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ABSTRACT

The "x-y Coriolis Coupling Theory" as presented by Dilauro and

Mills (1966) is reformulated and extended to the determination of

Raman intensities. Theoretical Raman and Infrared spectra are

computed in order to understand the effects due to this coupling in

both types of spectra. Both the Infrared and Raman spectra obtained

indicate very real effects due to Coriolis coupling. In some of the

cases chosen the computed spectra are grossly different from the

normal spectra where coupling is absent. Such large effects can

greatly impede the interpretation of experimental results. Theoret-

ical spectra therefore aids in the interpretation of experimental

results, as is clearly demonstrated in the results of this work.
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Chapter I

INTRODUCTION

The present work is primarily concerned with the effects

of "X - Y Coriolis coupling" in Raman spectra. That is, effects

arising due to coupling of degenerate and non-degenerate vibra-

tional co-ordinates through vibrational angular momentum operators

in the Hamiltonian which have the symmetry of rotations about the

X or Y axes. The specific molecules to be studied are CH-F and

CD_C1, both of symmetry C^y, Results for molecules of different

symmetry (particularly those with rotational subgroup Do) are

readily derived. In fact many of the results apply to both Cjjy

and Djj types, restriction to symmetry C^^ being invoked only in

the determination of transition moments and selection rules.

The original investigations of this effect were carried

out by H.H. Nielsen (see for example Rev. Mod. Phys. 2^, 90 (1951))

who described the basic energy theory. Subsequently, many workers

have considered the effect of such interactions in infrared spectra

(see for example Dilauro and Mills (1966)

.

Due to the complexity of the theoretical conventions it

was felt necessary to reformulate both the energy theory and the

infrared intensity theory (given by Dilauro and Mills) as

well as to derive the necessary results for Raman intensities.

Thus a comparison of our results with those given by Dilauro and Mills

for the Infrared case would provide some check of our theory.

In addition the application of the infrared results, not entirely

unambiguously given by Dilauro and Mills would be clarified.





The results of this work take the form of a series of

computer simulated spectra and experimental infrared spectra.

The simulated spectra are produced by a computer algorithm written

during the course of this work. This algorithm is able to pro-

duce simulated infrared spectra on a linear absorption scale

or Raman spectra on a linear relative probability scale.

Earlier versions of this algorithm failed to reproduce

the spectra published by Dilauro and Mills. The most dramatic diffi-

culties appeared in the V3-V6 region of CH.F where the V3 parallel

band is approximately 70 times as intense as the vg perpendicular

band. As a consequence a sample of CH F gas was obtained at the

National Research Council and new spectra of the V2-V5 and V3-V5

regions of CH„F were produced. When the computer algorithm was

modified to more properly simulate the convolution of the spec-

trophotometer, the unexpected discrepancies between our experimental

and computed spectra were eliminated.

Simulation of Raman spectra was attempted once the infrared

difficulties were eliminated. Due to a lack of suitable experi-

mental spectra, no attempt was made to "fit" our calculated spectra

to experiment. Instead the molecule CD_C1 was chosen and spectra

were computed using constants given by Dilauro and Mills. A series of

simulations were produced depicting the Raman spectra for various

models.





Chapter II

ENERGY THEORY

(II-l) Introduction

The molecular Hamiltonian to be considered may be written

where J and Q (a = a,b,c) respectively represent the total

angular momentum and the internal (vibrational) angular momentum

about the molecule fixed axis a, and P, is the canonical
k

momentum associated with the normal co-ordinate Q, . This is a
k

simplified version of the more general form given by Wilson, Decius

and Cross and others. Reduction from the more general form to

equation [1] above involves the following assumptions and conven-

tions (see Wilson, Decius and Cross).

(i) The vibrational potential energy is assumed to have a deep

well at the equilibrium position, so that small vibrations may be

assumed, and hence the dependence of the moments of inertia, I„,

on normal co-ordinates may be neglected.

(ii) The molecule fixed a,b,c axes are chosen to coincide with the

principal axes of Inertia.

(iii) Terms involving squares of normal co-ordinates in the inertia

tensor are neglected, as a result of (i) above.





Neglecting the vibrational (internal) angular momentum and

assuming a "Hookes Law Potential" [1] becomes

[2a] H = H
j^

+ ?ly

[2b] Hj^= J2/2I^ + j2/2I^ + j2/2I^

[2c] V l/22j,(P^ ^'^k Qk)

In [2] H represents the energy operator of a rigid rotating body;

H^ is the vibrational energy operator of a collection of particles

with simple harmonic wavefunctions expressed in terms of normal co-

ordinates. Equation [2] separates rotational and vibrational motions,

since [IL,H^] = 0, and therefore \()
=

\\i ^ . Thus we are left with

the following eigenvalue equations.

[3a] K^^ = E^^

[3b] H^^^ = E^^

For molecules of axial symmetry, two of the moments of inertia

are Identical. This fact allows simplification of H by choosing 1=1
R a L

Then

[4] H^ = (J^-J^/2I^ . J^/2I,

where J^= J^ + J? + J^ . The eigenfunctions that one obtains from
a b c

[4] above are commonly referred to as "Rigid Rotor Functions".

These functions when multiplied by the simple harmonic oscillator

functions form a complete set which is used as the "Basis Set" to

write the matrix of the energy operator H in [1]. Diagonalizatlon

of this matrix yields the energy eigenvalues and their correspond-

ing eigenvector coefficients. The associated wavefunctions are

simply those linear combinations of basis set functions obtained

by multiplying each such function by its eigenvector coefficient.





(II-2) Rigid Rotor Functions:

These functions have been described by many authors (see for

example Wollrab) and require only a brief description here. It is

necessary, however, to lay out in detail our particular choice of

functions and operators along with their corresponding transforma-

tion properties. The latter involves a study of the effect of

symmetry transformations on these functions so that we may determine

selection rules by means of identifying transitions that are

forbidden by symmetry.

The "Rigid Rotor Functions" involve three quantum numbers,

J, k, and m. The significance of each quantum number is given below

J - total angular momentum

k - component of J along main symmetry axis (molecular

top axis "c") of a molecule of axial symmetry,

m - component of J along the space fixed (lab frame) Z axis.

Fig, 1: Relation between space fixed and molecule fixed axes.





A common notation for these functions is \b = |J,k,m> where k and

m may take on the usual 2J+1 values from -J to +J.

The particular form of functions and operators used are

detailed below

[5a] |j,k,m> = Cj^,^^^(j^-iJy)('^-")(ViJ^)<'^-*^)\j,J,J>*

[5b] J i iJ = ±fie-^^{coteb/hi> + ±W>>9 - csc9 ^bX)

[5c] J^ + ±J^ = ifie *^( CSC eb/b<^i ib/ba - cot^b/bX)

[5d) 1J,J,J> = /(2J+l)/87r^^ e^''*e^'^%/2)(l+cosd)]"^

f^5e] Cj^j^^^ = (l/fi)(2J-k-m)^(j^j^),(j^^)^^(2j)!]^(j-m)l(j-k)lI

*

|J,J,J^ is used as a starting function instead of |J,0,0^ used by

Hougen (1962) to bypass difficulties of even and odd J values. Note

that x,y,z refer to space fixed coordinates and a,b,c refer to

molecule fixed coordinates.





It may be noted in passing that [5a] above exhibits the so called

"Anomalous Sign of i". The angles 6, (j>, x> ^^e the "Euler Angles",

as defined in "Appendix I, Wilson, Decius and Cross", which relate

the observer^ X, Y, Z frame to the molecule fixed a, b, c frame.

The operators defined by [5b] and [5c] have the effect of ladder

operators on the |J,k,nj^ functions, incrementing to new functions

by raising or lowering the m and k dependence of these functions

one unit respectively, according as the upper or lower sign is

chosen. In isotropic space the 2J+1 | J, k,n^ functions for a given

J and k corresponding to all possible m values will be degenerate.

Henceforth they will be denoted |J,k^. The determination of

transition moments will, however, require a return to the full

notation |J,k,m^.

The operator defined in [5c] has the following effect on

the rotational functions.

[6] Ji|j,k> = /(jik)(j+k+1 )lil J,X+1>

where J+ = J ± iJ, ; also we have the usual results
a b

[7a] J^l J,k> = J(J+1 )fi^| J,k>

[7b] and j\ J,k> = kfi| J,k>

Then for molecules of axial symmetry, equation [3a] yields

[8] if^|j,k>« rBj(j+l) + (A-B)k2]| J,k>

a a
where A - fi /2I ; B = fi /2I .

* -1
For wavenumber units (cm ) we divide E by he and so obtain

R

A(cm-'U A /he etc.





To complete the description of the "Rigid Rotor Functions"

it is necessary to determine their transformation properties under

the symmetry operations of the point group concerned. Using the

previously given definitions of the functions in terms of Euler

Angles (see equation [5]) and using the transformation properties

of these angles (appendix I, Wilson, Decius and Cross), the follow-

ing results are obtained,

[9a] (C^,S^) lJ,k>- (e^^ ,e
^^(n/^-H))

|j,^>

[9b] [C^= C^^ or cr(bc)]lJ-,k>^(-l)"'^lJ,-k>

[9c] IC^^ or a-^=<r(ac)]| J,k>-(-l)'^"'^|j,-k>

[9d] [Cg B Cg^ or (rj=<r(a b)] lj,k>= (-1 )^ |J,k>

where 6= — used here is not the Euler angle 6 previously used in

eq [5].

There are two popular schemes for the symmetry classification

of rotational functions. The key difference between these two

schemes lies in their treatment of improper rotations, which may

always be replaced by corresponding proper rotations followed by

inversions. Since inversion corresponds to transforming from a

right hand system to a left, or vice versa, its effect is not really

defined. It is clear, however, that the most that can happen is a

change of sign, so that we may label states as - or + according

as they do or do not change sign under inversion. The two schemes

and how they handle this effect will now be given.





I Hougen Scheme. This scheme does not classify states as + or -

due to inversion. The classification of levels is made with respect

to the full molecular point group.

II Landau and Lifshitz . For non-planar molecules there are always

two levels corresponding to the two possible inversion configurations,

These levels are defined as - or + according as they do or do not

change sign under inversion. Each level in the former scheme now

becomes a degenerate (-,+) pair of levels when inversion splitting

is ignored.

The difference between these schemes is actually very minor.

The "+" levels in the latter are in reality identical to the former

scheme, and the "-" levels are simply specified by changing the

sign of the character of the species under improper rotations.

There is, however, a conceptual advantage to the latter scheme.

That is, the full molecular point group designation may be assoc-

iated with a distinct nuclear statistical weight and the usual

parity selection rules, + -»-> ± and ± -^^ ± for Infrared and Raman

transitions respectively, are obeyed. The Hougen scheme requires

selection rules in terms of the full molecular group, and nuclear

statistical weights are associated only with a rotational subgroup

species Instead of the full molecular group species.
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(II-3) Vibrational Functions.

The purely vibrational Hamiltonian is

[-0] ^'^/^l^(t*u,l^)

where Q, is the normal co-ordinate (assumed expressed in terms of

mass-weighted Cartesian displacement coordinates) corresponding

to the mode v, , and P is the momentum conjugate to Q . For

molecules of axial symmetry we may have non-degenerate or doubly

degenerate modes.

The non-degenerate modes have the usual "simple harmonic

oscillator" form and the following eigenvalue equation

[11] H^iViv;>= ft[2:r(vr+i/2)w^]n^iv^>*

where H^ = I/sS^CpJ + u,^qJ)

Note that "r" runs over all non-degenerate co-ordinates;
| v ^ is

the eigenfunction corresponding to the normal co-ordinates Q and

V is the vibrational quantum number.

Considering only one non-degenerate mode, "r" say, we define

the operator

[12] R^ =Jl7^(P^ * iw^Q^)

and following standard methods (Dicke and Wittke, Chapter 6) we

obtain the following results:

For (cm ) units we divide vibrational energy by he and so replace

h(i) by V (cm ) H u /2irc.
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[13a] Iv^>= l//(ftw^)"^v^I R^^ 10>

[13b] V'^i> = /l^ui,(v^+iy Iv^+1>

[13c] R^-l v^> = /^iw^v^ Iv^-1>

[13d] H^lv^> = (v^+l/2)fiw^|v^>

[I3e] |0>= (w^Afi)'exp(-WrQ^/2^^)

[I3f] Q^ =(-i/(/?(o))(R^^ - R^-)

These provide a sufficiently detailed description of the non-degenerate

functions.

The doubly degenerate modes result from two normal co-ordinates

which give rise to the same vibrational energy. If we label the two

components of the s degenerate mode as (X , Y ) and their conjugate
S 5

momenta as (P , P ) respectively, we obtain the following Hamiltonian.
s 's

[U] 5 =(1/2)(P^ +P^ ) +(1/^!(X^ + YJ)
2 2 2 _2

s s

We define the operator R as follows
s

[15] Rg a Rjj Sjj + Ry S.Y
s s s s

where R^^ .(i/ZSKp^ +i%Xg) ; R^ ^//^Py +i<*^Yg)



^.^
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From R and R we construct the following operators
^8 ^s

[l6a] R + = R^ +iRy J Rg_ = R^ -iRy
s s s s

[l6b] Z± = X iiY P± = P^ ilP^"--"sss sXY
s s

Since (X , Y ) are first order Coriolis coupled, the particles
s s

will describe an elliptical path about the equilibrium position

in the X , Y plane, loosely speaking. Thus the particles motion

will create angular momentum normal to this plane. We shall

define L as the operator pertaining to the angular momentum,
s

[17] L^ = xjy - Y3PX
s s s

and we shall use J! to represent the eigenvalue pertaining to L

s

Thus for degenerate modes we have functions jv
, )[ ^ » where

V is the composite vibrational quantum number, and
JJ

is the

vibrational angular momentum quantum number. These functions can

be expressed in terms of the previously given operators as follows.

[18a] |v^4> = C^
J
(R3.)^^s-4)/2 (^ )(v^^4)/2

^^^^y
s s

where . .-, . _

[18b] C^ « 'f i2i^/l)^^^r^*i^)/2}^lfy^^l^)/2]l]
8 S V "^

[I8c] 9 » -v^. -(v -2), t^ or
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For this choice of functions and operators, we have the

following results.

[19a] H3|v^a^> = (V3+I )fiC0jv^,P^

[19b] H^ = R+-R^- 1 wjL^ T ft)

s

As a result of the conmutation of H and L ,i.e. [H,L ]=0,
s Z s Z

s s
we also have the following result

3

For the operators f ± and Z ± we obtain the following results.
s s

[21a] Z± lv^,i^>=fi//7cuj[ (v^i|^*2)fi(ujv^+lj^ll>- (V37j^)iia,jv^-1,ni>]

[21b] P3±U^,^> = {1//^ (W2)ftu,^|v^ +l,|^ll> (v^;]!^)^^ |v^-l,Jl^il>]

To complete the discussion of vibrational functions it is

necessary to detail their transformation properties under the

symmetry operations of the point groups concerned. In the case of

the non-degenerate modes we are concerned with one dimensional

representations and a detailed discussion would be superfluous.



\ -,
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In the case of the doubly degenerate modes two fold representa-

tions are involved, requiring a precise definition of how one's

co-ordinates are chosen to transform.

We shall refer to G„ = C„ or S„ as the "Main generating
N N N o o

Element" of the point group. The co-ordinates (X , Y ) are a
s s
t , t

pair of normal co-ordinates corresponding to the s normal

mode which span the degenerate species E . This pair of

co-ordinates is defined to transform in the following manner under G
N'

, I

—

[22] G [Z +,Z -] - [Z +,Z -] e-"^

it^
B = zir/s

and it may also be shown that ( P +, P -\ transform in the iden-

tlcal manner. Then from the previously given relations between

Z ± and R ± we see that R ± also transforms in this

fashion. That is, G^ R ± -• e*^''^®Rg± from which we obtain

immediately

for the degenerate mode of species E .

* / VNote:(Xj 1 y^
jactually transform into linear combinations of

one another, but Z was defined so that the effect of G would
s N

Involve only the multiplication of the latter by an exponential

phase factor.
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To complete the transformation details, it remains to specify

the effects of two fold axes of rotation and reflection planes. This

result is given in the equation below.

Izkl g [X iiY ] -* [X TiY ]

where we use g„ = C ^ C„ for all groups except C, in which case,
2 V 2a Nv

due to absence of C^ axes, we use g = a s (j(ac^ as the

defining operation. The adoption of these conventions determines

the orientation of [X , Y ] in the a,b plane. Also, if we
^t ^t

further require the characters of non-degenerate A and B types to

be +1 or -1 according as 1 or 2 subscripts are involved, we

uniquely determine the labels of these non-degenerate types .

As listed in Wilson, Decius and Cross for example.
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(II-4) The Hamiltonian

Expanding the Hamiltonian we may write

[25a] H = ^^^ . H^^ . Hj^^ . 5;^^

where

[25c] 5^3 = (l/2)[2,(p2^^Qj) . 23(P^^.P?^. %(^s*^))]

[25d] hJ^j^ = -J^I^/ I^

ii± = iia - ^

As previously stated the «„ Cn = a.^.c') represent vibrational

(Internal) angular momentum, given by

[26] Tl^ = -2:^^:,S°^i Qi\ „ ^ a.b,c

where k,l run over all normal co-ordinates. The constant C

is called a coriolis coupling constant and is of primary importance

in this study. It is related to the orthogonal transformation from

the mass-weighted cartesian displacement co-ordinates, q , to

normal co-ordinates, Q^^. The actual relation is as follows.
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_____ -abc taken in cyclic order

molecule

where b(Qk.Qi)/b(q^j^,q^^) =

from which it is readily seen that

^k,l = -^?,k ^^
^?.l = °

Each Q^ contains the four distinct types of terms given

below

[28] (i) q (X^P^ - Yj^ ) = 5° ,y r,
s' s s s s s s

(ii) C^ ^.(Q P
, - Q^.P^)

r,r' rr' r' r'

(iii) C! V (X«»Pv - Y Pv )'X ,-Y ^ s
s' * s

s X

<^-) C,X (Qr^X - ^s^r)

(v) C,^Y (Q^Py - Y3P^)
s s

The effect of each of the different types of terms is outlined

below in point form.

Type (1) Couple the two components of a degenerate mode.

Type (ii) Couple two non-degenerate modes.

Type (iii) Couple one component of a degenerate mode to one

component of another degenerate mode.
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Types (iv) and (v) Couple a non-degenerate mode to one component

of a degenerate mode.

The molecular interactions considered will determine which terms

may be neglected, in any given application. That is, one only

considers those terms for which a measurable effect is expected.

Clearly, for degenerate modes type (i) terms are always to be

considered; this is simply the first order Coriolis effect that

is typically seen in perpendicular absorption bands.

Using the relation [26] for fi^ , symmetry operations

may be applied to both sides of this equation. By comparing

like terms on both sides of the transformed equation, one may

obtain restrictions on the 5^,1 constants, based purely on

symmetry arguments. The results tabulated below pertain to C
N
V

and D type point groups where coupling between A or A to E

type modes is considered.

Table I

Restrictions on
?ii,i

A,(Dj^) and A^Cc^^^)
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By this means (symmetry restrictions) many terms in Xl>^

may be omitted or combined with others to obtain a much simpler

expression.

For coupling a non-degenerate mode with a degenerate

component it is required to retain terms of types (i) and (iv) in

the expansion of Q^ . Thus we have the following results

[29a] 4 = 2r,s^^l,Y («A "Vr' * ^r.X («A "Vr)]
s s ' s s

[«b] 15^ , 2..,[Cr,Y <5A -Vr) * ^.X <VX -^A)]
s s * s s

[29c] ^ = I^a^ (x/y -Y^P^ ) ^ ^x ,Y 4 ]

s's s s s'ss

[29d] fi, = J^ 1 lfl^= ^r.sK.X * i^r.Y ''Vs ' V»)2

These results are general for A and A to E interactions for both

Cj, and D symmetries. For specific cases, the above expressions
V

may be simplified further by reference to the preceeding table.

For our choice of basis set we note that

[30] jyi^iv^njv^j!^) = nj v^> ujijv,^.)

s' s

from which It readily follows that
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s* s

This is the first order Coriolis effect present in all degenerate

modes of axially symmetric molecules.

It is now seen that the terms in H with a "o" superscript

give a diagonal contribution. Thus we could write H = H° + H

where H°= H^qT + H^IB + H^ and H'= (J+«_ + J.ii+)/21^

It is this latter term 3 which results in what is commonly

referred to as X-Y Coriolis coupling. The terms ^^^210

and (iJg + u^)/21^ have been neglected, for reasons more readily

understood after their effect has been explained.

We shall consider molecules in which there is a non-degenerate

mode "r" of species A^^ or A , nearly degenerate with a doubly

degenerate mode "s" of species E . These two modes are in fact the

only ones we shall account for; all others are assumed to be in a

totally symmetric ground state supplying a constant (ignorable)

energy. Further only single excitations, i.e. v = 1, v =0
' r ' s

or v " 0, V =1 (fundamentals),of these modes are considered.

This means that we may reduce the product wavefunction

"r lyr> "s K. ia> to \\> \\ ' ^) ^"'^ consider





21

interactions only between the following functions,

(i) |1>\0.0>

[32] (ii) iO>ll,+ 1> )
^ _^ ^

) lo>liii>
(iii) lo>ii.-i>

where (1) is the non-degenerate fundamental and (il) and (iii) the

two components of the degenerate fundamental.

The effect of the neglected terms (J^| +j?§)/21b and ^ipllc

will now be detailed. The term (JT|+n§)/2Ibmay be written in terms

of n+ as below.

[33] ( f^ + I?y2Ib= lAlb^^4^- * MJ

The ^± can be expressed in terms of ^r-» ^s- and ^s- for

which the effect on the (^i^l^s'ls^ functions is known. Using

this it may be found that this term creates matrix elements between

l^iT^l^s»'s) ^^'^ the following functions.

(i) l'^r>^%0 ) Diagonal

[3^] (ii) \v^l2>lv^S^> \

(iii) |v^>lv^i2.l^> )

(iv) I v^l2>\v^l2,K>

r ' s s

Overtones

. , Combinations
|vl2>|vT2,l>S
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Type (i) terms are the only terms of possible Interest here since

the combinations and overtones will be well removed from the

degeneracy considered. The approximate value of the matrix

element obtained for term (i) is given below, for A,*-» E of C
1 N

V

[35a] iAi^<o|<i.iil(n,n. +nn,)lo>li,ii>

= -2.5 Bj.(C^ Y
)2 (cm-1)

* s

[35b] iAi^<iKo,oj iaji^ +^.rijii>iop>

= -2.8 B„ iCl Y f (cn.-^
* s

Thus (I5| + ni)/C2Ib) has the effect of shifting the entire

degenerate and non-degenerate bands in the same direction by

slightly differing amounts. This effect is not felt of real

significance and has been neglected. The term Ti^/21c

will have the following effect for the terms retained in fj^

[36] <-J<-ds\^\/2ijv>\.^.i^y

- A (CJ Y is)^ (cm-')*
S* S

« if V =0
s

This term corresponds to the term l^ l^^ g^^ f ^ l^ in the

vibrational energy formula given in Herzberg, vol. II, pp. 210,
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This again represents a small shift in the degenerate band-origin

and shall be ignored.

It remains to determine the non-diagonal matrix elements

arising from H . We first note that levels corresponding to

|J,K) and | J,-K^ » ^ " 1^1 7 ^^^ degenerate (usual k degeneracy)

and define the following new functions.

[37a] UKk.p> =yT7? ^|o,1*^ J.K> +p |o,i-S j,-k)^ K^O,prl

[37b] )-J^,K,p) :zJT7i ^|0,1"S J,K>+p }o,i*S J,-K>Jk> 0,p5i

[37c]
I
K,p> =yT7a ^(l,0;J,K> +p fl,0; J,-.K>3 K>0,p=l

[37d] lo,p) =|l,0; J,0) K = , ps+ only

D

Where ) v^, v^^; J,K> = 'v^>lv^j[> |j;k>

Note that we will refer to the K=0 function in [37a]

as |-£.,0,p> rather than as |+£,0,p> (see for example Table II).

The above results apply for A^** E coupling and A. •*-• E coupling in

C and D symmetry types, respectively. For A -» E and A -» E

V
coupling in C., and D., symmetries respectively- Ihe last two

N N '

V
functions should be multiplied by (-i) so that real and positive

matrix elements result.

It is in terms of these new functions that we obtain the

following energy matrices for the complete Hamiltonian, H=H +H
,

where off diagonal terms are due to H :
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Note that the two matrices for K = 1 are different, since p multiplies

the indicated off-diagonal matrix elements. However, the same results

for intensities and energies are obtained if we ignore this exception.

For clarity in the following discussion, note that K' will

refer to the K value of the non-degenerate mode in the

energy matrix. Thus 0$K'<J'+1.

It may be noted that for the basis set making up the eigen-

vectors that JiK and for K = we define the special function |0,+>.

Thus K' = is a special case for which the 3x3 reduces to a 1 x 1

or a 2 X 2, according as the p H + or p e - combinations are consid-

ered. As a result the p = + and p = - combination matrices for

K' = must be independently created and diagonalized. It is clear

that the 1x1 result requires no diagonalization and represents a

state that is unperturbed by this interaction.
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Chapter III

INFRARED AND RAMAN INTENSITY THEORY

(III-l) Introduction

To facilitate the calculation of the transition moments

(matrix elements) we shall define the following functions,

[37'J|A,E;J',K',p'> = a,i-J(,K'-1,p'>+a^|K',-p'>+a^| + ^K' + 1,p'>

where Ja,E;J' ,K',p'^ is the upper (final) state eigenvector

and |J,K,pS the lower (initial) state assumed to be in its

totally symmetric vibrational ground state. The coefficients a , a ,- o

a are obtained along with corresponding eigenvalues from the

diagonalization of the previously described energy matrix for J' and

K' where 5K'i J' + 1

For the integrals < A,E; J' ,K' ,p' 1 y I
J,K,p^ and

^A,E;J' ,K' ,p' |a
I
J,K,p^ for infrared and Raman respectively, one

may obtain frequencies and relative intensities. The frequency

shifts are simply the difference between the final state eigenvalue

and initial state rotational energy. The relative intensities for

Raman and infrared transitions may be obtained from the following

expression.

[38] I - (Frequency Factor) (2J+1)
gj^ | Mj'^'^o'^

I

^ g-F^(J,K)/kT

(Frequency Factor) - Av for infrared; (vg-Av)** for Raman.

Note - J' 1 k' are the rotational quantum numbers of Che final
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state eigenvector.

- J, K are the rotational quantum numbers of the initial

state.

- (2J+1) is a space fixed degeneracy factor from the space

fixed M quantum number.

- g is a nuclear spin degeneracy factor more usually

referred to as the nuclear statistical weight. This

number is calculated by the methods outlined in Landau

and Lifshitz.

- F (J,K) is the rotational energy of the initial state;

it appears in the usual Boltzman factor for population

of the lower state.

- Av is the difference in energy between the initial state

and final state eigenvector.

- Vg is the frequency of the exciting line in the case of

Raman scattering.

j' k' 1
- M * ' is the infrared or Raman transition moment as

J y Ky U

the case may be.

Since "Rigid Rotor" functions were used as an initial basis set, the

J* k' 1
Mj ' -• may be expressed in terms of the well known transition

moments of these functions. How these transition moments are obtained

for both the infrared and Raman cases is given in following sections.
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(III-2) Infrared Transition moments.

We evaluate <A,E; J' ,K' ,p'

j

y | J,K,p)
, noting that only one

component y of the space fixed dipole moment operator p need be con-

sidered for random systems. By convention we choose to consider U2»

and find that V^ is related to its molecule fixed counterparts as

follows.

Considering the molecule fixed spherical combinations yo = P^ and

^±1 = (l/)^) (iJ^tiPb) we write,

C^O] ^2 = X^F./r ; r = 0. il

where the F_j. are appropriate linear combinations of the i^a (°'~^»^>'^)

The i^a contain a dependence on the magnetic quantum number m, via

the in ^Za • This m dependence when averaged over all m

values, leads to well-known results for the individual basis

functions

[^1] <V|z^f_/j-^> = 2:,<<1 PJK> <'^'K'l ^-^U»K>

where f_r is referred to as a reduced operator whose matrix

elements are conveniently presented in Table V of Lepard (1970)

.

Using these results we collect all terms in <A,E; J' ,K' ,p' |y I J,K,p^

to obtain transition moments, following the next discussion on

vibrational moments.

Vibrational moments .

The dipole moment may be expanded In a Taylor series of

the normal co-ordinates about the equilibrium position





30

[42] ie >^a(Qi---V-6)=^a)e-^f!:^(^a/^\)e^k *

fl = a,b,c

where the first term represents pure rotation, (i.e. no vibrational

transition) not of interest in this application, and the second

term only is retained.

That is,

3N-6/. ,T
C'^3] /'a^ ^ir.fbhx/b^)^'^^

When we treat degenerate and non-degenerate co-ordinates independently

the above equation becomes!

r - runs over all non degenerate modes,

s - runs over all degenerate modes,

and Q^, X^, Y^ are the co-ordinates defined in the description of

the vibrational functions, and transform as previously detailed.

Noting that ^^ transforms as "^ we may apply symmetry

considerations to obtain the following results



I~ .^? \
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Since we consider only one degenerate and one non degenerate mode

labelled r and s, respectively, we reduce the above to the following

[i.6a] F^ = (b/I,/bQ^)^Q^

[46b] /T,, =(l/J^b/J^/bX3)3Z,,

Note that both Q and Z ± give rise to purely imaginary matrix

elements.

The vibrational functions that we shall consider in the

final state are ^0|<i,±ll and <1|<0,0) , and all non-zero

vibrational transition matrix elements between these and the

initial state l0^|0,0) are given in table IV below.

Table IV
Infrared Vibrational Matrix Elements

^\^nal state



/
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Here Vj. and \) are in cm , Note that the results for the

matrix elements of Q and Z were previously given, and therefore

y ,. and )ij_ are completely determined by specifying values, from

experimental spectra, for the derivatives

Using these results we obtain the transition matrix elements

<A,E;J',K',p'jp |J,K,p) given in Table V.

As previously remarked, the intensity factors

in Table V have been previously tabulated by Lepard (1970). The

transition matrix elements are tabulated for individual basis

functions and hence one must sum these results tabulated for all

allowed eigenvector basis functions. That is

where Mj ^ n is now the total transition moment.

It should also be noted that both y and yj_ are purely

imaginary, but since the intensity involves the modulus squared

it is necessary only that moments be either all imaginary or all

real.
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(III-3) Raman Moments

It is necessary to evaluate <A,E; J' ,K' ,p (o<)'J>K,p^ Where's

represents the space fixed polarizability tensor whose significance is

displayed below, in terms of an induced dipole moment "y. and an

electric field E:

[^8] [7^ix»/^iYAz3 = t^^X'^Y'^Z^

a a a
XX XY XZ

a a a
YX YY YZ

a a a
ZX ZY ZZ

That is, we evaluate "induced dipole" matrix elements.

The tensor a may be written as a combination of trace,

anti-symmetric and symmetric components of rank R = 0,1,2, respectively.

[49] ie a.. = I I
-• R=0,l,2 r=0,±]

R —

R

(n, . ) a ; ij = x,y or z
ij r r -^

''

,2 r=0,±l..±R

where the n's are numerical factors. Note that R=0 and 2 represent

isotropic and anisotropic scattering respectively and that we primarily

consider the latter. Analagous to the infrared case we consider

spherical components of the space fixed dipole, related to the molecule

fixed spherical components via the Euler angle transformation. As in

the Infrared case we obtain a dependence on the magnetic quantum

number "m" which must be averaged. When this has been done we again

obtain well known results in terms of the individual basis functions, j

i:50]|<^'|«ijhl^>l^= 2r(c«j42R.i))|(2:,<^;| a^|>I;><JSK.|g|j.i^|2'

?R

i,j . X,Y,Z

where T-^ is a reduced operator containing the averaged "m" depen-

dence. The matrix elements of f5j. are presented in convenient

In this and all following such expressions the electric field is omitted.
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form in Table VI (Lepard 1970). It is evident that intensity contri-

butions for different ranks are additive. This is a result of the

fact that when the averaging over "m" is performed, cross terms

between different ranks vanish. It may also be thought of as a

result of the orthogonality of the a^ , R « 0,1 and 2 , which

are isomorphous to the spherical harmonics for L = 0, 1 and 2.

Since Raman is a scattering effect, the direction and polar-

ization of the incident and scattered radiation are of significance.

That is, different intensities of the scattered radiation may be

obtained by manipulating these parameters. The case that is con-

sidered herein corresponds to radiation polarized in the Z direction,

incident in the X direction and the X polarization component of

radiation scattered in the Y direction is viewed. For this case

we obtain using Table III (Lepard 1970)

[51] I,=l2x=('e-*')'*e^(2''*')«-''°^''''( ^=<'')

where I is the relative intensity and

G?"(R,0,1,2) =|2/>i';la^|^^><J',K.|F_^lJ,K>|2

As a result we need not consider isotropic (trace) scattering, X - I t

although moments for these transitions will be separately presented.

Note that the Intensity formula for the other polarization, I „ 1

is as above except that (1/10)^' must be replaced by d^}3 + (^^2/15)
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Vibrational Moments

Analogous to infrared we write

[52] a« = (a«), -2^^T'ft-5>5^)e5k *

and following identical procedures (i.e. grouping co-ordinates as

degenerate and non-degenerate) and applying synmetry considerations

we obtain the following results;

[53a] al =^l372'(b5^^/bQ^)^ - ;T76'(bT/bQ^)^^Q^

where T = a + a,, + a is the Trace, and this term exists
aa bb cc '

only if Q is of totally symmetric species,

[53b] a% = (^a,,/bxJJ^^fo. €3^

[53c] 0^2 = -(^a^fe/bYjJ^,forC3^ or D3
.

[53d] Note also 5° = (l / J5XbT/bQ^)^Q^

for Q of totally symmetric species only.

Note that In the above expressions the ^r

are as defined by (Lepard 1970). All non-zero vibrational transition

matrix elements are given in Table VI below.
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•f a

Using the wavefunctions in eqs [37] the results in

Table VI yield

+ Sfa^l <J'.K'+liF_2|J.K> + oj <J',K'+l|FjlJ,K)j

where theo<'s are parameters that may be assigned values through a

comparison of observed with calculated spectra, although in principle

they may be calculated by evaluating the derivatives in Table VI;

the various cases for K', not necessarily equal to K, are given

in Tables VII and VIII for R=2 and Table IX for R=0 (isotropic

scattering.

These tables contain all non-zero transition matrix elements

for both the symmetric component and trace of the scattering tensor.

The matrix elements are given for individual basis functions, and

hence one must sum the matrix elements given for all the allowed

eigenvector basis functions. That is

Tl
Jf

» 1

where M|J ^'^ * is the total transition moment.
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Chapter IV

COMPUTATIONAL DETAILS

(IV-1) Introduction

The computations in this work are involved with the generation

of simulated molecular spectra which may be confidently compared with

their experimental counterparts. Due to the large number of trans-

itions that must be calculated this is most easily done using a

digital computer.

An algorithm was written to compute these simulated spectra.

"The two main functions of this algorithm are detailed below.

(i) A table of relative intensity is created and stored internally

in the computer as an array.

(li) Once the intensity table has been created it is transformed in

such a way as to supply a final spectra to be compared with exper-

iment. It is this portion of the algorithm which is most critical

if meaningful results are to be obtained. This section of the

algorithm is composed of the following subsections.

(a) Line Broadening.

(b) Conversion to Absorption (Infrared).

(c) Slit convolution.

(d) Photographic or Photoelectric response.

Each component of the algorithm will now be presented in

greater detail so that their purpose and significance will be

clarified.
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(IV-2) Algorithm Details,

(i) Line intensity Table:

This table is generated by sequentially choosing each possible

J , K pair of the non-degenerate component of the final state. For

each J , K pair the final state energy matrix is created and diagon-

alized, then all (Raman or infrared) transitions involving this final

state eigenvector are obtained for all allowed initial states. For

each such transition a frequency and relative intensity are calculated

using previously given formulae. These relative intensities are

accumulated into segments of a linear array according to their

frequency. This process continues until the Boltzman factor becomes

so small that any remaining transitions would have no noticeable

cummulative effect on the computed spectrua.

The relative intensity table that has been calculated is a

line spectrum. Each theoretical intensity, like their Euclidean

counterparts, have length but no breadth. In practice each line is

spread over some "statistical" frequency distribution. This effect,

often referred to as line broadening (discussed by Michelson (1895)

and later in greater detail by Breene (1964)) is assumed to have

at least four causes. re«ne

(i) Radiation damping (natural line breadth).

(ii) Doppler Effect.

(ill) Resonance between near molecules.

(iv) Pressure broadening.
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In the present application pressure broadening is the dominant

effect, but for the low pressures concerned it was decided unnecessary

to include this effect. This choice was primarily a result of the

fact that we calculate frequencies to 0.05 cm intervals, and the

half width of pressure broadening is probably less than this.

Conversion to Absorption (Infrared)

In the case of infrared spectra it is usually necessary to

convert one's relative intensities to absorption. This is done in

our case by applying the following transformation to the contents

of every array segment.

[56] A^ = 100(1 - exp(-S^ X N))

- S is the accumulated theoretical intensity in the i

array segment.

- N is a scale factor chosen so that when the final spectra

is output one of the computed peaks matches the absorption of its

experimental counterpart.

- A is the calculated absorption which replaces S. in the

^th
i array segment.

Slit Convolution or Broadening.

To properly handle this problem, one must determine the type

of experimental detection concerned so that one may choose a proper

slit convolution.

In our case the infrared spectra were obtained using a
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Perkin Elmer #225 grating infrared spectra photometer. For this

apparatus a Gaussian slit convolution was felt justifiable. The

width at half height of this Gaussian is equal to the "spectral

slit width" of the exit slit.

The diagram below depicts the relation between the "spectral

slit width" and the Gaussian.

spectral slit width

'Gaussian

Fig. 2: Relation between Spectral Slit Width and Gaussian.

Actually several types of slit functions such as triangular,

Lorentz and square were tried with similar results, but the Gaussian

gave the best overall match with experiment.

It is necessary to mention that the spatial width of each

frequency component is sufficient to fully illuminate the exit

silt, since the entrance slit which was fully illuminated has a

width equal or somewhat greater than that of the exit slit.

In the case of infrared, prior to broadening, the scale

factor N previously mentioned is determined. To obtain a value

of N a small section of the spectrum (peak), is selected by two

input frequency boundaries. The scale factor N is calculated so

that the final broadened spectra will have the peak absorption





46

in this region match that of the experimental result. To do this

a starting value N for N is obtained by forcing the maximum
s

in this range to match the experimental maximum absorption A
m

[57a] ie A^ = (l - exp(-S^ N^

)

min

C57b] /. Ng . -[log^(l - A^)]/S^
mxn

Then this small region of the spectrum is converted to

absorption and broadened to see if upon broadening the peak absorp-

tion is A . If it is not N is increased or decreased incrementally
m ^

according as the peak height was less or greater than A . With
m

this new value of N the conversion to absorption and broadening

are repeated. The peak height is again compared to A ; if required

N is again incremented. This process is continued in an iterative

fashion until the peak calculated absorption is sufficiently close

to A . Once this is completed the final spectrum is converted to

absorption and broadened.

Photographic or Photoelectric response.

If the experimental spectra are photographically recorded

it would be necessary to apply a logarithmic conversion to the

broadened spectra. This is necessary to account for the response

of the photographic emulsion. In our case we assume photoelectric

detection for both infrared and Raman. As a result of this no

further transformation need be applied to the infrared, and the

Raman intensities need only be scaled between and 100.
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(IV-3) Criteria for good comparison between experimental and

simulated spectra.

(i) Since the simulation uses a Beers Law type calculation to

convert to absorption one must not attempt to compare experimental

and computed results where this law does not hold. In practice

what this has meant is that the experimentalist should adjust

pressure-path length so as to bring the structure of interest

between 20-40% absorption. If there are peaks much higher than

this then they cannot be reliably compared to calculated results.

It is thus clear that the peak chosen for scaling is to be in

this range.

(ii) Scan Speed; This is of critical importance as peak heights

can be completely changed if the scan is too fast. It goes

without saying that the theoretical spectrur»d.s to be compared

with an experimental spectrum that was scanned infinitely slowly.

In practice this means the scan speed is to be reduced until

the spectrum no longer changes with speed reduction. This is to

be done with particular regard for peak heights and valley depths.

As an example, the experimental infrared spectra presented in

this work represent a scan time of approximately eight hours.

(ili) Machine Parameters: It also is obvious that a complete

knowledge of all control parameters is critical, since a

completely false record may be obtained by Improper control settings,
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Thus to allow comparison of the computed spectra with other

computed or experimental results, certain facts are essen-

tial. Some examples are slit convolution, spectral slit width,

absorption scale, and scan time if applicable. In the latter

where photographic recording is used, scan time does not apply,

but the emulsion calibration should be given. Without these

basic facts any comparison is not practical and probably meaning-

less.
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Chapter V

RESULTS

The results are in the form of a series of diagrams, each

containing two spectra. Diagrams 1 and 2, for CH F, are infrared

results; the upper spectrum is experimental and the lower a simu-

lation of the same region. The remaining diagrams represent

spectra simulated for CD-Cl. In each diagram the upper assumes

no Coriolis coupling and the lower includes this effect.

Each diagram is preceded by a covering page which is a

computer print-out of the constants employed. To aid in the

interpretation of this print-out, comments are given below.

(i) The parallel and perpendicular moments represent UiiJ>^

and^j[^Ji^respectively, as defined in Table IV.

(11) In the Infrared case a band centre, v^,, is selected

near the centre of the region of investigation.

This is used as a scale factor so that the frequency

dependence of infrared intensities is given by Av/v

rather than Av, where Av is the transition frequency.

(ill) The frequency in cm~^ of the Raman exciting line Vg

is given. This is used as a scale factor so that the

frequency dependence of Raman intensities Is given by

(Ve-Av)'*/Vg'* rather than (v^-Av)**.

(Iv) A lower frequency limit in cm~^ is given and represents

the lower limit of the calculated spectra.

(v) The frequency step indicates the separation In cm~^

of adjacent calculated points in the simulated spectrum.



,1:^:^')'-iil

!.^ h'.tnt.
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/^
Note that although all calculations are done with this

separation, the final result is plotted in increments

(.005") of twice this value due to plotter limitations.

(vl) The variables ISO, ALPHA02, ALPHA12 and ALPHA22 represent

ag, a^, a^ and o^ as defined in Table VI.

(vii) The type of broadening curve applied and the full width

at half height of the curve are given.

(viii) The final four statements refer to the J' and (K'+l)

values to which the calculation was done, and the

largest accumulated value in the unbroadened relative

probability spectra (stick spectra). In the case of

an infrared simulation the number of transitions in

the spectra are given.
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Chapter VI

CONCLUSIONS

Each pair of Raman spectra demonstrate dramatic effects due

to the Cor±)lis coupling. In order to fully study this effect a

combined investigation of experimental and computed spectra would

be of great interest.

The infrared work clearly demonstrates the need to publish

all parameters referring to both experimental and simulated spectra.

Otherwise, reproduction of such spectra by others would be greatly

impeded.
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Appendix I

I - DOUBLING

As an Illustration of the complex nature of assigning

statistical weights to transitions the following example of

i - doubling is cited.

For K' = it was stated in ( II-4) and illustrated in

Table III that the standard 3x3 matrix reduces to a Inland a 2a2,

The 1x1 corresponds to the ushifted |+1,1,+^ state smd the 2x2

to the interacting
I 0,+> and )+l,l,-^ states. A diagramatic

representation of the effect the coupling has in this case is

given below along with the infrared Ak»+1,K=0 and the Raman

AK»-2,K=3 transitions.

*- '-/ C ^ !<) !>->•> ^

/ \ \

A,
/
'

^ '

' \

\

\

K= o K = 3

Npte that the coupling interaction splits the |+l,l,-> state

from the |+1,1,+^ state and the non-degenerate 10,+^ state is

is shifted in the opposite direction. As a result of the doubling

of the
I
+1,1,+^ and j+1,1,-) states it is necessary to investigate

any possible transitions to these states to be assured that the

proper statistical weight is assigned to each such transition.

la actual fact the K—2,K-3 Raman transition should have only

half the normal weight assigned .
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