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Abstract

Abstract

By employing the embedded-atom potentials of Mei et ai.[l], we have calculated the dy-

namical matrices and phonon dispersion curves for six fee metals (Cu,Ag,Au,Ni,Pd and

Pt). We have also investigated, within the quasiharmonic approximation, some other ther-

mal properties of these metals which depend on the phonon density of states, such as the

temperature dependence of lattice constant, coefficient of linear thermal expansion, isother-

mal and adiabatic bulk moduli, heat capacities at constant volume and constant pressure,

Griineisen parameter and Debye temperature. The computed results are compared with

the experimental findings wherever possible. The comparison shows a generally good agree-

ment between the theoretical values and experimental data for all properties except the

discrepancies of phonon frequencies and Debye temperature for Pd, Pt and Au. Further,

we modify the parameters of this model for Pd and Pt and obtain the phonon dispersion

curves which is in good agreement with experimental data.
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Chapter 1 . Introduction

Chapter 1

Introduction

1.1 Embedded Atom Theory

The embedded-atom method (EAM) was first porposed in 1983 by Daw and Baskes[2,

3] as an approach to calculate the energy of a multi-atom system. In this method, the

energy of the metal is viewed as the energy to embed an atom into the local electron

density provided by the remaining atoms of the system, plus an electrostatic pair interaction

potential between the atoms. The ansatz which Daw and Baskes used is

£^tot = 5]F,(p,,) + ^E^(^^)' (1-1)

i i,j

Ph,i = Yl /?(^j)' (1-2)

where Etot is the total internal energy, ph,i is the host electron density at atom i due to all

other atoms, fj is the electron density of atom j as a function of distance from its center,

Rij is the separation distance between atoms i and j. The function Fi(p;i_i), called the

embedding energy, is the energy to embed atom i in an electron density ph,i. $ij is two body

central repulsive potential between atoms i and j representing the electrostatic interaction

plus the interaction related to Pauli-principle due to the overlap of the charge clouds. The

host electron density ph^i is assumed to be a linear superposition of contributions from all

individual atoms except atom i, which in turn are assumed to be spherically symmetrical.





Chapter 1. Introduction

The embedding energy is assumed to be independent of the gradients of the electron charge

density [4].

The EAM is an empirical or semiempirical method. The concrete forms of the embed-

ding functions are determined to describe the bulk equilibrium solid. In particular, they

axe determined by comparing the simulation results with experimental ones and minimiz-

ing the differences to fit to the equilibrium lattice constant, heat of sublimation, elastic

constants, vacancy-formation energy, etc[5]. Over the years, many efforts have been made

in this area. Daw and Baskes[3] used the form of F{p) which was proposed by Puska et al.

[6] and given by

F{p) = ap-bp'/\ (1.3)

to calculate the hydrogen embrittlement in metals. In equation (1.3), a and h are the

positive constants. Foiles, Baskes, and Daw[7] developed the EAM functions for the fee

metals ( Ag, Au, Cu, Ni, Pd and Pt ) and their alloys by numerically fitting the functions to

the bulk lattice constants, cohesive energy, elastic constants, vacancy-formation energy, and

alloy heats of mixing. These EAM functions have been fairly successful in a wide range of

applications [8]. Baskes[9] calculated the properties of metastable phases and point defects

for siUcon by taking the embdedding funtion as

np) p_

LPe

In
P_

Pe
(1.4)

where Eo is the sublimation energy, and pe is the density an atom sees at equilibrium in

the initial reference structure. Recently Johnson[4, 10], by using an exponentially decaying

function instead of the spherically averaged free-atom densities calculated from Hartree-

Fock theory, suggested a nearest-neighbor model for fee metals. In this model, the EAM
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potentials are simplified and expressed as the following analytic functions:

Fip) = -E,[->
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0.6

0.4
1/2

F(p) = p - p

F(p) = [l-0.51n(p)]p"'-p"'

0.25 0.5 0.75 1

Electron density p

1.25 1.5

Figure 1.1: Embedding functional F{p) against electron density p.

The EAM has been widely developed over the past two decades. Finnis and Sinclair[13]

proposed a model in which the total energy of an assembly of atoms consists of a binding

term proportional to the square-root of the local density and a repulsive pairwise potential

term. This model is mathematically equivalent to the EAM. Manninen[14], Jacobsen,

N0rskov, and Puska[15] also derived the functional form of the energy of the EAM by

using density functional theory. Presently the EMB has become a very popular method

for computing the energetics of metallic systems for use with various computer simulation

techniques, because it overcomes some inherent or practical limitations which often plague

the other theories. For example, Band theories[16] are generally limited by basis-set size and

the requirement of periodicity[17, 18]. Cluster theories are also limited by the size of clusters

or basis sets permitted by computers. The early pair-potential methods, while including

corrections due to many body interactions and yielding the total energy directly, require
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the use of an accompanying volume-dependent energy to describe the elastic properties of

a metal[19]. This volume-dependent term makes it difficult to simulate the surfaces and

the extended crystal defects, where the volume of the sample is ambiguous [2]. In addition,

ab initio methods require large computing resource to study large-scale structures [20].

Because of its computational simplicity and effectiveness, the EAM has been used in study

of condensed matter in many areas. Daw and Hatcher [21] successfully applied the EAM to

discuss the bulk phonons of some transition metals and Nelson et al. [22] calculated surface

phonons for copper by using embedded-atom parameters fit to bulk properties. Foiles[5]

suggested a set of EAM functions fitted to bulk solid properties to study the structure

and pressure of various liquid metals. Daw and Baskes[2] obtained the embedding energy

and pair potential for some metals and used them to treat the problem of the defects in

metals. Foiles et al. [7] determined a set of the EAM functions for some fee metals and

their alloys by fitting to the sublimation energy, equilibrium latttice and elastic constants

of the pure metals and the heats of solution of the binary alloys to study the properties

of the metals and their alloys. Johnson [23] investigated the phase stability of fee alloys.

Daw and Baskes[2, 3, 20] used the analytical EAM functions to study the properties of

impurities for some fee and bcc materials. The appUcation in other fields, such as fracture,

surface structure, surface adsorbate ordering, surface segregation and surface ordered, can

be found in Ref.[4, 24-30].

1.2 The EAM Potentials of Mei et al

For a perfect monatomic crystal, Eqs.(l.l) and (1.2) can be simplified to

Etot = NE, (1.8)
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E = F{p) + 1/2 J2sA<f>{RA), (1.9)

A

A

where A^ is the number of atoms in the crystal, E the energy per atom, i?A the distance of

the Ath-neighbor shell with respect to a given atom, and Sa the number of atoms in that

shell.

For a perfect crystal, we have

Ra=PaRi,A = 1,2,..., (1.11)

here the constants p\ depend on the type of the crystal structure and pa = \/A for a fee

crystal.

Rose et ai.[31] has shown that, for most metals, the energy is well approximated by the

relation

E{Ri) = -E,[l + a{RjRu - l)]exp[-a{R,/Ru - 1)], (1.12)

with

a = (g^efie/^c)'/', (1.13)

where Q is the atomic volume and B the bulk modulus. The subscript e indicates the

evaluation at equilibrium.

Plotting the electron densities calculated from Hartree-Fock method, Johnson[4] found

they are quite well approximated by a single exponential term in the range of distances of

interest in EAM calculation:

p = Peexp[-/5(/?i/i?ie - 1)], (1.14)

where parameters pe and f3 are determinded from fitting the calculated electron density.

Mei et ai.[l] also did some calculations of the electron density for many metals and proved
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p{Ri) is really well described by the exponential decay of Eq.(1.14) when Ri is not far from

Rie. Mei et al. assumed function f{R) in Eq.(l.lO) to have a form

f{R) = feY,^r{Ru/Rr, (1.15)

T=0

where the parameters Cr are determined by using least-squares fitting to fit the equation

J2 ^a/(^a) = Peexp[-P{Ri/Ru - 1)], (1.16)

A

or the equivalent equation

K

Y,9r{RllRleV = exp[-/?(i?i/i?ie " 1)], (1-17)

r=0

with

Qr = Cr{fe/Pe)^ SaP^' '^ = 0, 1, -, «, (1.18)

A

provided k is given and fe = Pe/12.0. The coefficients c^ with specifying k = 5 for some

fee metals (Ag, Cu, Ni, Pd, Pt and Au) are listed in Table(l.l).

By taking into consideration of Eqs.(1.12) and (1.14), Mei et ai.[l] took the EAM

potentials as the following forms

0(i?) = -0e[l + 5{R/R^, - l)]exp[-7(i?/i?i, - 1)], (1.19)

np) ErH-
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these parameters for those fee metals are also listed in Table 1.1. The calculated values of

the three elastic constants Cu,Ci2 and C44 are compared with the experimental values to

which they were fitted in Table 1.2

Table 1.1: Coefficients Cr of function f{R) and the model parameters for the six fee metals.

0e is in units of eV. Other parameters are dimensionless.
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Table 1.2: Input and output data for the elastic constants C\\,C12 and C44,which are in

units of lO^^N/m^





Chapter 1. Introduction 10
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contribution to the embedding potential which can be ignored. So it is reasonable that in

later calculations we will consider all summations up to the sixth shell of the neighbors

with respect to a given atom.

Mei et ai.[l] has extended the nearest-neighbor model of Johnson and suggested the

analytic forms of the embedded-atom potentials valid for any choice of cutoff distance.

Our present work is based on the model of Mei et al. . By using these relatively simple

analytic EAM potentials, we have calculated the phonon frequencies for six fee metals

(Ag, Cu, Ni, Pd, Pt and Au ). To investigate the applicability of this model further, we

focus on the other thermodynamic properties of these metals and have computed the zero

point free energy at room temperature and temperature dependence of the lattice constant,

the coefficient of thermal expansion, the isothermal and adiabatic bulk moduli, Griineisen

parameters, Debye temperature and phonon contributions to the heat capacities at constant

volume Cv and at constant pressure Cp. Then we compare the calculated values with the

experimental findings and give some conclusions.
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Chapter 2

Theory And Calculations

2.1 Phonon Dispersion Curves

2.1.1 Theory of Phonon Vibration

Here we just take into consideration of primitive crystal without losing any generality. For

an infinitely extended primitive crystal, if each atom / located instantaneously at positon

R(/) is displaced from its equihbrium position Re(0 by u(/), which means we have

R(/) = Re(0 + u(0, (2.1)

and

R'{l)^Ri{l) + Ui{l), (2.2)

the total kinetic energy of the crystal can be written as

T = ^^M^^(/), (2.3)

i,i

where M/ is the mass of the atom / and the sum runs over all atoms in crystal. R\l), Ri{l)

and Ui{l) are the z-cartesian components of R(/), Re(0 ^^^ u(/) respectively with i — x,y, z.

According to the theory of phonon vibration [32, 33], the total potential energy ^ of the

crystal, which is assumed to be a function of the instantaneous positions of all atoms, can

be expanded into a Taylor's series in powers of the atomic displacements u(/) and has the
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form

l,i l,m

+ — X $ijfc(/, m, n)ui{l)uj{m)uk{m) H . (2.4)

l,m,n

In this expansion, ^e is the potential energy of the static lattice which means all atoms are

at rest at their equilibrium positions, while obviously

*«(0 =

^ij{l,m) =

^ijk{l, m, n) =

5*
dui{l)

dui{l)duj{m)

^3^
,etc.

(2.5)

(2.6)

(2.7)
dui {l)duj {m)duk (n)

where the subscript e means that the derivatives are evaluated with all atoms at the equi-

lirium configuration, and the coefficients #j(Z), ^,j(/,m), #ijfc(/, m,n), • • are known as

atomic force constants of the first, second, third,- • •, order, respectivly.

It is clear that a mixed partial derivative is independent of the order in which the

differentiations are carried out. The coefficients in the expansion (2.4) are completely

symmetrical in the indices, such as

^ij{l,m) = ^ji{m,l), (2.8)

^ijk{l, m, n) = ^jki{m, n, /) = ^jik{m, I, n) = ^ikj{l, n, m)

= ^kji{n,m,l) = ^kij{n,l,m),etc. (2.9)

From the definition fo Eqs.(2.4) and (2.5), we can see the physical interpretation in

them. The first order force constant ^i{l) is that it is the negative of the force acting in
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the i direction on the atom at R(/) in the equihbrium configuration. It must vanish because

in equihbrium configuration the net force on any atom must be zero, so we have the result

*,(/) = -F(0|e = 0. (2.10)

Here F'(/) denotes the i cartisian component of the force F(/) acted on atom /. The second

order force constant *ij(/, m) is the negative of the force exerted in the i direction on the

atom / when the atom m displaced a unit distance in the j direction, all other atoms staying

at their equilibrium positions. It can be expressed as

dF'{l)
^ij{l,m) = (2.11)

duj{m)

If the lattice as a whole is subjected to an infinitesimal rigid body displacement v, the

lattice potential and its derivatives must remain unchanged. This property of the lattice

imposes some conditions on the atomic force constants which can be expressed as

J2MI)^0, (2.12)

J2 ^ij ii^rn) = Y^ ^ij {l,m) = 0, (2.13)

I m

^^ijk{l,m,n) = ^#ijfc(Z,m,n) = ^^ijk{l,m,n) = 0,etc. (2.14)

I m n

The vibrational hamiltonian for the crystal can be written £is

H = T + ^. (2.15)

If we use the harmonic approximation, namely neglect all terms whose orders are higher

more than two in Eq(2.4), we can rewrite the vibrational hamiltonian as

H = ^e + -J^Miii-^il) + ^J2^ijil,m)ui{l)uj{m). (2.16)
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Denoting by pi{l) the z-cartesian componet of the momentum of the /th atom, we can

change Eq.(2.16) into

i/ = #e + ^p^(/)/2M, +
^^ $,,(/, m)«,(/)w,(m). (2.17)

i,l l,m

Prom this Hamiltonian, we can immediately obtain the equation of motion of the crystal

dui{l)
MiUi{l) - —K—ff. = - XI *'j(^' "^)"j(^)- (2-18)

The equation of motion Eq(2.18) with different / and i labels forms an infinite set of

simultaneous Unear differential equations. Their solutions are simplified by the periodicity

of the lattice and the restrictions on atomic force constants which follow from the symmetry

and structure of a crystal. Therefore we can choose as a solution of this set of coupled

equations a function of the form

mil) = M~'/^ei(/|Ks)exp[-ic^,(K)i + iK • R(/)]. (2.19)

Here the vector K in the exponent is called wave vector, and its magnitude is equal to 27r

times the reciprocal of the wavelength of an elastic wave propagation through the medium,

and its direction is the direction of propagation of the wave. The coefficient ej(/|Ks) satisfies

the equation

ul{K.)ei{l\Ks) = Y^ Dij{l, m|K)e,(m|Ks), (2.20)

m,j

where

Dij{l, m|K) = (MiM^)-i/2 Y^ ^..(^i^ m)exp[-zK • (R(/) - R(m))]. (2.21)

m

Usually, the matrix Dij{l, m|K) is called dynamical matrix of the crystal. It is a hermitian

matrix and has the properties

Dij{l,m\K) = D*i{mJ\K) (2.22)
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Dij{l, m\-K) = D*^{1, m\K). (2.23)

The condition that the set of Eq.(2.20) have a nontrivial solution is that the determinant

of coefficients vanish

\Dij{l, m|K) - uj^^{K)Sij5im\ = 0. (2.24)

Eq.(2.24) is a 3 X 3 matrix equation. For each given vector K, the allowed values of the

frequency u) have three branches denoted by Us{K.),s = 1,2,3, and their square are the

eigenvalues of dynamical matrix. Furthermore, Eq.(2.20) defines the eigenvectors ei(/|Ks)

only to within an arbitrarily chosen constant, so they are assumed to satisfy the orthonor-

mality and closure conditions:

Y^e*il\Ks)e,{l\Ks')=5ss', (2.25)

i

Y, e*(/|Ks)e,(m|Ks) = SijSim- (2.26)

s

It is clear that R(/) and u(/) are related linarly, so the derivative with respect to u(/)

makes no difference from the derivative with respect to R(/). In following sections, we more

often use the expression (9/(9R(/) instead of d/du{l).

2.1.2 Phonon Frequencies

The application of the theory of phonon vibration to the model of Mei et ai[l] is straightfor-

ward. Keeping the notations used in section (2.1.1), we substitue Eq.(1.15) into Eq.(l.lO),

and write the electron density at the position of atom / as

T=5

Pl = f-J2Y1 CriRle/RlmY, (2.27)

m T=0

where Rim is the distance between atom I and atom m which can be written as

i?;^ = |R(/)-R(m)|, (2.28)
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the sum m runs over the all neighbors of the reference atom /.

Considering Eqs.(1.19) and (1.20), the embedded atom potentials of Mei et al, we can

obtain the total energy of the crystal

Etot = 5] |f,(p/) + 1/2 J] $(/t:/^)|

l,Tn

Pel

PL

Pe
I

+ 2^e Yl ^M-iPlm - 1)7] X

a/13

l + (P/m- l)5-p;^-ln
/3 Lp.

Pi Pi

Pe

Pin

-UeY, [1 + S{Rim/Ru - l)]exp[-7(i?,^/i?ie - 1)], (2.29)

with pi-m having the form

Plm — Rlm/Rle, (2.30)

here the first summation / runs over all atoms in the crystal, and the second one m runs

over all neighbors of a given atom /.

Using the expression of the total energy Eq.(2.29), we can calculate the net force ex-

certing on the atom / which is of the form(see details in Appendix A.l)

F(/) = -V,F,„, = -J2 [F'MfmiRlm) + F'^{pm)n{Rlm) + <i>'lm{Rlm)]^ . (2.31)

m(yil}

here V/ means to do derivative with respect to the three components of the position vector

R(/) of atom /, namely

^' = mrf' + dWf' + dW)''^
(2.32)

xo, yo and Zq are the unit vectors in the directions of x, y and z respectively. The prime in

the function of Eq.(2.31) donetes the derivative of the function with respect to its argument,
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^im/Rim is a unit vector which points from atom / to atom m, it has the form

R,^ R(0 - R(m)

with the three components

(2.33)

The second force constant can be obtained in the same straightforward way as it was

deduced in Ref.[13, 22]

The result for / 7^ m is (see details in Appendix A. 2)

^Im^lm T?l ( ^ \f"fD \RlmR\m if^'l f u \ ^Im^lIm Im
•2

Im

It.

*,,(/,m) = -F/(p,)/;(i?;^)-^^-F;(p^)//'(i?,^)^^-$"(i?,^)^

-[F'l{pl)fm{Rlm) + F'^{pm)n{Rlm) + ^'(^"")]{|^ " ^^j
+ E K{Pn)fl{Rln)nRmn)-^^. (2.36)

Using Eq.(2.13), we can obtain the second force constant for / = m.

^ij{hl)^-^^r,{Um). (2.37)

m(^/)

Noticing Eq.(2.37), we can rewrite Eq.(2.21) as

A,(/,mlK) = (MM^)-i/2^ *,,(/, m)expHK-(R(/)-R(m))]
m

= {MiMm)-^/H^ij{l,l) + E *^J(^m)exp[-^K • (R(/) - R(m))]|

= {MiMm)--^''' E *i,(/,m)|exp[-zK • (R(/) - R(m))] - 1 j. (2.38)

m(#/)
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Combining Eq.(2.36) with the following equations(see appendix A.3 in details),

F'iPi) =
dpi PeP'

:ln El

PeJ

El

Pe

a/13-1

+ :j-^^(^M-ipit-'^h]
ti^i)

5 7
x<; -pit-3+pit-g l + iPit - l)S-pit-ln El

Pe

El

iPe
(?.39)

F"ipi) =
dpi

,a
l + (--l)ln El

pe

El

pe

a *•

HP.j -
1)

5 7
-Plt-3+Plt^ 1 + {pit - l)5-pit-\n El]

.Pel.
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C (K=[00a27r/a) C (K=[0Cl]27i/a) ^ (K=[0^Q2n/a) C (K=[CCa27i/a)

Figure 2.4: Phonon dispersion curves for Pt. The solid lines are the calculated phonon
dispersion curves at the lattice parameter corresponding to static equilibrium.

The square and round points are the experimental data from [37] at 90K. L
and T represent transverse modes and longitudinal modes respectively.
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Pi(l) = y(^)^ E^^'''(K)e.(/|K.)e'^-^W(6K. - t^^J, (2.49)

Ks

and the inverses to these expansions

bKs = (2A^/i)-'/'X]<(^l^^)^'''''''^'M[^'^^(K)]'/'wi(0 + i[Mu;,(K)]-i/2p.(^)|^ ^2.50)

li

where h is Planck's constant, A'' is the number of primitive unit cells in a parallelepiped

all of which fill of crystal space without gaps and overlap, both K and K' are restricted to

he inside the first Brillouin zone, we can obtain the Hamiltonian in the forms of these new

operators

H = J2^s{K)[b^^bKs + l/2]. (2.52)

Ks

The ground state |0 > is defined by

bKs\0 >= 0, for aU (Ks). (2.53)

Therefore, the eigensolutions of the Hamiltonian (2.52) read

\ns,{Ki),--- ,ns3(Ki),--- ,n,j(Kiv), • • • ,n,3(K7v) >
/- AT 3

,^ -1/2 N 3

= nn("K.)! nn(^K.rio>. (2.54)
•^ K s=l J K s=l

N 3

E{{nKs}) = ^ J]/ia;,(K)[nK. + -], (2.55)

K s=l

where

nKs = 0,1,2,- (2.56)

denotes the number of phonons of frequency u!s{K) present in the state (2.54).
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Table 2.1: Zero-Point Energy in Rydberg per atom at 300 K.

Elements
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where H is Hamiltonian in the harmonic approximation, P = l/Zc^T, ks is Boltzmann's

constant, and T is the absolute temperature. It is convenient to evaluate the trace in

Eq.(2.58) in the space in which H is diagonal. Therefore, if taking the forms of Eq.(2.52)

and Eq.(2.54) and submitting in Eq.(2.58), we can find

^ = E •• E exp|-/3^^.(K)[nK. + -][
"Kisi=0 nKNS3=0 ^ Ks J

lll_exp[-/3^,(K)]- ^^-^^^

The Helmholtz free energy which comes from the contribution of phonon vibration is

given by

F,ib = -keTlnZ = A;^V ln{2sm/i^^ }

.

(2.60)

The entropy S , the internal energy E and the specific heat at constant volume Cy of

the crystal become

Ks

^BE
{
-^ooth^ - H^srnh^)

I
(2.61)

E = F + TS = Y, ^^'^^^^^'^^^^^ (2.62)

C - \^^^

= Y^^viKs)
K,5

^^ I 2kBT ] sinh^[hujs{K)/2kBTy
^^-SS)

Ka
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In the quasiharmonic approximation, the total Helmholtz free energy of crystal at tem-

perature T and volume V or lattice constant o is [43]

F{a,T) = Etotia) + F,i,{a,T) = EUa) + fcs y;in{2sm/i^^^^^^} (2.64)

where Etot is static total energy at a given volume V or lattice constant a which is defined

by Eq.(l.l). We use u;s{K,a) instead of uJs{K) in Eq.(2.64) to specify that frequency is

also a function of lattice parameter a.

At a given temperature T and zero pressure, the equilibrium geometry is determined

by the minmum of the Helmhotz free energy [43], that is

(^^).^^+(^^^). = 0. ,2.65)

In application of Eq.(2.65), we use the free energy per atom instead of the free energy

of the crystal by evaluating F^ib on a 20 x 20 x 20 K-points mesh in the Brillouin Zone and

plus the static energy per atom which is defined in Eq.(1.9). First, we set up an array for

the lattice parameter a, and then we change the temperature T value at a step equal to

2K from OK to lAOOK to calculate the free energy per atom at different lattice parameter.

The equilibrium lattice constant ae{T) at the given temperature T is the one corresponding

to the minimun of the free energy per atom at that temperature. In Fig. (2.7), we plot the

lattice parameter against temperature.

Using the results obtained for the lattice constant as a function of temperature, we can

determine the linear thermal expansion [43]

,(r)^ "'(^)-°'W
, (2.66)

^eX-l- c)

where we have chosen lattice constant ae{Tc) at T^ = 293K to be the reference length as

[44] did. Figs. (2.8-2. 13) give the calculated results and experimental data.
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Figure 2.9: Temperature dependence of linear thermal expansion e{T) for Cu. the sohd

line is the calculated values, and the square points are the experimental values

fromRef.[45]
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200 400 600 800 1000 1200

T(K)

Figure 2.16: Coefficient of linear thermal expansion a{T) as a function of temperature

for Ni. the solid line is the calculated values, and the square points are the

experimental values from Ref.[45].
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Figure 2.17: Coefficient of hnear thermal expansion a{T) as a function of temperature for

Pd. the solid line is the calculated values, and the square points are the

experimental values from Ref.[45]
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Figure 2.18: Coefficient of linear thermal expansion a{T) as a function of temperature

for Pt. the solid line is the calculated values, and the square points are the

experimental values from Ref.[45]
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200 300
T(K)

400 500

Figure 2.20: Isothermal bulk modulus B{T) as a function of temperature for Ag. the solid

line is the calculated values, the square points are the experimental values

from Ref.[47] and the round point is the experimental value from[48].

derivative of the free energy [46]

:

The temperature dependence of the isothermal bulk modulus is defined by [46]

(2.69)

(2.70)

or

B{T) \Qy2lT

V;^T/2/ "^
V PT/2 )t'^dV^' dV^

(2.71)

We use the numerical method to evaluate the Eq.(2.71) and plot the results with ex-

perimental data in Figs.(2.20 - 2.25).
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400 500

Figure 2.23: Isothermal bulk modulus B{T) as a function of temperature for Pd. the solid

line is the calculated values, and the round point is the experimental value

from Ref.[48].
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and submitting Eq.(2.69) into Eq.(2.73), we can obtain

Cp{T) - Cv{T) = al{T)B{T)VT. (2.75)

It is clear that the Unear thermal expansion coefficient and the volume thermal expansion

coefficient are related by the following equation

av{T) = Za{T). (2.76)

Noticing the volume of each atom in fee structure is V = ag(T)/4, we rewrite Eq.(2.75) as

Cp{T) - Cv{T) - ^a\T)B{T)al{T)T (2.77)

or

Cp{T) = Cf (T) + C^{T) + ^a\T)B{T)al{T)T. (2.78)

We use Eq.(2.63) to calculate the first term Cl!'{T) in Eq.(2.78) at different tempera-

ture by evaluating it on a 20 x 20 x 20 K-point mesh in the Brillouin Zone, and then we

apply the STUTGART TB-LMTO-ASA program to compute the electronical contribution

to heat capacity C^{T). We take the results a{T), B{T) and ae{T) from the above to cal-

culate the third term in Eq.(2.78) and plus three terms together to obtain the temperature

dependant Cp{T). Figs.(2.26 - 2.31) show the temperature dependence of heat capacity at

constant volume C^, at constant pressure Cp and electronical contribution Cy with the

experimental data.

2.2.5 Griineisen Parameter

Submitting Eq.(2.64) into Eq.(2.69), we can write the equation of state as

dV ^ dV 't

= ^^ + ^E^^(K)<-.(K)), (2.79)
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Figure 2.26: Calculated temperature dependence of heat capacity of Ag at constant volume

Cy ,
at constant pressure Cp and electronical contribution Cy^. The square

points are the experimental data of heat capacitiy at constant pressure from

Ref.[50].

o
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•a

>

Figure 2.27: Calculated temperature dependence of heat capacity of Cu at constant volume
C^

,
at constant pressure Cp and electronical contribution C^^. The square

points are the experimental data heat capacitiy at constant pressure from
Ref.[50]. The point line is the results from Ref.[l].
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Figure 2.28: Calculated temperature dependence of heat capacity of Ni at constant volume

Cy , at constant pressure Cp and electronical contribution Cy . The square

points are the experimental data heat capacitiy at constant pressure from

Ref.[50].
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Figure 2.33: Overall Griineisen Parameter 7 as a function of temperature for Cu. The solid

line is the calculated values and the squaxe points are the experimental values

taken from Ref.[44].
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Figure 2.34: Overall Griineisen Parameter 7 as a function of temperature for Ni. The solid

line is the calculated values and the square points are the experimental values

taken from Ref.[51].
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150 200

T(K)
250 300 350

Figure 2.38: Debye temperature Qd as a function of temperature T for Ag. The solid line is

the calculated results, the square points are the experimental values from Ref.

[53] , the round point is the experimental value at the temperature T = 298K
from Ref. [54].

Qd is called Debye temperature. Prom the results of temperature dependent Cv{T) calcu-

lated in the above subsection, we can obtain the temperature dependent Debye temperature

Od{T) by numerically evaluating the integral in the right side of Eq.(2.83) and matching it

with Cv(r) in the left side. The results are plotted in Figs. (2.38 - 2.43)

2.2.7 Adiabatic Bulk IModulus

The adiabatic compressibihty ks{T) is [47]

Mr) = -^(|^)^. (2.86)

The adiabatic bulk modulus Bs{T) is the inverse of the adiabatic compressibility:
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Figure 2.39: Debye temperature Qd as a function of temperature T for Cu. The solid line

is the calculated results, the up triangle points are the experimental values

from Ref. [53], the round point is the experimental values at the temperature

T = 298K from Ref. [54], the square points are experimental values from [55].
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Figure 2.40: Debye temperature Go as a function of temperature T for Ni. The soUd line

is the calculated results, the round point is the experimental values at very
low temperature from Ref. [48], the square points are the experimental values

at T = Ois: and T = 298K from Ref. [54].
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Figure 2.43: Debye temperature G^ as a function of temperature T for Au. The solid

line is the calculated results, the square points are the experimental values

from Ref. [53], the round points (a and b) are the experimental values at the

temperature T = 29SK from Ref. [54].
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Figure 2.47: Adiabatic bulk modulus B{T) as a function of temperature for Pd. The solid

lines are the calculated values and the square points are the experimental

values from Ref.[48].
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We calculate the adiabatic bulk modulus for the fee metals and plot them as the func-

tions of temperature in Figs. (2.44 - 2.49).
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Chapter 3

Discussions and Conclusions

We apply the analytic embedding functions of Mei et ai.[l] to calculate the phonon disper-

sion curves and some other dynamical properties of fee metals. From Figs. (2.1 - 2.6), it

is clear that the calculated phonon dispersion curves for Cu and Ag agree quite well with

experimental data. The relative error, which is defined as the absolute difference between

the theoretical value and experimental value divided by the experimental value, when wave

vector K is at F, Xand L points, is not more than 5.0% for Ag and 7.0% for Cu. Xie[46]

used density functional theory(DFT) and density functional perturbation theroy(DFPT)

to perform first-principles calculation of thermal properties for Ag. Narasimhan[43] has

used local density approximation(LDA) and generalized gradient approximations(GGA) to

carry out ab initio calculation of the thermal properties for Cu. From the phonon dispersion

curves in these works, it appears that their results are no better than the present results.

Daw[21] used different embedded atom potentials[2] to calculate phonon dispersion curves

for Ni and Pd. For Ni, present results axe close to the ones in Ref.[21], which agree with

experimental values very well at small wave vector K. However, for Pd, present longitu-

dinal mode results are worse than those in Ref.[21] at small wave vector K in comparion

with experimental values. The parameters in the embedding functions of Mei et al.[l] are

obtained from fitting the total energy of the crystal and elastic constants to the exper-

imeantal values, not from fitting the force constants as has been done by Miller [36]. The

approach of Mei et al.[l], thus, is more fundamental than that of Miller, even though it is
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not a completely first-principles method.

In an attempt to improve the computed results of phonon frequencies, we made small

changes in parameters in the model of Mei et al.[l] for Pd and Pt, which are listed in

the following table (3.1). Using these modified parameters we computed the phonon fre-

quencies again. The interesting thing is that, with the modified parameters, the calculated

phonon dispersion curves agree with experimental values very well (see Fig. 3.1 and Fig.3.2).

However, we apply the same formula[2] as used by Mei to calculate the elastic constants

Cii,Ci2 and C44 and find that the calculated results have large deviation from the ones

obtained in Ref.[l] and Ref.[5]. We list the results in table (3.2). This interesting result

suggests that there is room for imrovement in the parameters. This can be the subject of

future research. For example, how are the parameters improved in this model to make the

theoretically calculated values get closer and closer to the experimental values for all other

dynamical properties.

We have studied the temperature dependent thermodynamical properties. First, we

obtain the variation of lattice constants with temperature(see Fig.2.7). It is easy to see

that present calculation based on the theory of lattice dynamics is very close to the results

obtained by Mei et al. from the molecular dynamics simulation. To check the results, we

calculate the linear thermal expansions. From the Figs. (2.8 - 2.13), we can say that the

model of Mei et ai.[l] works very well. T.Qagin[58] also use molecular dynamics(MD) to

study the thermal and mechanical properties of some fee transition metals: As a com-

parison, we list the linear thermal expansion results in table 3.3. Obviously, the results

calculated from the model of Mei et ai.[l] are much better than Ref.[58].

For the coefficient of linear thermal expansion, it is clear to see in Figs. (2. 14 - 2.19) that

the values calculated from the model of Mei et ai.[l] give a good prediction for each metal,

especailly at low temperatures, although they are slightly underestimated for Cu, Ag, Pd
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Table 3.1: Modified Parameters In Mei's Model
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Table 3.2: The elastic constants Cn,Ci2 and C44 calculated from the modified

paramters,which are in units of lO^^N/m^
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Table 3.3: The Linear Thermal Expansion of Ni, Cu, Ag, and Au as a Function of Tem-

perature

Elements
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Table 3.4: Compaxison of Griineisen parameter 7 with experimental and other theoretical

values.

Elements
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and Ni, and overestimated for Au and Pt at very high temperatures. MacDonald et al. in

Ref. [44] also calculated the coefficient of linear thermal expansion using a kind of the volume

dependent free energy. However, their results are not satisfatory: there are deviations from

the experimental values both ant high and low temperature regions. For Cu, we also plot

the results from Ref.[l] as a comparison (see Fig.2.15). At room temperature, Mei et al.

gave a value of 1.5 x \Q~^K~^ better than present value of 1.35 x 10"^/C~^ , while at lower

temperature the MD simulation fails.

The lattice contributions to the isothermal and adiabatic bulk moduli are shown in

Figs. (2.20 - 2.25) and in Figs. (2.44 - 2.49). For all cases our calculations give a remarkably

successful prediction, as they agree with experimental data very well.

Heat capacity is an important thermal property of solids. The calculated Cp and Cy

are displayed in Figs. (2.26 - 2.31). As we can see that the calculated curves for Cp are all

in very good agreement with experimental data, except for Ni. Curie temperature of Nickel

is Q21K. Below this temperature Nickel is ferromagnetic. Above this temperature. Nickel

becomes paramagnetic. However, the embedded atom method, as used by Mei et al, does

not have the necessary degrees of freedom (i.e., treating spin up and spin down eletrons

separately) required to describe the magnetic state. The heat capacity C^ for all cases

approches the value of 3A;b per atom at very high temperatures, the classical harmonic

limit. In Fig.2.27, we also give the results of Cp for copper calculated by Mei et ai.[l].

Their results agree quite well with experimental values in a range from SOOA' to lOOOA',

but at low temperatures there is a big discrepancy with experimental data.

Another important thermodynamic quantity is Griineisen parameter. The overall Griineisen

parameter is the average of mode Griineisen parameter relative to the volume derivative of

frequency with the weight of the heat capacity at each mode. Due to the shortage of direct

way to measure, there is a large variation with experimental results as shown in table 3.4.
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Compared to the indirect measured values of this quantity, the agreement between theory

and experiment is poor for Cu and Ag.

Debye temperature as a function of temperature is calculated and plotted in Figs. (2.38 -

2.43). Obviously, the calculated Debye temperature for Cu and Ag is in excellent agreement

with experimental values. In fact, it is easy for us to predict this result by noticing the very

good agreement between the calculated values and experimental ones in phonon dispersion

curves. For Pd, Ft and Ni, the Debye temperature are slightly underestimated, but for Au,

the Debye temperature is underestimated too much, close to 20 percent.

We have applied the analytical embedded atom potentials of Mei et al.[l] to investi-

gate the dynamical properties of some fee metals. Under the harmonic aprroximation, we

have calculated the phonon frequencies, lattice parameter as a function of temperature,

zero-point energy of phonon vibration at room temperature. We have also calculated the

temperature dependence of linear thermal expansion, coefficient of linear thermal expan-

sion, isothermal bulk modulus, adiabatic bulk modulus, heat capacity at constant volume

and at constant pressure, Griineisen parameter and Debye temperature. After comparing

the theoretically calculated values with experimental data, we have found that our cal-

culations give good predictions for most of the dynamical properties of all these metals.

Therefore, this model should be useful and might be one of good choices in the investigation

of pure crystal properties.
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Appendix A

Proofs of some Equations

A.l The proof of Eq.(2.31)

We can write the derivative of Etot with respect to the position vector of atom / in i-cartecian

component as

dEitot d

dRi{l) dRi{l)
J2FniPn) + 1/2 Y^HRnm)

n^m

dRi{iy

RecaUing the following equations,

ILm = ^J{Ri{n) - R,im))^ + {R,{n) - Rj{m)y + (i2,(n) - Rk{m))^

and

dRnm ^ Rijn) - Ri{m)

dRi{l) ~ Rnm

we can write the first term in Eq.(A.l) as

{Sin — Sim),

dRi{iy

(A.l)

(A.2)

(A.3)

= EKiPn)J^[ E fi^rn))

(A.4)
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Simplifing it, we have

= E lFliPl)fniRln) + F-(Pn)//(/?/„)]
^^^^~^^^^

(A.5)

The second term as

d

n,m ^^i\'') n,m ^"i
ml J

(A.6)

= 1/2 Y, nR.„)M>^3M
Tn(^l)

-1/2 y: i>'(fl.,)
'^'"'"^"'

Substituting Eqs.(A.5) and (A.6) in Eq.(A.l), we can obtain

#^ = E [FliPl)fniRln) + F:,{pn)fl{Rln) + $'(/?,„)]Ml^M^. (A.7)

In the same way, we can write the derivative of Etot with respect to the position vector of

atom / in j and A;-cartesian component respectively as

dEtot
= E lP'liPl)fniRln) + i^;(Pn)//(/?/„) + $'(i?;„)]M1_^M (A.8)

and

#7K = E [^/(P')/n.(^M) + KiPn)fKRln) + $'(i?,„)]Ml^J^^. (A.Q)
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Combining Eqs.(A.7, (A.8 and (A. 9) together, we have

F(/)= - V.£;.. = -|^^z + ^^j + ^^-^fc|

- E \Fl{pi)aRln) + F^(Pn)//(i2.n) + $'(i?/n)] ^^^^^^^^^j

- E [^/(P/)/n(^/n) + F:,{pr.)fliRlr.) + $'(i?,„)]Ml^M^l A;

- - E [P^MfniRln) + F'SPn)ri{Rln) + $^(i^^n)]
^^^^ I

^^''^
(A.IO)

This is exactly the Eq.(2.31).

A.2 The proof of Eq.(2.36)

To verify Eq.(2.36), we substitute Eq.(2.29) into Eq.(2.11) and then we get

''^
' ' dRi{l)dRjim) dRjim)

^
^ E [Fl{pi)f:,{Rin) + F:(p„)//(i?/n) + $'(/?,„)]Ml^M!)

+

Rln

4;^)
ait:,(m) t Ri^ J

+ E iFliPl)fL{Rln) + K(p„)//(i?,„) + $'(i?,„)]—^(MlZj^iM |.(A.ll)
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As did in Appendix A.l, we can write

dp

Wi ~ 2^ /<?(^'9) B (^'m - VJ' (A. 12)

If noticing the following equations,

dRin _ d

dRj{m) dRj{m)

R,{l)-Rj{n)

^{R,{1) - R,{n)Y + {R^{1) - Rj{n)y + {Rk{l) - Rk{n)Y

D {^Im-^nm), (A. 14)

d \ R,{1) - R,{n) \ {d\mj)-_R^ ^ ^ ^^ dRin \ 1

dRM)\ R^n / = 1 dR,{m) ^'"-f^(^)-^(")J9^RJ^

= { [^Im^ij — ^nm5ij\Rln

-[i?,(/)-i?,(n)]MIz_M^(5^^_5_)|^ (A.15)

we can write Eq.(A.ll) as

aR,{l)dRj{m) dRj(m)

n{#Z) l- ^' J ^'"
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Now we simplify the above equation by using the symmtrey of fee structure.The first

term of double summation can be rewritten as

, Rln

From the symmetry of fee crystal, we have

9(#0

therefore, we can get

E ^"(«){ E 4(fi.,)
^'"'~^''^\

^<.~ - ^,..)|/:W..)
^"':^'"' = 0. (A.20)

Similarly, for the second term of double summation, we can write

.Ri{l)-Ri{n)
In)-

= E FMm.MUR^nf'^'^l-
^''"' «")-«(")

. (A.21)
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Accounting for Eqs.(A.20)and (A. 21), we write Eq.(A.16) as

d-'Etot dFiil)
^ij{l,m) =

dRi{l)dRj{m) dRj{m)

[RS)- Ri{m)][Ik{l) - IU{m)]

n(^l)

-FiiPdnRim)
Rl l^m

+ Z^ ^nKPn)Jl {Rln) ^ dim

n{^l)

-F'm{Pm)n\Rlm)

Rl

[R,{1) - Rj{m)][R,{l) - R,{m)]

Rl

n/^n In

l^m

n{^l)

-^"{Rlm)
[Rj{l) - Ri{m)][R,{l) - R,{m)]

RL l^m

[Rijl) - Ri{n)][R^{l) - R^{n)]

/?3 \
Hm

-[F'l{pi)L{Rlm) + F:^{pm)n{Rlm) + ^\Rlm)]{^
ynin

[Rijl) - Ri{m)][Rj{l) - Rj{m)]

R^
l^m

(A.22)

If we do summation over m to Eq.(A.22)and notice summation label is just a dumb

label which has the property

j2 F!MaRj-Mi^3,i^}msi^RM
n(#0 Rfn

- E^/(pom^) ^^-^^^-^-^y(^^-^^-)J
,

(A.23)

2(#0 i?L

we can obtain
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or clearly we have

n{^l)

+ E ^n(p.)/,--w„)
'^-"'-^-'y"-^'"'i

n(#/)
i??.

[i?,(/)-i?,(n)][fi,(0-i?,(n)]
l

[fi,(/)-i?,(m)][.R,(0-i?,(m)]
|

+ E op.)/;(b...)
^"'-^''''

X {£/;(ft„„)Mriz^} (A.24)

E*u(i.m) = (A.25)

This is the direct result of Eq.(2.13).
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lil ^ m, finally we can get

d^E,tot dFS)

= -Fi{pi)nRim)

-F'^{Pm)n'{Rlm)

dRi{l)dRj{m) dRj{m)

[Rj{l) - Rj{m)][Ri{l) - Rijm)]

RL
[Ri{l) - Rj{m)][Ri{l) - Rijm)]

Rim.

-^"{Rlm)
[Rj{l) - Rj{m)][R,{l) - R,{m)]

RL

-[F'l{pi)fURlm) + F^{prn)n{Rlm) + $'(i?/^)] ^
[Ri{l) - Ri{m)][Rj{l) - Rj{m)]

Rfm

(A.26)

A.3 the proof of Eqs. (2.39-2.44)

Prom the definition

F{P)= - E,
P IPe.

P_

Pe

a/0

+ 9</'eE^^P[~(PA-l)7]

X 1 + (Pa- l)5-p(,-\n P_

Pe

P_

PeJ

PA 7

(A.27)

we have

F\p) = ^^(^)_.U
dp dp -i'"

P_

Pe

P_

Pe

«//?

Er
-i'"

P_

Pe dp

d
+ 2^e^exp[-{p;, - 1)7] X

I

— 1 + (Pa- l)5-p^-\n P_

Pe

P_

.Pe

'

p_

.pe

a//?

PA

X 1 + (Pa- 1)5 -Pa -In
P_

Pe
X

d_

dp

P_

Pe

PA-,

(A.28)
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or

F'{p) = a a

-i'"
p_

Pe

P_

Pe\

a/13-1

+ -^^e^(iM-{P^ - ^)l]

5 1

0Pe

Eca\ \p

Pe P^ IPe

P_

Pe

P^

iPe}

paS-i

+ 1 + (Pa - 1)S -p^-\n
P [Pe\

Pa
PPe

p_

pe

PA 3-1

a//3-l
10e

+ ;5-r5Zexp[-(pA-l)7]
^ Pe A

X {-'4 + Pa 1 + (Pa- 1)5 -Pa -In
P [P

P_

VPe

PAi-1

(A.29)

Then from Eq.(A.27), we can further obtain

dF'{p)
F'\P) =

dp

10e

PeP'X

P_

Pe

" 10-^ d

dp
In

P_

Pe
+ ln

d_

Pe\dp

P_

Pe\

2-1
B ^

Xi-PA^+PA^ 1 + (pa- l)5-pA^ln
P d

10e

2p+9t5]«^p[-(pa -
1)^'] ^ 1 "^^^a^^"'

/? LPeJ J j5p

Pe ]

P_

.Pe

P_

Pe

lPA^-1

1PA^-1

£;. aM 1

Pe P"^ I P,

10e

Pe\

'J ^ 1 .a
+ -(--l)ln

Pe P

+^^S^^p[~(p^~i)t'] ^
{ 'P^^'^p^'b 1 + (Pa- l)(5-pA^ln

^;^S-^'
p_

Pe

nPAi-2
l<^e

+ 9-^Xlexp[-(pA-l)7] X

Pe'/3'

,a
1 + (- - l)ln

P

PeJJ LP,

P

A

2^7
PA/52

1

Pe

P_

Pe

_P"

Pe.

)

PAi-2

10e

^ Pe A

Pa5 + (Pa^-1)^^2

7 5 7-PA^+PA^ 1 + (Pa- l)(^-pA^ln
P_

Pe

P_

Pe

nPA^-2

(A.30)

Prom the pair potential

$(/?) = -0e[l + 5(i?//2le - l)]exp[-7(/?/i?ie - 1)], (A.31)
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we have

and

$'(i?)
dR Rie R\e

R

1)]

-U^ + Si^- l)](-^)exp[-7([^ - 1)]
Uie tile -n-le

R\e I
7 }exp[-7(^ - 1)] (A.32)

$"(i?) = d^^R)

dR^

r.{'-

-^-^exp[-7(-— -
1)]

rile rile rile

7 l + 5(-^-l)
rCle

—-)exp[-7(—

-

rile -rtje

0,

Rl
25 7 l + (5( 1) |exp[-7(— -

1)] (A.33)
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