

liquid helium.

UnUke the simple conventional superconductors, high Tc superconductors have complex layered

structiures. In all high Tc superconductors, the superconductivity is a product of the copper-oxide

(CUO2) layer. Adjacent sets of n Cu-0 planes are separated from the next set of n Cu-0 planes

by charge reservoir layers, or metal-0 isolation layers, which controls the oxidation state of copper

ions, where metal atoms usually are La, Ba, Tl or Bi. While these reservoir layers may differ in

different materials, this CUO2 layer is a featiu:e of most high Tc superconductors. Fig. 1.2 [1].

Even a decade and a half after the discovery of high Tc superconductors, these materials continue

to puzzle condensed-matter theorists. Depending on the temperatiure and the level of doping, the





Chapter 1. Introduction

140

120-

100.

S*
804

!«-.
E
,2 40-

20-

Superconducting T^

vs.

Discovery Year

HgBaCaCuO

NbN VjSi

Pb Nb,.*
•Nb,Sii

Ha^ .yNbC

NbjGe

1900 1920 1940 1960

Year of Discovery

7TIS' TISrBaCuO

BiCaSrCUjOg

YBa^CUjOy

- 77KLN,

LaBaCuO.

-4.2K LHe

1980 2000

Figiire 1.1: Highest Tc discovery history. (Points circled in grey garnered a Nobel Prize for their

discoverers: Keunerlingh-Onnes in 1913 and Bednorz & Miiller in 1987.)
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(a) Cii4>

Figure 1.2: (a) An infinite planes of Cu-0 atoms, (b) Cu-0 planes in La2_xSrxCu04. (c) Cu-0

planes in YBaaCuaOy-j. (d) Cu-0 planes in TlaSraCa^CuaOiO [1].
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non-fermi liquid

underdoped optimally doped overdoped

Figiire 1.3: The electronic phase diagram of the HTSC

cuprates can be insulators, metals or superconductors, see Fig. 1.3. Extensive research to find

high-temperature superconductivity in other families of materials, has been singularly unsuccessful.

A common featiure of all superconductors both the low and the high-temperature variety is that

the electrons somehow overcome their mutual electrostatic repulsion to form "Cooper pairs". An

electron has a spin of 1/2 and thus the total spin of cooper pair can be either or 1. In a singlet

Cooper pair, the electron spins (-1-1/2 or -1/2) cancels and the total spin is 0. In a triplet pair,

the total spin is 1. In this work we only consider the singlet Cooper pairs relevant for HTSC.

Since the Cooper pairs are bosons and therefore do not have to obey the Pauli exclusion principle,

they can condense into a single quantum state below a certain temperatiure. This is what gives

superconductors their imusual properties.

In low-temperature superconductors the electrons pair together so that their total orbital an-

gular momentum is zero, a so-called s-wave state. Interactions between the electrons and phonons

(vibrations of the crystal lattice) are responsible for the pairing. The electronic states of Cooper
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pairs in high Tc superconductors are markedly different from those in conventional ones: the two

electrons revolve aroimd each other much faster and farther apart. These wider orbits are analogous

to the higher-energy d-orbital of electrons aroimd an atom, and high Tc superconductors are often

called d-wave superconductors.

The superconducting properties are qualitatively modified by impurity atoms, depending, for

example on whether they are magnetic or non-magnetic. In principle, this anedysis can be useful

as a method of identifying the nature of the pairing state in superconductors. In this thesis we

consider the effect of a single point-like non-magnetic impurity, Zn, in a d-wave superconductor.

1.1 Overview

The thesis is organized as follows. Chapter 2 details the general properties of conventionsJ su-

perconductors as well as unconventional ones. We will briefly discuss the effect of magnetic field

on a superconductor, the different types of superconductors and the vortex state. Then we talk

about the Ginzburg-Landau equation and the BCS theory of superconductivity, then the p«dring

mechanism in superconductors, t-J model, the Bogoliubov-De Gennes Hamiltonian, and the effect

of impurities on superconductors. Chapter 3 describes the measiurements one can make with a

scanning tunneling microscope. In addition, it summarizes some results of the STM studies on

BSCCO. Chapter 4 describes the model we have developed, and the computational details of the

numerical diagonaUzation of the lattice Bogoliubov-De Gennes Hamiltoniem, and addresses some

of the numerical difficulties which arise due to the open boimdary condition. Finally, Chapter 5

summarizes the results and presents the conclusions arising from the calculation of the interaction

between vortices and impmities in a d-wave superconductor.
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Chapter 2

Reveiw of the superconductivity

In this chapter we review some of the basic facts about superconductors. We focus on the magnetic

response and impurity eflFects.

2.1 Introduction

Superconductivity is the name given to a remarkable combination of electric and magnetic prop>-

erties which appears in certain metals when they axe cooled to extremely low temperatures. Su-

perconductors have two distinguishing properties. The obvious one is zero resistivity. However,

superconductors are more than just materials which axe perfectly conducting. Inside a perfect

metal there may or may not be a non-zero magnetic induction B, depending on circmnstajices.

Superconductors do not allow magnetic field to penetrate them the way normal materials do, i.e.

inside a superconducting metal we always have B = 0, which shows that the superconductors are

perfect diamagnets. In particular, when superconductors are cooled below a critical temperature

Tc in the presence of an externally applied magnetic field, all of the magnetic flux is expelled from

their interior. When the external field exceeds a criticed value (He), the superconductor retiurns to

its normal state. This effect, whereby a superconductor never has a flux density inside, is called the

Meissner effect. The Meissner effect can be understood using the Ginsburg-Landau (GL) theory.

2.2 Ginsburg-Landau theory

The GL theory uses quantum mechanics to predict the effect of magnetic field on superconductors.

In this theory, the wave function of the Cooper Pairs ^(r) is introduced as a complex order parameter

such that |V'(r)P presents the local density of superconducting electrons, ng{T). The theory is
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developed by applying a variational method to an expansion of the free energy density in powers of

IV'P and |VV'P, leading to a pair of differential equations for ^(r) and the vector potential A(r).

The basic postulate of GL is if ^ is smaJl, and varies slowly in space, the free energy of the

superconducting electrons can be expanded in a series of the form [2]

F, = F„+f FGLd\ (2.1)

where F„ is the Gibbs free energy in the normal state, and Fgl hi an external magnetic field H is

Fa. = al^l^ + f l^r + il (-«V + |a) M^ +^ - ^. (2.2)

where a = a{T — Tc), and Tc is the superconducting critical temperature. We introduce

h
K =

and

"'i^- '''^

D = -iV + i^A. (2.4)
he

By using (2.3) and (2.4) we can write (2.2) as

Fgl = a|VP + ^|V|' + K\D^|;\' +^ -^. (2.5)

If V' = 0, (2.5) reduces to the free energy of the normal state F„= B^/Stt — B • H/47r. The three

remaining terms describe superconducting effects.

If V is constant, (2.5) reduces to the London free energy in an applied magnetic field H [2]. In

the absence of fields and gradients, we have Fg — F„ = a|^p + l/^l^l"*, which can be viewed as a

series expansion in powers of |^|^ or n,, in which only the first two terms remain. If T > Tc, the

minimiun free energy occurs at |V'|^ = 0, corresponding to the normal state. When T < Tc, the

minimimi occurs when

W' =— (2.6)

The condensation energy by using the definition of the thermodynamic critical field He, is F, — F„ =

—H^/Stt. We can find the GL equations by minimizing the Gibbs free energy, Fj, in a given magnetic

field H. The first GL equation is the result of veiriation of F with respect to the order parameter

aiP + ^IV'I^^ - /sTDV = 0. (2.7)
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The second GL equation, which gives us a definition of the supercurrent, is the result of variation

with respect to the vector potential A,

J, = -i^K [(D^)*^-r (D^)]

,

(2.8)

where we have used the Maxwell equation, V x B = (47r/c)J. By considering i/j{r) = |^(r)|e'"^('"^

and using the definitions for K and D, (2.8) becomes

where we have used

V, =
" 2m'

Lf _ ^\ - _L (fiV6 - ^\
'Tn\ " c J 2m \ c /

'

The expression (2.8) has exactly the form of the quantum-mechanical expression for particles of

mass 2m, charge 2e, and wavefunction V'(r)- Apart from the nonlinear term, (2.7) has the form

of Schrodinger's equation for such particles, with energy eigenvalue —a. We define the correlation

length, ^{T), as the characteristic length for variation of ip by

2.3 Type-I and type-II superconductors

Superconductors can expel magnetic fields from their interior in two different ways. In an applied

magnetic field of strength H, the free energy per unit volume of the normal state is greater than

that of superconducting, perfectly diamagnetic state, by an amount {H^ — H'^)/8'k. Furthermore,

there is a surface energy associated with the boundary between a normal and superconducting

region. For type-I superconductors surface energy is positive. Hence, if energy increases on normal

region, there would be an increase in free energy due to both the bulk and the surface of the

normal region. For this reason, type-I superconductor remains superconducting throughout when

a magnetic field less than He is applied [3]. Type-I superconductors allow no magnetic field at

all to penetrate their interior. The shielding currents exist only near the surface. However, if the

external magnetic field is too strong, the superconductor cannot shield it without surpassing its own

critical current. Magnetic fields larger than He, will destroy the superconductivity in the material.
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In type-I superconductors, the surface energy is positive because the penetration depth A^, the

characteristic range of magnetic field into the superconductor, is shorter than the coherence length

^. So the Ginzburg-Landau parameter k (k = Xl/0 is k < 1.

In some materials the surfewie energy between normal emd superconducting regions is negative.

It is possible if the coherence length ^ is shorter than the penetration depth Xl, and therefore the

appearance of normal region would reduce the free energy, if the increase in free energy due to

the bulk of the region were outweighed by the decrease due to the surface. When the magnetic

field is applied, a large niunber of normal regions would form in the superconducting materied.

The material would spUt into some fine-scale mixture of superconducting and normal regions, as is

shown in Fig. 2.1. These materials are type-II superconductors. High Tc superconductors (we will

discuss them later) are type-II superconductors.

Type-II superconductors, like type-I superconductors, allow no magnetic field to penetrate their

interior below a lower critical field Hd. However, Abrikosov showed that for « > l/\/2, what is

called mixed state or vortex state is formed. In this state, for magnetic fields, Hd < H < Hc2,

Abrikosov vortices occur in the superconductor. At the center of a vortex, the superconducting

order parameter reaches zero.

For type-II superconductors in an appUed magnetic field, finding the highest field at which

superconductivity can nucleate in the interior of a large sample, Hc2 is equivalent to quantum

harmonic oscillator problem for a particle of mass 2m bound in a harmonic oscillator potential

with force constant (27r^i//$o)^/2m. This is the s«mie problem as finding the quantized states of a

normal charged particle in a magnetic field

e„=(n + l)/^.=
(„ + i)s(H^). (2.11)

By using (2.10), the corresponding value is defined as Hc2 = ^o/27r^2(T), where $o is the total flux.

2.4 Vortices

When the first flux enters the type-II superconductor, it is carried by an array of vortices sparsely

distributed through the material. As long as the separation is large compare to A^, the vortices
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(a)

(b)

•»$

<t> <S^ ($)

(e)

tXt

Figure 2.1: Mixed state in an applied magnetic field just above Hd- (a) Lattice of cores and

associated vortices, (b) Variation with position of concentration of superelectrons. (c)

Variation of the magnetic induction.
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would not interact or overlap, so that each can be treated in isolation. By finding the self-consistent

solution of the GL equations for V'(r) and B by using the axial symmetry, one can find the free extra

energy ei per unit length of the line. This determines Hd in following manner. When H = Hd

the Gibbs free energy, by definition must have the same value whether the first vortex is in or

out of the sample. The Gibbs free energy, G, is the thermodynamic potentisd for constant H. In

superconducting state we have

G, = Vf, - ^^. (2.12)

Thus at Hci

^a\no flux ^^ ^a\ first vortex-

Since G = F — {H/4Tr) J Bdr, Gg = Fg in the absence of flux, and the condition becomes

47r 47r

where L is the length of the vortex line in the sample. Therefore

H. = ^. (2.13)

The cailculation of i}}, B and ei for any k requires a numerical solution of GL equations. It is

convenient to introduce a vortex wavefunction as

V' = V'oc/(r)e^ (2.14)

which builds the axial symmetry and the fact that the phase of ^ varies by 27r in making a complete

circuit, corresponding to the existence of a single flux quantum associated with the vortex. This

phase choice for ^ fixes the gauge choice for A so that

A = A{r)e, (2.15)

with

A{r) = - [ r'B{r')dr'. (2.16)
f Jo

When we solve GL equation [2] the exact solution for B is
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Figure 2.2: A single vortex is characterized by the presence of a magnetic field B(r), which peaks

at its center and decreases on the length scale of the penetration depth Xl. It is also

characterized by a destruction of the superconducting order parameter \ip{r)\ at its

center, which recovers over the length scale of the coherence length ^.

where Kq is the zeroth-order Hankel function of imaginary argument. Quantitatively, Ko{r/\i)

cuts off at e"""/*^ at large distance and diverges logarithmically as ln(A/,/r) as r — 0. In reality

this divergence is cut off at r « ^, where l^*!^ starts dropping to zero. Therefore, B(r) is actually

regular at the center of the vortex, as shown in Fig. 2.2. FinaJly, we note that at Xi » ^, the

magnetic field can be assumed to be uniform (except near the lower critical field Hd).

2.5 Cooper pairs and BCS theory

The first great difficulty in the development of the theory of superconductivity was to discover

the natiu-e of the interaction responsible for the transition to superconductivity. The first widely-

accepted theory to explain superconductivity put forth in 1957 by John Bardeen, Leon Cooper,

and John Schriefer. Cooper assumed a non-interacting Fermi gas at K, all states are filled by

k < kp, and he added two electrons to the system. They occupy states with k > kf because of Pauli

exclusion principle. He showed that even if both electrons are restricted to having momenta outside

the Fermi sphere, they will have a boimd state lying below 2Ef. This bound state is called Cooper

pair. Fermi sea is unstable against the formation of a bound Cooper pair when the net interaction is

attractive, in other word pairs condense until an equilibrium point is reached. Cooper pairs are the

basis of BCS theory. The "BCS theory of superconductivity" is widely applicable, from ^He atoms
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in their condensed phase, to type I and type II metalUc superconductors, and is beUeved it can be

useful for studying high Tc superconductors. The theory asserts that, as electrons pass through a

crystal lattice, the lattice deform inward towards the electrons, generating phonons. These phonons

produce a thorough of positive charge in the area of deformation that assist subsequent electrons

in passing through the same region in a process known as phonon-mediated coupling.

BCS considered the Hamiltonian

y-BCS = XI ^kC^Ck^ + ^ XI ^T^-kiC-kiCkT, (2.17)

k<7 k

where V is the attractive pairing potential and assumed to be non-zero within a thin shell over

Fermi surface of thickness ej << e^ = h'^kp/2m in momentum space. In BCS theory the "anoma-

lous averages" < Cktc_k| > and < cj^|Ci,j| >, which are zero in normal metal, become finite in

superconducting state. It is natural to define the order parameter of the superconducting state. A,

as

A = V^53<^TC-ki>. (2.18)

k

The BCS wavefimction is

l^Bcs) = n [«(k) + v{k)clcl^^] |0), (2.19)

k

where |0) is the vacuum state. The quantities u(k) ajid u(k) must be chosen to minimize the free

energy and are not independent, but are fixed by normaUzation of the BCS wavefunction. vl is the

propapility that the momentum pair state is full and it| is the probability that it is empty.

One of the predictions of BCS theory is that there is an energy gap in the allowed state about

Ef, of the order of ksTc. BCS calculate the OK energy gap, 2A, to be [2]

The idea of the gap in the density of states is shown in Fig. 2.3. The normal state is shown, which

at zero-temperature is filled up to Ep. For superconductors the zero-temperatm-e gap is centered

at Ep and it pushes allowed states into energy regions just below and above the gap. The Fermi

energy may be taken as zero and the modified superconducting density of states, Ns{E), ior E > A

and E < —A, is

^s{E) = N{0)-^^^^^^^. (2.21)
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Figure 2.3: Density of states is filled with electrons up to Ep and the superconducting energy gap

2A.

For energies within the gap, the density of allowed states is zero. It is singular at the edge of the

gap {E = ±A). The wave function of a pair is imchanged if the positions of the electrons aure

exchanged. This immediately implies that the spin part of the wave function is antisymmetric in

accordance with the Pauli exclusion principle. In peirticular, the electron pairs are in a spin-singlet

state 5 = with antiparallel spins. The pairing mechanism in a conventionsd superconductor is

thus appropriately called, s-wave spin-singlet. The energy gap of an s-wave superconductor is finite

over the entire Fermi siurface. Under ideal circmnstances, the magnitude of the gap is the same

at all points on the Fermi surface. BCS theory assumes the Fermi surffice is sphericeJ (Fig. 2.4)

and kjr = k^ + ky. While attractive interaction arises from the electron-phonon interaction, many

non-phonon pairing mechanisms have been suggested the high Tc materials.

In this work, we consider quasiparticle properties in presence of vortices on a lattice. The

appropriate stairting point is the system of normal electrons on a lattice, which is analyzed using

the band theory.
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Figure 2.4: a) Fermi surface for s-wave superconductors, b) Fermi surface for d-wave superconduc-

tors.

2.6 Band theory

Band theory explains how electrons move in solids. Most simple metals (e.g. Cu, Ag, Au, etc.) and

conventional superconductors contain conduction electrons that extend over many unit cells, and

their wavefimctions can be approximated by Bloch waves. This leads to the electronic bands in the

k-space. Starting with the free electron idea and adding the atomic cores with their translationaJ

symmetry, the energy 6(k) can be cfJculated, and this gives bands and what is usually called bajid

theory [4].

A structurally dominating aspect of d-wave superconductors is the current carriers are considered

to move in the copper-oxygen planes since the coupling between different layers is quite weak. For

theoretical study, one usually uses a two-dimensional tight-binding model to describe the system

[5].
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2.6.1 The tight-binding approximation

One of the simplest models of electrons in solids is the tight-binding approximation. As free atoms

are brought together, the Coulomb interaction between the atom cores and the electrons splits the

energy levels, spreading them into bands. Each state of given quantum niunber of the atom is

spread in the crysted into a band of energies. The width of the band is proportional to the strength

of the overlap interaction between neighboring atoms. The approximation that starts out for the

wave fimction of the free atoms is known as tight-binding approximation.

Suppose that the ground state of an electron of an insulated atom moving in the potential U{r)

is <^(r). If the influence of one atom on another is small, we obtain an approximate wavefimction

for one electron

V^(r) = 53Ckj<^(r-r^), (2.22)

j

where the sum is over all lattice points. The wavefunction (2.22) is of the Bloch form if Ck_, =

^-i/2gtkrj
^ where N is the nimiber of atoms in the crystal [4]. We find the first-order energy by

calculating the diagonal matrix elements of the Hamiltonian of the crystal:

(k|//|k) = iV-'EE «^ ^^ (^^ - ••"•)] i'f>m\m'l>j) . (2.23)

j m

where <t>m = <A(r — r^). If we choose Pm = ^m — Tj, (2.23) becomes

(k|i/|k) = J]exp(zk-p^) fdV(l>*{T-prr.)H<t>{r). (2.24)

Since we look just for the effect of the nearest neighbors, we can neglect all integrads in (2.24) except

those on the same atom and those between nearest neighbors connected by p. We write

JdV<f>*{r)H<l>{r) = -to,

for the same atom and

J dV<t>'{r - p)H<f,{r) = -ti,

for the nearest neighbors. The first-order energy, provided (k|k) = 1 is

{k\H\k) = -to -tiY, exp(-tk • p„) = ek. (2.25)
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-w/a

Figure 2.5: The Fermi surface of a tight binding model.

For a squaire lattice with lattice spacing a, the nearest neighbors are p = (±a, 0) and p = (0, ±a)

so the (2.25) will become

e(k) = —to — 2^1 (cos kxU + cos kyO).

If we assume the next-nearest-neighbor-hopping as well, we find that

€(k) = <o — 2ti [cos kxO + cos kyu] — 4<2 cos kxa cos kyU.

The Fermi surfaces for different groimd state energies are shown in Fig. 2.5.

(2.26)

2.7 High temperature superconductivity

High-Tc superconductors, or HTSC, have high transition temperatiu-es, accompanied by high critical

current and magnetic fields. Being type-II, all high-Tc superconductors are in the vortex state for

Hci < H < Hc2- As described in previous section, when a type-II superconductor is placed in a

magnetic field, quantized vortices axe formed Fig. 2.2.

All HTSCs have layered structure, with parallel sheets of Cu02 being the common structure

feature. All these layer compounds are strongly anisotropic in electrical properties measured parallel

or perpendicular to the layers. It is sometimes argued that cuprate superconductors are essentially
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two-dimensional and they can be considered as a model with the effect of isolated Cu02 planes. In

most cuprates the Fermi level falls near three orbitals of the Cu02 planes, the 3dx2^y2 orbital on

Cu and overlapping 2p-r and 2py orbitals on two neighboring O atoms.

The properties of the cuprates are believed to be well explained by the two-dimensional Hubbard

model. This model is tight-binding type with one atomic orbital per lattice site. The Hamiltonian

is

H = -tJ24aCja + U^ni'^nii, (2.27)

ij,<T i

where i is the general site index, site j is the neighbor of site i and cr is a spin index. Many

attempts have been made to simpHfy the Hubbard model. A good approximation is the t-J model,

which explicitly includes mobile holes moving in presence of a background of antiferromagnetic spin

correlations.

2.7.1 The t-J model

The t-J model Hamiltonian in represented by

H = Ho + Hj, (2.28)

where Hq is defined by

Ho = -Y^ Uj{l - ni^-a)4„cj^{l - Uj^-a) - /^ X] c\cCia, (2.29)

ij i

The factors (1 — rii^-a) are introduced to project out the states with double-occupied sites, i and j

are sites of the square lattice, tij is nearest neighbor hopping amphtude defined as

ie_ r"^
tij = texpi— A-drJ, (2.30)

because of hermiticity we have ijj = tij The phase factor is known as "Peierls factor" and describes

the magnetic field effects in the tight-binding model.

Below we analyse the origin of d-wave pairing, using a simplified version of (2.29), relaxing the

no double-occupancy constraint [6] . If A = we will have

Ho = -2t J2 clcj. -I^J2 4crCia- (2.31)
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Hj is defined by

Hj = jY,SiSj, (2.32)

U

where J is exchange coupfing, and Sj is the spin-1/2 operator at a site i

Si = ^cla^a'Cia. (2.33)

For antiferromagnetic interaction we have J > 0. By using (2.33) we calculate

Si-Sj = sfsj + sysy + s^s]

1

2

1

= -CljCij + ^PiPj (2.34)

where C/y = l/>/2(c|^ct^ — ctj^cj^) is the "pair creation" operator, and pi = (cJ^Cji -l-cJj^Ci^) is electron

density operator.

Finally the reduced t-J Hamiltonian has the form

H = Ho + Hpairi (2.35)

where

Hpair = -^ 5Z(^<tS-1
- 4c]T)(^Ji^T - CjTCii)- (2.36)

In case when Jx = Jy ^ Jz, (which is the general case for a system with the tetragonal symmetry),

we have

JzStS] + J{SfS] + SfSy) = ^cl,c],cj,c, + ^clc],cj,c,

-Y^^i^ji^T
- ycJicJtCjTCii + -jPiPj- (2-37)

The last two terms in (2.37) represent the pairing interaction

Hpair = —^cl^cl^a^cj^ - ^c]^clcjiCi^ - -fcl^c]^cj^Ci^ - -fc]^clciiCj^. (2.38)

The momentiun representation of Hpair, by using

Cia = ^== V e^^c^, (2.39)
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where k is in the wave vector in first Brillouin zone, is

Tg-Jl<;iRi-ik2Rj+ik3Ri+tk4Rj , t -ikiRj-zk2Ri+ik3Rj+ik4Ri

(2.40)

Hpair -
9 /V2 Z^ Ckj|Ck2|Ck3iCk4t } ,
2 7V2

kik2k3k4 ij •-

1 T -ikiRi-ik2Rj+tk3Rj+tk4Ri
, j -ikiRj-ik2Rt+tk3Ri+ik4R^

where

j = i + a.

where a connects nearest neighbors. So we can rewrite the last four terms of (2.40) as

g^ ^ JYJ y^ gt(-ki-k2+k3+k4)Ri y^ g(k4-k2)a

i a

= iVJ4,+k2,k3+k4^e'''^-''^^^ (2.41)

a

i a

= iVJ5ki+k2,k3+k4E^"''"'''^^ (2-42)

a

53 = iVJ.4,+k2,k3+k4 J2 e^'''-'''^^ (2.43)

a

and

54 = iVJ.4,+k2,k3+k4 Yl e('^-''^^^ (2.44)

a

If we introduce kj + k2 = q = ks + k4, (2.40) can be rewritten as

Hpair =
];^ XI ^'^^^''^')4+|,T^-k+§,i'^-k'+|,iCk',T'

k,k'q

k,k'q

+ 77l]^p(*''^^')4+3,TcLk+|a^-k'+|,iCk',T. (2-45)

where

k,k'q

y, = -(j + j,)0,(k)</)rf(k'),

y, = -(J + J,)<^,(k)0,(k'), (2.46)
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and

V, = -2(J - J,)[4^)(k)<^(^)(k') + ,/.(f)(k)</>f (k')], (2.47)

where for singlet case we can define basis functions, (/»s(k), and <^d(k), for the extended s-wave and

d-wave {dx^^yi) pairings as

(^d(k) = cos fciO — cos kyO, (2.48)

and

<l>a{k) = cos kxO + cos kytt. (2.49)

For the triplet case we introduce (/>p(k), the basis fmiction for f)-wave pairing, as

0j^\k) = sinfc^o , <t>^^\k)=smkya. (2.50)

The pairing interactions in the d-wave euid the extended s-wave channels are the same, while the

p-wave channel splits from s and d. The symmetry of the orbital part of the wave function is even

for s-wave and d-wave paiirings while it is odd for pnwave pairing. Since the total wave fimction of

the pair is a product of the orbital part of the wave function and the spin part of the wave function,

it follows that the spin part of the wave function should change sign when the two electrons are

interchanged for s-wave and d-wave pairing. For p-wave pairing on the other hemd, the spin part

should remain unchanged. The coupUng in the s-wave channel is expected to be suppressed because

of a strong on-site Coulomb repulsion between the electrons. In this thesis, we are considering the

d-wave pairing.

2.7.2 Bogoliubov-de Gennes equations

In section 2.5 we discussed the microscopic BSC theory which is valid only for piure materials, in

which the wave vector k is a good quantimi number, and the k j emd —k [ states are occupied in

pairs. When there are spatiaJ variations in the Hamiltonian, such as, aji externed vector-potential

A(r), or scattering centers described by the potential U{t), or a variation in A(r) imposed by

vortex core, the plane-wave momentmn eigenfunctions characterized by k used in original BSC

development axe no longer appropriate. They should be replaced by suitable position-dependent

function [7].
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Consider a homogeneous electron gas in a magnetic field B = V x A. The Hamiltonian is given

by

H = /'dry)*^(rcr)//e«'M - \v /"dry'*HrCT)*^(r(7')^(ra)*(ra'), (2.51)

where

Heir) =^ (-ihV -^) + U{t) - Ef,

and ^(rcr) is the field operator. If in (2.51), we replace the interaction y^t^t^^ by an average

potential acting on only one particle at a time (therefore only containing two operators $ and ^^),

we may get the efiective Hamiltonian of the form

Heff = f dr(^ ¥{ra)He'if{ra) + C/(r)*^(ra)*(ra) + A(r)*^(r T)*Hr i) + A*(r)*(r i)*(r T)}.

(2.52)

We suppose He// is known. In order to find the eigenstates and corresponding energies, we perform

a unitary transformation

*(rT) = E('^'>T"n(r) - 7ii<(r)),
n

*(ri) = J2(^niMT) - ^i,v*„ir)), (2.53)

n

where 7 ajid 7^ are quaisiparticle operators satisfying the fermion commutation relations and n is

the number of states below the Fermi level

{7T«7,7rmr'} = 0, (2.54)

by using (2.53), the effective Hamiltonian, H^jf, must be diagonalized as

Heff = Eg + Y. ^nlLlru. (2.55)

n,<7

where Eg is the groundstate energy of H^ff smd e„ is the energy of excitation n. By using (2.51) «ind

(2.53), we can calculate the anticommution properties of ^ and Hefj and obtain the well-known

Bogoliubov-de Gennes (BdG) equations:

[ife + C/(r)Mr) + A(r)u(r) = eu(r),

-[//: + C/(r)]u(r) + A*(r)u(r) = €v{t). (2.56)
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= e (2.57)

These equations can be written compactly in a matrix form

He + U A(r) \
I

u

^
A*(r) -h:-u jyv

where

A(r) = FX^<(rK(r)(l-2/„),
n

and

/= I
'"

exp(/3e„) + l-

is the Fermi fimction. The derivation above is valid for an s-wave superconductor. The situation

in a d-wave superconductor is different from the classic s-wave case: when the pairing state has a

finite angular momentum and is not a global eigenstate of the angular momentum L^ (a d-wave

superconductor is an equal admixture of L^ = ±1 states), the problem can not be reduced to a

collection of decoupled ID eigenvalue equations for each angular momentum channel. Instead all

channels remain coupled and must be solved as a full 2D problem.

The natural starting point of the calculating BdG Hamiltonian in a d-wave superconductor, is

the mean-field BCS Hamiltonian written in the second quantization form [7],

(2.58)

+ JdxJdy [A(x,y)^|(x)^|(y) + A*(x,y)V;T(y)V'i(x)] ,

where A(x,y) is the pairing field. We define an integral operator A such that [8]:

AV'(x)= /dyA(x,y)V'(y).

On a tight-binding lattice the vortex fiux is concentrated inside the plaquette and thus the length-

scale associated with the core is impUcitly the lattice spacing a of the underlying tight-binding

lattice [9]. The d-wave pairing operator in the vortex state can be written as a differential operator:

(2.59)

A^Ao^rja exp
>(x)

exp(ia • p) exp
>(x)

(2.60)

the simas are over nearest neighbors and on the square tight-binding lattice o = ±x, ±y, the operator

Va

1 along X axis,

— 1 along y axis,

^a= < (2.61)
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follows from the d-wave pairing: A = 2Ao(cos A;a;a—cos kyu). The Hamiltonian (2.58) can be written

in Nambu formahsm as

H^ /"rfx*^^o*(x), (2.62)

where the Nambu spinor ** = (^|, ipi), and the matrix differential operator is

(2.63)

where in the tight-binding lattice:

A = —<y^exp i (p Aj
a '- ^

This leads to BdG equations

dr - n. (2.64)

Ho*„ = e„*„. (2.65)

The solutions of these coupled differential equations are quasiparticle wave functions that are rank

two spinors in the Nambu space, $^(r) = (u(r), v{r)). Using BdG equations we can study impurity

effects and vortex properties in a d-wave superconductor.

2.8 Impurities

The role of impvuities in superconductors has been studied theoretically since the establishment of

BCS theory. The main reason is that the superconducting properties are qualitatively modified by

impiurity atoms. In principle, these observations can be useful as a method of identifying the nature

of the pairing state in superconductors. In conventional (s-wave) superconductors, the statement

that non-magnetic impurities affect neither the transition temperature nor the superfluid density

is known as Anderson's theorem [10]. On the other hand, impurities have strong effects on the

superconducting properties of imconventional superconductors.

In the case of the high Tc superconductors, a large number of experimental results and theories

support the d-wave pairing state. The significant difference between d-wave pairing state and the

conventional one is that, in the d-wave state, the order parameter (pair potential) changes its sign

with 7r/2 rotation. Thus the nodes of energy gap exist on the fermi surface along the kx = ±fcy





r
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directions in Brillouin zone. Being intrinsically anisotropic, d-wave superconductors are strongly

affected even by non-magnetic impurities. Because of the energy gap anisotropy strong impurities

can cause a strong pair-breaking effect. The Zn substitutions in cuprates are one example of this.

Although Zn atoms are normally non-magnetic, Tc is strongly suppressed by Zn substitution of Cu

in the planes. Therefore it is reasonable to assimie that Zn ions behave as non-magnetic unitary

scatterers. A strongly scattering scalar impurity is a requirement for a localized bound state to exist

in a d-wave superconductor. Indeed, the low-lying quasiparticle states close to the nodes in the

energy gap will be strongly influenced even by non-magnetic impurity potential [11]. In this thesis,

we consider a point-like impurity, Zn atom, in ovir model. Experimentally, the effect of a single

strong impurity on the electronic properties of superconductors caji be studied using the scanning

timneling microscopy technique.
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Chapter 3

Review of STM experimental data

In this Chapter we give a brief view of the relevant experimental results. Since it is known that

the superconductivity occurs in the copper-oxide layer, scanning tunneling microscopy (STM) ex-

periments were used to probe low energy states associated with the vortex cores in BSCCO. We

focus on the experimental observations on the BSCCO crystals where a very small fraction of their

copper atoms replaced by Zn atoms, in an applied magnetic field perpendicular to the surface. The

low energy spectra at the impurities ajid vortices axe sufficiently distinct from each other that the

scattering resonances ajid the vortex cores can be independently imaged. This can be done by

taking simultaneous DOS maps at zero bias and the core state energy, respectively [12].

3.1 Scanning tunneling microscopy

3.1.1 The basics of scanning tunneling microscopy

The scanning tunneling microscope was invented in 1982 by Binnig and Rohrer [13], for which they

shared the 1986 Nobel Prize in Physics. The instrument consists of a sharp conducting tip which

is scanned with respect to a flat conducting ssmiple. When a voltage V is applied between tip and

sample, a current will flow, and this current cam be measured as a function of (x,y) location and as

a fimction of V. This is illustrated schematically in Fig. 3.1.

The tip is just a very sharp needle, so sharp that it terminates in a single atom. It is not actually

touching the sample, rather it is approximately a few atomic diameters away. The tip is held at

zero voltage. Meanwhile, a bias voltage is placed on the sample, on the order of a few millivolts to

a few volts. This voltage bias induces a tunneUng current to flow between the tip and the sample.

This current is exponentially dependent upon the distance between the tip and the sample which
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Figure 3.1: Schematic of STM tip and sample. A bias voltage V is applied to the sample, the

tumieling current I is measured as V aind/or the (x, y) position of the tip aie varied.

means that for a small change in the distance between the tip and the sample the current changes

by alot.

The tip can be scanned across the surface using a piezoelectric crystal, which changes its size

by very smedl amounts when a voltage is applied to it. As the tip is moved in the x or y direction

along the sxurface of the sample, the current will vary according to whether the tip is right on top of

an atom (smaller distance), or on top of a space between atoms (larger distance). So an individual

atom C8in be "seen" as an increase in the timneling current as the xy scan control moves the tip

across the siurface of the sample.

In practice, since current falls off exponentially with distance, the current when the tip is on

top of an atom is much much larger than the ciurent when the tip is between atoms. We could just

record the current as a fimction xy position on the surface, but because the ciurent is exponential

in the tipnsample distance this would give a distorted image in which the atomic peaks would look

much higher than they actually are.

3.1.2 Calculation of tunneling current

The current which flows between the tip and the sample can be calculated by time dependent

perturbation theory [14]. If the sample is biased by a negative voltage -V with respect to the

tip, this effectively raises the Fermi level of the sample electrons with respect to the tip electrons.
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Figure 3.2: Schematic of tip-sample timneling. Energy is «dong the vertical axis, and density of

states of the sample and tip are shown along the horizontal axes. Filled states are shown

in grey. In this case, a negative bias voltage -V has been applied to the sample, which

eflfectively raises its Fermi level by eV with respect to the Fermi level of the tip. This

allows for filled states on the left (sample) to tunnel into empty states on the right (tip).

Electrons will tend to flow out of the filled states of the sample, into the empty states of the tip.

This situation is illustrated in Fig. 3.2. The elastic tunneling current from the sample to the tip

for states of energy e (with respect to the Fermi level of the sample) is:

27r

Isampie^tip = -2ey |M|2{p.(e)/(e)}{pt(e + eV)[l - f{e + eV)]}, (3.1)

where the first brackets shows the number of filled sample states for tunneling from and the second

one shows the number of empty sample states for timneling to. The factor of 2 out front is for spin,

-e is the electron charge (we are tunneling single electrons, not Cooper pairs), 2Tr/h comes from

time-dependent perturbation theory, |Mp is the matrix element, p«(t)(e) is the density of states of

the sample (tip), €uid /(e) is the Fermi distribution. Though the dominant timneling current for

negative sample voltage -V will be from sample to tip, there will also be a smaller tunneling current

of electrons from tip to sample:
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Itip^sampie = -2e|:|Mp{pe(6 + eV)f{e + eV)}{p,{e)[l - f{e)]}. (3.2)

When we sum these, and integrate over all energies e, we arrive at the total tunneling current

from sample to tip:

Aire r°°
/ = -^ / |M|V.(e)Pt(e + eV){fie)[l - f{e + eV)] - [1 - /(6)]/(6 + eV)}de. (3.3)

n J-eF(tip)

The relevant range of e over which we must integrate to find the tunneling current is reduced to

—eV < 6 < 0. (Likewise, if we had applied a positive bias voltage V to the sample, our range of

integration would be < e < eV.) So we are left with approximately:

/ = -^ / \M\We)pt{e + eV)de. (3.4)
^ J-eV

Experimentalists pick a tip material which has a flat density of states within the energy range of

the Fermi surface that they wish to study so that pt{e + eV) in (3.4) can be treated as a constant

and taken outside the integrsil. We can write (3.4) as

= /o / Ps
J-eV

{e)de. (3.5)

In other words, we can measure the integral of the density of states down to any energy —eV by

varing V.

3.1.3 Scanning tunneling microscope measurements

An STM can typically measure and control the current that flows between the tip and the sample

(I), the bias voltage between the tip and the sample (V), the xy (in saunple plane) position of the tip,

and the z (perpendicular to sample plane) distance between the tip and sample. The STM visualizes

a three dimensioned density of states (DOS) for each x and y position of energy and measiures the

quantity loc«il density of states (LDOS) as a function of position on the siuface (controlled by where

the tip is above the surface) £ind as a fimction of energy (controlled by the bias voltage between

the tip and sample). The LDOS is the density of the electrons of certain energy at particular

specieil location. The LDOS is proportional to the differentieil increase in timneling current given
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Topography

Figure 3.3: (a) Since an STM can measure dI/dV(x,y,V), this figure schematically represents the

x,y and V values at which an STM can measure the conductance. Eax^h pleine represents

a different value of the tip-sample bias V, and the lateral position on the plane gives the

x,y position of the tip. Filled states axe given in grey. The plane at the Fermi energy

(V=0) is shown in blue. Panels (b) - (e) show subsets of this full data-set. The relation

of the subset to the full data-set is shown schematically, and the name of each subset

and a typiceil example of each from BSCCO is shown.

a differential increase in bias voltage or in other words one can measure the LDOS by measuring

dl/dV. We call this dl/dV the conductance g{V),

giV) = ^ oc DOSieV). (3.6)

Therefore, by varying V , we can map out an entire density of states cvu^^e.

A dl/dV Map shows the density of electrons at a particular energy as a function of position on

the surface. In Fig. 3.3, a dl/dV map is equivalent to view a single energy plane. Impurity atoms on

the surface attract electrons of a certain energy so at that energy they are bright in the dl/dV maps.

In Fig. 3.3, the position of an impurity atom is indicated by the center of the clover leaf pattern

in the blue dl/dV map. However, in general at a random energy there will be no especially high
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electron density at «iny given position, but rather the electron density will be uniform throughout

the surface of the crystal. This means that the dl/dV map will be uniformly black as indicated by

the black panel in Fig. 3.3.

A superconductor has a very low density of states at low energies. The spectrum shown in Fig.

3.3 is the spectrum for a d-wave superconductor and we can see that the density of states decreases

as we move to lower energies (zero energy is in the middle of the graph). BSCCO is a d -wave

superconductor; the boimd electrons in the Cooper pairs have d -wave, four-fold symmetry. This

means that the energy landscape is directions. In BSCCO, an electron entering the tip from one

direction may see a 10 meV square gap, while an electron entering from another direction may see

a 30 meV square gap. What measiures with an STM is a sum of all these processes from every

direction. The average of all the square gaps gives us a V-shaped gap. Therefore, each individual

STM spectrimi forfeits the k-space information. In Fig. 3.4 we compare the density of states and

A(k) for a d-wave and a s-wave superconductor.

3.1.4 Low-Tc and cuprate vortex phenomenology

Scanning tunneling microscopy can be used to image the additional quasiparticle states generated

by quantized vortices in BSCCO. In an ideal metal, the Lemdau quasiparticle eigenstates are Bloch

wavefunctions characterized by wavevector k. The LDOS spectrmn at a single location r is related

to the k-space eigenstates *k(r) by

LDOS{E, r) «^ |*k(r)|'5(£; - e(k)). (3.7)

k

Since LDOS is proportional to the norm of the quasiparticle wavefunction |^fc|^» the LDOS will

contain an interference pattern with wavevector q = ki — k2, or wavelength A = 2Tr/q. LDOS mod-

ulations can be observed by STM as spatial modulations of the differential tunneling conductance

dl/dV.

The Bogoliubov quasiparticles in a imiform BCS superconductor axe described by the Bloch

wavefunctions, but with dispersion

E{k) = Vf2(k) + A2(k), (3.8)
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Figiire 3.4: Demonstration of the density of states, as seen by an STM, averaged over k for s-wave

and d-wave superconductors, (a) Gap A(k) is constant as a fimction of angle for an

s-wave superconductor, (b) Therefore when the STM averages over angle, the result«int

density of states still shows a square gap. (c) Real data:[15] density of states spectriun

on s-wave superconductor NbSe2. The imperfection of the square gap is due in part to

thermal broadening, and in part to the very slight anisotropy in the NbSe2 s-wave gap.

(d) Gap A(k) is angle-dependent for a d-wave superconductor, (e) Therefore, when the

STM averages over angle, it combines square-gapped spectra with all diflFerent values of

A, and the resultant average shows a V-shaped gap. (f ) Real data: typical density of

states spectriun on d-wave superconductor BSCCO.
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where |A(k)| is the k-dependent magnitude of the energy gap at the Fermi surface.

To find the superconducting state band structure, we need a formula for the superconducting

gap as a fimction of angle, Ak. Several possibilities exist in the literature. One of the most popular

choices is [16]:

Ak = 2Ao[cos fciO — cos kyo]. (3.9)

In conventioneil s-wave type-II superconductors, the superconducting order parameter is suppressed

in the cores of quantized magnetic vortices, and recovers over a distance of about one coherence

length ^, as discussed in Sec. 2.3. Boimd quasip«irticle states can exist inside these cores [17] with

lowest energy given approximately by £? ~ A^/2ef , where €f is the Fermi energy and A is the

superconducting gap. Such "core" states at the Fermi energy were first imaged by Hess et al. using

low temperature STM [18].

A simple description of a vortex in an s-wave superconductor is a particle-in-a-box. In the vortex

core, the superconducting order parameter is destroyed, so the quasiparticle has no binding energy

and can exist freely. However, outside the vortex "box", the imattached quasiparticle has energy

A greater than it would have if joined into a Cooper pair. So we can think of the quasiparticle as

sitting in a circular potential well of height A and radius ^. No matter how shallow the well, there

will exist at least one bound state, which will decay exponentially outside the box [19].

However, the cuprate superconductors have a dx^-y^ order parameter. This means there are

four gap nodes, which would imply that there are four holes in the weJls of the vortex "box" . So

we might expect that such a "leaky" box would contain only scattering states, which decay as a

power law with distamce. Indeed, initial theoretical efforts focused on the quantized vortex in an

otherwise conventioneJ BCS superconductor with dx^-y^ symmetry [20]- [23]. These models included

predictions that, because of the gap nodes, the local density of electronic states (LDOS) inside the

core is strongly peaked at the Fermi level. This peak, which would appear in tunneling studies as

a zero bias conductance peak (ZBCP), should display a four-fold symmetric star shape oriented

toward the gap nodes, and decaying as a power law with disteince. Scanning tunneling microscopy

studies of HTSC vortices have revealed a very different electronic structure from that predicted by

the pure d-wave BCS models. Vortices in YBa2Cu307j (YBCO) lack ZBCPs but exhibit addition«il
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Figure 3.5: Density of states spectra from (a)YBa2Cu307_i (from Maggio-Aprile et al. [26]) and

(b)Bi2Sr2CaCu208+i (adapted from Pan et al. [25]) Red traces show spectra inside the

vortex cores, while black traces show spectra taken far from the vortices. In (b) it also

shows a spectrum at an intermediate distance (green trace), outside the vortex "core"

but still clearly influenced by the vortex.

quasiparticle states at 5.5 meV [24], whereas those in BSCCO also lack ZBCPs [25]. More recently,

the additional quasiparticle states at BSCCO vortices were discovered at energies near 7 meV [12].

Typical DOS spectra from BSCCO and YBCO vortex cores are shown in Fig. 3.5.

Thus, a common phenomenology for low energy quasiparticles associated with vortices is be-

coming apparent. Its features include:

1. The absence of ZBCP's.

2. Low energy quasiparticle states at ±5.5 meV (YBCO) and ±7 meV (Bi-2212).

3. A radius for the actual vortex core (where the coherence peaks axe absent) of ~10 A, [12].

4. A radius of up to 75 A, within which these states «ire detected, and apparently decay

exponentially [12].

5. The absence of a four-fold symmetric star-shaped LDOS.
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3.2 Interaction between impurities and vortices

In order to better understand the electronic properties of the high temperature superconductor

Bi2Sr2CaCu208+6, experimentalists from the Berkeley group studied samples in which some of the

Cu atoms in the superconducting Cu02 plane have been intentionally replaced by impiu-ity atoms.

The particulair impurity atoms used have distinct magnetic and electrostatic properties which per-

tvirb the superconductor to produce a characteristic pattern in the local density of states. This

pattern is then imaged by scanning tunnelling microscopy and spectroscopy in order to produce

atomic scale information about the local eflFects of these perturbations. In general, there are quasi-

particle resonances within the superconducting energy gap whose spatial extent are clearly foiufold

in keeping with the d-wave gap symmetry. The experimentalists aire looking in the case when Cu

is replaced by a single point like strong impurity hke Zn. Zn is a supposed non-magnetic impurity

known to replace copper in the superconducting Cu02 plane of BSCCO. STM and other probes

indicate that it is destructive to superconductivity.

Fig. 3.6(b) is measured at V = 7 mV in a magnetic field of 7.25 T on identical area as Fig.

3.6(a) eind contains regions of enhanced DOS with apparent radius near 60 A, associated with

vortices [12]. The ability of mapping vortex and impurity locations independently, allows one to

study interaction between them. The STM experiments [12] shows that the Zn impurity atoms

provide attractive potentials for pinning of the vortices eind their random distribution is a source

of disorder in the vortex solid.

Zooming in on an individual Zn atom with dl/dV map taken at the resonance energy, a rich

spatial pattern is evident (Fig. 3.7). The central atom is the Zn atom. In addition, there is a very

evident cross formed by the four second nearest neighbor atoms along the horizontal (a axis) and

verticeJ (b axis) directions. This cross lies along the gap node directions as is expected by theory

and its fourfold symmetry provides direct real space evidence of the fourfold d-wave symmetry of

the energy gap in the high temperature superconductors.

If the STM tip is put directly over the center of one of the crosses we may acquire a spectnun

Fig. 3.7 for the Zn atom. Compared to the usual d-wave superconductor spectrum, there is a very

large peak in the Zn atom spectra at the resonance energy. Zn impurities have a peak in the density
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Figure 3.6: (a) A DOS map of a 120 nm square field of view, measured at zero sample bias in zero

magnetic field, shows the impurity scattering resonances, (b) A DOS map, measured

on the same 120 nm square field of view as (a) at sample bias V = 7 mV in B = 7.25 T

shows about 50 regions of increased DOS associated with vortices. The apparent shape

of the vortices varies from vortex to vortex, probably due to the influence of impiuities

«ind other inhomogeneities in the crystal. The vortex solid appears highly disordered.

Comparison with (a) shows that vortices axe often found at the sites of impurities, which

appear to act as pin sites. Arrows indicate the locations of vortices remote from any

scattering resonance.
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Figure 3.7: Density of states maps and spectra at Zn, in BSCCO. The spectrum at a Zn impurity

shows a peak at -1.5 meV. Black curve shows typical spectra far from the impurity, for

comparison. The map was measured near the peak energy of the -1.5 meV.
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of states at -1.5 meV. This peak is strongest on the central atom, and falls off to about 1/5 of the

value on the next nearest neighboring atoms [27].

The low energy spectra at the impurities and vortices are sufficiently distinct from each other

that the scattering resonances at the vortex cores can be independently imaged. The ability to

independently map vortex and impurity locations allows us to study interactions between them.

In regions of high impiu-ity density , the density of vortices are also high [12]. This can clearly be

seen in the Zn doped crystals which have stronger scattering impurities. The Zn impurity atoms

provide attractive potential for pinning of the vortices and their random distribution is a source for

the disorder for the vortex solid.
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Chapter 4

Our model

The experimental resvilts reviewed in the preveous Chapter show that the Abrikosov vortices are

attracted to strong impurities such as Zn. In this Chapter we present the computation procedure

for calculating the interaction between vortices and impurities in a d-wave superconductor by a

direct numerical diagonalization of the lattice Bogoliubov-De Gennes Hamiltonifin. First we start

with introducing all elements of our two-dimensional model in the real space. Then we explmn the

procedures of finding the Hamiltonian matrix for the model. Finally, we diagonalize the matrix and

find the condensation energies of the system for different locations of the impurity.

4.1 The model in real space

Let us consider a two dimensional d-wave superconductor. The model consists of a tight-binding

lattice with the neeirest-neighbor and the next neaurest-neighbor hopping, a single point-like-impurity

and a single vortex on the center of the lattice. We describe our system based on the BdG Hamil-

tonian described in Chapter 2. The BdG Hamiltonian can be written as

H=-Y^ licla^ - t J] e**-cLc^, " *' 2] e'*"49<r + J2 (^<i44i + ^Ij^i^jr) . (4.1)

i^ <ij>,a «ij»,(T <ij>

where c]^(ci<y) creates (Einnihilates) an electron with spin a, t is the nearest-neighbor hopping am-

pUtude and f is the next-nearest hopping ampUtude on a square lattice made of N sites with lattice

spacing a, /i is the chemical potential, and «^y is the Peierls phase factor for hopping from site j to

i [28]:

<l>,j
= ^ / A-dr, (4.2)

''' = Tol
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Figure 4.1: The definition of the angle 6 in our lattice.

where 4>o = hc/e is the flux quantum. We use the Landau gauge where A = Byi, it is the same

as (2.16) in the case where the magnetic field is in z direction. Since the quasiparticles ^(r) are

represented by an electron-hole Nambu spinor

*(r) =
*I(r)

(4.3)

as we have discussed in Chapter 2, it is more convenient to use the Nambu representation of the

HamiltoniaJi. In that representation, the Hamiltonian is given by a 4 x 4 matrix:

n=-Y^ Cf.fHjCj (4.4)

where CJ = {cl^^,Ci^) and Cj = {cji,Cj^)^ aie the Nambu creation and annihilation operators, and

-tij - ^5ij Aij

A •,• tji + uSij

is the BdG lattice Hamiltonian. The order parameter A^ corresponding to dx^^yi symmetry is :

Ay = |Ao| exp(i<A<j) = |Ao| exp[i{(f>o + ^y)] (4.6)

where the phase <^o is defined by

Ao along x axis.

hij== (4.5)

|Ao|exp(i(;6o) =
—Ao along y axis.

(4.7)
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Figiire 4.2: The order parameter in a d-wave superconductor.

The momentum representation of this expression is given by (3.9). Here Aq is related to the rate

at which the gap opens up at the nodes and we assume it as a constant, axid as we have discussed

in Chapter 2, 6ij is the phase of superconducting electrons and varies by 27r in making a complete

circle, corresponding to the existence of a single flux quantum associated with the vortex [2]. This

phase can be represented in the form 0ij = arctany/x, where (x,y) is the coordination of the

corresponding bond with respect to the vortex at the origin (Fig. 4.1). By using (4.6), one can plot

Aij in Fig. 4.2. The impurity scattering is described by the on-site scalar potential Uij = USi^ioSjjo,

where (iO,jO) is the impiu-ity position. This means that the potentied Uij is non-zero only at the

position of the impurity.

4.2 Our model

In this section we explain the computational procedures used in calculating the interaction between

vortex and impurity. The input parameters of the lattice BdG Hamiltonian (4.4) are chosen to

comply with the literature values [29], so that meaningful comparisons could be made among the

various works. The band parameters normalized to the nearest-neighbor hopping are t'/t = —0.3,

fi/t = — 1, and the order parameter Ao/t = 0.04. As we apply the magnetic field to the system, a

single vortex appears on the lattice. In our model we put this vortex at the center of the lattice

(Fig. 4.1), because it would decrease the possible numerical errors, and vary the impurity position.

First, we should initialize the Bogoliubov-De Gennes Hamiltonian for our 20 x 20 lattice, where





Chapter 4. Our model 41

the matrix have 800 elements. For each position of the atom we can have two electrons for spin f

BJid spin J.. We label these electrons by fc, A; = 1 for t and fc = 2 for
J..

Each electron is labeled by

three factors, i, j, and k. For simplifying the problem we introduce new /. By using / we label the

electrons from 1 to 800. For instance, 7 = 1 is for i = 1, j = 1, and A; = 1. / = 2 is for i = 1, j = 1,

and k — 2 and so on. Then I can be shown as

/ = (2(z - 1) X 20) + (2(j - 1) + k).

For each position of the electron on the lattice (/), there is an element for the system Hamiltonian.

By using the tight binding model relations for a square lattice and the system BdG Hamiltonian,

we can calculate all the elements of the Hamiltonian matrix for each position of impurity in our

lattice. Suppose in our 20 x 20 square lattice, the electron jumps from the atom labeled / to the

atom labeled /' which is its nearest neighbor the matrix element should be

tjj' = texp{i(t)ii>),

where

27r f'

<P0 JI'

4>ii' = -r A • dr.

<P0 JI'

As we have mentioned before, ^o = 2.07 x 10"^ Ga/cm? is the flux quantum. The applied magnetic

field is in the z direction: B = Bz. By using the Landau gauge, we can write

where Tj the distance the electron in / position to the vortex. By using A = i5a, where the lattice

constant a = 1 A, and substituting it back to the equation and changing everything back to the old

notation by using I = I{i,j), we have

2'K {i-l)Ba^ + {\'-l)Ba\. .,.

<t>iv = -7
o U-J)i

so we can rewrite our fs as

[irBa'^
ill' = t exp

00
(i + i'-2)(j-j')
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We now calculate the order parameter Ajj, by using (4.6) and (4.7). We calculate i//''s and Ajj's

for eight values of the magnetic field: 5 = 0.1 T, 0.2 T, 0.3 T, 0.4 T, 0.5 T, 0.6 T, 0.7 T, and 0.8

T, corresponding to the following values of the ratio : Ba'^/cpo = 10 x 10~^, 2.0 x 10~^, 3.0 x 10"^,

4.0 x 10-^ 5.0 x 10-^ 6.0 X 10-^ 7.0 X 10-^ and 8.0 x 10"^

It is important to mention that we have to use an open boundary condition for our system. It

is not possible to use the periodic boundary condition in our case, since the phase should vary by

27r in making a complete circle around the vortex. First we tried to use the periodic boundary

condition but because the system is finite we had phase differences on the boundaries. Let us see in

more detail what happens with the periodic boundary conditions. Suppose we look at an electron

in position {20, j) in a 20 x 20 lattice site. If we use the periodic boundary condition this electron

should have the same hopping factor when it jumps to {21, j) as (1, j). But as we can see on Fig.

4.1, for an electron in position {20, j), if the phase factor 02Oj = 02Oj, after hopping the phase factor

for the electron is (j)ij
= tt — ^20j- Our model must be continuous and the phase factor should not

change when an electron jumps from site i to site z + 1. So the periodic boundary conditions do

not work if there is only one vortex in the system.

In our model there is a single strong impurity, like Zn. Because of the energy gap anisotropy

such impurity can cause a strong pair-breaking effect and we can choose the impurity potential as

Uij/t = 5i^io6jjo (here {iO,jO) is the position of the impurity). We assume that the strength of the

impurity is comparable to the bandwidth, i.e. f/jojo/i = 1- To measure the interaction between the

impurity and the vortex in our system, we have changed the position of this impurity in the lattice.

For different possible positions of the impurity we find the total energy of system by calculating the

eigenvalues of the BdG Hamiltonian of the system at T = 0. Calculations are done both for the

normal state En, when there is no vortex in the system, and the superconducting state Eg- After

calculating the total energies, we calculate the difference between these two energies. En and Es,

and find AE for each position of the impurity:

AE = {Eg — En) — Econdensation- (4-8)
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Figure 4.3: The square lattice in real space. The shaded region shows the different positions of the

impurity that we have used for our calculations.

The condensation energy of electrons Eoondenaation is defined by

Eamdenaation — Ea{oo) — £J„(oo), (4.9)

i.e. as the difference in the total energy of the normal and the superconducting states for the

furthest points from the vortex. In our case En{oo) = En{2) and Es{oo) = Es{2). We use En{2)

and Eg{2) instead of £^n(l) and Eg{l) to minimize the nimierical errors. We can change the position

of the impurity and calculate AE's for different positions of the impurity. Because of the symmetry

of the system, we can limit ourselves to the positions of the impurity in the shaded area in Fig.

4.3. Then we plot AE^s with respect to the distamce of the impurity from the vortex to find the

interaction between vortex and impurity (the graphs are shown in the next Chapter).

There is always an upper limit on lattice size due to both the memory restrictions of the com-

puting system and the run time of the prograuns. The total number of atoms ior N x N lattice is

N^ which by considering the spin of electrons in the system the size of the Hamiltoniaji matrix that

describes the system is 2N^. Clearly the memory required for the system is increasing rapidly as

the size of the lattice is growing.
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Chapter 5

Numerical Results and Discussion

In the previous Chapter we have explained in detail the computing procedure of the calculation of

the interaction between impurity and vortex in our 20 x 20 lattice. The current Chapter presents

the results of the calculations, accompanied by a general discussion Jind analysis of the data.

5.1 Results

As discussed in Chapter 4, we can calculate the total energy for normal state and superconducting

state. The energy difference between normal and superconducting state is the condensation energy.

We can calculate the condensation energies (A£^'s), for different positions of the impurity in our

model (the shaded area in Fig. 4.3) and plot its distributions with respect to the position of the

impurity for different applied magnetic fields.

Let us discuss one case in more detail. Consider the 20 x 20 lattice in an applied 0.2 T magnetic

field. Fig. 5.1 shows the condensation energy of the model with respect to the different positions of

the impurity. As we can see on Fig. 5.1, as the impurity gets closer to the vortex, the condensation

energy gets lower. This shows that the position of the vortex is most likely close to the position

of the impurity. In the normal case when there is no vortex in our system the total energy of the

system for different positions of the impurity is shown in Fig. 5.2. Using a finite model and choosing

the open boundary condition causes some errors, especially on the boundaries. When the system

goes to it the superconducting state, by considering the vortex at the center of the model, the toted

energy for diff^erent positions of the impurities can be shown as Fig. 5.3.

Fig. 5.1 to Fig. 5.10 show the condensation energy for the 20 x 20 lattice for different applied

magnetic fields. As we can see it is not clear if the lower condensation energy is at the center of the

model. We do not calculate the energies at the boundaries because of the errors caused by using
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Figure 5.1: Condensation energy for 20 x 20 lattice, B=0.2 T

Figure 5.2: Total energy for normal state for 20 x 20 lattice, B=0.2 T
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Figure 5.3: Total energy for superconducting state for 20 x 20 lattice, B=0.2 T
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Figure 5.5: Condensation energy for 20 x 20 lattice, B=0.3 T

Figure 5.6: Condensation energy for 20 x 20 lattice site, B=0.4 T
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Figure 5.7: Condensation energy for 20 x 20 lattice, B=0.5 T
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Figiire 5.9: Condensation energy for 20 x 20 lattice, B=0.7 T

Figure 5.10: Condensation energy for 20 x 20 lattice, B=0.8 T





Chapter 5. Numerical Results and Discussion 50

Figure 5.11: Condensation energy for B=0.1 T vs. distance to the vortex along the diagonal for 20

X 20 lattice.

the open boundary condition.

To have a better understanding of the changes of the condensation energy for different positions

of the impiu-ity, first we plot the changes of the condensation energy for each value of the magnetic

field vs. the distance of the atoms on the diagonal to the vortex at the center of the 20 x 20 lattice

(Fig. 5.11 to Fig. 5.18). Next we consider the impurities along the y eixis for each value of the

magnetic field and again plot the changes of the condensation energy vs. the distance to the vortex

for these atoms (Fig. 5.19 to Fig. 5.26).

As we can see from Fig. 5.11 to Fig. 5.18, when we are changing the position of the impurity

along the diagonal, the condensation energy shows some decreasing behavior as the position of the

impurity gets closer to the vortex. Fig. 5.19 to Fig. 5.26 does not show a clear decreasing behavior

for the condensation energy of the impurities along the y axis when the impurity gets closer to the

vortex.

We have used the seime algorithm for ceilculating the condensation energy distribution for a 24

X 24 lattice as well as a 30 x 30 lattice when the applied magnetic field is 0.2 T (Fig. 5.27 and

Fig. 5.28).

As we can see from Fig. 5.27 for a 24 x 24 lattice, the condensation energy has its minimum value
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Figiire 5.14: Condensation energy for B=0.4 T vs. distance to the vortex along the diagonal for 20

X 20 lattice.
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Figure 5.16: Condensation energy for B=0.6 T vs. distance to the vortex along the diagonal for 20

X 20 lattice.

Figure 5.17: Condensation energy for B=0.7 T vs. distance to the vortex «Jong the diagonal for 20

X 20 lattice.
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Figure 5.18: Condensation energy for B=0.8 T vs. distance to the vortex eJong the diagonal for 20

X 20 lattice.
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Figvire 5.28: Condensation energy for 30 x 30 lattice, B=0.2 T

somewhere between the vortex position and the edge of the sample along the diagonal. Although

the condensation energy for 30 x 30 lattice, Fig. 5.28, has a minimum value at the center but there

are some other areas that show the minimum condensation energies.

5.2 Conclusions

In conclusion, this thesis has focused on the calculation of the interaction between vortices and

impurities in a d-wave superconductor mostly by using the observations of Davis et al. [15] on

BSCCO. To make the study as comprehensive as possible, we apply different magnetic fields and

change the position of the single impurity in our model. The calculations for eight different values

of the magnetic field show that there is no clear relation between the condensation energy of the

system and the position of the impiu-ity relative to the vortex. In other words, om- results can

not explain the experimental fact that the vortices are attra<;ted to strong impurities in d-wave

superconductors. It might be due to the fact that the size of our model is insufficient and we are

using open boimdary conditions.
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Appendix A

Program code

The program initializes the elements of the BogoUubov-de Gennes Hamiltonian for an 800 x 800

matrix related to a 20 x 20 lattice for each position of the impurity on the lattice. Generally the

program is set to calculate the eigenvalue problem of the Hsoniltonian and find the eigenvalues both

for normal state and superconducting state for each position of the impiuity.

First we introduce the constant values that have been chosen for our calculations (see Chapter

4) «ind the prograun requires the dimensionality of the lattice. Next we have six "for" loops for

introducing the position of each atom emd its nearest neighbor or next nearest neighbor atom.

Now we start to introduce each element of the matrix. We have several "if" conditions; we have

a chemical potential, ^/t=-l, for any atom except the impiuity. The impvuity has the potential

UiOjo/t=l. The next two "if's" calculate the elements of the matrix for nearest neighbor hoppings

along the y axis. Then we calculate the elements of the matrix for the nearest neighbor hoppings

along the x axis. Then it is time to caJculate the matrix elements for next nearest neighbor hoppings.

After calculating the tight-binding elements, we should calculate A's. For the normal state, since

A = 0, other matrix elements are zero. For superconducting state, Aq = 0.04 and the remaining if's

will calculate the A's by calculating the phase factor for each bond. After initializing the matrix

elements, the program calculates the eigenvalue problem. By using the eigenvalues it calculates

the total energy of the system both for normal and superconducting states. We continue these

calculations for each position of the impiurity and for different values of the magnetic field.





Appendix A. Program code 61

%.

% The values that I am using

%

Baaofi=4*0.00001

;

% magnetic field B, times a squared times phi

cons=(2*pi*(Baaofi));

tO=l

;

% to is is the nearest neighbor hopping amplitude

Delta=0.04; % Delta is the order parameter

tl=-0.3; % tl is the next nearest neighbor hopping amplitude

mu=-l

;

% mu is the chemical potential

a=0.000000000 1

;

% a is the lattice constant

cnt=l;

N=input('what is N? ') % N is the dimension of the matrix

%
% For Elements

%

for(i=l:l:N),

forO=l:l:N),

for(k=l:l:2),

I=((2*(i- 1 )*N)+(2*(j- 1 )+k)); % label atoms by I

for(ii=l:l:N),

for(iJ=l:l:N),

for(kk=l:l:2),

II=((2*(ii-l)*N)+(2*(ij-l)+kk)); % label targets by II

%
% Matrix Elements

%

%
%Conditrion for the chemical potential. The impurity is in position (10,10)

%the U/tO=l

%

if((k=kk)&(i~=10)&(j~=10)&(jj=j)&(i=ii))

t=mu/tO;

%
%nearest neighbors

%
%#along y axis
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elseif((k=kk)&(j=ij)&(ii=(i-l))&(i~=l))

t=i;

else if((k=kk)&(j==jj)&(ii=(i+l)))

t=l;

%
%#along X axis

else if((k=kk)&(ij=j+l)&(i=ii))

t=(tO*(complex(cos(cons*(i+ii-2)*G-iJ)),sin(cons*(i+ii-2)*(j-ij)))))/tO;

else if((k=kk)&(ij==j-l)&(i=ii))

t=(t0*(complex(cos(cons*(i+ii-2)*(j-ij)),sin(cons*(i+ii-2)*(j-jj)))))/t0;

%next nearest neighbors

%

else if((k=kk)&(ij=j+l)&(ii=i+l))

t=(tl*(complex(cos(cons*(i+ii-2)*(j-jj)),sin(cons*(i+ii-2)*(j-ij)))))/t0;

else if((k=kk)&(ij=j-l)&(ii=i-l))

t=(tl*(complex(cos(cons*(i+ii-2)*(j-jj)),sin(cons*(i+ii-2)*(j-jj)))))/tO;

else if((k=kk)&(ij=j+l)&(ii=i-l))

t=(tl*(complex(cos(cons*(i+ii-2)*0-jj)),sin(cons*(i+ii-2)*(j-ij)))))/t0;

else ifl[(k=kk)&(ij=j-l)&(ii=i+l))

t=(tl*(complex(cos(cons*(i+ii-2)*(j-ij)),sin(cons*(i+ii-2)*(j-jj)))))/t0;

%
% Conditions on Deltas (with single Vortex

)

%
% theta is between to pi/2

%

%
%i<=N/2 & j>=(N/2+l) because we are looking for phase defferences from to pi/2

%

else if((i<=N/2)&(j>=(N/2+ 1))&(k=l )&(ii=i)&(ij=j+ 1)&(kk=2))

x=(iJ-(N/2+l))*a; y=(((N+l)/2)-i)*a; theta=(atan(y/x));

phase=(complex(cos(theta),sin(theta)));
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K(Delta)*(phase))/tO;

elseif((i<=N/2)&(j>=(N/2+l))&(k=2)&(ii=i)&(ij=j+l)&(kk=l))

x=(iJ-(N/2+l))*a; y=(((N+l)/2)-i)*a; theta=(atan(y/x));

phase=(complex(cos(theta),-sm(theta)));

t=((Delta)*(phase))/tO;

else if((i<=N/2)&G>=(N/2+2))&(k= 1 )&(ii=i)&(ij=j- 1)&(kk=2))

x=(j-(N/2+l))*a; y=(((N+l)/2)-i)*a; theta=(atan(y/x));

phase=(complex(cos(theta),sin(theta)));

t=((Delta)*(phase))/tO;

elseif((i<=N/2)«&(j>=(N/2+2))&(k=2)&(ii=i)&(ij=j-l)&(kk=l))

x=(j-(N/2+l))*a; y=(((N+l)/2>i)*a; theta=(atan(y/x));

phase=(complex(cos(theta),-sin(theta)));

K(Delta)*(phase))/tO;

elseif((i<=(N/2-l))&0>=(N/2+l))&(k=l)&(ii=i+l)&(ij=^)&(kk=2))

x=(j-((N+l)/2))*a; y=((N/2+l)-ii)*a; theta=(atan(y/x));

phase=(complex(cos(theta),sin(theta)));

t=-((Delta)*(phase))/tO;

elseif((i<=(N/2-l))&(j>=(N/2+l))&(k=2)&(ii=i+l)&(ij=j)&(kk=l))

x=(j-((N+l)/2))*a; y=((N/2+l)-ii)*a; theta=(atan(y/x));

phase=(complex(cos(theta),-sin(theta)));

t=-((Delta)*(phase))/tO;

else if((i<=N/2)&0>=(N/2+ 1))&(k= 1)&(kk=2)&(jj=j)&(ii=i- 1 ))

x=0-((N+l)/2))*a; y=((N/2+l)-i)*a; theta=(atan(y/x));

phase=(coniplex(cos(theta),sin(theta)));

t=-((Delta)*(phase))/tO;

elseif((i<=N/2)&G>=(N/2+l))&(k=2)&(kk=l)&(iJ=j)&(ii=i-l))

x=0-((N+l)/2))*a; y=((N/2+l)-i)*a; theta=(atan(y/x));

phase=(complex(cos(theta),-sin(theta)));

t?=-((Delta)*(phase))/tO;

%.

% theta is 2pi
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%~

%-
%j=N/2 & i<=N/2 because we are looking for the phase difference pi/2

%

elseif((i<=N/2)&(j=N/2)&(k=l)&(ii=i)&(ij=(N/2+l))&(kk=2))

theta=(pi/2);

phase=(complex(cos(theta),sin(theta)));

t=((Delta)*(phase))/tO;

elseif((i<=N/2)&(j=N/2)«&(k=2)&(ii=i)«&(ij=(N/2+l))&(kk=l))

theta=(pi/2);

phase=(complex(cos(theta),-sin(theta)));

t=((Delta)*(phase))/tO;

elseif((i<=N/2)«&(j=(N/2+l))&(k=l)&(ii=i)&(ij=N/2)&(kk=2))

theta=(pi/2);

phase=(complex(cos(theta),sin(theta)));

t=((Delta)*(phase))/tO;

else if((i<=N/2)&0==(N/2+ 1))&(k=2)&(ii=i)&(ij=N/2)&(kk-= 1 ))

theta=(pi/2);

phase=(complex(cos(theta),-sin(theta)));

t=((Delta)*(phase))/tO;

%.

% theta is between pi/2 to pi

%

%
% i<=N/2 & j<=N/2 we are looking for phase differences from pi/2 to pi

%

elseif((i<=N/2)&G<=(N/2-l))&(k=l)&(ii=i)&(iJ=j+l)&(kk=2))

x=((N/2+l)-jj)*a; y=(((N+l)/2)-i)*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),sin(theta)));

t=((Delta)*(phase))/tO;

else if((i<=N/2)&0<=(N/2- 1 ))&(k=2)&(ii=i)&(ij=j+ 1)&(kk= 1 ))
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x=((N/2+l)-iJ)*a; y=(((N+l)/2)-i)*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),-sin(theta)));

t=((Delta)*(phase))/tO;

elseif((i<=N/2)&(j<=N/2)«fe(k=l)&(ii=i)&(ij=j-l)&(kk=2))

x=((N/2+l)-j)*a; y=(((N+l)/2)-i)*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),sin(theta)));

t=((Delta)*(phase))/tO;

else if((i<=N/2)&G<=N/2)&(k=2)&(ii=i)&(jj=j- 1)&(kk= 1 ))

x=((N/2+l)-j)*a; y=(((N+l)/2)-i)*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),-sm(theta)));

t=((Delta)*(phase))/tO;

elseif((i<=(N/2-l))&(j<=N/2)&(k=l)&(ii=i+l)&(ij=j)&(kk=2))

x=(((N+l)/2)-j)*a; y=((N/2+l)-ii)*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),sin(theta)));

t=-((Delta)*(phase))/tO;

elseif((i<=(N/2-l))&G<=N/2)&(k=2)&(ii==i+l)&(ij=j)&(kk=l))

x=(((N+l)/2)-j)*a; y=((N/2+l)-ii)*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),-sin(theta)));

t=-((Delta)*(phase))/tO;

else if((i<=N/2)&(j<=N/2)&(k= 1 )&(ii=i- 1)&(ij=j)&(kk=2))
x=(((N+l)/2)-j)*a; y=((N/2+l)-i)*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),sin(theta)));

t=-((Delta)*(phase))/tO;

elseif((i<=N/2)&(j<=N/2)&(k=2)&(ii=i-l)&(ij=j)&(kk=l))

x=(((N+l)/2)-j)*a; y=((N/2+l)-i)*a; theta={pi-(atan(y/x)));

phase=(complex(cos(theta),-sin(theta)));

t=-((Delta)*(phase))/tO;

%
% thetaispi

%

%
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%i=N/2 & j<=N/2 because we are looking for the phase difference pi

%

else if((i=N/2)&(j<=N/2)&(k=l)&(ii=(N/2+ 1))&(jj=j)&(kk=2))

theta=(pi);

phase=(complex(cos(theta),sin(theta)));

t=-((Delta)*(phase))/tO;

elseifl:(i=N/2)&(j<=N/2)&(k=2)&(ii=(N/2+l))&(ij=^)&(kk=l))

theta=(pi);

phase=(complex(cos(theta),-sin(theta)));

t=-((Delta)*(phase))/tO;

elseif((i=(N/2+l))&(j<=N/2)&(k=l)&(ii=N/2)&(iJ=j)&(kk=2))

theta=(pi);

phase=(complex(cos(theta),sin(theta)));

t=-((Delta)*(phase))/tO;

elseif((i=(N/2+l))&(j<=N/2)&(k=2)&(ii=N/2)&(iJ=j)&(kk==l))

theta=(pi);

phase=(complex(cos(theta),-sin(theta)));

t=-((Delta)*(phase))/tO;

%
% theta is between pi to 3pi/2

%
% i>=N/2 & j<=N/2 because we are looking for the phase differences from pi to 3pi/2

i%

elseif((i>=(N/2+l))&(j<=(N/2-l))«&(k=l)&(ii=i)&(ij=j+l)&(kk=2))

x=((N/2+l)-jj)*a; y=(i-((N+l)/2))*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),sin(theta)));

t=((Delta)*(phase))/tO;

else if((i>=(N/2+ 1 ))&(j<=(N/2- 1))&(k=2)&(ii=i)&(ij=j+ 1)&(kk= 1 ))

x=((N/2+l)-jj)*a; y=(i-((N+l)/2))*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),-sin(theta)));

t=((Delta)*(phase))/tO;
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else if((i>=(N/2+ 1))&G<=N/2)&(k= 1 )&(ii=i)&(ij=j- 1)&(kk=2))
x=((N/2+l)-j)*a; y=(i-((N+l)/2))*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),sin(theta)));

t=((Delta)*(phase))/tO;

else ifl((i>=(N/2+ 1))&(j<=N/2)&(k=2)&(ii=i)&(jj=j- 1)&(kk= 1 ))

x=((N/2+l)-j)*a; y=(i-((N+l)/2))*a; theta=(pi-(atan(y/x)));

phase=(coniplex(cos(theta),-sin(theta)));

t=-((Delta)*(phase))/tO;

elseif((i>=(N/2+l))&(j<=N/2)&(k=l)&(ii=i+l)&(iJ=j)&(kk=2))

x=(((N+l)/2)-j)*a; y=(ii-(N/2+l))*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),sin(theta)));

t=-((Delta)*(phase))/tO;

elseif((i>=(N/2+l))&(j<=N/2)&(k=2)&(ii=i+l)«&(ij=j)&(kk=l))

x=(((N+l)/2)-j)*a; y=(ii-(N/2+l))*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),-sin(theta)));

t=-((Delta)*(phase))/tO;

else if((i>=(N/2+2))&(j<=N/2)&(k= 1 )&(ii=i- 1)&(ij=j)&(kk=2))
x=(((N+l)/2)-j)*a; y=(i-(N/2+l))*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),sin(theta)));

t=-((Delta)*(phase))/tO;

elseif((i>=(N/2+2))&0<=N/2)&(k=2)&(ii=i-l)&(ij=j)&(kk=l))

x=(((N+l)/2)-j)*a; y=(i-(N/2+l))*a; theta=(pi-(atan(y/x)));

phase=(complex(cos(theta),-sin(theta)));

t=-((Delta)*(phase))/tO;

%
% thetais3pi/2

%

%
%i>=N/2 &j=N/2 because we are looking for the phase difference 3pi/2

%

else if((i>=(N/2+ 1))«&0=N/2)&(k= 1)&(ii=i)&(jj=(N/2+ 1))&(kk=2))
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theta=((3*pi)/2);

phase=(complex(cos(theta),sin(theta)));

t=((Delta)*(phase))/tO;

else if((i>=(N/2+ 1))«&G=N/2)&(k=2)&(ii=i)&(ij=(N/2+ 1))&(kk= 1 ))

theta=((3*pi)/2);

phase=(complex(cos(theta),-sin(theta)));

t=((Delta)*(phase))/tO;

elseif((i>=(N/2+l))&(j==(N/2+l))&(k=l)&(ii=i)&(ij=N/2)«fe(kk=2))

theta=((3*pi)/2);

phase=(complex(cos(theta),sin(theta)));

t=((Delta)*(phase))/tO;

else if((i>=(N/2+ 1))&(j=(N/2+ 1))&(k=2)&(ii=i)&(ij=N/2)&(kk= 1 ))

theta=((3*pi)/2);

phase=(complex(cos(theta),-sin(theta)));

t=((Delta)*(phase))/tO;

%
% theta is between 3pi/2 to 2pi

%

%
%i>=N/2 & j>=N/2 because we are looking for the phase differences from 3pi/2 to 2pi

elseif((i>=(N/2+l))&(j>=(N/2+l))&(k=l)&(ii=i)&(ij=j+l)&(kk=2))

x=(iJ-(N/2+l))*a; y=(i-((N+l)/2))*a; theta=((2*pi)-atan(y/x));

phase=(complex(cos(theta),sin(theta)));

t=((Delta)*(phase))/tO;

elseif((i>=(N/2+l))&(j>=(N/2+l))&(k=2)&(ii=i)&(iJ=j+l)&(kk=l))

x=(jj-(N/2+l))*a; y=(i-((N+l)/2))*a; theta=((2*pi)-atan(y/x));

phase=(complex(cos(theta),-sin(theta)));

K(Delta)*(phase))/tO;

elseif((i>=(N/2+l))&0>=(N/2+2))&(k=l)&(ii=i)&(iJ=j-l)&(kk=2))

x=(j-(N/2+l))*a; y=(i-((N+l)/2))*a; theta=((2*pi)-atan(y/x));
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phase=(complex(cos(theta),sin(theta)));

K(Delta)*(phase))/tO;

elseif((i>=(N/2+l))&0>=(N/2+2))&(k=2)&(ii=i)&(jj=j-l)&(kk=l))

x=(j-(N/2+l))*a; y=(i-((N+l)/2))*a; theta=((2*pi)-atan(y/x));

phase=(complex(cos(theta),-sin(theta)));

t=((Delta)*(phase))/tO;

elseif((i>=(N/2+l))&(j>=(N/2+l))&(k=l)&(ii=i+l)&(ij==j)&(kk=2))

x=0-((N+l)/2))*a; y=(ii-(N/2+l))*a; theta=((2*pi)-atan(y/x));

phase=(complex(cos(theta),sin(theta)));

t=-((Delta)*(phase))/tO;

else if((i>=(N/2+ 1))&Q>=(N/2+ 1))&(k=2)&(ii=i+ 1)&(ij=j)&(kk= 1 ))

x=0-((N+l)/2))*a; y=(ii-(N/2+l))*a; theta=((2*pi)-atan(y/x));

phase=(complex(cos(theta),-sin(theta)));

t=-((Delta)*(phase))/tO;

else if((i>=(N/2+2))&0>=(N/2+ 1 ))&(k= 1)&(kk=2)&(ij=j)&(ii=i- 1 ))

x=(j-((N+l)/2))*a; y=(i-(N/2+l))*a; theta=((2*pi)-atan(y/x));

phase=(complex(cos(theta),sin(theta)));

t=-((Delta)*(phase))/tO;

else if((i>={N/2+2))&0>=(N/2+ 1))&(k=2)&(kk= 1 )&(ij=j)&(ii=i- 1 ))

x=(j-((N+l)/2))*a; y=(i-(N/2+l))*a; theta=((2*pi)-atan(y/x));

phase=(complex(cos(theta),-sin(theta)));

t=-((Delta)*(phase))/tO;

%
% thetais2pi

%

%
%i==N/2 & j>=N/2 because we are looking for the phase difference 2pi

%

elseif((i=N/2)&(j>=(N/2+l))&(k=l)&(ii=(N/2+l))&(ij=j)&(kk=2))

theta=(2*pi);

phase=(complex(cos(theta),sin(theta)));

t=-((Delta)*(phase))/tO;
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elseif((i=N/2)&(j>=(N/2+l))&(k=2)&(ii=(N/2+l))&(ij=j)&(kk=l))

theta=(2*pi);

phase=(complex(cos(theta),-sm(theta)));

t=-((Delta)*(phase))/tO;

elseifl[(i=(N/2+l))«feO>=(N/2+l))&(k=l)4&(ii=N/2)&(iJ=j)&(kk=2))

theta=(2*pi);

phase=(complex(cos(theta),sin(theta)));

t=-((Delta)*(phase))/tO;

elseif((i=(N/2+l))&(j>=(N/2+l))&(k=2)&(ii=N/2)&(jj=j)«&(kk=l))

theta=(2*pi);

phase=(complex(cos(theta),-sin(theta)));

t=-((Delta)*(phase))/tO;

%
else

t=0;

end

end

end

end

end

end

end

end

end

Old

end

nd
end

end

end

end

end

Old

end

Old

end

Old

end

end
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end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

end

ift~=0

d(cnt)=I;

e(cnt)=II;

f(cnt)=t;

cnt=cnt+l;

end

end

end

end

end

end

i

end





Appendix A. Program code 72

%
% introducing the Hamiltonian matrix H
%

H=sparse(d,e,f);

Hn=H-K);

%
% solving the eigen value problem

%

E=eig(Hn);

E=E(E<0);

%
% finding the total energy

%

summ=sum(E);
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