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ABSTRACT

Euclidean distance matrix analysis (EDMA) methods are used to distinguish whether

or not significant difference exists between conformational samples of antibody

complementarity determining region (CDR) loops, isolated LI loop and LI in three-loop

assembly (LI, L3 and H3) obtained from Monte Carlo simulation. After the significant

difference is detected, the specific inter-Ca distance which contributes to the difference is

identified using EDMA.

The estimated and improved mean forms of the conformational samples of isolated

LI loop and LI loop in three-loop assembly, CDR loops of antibody binding site, are

described using EDMA and distance geometry (DGEOM). To the best of our knowledge,

it is the first time the EDMA methods are used to analyze conformational samples of

molecules obtained from Monte Carlo simulations. Therefore, validations of the EDMA

methods using both positive control and negative control tests for the conformational

samples of isolated LI loop and LI in three-loop assembly must be done.

The EDMA-I bootstrap null hypothesis tests showed false positive results for the

comparison of six samples of the isolated LI loop and true positive results for

comparison of conformational samples of isolated LI loop and LI in three-loop assembly.

The bootstrap confidence interval tests revealed true negative results for comparisons of

six samples of the isolated LI loop, and false negative results for the conformational

comparisons between isolated LI loop and LI in three-loop assembly. Different

conformational sample sizes are further explored by combining the samples of isolated

LI loop to increase the sample size, or by clustering the sample using self-organizing

map (SOM) to narrow the conformational distribution of the samples being compared





molecular conformations. However, there is no improvement made for both bootstrap

null hypothesis and confidence interval tests. These results show that more work is

required before EDMA methods can be used reliably as a method for comparison of

samples obtained by Monte Carlo simulations.
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1 Introduction

1.1 Antibodies

1 .1 .1 Introduction to Antibodies

Antibody molecules, also called immunoglobulin molecules, are produced by B lymphocytes

in response to antigens. 'Antibodies specifically bind to the epitope (region of the antigen that

directly contacts the antibody) portions of the antigens and form antibody-antigen complexes.

The subsequent immune response leads to the destruction of the antigens.

An antibody consists of two light peptide chains and two heavy peptide chains which

form a "Y" shape (Figure l(a))^ and are connected by disulphide bridges and

non-covalent interactions. The light and heavy chains are defined by their molecular weights.

The molecular weight for light chains is about 25 kDa and for heavy chains is 50-75 kDa.^

Both light and heavy chains are composed of a variable region and a constant region. In the

constant region, the amino acid sequence is conserved among the various immunoglobins. In

the variable region, the amino acid sequence is different. Both heavy and light chains contain

domains, which are independently folded, functional units. The variable regions are the N-

terminal domains (Vh and Vl) whereas the constant regions are the C-terminal domains (Ch

and Cl). Each heavy chain has four domains and the light chain has two domains. There are

four disulfide bonds connecting light to heavy chains and connecting the two heavy chains.

The fragment for antigen binding (Fab) includes Vh, Vl, Chi and Cl domains. The very tips

of the variable regions are called antibody binding sites, which are referred to as the

complementarity determining regions (CDR) or hypervariable regions (Figure 1(b)).

An antibody always has two identical heavy chains and two identical light chains.

Therefore an antibody has two identical CDR binding sites. Each antibody can bind to two





(«)

antigens. The CDR directly contacts the epitope portion of the antigen's surface. The entire

CDR is comprised of six peptide loops: three loops in the heavy chain (HI, H2, H3) and three

loops in the light chain (LI, L2, L3).

(b)

FigHre 1. () General structure of an antibody,^ the portion in the frame is called Fab; (b) Enlarged image

of a Fab generated with Insight 11,^ Complementarity Determining Regions (CDRs) form the antigen

binding site: orange loop is LI, blue is L2, yellow is L3, red is HI, purple is H2 and pink is H3.

The Kabat definition* of each CDR loop is adopted in this paper. The Kabat definition of a

CDR describes where the loop begins and ends in an amino acid sequence of the light and

heavy chains based on the amino acid sequence variability.

1.1.2 Secondary structure in a Fab

An amino acid includes a chiral carbon, called the alpha carbon or Cq, a carboxylic acid,

amino groups and an R group, which is the side chain. A general structure of an alpha amino

acid is shown in Figure 2. Amino acids in proteins are connected by peptide bonds. The

secondary structure of a peptide consists of a-helices and P-sheets formed through hydrogen

bonding. The prevalent secondary structures in a Fab are P-sheets.^
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Figure 2.' Basic amino acid structure witiiin a peptide. Tliere are three torsion angles along the backbone

chain, \^i 9 and a>. Backbone atoms include the carbonyl carbon (grey), CI ; oxygen (red), O; the alpha

carbon (grey), Ca; and the amide group nitrogen (blue), N.

The P-strands are extended with the backbone dihedral angles (p and \\i approximately

±180°. Polypeptide chains can form parallel P-strands or antiparallel p-strands (Figure 3).'' In

an antiparallel P sheet, the directions of the N-terminus to the C-terminus along two adjacent

chains alternate. Every amino acid forms two hydrogen bonds with an amino acid in another

chain. In a parallel p sheet, the directions of the N-terminus to the C-terminus are the same in

these two chains.
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Figure 3. General structures of P-sheets. (a) Parallel p-strands. (b) Antipallel P-strands.

1.1.3 Mechanisms of antibody-antigen interaction

The general goal of this research project is to investigate the conformational diversity of

antibody binding sites. A protein that adopts more than one conformation has

"conformational diversity". Millions of conformations of the six peptide loops of a model

CDR may be produced using Monte Carlo and molecular dynamics simulation methods. This

project is focused on the analysis of the conformational diversity of antibody binding sites

and the conformational changes observed when the antibody is bound to an antigen relative

to its unbound state. Recent experimental results suggest that some antibody binding sites

have pre-existing equilibrium isomers, which form the conformational diversity of the

antibody.'" Therefore, the antibody can adopt different binding site conformations and maybe

bind unrelated antigens. This model gives a possible explanation for the cross-reactivity of

pathogen-specific antibody that leads to autoimmune diseases.
"
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There are three mechanisms that describe how a protein, such as an antibody might bind

hs ligand: lock and key, induced fit and pre-existing equilibrium.'^

The lock and key mechanism is described in Figure 4(a). There is no conformational

change involved when the antigen binds to an antibody and forms a complex. That an

antibody binds only to a specific antigen is well explained by this mechanism. Experimental

evidence of lock and key binding was supplied by the Poljak research group in 1986 using X-

ray crystallography.'^ In this experiment, the three-dimensional structure of a complex of an

antigen (lysozyme) and the antibody (myeloma immunoglobulin) Fab was compared with the

unbound antibody. The antibody-antigen interface was tightly packed. No conformational

changes were observed, which support the lock and key mechanism.

The induced-fit model is one explanation for when the conformation of an antibody

changes when an antigen binds to it. The induced fit mechanism involves antigen-induced

conformational changes, which include conformational change of complementarity

determining region loops or side chain conformational changes.''*''^ The induced-fit

mechanism is illustrated in Figure 4(b). The experimental evidence was provided by Wilson

ct al.'* using X-ray crystallography. The three-dimensional structures ofCDR H3 and LI

loops are changed when an antibody. Fab 1 7/9, binds to an antigen, peptide immunogen

(jyrP'oo.LeuP'o*) (^qj^ influenza virus hemagglutinin.

Recently, James et al.'°''^have provided experimental structural evidence for the pre-

existing equilibrium mechanism. The pre-existing equilibrium model (Figure 4(c)) assumes

there is more than one pre-existing conformational isomer. The specific conformation was

selected from the ensemble of pre-existing conformations when it binds to an antigen. The

James and Tawfik group found two isomeric conformations on the antigen binding site for

the same antibody (SPE7), which they call Abl and Ab2. These two conformations exist and

intcrconvert quickly in solution. Abl binds to the recombinant protein, antigen TrxShearS.





Because Ab2 has a different conformation, it does not bind to antigen TrxShearS but binds to

hapten, 2, 4-dinitrophenyl (DNP). The pre-existing equilibrium binding mechanism may

explain why multiple structures of an antibody could enable it to bind to more than one

partner.

+

(a) Lock «nd key

^^^
+

(V) Induced fit

+

(c) Pre-existing etjuiHbiium

Figure 4. Antibody-antigen interaction models: (a) Lock and key. (b) Induced fit. (c) Pre-equilibrium.
Protein is in grey; ligand is in dark grey.

1.1.4 Models Investigated

In this project, the conformational changes between a model CDR LI loop and this LI loop

in a three loop assembly of the antibody 8F5 binding site"' " are explored using Euclidean

distance matrix analysis (EDMA) and distance geometry (DGEOM) methods.''-^" If the

EDMA method can identify conformational changes ofCDR loops in the antibody binding





site, this method will eventually be used to provide computational evidence for the pre-

existing equilibrium or induced fit mechanisms.

An X-ray crystallographic conformation of the 8F5 Fab is found in the RCSB Protein

DataBank.^' This conformation is used as a starting structure for Monte Carlo simulations.

Here, the conformational diversity of a portion of the antibody 8F5 binding site, as obtained

from Monte Carlo simulations, is analyzed using Euclidean distance analysis (EDMA)

methods. Antibody 8F5 is a neutralizing antibody to human rhinovirus serotype 2, which is a

main causative agent of the common cold. The Kabat amino acid composition of the six CDR

loops of 8F5 is shown in Table 1. Molecular dynamics simulation studies of the shape of

antibody binding sites have shown that the conformations of unbound antibody and the

antibody-antigen complex of 8F5 have significant fluctuations.^^ Conformational changes of

the backbone of each of the CDR loops are observed. The especially significant motions were

undergone by LI and H3. The smallest range of movement was displayed by L3.

Table 1. Kabat amino acid composition of antibody 8F5's six CDR loops'^

CDR Loop





It is very difficult to simulate all conformations for the entire set of six loops of the CDR

using the Monte Carlo method. Therefore, the starting point was to investigate one loop

(Figure 5(a)): the isolated LI loop, and subsequently, LI in a three-loop assembly, which

includes LI, L3 and H3 (Figure 5(b)). The X, Y and Z coordinate data sets, which represent

the positions of the alpha carbons (Ca)of the isolated LI loop and LI in the three-loop

assembly, were obtained from Monte Carlo simulations.^^ During these Monte Carlo

simulations, CDR loops are simplified to one or two atoms based on the weight and size of

the amino acids. In this paper, the Cais the only atom to be selected to represent the backbone

structure or the conformations of the CDR loop. The LI loop of 8F5 has 1 7 €„ based on the

Kabat definition^ (Table 1).

(«) V >- (b)

Figare 5. (a) The isolated light chain LI loop backbone structure of antibody 8F5 (PDB: IBBD), which

includes C (green), O (red) of carbonyl, Ca (green) and N (blue) atoms. There are 19 amino acid residues

in LI loop including two feet (b) LI in three-loop assembly. These figures were generated by Insight II.

Two extra Ca are added to the LI loop as two "feet" and positioned at Z=0 (Figure 6).

There are 19 Ca atoms including two "feet", which are Ca23 and Ca4i whose coordinates are

taken from the amino acids immediate preceding and following the LI loop. The distance

between Ca23 and Ca4i is 9.41 A. These two "feet" were fixed during the Monte Carlo

simulations and constrain the LI in a loop. These two "feet" belong to the framework of the

variable region, which support the CDR loops in place. The mobile portion of the loop may

not move below Z=0 during the Monte Carlo simulation.
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Figure 6. Alpha carbon structure of LI loop for 8F5 generated by Insight II.

Because it is very difficult to effectively sample all conformations of the entire six loops

of the binding site using the Monte Carlo method, a research strategy is developed. The

starting point in this work is for one loop, which is the isolated LI loop and further, LI in a

three-loop assembly, which involves LI, L3 and H3. Each loop of the three-loop assembly

has two "feet" which are positioned at Z=0. So, all these three loops are able to move above

the XY plane. The goal of the comparison of conformational samples is to distinguish if

differences exist between isolated LI loop and LI in three-loop assembly. We expect there

are significant differences between isolated LI and LI in the presence of other CDR loops

because of the non-covalent interactions between CDR loops. The Monte Carlo simulations

were performed by other members of the Gordon research group.





1.2 Monte Carlo simulation

1.2.1 Metropolis Monte Carlo

Computational simulation may be used to provide detailed information of the conformational

diversity of biological molecules.^'*' ^' Monte Carlo (MC) simulation is a major method in the

computer simulation field.

Monte Carlo simulation is a stochastic technique. MC simulations generate a

pseudorandom sequence of molecular conformations to represent the Boltzmann

distribution^* of the system under investigation.^^ In 1953, Metropolis and his co-workers

described the process of a Monte Carlo method on calculating the properties of a protein,

which was composed of interacting molecules.^*

Consider a molecule or a collection of molecules consisting ofN atoms at a temperature

T and contained in a volume V. The Metropolis MC simulation is carried out as follows.

The initial molecular conformation is chosen for the molecule, for example, the X, Y and

Z coordinates (Xo, Yq, Zo) of an atom with potential energy Eq. The potential energy is

discussed later. A new conformation is produced by MC simulations by changing the position

of each atom. The atom (Xo, Yo, Zo) is changed to new positions Xi,Yi, Z\. The relationship

between these Cartesian coordinates is as follows:

where r is the maximum allowed displacement. The ^, ,^2 ^"^ 4i ^^^ random numbers,

each of which lies between -I and 1 . The new energy Ei corresponding to the new molecular

conformation is calculated. The change of the energy of the system is AE:

AE = E,-Eo (2)

10
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Whether the move is rejected or accepted is based on the Boltzmann test. If the move does

not change or decrease the energy, AE < 0, then this move is accepted. However, if the move

increases the energy, there are two situations: if ^ < exp (-AE/kT), where ^^ is another

random number, < (^4 < 1 , k is Boltzmann constant and T is temperature, the move will be

allowed. Otherwise, if the ^>exp (-AE/kT), the move will be rejected and the atom will stay

at (Xo, Yo, Zo). The Monte Carlo process is described in Figure 7.

11





Select initial conformation Xo, Yo, Zo;

Compute energy Eo

Generate random numbers {| } , to be

used for generation ofnew

conformations and Boltzmann test

Generate new random conformation Xi,

Yi, Zi; compute energy E| for this trial

conformation

Accept Xi,Yi,Zi&
energy Ei

Reject Xi,Yi,Zi&Ei
Retain Xo, Yo, Zo& Eo

Figure 7. Flow chart for Metropolis Monte Carlo sampling process
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The Boltzmann distribution is one of the classic distributions which predicts the

distribution energy function for a number of particles.
^^ The probability of finding an atom

in state a can be expressed as:

-EalkT

P^-4v7^ (3)

a

where go is the degeneracy, Eais the energy at state a, k is Boltzmann's constant, T is

temperature in Kelvin.

In order to calculate the potential energy for the model peptide loops examined here

(Figure 5), the Wallqvist and Ullner potential energy function is used:^'

E,,^,=E,, + E,^ + E,+E,,+E,, (4)

where £4, is the bond stretching potential energy, £^ is the bond angle-bending potential,

E^ is a potential that orients the amino acid side chain relative to backbone direction, E^i, is

peptide backbone potential and E^j is the hydrophobic or hydrophilic interaction existing

between sidechains.

The conformational samples used in this project were obtained from independent

Monte Carlo simulations. Independent simulations mean either that simulations start from

a different initial conformation or a different sequence of the random numbers ^ is

generated. Therefore, conformational samples obtained from independent MC

simulations contain different individual coordinates but are still drawn from the same

Boltzmarm distribution. In order to represent the total conformational distribution of the

LI loop, as many different conformations as possible should be collected. The

conformations were saved after every 2000 attempted moves of all the sites within the LI

13





loop or three-loop assembly in order to ensure that subsequent saved conformations were

independent, that is, not correlated to each other.

1.3 Euclidean distance matrix analysis

1.3.1 Euclidean distance matrix

Euclidean distance matrix analysis (EDMA) is a method for comparing the shapes or

structures of three-dimensional objects.'^ The shape of an object is described using inter-

landmark distances. EDMA can identify whether a significant difference exists between two

samples and detect where the difference is located. The EDMA method was introduced to the

conformational study of biological structures in 1990's by Leie and Richtsmeier.^" The

craniofacial appearances of normal mice and of mice with a genetic mutation Ts65Dn that is

a model for Down syndrome were compared and the specific locations which contributed to

the difference were detected using the EDMA method.^'' '^ The models of craniofacial

morphology in orofacial clefting were studied using EDMA by Ayoub et al.^^ and

Mclntyre.'* When this method was applied to the comparison of molecular structures of the

human insulin protein, significant differences between human insulin wild type and mutant

type, which cause diabetes, were detected successfully." Two insulin conformations were

compared, one from wild type and another from a mutant that substitutes serine for

phenylalanine in the 24th position on the B chain. The conformational difference was

detected by comparing statistics T for inter-Ca distances. It is important to note that this was

the only reported use ofEDMA on examining protein structure that we have found. However,

in this case only two protein conformations were compared and the EDMA methods we will

use, EDMA-I bootstrap null hypothesis and confidence interval tests were not used. We want

14





to see if these two EDMA methods are appropriate for using on the conformational samples

obtained from MC simulations.

In this work, Euclidean distance matrix analysis, EDMA, is explored as a statistical tool

for detecting whether or not two conformational samples are significantly different, and if so,

the inter-atomic distances responsible for that difference. The presence of nuisance

parameters, such as translation and rotation, do not affect EDMA results. Optimal

superimposition is also widely adopted for detecting bimolecular conformational changes.

For example, superimposition describes a molecular conformation based on either

minimizing the sum of squared distances or the sum of distances.^^ The most obvious

difference from EDMA is that superposition can only be performed between two molecules

at a time and two collections of molecular conformations cannot be superimposed. On the

other hand, EDMA can handle samples with large quantities of conformations at a time. For

doing the comparison between conformational samples, EDMA is much more efficient than

superimposition.''*'
^^

The shape of a protein can be represented by a Euclidean distance matrix ^*'
^'or form

matrix, which is the collection of all of the inter-Ca distances in the protein. This project

starts with many conformational samples, which were obtained from Monte Carlo

simulations.

The Euclidean distance D,>„ between Caj and Cam ofamino acid residues] and m is

calculated as follows:'^

Dj„ = ^[x^-xJhY,-YJ^[z^-zJ (5)

where (Xj, Yj, Zj) and (X^, Y^, Zm) are the Cartesian coordinates of Caj and Cam,

respectively.

IS





The Euclidean distance matrix for a single molecular conformation i can be expressed:

Z)M(/) = (Z),J/))^.,, ,„,,, , (6)

where j and m represent the amino acid sequence number and K is the total number of amino

acid residues. The distance matrix for conformation i is symmetric with all diagonal elements

equal to zero. Therefore, only the numbers in the upper triangle are used to represent the

distance matrix. There are a total of k(k-l)/2 entries in this non-redundant representation of

the distance matrix.

In order to describe the n conformations of a conformational sample A, the mean

conformation FM (A) for sample A is estimated as follows. The squared Euclidean distance

between Caj and Cam of conformation i is:

ej„,,=D^„(i) (7)

The average squared Euclidean distance e^„ for the n conformations of sample A is

estimated as follows:

n

The variance cr^„ of the squared distance between Caj and Cam in sample A is calculated:

^,«="''Z(V--^^)' (9)
/-I

Finally, the estimate of the mean form matrix for sample A is calculated:

FM(A) = (SJX,, ,,„.,, , (10)

where S^„ Is given by
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S,„={e^„ '-\cT,„r (11)

The mean form is computed from Sj^ , instead of Cj^ in equation (8) because

(X. -X^Y , {Yj -Y^)^ and {Zj -Z^Y for the n conformations are each distributed as non-

central chi-squared (5^) random variables?^ Likewise the sum of the squared distance e^„

,

equation (7), has a non-central x^ distribution with three degrees of freedom (Figure 8). The

cumulative probability for such a non-central x^ distribution is shown in Figure 9.
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Figure 8. The non-central x' distribution with 3 degrees of freedom; Pr is probability density.

Figure 9. The cumulative probability Dr for non-central x' distribution with 3 degrees of freedom.

The first moment of non-central ^ distribution is the mean of the distribution:

^(e;J = 3^,„+5,„ (12)

where <pj„ is the scaling parameter, 5j„ is noncentrality parameter.^'

The second moment is the variance:

18





<^{e^„) = e<pJ+A5^„(p^„ (13)

The mean form cr^„ can be obtained from equations (8) and (9):

'jmSubstitute (p = — — from equation (12) into (13), then we will get:

<^iejj = (14)

let E{ej^) « Cj^ . Equation (14) can be rearranged to equation (11) and the estimate of the

square of the mean form matrix djm is obtained.

Euclidean distance matrix analysis (EDMA) is applied to detect if there is a significant

difference between two conformational samples A and B and to identify the Euclidean

distances responsible for that difference. There are two tests: the EDMA-I bootstrap null

hypothesis test and the confidence interval test.'''
^"^ The EDMA-I bootstrap null hypothesis

test is used to detect whether or not significant conformational difference exists between two

samples and the confidence interval test is used to identify the origin or individual inter-Ca

distances contributing to that conformational difference.

1.3.2 Bootstrap null hypothesis test using EDMA-I method

Null hypothesis testing is a standard requirement for statistical analyses. The EDMA-I

bootstrap null hypothesis test is used to detect if a significant difference exists between two

conformational samples.

Three components are required in this hypothesis test: a null hypothesis, an observed test

statistic value Toft,, and the distribution of the test statistic T for the null hypothesis. If the

observed value of the test statistic Tabs lies in the extreme tails of the null distribution, the null

hypothesis is rejected. Otherwise, it will be retained. To generate values of the test statistic T
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for estimating the null distribution of T, the bootstrap method is applied, which is a random

sampling statistical tool.'**'

The null hypothesis of the EDMA-I test assumes that the mean shapes of the compared

samples are identical. For example: let A|_ A2, A3, ., An and Bi_ B2, Bs,
,
Bm represent the

molecular conformations of a protein having k amino acids in sample one and sample two,

respectively." As discussed in section 1.3.1, the estimated mean form matrix for the inter-Ca

distances of sample one FM(1), with n conformations and k amino acids is as follows:

FM{\) =

A. A2

A. A2

au
D.2k

A, A*2 akk

(15)

where Dj„ are given by equation (5) and £)// = D22 =.. = I)** = 0.

Based on the mean form matrices FM(1) and FM(2) for the two conformational samples,

the form difference matrix for samples one and two, FDA/ (1,2) is calculated, equation (16),

which is the ratio of form matrix one to form matrix two.

FDM(\,2) =
FM(\)

FM{2)

Let /?;>„ represent the elements of FZ)A/(1, 2). Then,

(16)

FDM{\,2)

Ru





FM(1) = FM(2). The EDMA-I test begins by converting the elements of the upper triangle of

the FDM (\,2) into a vector. The vector is sorted in an ascending order:

I I

^^"^
I/? ;? I

The observed statistic Tots is the ratio of the maximum to the minimum value in the

FDM(\,2):

max {FDM{\,1)) R^
'- =

min(FZ)A/(l,2)) -/?„,„

^'^^

The value of T^^, should be a real number larger or equal (when FM(1 ) = FM(2)) to 1 .0.

Because in practice the conformational samples one and two have a finite size, 7^,^^ ^ 1 .0,

even if they are drawn from the same underlying distribution. A bootstrap method is an

empirical way to generate the probability distribution of T for two samples of size n and m,

drawn from the same underlying population. Comparison of T^^, (equation (18)) to this

bootstrap distribution ofT for the null hypothesis (i.e. that samples one and two are drawn

from the same underlying population) allows us to determine whether or not there is

significant difference between samples one and two. The null distribution is the probability

distribution of the test statistic when the compared samples are identical.^' The null

distribution of the statistic T is generated by using a bootstrap approach. First, n

conformations are randomly selected from sample one to form sample 1'. Then, m

conformations are randomly selected, also from sample one, to form sample 2' (Figure 10).

Note that sampling replacement is used, so that individual conformations may be selected

more than once.
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Figure 10. Take random samples from sample one and form samples V and 2'.

Therefore, samples 1
' and 2' are drawn from the same underlying population of molecular

conformations. The form difference matrix FDM{\\ 2') based on samples 1
' and 2' is

calculated as in equation (16).

The T value for samples 1' and 2' is calculated:

T =
max (FDM(1',2'))

(19)
min (FDM(r,2'))

The above process of generating a value ofT for the comparison of two random samples

of sizes n and m drawn from the same underlying population is repeated for W=200 to 1000

times. The W values ofT form the null distribution of the bootstrap statistic T.

The last step is to plot the W values of the bootstrap statistic T by using a histogram. If

Tabs, computed using equation (1 8) from the original samples one and two, falls in the upper

tail ofthe null distribution, the null hypothesis that the mean forms of sample one and two are

identical, will be rejected. Here is an example. The EDMA null hypothesis test of Ts65Dn

mouse model from Lele's book" was reproduced. Down's syndrome is a human genetic

disease, caused by the third copy of chromosome2l . This disease is accompanied a change

in craniofacial appearance. The Ts65Dn mouse has an extra copy of segmental
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chromosome 16 and has comparable phenotypes of human Down's syndrome, such as shape

changes in the mandible jaw bone and delayed maturation. Therefore, the Ts65Dn mouse

model is widely applied to the research of human Down's syndrome disease.'*^'*^ Here, the

mandibles from skulls of normal mice and the Ts65Dn mice are compared. In this model,

there are 13 normal mouse mandibles and seven Ts65Dn mouse mandibles. The number of

points or landmarks (LM) in the mouse mandible is 1 1 (Figure 11). Therefore, there are 55

inter-landmark distances (C^^ = 11 x 10 -^ 2 = 55 ).

Figure 1 1." Mouse hemi-mandible with 11 landmarks.

The mean form difference matrix for the mean form of mandibles from 1 3 normal mice

divided by the mean form of seven Ts65Dn mice is shown in Table 2. The observed T value

1 258
is the ratio ofmaximum to minimum entries, T. = — = 1 .598 . Two hundred bootstrap

°*'
0.787

values ofT were then calculated from the sample of normal mice. The distribution of the

bootstrap T statistics is plotted in a histogram using Excel in Figure 12. The results

computed here are in agreement with those presented in ref.l9.
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Tabk 2. The mean form difference matrix for normal





distribution range and lies beyond the upper tail of the bootstrap null distribution. The result

of this null hypothesis test reveals that there is a significant conformational difference

between the mandibles of normal mice and Ts65Dn mice.

This null hypothesis test is used to answer the question of whether or not the mean form

of sample one is significantly different from the mean form of sample two. Because this test

is a one way test, the baseline group has to be chosen.'^ The baseline group is the one for

which the null distribution is computed. The baseline sample is the numerator in equation

(16). Generally, the sample with a larger sample size is chosen to be the baseline group.

In order to icnow whether two compared samples are different or not for certain, the one

way test should be nm twice, once using each sample as a baseline.

1.3.3 Bootstrap confidence interval test

A confidence interval refers to an interval estimate that has a certain probability of including

the true value of the parameter
.'*''

Because the test presents information about confidence or

reliability in an estimate, the interval test is a powerful statistical tool. The objective of this

bootstrap confidence interval test is to identify the specific distances responsible for the

significant difference between two conformational samples.

The bootstrap confidence interval approach uses a bootstrap random sampling method to

generate samples directly from two sample datasets. The following example briefly describes

how the bootstrap confidence interval approach works. Let A|, Aj, A3,. . ., An and Bi, B2,

B3,...,Bm represent the molecular conformations in samples one and two respectively. Each

conformation is of a protein having k amino acids.
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First, the form difference matrix FMD{\^) is calculated using the estimated mean forms

for the two conformational samples: FM(1) and FM(2), equation (16). Second, n

conformations are randomly selected from sample one, A] , A2 , A3 ,..., An to form sample

1 *and m conformations are randomly selected from sample two, Bi*, B2*, B3*,..., Bm* to form

sample 2*(Figure 13). Note that sampling replacement is used, so that any conformation may

be selected more than once.

Figure 13. Take random samples from samples one and two to form samples 1* and 2*.

Third, the form difference matrix FDM (1 *,2*) is calculated based on the mean forms

FM(1 *) and FM(2*) of random samples 1 * and 2*. The above two steps are repeated for 200

to 1000 times (W). FDM (1 *,2*) are collected and put into vector format. All FDM (1 *,2*)

will form a matrix with ((k-l) k)/2 rows and W columns in Figure 14.
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Figure 14. Super matrix forW values of FI>3/(1*^*).

Each column of the super matrix in Figure 14 is a form difference matrix that is

expressed as a vector. Each row contains W values of /?jm, the mean distance ratio between

Ccg and Cam in bootstrap samples obtained from the original samples one and two. The

confidence interval is constructed by sorting the ratios in each row in increasing order

(Figure 15). The maximum and the minimum values of /?*jmare the upper and lower

confidence limits for /?*jm.

(^*12)„»X

(^*13)™x

Flgare 15. Each row of the super matrix is sorted in increasing order.

The range of the confidence intervals reflects the similarity oftwo compared samples.

If the confidence interval includes the value 1 .0 between the lower and upper limits, then the

specific distance is identical in sample one and two. Otherwise, the specific distance in two

samples is different. To illustrate this, Figure 16 is a frequency plot of the values of/?% for

three idealized rows of the sorted matrix in Figure 15 in bootstrap samples of FDA/(1,2). In

Figure 16, when /?%=1.0 is included in the range of the confidence interval for the distance
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between Cqj and Cam, the mean distance between Cqj and Cam for sample one, Dj„(\) is not

different to the distance for sample two, p,„(2). If/?% is always less than 1.0 over the range of

the confidence interval, the mean distance between Cqj and Cam, for sample one is less than

sample two, Dj„{]) < Dj„{2). Otherwise, if/?% > 1.0 for all W, the mean distance between

Caj and Cam for sample one is larger than sample two, D;m(l)> Dj„(2).

Frequency

0.4

0.2

Dj-(l)<Pi42) Dj„(l) = D^(2) Dj„{l)>Dj„(2)

Figure 16. Distribution of R*jgi for samples one and two.

In section 1.3.2, an example that compares the mandibles of normal mice to those of the

Ts65Dn mouse model from Lele's book'^ was reproduced using the EDMA null hypothesis test.

Here, the confidence interval test for the normal mice and the Ts65Dn mice is reproduced.

There are 55 inter-landmark distances measured within a mouse mandible. A subset of the

confidence interval results are displayed in Table 3. The specific inter-landmark distance is

marked by *, if the value 1 .0 is included between its lower and upper limits. There are only 13

of the 55 inter-landmark distances, which include the value 1.0 in the range of lower and upper

limits. The mean inter-landmark distances for those 13 are not significantly different. The other

42 inter-landmark distances of the mouse mandible show significant differences between those

for normal mice and Ts65Dn mice.
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Table 3 Subset of 55 conndence intervals for normal





1.4 Distance geometry

1 .4.1 Background of distance geometry

Distance geometry is used to convert a set of inter-atomic distances or distance bounds to X,

Y and Z coordinates of the atoms."**'
'*^ The goal of distance geometry is to obtain a molecular

conformation or set of available conformations consistent with the set of upper and lower

bounds of the inter-atomic distance matrix. All previous applications ofEDMA first obtained

an "improved" mean form matrix from FM (A), equation (10), whose elements correspond to

a real three-dimensional shape or conformation.'*^ The improved mean form matrix can be

obtained by inputting the estimated mean form matrix into a distance geometry program.

Generally, there are three situations that distance geometry deals with when converting a

set of inter-atomic distances into Cartesian coordinates. The first one is when the inter-atomic

distances are exact, in other words there is no measurement error. Therefore, the original

distance matrix does correspond to a real three-dimensional object. The second one is when

only a sparse set of inter-atomic distance is given. Not all of the inter-atomic distances are

known. The third one is when distance geometry deals with a distance range or lower and

upper bounds. Distance geometry is best known as a powerful method to determine the

solution conformations of molecules in NMR experiments.'*''** For example, to determine a

protein structure in solution using NMR, the distance geometry algorithm is applied to

generate a molecular conformation that satisfies the distance between two protons within a

molecule as given by Nuclear Overhauser Effect (NOE) data. NOE between nuclear spins is

used to describe the correlation of two protons and indicates that two protons are separated,

on average, by a distance of less than 5.0 A. Instead of an exact distance, NOEs give a range

of the inter-atomic distances, or the maximum and minimum inter-atomic distances.*''"

Distance geometry searches for X, Y and Z coordinates of all atoms of molecule that are
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consistent with the upper and lower bounds of the available inter-atomic distances. Note that

only a sparse set of these distance bounds are available.

A molecular conformation can be expressed by a set of inter-atomic distances, or

Euclidean distance matrix. For example, the Euclidean distance matrix for butane in Table 4

summarizes the inter-atomic distances for two different idealized conformations, cis and

trans, as in Figure 17. With the expectation of the correct configuration about any chiral

centres existing in the molecule, there is no loss of conformational information because the

three-dimensional shape of the molecule can be re-generated from a complete distance

matrix
48

Table 4 Euclidean distance matrix for butane (A):

atoms





2.6A

3.8A

3
'

X.

4

Figure 17. The trans and cis conformations of butane.

The metric matrix approach is one of the major algorithms used for distance geometry

calculation. This method was introduced to the analysis of molecular conformation by

Crippen and Havel,"''^ where the X, Y and Z atomic coordinates of the molecular

conformation are directly generated from inter-atomic distances or distance bounds. The

metric matrix approach algorithms for distance geometry are simply described as follows.^^

A metric matrix is a matrix that can deduce the three-dimensional coordinates, which are

consistent with the inter-atomic distances. The most important point to distance geometry is

that the metric matrix can be generated from the distance matrix D. K is the total number of

atoms. The element djm in the distance matrix D represents the distance between atoms j and

m. To convert the distance matrix D to the metric matrix G, first, djo is calculated, which is

the distance between point j and the centre of mass o:

''V=^i<-7TiZ^i (20)

The elements gjn, of metric matrix G are calculated using:

g^=(d^jo +d\o-d^j^)/2 (21)

Once the metric matrix G is obtained, the eigenvalues and eigenvector of the matrix can

be calculated:

G = VL^V^ (22)
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where L^ are the eigenvalues and the V are the eigenvectors of G. The metric matrix G can be

converted into the three-dimensional coordinate matrix C and be expressed as:

G = CC^ (23)

where C is a matrix containing the coordinates of each atom. From equations (22) and (23),

the X, Y and Z coordinate matrix can be generated based on the eigenvalues and eigenvectors

of the metric matrix G:

C=VL (24)

Therefore, the X, Y and Z coordinates of the atoms are expressed in matrix C, which is

converted from the initial inter-atomic distance matrix D.

In this work, the distance geometry program DGEOM^'^ was used to obtain Cartesian

coordinates for the LI loop Ca's from the inter-atomic distances in the estimated mean form

matrices, D, obtained from Monte Carlo simulations.

1.4.2 DGEOM program

The distance geometry program DGEOM, developed by Blaney and co-workers,^" is used

to convert the mean form matrix of the inter-Ca distances for the LI loop into corresponding

X, Y and Z coordinates. The estimated mean form matrix of conformational sample A,

FM (A), equation (10), does not always correspond to a real shape in a three-dimensional

Euclidean space either because of measurement error or because the K(K-l)/2 inter-atomic

distances are mean values that collectively cannot be achieved in a real molecule. That is,

while each member of the conformational sample is a real three-dimensional shape, the

collection ofmeans of the inter-atomic distances may not be.
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Distance geometry is not always able to produce a structure based on the mean form

matrix because of a geometrical impossibility, called "triangle inequality".
'**' ^* The triangle

inequality states that for points A, B and C forming a triangle, the length of any side of the

triangle is not larger than the sum length of the other two sides and is not less than the

difference between the other two sides. Figure 18 shows that, for example, BC < AC+AB,

BC >
I AC-ABI .

B

Figure 18. Triangle inequality relationship: BC ^ AC+AB, BC ^ I AC-ABI .

If a violation of the triangle inequality relationship is detected within the distance matrix,

DGEOM will not produce corresponding three-dimensional structures; instead it will give a

warning message. An example of a triangle inequality problem that shows inconsistent

bounds and geometrical impossibility is in Table 5. Three atoms Ca6.Ca2 and Caio cannot

form a triangle because D2,6 + De.io < D2.10. This example was obtained when I ran the

DGEOM program to get a real structure for a conformational sub-sample of the LI loop, to

be discussed in section 2.6.
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Table 5 Triangle inequality problem of three inter-Cg distances

Inter-Ca distance





conformations will be rejected and which will be accepted. The distance error is the sum of

the differences between the inter-atomic distances of the conformers produced by DGEOM

and those of the lower and upper bounds in the constraint file. The distance error can be

calculated as follows:

\D,.-lowerbound(uDDerbound,^Distance error =^ ^ iDij -lowerbound(upperbound)
^

(25)
(-1 j'i+\

where k is the total number of atoms. The distance error is the sum of the squared minimum

differences between the inter-Ca distance of Cai and Cqj, generated by DGEOM, and the

corresponding lower or upper bound in the constraint file. The distance error function is

minimized by DGEOM. Any structure with a distance error larger than some assignable

defauh value is rejected. Figure 19 illustrates the process ofDGEOM.
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1.5 Goals of research

The overall objective of this research is to use EDMA to distinguish the differences between

conformational samples obtained from Monte Carlo simulations of isolated CDR loop LI and

LI in the presence of other CDR loops, L3 and H3 (Figure 5).

The fu^t goal of our research is to describe a mean shape for a conformational sample of

a part ofan antibody binding site, the LI loop described in section 1 . 1 .4, obtained by Monte

Carlo simulations. The second goal is to compare mean shapes obtained from two different

samples and determine whether or not they differ. Third is to describe why the

conformational distributions differ and to identify the contributing inter-Ca distances by

using Euclidean distance matrix analysis (EDMA) methods. Since this is the first application

ofEDMA to the analysis of molecular conformational samples obtained by Monte Carlo

simulations, both positive and negative control tests are designed to assess the specificity and

selectivity of this method.
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2 Experimental methodologies and results

2. 1 Experimental models and conformational samples

In this section, the experimental samples are described. The samples are eight molecular

conformational samples representing parts of the antibody 8F5 binding site. The antigen-

binding site or CDR of 8F5 shows conformational diversity in previous experimental studies

and molecular dynamic simulations.^

The conformational samples are of the isolated LI loop (Figure 5a) and LI in the three-

loop assembly (Figure 5b) obtained from Monte Carlo simulations. The conformational

diversity and differences between the various samples are investigated using EDMA methods.

The programs for EDMA calculation were developed using the FORTRAN 90 language^^

and the UNIX operating system. The visualization and animation of molecular conformations

are made using the Insight II 2005 molecular modelling software.^

The conformational samples of the isolated LI loop (samples one, two, four, five, six,

and seven (Table 6)) were obtained from six independent Monte Carlo simulations. Each

sample consists of 8000 conformations, which are selected from six independent twenty

million step-long Monte Carlo simulations. Figure 20 shows the cumulative mean energies

of each simulation has converged at twenty million steps, which means that the cumulative

mean energy will no longer change as the number of steps ofMC simulation increases. This

evidence supports that the Monte Carlo simulations have run long enough to sample all of

conformation space for the isolated LI loop. The energy distributions of 8000 conformations

in the six samples of isolated LI loop are plotted in Figure 21. There is no significant

difference among the energy distributions of these six samples. In order to focus on the

conformations with higher energy, the scale of energy axis is decreased (Figure 22). For each

of the samples, there are five or fewer conformations in the two highest energy ranges, which
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should not have a large affect on the structural averages taken over the entire 8000

conformations. Therefore, these six samples of isolated LI loop were expected to have no

significant differences between them.

-210

-230

-250

2E+07

Steps

- •<mp<» on» —mpl* two wnpl* lour t«mpte fly sample six sampto sevan
|

Figure 20. Cumulated mean energies vs. steps of Monte Carlo simulation.

40





3000

JM,—1 I r

«^ rA ^^ ^"^ r^ ,^ k'V «^ K^ ^^ ,v^^- <^- <0,- 4)- K^- c^- A^- <rV nN- h^- <^-
H^ nf> 0? 0/ 0/ "^ V n9 \^ O >•

Energy (KJ/mol)

sample one sample two O sample four D sample Hve sample six sample seven

Figure 21. Energy distributions of six samples of isolated LI loop.
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Two other conformational samples, samples nine and ten (Table 6), are from two

independent Monte Carlo simulations of LI in a three-loop assembly, which consists oftwo

loops LI and L3 from the light chain and the H3 loop from the heavy chain. These two

conformational samples each contain 4000 conformations. The two conformational samples

should not have any significant differences because they were obtained from same system

under the same simulation conditions. Although the conformations in the samples are not

identical, their distributions should be the same. Between the single LI loop conformations

and the conformations of the LI loop in the three loop assembly, significant differences

should be detected because the non-covalent interactions, such as van der Waals forces

between loops, will affect the conformation of the LI loop.

Table 6 Conformational samples

Sample Number





(C,9=171) in the LI loop. In order to compare any two samples, the mean form for each

sample must first be calculated.

2.2.1 Estimating the mean form for conformational samples

The estimator of the mean form matrix FM (1) for sample one is calculated using equation

(10). For example, the mean form matrices of conformational samples one and two (Table 6),

each of which has 8000 conformations, are shown in Tables 7 and 8. Because the mean form

matrices are square symmetric, we use only the elements of the upper triangle to describe

them. Note that the values of the diagonal elements in the matrix are zero and therefore are

not shown. The off-diagonal represents the adjacent inter-Ca distances, which are always

close to 3.8 A in a protein, regardless of the values of the cp, \(f and co torsional angles of the

backbone.









conformations produced by DGEOM. In order to get a structure as close as possible to the

estimated mean form matrix and which has a realistic loop conformation, different constraint

conditions were tested (Table 9).

Table 9 Results for different constraint conditions





errors are the sum of the adjacent inter-Ca distance differences between the output structure

and the adjacent inter-Ca distances, which should be about 3.8 A, or the inter-Ca distance

difference between Cai and Cai9, which is 9.41 A. The smaller the distance error the better is

the output structure produced by DGEOM.

The best constraint conditions are those for which the DGEOM program provides one or

more structures, which form a loop shape without overlaps, have correct Ca-Ca-Ca bond

angles corresponding to a P-strand (1 00°- 1 60°) and have the smallest sum error and specific

errors. In Table 9, the different constraints of inter-Ca distance for Exp I .a and I .b, Exp 2 and

Exp 3 are compared. In Exp 3, the upper and lower bound are equal to the entries in mean

form matrix (FM) ±0.83A, which is an arbitrary number and less than half of the van der

Waals radius of Ca. Test 1 shows the Exp 2 and Exp 3 have correct bond angle of P-strand,

which is about I00°-1 30°, while the bond angles in Expl .a and 1 .b are outside this range. All

loop structures in Exp 2 and Exp 3 are realistic without any bonds overlapping while Exp 1 .a

and 1 .b have some or all bonds overlapping. The sum of distance errors in Exp 2 is larger

than Exp 3. However, the sums of distance errors of adjacent inter-Ca and Cai- Cai9 in Exp 2

are smaller than those in Exp 3. The DGEOM-produced structures in Exp 2 are the closest

structures to the estimated mean form matrix. In Exp 2, the constraints are that the lower

bound is equal to upper bound. Both of them are equal to the entries in estimated the mean

form matrix. Therefore, the best result in Table 9 is Exp 2 based on the above criteria.

Therefore, the constraint conditions for Exp 2 were adopted for use with DGEOM for the

comparison oftwo conformational samples. The improved mean form matrix for sample one

obtained from the best three-dimensional conformation produced by DGEOM corresponding

to the constraints given in the mean form matrix in Table 7 are shown in Table 10. The

values in Table 10 sacrificed some accuracy in order to represent a real three-dimensional
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shape. For example, the entries on off diagonal are not always about 3.8 A (e.g. see Cai-Cas

distance).





methods pass all the positive and negative control tests can they be applied with confidence

to the investigation of conformational changes of the complete antibody binding site.

2.3.1 Detecting significant differences using EDIVIA-I bootstrap null

hypotheses tests

EDMA-I bootstrap null hypotheses tests were used to detect if there were significant

differences between samples one and two. Because samples one and two were obtained from

two independent Monte Carlo simulations for the same system, i.e. isolated LI loop, the

conformational distribution from the two samples should not have any significant differences.

The EDMA comparison methods were applied to samples one and two in order to test the

specificity and selectivity of the methods. The definition of selectivity is the ability to

distinguish small differences, whereas specificity was how well a test can correctly identify

the negative cases in a study.*'

2J.1.1 Negative control tests for samples of isolated LI loop

In this paper, samples one, two, four, five, six and seven (Table 6) are obtained from

independent Monte Carlo simulations for the same system, the isolated LI loop. So, there

should be no significant differences between any of these conformational samples. The

purpose of comparing these conformational samples using the EDMA-I bootstrap null

hypothesis test is to create a negative control test. The negative control test should show a

true negative result that is that there is no significant difference between the two compared

samples. If all the negative control tests for these conformational samples result in true

negatives, then we will be confident that the EDMA-I bootstrap null hypothesis test is not too

selective.

The null hypothesis in our project is that the mean conformations of two samples are not

significantly different. If the observed value of the test statistic Toa, (equation 18) computed

48





for the two samples falls within the range of the null distribution of T, the null hypothesis is

retained, and the result of the control test is a true negative. Otherwise, if the statistic Tobs lies

in the extreme tail of the null distribution, the null hypothesis will be rejected and the result

of the control test is a false negative.

The statistic Tots is the ratio of the maximum to the minimum values in the FDM(1, 2)

(equation (16)). Here, Tobs is calculated using FORTRAN and DGEOM programs for all

pairwise comparisons of conformational samples of the isolated LI loop. For each

comparison, we require DEGOM to produce ten different structures corresponding to the

distance constraints provided by each input mean form matrix. Therefore, 100 (1 Ox 10) values

of Tobs are calculated for each sample comparison from the improved mean form matrices

obtained from the DGEOM produced conformations. Only the smallest Tots is selected from

these 100 values since when Tobs=\, the sample means are identical. To illustrate the range of

values of Tobs found for comparison of samples one and two, 200 values of ToAjare plotted in

Figure 23.

Flgare 23. DistribntioR ofT^ for (he comparison of sample one and sample (wo.
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If Tabs is equal to 1 .0, the mean forms from two compared samples are identical. If Tabs is

much larger than 1 .0, these two samples are very different. The smallest value of Tots

obtained from comparison of samples one and two is 1.214. Table 11 contains the smallest

values of Tabs obtained for pairwise comparisons of all six conformational samples of the

isolated LI loop. There are in total 15 comparisons (Table 11) between any two samples

among the six samples (one, two, four, five, six and seven). Because the null hypothesis test

using EDMA-I is a one way test," a conformational sample baseline (numerator in equation

(16)), which serves as the null distribution sample, was chosen. The sample with larger

conformations serves as the baseline. In this case, because all conformational samples for

isolated LI loop have the same size, choosing either sample to be the baseline should not

affect the testing results. The comparison between any two samples is conducted twice by

changing the null distribution sample (baseline exchange). In Table 11, all Tabs are larger

than 1.0. The largest Tabs is 2.905 shows the biggest difference exists between sample six and

seven. These results of Tob, do not meet our initial expectation because these six samples

should express the same conformational population of isolated LI loop.

Table 1 1 The best T^, values for the comparison of six samples of isolated LI loop

Samples



iWlf



However, the null hypothesis will not be rejected if these values of Tots fall within the range

of the null distributions generated for these samples. The steps of bootstrap null hypothesis

testing for sample one and sample two are described in Figure 10. First, 8000 conformations

are randomly selected from sample one to form samples 1
' and 2' respectively. The estimated

mean form matrices for samples 1' and 2' are calculated, (equation (10)). Second, the

DGEOM program was used in the null hypothesis algorithm to produce ten real three-

dimensional structures for each input estimated mean form matrix. The 100 possible T values

from each of the ten improved mean form matrices for samples 1
' and 2' were calculated.

The two structures with smallest T are selected for the null distribution. These two structures

likely represent the most similar estimated mean form matrices for the two samples. Third,

the above steps were repeated 200 times and 200 T values were calculated (equation (19)) for

samples 1
' and 2'. Then, a histogram was plotted using EXCEL to describe the null

distribution of the bootstrap statistic T based on these 200 T values. If the Tots computed

using equation (18) for samples one and two, falls beyond the upper tail of the null

distribution, the null hypothesis will be rejected. Otherwise, if Toft, falls within the range of

the null distribution, the null hypothesis will be retained.

First, sample one is chosen as a baseline sample. The null distribution of sample one is

plotted in Figure 24. As mentioned before, the value of Tots obtained from comparison of

samples one and two is 1 .214, which falls beyond the range of the null distribution of sample

one. The null hypothesis is rejected. There are significant differences between samples one

and two. The result of the negative control test shows false positive.
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Figure 24. The null distribution of T of sample one, T„i, is for samples one and two.

This time sample two is chosen to be the baseline and the maximum and minimum values

ofFDM(1. 2) are 1.393 and 0.725 (in Table 12), so that 7;4,=l.922. The null distribution of

sample two is plotted in Figure 25. Note that Tobs=l .922 falls beyond the null distribution

range of sample two. So, the negative control test shows false positive.
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plotted (Figures 26-39). Tots for all pairwise comparisons of six samples were calculated as

described in Table 11. To summarize, for all comparisons of six samples (one, two, four, five,

six and seven), all Tobs fall out of the range of the null distribution in Figures 26 to 39. The

results of the null hypothesis testing using EDMA-I method showed that the comparisons of

any two mean conformations of six samples obtained from independent Monte Carol

simulations for a same system, isolated LI, were significantly different. Therefore, the

negative control tests ofEDMA-I null hypothesis test gave false positive results in all cases.

In section 2.5, we explore the effect of increasing the sample size on these results.
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2.3.1.1.1 Effect ofbootstrap sample size on null distribution ofTfor EDMA-J

In previously conducted negative control tests (Section 2.3.1.1), the number of bootstrap

samples used to compute T values for the null hypothesis distribution was 200. In order to

see whether increasing the number of bootstrap samples affected the null distribution, one

trial of using W=1000 was used to construct the null distribution of sample one (see Table 6).

Figure 40 shows the comparison between two null distributions ofT for bootstrap samples of

200 and 1000. Note that the comparison between those two null distribution was conducted

using the initial estimated form matrices, and not those corresponding to the subsequent

'improved' mean form matrices generated from the best conformations obtained from

DGEOM. Using conformations generated by DGEOM employing the constraints of the

estimated mean form matrices, the larger values ofT seen here are no longer contaminating

the null distribution (compare Figure 40 with Figure 24). Based on visual inspection, there is

no apparent difference between the two null distributions in Figure 40. Figure 41 is an

expanded plot of Figure 40 covering the range ofT occupied by the majority of the

population. Here too, there is no apparent difference between the normalized null

distributions obtained from bootstrap samples of 200 and 1000. Therefore, we do not believe

that our conclusions based on the EDMA-I null hypothesis testing described in

Section 2.3.1.1 would be affected by increasing the size of bootstrap sample.

\- \- \ \ N- \- \- \- \- \ \ \-

bootstrap sample size » 200 bootstrap sample size = 1000

Figure 40. The comparison of two normalized null distributions for T generated from sample one for

t>ootstrap sample sizes of 200 and 1000.
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Figure 41. The comparison of two null distributions for T generated from sample one for bootstrap

sample sizes of 200 and 1000. Expansion of Figure 40.

2.3.1.2 Negative control tests for samples of LI in three-loop assembly

The negative control test ofEDMA-I null hypothesis test of isolated LI loop gave false

positive results we believe because the conformations for LI loop have a broad distribution

that is discussed in section 2.4. The conformations of LI in the three-loop assembly are

supposed to have a narrower distribution than those of the isolated LI loop because the LI in

the three-loop assembly is a subset of isolated LI loop conformations*^ by analysis using

clustering the self-organizing map (SOM) method.^ Samples nine and ten, each has 4000

conformations (Table 6), and were obtained from independent Monte Carlo simulations for

the LI in three-loop assembly. So there are should be no significant difference between these

two samples. The negative control test of EDMA-I bootstrap null hypothesis test should show

a true negative result that there is no significant difference between samples nine and ten.

The process of negative control testing of six samples of isolated LI loop in section

2.3.1.1 is followed for samples nine and ten. The null distribution ofT of sample nine are
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plotted and Tabs - 1.439 for samples nine and ten (Figure 42). Compared to the null

distribution ofT of six samples of isolated LI loop (Figures 24- 39), the null distribution of

sample nine has a narrower distribution, which meets our initial expectation for the

conformational samples of LI in three-loop assembly. Tobs faWs beyond the range of the null

distribution ofT of sample nine. The result of the EDMA-I null hypothesis test is a false

positive. Because samples nine and ten have the same size, choosing either sample to be the

baseline should not affect the testing result.

f
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40

20

1.030 1.031 1.032 1.033 1.034 1.035 1.036 1.037 1.038 1.039 1.040

"
To5s=1.439

Figure 42. The null distribution of T of sample nine. T.^, is for samples nine and ten.

2.3.1.3 Positive control tests for comparison between isolated LI and

LI in three-loop assembly samples

The conformations of LI in the three-loop system. Figure 5b, have been shown to be a

subset of isolated LI loop conformations by analysis using clustering the self-organizing map

(SOM) method.*' Therefore, we expect there to be significant differences between

conformational samples obtained for the isolated LI loop and those for LI in the three-loop

assembly. The goal for the comparison of isolated LI and LI in the three-loop assembly was
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to assess the EDMA-I bootstrap null hypothesis test using a positive control test. A true

positive result is that a significant difference detected between compared samples that are

known to be different. A false negative result is that no significant difference is detected

between compared samples that are known to be different. For this positive control test,

sample one for the isolated LI loop and sample nine for LI in the three loop assembly.

Table 6, were chosen.

The null hypothesis in our project was that the mean conformations of samples one and

nine are identical. If the observed value of the test statistic Tobs lies in the extreme tails of the

null distribution of T, the null hypothesis is rejected and the result is a true positive.

Otherwise, the null hypothesis will be retained and the result is a false negative.

The conformational sample for the isolated LI loop, sample one (Table 6) served as

baseline because it had the larger sample size (N=8000) as compared to sample nine for the

LI loop in the three loop assembly (N=4000). The value of Tobs was calculated as described

in section 1.3.2. The distribution ofT for the null hypothesis was obtained using sample one

which is shown in Figure 43. 70*5=3.028 for samples one and nine falls beyond the null

distribution of the bootstrap T of sample one, which means there is significant difference

between mean conformations of sample one for isolated LI loop and sample nine for LI in

three-loop assembly. 7'o6j=2.858 for samples one and ten also falls out of the extreme of this

null distribution of sample one (Figure 43). Therefore, the null hypothesis of the mean

conformational similarity for samples one and nine was rejected, which agreed with our

expectations. The values of Tobs for sample one and samples nine and ten are larger than those

for six samples in Table 11 that reveal the mean conformations of isolated LI loop and LI in

three loop assembly are more different than those all from isolated LI loop. The EDMA-I

null hypothesis tests for sample one and samples nine and ten have given true positive results.
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Figure 43. The null distribution ofT of sample one. T,|„is for samples one and nine.

Tobs= 2.972 for samples two and nine falls beyond the null distribution of the bootstrap T of

sample two (Figure 44), which means there is significant difference between mean

conformations of sample two for isolated LI loop and sample nine for LI in three-loop

assembly.
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Figure 44. The null distribution ofT of sample two. T,i„is for samples two and nine.

To summarize, because the conformations of LI in three-loop assembly are a subset of

those for the isolated LI loop, we expected that the mean conformations of samples one and

nine should not be similar. The results of positive control tests of the EDMA-I null

hypothesis for samples one and nine, samples one and ten, samples two and nine agreed with

what we expected. The positive control tests for EDMA- 1 bootstrap null hypothesis show

true positive results.

2.3.2 Localizing significant differences using confidence interval test

The more different the mean values of the inter-Ca distances are between two conformational

samples, the ftirther the individual values in the FDA/ (e.g. Table 2) deviate from 1.0.

However, checking each value in the FDM is tedious work. In this paper, we use a more

efficient method, the bootstrap confidence interval test, to pinpoint individual inter-Ca

distances that give rise to conformational difference. Both negative control and positive
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control tests were designed to assess the success of the bootstrap confidence interval method.

Only if the bootstrap confidence interval method passes all the control tests can it be applied

to the comparisons of conformational samples obtained from Monte Carlo simulations. The

null hypothesis is that the inter-Ca distances of the two conformational samples are

statistically identical to each other.

2.3.2.1 Negative control tests for comparison of isolated LI loop

conformational samples

The result of a negative control test should show that no significant difference is detected

between compared samples, which were known to be identical. There should be no

significant differences between the six conformational samples (one, two, four, five, six and

seven) in Table 6 because they were obtained from independent Monte Carlo simulations for

the isolated LI loop. The purpose of comparing these six conformational samples was to

assess the bootstrap confidence interval with a negative control test. A true negative result

would be that there is no significant difference detected between comparisons of these six

conformational samples. Otherwise, if significant differences are detected between the

compared samples, the bootstrap confidence interval test has given a false positive result.

The algorithm for computing the bootstrap confidence intervals, described in section

1.3.3, between two conformational samples was written using a Unix script.

1 . The estimated mean forms for two conformational samples, e.g. one and two, were

calculated and were input into the DGEOM program to produce 1 00 structures, which

are consistent with the requirement of the distance constraints. FORTRAN programs

were developed to pick out two conformations, which result in the smallest T„bs since

when samples are identical, jroA,= l .0. These two picked conformations are most likely

to represent the estimated mean form matrix conformations. The chosen mean
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conformations for each of samples one and two were used to compute "improved"

mean form matrices and subsequently to calculate the FDMfl, 2Xequation(16)).

2. 8000 conformations from sample one were randomly selected and called sample 1 *;

8000 conformation from sample two were randomly selected and called sample 2*

(Figure 13). Note that sampling replacement was used, so that any conformation may

be selected more than once.

3. "Improved" mean form matrices for samples 1 * and 2* were produced from the

closest corresponding conformations given by DGEOM and the distance constraints

from FM (1*) and FM (2*). The form difference matrix FDM (1*2*) was calculated.

4. Steps 2 and 3 were repeated 200 times.

A total of 200 FDMil*, 2*) matrices were collected. All values in those 200 FDM (1 *,

2*) were written into a matrix with 171 rows and 200 columns (Figure 14). Each column

was a form difference matrix in vector format and each row contains 200 form difference

ratios for a specific inter-Ca distance. In order to obtain the confidence intervals for the inter-

Ca distances, the values in each row were sorted in increasing order (Figure 15). The

minimum and maximum values are the 100% lower and upper confidence limits for that

particular inter-Ca distance. Note that if FDM{\*, 2*) = 1 for a given inter-Ca distance, that

mean inter-Ca distance is identical between the two samples. If FDM (1 *, 2*) < 1 .0, the

particular mean inter-Ca distance of sample one is larger than that in sample two. If

FDM (\*, 2*) > 1 .0, the mean inter-Ca distance of sample one is smaller than sample two

(Figure 16). Therefore, if the value 1 .0 is between the lower and upper values of confidence

intervals, the given inter-Ca distance is not significantly different between the two compared

conformational samples. Otherwise, these values of the inter-Ca distances are different and
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the null hypothesis that there is no significant difference between the compared samples is

rejected.

Table 13 shows the 100% lower and upper confidence limits for a few of the 171 inter-Ca

distances between samples one and two, each of which has 8000 conformations of the

isolated LI loop. For example, the 100% confidence interval between Cai and Cai includes

1.0 between the lower and upper limits of 0.9632 and 1.0185, respectively. This means that

the mean distance between Cqi and Ca2 is the same for both conformational samples. In fact,

all the confidence intervals in Table 13 show that there was no significant difference between

samples one and two for this subset of inter-Ca distances.

67





Table 13 A subset of confldence intervals for comparison of mean inter-C. distances of conformational

samples one and two

Inter-Ca distance





between Cai6 and Cai9 (No. 168, Table 14). The frequencies of different inter-Ca distances

for all 15 comparisons of six samples obtained from isolated LI loop are calculated and

presented in the last column of Table 14.

Only 32 of the 171 inter-Ca distances were detected as being different between the two

samples at least once over these 1 5 comparisons. The inter-Ca distance that was most

frequently tested as being different was Cos and Cai? with only five instances out of 1

5

comparisons. Therefore, despite the EDMA results in section 2.3.1.1 suggesting that all of

these conformational samples differ, there is no inter-Ca distance consistently different

between the samples. This is what is expected for comparison of samples that are not

significantly different.
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The total number of different inter-Ca distances between any two samples of isolated LI loop detected by

the bootstrap confidence interval test is shown in both the last row of Table 14 and in Table 15.

As mentioned before, there are should be no significant difference between six samples for the isolated LI

loop. Therefore, we expect that there should be no differences in inter-Ca distances. However, in this work,

because these six conformational samples have finite sizes, some different inter-Ca distances are detected

during the comparisons. Here the criterion is made: if the number of different inter-Ca distance is larger than

10% of total 171 inter-Ca distances (17), there is significant difference between two compared samples.

Table 15 shows the largest number of different inter-Ca distances detected was 9 between samples four and

seven. Because the numbers of the different inter-Ca distances detected for all comparisons of six samples of

isolated LI are less than 10% of 171 inter-Ca distances, we accept that there is no significant difference

detected among six samples. Therefore, the results of the bootstrap confidence interval tests show that there is

no significant difference between the six compared samples obtained from independent Monte Carlo

simulations that meet our expectation. The negative control tests for six samples of isolated LI loop show true

negative.

Table 15 Number of inter-C, distances that are detected as being different

Sample No.





2.3.2.2 Negative control tests for comparison of isolated LI loop conformational

samples

The conformations of LI in the three-loop assembly are supposed to have a more narrow distribution than

t those of the isolated LI loop because the LI in the three-loop assembly is a subset of isolated LI loop

conformations which were shown using clustering with the self-organizing map (SOM) method.^^. Samples

nine and ten (in Table 6), are obtained from independent Monte Carlo simulations for the LI in the three-loop

assembly. So there are should be no significant difference between these two samples. The negative control

test of bootstrap confidence interval should show a true negative result that there is no significant difference

between samples nine and ten.

The process ofnegative control testing of confidence intervals for six samples of isolated LI loop in

section 2.3.2.1 is followed for samples nine and ten. A subset of the confidence intervals of samples nine and

ten are shown in Table 16. In this table, all 26 inter-Ca distances include the value 1 .0 between the lower and

upper confidence limits. In fact, all 171 inter-Ca distances include the value 1 .0 between the lower and upper

limits in the confidence interval test for samples nine and ten. Even no occasional differences are detected

between samples nine and ten as with the comparisons of six samples indicated in section 2.3.2.1. Therefore,

the results of the confidence interval test of conformational samples nine and ten show that no significant

difference exists between samples nine and ten of LI in three-loop assembly. The negative control test of

confidence interval for samples of LI in three-loop assembly is true negative.
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Table 16 A subset of conHdence intervals for comparison of mean Inter-C^ distances of conformational samples nine and ten

Inter-C, distance





TTie algorithm for computing bootstrap confidence intervals that was previously used, section 2.3.2.1, was

followed to calculate the bootstrap confidence interval for sample one of the isolated LI loop, and for the LI

loop in the three loop assembly, sample nine. Table 6.

Table 17 contains a subset of the lower and upper values of the form difference calculated for 200

bootstrap samples, where sample one was used as the baseline. All these confidence intervals include 1 .0

between the lower and upper limits. Therefore, the bootstrap confidence interval found no significant

difference between compared samples. In fact, this was found for all 171 inter-Ca distances.
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Table 17 A subset of confidence intervals for comparison of mean Inter-C, distances of conformational samples one and nine

Inter-C, distance





Table 17; the corresponding values in Table 13 are 0.9632 and 1.0185, respectively. The larger range value

reflects the relative conformational diversity of the compared samples. The result of confidence interval shows

evidence that the conformations from different conformational populations, isolated LI loop and LI in three-

loop assembly, are more diverse than the conformations from same conformational population, isolated LI

loop. The results of confidence interval test for samples two and nine are displayed in Table 18. The ranges of

the lower and upper limits of confidence interval for samples two and nine are similar to those of samples one

and nine because samples one and two are obtained from same system of isolated LI loop.

Table 18 A subset of confldence intervals for comparison of mean Inter-Cg distances of conformational samples two and nine

Inter-C. dbtance





2.4 EDMA assessment results

In summary, the EDMA-I bootstrap null hypothesis tests revealed false positive results for the comparison of

samples one, two, four, five, six and seven of the isolated LI loop (section 2.3.1.1). The tests also showed true

positive results for conformational samples of isolated LI loop and LI in three-loop assembly (section 2.3.1.2).

The bootstrap confidence interval tests showed true negative for comparisons of the samples of the isolated

LI loop, and false negative for the conformational comparisons between isolated LI loop and LI in three-loop

assembly. The EDMA-I null hypothesis was too selective for our comparisons while the confidence interval

tests method are not selective enough for our system. Table 19 summarizes our findings. Moreover, the

bootstrap confidence interval appears to be unable to locate the reason (inter-Ca distances) for the difference in

mean forms detected by the bootstrap null hypothesis test on the same samples.

Table 19 Summary of negative control and positive control tests for assessing EDMA methods

^^--..,,^^ Control tests

EDMA methods^^^^,,^^^





large enough to represent adequately the entire conformational distribution of the isolated LI loop. In order to

understand how the sample size affects the results of the bootstrap null hypothesis and bootstrap confidence

interval tests, larger sample sizes with 16000 and 24000 conformations were tested using EDMA methods. The

larger conformational samples were created based on the six samples of isolated LI loop (Table 6) that were

used in previous tests are described in Table 20. New samples datl2, dat45 and dat67, pooled two

conformational samples from samples one and two, four and five, six and seven. Each of the new samples had

16000 conformations. Samples datl24 and dat567 combined three samples of 8000 and so each of them had

24000 conformations.

Table 20 Pooled conformational samples of the isolated LI loop

Sample name





Therefore, the number of conformations in each sample was increased in order to evaluate if sample size was a

crucial factor.

Samples datl2, dat45 and dat67 were compared and each sample has double the original conformational

number. The procedure of the null hypothesis test is as described in section 2.3.1.1. The null distributions ofT

for the larger samples of 16000 are plotted in Figure 45-47. Results show the Tots values for sample sizes of

16000 conformations (samples datI2, dat45 and dat67) were slightly smaller than for the samples with 8000

conformations (samples one, two, four, five, six and seven) in Table 6. However, the Tots values were still

outside of the range of the null distributions for all comparisons, which means that the EDMA test indicates

that there are significant differences between compared samples.
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FigHrc 45. The null distribution of T of datl2 for the comparison of samples datl2 and dat45.
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Figure 46. The null distribution ofT of dat67 for the comparison of samples datl2 and dat67.
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Figure 47. The null distribution of T of dat67 for the comparison of samples dat4S and dat67.
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Because the Tabs values were slightly decreased as the sample size increased from 8000 to 16000, even

larger samples were tested. Samples sizes were increased to 24000 conformations for samples datl24 and

dat567. Figure 48 shows that the null distribution did not change significantly, nor did the Tots value. The

results still showed a false positive, which is that the significant difference exists between the compared

samples which were known to be identical.

Figure 48. The distribution of bootstrap T statistics of sample datS67 for the comparison of samples datl24 and dat567.

A summary of these null hypothesis test results are shown in Table 20. The observed T values, Tobs,

for compared samples with larger conformational numbers were slightly decreased compared to the samples

with 8000 conformations in Table 11. However, there was no evidence that showed the observed T would fall

within the range of the null distributions for any comparisons. The negative control tests failed for the

compared samples for LI loop with 16000 and 24000 conformations. The negative control tests were not

improved by increasing sample sizes.
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Table 21 Null hypothesis test results of isolated LI loop with increased sample sizes

Compared samples





2.6 EDMA tests for samples with narrow conformational distribution

The self-organizing map (SOM) is a tool to convert input data into groups, which have similar data.*** The goal

of the SOM is to classify and visualize the input data on a two-dimensional map.

The SOM was used to divide the conformations in sample one (Table 6) into 1 00 subgroups. Twenty of

these 100 clusters are listed in Table 22.

The process of generating clustering data using SOM is described as follows:

1

.

The 8000 conformations were scattered artificially into 10X10 bins.

2. The mean conformation in each bin was calculated.

3. The Euclidean distance differences between each conformation and each mean conformation for each

bin were evaluated. The conformations are assigned to the bin for which the minimum Euclidean

difference occurred.

4. Recalculate the mean conformation for each bin.

5. Repeat step 3 and 4 until no changes occur in the bin memberships.

I The conformations in each cluster should be similar to each other. The conformational memberships in the

first 20 bins are shown in Table 22. Neighboring bins should contain conformations that are more similar to

each other than distant bins based on the SOM algorithm.''
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Table 22 Samples sizes for twenty of 100 conformational clusters obtained by self-organizing map

Samples

Name





3 Discussion

The goals of this project include describing the mean shape of conformational samples obtained from Monte

Carlo simulations, to compare the mean shapes and to pinpoint specific inter-Ca distances that contribute to

conformational difference. In order to compare mean shapes obtained from two different samples, the mean

forms have been estimated using EDMA. The mean form matrix is further improved by locating three-

dimensional conformations of our system that are closest to the estimated mean forms of the compared

samples using the DGEOM program. Validation of the two EDMA methods, the EDMA-I bootstrap null

hypothesis test and confidence interval test, is conducted using both negative control and positive control tests

described in previous sections (section 2.3-section 2.6).

Only if both the EDMA-I bootstrap null hypothesis and confidence interval method pass the positive and

negative control tests, can the EDMA methods can be applied to the conformational investigation of the

antibody binding site model obtained from Monte Carlo simulations. So far, the results from these experiments

show that validation of the EDMA methods has failed.

The six conformational samples (samples one, two, four, five, six and seven) obtained from Monte Carlo

simulations are known to be drawn from the same distribution. These six conformational samples underwent

negative control tests for both the EDMA-I bootstrap null hypothesis test and bootstrap confidence interval test.

The results ofEDMA- 1 null hypothesis tests for the conformational comparison of six samples of the isolated

LI loop show that all Tabs fall beyond the upper tail of the null distribution ofT statistics (Figures 24 - 39).

Therefore, these tests report that significant difference exists for the comparisons of any two samples of six

samples obtained from independent Monte Cario simulations. The results of EDMA-I bootstrap null

hypothesis tests for conformational samples of LI in three-loop assembly also show Tabs falls outside the range

of the null distribution (Figures 42). For both isolated LI loop and LI in three-loop assembly systems, the

assessments of the EDMA-I null hypothesis test using negative control display false positive results.

89





On the other hand, the bootstrap confidence interval tests for six samples of isolated LI loop were

validated using negative control tests. For all comparisons of six samples from isolated LI loop, the numbers

of different inter-Ca distances are less than 10% of total 171 inter-Ca distances (Table 15). So, these results

report that no significant difference exists among the six conformational samples of the isolated LI loop. The

negative control test of confidence interval test for LI in three-loop assembly also shows that no significant

diflference exists between samples of LI in three-loop assembly. So, the assessment of bootstrap confidence

interval test using negative control displays true negative result.

Then, the EDMA-I bootstrap null hypothesis tests are assessed by positive control tests for the

conformational comparison between the isolated LI loop and LI in three-loop assembly samples. The

conformational samples of isolated LI loop and LI in three-loop assembly are known to be significantly

different. In Figures 43 and 44, the observed Toa^ falls outside the upper tail of the null distribution ofT

statistic. Therefore, there is significant difference exist between isolated LI Loop and LI in three-loop

assembly samples. The assessment of EDMA-I bootstrap for the comparison of isolated LI loop and LI in

three-loop assembly using a positive control test displayed a true positive result.

The confidence interval tests are also evaluated by a positive control test for the conformational

comparison between samples of the isolated LI loop and LI in three-loop assembly. For all 171 inter-Ca

distances, there is no significant difference detected. The result of this positive control test is a false negative.

TTie EDMA test indicates that there is no significant difference identified between isolated LI loop and LI in

three-loop assembly samples, which are known to be different.

Some efforts of improving the experimental results have been put into this work by increasing the number

of conformations in each sample. Five new samples were obtained by combining six samples of isolated LI

loop. Three samples have 1 6000 conformations each and the other two samples have 24000 conformations

each. The EDMA-I bootstrap null hypothesis tests are re-assessed using a negative control test by the

comparison of the conformational samples of isolated LI loop with increased conformation numbers. As
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shown in Figures 45-48, the Tots do not fall within the range of the null distribution of T. The results of the

negative control for the bootstrap confidence interval test show a false positive. So, there is no improvement

found in the on negative control test by increasing the size of each sample.

Two hundred conformations from isolated LI loop samples were stored and visualized using Insight II.

Broad distributions of these conformations were detected. The broad distribution may explain the false positive

results of negative tests. In previous study, EDMA methods are successfully applied on the craniofacial

investigations of Down syndrome disease because the distribution of the conformations for the mouse models

is much narrower as compared to our case.

One possible solution is to narrow down the conformational distribution of each sample. The self-

organizing map is applied to cluster a sample into sub-group, in which the similar conformations are grouped

together. TTie EDMA methods are likely suitable for analysis of these smaller, more narrowly distributed

conformational clusters. However, difficulties occurred when the improved mean form was generated for each

cluster using DGEOM. For 10 clusters on the first row in Table 22, samples 11, 13, 15, 18 and 1 10 can't be

converted to real structures by DGEOM because of the triangle inequality problem (section 1.4.2). Therefore,

the EDMA tests still can not be evaluated using these clusters produced by SOM.
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4 Future work

This is the first time EDMA to be used on the analysis of conformational samples obtained from Monte Carlo

simulation. The assessments of EDMA-I null hypothesis and confidence interval tests on CDR loops using

positive control and negative control were not successful. There is space to improve the results before the

EDMA techniques are applied on the investigation of the molecular conformations of complimentary

determine region (CDR) loops at antibody binding site.

Our understanding of the EDMA method may be advanced as the conformational distribution of each

sample is within a suitable range. However, the mean form matrices of clusters cannot be converted to obtain a

real three-dimensional structure by DGEOM in section 2.6 because of the triangle inequality problem. The

constraints in this case are that the lower limits are set equal to the upper limits, which are the values in

estimated mean form matrix of each cluster. In order to obtain an improved mean form for each compared

sample, the constraint conditions ofDGEOM can be further explored by adjusting the lower and upper limits.

In Section 2.2.2, the four experiments with different constraint are tested using four criteria (Table 9). The

constraint is chosen based on better result in those tests. These experiments and test criteria are relatively

limited so that our design for selecting the most suitable constrains for this project may not be good enough.

More experiments and tests can be further explored. For example, various lower or upper limits, even different

test criteria can be tried which may give us more choices and better results than we obtained before.

As both the EDMA-I null hypothesis and confidence interval tests pass the positive control and negative

control, the EDMA tools can more effectively work for our research investigation of the conformational

diversity of antibody binding site.
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