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Abstract
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ABSTRACT: The vibrational assignment of the five-in-plane fundamental

modes of CSClBr has been made on the basis of infrared gas phase

and liquid Raman spectral analyses to supplement our earlier

vibrational studies. Even though the one out-of-plane funda-

mental was not observed spectroscopically an attempt has been

made to predict its frequency. The vibrational spectra contained

impurity bands and the CSClBr assignment was made only after a

thorough analysis of the impurities themselves.

A normal co-ordinate analysis calculation was performed

assuming a Urey-Bradley force field. This calculation yielded

the fundamental frequencies in good agreement with those observed

after refinement of the originally transferred force constants.

The theoretical frequencies are the eigenvalues of the secular

equation and the calculation also gave the corresponding

eigenvectors in the form of the very important LLj matrix. The

[l] matrix is the transfoirmation between internal co-ordinates

and normal co-ordinates and it is essential for Franck-Condon

calculations on electronically excited molecules and for infrared

Integrated band intensity studies.

Using a self-consistent molecular orbital calculation

termed "complete neglect of differential overlap" (CNDO/2)
,

theoretical values of equilibrium bond lengths and angles





were calcuted for a series of carbonyl and thlocarbonyl

molecules. From these calculations valence force field force

constants were also determined but with limited success.

With the CNIX)/2 method theoretical dipole moment derivatives

with respect to symmetrized internal co-ordinates were calculated

and the results should be useful in a correlation with experi-

mentally determined values.
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Chapter 1

Introduction

The first known studies of the vibrational fundamentals of

thiocarbonyl chlorobromide were carried out by our spectroscopy group

in 1969 ( 1 ) . The work consisted of a partial normal co-ordinate

analysis, the original synthesis of the compound and an assignment of

the fundamentals based almost entirely on liquid and CS- solution phase

studies of the infrared region of the spectrum. Due to unknown impurities

of that time the gas phase analysis was of very little assistance in the

vibrational assignment. The analysis of the ground state vibrations was

undertaken as a necessary prelude to a detailed study of the electronic

spectrum. In the past our group has achieved some success in the analysis

of electronic transitions in related molecules (2,3,4,5)- The present

work is a continuation of the earlier work with its prime goal being the

vibrational assignment based principally on gas phase spectra. Electronic

spectra analyses require an accurate gas phase assignment of the fundamentals.

It is a fact that liquid frequencies may be shifted from the corresponding

gas phase values by undetermined amounts.

The original vibrational work was also hindered by the lack of a

Raman study. Infrared and Raman methods of investigating molecules are

most often complementary; the studies in onefield frequently supplement

or confirm the data derived from the other. One purpose of the present

work was to seek a Raman analysis of the fundamentals. Raman spectra were

obtained through the assistance of the Chemistry Department of McMaster

University. The method proved to be a very helpful aid in the vibrational

assignment of CSClBr.

A complete normal co-ordinate analysis was performed with the aid

of an IBM- 360 computer. It was foxind that the vibrational frequencies

could be calculated most adequately with the use of a Urey-Bradley type

potential function ( 5 ) . The computer method was basically that as

presented by Overend and Scherer in 1960 ( 7 ) . By an Iterative force

constant refinement method we calculated the nine in-plane Urey-Bradley
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force constants which we are able to correlate with similar calcula-

tions done by our group on CSF-, CSCIF and CSCl^C 2)'

Work has recently started in this laboratory on the experimental

measurement of integrated infrared band intensities. In conjunction

with these studies we attempted the theoretical calculation of infrared

intensities by the CNDO method, an approximate self-consistent molecular

orbital theory. This method was first introduced by Segal and Klein in

1967 ( g). Integrated band intensities are proportional to the change

in the molecular dipole moment with respect to a normal co-ordinate,

squared. Calculation of these dipole moment derivatives was performed

on molecules of the type YXZ ( X = C, Y = 0,S and Z = H,F,C1 ).

The results of these calculations are very encouraging and should

be very useful in the interpretation of forthcoming experimental data.
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Chapter 2

Vibrational Infrared Spectra and Intensities ( 9.10, 11 )

The infrared absorption spectrum of a relatively heavy molecule

consists of a series of bands, each of which results from a transition

between a pair of vibrational levels associated with the ground elect-

ronic state. A typical absorption spectrum shows intense bands which are

due to transitions from the ground state to states in which the normal

vibrations are excited with single quanta (fundamentals) , or lesser

intensity bands due to transitions to higher vibrational states

(overtones) . There may also be weak intensity bands due to transitions

originating on vibrationally excited states (combination bands)

.

An understanding of infrared intensities requires a close look

at the mechanism by which light interacts with matter. In the presence

of a radiation field there is a probability that a molecule will exchange

energy with the field and appear in a quantum state other than its original

one. If the molecule gains energy we observe absorption of radiation, if

it loses energy, emission occurs. The quantum mechanical probability of a

transition between upper state ^ , and lower state "F , .is
V v '

I j V P \. dTj2 = 8^/3^^<v..| P|v'> 2
p (v^..^^,) (2.1)

If we assume that interactions between the vibrational, electronic and

rotational motions are negligibly small, so that the integration can be

carried out over the vibrational co-ordinate only. In equation (2.1)

/v"|P|v'^ is the quantum mechanical matrix element of the dipole moment,

and p (v „ ,) is the density of the radiation of the particular frequencyV ,v

matching the quantum jump. The dipole moment P can be resolved into

Cartesian components Px, Py and Pz, which transform under the symmetry

operations of the point group the same as the corresponding translational

motion components Tx, Ty or Tz. A transition can only occur between two

vibrational states if the direct product for the group representations

to which they belong transforms (or has a component that transforms) like
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Px, Py or Pz, that is, like Tx, Ty or Tz respectively.

The probability that a molecule in an excited state will drop to a

lower state is also given by (2.1) and if there are N" molecules in the

lower state and N' in the upper state, the net absorption probability is

given by
3

^"^^h^
<viP|V>%(V^„^^,)( N" - N' ) (2.2)

A small differential element of absorbing material of length dl and

of unit cross-section will exchange energy with the radiation field

according to (2.2). At each exchange the energy of the field will

change by (hv „ ,
) and the net loss of energy will be

- dl = V 8 7T<v"|p|v'> ^ p(v )( N" - N' )dl (2.3)

3h

The radiation flux and density are related by

I = c p (2.4)

and equation (2.3) becomes
3

-V V iJT iv'^ '' ^^" -'*^' '^''' (2.5)
^''^'

3hc

- dim - V <v"|p!v> ^
( N" -N' )di

Upon integration (2.5) yields

3

l£. ., M-l /„..|p|„.\ 2
inf = V.v- ^ <v"IP|v'> M N" - N') (2.6)

At equilibrium the populations of the v' and v" states follow the

Boltzmann distribution expression and

( N"-N' ) - nNA^^ { exp( -E^„/kT) - exp( - E^,/kT) } (2.7)

where

i exp( -IA^ - t exp( -E^/kT) (2.8)

i
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and N is Avagrado's number and n the molar concentration.

The transition probabilites for all the rotational components also

must be summed and this quantity compared with the total integrated

intensity of the vibrational transition. The rotational components have

the same vibrational matrix elements but slightly different frequencies

so that it is more convenient to take the transition frequency of (2.6)

over to the lefthand side of the equation. The summation over the

rotational fine structure can be carried out exactly to yield

^".V = nl
J^

In Y-
<il^^ =

band

3

8tt 1

3hc
<v" |P| v')^ A

2 .-1

V
B (2.9)

where

B ={exp ( -E „/kT) - exp ( -E^,/kT)} (2.10)

V.v'
dlnv =

Equation (2.9) is applicable to a fundamental transition, i.e. v"=0

to v'=l and A B of (2.10) is close to unity so that a relatively

simple expression is obtained
^

if - lo

=nl/ '"
-

vA)and
u;

We assume that the vibrational motion is harmonic so that can be
V

factored into a product of harmonic oscillator functions *f(Q-i). The

matrix element of the dipole moment is

Stt N
3hc

<0 |P| 1> (2.11)

<o |pl i> = J
1'*

(Qi)
P ^ (Qi)d\ (2.12)

The variation of P during vibration can be expressed as an expansion of

each of Its Cartesian con^jonents Px, Py and Pz in terms of normal co-

ordinates. For Px we write

Px (Px). ikl (2.13)



\
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where (Px) is the x component of the permanent dipole moment in the
o

equilibrium position and higher terms in the expansion may be ignored

for small displacements. The corresponding transition moment integral

is

J4'*„Px 1'
, dT = (Px) U*„ H* , dx + Vfl^l V*" Q4 '*'

.V v' V oj V v' V /1_\9Q , / J
v" ^i v'

dT (2.14)

The first integral on the right hand side vanishes as a result of the

orthogonality of ^ „and ^ , except in the trivial case where v''=v'.

If the eigenfunctions 4* are written as a product of wave functions which

depend on one normal co-ordinate

\ = 'i'(Qi) *i'(Q2) "^(^2^
'^^QsN-e^

^^'^^^

substitution of (2.15) in the i^" integral in the summation term

gives

JV ^i \' ^^ = JV- ^Ql^\' ^Ql^'^QlJv (Q2>\' ^^2^^Q2 •••

JV^^i^ Qi \, (Qi)dQ^ (2.16)

which vanishes unless H'"(Q)=4'' (Q) for all normal co-ordinates

except the ith. if this condition is accepted all the integrals are unity

except the one over Q. and the i^h term in the summation of (2.14)

becomes

(2.17)

te)„ r*" '"i' "i 'v ^v\

This integral is the transition moment for two harmonic oscillator

wave fur

only if

wave functions associated with one normal co-ordinate Q. and is nonzero

Av = ±1 (2.18)



I

1 ^
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The matrix element of the dipole moment in (2.12) then becomes

(2.19)<o|p| i> '(0 Jv<Qi)QA-«i>^«i'i' o

The integral in (2.19) can be evaluated to yield

<" 1^1 '> - (f)„(-.k)'
where ^ is the harmonic frequency of the ith mode. On substituting

i
this result in (2.11) we obtain the explicit relationship between the

integrated band intensity of a fundamental vibration and the derivative

of the molecular dipole moment with respect to a normal co-ordinate in

the form

^i -~r2 {^.) (2.21)
3 c 0), >> ^^i'

where

(i,t (1^/ ^ (^f ^ (f

y
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Chapter 3

Preparation of CSClBr and Spectroscopic Methods

3 (a) Experimental

The original synthesis of thiocarbonyl chlorobromlde was achieved

by the addition of anhydrous hydrogen bromide to thlophosgene under

high pressure conditions. The reaction was carried out under vacuum

in a Parr stainless steel bomb. The reaction product was very complicated

and the best yield of CSClBr obtained by this method was 12.5% ( 1 ).

Another method has now been employed successfully to obtain an

approximate 20% yield of CSClBr. This method was originally developed

in our laboratory for the synthesis of CSCIF (12 ) . The present method

consists of bromlnating thlophosgene with antimony trlbromlde in a

non-aqueous solvent. The thlophosgene samples used were prepared at

Brock University by Mr. I. D. Brindle. It was prepared by the slow

addition of trichloromethanesulfenyl chloride to tetralln and heated

at 200 C, the yield being about 80%.

+ 2 Cl.CSCl —> 2CSC1„ + 4 HCl +
JK y 3 2

The thlophosgene samples were handled very carefully. It is known

that Its vapour is a toxic substance which was used during WWI by the

French and Austrlans as a war gas under the name Lacrlmlte. The lethal

concentration for 30 minutes exposure is reported to be 4000 mgm. per

cubic metres of air ( 13 )

.

In the present synthesis the SbBr powder was dissolved in as

little solvent as possible. The solvent used was tetrahydrothlophene

-1,1-dioxide. Approximately 24 gms of SbBr were reacted with 5 mis of

liquid thlophosgene in order to theoretically achieve monobrominatlon of

the CSCl-. Under vacuum the SbBr_- solvent solution was slowly warmed to

50 C. The system was then pressurized with one atnmsphere of dry nitrogen

gas. The CSCI2 liquid was added dropwise over an approximate period



/A^'"-^

'\
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period of one hour. During the addition of CSCl. drops of liquid

SbCl totalling 1 nil- were introduced into the reaction mixture. The

mixture was allowed to stand for periods of from 1/2 to 3 days. The

product mixture was then distilled into a sample vial at -197°C.

Purification of the product mixture proved to be very difficult.

Trap to trap distillation with traps in series at -10°, -80°and -197oc

eliminated the volatile components such as COCl. and SO . Further

purification attempts using fractional distillation methods with a cold

finger at 0°C failed to remove the small quantities of CS„ and CSCl

impurities. Mass spectra recorded on a Bendix Model 12 Time-of-Flight

instrument revealed m/e parent peaks at 76 (CS„) , 114, 116 and 118

in the ratio of 9:6:1 (CSCl ) and 158, 160 and 162 in the ratio of

3:4:1 (CSClBr) . The impurities were readily separated by a Varian Model

700 preparative chomatograph using a 24 foot, 1/4" aluminum column packed

with 30% Silicone Rubber (SE-30) on Chromosorb W. However, collection

of the small (by volume) CSClBr fractions by Model 700 's turntable

mechanism was not successful.

3 (b) Infrared Spectra;

All infrared spectra were recorded on a Perkin - Elmer Model 225

grating infrared spectrophotometer over the range 4000 to 200 cm . Over

the range 4000 to 450 cm the light dispersion element is a KBr prism

and over the range 450 to 200 cm a filter dispersion unit is automatically

employed. The instrioment is equipped with a dry air purging unit which

reduces the amount of water vapour in the spectrophotometer to a negligible

level. Over the region of the fundamental vibrations, namely 1200 to

200 cm , the spectral slit widths ranged from 0.35 cm to 1.55 cm

at the slit program setting of 1. The wave numbers of the CSClBr

fundamentals were calibrated against those due to polystyrene film,

atmospheric water vapour and carbon dioxide. The H_0 vapour bands at
-1 ^

1825.2, 1616.7, 506.95 and 374.54 cm were constantly used as a calibra-

tion check along with the atmospheric CO^ band at 671.34 cm . The
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resolution of the instrument was tested using a HO vapour doublet
-1 -1

band at 473... 472 cm which has a separation of 0.5 cm ( 14 ).

When recording relatively high resolution spectra the abscissa axis

was expanded by factors of 5 and 10 , so as to accomodate 20 and 10%

respectively of an individual range on the chart paper.

The liquid and CS. solution spectra of CSClBr were obtained

by the methods reported in 1969 ( 1 ) . The vapour phase spectra of the

present work were obtained using 10 cm. pathlength cells fitted with

KBr windows for the region 4000 to 500 cm . The low frequency region,

500 to 200 cm , required a 10 cm. gas cell fitted with polyethylene

windows and a Perkin - Elmer 1 metre gas cell with Csl windows in

which the beam path is folded several times by mirrors and remains

geometrically unchanged upon leaving the cell. Uncertainties in the

measurements of the observed band origins were estimated to be ±2cm

and ±5cm in the vapour and liquid infrared respectively.

3(c) Raman Spectra

Raman spectra were obtained at McMaster University, Hamilton,

Ontario. The liquid samples were contained in 1.8mm. CD. (melting

point) capillary tubes. The tubes were filled to a depth of approximately

1 cm. The radiation source was a He /Ne laser with incident exciting
c

wavelength of 6328 A. The recording spectrograph was a Spex double

monochromator model. The incident laser beam was plane polarized. With

the use of a polarizer placed between the illuminator condensing lens

and the spectrograph entrance slit polarization measurements were obtained.

The polarizer was first placed at ° (parallel) to the direction of the
o

incident light vector and then at 90 (perpendicular) to the electric

vector. Accurate intensity measurements are usually checked against

CCl, intensity standards since the absolute intensities decrease non-

linearly with increasing wavelength, an inherent characteristic of

the photomultiplier tube in the system. Only relative linear intensities

of the parallel and perpendicular components of the beam are required

to obtain the depolarization ratio so that the absolute band intensities

were not corrected. With this arrangement a Raman line is said to be

Completely depolarized if the ratio is three - quarters.
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Chapter 4

The Vibrational Spectra (Infrared and Raman) of Thlocarbonyl Chlorobromide

The samples of this compound were contaminated with CSCl„and CS„

and at times with SO , COS, COCl and COClBr so that absorption and

emission resulting from fundamental vibrations of these molecules

were present in the Infrared and Raman spectra. Although an Impurity

free sample was never obtained a thorough analysis of the impurities

enabled us to make an accurate assignment of the CSClBr fundamentals.

The analysis was performed by means of Infrared spectroscopic techniques

on gas, liquid and solution phase sanqjles and by laser Raman spectroscopic

techniques on liquid samples. The recorded spectra under these conditions

are shown in this chapter as Figures 4.1 through 4.7 inclusive. These

spectra generally cover the fundamentals region 1200 to 200 cm . Table

4.1 lists the observed gas phase frequencies including fundamentals,

overtones, combination and impurity bands. Table 4.2 shows the vibrational

assignment based on gas phase spectra over the region 1200 to 200 cm" .

Table 4.3 lists the liquid and solution spectra results and Table 4.4

gives the observed liquid laser Raman results.

The most serious impurity encountered was that of thiophosgene since

its six fundamentals are very similar to those of thlocarbonyl chlorobro-

mide. Thlocarbonyl chloride belongs to the C- point group and as such

all of its six fundamentals should appear in both the Infrared and Raman

spectra.

Connnerclal thiophosgene, with a boiling point of approximately
o

70 C was purified to eliminate SO and COCl impurities. Its gas phase

Infrared and liquid phase Raman spectra were carefully studied in order

to make an assignment for thev. andv_ modes of thlocarbonyl chlorobromide.

The gas phase Infrared spectrum of pure CSCl- is shown in Figure 4.1

which, for the already mentioned reasons, is compared with Figure 4.2,

the Infrared gas phase spectrum of CSClBr.

Band contours which usually play an important role in determining

the fundamental species of vibration for a molecule were generally not
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Figure 4.1: Thiocarbonyl chloride (thiophosgene) infrared

vapour spectrum over the region 1200 - 400 cm" .

A 10 cm. pathlength cell with KBr windows was

used and the gas was at a pressure of 1.00 cm Hg.
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Figure 4.2: Thiocarbonyl chlorobromide Infrared vapour

spectra at a pressure of 10 mm Hg taken in

a 10 cm gas cell fitted with polyethylene

windows. Section (a) shows fundamentals V

and V over a normal wavelength scale.

Section (b) shows the V fundamental over

a blown up scale.





E
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very useful in this study since CSCIBr has only one a" species

of C-t3rpe contour. The other five fundamentals are of a' symmetry

according to C point group restrictions, and as such, the dipole

moment derivative change with respect to a normal co-ordinate for

any fundamental may be in any direction in the xy molecular plane.

This means that the vibration-rotation bands will have hybrid A,B

type band contours.

The carbon-sulphur double bond stretching vibration in CSCl is

of A symmetry and has a distinct type A band contour with its PQR
-1 -1

structure maximum lying at 1139 cm . and a PR separation of 14 cm

This A-type band contour is lost in the spectrum shown of gas phase

thlocarbonyl chlorobromide with CSC1„ impurity as illustrated in

Figure 4.2. In this case we observed from a blown up version of this

spectrum a contour containing three maxima at 1139, 1134 and 1130

cm . This pattern is consistent with the overlap of two type A

contours corresponding to the C=S stretching modes of CSC1_ and

CSCIBr. What seems to occur in the spectrum can be explained by

rotational structure contour overlap. In effect, the thiophosgene

C-S stretching mode has a PQR structure centred at 1139 cm" . In a

similar manner the thlocarbonyl chlorobromide C=S stretching mode had

a PQR structure centred at 1130cm . Because they fall so close

together the R branch rotational contour due to the C-S stretch

of CSCl is super-imposed on the P branch rotational contour due to

the C-S stretch of CSCIBr giving rise to a spectroscopically

artificial maximum at 1134 cm . since the rotational bands are

not resolved.

Further evidence for the existence of two superimposed fund-

amentals of these two molecules came from a measurement of band

widths at half height which give a rough indication of the fund-

amental vibration. Spectra were recorded of 10.0 mm Hg. pressure

gas samples of pure CSCl. and CSCIBr using exactly the same I.R.

gas cells and P.E. 225 instrument settings. The appropriate bands

were measured to have band widths at half height such that the
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Table 4.1

CSClBr, Vibrational Frequencies and Assignment

Infrared Spectrum (Gas Phase)

obs.(cm 1) intensity assignment species calc.Ccm"-*-)

2266

2249

2058

1606

1523

1514

1139

1130

1021

869

850

818

788

764

520

438

405

397

389

254

m.w
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CSClBr sample was 35% wider corresponding to

CSCl- CSClBr

Av L 31 cm 42 cm

On the basis of band contours and band widths at half height it is

certain that the 1100 to 1150 cm", region of spectrum as in Figure 4.2

was due to the 1139 cm", v, fundamental of CSC1„ and the newly assigned
-1

1130 cm . V. fundamental of CSClBr. Since rotational contours were not

observed in the liquid Raman spectra the C = S stretching vibrations

of CSClBr and CSCI2 were not resolved. However, it is interesting to

note that for pure CSCI2 this fundamental always appeared at 1129

cm", while for CSClBr samples a much broader band always appeared at

1125 cm~i^ Since the Raman samples were spectroscopically recorded at

McMaster University the handling of the Spex instrument was not at

our disposal and any conclusions drawn to explain this observed fact

would be unjustified at this time.

In keeping with our method of pursuing a thorough analysis of

impurites the 800 cm"?- region of CSCI2 as shown in Figure 4.1 was also

looked at very carefully. Two peaks of importance are observed at

818 and 788 cm". The 818 cm", type B band has been assigned as the C -

CI2 asymmetric stretch and the band at 788 cm"-!- the combination band

of fundamentals at 500 cm", and 292 cm"?- ( I5 ) . This band structure

was consistently reproduced in spectra such as is shown in Figure 4.2

(A) for gas phase thiocarbonyl chlorobromide. However, for CSClBr spectra

the shoulder band at 764 cm"?- with no identifiable contour was evident.

This band is better illustrated by Figure 4.2 (B) the blown up version

of spectrum 4.2 (A). This band has often looked somewhat like a type

A band but In any case It is assigned as the fundamental v„ for

thiocarbonyl chlorobromide. Analogous to a similar vibration for CSCl-
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Figure 4.3: Infrared Spectrum of CSClBr in the liquid

phase with CS„ as the solvent over the region

1200 to 600 cm-1. The cell used had Na CI

windows with a path length of 0.05mm.
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Figure 4.4: CSClBr Infrared Spectrum in the liquid

phase without solvent over the region

700 to 200 cm"-'-. The cell was of molded

polyethylene construction with a path

length of 0.2 mm.
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Table 4.2





28

this vibration might be described as the ClCBr asymmetric stretch.

In CSF„, CSCIF and CSCI2, this type of vibration occurs at 1189,

1014 and 818 cm"?- respectively. By addition of bromine to CSCI2

we expected this frequency to be less than 818 cm"., as we observe.

Figure 7.1 (A) illustrates the next fundamental to be assigned

in the gas phase, the band at 438 cm". This mode is assigned to be

\3 for thiocarbonyl chlorobromide, the carbon chlorine stretching

vibration. Its structure is not that of an A - tjrpe band. Following

our work in 1969 it was thought that this band at 438 cm~l was not

V 3 as we had assigned, but rather it was that of some COCl- impurity.

For COCI2 this band is assigned to ve* ^ type B band of frequency

440 cm"} (16 ) . From a thorough study of the infrared spectrum

of phosgene done in our laboratory we found this band to be of very

weak intensity even at sample pressures near 760 mm.Hg. We concluded

that this absorption band in COCI2 would not be detected in CSClBr

spectra of the type shown in Figure 4.3 at a pressure of 10 mm. Hg.

This conclusion was recently found to be most justifiable after the integrated

band intensity measurements obtained by Hopper, Russell and Overend for COF-,

COCI2 and COBr ( 17 ) . In crude figures their results revealed that

if the most intense fundamental vibration of phosgene was arbitrarily

given an integrated intensity value of 100% then the 440 cm ~. fund -

amental would have an integrated intensity value of 0.009%. With this

'6
piece of evidence it is certain that this band is not due to v^ of

-1

phosgene.

An interesting comparison arises between carbonyl and thiocarbonyl

halides concerning the assignment of this C-Cl stretching mode at 438 cm

From work done on carbonyl halides by Overend and Evans it is fact that for

C0C1_ the CCl symmetric stretching mode v-, is assigned pt 567 cm". ( 18 )

For COClBr this mode, termed v-. is assigned at 517 cm". This represents a

frequency difference of 50 cm . In the analogous thiocarbonyl halides Vo
_j^

2
for CSCl- is assigned at 502 cm , ( 15 ) . Our assignment for the Vo

-1
mode in CSClBr is 438 cm . , corresponding to a frequency difference of

64 cm . between CSCl. and CSClBr carbon chlorine stretching vibrations.
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Also shown in Figure 7.1 (A) is the 400 cm region of the gas phase

infrared spectrum. From our own work done on the gas phase infrared of

commercial carbon disulfide we found that the bands at 405, 397 and 389

cm . are those of the parallel type fundamental of CS- assigned v^ ( 19 , )

.

We had expected the V, out-of-plane fundamental of CSClBr to absorb in

this region. However, as in the case of COCIF, COClBr and CSCIF this

fundamental is of such weak intensity that it either didn't appear or

was obscured by CS„ impurity in the infrared. This out-of-plane mode

should be quite intense in the electronic absorption spectrum of the

visible region ( 20 ) • The absolute assignment of this fundamental

vibration cannot be made at this time but a prediction of its value can

be made. In conjunction with the comparison drawn with the carbonyl

halides in the previous paragraph we attempted to correlate the out-

of-plane fundamentals of the carbonyl and thiocarbonyl halides. The

resulting comparison is best exemplified by the graph shown in Figure

4.7. By drawing smooth curves through the appropriate points similar trends

were obtained for both series of molecules. This graphical comparison is

very similar to that employed by Shimizu and Shingu (21 ). They correlated

vibrational frequencies for carbonyl halide out-of-plane deformation with

electro-negativities and predicted a result for acetone. Since the carbonyl

and thiocarbonyl halide molecules studied have the same basic geometry and

vibrational type modes, it is not surprising that the curves of Figure 4.7

are so similar. On these grounds we predict ^ for CSClBr to have the

frequency of 405 cm .

The two remaining fundamental frequencies are the two in-plane vibrations

V , and v^. These are assigned to be 256 and 222 cm . respectively. The v,

fundamental was observed only as a weak band at 256 cm . in the gas phase.

The 222 cm . fundamental was never observed in the gas phase infrared. The

V, absorption band appeared in the pure liquid spectrum of Figure 4.4,

as reported in 1969, and also in the liquid laser Raman spectrum. TheV

normal mode was observed only in the liquid Raman spectrum. These two

fundamentals were expected to be of weak intensity and it proved very

difficult to observe these bands in the gas phase infrared since the compound
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is easily contaminated and has a small vapour pressure in vacuum

at room temperature (approximately 1 cm. Hg) . The V and V fundamen-

tals can be described as the carbon bromine stretch and the bromine car-

bon chlorine angle bend respectively, although these descriptions are only

approximate. It is somewhat coincidental that in a similar manner the

corresponding v, and V fundamentals in carbonyl chlorobromide were
-1

assigned as 372 and 240 cm respectively by Overend and Evans on the

spectral evidence that V was very weak in the gas phase IR and V

was not observed at all (l8 )• ^c was assigned solely on the basis of

the band observed in the liquid Raman spectrum.

The pure liquid and CS- solution spectra shown in Figures 4.3 and

4.4 respectively are those obtained in the 1969 work. The analyses of

these spectra remain basically the same as then and the assignments are

listed in Table 4.3. The liquid and solution work proved to be very

helpful.

Figure 4.5 illustrates the liquid laser Raman spectrum over the re-

gion 1200 to 200 cm . Table 4.4 lists the observed frequencies, their

intensities and assignments. The spectrum contains impurity bands due to

the previously mentioned molecules CSCl , CS ,and COClBr as well as

another impurity, (CSC1-) , thiophosgene dimer. Figure 4.6 shows the
-1

laser Raman spectrum resolved over the 800 cm region. The relative

intensity in this photograph is aproximately twenty-five times that in

the similar region of Figure 4.5. These spectra represent the condition

underwhich the polarizer is parallel to the incident electric vector direc-

tion. The spectra shown in Figures 4.5 and 4.6 exhibit Raman shifts

which are listed and assigned in Table 4.4. The five in-plane vibrations

of CSClBr appear at 1125, 761, 437,258 and 222 cm"^ respectively. Pol-

arization measurements of these fundamentals showed them all to be pol-

arized since the depolarization ratios were always less than 0.75 as

shown in Table 4.5.
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Figure 4.5: The liquid laser Raman spectrum of CSClBr

over the range 1200 to 200 cm" . The

excitation was achieved by a He/Ne laser

source of 42 mW. power.
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Figure 4.6: The 800 cm" region liquid CSClBr laser

Raman spectrum under high resolution with

the polarizer at to the electric vector.

The smaller insert spectrum is the 800 cm"

region laser Raman spectrum of liquid CSC1_

as obtained by Frenzel and Blick. These workers

note two CSCl bands, two (CSC1-) bands and

a trimer shoulder at 834 cm" in this region.
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Table 4.4
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Table 4.5

Fundamental Raman

Frequency (cm .

)

Depolarization

Ratio

P

1125

761

437

258

222

0.17

0.67

0.12

0.46

0.50

All of the impurity bands listed in Table 4.4 were assigned except

for the bands at 460, 344 and 178 cm . COCl. did not prove to be much

of a problem in the Raman (22 ). The out-of-plane fundamental,

v

6'

did not show up in the Raman spectrum but this has also been the case for

other thiocarbonyl halide liquid Raman studies to date ( 12,23 ). Three

of the impurity bands in the liquid Raman have been assigned as those due

to thi<- phosgene dimer according to the recent work of Frenzel et al. ( 23

These assignments are reasonable since the dimer can be readily prepared

by irradiation with a laser beam, the same condition under which our Raman

samples were excited.
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Figure 4.7: Graph of carbonyl & thiocarbonyl halide

out-of-plane fundamental frequencies versus

the square root of the molecular weights.
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Chapter 5

Normal Co-ordinate Analysis

The model for a molecule that we employ in the analysis

of vibrations is that of N point masses, representing the nuclei,

which are elastically coupled together. In the simple harmonic

oscillator approximation the displacement of the nuclei from their

equilibrium positions is relatively small compared to the bond lengths

and the distances between non-bonded atoms of the model. The elastic

coupling between masses, regardless of its nature, assumes the

presence of restoring forces which return the displaced nuclei to

their equilibrium locations. The restoring forces are described

by the mathematical potential energy function for the system and these

restoring forces are independent of the electronic motion.

A stable molecule has three translational and three rotational

degrees of freedom and the remainder of the 3N-6 total degrees of

freedom are vibrational degrees of freedom. A linear molecule has

3N-5 total degrees of freedom of which only two are rotational

degrees of freedom. It is usually convenient to solve the equations

of motion for 3N co-ordinates and then remove the rotational and

translational motions. This is achieved by employing "molecule-fixed"

displacement vectors for each nucleus so that the center of mass of

the system does not translate and the net angular momentum is zero.

The writing of the classical equations of motion is simplified

by using 5i»^f^»54 » ^3N ^s the symbols for the Cartesian

displacement co-ordinates xi,yj,Zj, Xjj,y-,,z„ . When the

nuclei are displaced from their equilibrium positions the restoring

forces can be described by those obeying Newton's laws:

^i
"

°i5i ( i=l,2,3, 3N) (5.1)

The 3N Newtonian equations are complicated to solve in terms of

Cartesian co-ordinates so that the equations of motion are often

written in the alternative Lagrangian form which is independent of

any particular co-ordinate system. The potential field is then a

function of the generalized co-ordinates q.
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The equivalent Lagrangian equations of motion" can then be written in

terms of the generalized co-ordinates which are compatible with any

particular co-ordinate system chosen

7- • |j - I7 =0 (1=1.2,3, 3N) (5.3)
dt dq^ dq^

where L, the Lagrangian function for the molecule, is the excess of

kinetic energy over potential energy

L = T - V (5.4)

If the general co-ordinates q . are Cartesian co-ordinates the kinetic

energy is

• • • •

T = h m^^^ + h T^^^ + h m3c5 + + J5
^-^^-^^^ (5.5)

or

"2

= 11 m. C'" = ^1 ^ ^
(5.6)

If the general co-ordinates q are mass-weighted Cartesian co-ordinates

the kinetic energy is

3N •

2T - XI '^\ (5.7)
i=l ^

where

"^i
" "^ ^i

^^-^^

The potential energy V can be expressed as a Taylor series about the

equilibrium positions of the nuclei
7» 3N

K^^ + .... (5.9)



7
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Terms higher in order than the quadratic one can be neglected since

the simple harmonic oscillator approximation has been assumed. The potent-

ial energy can always be measured relative to the value in the equilibrium

position so that V =0. With all nuclei situated such that their

positions represent the equilibrium positions, a potential energy minimum

is achieved making the first order derivatives also equal to zero. Hence,

3N

2V = > /".XV :\ qCj (5.10)

o

Since all the second order derivatives are constant the potential expression

is given by

3N

J .1=1

where

b^j "( a^V \ = b = constant (5.12)

'j' o

In terms of mass-weighted Cartesian co-ordinates

3N

2V = ^ \j^i^j ^^-^^^

j,i=l

Equations (5.7) and (5.13) give T and V in terms of mass-weighted Cartesian

co-ordinates and the Lagrangian equation of motion (5.3) can be written

±-.^ - ^ = (5.14)
dt 3r) ^ 9n i

which reduces to

3N

= (5.15)

i-1

Equations of the type (5.15) are known to be those of the harmonic os-

cillator which have solutions of the form

n^ - Tii sin (tX*^ + 6 ) (5.16)
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where r\, ,X and Save constants. Substitution of (5.16) into (5.15) yields

2-.^j^° Xn" = (i=l,2,3 ,3N) (5.17)

which can be rearranged as

Z ^j^j ^ ^i^i
- Xn" =0

or

i^j

^ij "^j
"^

^^ii
"'^^

^i "
° (5.18)

These 3N simultaneous equations (5 . 18) are only non-trivial if the matrix

array of n. coefficients

^ir ^ ^12

^21 ^22" ^ .b

1,3N

2,3N

=

t̂3N,1 ''3N,2 .^3N,3N"^

(5.19)

or in the secular form

where
"u -^\i

=

= for i ?« j

=1 for i = j

(5.20)

Equation (5.20) has 3N roots; X,, X., X., , X3^
^
Each X^

greater than zero represents a harmonic oscillator mode of the atoms

according to

n^ - nj sin (t Xj^^ + 6 ) (5.16)

of frequency v. where



er;

f \ :



40

,222
(cm ) (5.21)

and
2tt yy

(5.22)

where k^ is the appropriate restoring force constant and y is the reduced

mass of the system of point masses. The values V, are the fundamental fre-

quencies of vibration. If n of the V 's are of the same value an n-fold

degeneracy occurs. Six of the roots will have the value X= 0. These re-

present translational and rotational motions of the molecule with zero

frequency of vibration. Roots with X less than zero do not occur for mole-

cules with chemically stable equilibrium configurations.

Assuming a non-degenerate set of X 's, substitution of (5.16) into

(5.17) yields

''irfk + ^2^2k " ^3'^3k
'•••'

^l.SN'^JN.k-Y^k = °

^21^^^ *"
^22^2k

" ^23'^3k"^---"'^2.3N'^3N,k-'^2k\=
°

'3N

(5.23)

I'^lk'^ ^3N,2'^2k"^ ^3N,3'^3k'^---"^ ^3N,3N'^3N,k"'^3N,k\ " °

Since there are 3N equations and 3N unknowns one extra equation is re-

quired to determine the absolute values of t\ . Solving the set of

equations (5.23) gives the ratios

"^Ik' ^2k= ^3k
=

'3N,k
(5.24)

for each X, .A new set of coefficients 1^, are formulated in the same
k ik

ratio as the Ij. 's but which are normalized according to

L^ik=^ (5.25)

where \k- \ ^ik

The coefficients 1.. can be written in the form analogous to equation
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(5.23) and the values 1., and K, determined for each root X,. The l.i^'s

are also written as a set of column vectors

hA
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The secular equation (5.20) becomes

[b] - x[e] =0 (5.31)

In order to determine the amplitudes the equation used is

( [b] - Xj^[e] )[n°] = (5.32)

The resulting 1 coefficients formally are the eigenvectors of the

matrix [ B J
and the X, values formally are the eigenvalues of the

matrix 1.B J . The \1., J column vector matrices are normalized so thatIk

[\\'' [\\ = 1 (5.33)

Since [bJ is a symmetric matrix (b-^ = b ) the eigenvectors

orthogonal

[lj]^[l^l =0 j ^ k (5.34)

The column vectors il^j^l written side by side form the matrix [lJ of

order 3N. Similarly, the [lJ matrix is orthogonal such that

[l.]' -W-' (5.35)

The LBJ matrix can be diagonallzed by a similarity transformation

using the I L J matrix

[lI-' [b1[l1.[a; (5.36)

Since i L J is an orthogonal matrix equation (5.36) can be written

[lP [b][l1.[a.1 (5.37)





43

The molecular vibration problem has been solved In terms of mass-

weighted Cartesian co-ordinates. A more useful co-ordinate system is

needed due to the form of the potential energy equations (5.13) and

(5.28) which include cross terms n.n, ( i?*J ). The kinetic energy ex-

pressions (5.7) and (5.27) are simply the sum ofsquared terms n.n. .

The required set of co-ordinates is called the normal co-ordinates,

Qj. Q,* Qo* Qojj which describe the Lagrangian equation para-

meters T and V as

and

2T = [Qinpl (5.38)

2V = [q]*^ [a1 [q1 (5.39)

The change from mass-weighted Cartesian co-ordinates to normal co-

ordinates is achieved by a linear transformation of the form

[nl = [l] [q] (5.40)

[q] = [lYU'] (5.41)

or

The Lagrangian equations of motion take the form

[q J + LAgKQj = (5.42)

with solutions

Q^ = Q° sin ( tX** + 6) (5.43)

The secular equation becomes

I [Agl - X [eJI = (5.44)

The solution of these equations yields the 3N - 6 fundamental fre-

quencies of vibration.

The method as outlined involves solution of the secular equation

In terms of mass-weighted Cartesian co-ordinates and normal co-ordinates.

The six co-ordinates describing translation and rotation were then set

equal to zero.
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Instead of using space-fixed co-ordinates it is more common to

introduce molecule-fixed co-ordinates. The original co-ordinate set

is reduced by six and the new set is defined by the set

^1' ^2' ^3 ^3N-6
^^'^^^

Such co-ordinates are called internal co-ordinates because they des-

cribe the internal configuration of the molecule without regard for

its position in space. Internal co-ordinates measure changes in bond

lengths and bond angles which are chemically interpreted as bond

stretching and angle bending vibrations.

In matrix notation the potential energy is written

2V = [s]^ [f] [s] (5.46)

where [Sj is a row vector of 3N-6 internal co-ordinate elements and

LFj is the potential energy matrix. [fJ is a square matrix of order

3N-6 whose elements are the restoring force constants

fij =/ "
\ (5.47)

The format of the IF J matrix varies markedly depending on the choice

of potential energy force field.

The derivation of the kinetic energy in terms of internal co-

ordinates is much more complicated. In mass-weighted Cartesian co-

ordinates the kinetic energy is

[nl'[n]2T = UJ LnJ (5.48)

The linear transfomation relating mass-weighted Cartesian co-ordinates

to internal co-ordinates is

In J - [rUs ] (5.49)

The matrix [r] is required to perform the linear transformation. How-

ever \.R 1 is not readily found but from the geometrical model the
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matrix [dJ is available for the inverse transformation

[sj = iDjinJ (5.50)

1_D ] is a (3N-6) by 3N rectangular matrix so that the operation [dJ~ =

[r^ is not valid. The product [d][dj^ is a (3N-6) by (3N-6) square

matrix which can be inverted. This product is called the Ig] matrix.

The expression for the kinetic energy reduces to a more useful form

2T = [sY [g1"^[s] (5.51)

The (3N-6) dimensional secular equation to be solved becomes

I

[f] - x[g1"^
I

= (5.52)

or in the more simple Wilson's FG matrix notation

I [g1[ f] - x[e]| = (5.53)

From the solution of equation (5.53) the frequencies of the normal

modes of vibration are obtained (eigenvalues) and the ^LJ matrix In

its unnormalized form also (eigenvectors) . The next step is to find

a normalization matrix [NJ for the unnormalized LLJ matrix according to

[l] = [a1[n] (5.54)

The J^Nj matrix is a diagonal matrix whose elements are the numbers

required to normalize the amplitudes of the [a ] matrix elements.lt is

found from the expression

[Nf - ([aP)-Hg][a]-^ (5.55)

The [_nJ matrix is then the square root of the above expression.
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Potential Energy Functions

The purpose of a normal co-ordinate analysis Is to detetrmlne the

restoring force constants of a molecule along with the normal co-

ordinates. Relatively few spectra have been subject to rigorous vib-

rational analyses. Simplicity of the molecular model Is of great im-

portance In the success of a detailed analysis. The calculation for

many-atomed systems Is hindered by the fact that the number of force

constants In the potential energy function usually exceeds the number

of observed fundeimentals . Therefore, depending on the required acc-

uracy of the force constant calculation, a suitable force field is

chosen.

One of the more simple force fields available is the Central

Force Field. The forces are assumed to act only along the lines join-

ing each pair of atoms in their equilibrium positions. This would be

a good potential field if the atoms were held together purely by ionic

forces. The force constant matrix has only elements along the diag-

onal and no off-diagonal interaction terms. This force field is

reasonably good for diatomic molecules but is rather bad for poly-

atomic systems.

A force field which gives a more descriptive potential environ-

ment is the Valence Force Field approximation. The restoring forces

in this case are those which resist the extension or compression of

valence bonds and those which resist the bending or torsion of bonds.

Non-bonded interaction force constants are not considered. At best

this force field is only a rough approximation. Deviations as high

as 10% are quite usual. They do, however, give reasonable character-

istic force constant values for bonds regardless of their environ-

ment. In this sense the force field is useful.

The force field chosen for this calculation is that of H. C.

Urey and C. A. Bradley termed the Urey-Bradley Force Field (UBFF)

( 6). It is constructed basically from the valence force type

function with additional terms to describe the existence of restor-

ing forces between pairs of non-bonded atoms. Its simplicity enables

the transfer of force constant values from one molecule to another

to a good approximation in order to reduce the number of unknown
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force constants to a workable size. No quadratic cross terms are em-

ployed but they are implicit in the interactions between non-bonded

atoms. The UBFF has proven to be quite useful and accurate as demon-

strated by such workers as Shimanouchi, Overend, Scherer, and others

(24, 7).

The function has the form

V = I (^,(Ar.)2 -, K:r.(Ar^)} + £ihE^/..(,a.^)'
^3 3^^

+ H;jr2j(Aa,j)} + I_ ihY^^iAd^/ +
^ij^lj ^Aq^j)}

where Ar , Aq. . and Aa.. are the changes in bond length, in the

distance between non-bonded atoms and in the bond angle while K.

,

I I » 1

K., H , H , F , and F are the stretching, bending and repulsive

force constants respectively. Also, the factors r = (r, r ) r

and q make the force constants dimensionally the same.

Force Constant Calculation on a Digital Computer

The method employed in this treatment was developed by Overend

and Scherer In 1960 ( 7 ) . It is basically a perturbation type approach

to the calculation of Urey-Bradley force constants from the observed

vibrational frequencies.

In terms of internal co-ordinates the potential energy is

2V = [s]*' [f] [s] (5.46)

where the LfJ matrix elements are linear combinations of the Urey-

Bradley force constants

The coefficients a., are available from the geometrical parameters.

In (5.46) the [fj matrix elements are arbitrarily arranged as a vec-

tor f , called the F-index vector, and the Individual elements of [fJ

are similarly arranged as a second vector F such that a one-to-one
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mapping of index vectors f and F is achieved. For CSClBr the arrange-

ment is

w-

~\

^7 ^11 ^16

f f f
8 12 17

^9 ^13 ^18

f f f
10 14 19

^15 ^20

•21

(5.58)

A transformation matrix IZl is defined as[zli.

W = [zK.l (5.59)

where L$Jis a column vector of Urey-Bradley force constants. The

ordering of the [fj and [z
] elements are determined by the f vec-

tor. The information contained in the F-index vector, f , is used to

rearrange the F vector into the [f] matrix.

The Urey-Bradley force field is a function of Ar , Aa. . and

Aq. .which are not independent co-ordinates. By taking the first deriv-

ative of equation (5.56) equal to zero it is not justifiable to set

thefav/g^ ) , (av/g^ "jand the (sv/ aq^") terms also equal to zero. The

redundant co-ordinates Aq,. can be removed by an expression developed

1 ""ij

lat

by Shimanouchi (24)

,

Aq
ij - ^ij^^'^i) ^ ^ji^^'^j^ + ^^j^Ji>''(^i/rj>''('^i^-ij>

.2. 2
+ '^ij ^^ij^^'^i)

-^
^jl^^'^j) - ^j«ji<'^j/r,> V°'ij>'

- 2t^jtj^(Ar^Arj) ^ 2t^jS^^(rj/^^) ( r^r^Aa^^)

+2tj^8^j(Ar^r^Aa^j)} (5.60)

where
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2 2.2-
(5.61)

'ij " ^^i " '^j^°"°'ij^^'^ij
Sj^ = (rj - r^cosa^j)/q

ij

^ij =
('^J^^'^°'iJ>/^ij

tj^ = (r^slna^j)/q^j

The potential function can then be expressed in terms of a set of

independent co-ordinates such that 3V/8r, and 9V/9a may be equal

to zero. The final form of the potential energy function is

2V Z {K^ + Z_ tj f' + sJ,F,J(Ar,)^
i^j

Lj'ij ij^ij-

^g-Z-^J^Ji^J^^iJ^Ji^jX^V^^'^j)

(5.62)

*^j ''ij^ji^i * ^ji^/ij'<-^j/'i>'' <^'i><V"ij'

In equation (5.62) the linear force constants F are introduced which

makes it necessary to assume that F = -0.1 F as outlined by Shim-

anouchi et al. (25) • This assumption reduces the number of force con-

stants from twelve to nine for the CSClBr model. The molecular model

for the force constant calculation is





so

The rows of the [zj matrix are obtained from the f vector and the

columns obtained from the Urey-Bradley force constant matrix ac-

cording to equation (5.59). Therefore, there are twenty-one row

vectors and nine column vectors which form the [zj matrix.

f^ (Ar^Arp

£2 (ArjAr2)

£3 (Ar^Ar^)

^21 <^°b^°b>

9 columns

^CS ^CBr ^CCl "ciBr "sBr "sCl ^ClBr ^SBr ^SCl

The lfJ matrix is reduced to its required (3N-6) square matrix form

by relating the f^ (n=l,2,3, ,21) elements to the f (lj=l,

3,.., 6) elements. The relationships are of the type

n = j(j-l)/2 + 1 If iCj

n = i(i+l)/2 if i=j

n = l(l-l)/2 + j if i>j

(5.63)

where i and j are the Indices given by the internal co-ordinates in

equation (5.47).
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Urey-Bradley Force Constant Refinement

According to equation (5.59) [f} = Lz][$l, an initial Urey-

Bradley force constant matrix |^$jis required to find \^FJ . The exact

force constants composing the vector |^$J are not known in advance,

but rather are approximated by transferring appropriate U.B. force

constants from similar molecules. That is, the refinement of the cal-

culated force constants must begin with nine assumed force constants.

The initial set of transferred force constants is given in Table 5.1.

The roots of the secular equation (5.53) do not exactly equal the observed

vibrational frequencies. A first order perturbation theory is used to

refine the assumed force constants so that the agreement between ob-

served and calculated frequencies is improved. A correction is sought

for \¥J and hence L$J such that

(calc.) (obs.)

{X ^ ~ -^

i
> = <5.64)

Since the \JF \ matrix elements are linear functions of the

Urey-Bradley force constants through the relationship (5.59) and since

the [zj matrix is simply an array of geometry dependent elements, the

difference equation is valid in the form

[af] = [z] [a$] (5.65)

The Jacobian matrix \^J } is defined as the matrix whose elements

are given by

If the (i-1) set of force constants is[(()J . and the corresponding

calculated roots are ^Aj ,_, the difference matrix LeJj_i is

Dl-l - U"'']
- [AjfJ^l (5.67,

A correction to the (i-1) force constant 8et[A(j>. .J is required ac-
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cording to

[J*][a4-1 = [4-1 <5.68)

To obtain the final set of force constants several cycles of refine-

ment are usually necessary until further refinement produces no change

in the resulting force constants. For each cycle the f^j matrix is

adjusted by a small amount. In particular, for the (1-1) cycle

a set of residuals is obtained

W,_i = [j*]Mi_, - [el_, (5.69)

The sum of the squares of this set of residuals is given by

X = Hi_i [w] [r]^_i (5.70)

where \v \ is the weight matrix of only diagonal elements defined by

"ii ^ ( V,obs)^ (5.71)

The weight matrix fits the calculated roots to the observed roots on

a percentage basis. When a frequency was not observed experimentally

a weight matrix element was assigned as W =0. Substituting (5.69)

into (5.70) and rearranging yields

X- MnJ*f[w][j*]M - [e?[wIj*]U] (5.72)

The procedure is to then minimize X by differentiating with respect

to

^^ *A», - UrW'WM - [^in«]t *] (5.73)

or

Hi.l-<[/l'[«¥/])-'[/]'WM,.l (5.74)
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The i set of force constants then becomes

b\ = U\_^ + ^^\_i (5.75)

The cycling procedure is then continued until X = . At this point

for the k set of force constants

[m\ =

The matrix LJ J is called the Jacobian matrix. It can be obtain-

ed from the [_LJ and the [z J matrices through the following relation-

ship

[^1 - W'WH (5.76)

The Wilson's LgJ Matrix

The LGJ matrix Is the kinetic energy matrix. Setting this matrix

up for a computer calculation requires a rather lengthly algebraic

operation during which errors are easily made. In non-matrix form

the [g J
matrix elements are defined by

^tt' = 2_/l/-i> ^i^'i (5.77)
1=1

where m, is the mass of the i atom and the constants B determined

by the geometry of the molecule such that

S^ = IIb r (t-l,2,3,...3N-6) (5.78)
i=l ^^ ^

For each atom a a vector p whose components in three dimensional

space are the three displacement co-ordinates ^ , K., and E, , is

introduced. For a given internal co-ordinate S the constants B are

grouped into threes; B^^, B^^, and B
,

, . These quantities can be

considered as the components of a vector s associated with the atom

a and with the internal co-ordinate S . Equation (5.78) becomes
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N

h y c -p (5.79)
^— ta a
a = l

where the dot product Is a scalar quantity. The direction of s is

chosen such that a maximum increase in S will be achieved and the

magnitude |s | is equal to the increase in S upon unit displacement

of atom oC provided the other N-1 atoms are fixed in their equili-

brium positions. Instead of the 3N coefficients B (for each S^) it

is more convenient to use the N vectors s^ . Therefore, equation
ta

(5.77) is written

N

G •
= 7 y s . . s

, (5. 80)
Z "^a ta t att

a=l

where y is the reduced mass of the a atom. One element G^ , occurs
a tt'

for each pair of internal co-ordinates S and S , and no co-ordinate

axes are necessary if the s vectors are easily described. The s vectors

can be described in terms of bond vectors and other simple unit vec-

tors so that the scalar products of the s vectors can be reduced to a

sum of scalar products of certain unit vectors (bond vectors) within

the molecule. These vectors may be substituted into Wilson's formulas

for bond stretching and angle bending internal co-ordinates ( 2d •





55

Urey - Bradley Force Constants for CSClBr

The calculation of vibrational frequencies and normal co-

ordinates from the force constants is a straight forward procedure.

In practice, however, it is the vibrational frequencies that are

observed, and the force constants and normal co-ordinates that we

wish to determine. This reverse calculation is much more difficult.

Almost all force constant calculations these days are performed using

the force constant refinement procedure. The force constants are obtained

by an iterative method, in which some set of approximate constants are

made to converge upon the true force constants via the Jacobian matrix

A normal co-ordinate calculation is basically dependent upon the

molecular geometry. The molecular model used in this calculation is only

an approximate description of the exact geometry since no microwave or

electron diffraction data is available at present. The approximate parameters

were

r(C=S) = 1.63 1 (ClCBr) = 110.7 °
o

r(C-Cl)= 1.746A (SC Br) = 125 °

r(C-Br)= 2.05 A (SCCl) = 124. ^P

where the bond lengths and angles are those transferred from CSC1„, COClBr

and COBr- ( 15,7 ). The atomic weights of the weights of the carbon, sulphur,

chlorine and bromine atoms were taken to be 12.0 ,31.97207, 34.96885

and 78.9183 respectively. The initial set of Urey-Bradley force constants

were those transferred from CSCl. and COClBr as given in Table 5.1.





56

TABLE 5.1

Initial Set of Transferred

Urey-Bradley Force Constants

Force Constant

Symbol

Value
o

( mdyn/A) Source

K
C=S

K
CBr

K

H

CCl

'ciBr

H
SBr

SCl

ClBr

SBr

SCI

5.44

1.565

2.30

0.07

0.101

0.101

0.525

0.681

0.681

(a)

(b)

(a)

(b)

(d)

(c)

(b)

(d)

(c)

(a) Reference 15

(b) Reference 7

(c) Reference 12

(d) Assumed to be at least the same as the analogous chlorine force

constant.

Table 5.2 lists the calculated Wilson's [_g1 matrix elements for

CS CI Br. Table 5.3 lists the calculated Wmatrix elements for CSClBr.

This matrix is a 21 X 9 array corresponding to the nine Urey-Bradley force

constants. The force constant refinement difficulty arises from
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the fact that there are nine In-plane force constants hut only five in-

plane frequencies of vibration for the molecule. The experimental data

was therefore not sufficient to uniquely determine the Urey-Bradley force

constants. This is usually the case for force constant calculations of poly-

atomic molecules. We attempted to choose the most probable set of force

constants from a rather large number of possible solutions. We did this

by reducing the number of force constants which we could vary in the

calculation from nine to five, in order to match the number of observed

frequencies. Two force constants were transferred from CSC1„. They were
c

^cn-i ^^'^
^<ic^

^^^^ values of 0.101 and 0.681 m-dyne/A respectively. One

force constant was transferred from COClBr, its symbol and value being

H„,„ and 0.07 m-dyne/A respectively. These three force constants were

constrained: that is, forced to take these values in all the refinement

calculations. The final set of force constants chosen should be the most

reliable since it correlates very well with the force constants obtained

for CSF^ and CSCl . Both these molecules are of C„ sjnmmetry and their

force constant calculations were greatly aided by the fact that there were

only six different force constants to match with the five observed fre-

quencies.

Thus by varying five of the six non-constrained force constants in

each refinement to achieve convergence of the observed versus calculated

frequencies (to ±5 cm ) we obtained our best choice for the set of

Drey-Bradley force constants given in Table 5.4. This set of force con-

stants gave the calculated frequencies listed in Table 5.5.

The calculated frequencies are the eigenvalues of the secular

equation (5.53) and the corresponding eigenvectors normalized to give

the [l3 matrix are listed in Table 5.6.
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TABLE 5 .

3

The Czl Matrix Elements for CSClBr

f-lndex

vector K
cs CBr

K
CCl

H
ClCBr «BrCS

H
CICS

F F
ClBr BrS CIS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1.00

1.00

1.00

3.579300

2.845980

0.700002

0.705701

0.586441

0.840955

0.738511

1.387246

0.743246 0.709904

0.804242

0.816596

0.614211

0.6398484

0.842556

0.622162

0.706998

3.341500 0.962419
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TABLE 5.4

Urey-Bradley Force Constants for CSClBr

Force Constant

Symbol

Value
o

m. dyne/A

C=S

CBr

* H
I

H

* H

* F

CCl

ClBr

SBr

SCI
f
ClBr

SBr

SCI

5.319

1.96

2.331

0.07

0.066

0.101

0.726

0.55

0.681

TABLE 5.5

Observed and Calculated in-plane Frequencies
35 79

for CS CI Br

Frequency Observed (cm ) Calculated (cm ) Difference (cm )

V, 1130

764

438

256

222

1129.2

763.1

440.4

256.0

224.8

0.8

0.9

2.4

0.0

2.8

* Force constant constrained
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TABLE 5.6

35 79

The Cl] Matrix Elements of CS CI Br

Matrix Elements for Modes

V

3rCS .3351134 .0323107 -.0337040 -.0034372 -.0030833

3rCBr -.1349528 -.2367020 -.1400156 .0236462 -.0451941

3rCCl -.1744707 .2718214 -.0840632 .0127074 ,0142770

aeciCBr .2254136 .0234559 .0836509 1339137 .0155194

30BrCS -.1050044 -.2361805 -.1228858 -.0681943 1138661

30C1CS -.1201272 .2398087 .0394824 -.0656936 -.1291739
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Chapter 6

Approximate Self-Consistent Molecular Orbital Theory (The CNDO Method) (27 ,28,29)

The electronic energy states E of a polyatomic molecule are
E

elgenstates of the Hamiltonian operator H satisfying the quantum mechanical

relationship

The total electronic wave function m is set up in terms of a set of

basis functions. Most applications use linear combinations of atomic

orbltals (L.C.A.O.) Each molecular orbital (MO) can be constructed as a

linear combination of atomic orbltals

"^ , = Z_c ^ (j) (6.2)
1 V vi ^v

where 6 are valence atomic orbltals and c . the orbital co-

efficients. If the coefficents in the LCAO orbltals are chosen to

minimize the total energy one obtains LCAO/>K)/SCF orbltals, the best

LCAO approximations to the self consistent functions.

Without further approximation this technique is limited by comput-

ational difficulties in the treatment of large molecules. The "neglect of

differential overlap" approximation has been developed for the tt

electrons only of aromatic systems. The Pople, Santry and Segal method

employs self consistent techniques based on neglect of differential

overlap for all valence orbltals.

According to Roothaan's LCAO/SCF treatment only electrons in the

valence shell are considered explicitly, all inner shells being treated

as part of an unpolarlzable core. For closed shell configurations, varia-

tional treatment of the orbital coefficients yields the basic equations

ZF c ^ - / S c ^e^ (6.3)
\iv vi Z— yv vi 1

V V
where

F = H + G (6.4)
yv yv yv
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= 1 (b d) d X
J y V

and _
S = 1 (b (t> dr (6.5)

In these equations e. is the orbital energy for the molecular orbital

Yj and H is the matrix element of the one-electron Hamiltonian including
i yv ^

the kinetic energy and the potential energy in the electrostatic field of

the core. Gyvis the matrix element of the potential due to other valence

electrons and depends upon the molecular orbitals via the population matrix

P over the occupied molecular orbitals only,

P^ = 2 yc.c. (6.6)

The orbital energies e are roots of the secular equation

I
Fyv - e S^^

I

= (6.7)

and the total electronic energy of the valence electrons is

E,, 4=^/P (H +F ) (6.8)
electronic /_ yv yv yv

The total energy of the molecule (relative to separated valence electrons

2ind isolated cores) is obtained by adding the repulsion energy between

cores. This energy can be approximated by a point charge model so that

^total = ^electronic + ^^V* ^A^B^ ^AB
^^'^^

A<B

where Z. is the core charge on atom A and R.„ the intemuclear distance.
A AB

Equation (6.3) can be written in matrix notation

[t][c^ = ( [h] + [g] ) [c^l = [sUc^le^ (6.10)

where [f J and [SJ are the matrices of F and S respectively and 1 c

,

is the column matrix c and e the orbital energy, a scalar quantity.

Molecular wavefunctions formed from the antisymmetriSed products of

one-electron wavefunctions are invariant with respect to an orthogonal

transformation of the occupied molecular orbitals among themselves.

These molecular wavefunctions and the corresponding e are also invariant

with respect to an orthogonal (or unitary) transformation between the atomic
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orbital basis functions. A new basis set of functions t is chosen relatedm
to the orginal set (j) by the matrix equation

[tl - [ol[*l «•")

where \<i'\ is an orthogonal transformation matrix. Equation (6.10) becomes

{[oTHh'ICoV [o1-Hg-][o1)[c,1 - [o]-' Ls^[olK\, (6.12)

where |j» G'and S' are referred to the new basis set t • The elements

of the electron repulsion matrix G' and the Hamiltonian are given by

= /̂— nil, n>
G' = / G (6.13)
ma ^ my nv yv

and

LOmy n^
H' = > H (6.14)
mn / ,^ my nv yv

Possible transformations may be classified in increasing degree of

complexity by

(i) Transformations which only mix 2px,2py and 2pz atomic orbitals

centered on the atom;

(ii) Transformations which only mix 2s and 2p orbitals on the same atom;

(iii) General transformations which mix atomic orbitals on different

atoms (leading to a nonatomic basis set)

The first type corresponds to a rotation of local atomic axes, an essential

invariance feature for molecules of low symmetry. The second transformation

corresponds to the hybridization of the orbitals on the various atoms.

Although the choice of a particular hybrid form does not strictly make any

difference to the calculation of the electronic structure of a molecule,

the concept is very useful.

The approximate molecular orbital theory with complete neglect of

differential overlap between orbitals on the same atom has five basic

approximations

.

(1) If the (|>'8form an orthonormal set the overlap integrals

S are zero unless yn) in which case they equal unity. The co-

efficients c. then form an orthogonal matrix and the orthonormality
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condition for ^ becomes
i

where

"^ij
° -^

for i = j

6j^j
= for i 5^ j

(2) All two-electron integrals of the type

= 21 ^a ^^ ^^l^'^ ) -h ( ya|vX >} (6.16)V
Xa

which depend on the overlapping of charge densities of different

basis orbitals are neglected. This means that the integral ( yv
|
Xa ) is

zero unless li=V and X=a . As a result of this approximation the theory

becomes invariant which necessitates further approximations.

(3) The electron interaction integrals are assumed to depend only

on the atoms to which the M.O.'s 6 and A belong and not to the
^y ^v

actual type of orbital. Hence, there remains only a set of atomic electronic-

interaction integrals measuring an average repulsion between an electron

In a valence atomic orbital on atom A and another valence atomic orbital

on Atom B. In this manner the diagonal core matrix elements are written.

H = U - / ( pi V_ ly ) (6.17)

where U is the diagonal matrix element of (h with respect to the one-w ^y
electron Hamiltonian containing only the core of its own atom. The off-

diagonal core matrix elements H may be written if
d, and d, are

yv ^y ^V
on the same atom (A) in a similar manner,

Hyv - Uyv - 2Z ^^1 ^B I
^ ^ ^^-^^^

BM



;i J
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where again U is the one-electron matrix element using the local

core Hamiltonian. By symmetry it is zero if
(J) and (|) are s,p,d

fimctlons. The remaining terms of equation (6.18) represent the inter-

action of the distribution ^, ^y, with cores of other atoms. Since

corresponding electron interaction integrals are neglected, it is

consistent to neglect these contributions.

(4) Integrals ( yjv |v ) where ()) and 4 belong to atom A are

zero if V ^ V . Also, if (}) and 4 are the same the integral is the

same for all valence atomic orbitals on A so that

( y |Vg| V ) = V^ (6.19)

where the matrix V need not be symmetric. For s, p, d,

basis functions

MM)

and

H = ( \i^v, but both on the same (6.21)

atom)

For 4 and * on different atoms the assumption is again the distribu-

tion (j) * with distant cores is neglected and that the Hamilton-

ian H is a measure of the possible lowering of energy levels by

being in the electrostatic field of two atoms simultaneously. H is

then denoted as the " resonance integral " 3 estimated by approxima-

tion (5).

(5) Off-diagonal core matrix elements between atomic orbitals on

different atoms are estimated by the formula
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o
where S is the overlap integral and 3;^is a parameter depending only on

the nature of atoms A and B.

To elaborate on the actual calculation, the basis set consists of

Slatertype orbitals for the valence shell where for example any Is orbital

is given by

Is = ( Z'^/tt )^ exp (-Z'r) (6.23)

where the Slater values Z' are constants for the valence shell of the

atoms concerned. The electron repulsion integral v , representing the
AB

interaction between electrons in valence atomic orbitals on atoms A and

B, is calculated as the two-center Coulomb integral involving valence s

functions or

^AB s^(l)(r^2^~^4^^^ dTjdT^ (6.24)

for which formulas are listed. The parameters R ° are obtained from the
AB

formula

^AB = '^^ ^1+ e°) (6.25)

where g ° are determined empirically so that the CNDO calculations give
A

the best LCAO-SCF calculations for diatomics.

The CNDO/2 Approximations;

(1) The original CNDO theory predicted diatomic bond lengths consist-

ently too small and binding energies consistently too large. This was due to

a "penetration effect" in which the electrons in an orbital on one atom

penetrate the shell of another atom leading to net attraction. The Hartree-

Fock matrix h can be rewritten ignoring the terms described by the

penetration effect. This approximation is not completely justified but it

does improve the calculation while simplifying it at the same time.

(2) The CNDO estimation of n the local core matrix element was

achieved through the atomic ionization potential I by the relation
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An alternative approach is to use atomic electron affinities

-% = V -^ ^A^AA (6.27)

The CNDO/2 approximation is to average both the effects of equations

(6.26) and (6.27) to account for the tendency of an atomic orbital to

both acquire and lose electrons.

- ^ < ^ -^ ^ > = Uyy + ( ^A
- ^ ) Y^A (6-28)

CNDO/2 Calculations :

The calculations using the CNIX)/2 method were carried out with a

computer program incorporating the theory outlined originally by Pople,

Santry and Segal. The program consisted of an approximate 1000 card deck

provided by the QCPE (Quantum Chemistry Program Exchange) located at

Indiana University (30 ) . The calculations were executed for the closed

shell configurations on an IBM 360 computer. The input data consisted of

the wavefunction option, the open-closed shell option, the number of atoms,

the molecular charge, the multiplicity, the atomic number of the atoms and

the Cartesian co-ordinates of the atoms in their experimental molecular

geometry.

Equilibrium Geometries and Quadratic Force Constants;

The calculated CNDG/2 and experimental equilibrium geometries are

listed in Table 6.1. for the series of molecules COH2, COF2, COCI2,

CSH2, CSF- and CSCI2. The experimental geometries for the three carbonyl

molecules COX2 (X=H,F,C1) are readily available and presumably accurate.
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The quoted experimental bond lengths and angles of the thiocarbonyls,

CSX_ , ( X = H, F and CI ) are not as reliable and in many cases are

assumed to be the same as the analogous carbonyl compounds.

The CNDO/2 theory was originally applied to AB„ and AB_ type mole-

cules and has been shown to successfully predict equilibrium bond angles

(29). It was then applied to diatomics and several polyatomics, includ-

ing formaldehyde, which led to some success in the calculation of equi-

librium bond lengths (31). In the present work we applied the method

to the previously mentioned series since geometries of the carbonyl and

thiocarbonyl halides are actually the very basis for ground state infra-

red and normal co-ordinate analysis calculations.

As outlined in the following section on CNDO/2 calculations of in-

frared band intensities, the molecular model is set up in terms of sym-

metrized internal co-ordinates . Our series of molecules has C. sym-

metry so that the streching vibrations are of A. symmetry and the sym-

etrical bending vibrations are of B symmetry. All equilibrium bond

lengths were calculated by the uniform grid type variation of the length

of bonds ranging from the smallest grid of ±0.005 A to the largest of

±0.02 A. In a similar manner the bond angles were expanded and contracted

at Intervals of 2 . Under these vibration type conditions all other

atoms were held fixed in their equilibrium positions. The S3nranetrized

internal valence co-ordinates were defined by the equation

S^ = ^ ( ^Aq. ) (6.29)
1 n 1 1

where Aq. is the change in the i bond distance or angle. For the series

of molecules XYZ^ (Y=C, X=0andS, Z»H, F and CI ) where n is

the number of equivalent YX or YZ bonds in the molecule the following

defined vibrations were performed

YX stretch S^ =
|^

Ar^^ = Ar^^

YZ stretch S^ - -j^ (Ar^^ + Ar^^) - \ (Ar^^) (6.30)

ZYZ bend S3 = ^^ ( Aa^^, ) - 1^ ( Aa^^^ )

The definition of the symmetrized internal co-ordinates is important
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in calculating the appropriate force constants.

The CNDO/2 calculated geometries are obtained by plotting either the

total energy or the electronic energy on the ordinate axis and the bond

length or angle along the abscissaaxis to obtain the potential energy

curves. A few examples of these plots are shown in Figure 6.1. The calculated

minima are generally not much different from the experimental equilibrium

results so that the CNDO/2 calculations give a good representation of the

geometry for the thiocarbonyl halides. Although the fact that the shapes of

the potential curves are quite inaccurate the minima predictions are

quite good.

The method as shown in Table 6.1 seems to reproduce the geometrical

trends. Ignoring CSCl , the obvious trend is that the bond lengths are

longer than the experimental values and the symmetric bond angles are

calculated to be smaller than experimental values. The one oddity in this

trend is r(C-Cl) in COCl which turns out to be shorter than the experimental

result. This could be the true case but the experimental result seems also

to be somewhat in doubt.

For the COX- (X=H,F, CI) series the trend in C=0 bond length is also

reproduced, that is, the bond length decreases systematically for X=H

to X=F to X=C1. The C=0 bond length for COH is calculated to be 1.253A,

for COF 1.250A and for COCl , 1.246A. The differences with the experimental

results are 0.05, 0.079 and 0.080 A respectively. However, the experimental

trend in the C=S bond lengths for the CSX (X=H, F, CI) series is not

reproduced by the calculation. In particular the C=S bond length in CSF

is calculated to be longer than the C=S bond length in CSH„ and CSC1_.

From the experimental geometry and force constant data this bond in CSF_

should be shorter. The differences between calculated and observed
e o

carbon chlorine bond lengths are 0.071A and 0.115A for phosgene and

thiophosgene respectively which in the latter case is rather large. It is

interesting to note that the carbon hydrogen bond length in formaldehyde

and thioformaldehyde are calculated to be almost the same, 1.118 versus

1.120A respectively. The experimental geometries r(CH) and 9(HCH) are

also very similar.

The equilibrium bond angle calculations are in quite good agreement

in the three molecules studied where experimental comparisons were possible.

The largest difference is 2.1°in the case of the HCH angle of formaldehyde.

Although seemingly trivial it is noteworthy that the CNDO/2 calculates



, .-. )



71

Figure 6.1: CNDO/2 calculated theoretical plots of total energy

in atomic units along the ordinate axis versus bond

lengths in Angstroms or bond angle in degrees along the

abscissa axis for some C2 molecules.
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TABLE 6.1.

CNDO/o Equilibrium Geometries



r.«
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Table - 6.2

QUADRATIC FORCE CONSTANTS

Molecule Valence Force Field

COH,

COF,

COCl,

CSH,

CSF,

CSCl,

^orce
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all the symmetrical angles to be properly less than the planar trigonal

value of 120°
.

The method of calculating the equilibrium bond lengths and angles

also gave the quadratic force constant as a result. This method employs

the fitting of a parabolic type equation to the potential curve. Three

successive points were fitted to a parabola so that the midpoint had lower

energy either end point. Thus the minimum yielded the equilibrium value

from which the valence force constant could be calculated. Very small

bond length and angle differences were used close to the minimum so that

the harmonic component of the potential was estimated and other anharmonic

components neglected. The parabola type equation took the form

V-V =}sK(x-x)^ (6.31)
e e

where V and x correspond to the minimum value of the energy and the

equlibrium bond length or angle respectively. In this manner three sets

of values for the total energy and bond parameter yielded the equilibrium

bond length or angle and the valence force field force constant.

The results of the CNDO/2 force constant calculation are given in

Table 6.2 . They are consistently too large but it is interesting to note

that the stretching constants are very nearly a factor of three times

the experimental values. This is consistent with the results obtained

by Segal (31) . The calculation does however reproduce the Important

trends; namely, K^^^ for COH^ , COF and COCl- remains relatively con-

stant as do the experimental results. K for CSF is 16% larger than

K^^g for CSCl . The experimental difference is about 18% .

The values given in Table 6.2 for the experimental valence force

field force constants are those obtained from our Fortran force constant

program. The program calculates

[f] . [z] H
where |.*Jl8 the Urey-Bradley force constant matrix.
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Calculation of Infrared Intensities by the CNDO/2 Method

Fundamental infrared band intensities can be measured experimentally

by the method of Wilson and Wells, and Penner & Weber ( 36,37) • The

experimental integrated intensity for a particular fundamental is given

by

1

nl
In

Y°
d(lnv) (6.32)

band

where n is the sample concentration in moles per cubic centimeter, i

Is the absorbing path length in centimeters and lo and I the intensities

of the incident and transmitted light of frequency v • T has the units of

square centimeters per mole. By the technique developed at the University

of Minnesota gas phase intensity data has been transformed, to a very good

approximation, into derivatives of the total molecular dipole moment with

respect to defined symmetry coordinates (17 ). Intensity data have

frequently been further interpreted in terms of bond moments and effective

charges, although there are distinct limits to the validity of such inter-

pretations.

As outlined in Chapter 2, the explicit relationship between the

integrated intensity of a fundamental absorption band and the derivative

of the molecular dipole moment with respect to a normal co-ordinate is

given by

'^ - Jr (Hj

vhere

i^y-i^y

It is the derivative o£ the dipole moment with respect to the normal





76

co-ordinate which is sought in quantitative intensity studies.

The CNDO method, an approximate self-consistent molecular

orbital theory, can be applied to the calculation of dipole moment

derivatives M = ( 3P/ 8S )If anharmonicity is ignored equation

(6.33) predicts that the integrated intensity of a fundamental vibration-
2

rotation band is temperature independent and is proportional to (8P/9Q.) .

The full SCF - LCAO - MO theory has been applied by Segal and Klein

to molecules composed only of first row elements and hydrogen to give

a reasonable approximation to the trends between these molecules and

the magnitude of the dipole moments (38 ) . Their attempt met with

reasonable success so that an attempt was made by our group to apply the

technique to a series of four-atomed carbonyl and thiocarbonyl molecules

of planar c symmetry.

For convenience it is possible to obtain the change in dipole moment

1 respect to internal symmetry co-o

formation to normal co-ordinates being

with respect to internal symmetry co-ordinates S , the appropriate trans-

where the derivatives can be obtained from the \l,\ matrix through a normal

co-ordinate analysis. Experimental determination of (3P/9Q1 leads to a sign

ambignity; that is, from the integrated intensity one obtains either a

positive or a negative (9P/9Q 1 . This ambiguity gives rise to sets of solutions

for the(9P/9s 1 values obtained. Chemical intuition has been used to decrease

the number of possible choices. However, the CNDO/2 method of determining

yields only a single result (sign and magnitude) which possibly can be

correlated with experimental results to resolve the sign ambiguity problem.

The CNDO/2 method describes the molecular dipole moment as the

sum of two types of terms. One arises from a contribution of the net

atomic charge densities,

P , . - 2.5416/ q. z, (Debyes) (6.36)
q(z) (— A A

q^ - (^A-V ^'-''^
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where ^ rims over the atoms of the molecule, z is the appropriate Cartesian

co-ordinate , Z is the core charge of the atom, which is the atomic number
A

less two for all atoms except hydrogen since the Is electrons of the

heavier atoms are taken to be part oJ

total electronic charge on the atom.

heavier atoms are taken to be part of a nonpolarizable core,p is the
AA

A occ

^AA - ^

'

A i

where i runs over the occupied orbitals and c is the coefficient of
th V.

^^
the y atomic orbital in the i^" molecular orbital.

The other type is a contribution from atomic polarization resulting

from the mixing of the 2s and 2p atomic orbitals,

atoms

Psp^"^ " - Z''2s(A).2pz(A) *2s(A)*2pz(A)
'^^ ^^'^^"^

atoms

2s(A),2pz(A)
= -7.3370 21 (Z^)'^ Po.^AN o„,/A^ (Debyes) (6.40)

where ^OgfA'i 2 zfA')
^^ ^^^ usual bond order;

occ

^28(A),2pz(A) " ^ 4~ ''i'2s(A)''i,2pz(A)
^^'^^^

and Z^ is the orbital component of the atom A, taken to be the Slater

value

.

The dipole moments calculated by the CNDO/2 method of equations (6.36)

and (6.40) are generally very bad but are as good as can be expected from

other literature reference calculations, including diatomics ( 28 )

•

The molecules investigated were COH2 , COF- , COCI2 , CSF2 , CSCI2 and

newly reported CSH^. The CNDO/2 computer program calculated the molecular

wavefunction and hence the molecular dipole moment at the observed

experimental equilibrium geometries as given in Table 6.1. For a particular
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molecule a series of calculations was then performed so as to distort

the molecular geometry according to the defined symmetry co-ordinates

which in effect simulated bond stretching vibrations. For the molecules

studied the defined symmetry co-ordinates were either of type S, or S

X = 0,S z

Y = C
-j-y

Z = H,F,C1 ^, ^ , XX (out-of-plane)

The bond stretching motions were calculated at intervals ranging from ±0.005A

to ±0.02A.The graphs of dipole moment versus bond length were plotted

and the derivative obtained by taking the slope at the equilibrium bond

length fell near the maximum so that even a slight change in the equilibrium

value would cause a gross change in the dipole moment derivative with respect

to the symmetrized internal co-ordinate.

The results of the calculations are outlined in Table 6.3. The

calculated dipole moment derivatives with respect to interna 1 co-

ordinates are generally in good agreement with the magnitudes of the

available experimental results. The table gives a brief indication

as to the vagueness of the actual sign for the experimental derivatives.

The sign ambiguity is very evident from a literature examination of the

discussions dealing with experimental data. A physical meaning of the

plus and minus sign is very important for the development of trends

from the calculated results.

The CNDO theory as outlined by Segal & Klein predicts that there

are three basic factors determining the change in dipole moments when

simulating a fundamental vibration:

(a) A change in the sp and pd tjrpe polarization of the electrons

about the nuclei of the various atoms leads to a net change in

the dipole moment.
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(b) The shift of atoms which bear a net charge in the equilibrium

configuration q. results in a contribution to the dipole.

(c) A change in atomic hybridization on stretching (or bending) modes

leads to a net change in the charge upon the component atoms Aq

with a resultant effect upon the dipole moment

For example, consideration of the data obtained for phosgene (C0C1_) which

is typical of the series of molecules studied reveals the following

interesting CNDO behaviour. Table 6.4 gives the pertinent calculated data

for an S. vibration
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of this deformation is a net flow of electron density toward the negative

end of the molecular dipole. There is also a net polarization of the

carbon atom toward the lengthened bond which gives rise to about one

quarter of the total dipole change, Ay ,
= -0.05227D as compared to

sp + pd

Ay s -0.2549D. Since effects (a) and (b) add, a large value for

the dipole moment derivative, is obtained.

In the case of thioformaldehyde, the hydrogens are calculated to

bear a net positive charge so that effect (c) is opposed to the net

flow of electron density. The change in atomic charge on the hydrogens can

be converted to a meaningful unit in Debyes which in turn gives rise to

a small value for M. • •

The calculated values for the dipole moment derivative given in

Table 6.3 are most encouraging. In the case of COCl^ and COF. the

agreement between experimental and calculated values is respectable even

with the choices available from the experimental work. The formaldehyde

calculations do not seem to be consistent with the experimental data which

is surprising. The experimental treatment by Hisatsune and Eggers yielded

by an intuitive method, a consistent set of derivatives according to sign

combinations of the six dipole moment derivatives with respect to normal

co-ordinates (39 ). These workers chose the values ( 9P/8S)^_^ and
D/»

OP/8S)_„ to be -1.9 and 1.3 'a respectively. It is interesting to note
CH

that one of their eight sets of solutions gave values for |9P/9sl _^ and
n/« ^

|8P/3SL„ of 3.48 and 0.838 'a respectively. Our analogous CNDO/2
n/o

calculated values were 3.623 and 0.833 A. On this basis it is quite

possible that the formaldehyde bond moment derivatives with respect

to symmetrized internal co-ordinates have been incorrectly assigned.
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Chapter 7

Discussion ;

The assignment of the five in-plane fundamental frequencies

of vibration for thiocarbonyl chlorobromide has been made. The

assignment was achieved by spectroscopic analyses of the solution,

liquid and gas phase infrared spectra and the liquid laser Raman

spectrum. These spectra are shown in a condensed form in Figure

7.1 . Sections A, B and C are the illustrations of gas phase,

CS_ solution phase and liquid phase IR respectively. Sections D

and E are the liquid laser Raman spectra with section E at

25 times the relative intensity of section D .

The observed frequencies obtained from the vibrational spectra

are listed in Table 7.1 . The in-plane fundamental frequencies are

assigned at 1130, 764, 438, 257, and 222 cm" in their

proper V, to v order. The main difficulty in deciding upon

a definite assignment was the presence of impurities in the samples

analyzed. These impurities were due to the problems encountered

in the synthesis and purification of the compound. The two bro-

mination methods that have been successful unfortunately afford

very poor yields. These methods involve bromination of the thio-

carbonyl dichloride molecule. Better yields could possibly be

achieved by solution phase bromination of thiophosgene dimer. Thio-

carbonyl fluoride, which is a gas, could also be mono- or di-

brominated with anhydrous HBr to yield further molecules in the

halide series for spectroscopic study; namely, CSFBr and CSBr- .

In the future purification procedures will be attempted by gas

chromatographic techniques with a closed glass system for collection

of the desired product at liquid nitrogen temperature.

The nine Urey-Bradley force constants for CSClBr have been

readily transferred and satisfactorily refined. This set for CSClBr

has now been added to those previously calculated by our group

for the molecules CSF , CSFCl and CSCl^ . The comparative values

for the four thiocarbonyl halide molecules are given in Table 7.2.

It must be remembered that the set of force constants which we have
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(A) The infrared vapour spectrum of CSClBr

at a pressure of 10 mm Hg taken in a 1

metre gas cell with Csl windows.

(B) Same as Figure 4.3

Figure 7.1 (C) Same as Figure 4.4

(D) Same conditions as Figure 4.5

(E) Same conditions as Figure 4.6





1300
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Table 7.1

Infrared and Raman Spectra Fundamental Frequencies (cm )
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chosen for CSClBr is only one of the many possible choices. The

choice must be taken whenever an attempt is made at calculating

force constants from an insufficient niomber of observed frequen-

cies. However, in light of this difficulty we expect our choice

to be the best possible one on the basis of the Urey-Bradley force

constant data available for the other thiocarbonyl halide molecules.

The comparison of the Urey-Bradley force constants for the

four molecules verifies that the CSCl- and CSClBr potential

force field environments are very similar relative to those of

CSF- and CSFCl .On the basis of electronegativities the bromine

and chlorine atoms are quite alike while fluorine is very different.

The differences in K for CSCl and CSClBr and K are only

0.2 and 0.9% respectively. The analogous force constant differences

between CSCl. and CSFCl are 8.2 and 12,1 % respectively. From

these results we conclude that a fluorine substituted thiocarbonyl

halide molecule has a markedly different Urey-Bradley potential

energy force field than a chlorine and/or bromine substituted mol-

ecule. This trend also was prevalent in our CNDO/2 calculations

on carbonyl and thiocarbonyl halide molecules. Fluorine ( C0F_ and

CSF ) calculations led to very strange results in many cases

while hydrogen ( formaldehyde ) and chlorine ( COCl- and CSCl- )

results were much more reasonable.

The K_„ stretching force constant in CSClBr is 20% larger
Lot

than in COClBr . K in CSClBr is 17% larger than K
^^

in

COClBr . These differences are remarkably similar. Also of sur-

prising similarity are the halogen - halogen non-bonded interaction

force constants. Although in CSF- the F force constant value is
/ r r

1.143 m-dyne / A , for CSCIF, CSCl- and CSClBr the values F^._
,

F^,., and F^,_ are 0.761 , 0.74 and 0.726 m-dyne / A

respectively. This result is very difficult to explain.

For the molecules studied our CNDO/2 calculated dipole moment

derivatives with respect to symmetrized internal co-ordinates were

in excellent agreement with available experimental values. From

our study we have found that a theoretical determination can be

very useful in the interpretation of the complicated solutions for

dipole moment derivatives which are the result of experimental





86

Table 7.2

Force

Constant

Symbol

CS

CF

^CCl

^CBr

»FF

"cici

^Cl

^ClBr
H

H
SF

SCI

SBr

^FF

F
ClCl

CIF

ClBr

^SF

^SCl

•SBr

Urey-Bradley Force Constants

Thiocarbonyl Halldes

0.425

0.158

1.143

0.97

m-dyne / A

CSF2^*^ CSFCl^^^ CSCl^^^

6.27
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integrated infrared intensity measurements. We believe, for example,

that there is good reason to doubt the chosen values for (3P/9S)
^

and ( d?/dS )^ in the formaldehyde work of Hisatsune ( 39). Our
CH

Spectroscopy group will be using the theoretical intensity calculations

to complement our own experimental intensity measurements on CSF_

and CSC1„ in the near future.
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