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Abstract

A preliminary genetic analysis was carried out on 14 mutants

of Saccharomyces cerevisiae resistant to respiratory repression induced

by D(+) glucosamine. One mutant strain (GR133) carried a nuclear mutation

(designated gay-1 ) conferring glucosamine resistance. Five strains

(GR7, GR62, GR120, GR124 and GR125) were either sterile or carried

conditional lethality precluding further genetic analysis. The

remaining group of mutants (GR5, GR6, GR8, GR9, GR10, GR22,

GR112 and GR127) were found to carry one or more cytoplasmic G determ-

inants .

Detailed investigation of GRlOand GR6 derivatives demonstrated that:

p
1. G can be reduced or eliminated by ethidium bromide (EB) treatment.

2. G can be quantitatively enriched in glucosamine containing medium.

p^
3. a cross between a G enriched GR10 derivative and a neutral EB

induced petite displayed phenotypic G dominance.

4. GR6 and GR10 derivatives were sensitive to oligomycin, erythromycin

and chloramphenicol

.

5. stock strains resistant to these drugs were glucosamine sensitive.

These observations 1 —>5 suggest that GR10 and probably GR6 carry novel

mutation (s) located on mitochondrial DNA. The locus of GR10 was

designated [CAT-1]

.





- 3 -

Acknowledgments

I would like to thank Dr. A. J. S. Ball for whenever possible,

guiding this work, rather than leading it. The resultant contribution

to my problem solving skills has already proven invaluable.

I would also like to thank my wife Kathryn for constant

encouragement and Mary Butryn for her patience and industry in

typing this manuscript.





- 4 -

Table of Contents _
Page

Introduction 9

Chapter 1, Review of the Literature

A. The Crabtree Effect: Respiratory 11

Catabolite Repression

B. Glucose Repression in Yeast 15

C. The Life Cycle and Genetics of Yeast 18

D. Nuclear Mutations Affecting Mitochondrial 21
Functions

E. Mitochondrial Genetics 22

Chapter 2, Materials and Methods 32

Chapter 3, Results

Phase I, Preliminary Screening 38

Complementation Testing 38

p_
Vegetative Segregation of G 39

Tetrad Analysis 50

Stability of Cytoplasmic G 52

Vegetative Segregation in a 4:0, R:S Ascus. 52

Phase II, Detailed Analysis

A. Linkage Study of Nuclear Mutant GR133 57

B. Cytoplasmic Glucosamine Resistance 57

Chapter 4, Discussion

Glucosamine Resistance in the Context of the Crabtree 70
Effect

Preliminary Analysis of Mutants 72

Inheritance of Cytoplasmic G 76

Location of G in GR10 82

'Location of G in GR6 85





- 5 -

Chapter 4 (continued) Page

The Mendelian Locus gay- 1 88

Status of G in the Balance of the Mutants 89

Literature Cited 91

Appendix I (a) Linkage Map of Saccharomyc e

s

101

(b) Linkage map of Saccharomyces showing
markers carried by aLl

Appendix II Proposed mitochondrial gene maps 104





- 6 -

List of Tables

Title Page

Table I Vegetative segregation of resistance 45

in 4B2 derivatives and respctive diploids.

Table II Vegetative segregation of resistance in 4BL

derivatives and respective diploids.

46

Table III Tetrad analysis 51

Table IV Linkage study of 133F2/aLl tetrads. 58

Table V Tetrad analysis of GR10 derivatives. 64

Table VI Tetrad analysis of GR6 derivatives. 69





- 7 -

List of Illustrations

(Figures and Plates)

Title Page

Figure 1 Possible sites of mutations conferring glucosamine 16 a

resistance

Figure 2 The life cycle of Saccharomyces cerevisiae 20

Figure 3 The flow of information for mitochondrial structures 30

Figure 4 Complementation Pattern 43

Figure 5 Vegetative segregation of glucosamine resistance in 49
a resistant and a sensitive colony of 6/4BL

Figure 6 Stability of glucosamine resistance during storage 54

Figure 7 Vegetative segregation of spore lines from a 4:0, R:S 56
ascus of 8/4BL

Figure 8 Vegetative segregation of glucosamine resistance in 62

GR10 and its derivatives

Figure 9 Vegetative segregation of glucosamine resistance in 67

GR6 and its derivatives

Plate I Growth responses of diploids to YPG and GGM medium 41





- 8

Nam et ipsa scientia potestas est.

Knowledge itself is power.

FRANCIS BACON:

from Religious Meditations of Heresies.
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INTRODUCTION

A great deal of interest exists today in mitoch-

ondrial function and biogenesis. The appearance of several

volumes dealing exclusively with this area in recent years

(ERNSTER and DRAHOTA 1969, ROODYN and WILKIE, 1970, MILLER

1970, BOARDMAN SMILLIE and LINNANE 1971, KROONE and SACCONE

1974) bears testimony to the growth of interest in mitoch-

ondrial biogenesis within the past 10-15 years. The task

of elucidating mitochondrial functions has been undertaken

with the tools of biochemistry, molecular biology and genetics

largely with the co-operation of a facultative yeast,

Saccharomyces cerevisiae . Interest has been very strong in

characterization of mitochondrial gene products and in

clarification of the relationship between mitochondrial and

cytosolic protein synthesis (reviewed by SHATZ and MASON 1974)

.

Towards this end, the groups of Slonimski and Linnane

have made great strides in establishing yeast mitochondrial

genetics as a dynamic field and as a probe for the genetic

mechanisms involved in control of mitochondriogenesis. How-

ever, much research still lies ahead before these problems

can be considered solved.
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Most accomplishments to date in the isolation of mitochondrial mutants

have been concerned with "structural" mutations (eg. respiratory chain

lesions) . It is our contention that not until control function mutations

have been isolated and characterized, can an integrated understanding of

the genetic control mechanisms involved in mitochondriogenesis be gained

(much as occurred with the bacterial operon theory, JACOB and MONOD 1961;

PERLMAN, CHEN, DE CROMBRUGGHE, EMMER, GOTTESMAN, VARMUS and PASTAN, 1970)

It was felt that a phenomenon termed the Crabtree effect (also glucose

effect or reverse Pasteur effect, for review see IBSEN 1961) offered the

greatest potential for investigating mitochondrial control phenomena.

The Crabtree effect consists essentially of the repression of mitochondrial

functions (ie. respiration) via the stimulatory effect on fermentation

of excess fermentable substrates (eg. glucose) . The drawback to simple

genetic analysis of this response is its transitory nature (ie. when

glucose is exhausted respiration becomes derepressed (IBSEN 1961) . This

was overcome by the utilization of a gratuitous respiratory repressor,

D (+) glucosamine, which mimics glucose induced catabolic repression

(Crabtree effect, LETANSKY 1968) but irreversibly, allowing the use of

conventional microbiological methods (plating on differential media) for

mutant analysis. Mutants (U.V. induced) resistant to glucosamine-induced

catabolite repression were isolated in the laboratory of Dr. A. J. S. Ball

and preliminary descriptions have been published (ELLIOT and BALL 1973,

ELLIOT and BALL 1974, ERRINGTON and BALL 1974, ELLIOT and BALL 1975)

The present study was undertaken to characterize the inheritance

pattern of selected glucosamine resistant mutants in the hope that this

would give some insight into the probable localization (s) of the molecular

lesion (s) which bestow glucosamine resistance on these isolates.
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CHAPTER ONE

REVIEW OF THE LITERATURE

A. The Crabtree Effect : Respiratory Catabolite Repression

The ability of solid tumors to demonstrate respiratory inhibition

and "higher than normal" glycolytic activity upon addition of glucose

was first described by. CRABTREE (1929) in slices of solid sarcomas and

carcinomas. This phenomenon has been called the Crabtree effect, glucose

effect and reversed or inverted Pasteur effect. Coining of the latter

designation was due to this effect (inhibition of respiration by glycolysis)

being the inverse of the phenomenon described by Pasteur, the inhibition

of glycolysis by respiration under stimulation, called the Pasteur

effect. In addition to many neoplastic cell lines, the Crabtree effect

has been described in a number of cell types derived from normal human

and mammalian tissues (for review see IBSEN 1961) . It was also described

by BELITZER (1936) in the faculatative yeast Saccharomyces cerevisiae .

Belitzer also suggested that competition between glycolysis and respiration

for common intermediates might be the basis of the Crabtree effect.

A theory that did not enjoy much popularity was that the Crabtree

effect was due to a respiration inhibiting decrease in pH due to H+ release

during glycolysis. This was based on the observation that respiration was

pH dependent (TIEDEMAN 1952). EMMELOT and BOS (1959) however, pointed out

that the pH inhibition theory did not explain the ability of a non-glycolysed

glucose analogue, deoxyglucose, to elicit a Crabtree effect in ascites cells.

The theory of BELITZER remained the most popular.

Support for BELITZER' S theory and the suggestion that inorganic

phosphate (Pi) and/or adenine nucleotides were the competed for intermediates

came from the demonstration that uncoupling of phosphorylation from
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oxidation by dinitrophenol (DNP) released the Crabtree effect (LOOMIS

and LIPMAN 1948) . Evidence for Pi involvement also comes from the

demonstration that [Pi] is lowered during glycolysis (ACS and STRAUB 1954,

PACKER 1956, HESS and CHANCE 1959) . Raising the level of Pi in the

medium reduced the Crabtree effect (BRIN and McKEE 1956, WU and RACKER

1959) . Also Pi limitation in reconstituted systems can cause respiratory

inhibition (GATT and RACKER 1959)

.

The importance of ADP limitation in respiratory repression is

indicated by evidence that ADP is present in a low concentration endogenously

prior to glucose addition and remains at an equally low or lower level

after glucose addition (IBSEN, COE and McKEE 1958, LYNEN, 1958, HESS and

CHANCE 1961) . It was also shown that in isolated mitochondria ADP

controls respiration much more effectively than Pi (CHANCE and HESS 1959)

.

The transitory respiratory stimulation observed by CHANCE and HESS

(1956) preceeding repression has been likened to the effect of ADP

addition to ADP limited mitochondria (IBSEN 1961) . All of the above work

both on Pi and ADP limitation was carried out on Ehrlich ascites cells,

a mouse tumor line, perhaps with an eye to deciphering the enhanced

glycolytic abilities of these neoplastic cells. Subsequent to the

excellent review of the Crabtree effect by IBSEN (1961) the interest

of cancer researchers in this area waned.

Recently, due to increased interest in the control of mitochondrio-

genesis, induction and repression of respiration are again enjoying

intense experimental scrutiny. Although recent investigations have

focused on all aspects of repression, starting with hexose transport,

most work has centred around the synthesis and assembly of mitochondrial

structures.
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Some controversy exists as to the mechanisms of glucose transport

in yeast and as to whether or not transport is coupled to metabolism (via

phosphorylation) (for a recent review of sugar transport see JENNINGS 1974)

.

VAN STEVENINCK and ROTHSTEIN (1956) suggested that transport occurs by

two systems, either by a high affinity energized system and/or by facilit-

ated diffusion. Controversy centres around the claim that transport is

coupled to phosphorylation of the sugar (VAN STEVENINCK 1968) . This

contention is based on evidence that glycolytically blocked cells take

up a limited amount of glucose rapidly, but no free glucose can be found

in the cells (VAN STEVENINCK 1969) . Cells fed 2 deoxy-glucose contain

both the deoxysugar and its phosphate. VAN STEVENICK (1968) reported

that the sugar phosphate was a precursor for the free sugar in his

experiments, thus justifying his hypothesis.

The view that phosphorylation is coupled to transport is not held

by CIRILLO (1962) or KOTYK (for review see KOTYK 1973). Rather, Kotyk

and co-workers believe that three monosaccaride transport systems exist

in yeast. One has a broad range, transporting all monosaccharides tested.

The second system is more specific for glucose-like sugars and can

equalize internal and external sugar concentrations (KOTYK 1965, KOTYK 1967)

And the third system operates at low glucose concentrations (0.02 - 2.0

mM) and can concentrate intracellular glucose to 85 times that in the

extracellular environment (KOTYK and MICHALJANICOVA, 1968)

.

Despite the controversy over the transport mechanism (s) the primary

metabolic consequence of sugar transport in yeast is the utilization of

ATP to produce sugar phosphate (see below)

.

Interest in the Crabtree effect in yeast has not been as extensive

as in tumors. The area of greatest interest in yeast cells has been the

Pasteur effect. Over the past forty years interest in the phenomenon has
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sporadically risen and waned several times and the status of the field

over this period may be chronologically learned through the review and

discussion articles that have appeared with regularity (BURK 193 9; LYNEN,

HARTMANN, NETTERand SCHUEGRAF, 1959; KREBS , 1972; RACKER, 1974). RACKER

(1974) points out that the complete basis of the Pasteur phenomenon is

not yet understood. Since ultimately the Pasteur and Crabtree phenomena

must be viewed as reciprocals of each other, areas of experimental under-

standing in the Pasteur effect carry great significance with respect to

the present discussion. Of fundamental significance are the contentions

of LYNEN et al^ (1959) based on their work in yeast:

a. intracellular compartmentation of adenine nucleotides plays a primary

role in regulating reactions generating or utilizing ATP.

b. important cytosolical allosteric enzymes (eg. hexokinase,

phosphofructokinase) are also compartmentalized and physically

removed from each other providing separate glycolytic controls

cross-affected by the state of localized adenine nucleotide pools

(see ascites system above)

.

Since in yeast hexokinase is not inhibited by glucose-6-phosphate and

in muscle ATP does not directly inhibit phosphofructokinase (RAKER 1974)

,

one other condition should be added:

c. local [Pi] can coordinate energy metabolism via allosteric effects:

(i) glyceraldehyde-3-phosphate oxidation

(ii) counteracting ATP inhibition of phosphofructokinase

(iii) counteracting glucose-6-phosphate inhibition of hexokinase

RACKER also lists:

d. citrate as an allosteric feedback inhibitor of phosphofructokinase.

While these control functions (a —> d) are described in the context

of glycolytic limitation in the presence of enhanced respiratory activity
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(Pasteur effect) the very bidirectionality of such controls indicates that

they are probably fundamental to an explanation of the Crabtree effect.

The Crabtree effect, when elicited by the addition of small amounts

of hexose to respiring cells (yeast or mammalian) is a transient phenomenon.

If however, yeast are exposed to excess hexose for a prolonged time, this

inhibition of respiration results in a decreased rate of mitochondriogenesis.

This phenomenon, called glucose repression was first reported by TUSTANOFF

and BARTLEY (1964)

.

B. Glucose Repression in Yeast

Yeast grown at high concentrations (5%) of glucose not only show

inhibition of mitochondrial function (respiration) but lack differentiated

mitochondrial structures (POLAKIS, BARTLEY and MEEK, 1964). This long

lasting (relative to the Crabtree effect) glucose repression is finally

reversed when glucose in the medium becomes depleted (due to fermentation)

and ethanol or acetate utilization begins. At this point mitochondria

appear and levels of tricarboxcylic acid cycle (TCA) and respiratory

enzymes rise (POLAKIS et al^ 1964) . The rate of induction of respiratory

enzymes was shown to be inversely proportional to the glucose concentration

of the medium while other fermentative carbon sources (eg. galactose) were

not as repressive (POLAKIS, BARTLEY and MEEK, 1965). Similar results were

reported by JAYARAMAN, COTMAN, MAHLER and SHARP (1966), and by UTTER, DUELL

and BERNOFSKY (1968) . During repression, [ATP] and [AMP] were high with

[ADP] very low (POLAKIS and BARTLEY 1966 cf. ascites cells, IBSEN 1961).

BALL and TUSTANOFF (1970) showed that high levels of reduced nicotinamide

adenine nucleotide (NADH) were also characteristic of repressed cells which

are unable to transfer reducing equivalents to the respiratory chain. It

was suggested by these authors and by POLAKIS and BARTLEY (1965) that in
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addition to [ATP]/[ADP] [Pi] , pyruvate and acetaldehyde may play a role

in controlling the synthesis of mitochondria.

Glucose repression reverses when glucose is depleted from the

medium (see above) . CHAPMAN and BARTLEY (1968) reported that respiring

yeast placed in 10% glucose underwent a severe respiratory inhibition

and loss of mitochondrial structures which did not reverse since the

substrate (glucose) was not depleted. A very large and extensive body

of literature exists documenting in detail the modification of yeast

mitochondria by glucose repression. The reader is referred to recent

articles by LINNANE and HASLAM (1970) , and PERLMAN and MAHLER (1974)

for further details.

A chain of events leading to respiratory repression may occur as the

following sequence. With the addition of excess hexose (glucose) to the

the growth medium, transport of glucose into the cell is stimulated

(Fig. 1,1). The glucose is phosphorylated via hexokinase (Fig. 1,11)

leading to cytosolic ATP depletion and a concurrent rise in ADP. This

lowered cytosolical ATP/ADP balance stimulates exchange of mitochondrial

ATP (Fig. 1, VI) for cytosolic ADP (Fig. 1, IV) via the mitochondrial

adenine nucleotide shuttle (Fig. 1, V). The influx of ADP into the

mitochondrion may contribute to a transient increase in respiratory

activity due to increased availability of substrates (ADP, Pi) for the

ATPase (Fig. 1,VII) . This may lead to mitochondrial Pi depletion.

As glucose increases the flux of metabolites through pyruvate

kinase and glycerol-3-phosphate dehydrogenase (Fig. 1,111) a depletion

of cytosolic Pi occurs exaggerating mitochondrial Pi depletion. This

would cause severe repression of respiratory activity and perhaps in cases

of extended repression lead to a termination of the synthesis of

mitochondrial structures via as yet undefined mediator (s) (Fig. 1,VIII)
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perhaps related to mitochondrial protein synthesis.

The mutants discussed below are resistant to poisoning by the

glucose analogue D(+) glucosamine. The ability of glucose analogues to

induce respiratory inhibition has been extensively recorded with D(+)

glucosamine and 2 deoxy D-glucose having proven particularly useful due

to their limited utilization via glycolysis (IBSEN, 1961; LETANSKY, 1968;

BIELY, KRATKY and BAUR, 1974; ERRINGTON and BALL, 1974). The non-

transitory nature of respiratory inhibition in the presence of glucosamine

may be due to non-recycling of Pi from glucosamine phosphates which

accumulate or enter other biosynthetic pathways (LETANSKY 1968) , such as

chitin synthesis in yeast (CABIB and KELLER, 1971) . Little or no

glucosamine is metabolized to pyruvate since glucosamine-6-phosphate

cannot act as a substrate for glucose phosphate isomerase (BESSELL and

THOMAS, 1973). No recovery from glucosamine induced respiratory

repression occurs when ATP is depleted although in yeast recovery can

occur with sub-lethal doses of glucosamine (ERRINGTON and BALL 1974)

.

These authors attribute the recovery to glucosamine exhaustion.

In summary, one may conclude that resistance to glucosamine poisoning,

via mutational neutralisation of the Crabtree Effect, could be due either

to (i) prevention of glucosamine utilisation (Fig. 1,1,11) or (ii) failure

of yeast to respond to the metabolic signals generated by (i) as described

above (also see Fig. 1, III —» VIII)

.
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Clarifying Note

The Crabtree Effect - is an inhibition of respiration by the
the addition of exogenous glucose.

Glucose Repression - is the repression of synthesis of the
subunits (proteins , lipids) of which mitochondrial
structures consist, during growth on medium containing
high (5$-10$) glucose concentrations.

Glucosamine and the Crabtree Effect - Glucosamine induced
inhibition of respiration mimics the Crabtree effect
by inhibiting respiration in medium containing
respiratory carbon sources (eg. glycerol). Since
glucosamine is non-metabolizable growth is also
inhibited.

Glucosamine and Glucose Repression - Since glucosamine is not
metabolizable , the relationship between glucose
repression and glucosamine induced respiratory
inhibition is not clear. Growth on glucosamine
containing medium being inhibited, the parallel
situation to growth on high glucose concentration does
not occur.
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C. The Life Cycle and Genetics of Yeast

With much of the physiological and biochemical data pertaining to

the Crabtree effect comming from mammalian systems, one may question the

choice of Saccharomyces cerevisiae as the vehicle for this study. The

absence of a readily accessible sexual cycle in mammalian cells essentially

precludes detailed genetic analysis of loci involved in the control of

this phenomenon. The eukaryotic cell system of choice has to have a

simple sexual cycle, short generation time, require a minimum of special

culture media or techniques and most importantly be genetically and

physiologically well defined in the literature. In addition to fulfilling

these criteria S^ cerevisiae exhibits an isomorphic alternation of

generations allowing determination of the haploid, diploid heterozygous

and diploid homozygous states of a mutation with great ease.

The life cycle of Saccharomyces (Fig. 2) was first described by

HANSEN and WINGE (1935) followed shortly by the first description of

Mendelian segregation in yeast by WINGE and LAUSTEN (1939)

.

In the ensuing 35 years interest in yeast genetics has increased

greatly. This was partially due to the many advantages for genetic

study, including rapid growth, clonability, and adaptability to techniques

of replica plating and micromanipulation. To summarize the progress, both

procedural and informational in yeast genetics over the past three and

one half decades would by far exceed the scope and intent of the present

work. Be it suffice to say that to date 143 primary functional genes have

been described forming IT linkage groups (for a recent linkage map see

Appendix la) . Several excellent reviews have appeared recently summarizing

knowledge and methods in the field and the serious student in this area

is referred to these (MORTIMER and HAWTHORNE 1966, HAWTHORNE and MORTIMER

1968, MORTIMER and HAWTHORNE 1969, HARTWELL 1970, FOGEL and MORTIMER 1971).
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Figure 2. The Life Cycle of Saccharomyces cerevisiae*

(1) Mating type a and mating type cL haploid cells mate forming (2) the

diploid zygote which may either (3) enter meiosis or (3a) undergo

vegetative proliferation (mitosis) . During meiosis (4) an ascus is

formed containing four haploid spores, two of each mating type. The

ascus (5) liberates the spores which may either (6) + (7) grow as

vegetative haploids or (6a) in the case of homothallic strains,

individual spores produce buds of opposite mating type which may then

mate with their mother cells producing zygotes which may (8) then

grow vegetatively or (9) enter sporulation.

* Modified from MORTIMER and HAWTHORNE, 1969.
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D. Nuclear Mutations Affecting Mitochondrial Functions .

Mendelian mutations affecting mitochondrial function have significance

to the present work and thus merit discussion here. Though CHEN, EPHRUSSI

and HOTTINGUER described a Mendelian mutation preventing respiratory

activity in yeast in 1950, the first comprehensive genetic study of this

class of mutants was carried out 13 years later by SHERMAN (1963) . He

described nine nonallelic loci designated p , p , p , lys

,

8"

Additional p mutations have subsequently been described (REILLY and

SHERMAN, 1965; HAWTHORNE and MORTIMER, 1968). SHERMAN and SLONIMSKI (1964)

undertook the biochemical characterization of the original nine (SHERMAN

1963) mutants. Those designated p or pet displayed a usual petite

(see discussion of petite below in section on mitochondrial genetics)

phenotype* lys and lys dy, and ly ) denote two genes resulting in both
6 8 6 8

a lysine requirement and respiratory deficiency. SHERMAN and SLONIMSKI

(1964) showed that p n , p^ and p_ lack cytochromes a, a. and b (cytochrome
1 6 7 3

c was not considered) . Strains having the mutation p respire, have all

the cytochromes but are defective utilizers of nonfementable substrates

(presumbed to be oxidative phosphorylation mutants) ; p mutants lack

cytochromes a and a . The cytochrome spectra of the p , p , ly and ly
3 2 3 o 8

mutations were not examined since the strains were extremely unstable.

Since all of the above strains had some cytochromes they are not analagous

to mutant strains deficient in protoporphyrin biosynthesis (YCAS and

STARR, 1953; SANDERS, MIED, BRIQUET, HERNANDEZ -RODRIGUEZ , GOTTAL and

MATTOON, 1973). It was suggested by SHERMAN and SLONIMSKI (1964) that

the pleiotropic nature of some of the p (p_, p., ly, , ly ) mutations may
3 4 6 8

be due to the alteration of some structural components of the mitochondrial

membrane responsible for integration of the cytochromes into the respiratory

system. About 20 "miscellaneous" mutants also described as "altered
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energy metabolism" or aem have been reviewed by BECK, PARKER, BALCAVAGE

and MATOON (1971)

.

SHERMAN (1964) has also described a class of Mendelian cytochrome

mutants that unlike p mutants can grow slowly on glycerol. These mutants

are designated cy and are deficient in cytochrome c activity. Genetic

and biochemical characterization (SHERMAN 1964) showed that these mutations

can occur at at least six distinct chromosomal loci cy , cy _ resulting— J- 6

in various levels of cytochrome c deficiencies. A continued interest in

the biosynthesis and genetics of cytochrome c has given rise to much

information in this area (reviewed by SHERMAN and STEWART 1971)

.

A significant beginning has been made in the isolation of biochemical

mutants of oxidative phosphorylation (for review see KOVAC 1974) . Mutants

have been isolated with greatly reduced energy transfer capabilities

(ie. Pi - ATP exchange) (GROOT, KOVAC and SCHATZ, 1971), inhibitor

resistant ATP-ADP membrane translocator (PERKINS, HASLAM, KLYCE and

LINNANE, 1973), and a mutant class has been described which not only

lacks oligomycin sensitive ATPase activity but also two major F subunits

(EBNER and SCHATZ 1973, EBNER, MENNUCCI and SCHATZ, 1973). All of the

above mutations display Mendelian inheritance, implicating a cytosolic

origin for the majority of mitochondrial polypeptides (for review see

SHATZ and MASON 1974)

.

E. Mitochondrial Genetics

It was the description of the "petite" mutation that actually "broke

the ground" for the proliferation of studies into the nature of mitochondrial

inheritance. EPHRUSSI and HOTTINGUER (1950) described a yeast mutant which

formed only small colonies (hence petite) on medium containing fermentable
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carbon sources. It was shown that though this mutation may arise

spontaneously in vegetative culture (frequency about 1%) , petites could

be induced with 100% efficiency by the dye euflavin. Later, other agents

shown to be effective were U V irradiation (PITTMAN 1959) , thermal shock

(SHERMAN 1959) and most effective, ethidium bromide (EB) (SLONIMSKI,

PERRODIN and CROFT 1968)

.

The petite clones first isolated were stable in vegetative growth

and when backcrossed to a wild type formed normal diploid colonies (ie.

behaved like nuclear recessives) . However, the petite phenotype did not

segregate at meiosis and all tetrads from such crosses gave wild type

spores (4:0, grands rpetites) (EPHRUSSI and HOTTINGUER 1951).

The basis of the petite (rho~or [) ) phenotype, in addition to small

colony size on fermentable media (glucose, galactose, etc.) is an

inability to grow on respiratory carbon sources (eg. acetate, lactate,

glycerol, ethanol) due to loss of respiratory ability. Cytoplasmic rho~

strains have been shown to lack cytochromes a/a h and c which

are essential components of the respiratory chain (EPHRUSSI and SLONIMSKI

1950) . Nuclear or segregational petites (also pet or p mutants) were

shown to lack cytochromes a or a, and b. Some nuclear petites lack

cytochrome c but normal levels are found in cytoplasmic petites.

(EPHRUSSI and SLONIMSKI, 1950; SHERMAN and SLONIMSKI, 1964).

A class of cytoplasmic petites displaying inheritance patterns

distinct from those above were described by EPHRUSSI, MARGERIE-HOTTINGUER

and ROMAN (1955). Termed suppressives, these petites showed varying

vegetative and meiotic segregational patterns when mated to wild type

yeast. If zygotes were sporulated immediately, tetrads yielded 4:0 rho":

rho+ spores indicative of a type of cytoplasmic dominance. It has been
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shown that suppressive petites have detectably altered mitochondrial

DNA (mtDNA) , while neutral (non-suppressive) petites completely lack

detectable levels of mtDNA (MEHROTA and MAHLER, 1968; NAGLEY and LINNANE,

1970; MICHAELIS DOUGLAS, TSAI and CRIDDLE, 1971).

The discovery of cytoplasmically inherited resistance to erythromycin

(E
R

) was reported by LINNANE, SAUNDERS, GINGOLD and LUKINS (1968) and

THOMAS and WILKIE (1968) . LINNANE (1968) reported a cross of erythromycin

R S
resistant to erythromycin sensitive (E x E ) strains which yielded

diploid clones (derived from zygotes) that were of both cell types.

R S
Subculture of E and E isolates yielded pure cell lines which when

sporulated, formed tetrads containing four spores of the same type as the

R S R S
pure isolate (ie. 4:0, E :E for resistant isolates and 0:4, E :E for

sensitive isolates). THOMAS and WILKIE (1968a) reported 3:1 and 1:3 ratios

as well as 4:0 but did not specify the number of vegetative generations

R S
before sporulation was induced. Selection for E or E lines was not

described prior to sporulation, suggesting that perhaps zygotes or early

R S
diploids containing a mixture of E and E cytoplasmic determinants

were sporulated.

The patterns delineated in these studies of cytoplasmic inheritance

p
of E became the basis for comparison of vegetative and sexual assortment

for suspected cytoplasmic characteristics in yeast. THOMAS and WILKIE

(1968 b) described cytoplasmic resistance to erythromycin (E) , spiromycin

(S) and paromycin (P) in a number of strains. They showed that drug

resistance was lost by petite induction in multiple resistance strains

by back-crossing induced rho
-

strains to sensitive rho+ strains.

Resistance and sensitivity were found to segregate in diploid clones and

recombinant drug resistant classes of diploids were also described.
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LINNANE ' s group showed reassortment of E and respiratory competence in

similar crosses (GINGOLD, SAUNDERS, LUKINS and LINNANE, 1969) and also

described a number of additional cytoplasmic drug resistant mutants

(BUNN, MITCHELL, LUKINS and LINNANE, 1970). Mutants were described with

resistance to spiromycin (S) , paromycin (P) , chloramphenicol (C)

,

mikamycin (M) , lincomycin (L) , carbomycin (Ca) , oleandomycin (O) , and

tetracycline (T)

.

Slonimski's group subsequently made very major contributions toward

an understanding of the phenomenology of mitochondrial recombination.

COEN, DEUTSCH, NETTER, PETROCHILO and SLONIMSKI (1970) described a

R S R S
series of one factor crosses between E x E and C x C strains. Several

strains of each mitochondrial genotype were used. Scoring for degree of

transmission of drug resistance (D ) to zygotes showed large variation

depending on which strains were crossed. Strains that transmitted D

with a high frequency (50% - 100%) to diploid vegetative segregants were

said to have a high polarity in their mitochondrial genome, while those

that showed low transmission frequency were designated low polarity

mitochondrial genomes

.

The basis of polarity was further investigated by BOLOTIN, COEN,

DEUTSCH, DUJON, NETTER, PETROCHILO, and SLONIMSKI (1971) . These workers

postulated that polarity was due to two mitochondrial determinants 6> + and

CO -. Preferrential transmission of mitochondrial genes was from a + strains

to (P - strains. The presence of 4)+ or <ti - was said to be independent of

cellular mating type. In homosexual crosses ( 0+ x 6> +) or (6>- x<£-)

parental and recombinant clones arise 1:1. The nature and existence of

polarity has been disputed by RANK and BECH-HANSEN (1972) and LINNANE,

HOWELL and LUKINS (1974) who have not been able to unambiguously demon-
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other, functionally unrelated antibiotics (MOLLOY, HOWELL, PLUMMER, LINNANE

and LUKINS, 1973; HOWELL, MOLLOY, LINNANE and LUKINS, 1974). Mutation to

drug resistance occurs at two levels; alteration of mitochondrial

ribosomes such as in E (LINNANE et al^ 1968 a) or changes in mitochondrial

membranes to exclude the entrance of antibiotics into the mitochondrion

(BUNN, MITCHELL, LUKINS, and LINNANE, 1970). Ribosomes of the former class

have been shown to possess drug resistance in vitro (MOLLOY et al 1973)

,

while those of the latter class have sensitive ribosomes iri vitro

(MITCHELL, BUNN, LUKINS and LINNANE, 1972).

Complete understanding does not exist as to what extent mitochondrial

DNA codes for mitochondrial functions (for review see SCHATZ and MASON

1974) . Genetic studies, attempting to characterize the mitochondrial

genome may contribute toward an understanding of the function (s) of mtDNA.

Linkage studies are slowly succeeding in establishing marker locus order

toward eventual construction of a more complete mitochondrial linkage map

(see Appendix II for recent linkage maps)

.

A recent hypothesis that the entire mitochondrial DNA is the rho+

factor (DEUTSCH, DUJON, NETTER, PETROCHILLOR, SLONIMSKI , BOLOTIN-FUKUHARA

and COEN, 1974) is based on the assumption that expression of mitochondrial

genes is achieved through such a highly coordinated regulatory system that

loss of any one gene "leads to inhibition of expression of the whole genome",

This contention is supported by evidence that the whole mitochondrial

genome in Hela cells is a single transcriptional unit (ALONI and ATTARDI

1971) . A functional mechanism of this sort could explain the apparent

difficulty in separating individual mitochondrial gene functions. It

may also constitute an important control point in induction/repression of

mitochondrial gene expression.
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strate the existence of polarity in their yeast strains.

An interesting theory has been put forward to explain mitochondrial

recombinational polarity with a corollary describing a possible mechanism

for suppressiveness (PERLMAN and BIRKY 1974) . Essentially, the mechanism

described involves pairing between the polarity loci (6)+ and -) of

recombining mtDNA molecules with a limited unidirectional degradation

of the low polarity (^)-) strand. Repair of the degraded sequence is then

accomplished using the fcj+ strand as a template, leading to gene conversion.

Suppressiveness may result from y + petites converting essential sequences

in (^ - rho+ strands to defective or incomplete sequences.

A more general theory has been put forward by CLARK-WALKER and MIKLOS

(1974) . This theory attributes petite inheritance and suppressivitity to

the ability of the smaller rho
-
DNA to replicate at an enhanced rate.

Petite formation as well as mitochondrial recombination may, it is suggested,

result from excisions and insertions between homologous regions of the

circular mt DNAs. It is propsed that these processes may exist for all

small circular DNAs including bacterial plasmids. These theories are

considered to be speculative at the present time.

Relating rho+ to specific sequences of mitochondrial DNA would require

saturation of the mitochondrial genome with genetic markers. Though a

great number of drug resistant strains have been isolated and described

(for review see HASLAM and LINNANE 1970) many are probably alterations of

the same function (s) that map at only a few points. Twelve independently

isolated oligomycin resistant (0 ) strains have been shown to belong to

only two loci, and (AVNER, COEN, DUJON and SLONIMSKI, 1973). Several

antibiotic resistant strains show a great deal of cross-resistance with
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An alternate hypothesis is that the inner membrane assembly is so

highly coordinated that any imbalance in synthetic sequence can cause the

pleiotropic loss of respiratory function (c.f. nuclear mutants, EBNER and

SCHATZ, 1973) . Supporting evidence comes from the recent work of MICHELS,

BLAMIRE, GOLDFINGER and MARMUR (1974) which suggests that some rho~ mtDNA's

have massive deletions of mitochondrial tRNA loci, while others have

massive duplications. Moreover, these loci are transcribed in such rho~

haploids. This evidence is not compatible with the theory (see above)

which explains the rho+ to rho
-
transformation as being due to loss of

any one single transcriptional locus. The following diagram (Fig. 3,

modified from AINSWORTH, JANKI, TUSTANOFF and BALL 1974) summarizes the

present state of knowledge with regard to the genetic control of

mitochondriogenesis in yeast.

As mitochondrial DNA codes for only 5-10% of total mitochondrial

protein (review by SCHATZ and MASON, 1974) it is clear that most of the

proteins and lipids which constitute the mitochondrion must be "coded"

on nuclear DNA (KOVAC, 1974) . Thus these major mitochondrial components

will be synthesized from nuclear DNA via cytosolic protein synthesis and

metabolism. These cytosolic products are complemented by mitochondrial

proteins which are products of the mitochondrial DNA, RNA, protein

synthesizing system. As noted above (Section E) this mitochondrial

infromation is essential to the biogenesis of mitochondria.

Since the effects of many nuclear and mitochondrial mutations are

pleiotropic in nature (Sections D and E above) , it is clear that the

final assembly process wherein various lipids and proteins are integrated

to form functional assemblies is complex (AINSWORTH et a^, 1974) . This

complexity is sketched with the interconnecting lines in the bottom right
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Figure 3 . The Flow of Information for Mitochondrial Structures

This schematic representation of inforamtion flow is an attempt to reconcile

the genetic and biochemical information available. Control points and possible

feedback loops have been omitted as these are not clearly established and would

complicate the diagram unnecessarily Solid lines indicate well established

sequences. Broken lines represent postulated pathways or connections.

(Also see section A, B, D and E above)

Modified from AINSWORTH, JANKI , TUSTANOFF and BALL, 1974.
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hand side of Fig. 3. Although much is known about the environmental

stimuli which can influence the phenomena (SHATZ and MASON, 1974) , the

precise metabolic events which mediate these events are still obscure.

It is hoped that the glucosamine resistant mutants described below

will afford some insight into the metabolic events which mediate glucose

repression and the Crabtree effect.
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CHAPTER 2

MATERIALS AND METHODS

Yeast Strains

The glucosamine resistant mutant strains of haploid S^ cerevisiae

used in this study were produced by the ultra violet (U V ) mutagenesis

of two parental strains: 4B2 and 4BL. These parental strains, derived

from D587-4B and D585-11C (4B2 and 4BL respectively) , were a gift of

Dr. Fred Sherman, Dept. Radiation Biology, Rochester University. Genotypes

of the parental strains with their U V derived glucosamine resistant (GR)

mutants are as follows

:

4BL

GR112

GR120

GR124

GR125

GR127

GR133

a lys.

a lys..

a lys.

a lys

a lys
n

a lys.

a lys
n

[rho+]

[rho+]

[rho+]

[rho+]

[rho+]

[rho+]

[rho+]

4B2 fc his [rho+]

GR5 <X,his [rho+]

GR6 O^his [rho+]

GR7 O^hi-8
!

[rho+]

GR8 0(his [rho+]

GR9 ^ nis
-i

[rho+]

GR10 o( his [rho+]

GR22 A his [rho+]

GR62 ^ his [rho+]

Diploids from mating ( d ) to (a) strains from the above are designated

^ strain/a strain. Thus a diploid isolate of the cross GR6 x 4BL is

designated 6/4BL.

Haploid single spore GR derivatives of diploids 6/4BL,

10/4BL, and 4B2/133 used in further testing are respectively:

6L4
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A multiple marker strain aLl was a gift from the Dormer Research

Laboratories, University of California, Berkley, California.

aLl : a hom„ aro, trp,_ leu. thr, ade^ lys.,
2 15 1 16 1

his ura arg [rho+]
6 1 4-1

Additonal diploids produced and tested but not listed above are

designated according to the "
e(. strain/a strain" coding outlined above.

Media

YPD:

A complex rich medium supporting the growth of all strains:

2% glucose, 2% bacto peptone, 1% yeast extract. (All percentage

concentrations are weight to volume unless otherwise stated.)

YPG:

A complex rich medium supporting growth of only respiratory competent

strains: as for YPD but substitute 3% v/v glycerol for 2% glucose.

GGM:

A complex rich medium supporting growth of GR strains only: as for

YPG with D(+) glucosamine hydrochloride sterilized separately and added to

a final concentration of 0.05%.

SD:

A defined minimal medium supporting only prototrophic strains. It

was used to select diploids formed between complementing haploid auxotrophs:

2% glucose, 0.75% Bacto yeast nitrogen base w/o amino acids.

Selective Media:

These were used to test for the amino acid requirements of isolated

spore clones: as for SD with the required supplement (s) sterilized

separately and added to the following concentrations:
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Supplement mg/1

histidine (his) 20

lysine (lys) 30

tryptophan (trp) 20

leucine (leu) 30

threonine (thr) 200

adenine (ade) 20

arginine (arg) 20

homoserine (horn) 30

SM:

Sporulation medium (MONTENECOURT , KUO, and LAMPEN, 1973) : 0.25%

yeast extract, 0.1% glucose, 1% potassium acetate, 1.5% agar.

For solid medium 2% Difco agar was added unless otherwise stated.

Growth Conditions

Growth on solid medium was in 100 x 15 mm or 60 x 15mm plastic petri

dishes. Liquid culture was in 100 x 15 mm screw capped culture tubes

containing approximately 6 ml of medium. All cultures were incubated in

the dark at 30°.

Mating

Twenty-four hour YPD broth cultures of mating type a (mta) and mating

type 0L (mt <K ) were mixed and inclubated at 30° for a further 4 to 6 hr.

A 0.1 ml aliquot of the mating mixture was then spread onto SD solid

medium. Diploid clones were evident after 48 hr at 30°.

Replica Plating

Replica plating was carried out in accordance with the method of

Lederberg (LEDERBERG and LEDERBERG, 1952) . When replicating a series of
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plates from the same velveteen impression, plates containing rich media

were replicated last.

Complementation Tests

Testing was carried out on diploid strains constructed by mating

each GR strain to the parental strain (ie 4B2 or 4BL) of opposite mating

type. These backcross diploid strains were transferred as point inocula to

solid SD medium with not more than 27 points per plate. Master plates

were replicated to GGM and control media. Plates were scored after 3

days incubation for complementation (no growth on GGM) or non-complement-

ation (growth on GGM)

.

Sporulation

Diploid strains were induced to sporulate by a method modified from

MONTENECOURT et al (1973) . The supernatant medium was decanted from a

24 hr YPD broth culture of a diploid strain. The yeast pellet remaining

was mixed into a thick suspension (with residual medium) , decanted onto

solid sporulation medium (50 x 15 mm plates) and spread. Sporulation was

microscopically detectable after 48 hr incubation; however microdissection

was only carried out after a minumum of 5 days to ensure complete maturation

of spores.

Snail Gut Enzyme Preparation

Commercial snail gut preparation was diluted 1:2 with DTE buffer

(1 mg/ml dithioerythritol in 0.1 M KH PO pH, 4.5) and centrifuged 10 min

at 10,000 rpm. The supernatant was then passed through a 0.22 ft

Millipore filter (Millipore Corporation, Bedford, Massachusetts)

.

Aliquots (0.2 ml) were stored at 4° in sterile screw capped glass tubes

until used.
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Micromanipulation and Tetrad Analysis

Ascus Digestion:

One loopful of sporulation culture was transferred to a 0.2 ml

aliquot of sterile snail gut enzyme, incubated at 30° for 4 to 7 min

and subsequently stored on ice.

Micromanipulation

:

Tetrads were dissected according to the method described by

JOHNSTON and MORTIMER (1959) using a Leitz Laborlux microscope

(Ernst Leitz, Wetzlar, Germany) fitted with a X20, f = 0.40 mm

objective lens (Nippon Kogaku, K.K. , Tokyo). The microneedle was

held in a moving stage apparatus purchased from Willian J. Hacker and

Company Incorporated, West Caldwell, New Jersey.

Clones from dissected spores were transferred to YPD mater plates

as point inocula to facilitate further testing.

Vegetative Segregational Analysis

After 24 hr growth in YPD broth, cells were diluted with sterile

distilled HO and plated onto solid YPD medium at a density of 150 to

200 cells per plate. Vegetative clones arose after 48 hr incubation.

Replica plating was then carried out with replicate clones scored for

growth on GGM after 3 days incubation.

Ethidium Bromide Mutagenesis

Yeast were inoculated into YPD broth containing 5.0 p^g/ml ethidium

bromide (EB) and grown at 30° in the dark for 24 hr. Aliquots were then

-4
diluted into sterile distilled HO (1:10 ) and 0.1 ml was spread onto

each solid YPD plate. In 36 to 48 hr small colonies were evident on these

plates which showed no growth when replicated to YPG. This method was

100% efficient in producing petites from 10P3, 6L4 and 4B2.
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Cheimcals

Bacto agar, Bacto peptone, Yeast extract, Dextrose and Yeast nitrogen

base w/o amino acids were purchased from Difco Laboratories, Detroit,

Michigan.

Glycerol, amino acids, adenine and uracil were purchased from

B.D.H. (Canada), Laboratory Chemicals Division, Toronto, and were of

the highest grade available.

D(+) glucosamine hydrochloride, dithioerythritol (DTE), ethidium

bromide (EB) , chloramphenicol and oligomycin were purchased from Sigma

Chemical Company, St. Louis, Mo.

Erythromycin gluceptate was purchased from Eli Lilly and Co. (Canada)

Ltd . , Toronto

.

Snail gut extract was purchased from Industrie Biologique Francais,

Quai du Moulin de Cage, Gennevilliers, France.
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CHAPTER 3

RESULTS

Phase I - Preliminary Screening

Not every mutant strain in a study provides an equally lucrative

basis for genetic analysis. Within any uncharacterized group of isolates,

small or large redundancy in mutant functions may exist. The proportion

of isolates carrying identical mutations must in part depend on the

number of primary functions that may be altered to give the mutant pheno-

type. Unfortunately, some mutants may have acquired secondary mutations

which affect the capacity to sporulate or maintain other faculties necess-

ary for successful direct genetic study. Due to such considerations

the initial phase of this study served a dual function. Phase I was

designed to determine: (a) which mutants could be analysed and (b) the

number of different loci involved. Strains to be used in subsequent

phases of study were chosen on the basis of results from this preliminary

analysis.

Complementation Testing

Initial attention was given to the delineation of the mutants into

groups of two or more carrying the same mutation. Demonstration of

glucosamine resistance (GR) in diploid isolates was to be interpreted as

non-complementation and indicative of homozygosity of the GR conferring

gene(s) (haploids carry the same mutation). Diploid sensitivity to

s
glucosamine (G ) was to be scored as complementation resulting from two

haploid components carrying non-allelic mutant functions.

Construction and testing of diploids (mt ot GR' s and 4B2 vs mt a GR'

s

R S
and 4BL) for G or G did not result in definitive complementation
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responses. More than half of the diploids tested gave differential

responses to glucosamine within single inocula. Existence of heterogeneous

haploid populations within these original isolates was excluded by

subsequent extensive subcloning of all haploid GR mutants. Unambiguous

complementation results could still not be obtained from diploids of

these purified haploids. Almost half of the diploids tested displayed

a variegated growth response when replicated to glucosamine-glycerol

(GGM) medium. In such cases the conspicuous bulk of the replica inoculum

displayed sensitivity but small colonies (microcolonies) within the

inoculum perimeter did arise (plate 1) . The number of microcolonies

per inoculum varied from one to confluent growth. Scoring the later

types was complicated by a need to differentiate such a response from

the balanced growth evident on a homogeneous GR inoculum.

A complementation pattern was constructed including microcolony

resistance as a separate category (Fig. 4). Diploids were scored as

compleneting, non-complementing and microcolony non-complementing.

Little information could be gleaned from the complementation pattern

due to the microcolony (variegated) response which is not compatible

with classical complementation theory. Vegetative segregation of

phenotype is typical of non-Mendelian inheritance, therefore the GR

strains were tested for vegetative segregation of glucosamine resistance.

Vegetative Segregation of G

Quantification of vegetative segregational patterns underlying the

microcolony phenomenon was undertaken to help delineate the nature of

the response. Analysis of this pattern would also help select true

nuclear mutants which should not display variegated resistance patterns

in isogenic cell lines. Information available on the segregational
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Plate I. Growth responses of diploids to YPG and GGM medium.

a) This shows typical responses to GGM of point inocula of

R R
G x G diploids. GGM dishes were inoculated by replica

plating from YPG master plates.

i) confluent growth, non-complementing, N

ii) no growth, complementing, - C

iii) micorcolony response, variegated resistance Qy

(see also Fig. 4)

b) YPG control for 6/4BL. An overnight YPD broth culture

was plated onto YPD agar, giving 100-150 colonies per

dish. This YPD dish was replica plated to YPG. All

colonies gave the same growth response.

c) GGM test. This shows the variegated growth response

elicited when the same colonies (plate I, b) were

replica plated to GGM medium.

(see also Table I and Fig. 5)



a)

b)

c)



7A *t'
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Figure 4. Complementation Pattern.

Mating type (X mutants (GR5 to GR62) and the parental

(4B2) were mated to the mating type a mutants (GR112 to GR133)

and the parental strain (4BL) . oC strains appear along the

top margin with a strains along the left vertical margin.

c p
Complementing (G ) crosses are "C" , non-complementing (G )

crosses appear as "N" and variegated or microcolony resistance

responses appear as @
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patterns of mitochondrial erythromycin resistance (SAUNDERS et al, 1971)

served as a model for the phenomenon of cytoplasmic inheritance.

Since GR strains were originally selected on glucosamine-containing

medium, a high level of resistance was expected from the original isolates

(RANK and BECH-HANSEN, 1972) . It was thought that the segregational

behavior of diploids (from backcross to sensitive parentals) would yield

more significant information. It is the segregational behavior of this

latter group that is well documented for the erythromycin resistance

mentioned above. Plating experiments with 350 to 450 clones per strain

scored, showed the following results: haploid isolates GR5, GR6, GR7,

GR8, GR9, GR10, GR22, GR62, GR124 and GR133 each exhibited glucosamine

resistance in 100% of the vegetatively derived clones scored (Table I

and Table II), haploid strains GR112, GR120 and GR127 demonstrated resis-

tance of 87%, 14% and 12% respectively (Table II). It has been established

elsewhere (ELLIOT and BALL, 1973) that subcloning of resistant isolates

of GR127 from such an expeirment, with subsequent replating, results

in 100% resistance in the vegetatively derived clones. A similar enrich-

ment for sensitivity is exhibited by sensitive clones derived from the

same haploid line (GR127) . Such selection within isogenic vegetative

cell lines is characteristic of mitochondrial drug resistance mutations

(SAUNDERS et al, 1971)

.

Attempts to measure vegetative segregation in GR125 failed due to a

conditional lethality which appears in the strain. Repeated attempts

at spreading turbid aliquots of culture onto YPD plates resulted in only

a few heteromorphic clones which displayed a variegated response on

replicating to GGM. Sub-cloning and plating of a resistant isolate

of GR125 resulted in a similar pattern.
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Table I.
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Table II. Vegetative Segregation of Resistance in

4BL Derivatives and Respective Diploids.
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Zygotic clones of backcrossed GR strains all showed reduced levels

of vegetative resistance (Table I and Table II) . Isolates were not

subjected to preferential or selective media prior to testing. This

allowed unbiased segregational patterns to occur (LINNANE et al_, 1968;

THOMAS and WILKIE, 1968 b; BIRKY, 1973).

Emphasis must be given to the occurence of microcolony resistance

on all diploid segregational plates. The percentage resistance of all

diploids (Table I and Table II) is indicative of the percentage of

vegetative clones displaying some resistance. The great majority of

clones scored in these experiments as GGM+ exhibited microcolony

resistance (see Plate I) . Where no apparent change took place in actual

percentage of clones exhibiting resistance, comparing haploid to back-

cross diploid (Table I, GR10 vs 10/4BL and GR22 vs 22/4BL) the level

of resistance, as judged by the number of microcolonies observed, showed

a marked decrease. Haploids GR10 and GR22 gave homogeneous resistance

on plating of vegetative clones. The corresponding backcross diploids

(10/4BL and 22/4BL) displayed only microcolony resistance which may be

interpreted as a quantitative reduction in vegetatively inheritable

resistance factors.

Subcloning of resistant and sensitive colonies of 6/4BL reinforced

the evidence for cytoplasmic segregation of G factors which may be

selectively enriched or eliminated (Fig. 5) (BIRKY, 1973). Subculture

of a resistant microcolony of 6/4BL termed 6/4BL r displayed a dramatic

increase from the 16% resistance in 6/4BL to 100% resistance with

many colonies homogeneously resistant in 6/4BLr. A corresponding

decrease in resistance was achieved by subculture of a sensitive isolate

termed 6/4BLs. Of all the strains tested, only GR133 showed > 95%
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Figure 5. Vegetative Segregation of Glucosamine Resistance in a

Resistant and a Sensitive Colony of 6/4BL

.

The top circle represents the results of vegetative segregational

analysis of 6/4BL, 16% resistance (see Table I, illustrated in Plate I,

b and c) . A resistant clone from a microcolony on GGM and a sensitive

clone which showed no growth on GGM, were grown seperately in YPD broth

overnight and plated to YPD at densities of 100 to 150 cells per dish.

When colonies appeared, replica plating to YPG and GGM dishes was carried

out and percentage resistance calculated. The stippled area represent

% resistant clones, clear area represents % sensitive clones.
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resistance in both haploid and diploid vegetative cells.

Tetrad Analysis

Vegetative segregation and clonal enrichment for glucosamine

resistance are not consistent with the expectations of Mendelian

inheritance. These patterns do not however, provide conclusive

evidence for the cytoplasmic nature of the glucosamine resistance

conferring mutation. Nuclear pleiotropic mutations have been

described which may induce an unstable state in certain cytoplasmic

organelles (for review see BECK, PARKER, BALCAVAGE and MATTOON, 1971)

.

Mutations of this class may be detected by analysis of the meiotic

products of the backcross diploids . Tetrads produced in such a

R S
cross should yield two G and two G spores, ie. segregation of

resistance should be 2:2.

If glucosamine resistance is cytoplasmically determined,

tetrads would not segregate in a particular ratio but show a

spectrum of tetrad classes 4:0, 3:1, 2:2, 1:3 or 0:4 since distri-

bution of cytoplasmic determinants is not necessarily selective for

G (LINNANE et al , 1968; THOMAS and WILKIE, 1968b). Tetrads of

cytoplasmic G lines should show a variegated response since no

selection was carried out for resistant diploids.

The data from tetrad analysis of backcross diploids is summarized

in Table III. Diploids 7/4BL and 62/4BL were asporogenous, and spores

dissected from tetrads of 4B2/120, 4B2/124 and 4B2/125 were non-

viable and these crosses are omitted from the data. Of the remaining

diploid strains only 4B2/112 exhibited below 50% spore viability.
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Table III. Tetrad Analysis.

Numbers of Tetrads Scored in Each Tetrad Class

(resistant: sensitive)

.
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Veracity of tetrads was monitored through segregation of the

nuclear markers his and lys . All tetrads reported showed 2:2

segregation of these markers.

An unequivocally Mendelian pattern of segregation for GR was

shown by 4B2/133 (Table III) . Resistant segregants showed homogeneous

colony resistance which could be scored 24 hr after replica plating

on GGM. In contrast, all the other strains required the usual 3 days

on GGM before adequate growth was attained for scoring. Resistance in

segregants of these strains was of the microcolony type and did not

show Mendelian segregational patterns (Table III)

.

Stability of Cytoplasmic G

A decline of resistance over storage periods was suspected when

older cultures consistently showed low resistance. Cultures of GR6

and GR7 (YPD slopes) which had been utilized for vegetative segregational

analysis were retested after 4 months storage at 4°. The percentage

of vegetative segregants capable of producing some level of resistance

had been markedly reduced (Fig. 6)

.

Vegetative Segregation in a_ 4:0, r :s Ascus

Single spore isolates from a 4:0, resistant: sensitive ascus of

8/4BL were tested for vegetative segregation of resistance. The spore

lines designated 8J1, 8J2, 8J3 and 8J4 showed high levels of microcolony

resistance (Fig. 7) . Only 8J4 yielded sensitive isolates.
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Figure 6. Stability of Glucosamine Resistance During Storage

Sub-cultures of GR6 and GR7 on YPD slopes, each displaying 100%

glucosamine resistance of vegetative segregants (top circles) were

stored for 4 months at 4°. The cultures were then retested by overnight

growth in YPD broth, plated to YPD dishes at 100 - 150 cells/dish

and replica plated to YPG and GGM. Percentage of resistant clones was

calculated after 3 day growth on GGM. Stippled portion of circles

represents fraction of resistant clones.
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Figure 7. Vegetative Segregation of Spore Lines from a_ 4:0, R:S

Ascus of 8/4BL .

Tetrad analysis of 8/4BL (40% resistant, top circle) yielded

one 4:0, r:s ascus (Table III). Overnight YPD broth cultures of

these spore colonies (8J1, 8J2, 8J3 and 8J4) were plated to YPD

agar and subsequently repica plated to YPG and GGM. These plates

were scored after 3 days incubation and the percentage of resistant

clones calculated. Portion of clones displaying resistance are

represented by the stippled fraction of circles.



- 56

Fig. 7

8/4 BL

speculation

r T
1 ASCUS

T

8JI 8J2 8J3

1

8J4





57 -

Phase II - Detailed Analysis

A. Linkage Study of Nuclear Mutant GR133

Only one multiple marker test strain (aLl) was available

for linkage study of the locus designated gay conferring

glucosamine resistance in GR133. The markers carried by aLl

(see Strains in Materials and Methods ) cover only a small portion

of the genetic map of Saccharomyces cerevisiae , specifically parts

of linkage groups VII, IX and XI (see Apendix I). Since some

redundancy of map positioning was evident for the markers in aLl,

only ade , leu , trp , lys , and ura were scored for possible

linkage to gay .

Mating procedure was carried out between aLl and 133F2

(fls i gay , his ) . Isolate 133F2 was derived from tetrad dissection

of the 4B2 vs GR133 backcross. Linkage study of tetrad and spore

classes are summarized in Table IV. Glucosamine resistance did not

appear to be linked to any of the other markers tested or to any

of the centromeres marked by these loci (Table IV)

.

Phase II,

B

- Cytoplasmic Glucosamine Resistance

Preliminary data suggest that many of the G mutants carry the

resistance conferring gene(s) on a cytoplasmic DNA. The mutation (s)

should therefore, be amenable to the same manipulations as other

R R
cytoplasmic genetic drug resistance markers (E , etc) . The following

patterns should be elicitable with the proper experimental procedures.
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Table IV. Linkage Study of 133R2/aLl Tetrads.

Tetrads scored:

Ascospores scored:

8

32

Genetic markers scored*: ade^ leu., trp,. lys, ura,
6 1 —*-5 —*— 1 1

Locus

ade.

leu,

trp
c

lys

ura,

X
df=3



<

<

<

>
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1. selective enrichment for G cytoplasmic determinants

with concomittant elimination of vegetative sensitive

segregants.

2. elimination of inheritable glucosamine resistance by

elimination of cytoplasmic DNA.

3

.

a cross to a parental with no cytoplasmic DNA should

yield a diploid of homogeneous resistance which segregates

only homogeneously resistant meiotic products.

4. enrichment for G determinants in a previously variegated

backcross diploid should result in an increased, complete

(ie. non-variegated) level of resistance in the diploid

and all meiotic products.

Two mutants were chosen for further testing (GR6, GR10) . Some

physiological data existed for GR6 (ERRINGTON and BALL, 1974) providing

a broader perspective for genetic study. GR10 was chosen for further

study simply because 10/4BL asci were easy to dissect.

GRIP

Segregational patterns of GR10 and 10/4BL in vegetative culture

have already been described in previous sections (see Phase I ,

Vegetative Segregation ; Table I and Table II) . The products of a

single 1:3, resistant: sensitive ascus from tetrad analysis of 10/4BL

were subjected to vegetative segregational analysis. The strains were

designated 10P1, 10P2, 10P3 and 10P4. A microcolony or variegated

resistance response had been recorded for 10P2 in tetrad analysis.

The others had been scored as glucosamine sensitive.
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Vegetative segregational data (Fig. 8) indicated that with 91%

of segregants containing resistant microcolonies, 10P2 showed the

highest resistance level. The other strains ranged from 54% to 1.3%

with 10P3 showing the latter, lowest response. A resistant microcolony

of 10P3 was subcultured to GGM broth, incubated for 3 days and plated

to GGM solid medium. A clone was isolated and subcultured to YPD broth

for vegetative segregational analysis. All vegetative segregants of

this isolate designated 10P3r displayed complete, homogeneous resistance

with no microcolonies and no sensitive segregants (Fig. 8) . Success

of this enrichment procedure fulfills the first criterion for cyto-

plasmic location of this GR mutation.

Ethidium Bromide Induced Loss of GR

Growth for 24 hr in medium containing 5 M,g/ml ethidium bromide

(EB) should result in complete elimination of mitochondrial DNA

(SAUNDERS, GINGOLD, TREMBATH, LUKINS and LINNANE, 1971).

Such treatment of 10P3r produced respiratory incompetent cells

with 100% efficiency. A petite isolate (10P3A - ) was mated to 4B2 and

the resultant diploid (4B2/10P3>£ -) was subjected to vegetative segrega-

tional and tetrad analysis.

A dramatic quantitative drop in resistant vegetative segregants

was recorded (Fig. 8) by comparison to 10/4BL. Only 2% of segregants

showed microcolony resistance compared to 100% in 10/4BL. The qualitative

drop in resistance was also radical. Resistant vegetative segregants

of 10/4BL often contained several microcolonies on glucosamine plates,

while only a single microcolony per resistant segregant was evident in

4B2/10P3/0 "
.





Figure 8. Vegetative Segregation of Glucosamine Resistance in

GRIP and its Derevatives

This figure illustrates the variability and manipulability of

glucosamine resistance in these strains. Each circle represents one

population with the stippled portion representing the percentage of

vegetative segregants that displayed resistance. Where % resistance

«100 the actual value is indicated within the circle. Microcolony

resistance is indicated by the appearance of M within the circle.

a. Haploid strain GR10, 100% resistant

b. Diploid strain 10/4BL, 100% resistant (microcolonies)

c. After sporulation of 10/4BL one tetrad (10P) gave rise to

four sister spores which showed various degrees of resistance

(10P1 > 10P4) .

d. The least resistant spore 10P3 was sub-cultured into GGM

broth for 5 days and subsequently tested for glucosamine

resistance. Result - 100% resistance.

e. A highly resistant clone resulting from (d) was designated

as 10P3r and subjected to these treatments:

i) elimination of mt DNA with EB followed by crossing

to 4B2

ii) a direct cross to 4B2/J

iii) crossing to 4B2 followed by passage through GGM broth.

f

.

The resulting diploids, 4B2/10P3/) , 4B2^> /10P3r and (4B2/10P3)r

were tested for % resistance.
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No resistant spores were recovered in tetrad analysis of 4B2/10P3/)

(Table V). All tetrads scored were 0:4, resistant: sensitive.

Passage of Resistance in Cross to Petite

Mating of higly resistant 10P3r to an EB induced petite of 4B2

(4B2Q ~) resulted in a diploid isolate of high resistance. Sensitive

clones could not be detected in vegetative platings (Fig. 6) . Many

segregant clones showed a homogeneous resistance response but some

microcolony resistance was still evident.

Analysis of tetrads indicated a shift toward a higher ratio of

resistant segregants per tetrad over 10/4BL. It was also noted that

several resistant spores gave rise to lush whole inoculum resistance

responses which was not evident in 10/4BL (Table V)

.

Enrichment of Resistance in Diploid

A diploid of 4B2 x 10P3 was isolated from a mating mixture. The

diploid was inoculated into GGM broth, grown for 4 days and plated to

solid GGM. A clone was isolated and designated (4B2/10P3)r. This

isolate was vegetatively homogeneous in resistance (Fig. 8) . Tetrads

dissected all scored 4:0, resistant: sensitive with all segregants

showing homogeneous, lush growth on GGM plates (Table V)

.

GR6

The vegetative segregational patterns of GR6 and 6/4BL have

already been described in Preliminary Analysis (Table 1) . Tetrad

analysis of 6/4BL has also been described (Table III). Four spores

of a single 1:3, resistant: sensitive ascus of 6/4BL were scored for

vegetative segregation of GR. Of the isolates 6L1, 6L2, 6L3 and

6L4 it was the one which had demonstrated resistance in tetrad
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Table V. Tetrad Analysis of GRIP Derivatives.*
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analysis (6L4) which also yielded the highest value for vegetative

resistance - 71% of segregant clones contained microcolonies on GGM

(Fig. 9) . The others demonstrated values between 40% and 0%

resistant segregatns. Enriched resistance was induced in a micro-

colony isolate of 6L4 in the same manner described above for 10P3r.

This isolate (6L4r) exhibited 100% homogeneous resistance in vegetative

segregants (Fig. 9 )

.

Ethidium Bromide Treatment of 6L4r

Treatment with EB was carried out for 6L4r as described for 10P3 ",

and6L4y&~ was isolated. Diploid isolate 4B2/6L4/5 " resulted from the

cross: 4B2 x 6L4yO ". Vegetative segregants of 4B2/6L4/) " displayed

microcolony resistance in 99% of clones scored (Fig. 9) . Tetrads

dissected also showed relatively high resistance levels with no tetrads

in the 0:4, resistant: sensitive class (Table VI). It is emphasized

that all resistance was of the microcolony type and no full colony

resistance was observed.

Inheritance of Resistance in Cross to a Petite

Diploid 4B2y0~/6L4r was isolated from a mating mixture of

4B2y5 ~ and 6L4r. Homogeneous resistance was elicited from 100% of

vegetative segregants (Fig. 9) . Tetrad analysis suggests a shift

toward greater ratios of resistance than evident in 6/4BL (Table VI)

.

While distribution of tetrad classes did not seem to vary a great

deal between 4B2/6L4^ ~ and 4B20 ~/6L4r, it should be stressed that

qualitative growth responses were quite dissimilar. All resistant

responses scored in 4B2/6L4/J ~ were of the microcolony type, often

with 3 or fewer microcolonies per inoculum. Tetrads of 4B2/D ~/6L4r

yielded resistant ascospore lines which often exhibited lush whole

inoculum growth in three or four segrega nt

.
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Figure 9. Vegetative Segregation of Glucosamine Resistance in

GR6 and its Derivatives.

This figure illustrates the variability and manipulability of

glucosamine resistance in these strains. Each circle represents one

population with the stippled portion representing the percentage of

vegetative segregants that displayed resistance. Where % resistance

<100, the actual value is indicated. Microcolony resistance is indicated

by the appearance of M within the circle.

a. Haploid strain GR6, 100% resistant

b. Diploid strain 6/4BL, 16% microcolony resistance.

c. After sporulation of 6/4BL one tetrad (6L) gave rise to

four sister spores which showed various degrees of

resistance (6L1 ^ 6L4)

-

d. The most resistant spore, 6L4 was subcultured into GGM broth

for 5 days and subsequently tested for glucosamine resistance.

Result - 100% resistant.

e. A highly resistant clone resulting from d. was designated 6L4r

and subjected to the following treatments:

i) elimination of mt DNA with EB followed by crossing to 4B2

ii) a direct cross to 4B2

iii) crossing to 4B2 followed by passage through GGM broth.

f. The resulting diploids 4B2/6L4 , 4B2 /6L4r and (4B2/6L4)r

were tested for % resistance.
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Enrichment of Resistance in Diploid

Backcross of 6L4r to 4B2 resulted in isolation of a diploid

which after enrichment for resistance was designated (4B2/6L4)r. All

vegetative segregants were resistant with homogeneous growth on test

medium (Fig. 9) . Attempts to sporulate this diploid met with partial

success. Ascus production was lower than 10% with complete tetrads

constituting less than 1% of all cells in the sporulation culture.

Asci were poorly formed and irregular in shape which hindered tetrad

dissection. Of the tetrads dissected only 20% contained all viable

ascospores. All tetrads scored showed 4:0, resistant: sensitive

segregation. All resistance was complete and homogeneous (Table VI)

.

Cross Resistance

Drug resistance was determined on YPG agar with the drug added

in the concentration noted.

Strains 6L4r and 10P3r were not resistant to erythromycin

(5 mg/ml) , oligomycin (5/tg/ml) , or chloramphenicol (5 mg/ml) . Type

cultures of mitochondrial mutants obtained from Linnane (E , strain L411,

SAUNDERS et al , 1971), Rank (C E , strain 44-5a, RANK and BECH-HANSEN,

R R
1972), and Griffiths (0 , strain D22-A16, and , strain D22-A13,

AVNER, COEN, DUJON and SLONIMSKI , 1973) did not show cross resistance

to glucosamine.
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Table VI, Tetrad Analysis of GR6 Derivatives*,
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CHAPTER 4

DISCUSSION

Glucosamine Resistance in the Context of the Crabtree Effect

The mechanisms leading to respiratory repression are far from

clear, as discussed in the previous treatment of catabolite repression

and the Crabtree effect (see Review of the Literature) . Some specula-

tion as to the relation of glucosamine induced respiratory repression

to the Crabtree effect is however in order.

Due to the limited penetration of glucosamine into the cellular

metabolism (see Chapter 1, section A) , in all probability only three

major functions exist which could alter cellular metabolism to confer

glucosamine resistance:

1. a mutation affecting the cellular transporter causing limitation

or loss of ability to transport external glucosamine into the

cell (Fig. 1, function I)

2. a mutation affecting the ability of hexokinase to phosphorylate

glucosamine into glucosamine-6-phosphate (Fig. 1, function II)

3. a mutation affecting some as yet unknown mitochondrial function(s)

which mediates the interaction between hexose phosphorylation

and respiratory inhibition. (Fig. 1, functions III—>VTII)

Two of the above mutational classes would probably exhibit

Mendelian inheritance (patterns 1 and 2) since they involve modific-

ations in cytosolic and not mitochondrial components. These mutations

may involve a modified uptake or phosphorylation response to glucosamine



i

—
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specifically and therefore not be candidates for generalized resistance

to the Crabtree effect. Since at the concentrations involved in these

experiments, the bulk of glucosamine may enter the cell through simple

diffusion and not involve a carrier (RENNER et al , 1972) it is probably

unlikely that a mutation involving the membrane bound glucose carrier

would affect the ability of glucosamine to diffuse across the membrane.

On the other hand, a modification of hexokinase, limiting or preventing

phosphorylation of glucosamine, and therefore glucosamine induced ATP

and/or Pi depletion, could constitute an effective block to the chain of

intracellular events leading to respiratory repression. Limitation of

the phosphorylation step may also cause a backup of intracellular

glucosamine, reducing the diffusion gradient and accounting for the

reduced uptake observed in some mutants (ERINGTON and BALL, 1974)

.

Of greater significance from a functional point of view would be

mutation (s) affecting the phosphate economy of the mitochondrion. The

events involved in this level of mutation would directly affect oxidative

phosphorylation, thus not being peculiar to glucosamine induced respir-

atory repression. Such mutation (s) would confer a modified Crabtree

response upon cells regardless of the hexose used to elicit the effect.

In this case, resistance to glucosamine may imply resistance to

catabolite repression. Mutations of this nature could affect at

least two functions.

3 (a) . mitochondrial adenine nucleotide translocator.

3 (b) . oligomycin - sensitive ATPase.
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It has been demonstrated that both nuclear and mitochondrial

gene functions are required for normal activity of translocator and

ATPase (KOVAC and WEISSOVA, 1968; SCHATZ , 1968; AVNER and GRIFFITHS,

1973; HASLAM, PERKINS and LINNANE, 1973) for review see SCHATZ and

MASON (1974) and therefore a number of nuclear and mitochondrial

mutations could conceivably alter the activities of either function.

One plausible mechanism for resistance is a change in the substrate

affinity of the adenine nucleotide translocator. A significant decrease

in the rate of ADP translocation into the mitochondrion (and ATP out)

would limit the rate at which ATP and therefore Pi depletion by hexokinase

in the cytosol could occur. Modification of the mitochondrial inner

membrane and/or the carrier itself could also be involved.

A modified mitochondrial ATPase (oligomycin sensitive ATPase or

F ATPase) could also limit phosphate depletion by making ATP production

limiting. An impaired rate of ADP ^ATP would reduce Pi consumption

and perhaps circumvent depletion. Mutations affecting ATPase structure

could show nuclear inheritance (SCHATZ and MASON, 1974) but those

involving membrane association of the ATPase-membrane complex could be

the result of modificiation(s) of mtDNA (TZAGOLOFF and MEGHER, 1972).

Preliminary Analysis of Mutants

It was assumed that the majority of mutated primary functions

conferring glucosamine resistance would exhibit Mendelian inheritance.

The preceding discussion has indicated that besides glucose transport

and hexokinase activity, the mitochondrial ATP-ADP translocator and

ATPase all come under nuclear control, indeed six of ten peptides
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constituting the mitochondrial ATPase are synthesized completely on

cytoplasmic ribosomes with mitochondrial ribosomal products only

required for membrane binding (TZAGLOFF and MEGHER, 1972; SCHATZ and

MASON, 1974) . Therefore in the name of expediency complementation

testing was attempted between mtp^ and mt a mutants to circumvent the

time consuming necessity of producing mt a and mtpl derivatives of

individual mutants. Interpretation of the resultant complementation

pattern (Fig. 4) in terms of Mendelian inheritance was impossible.

Neither was the pattern wholly similar to that of established

R R
mitochondrial genetic markers (E , ) . The failure of all back-

crosses to parental sensitives except 4B2/112 to show any resistance

whatsoever in replica plating was not similar to the mixed zygote

R R
clones described for backcrosses of E or cytoplasmic mutants

(LINNANE, SAUNDERS, GINGOLD and LUKINS , 1968; AVNER and GRIFFITHS,

R S R S
1970) . Zygotes isolated after mating (E vs E , or O vs ) in

these studies tended to purify during the first buddings to yeild

a mixture of pure drug resistant or pure drug sensitive cell lines

(LUKINS, TATE, SAUNDERS and LINNANE, 1973).

Complementation testing of G strains was first carried out on

zygote clones, and then on sub-clones from streaking of the zygote

lines. Neither procedure produced appreciably different results and

both sets of results were used for the complementation pattern (Fig. 4)

The pattern did not rule out a nuclear mode for inheritance of G in

most of the mutants despite the microcolony resistance response shown

by a large group of crosses.
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The most difficult aspect of the complementation pattern to

reconcile with Mendelian inheritance of G was the lack of a consistent

pattern in any of the groups. For instance, on the basis of complemen-

tation data it may be argued that GR5, GR6, GR8, GR9, GR10, GR120

and GR124 belong to the same Mendelian complementation group. Micro-

colony resistance may be the result of a cross to a complementing but

cytoplasmically resistant mutant. Such a rationale should still yield

consistant complementation behavior for all members of the group. On

this basis the resistance responses of the diploids between GR120 or

GR124 and GR7 or GR62 are anomolous (Fig. 4)

.

The vegetative segregational and tetrad analyses carried out on all

of the mutants helped to establish some of the basic inheritance patterns

for the cytoplasmic G factor (Table I, Table II). Resistance in all

mutants save GR133 seemed to be cytoplasmically inherited. The original

microcolony response observed in complementation testing subsequently

showed itself to be characteristic of the cytoplasmically mixed populations

of diploids formed by a mating between resistant and non-resistant

haploids (Table II) . Again, this was atypical of the similar backcrosses

R 5 TR ^
of E vs E and vs mentioned above. In the case of cytoplasmic

G
t cytomixis seems to result in a dilution effect of the relative

numbers of resistant to sensitive cytoplasmic factors. The lower level

of cytoplasmic resistance does not seem sufficient to confer resistance

on cells with such a cytoplasmic complement. There appears to be no

intracellular selection for or against resistant cytoplasmic factors

as indicated by a lack of significant variation between the microcolony

resistance responses of zygote clones and subsequent vegetative isolates

several vegetative generations removed. Whether the loss of cytoplasmic
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G during cold storage (Fig. 6) is the result of intracellular selection,

long term instability in resting cells, or a low temperature lability is

a matter for speculation at this stage.

The microcolony response can be explained by the following rationale.

It has been suggested (JAMES and SPENCER, 1958) that yeast have no

mechanism for the orderly distribution of cytoplasmic determinants between

buds. On this basis, it may be resonable to interpret the ontogeny

of the microcolony response as the following sequence. A budding yeast

R S
strain with a mixed population of G and G determinants usually

produces daughter cells with a similarly mixed complement of determinants.

R R S
The G level, or ratio of G to G in this strain is not adequate

to confer glucosamine resistance upon it. However, due to occasional

unequal distribution of cytoplasm during budding some daughter cells

arise with the greater G levels necessary to resist glucosamine

induced respiratory repression. In an exponential, glucose grown

population such cells appear to have no selective advantage and do not

serve to increase the relative resistance levels in the population.

When plated to GGM the bulk of such a cell population is growth inhibited

with eventual cell death following (only microcolonies survive in a

subsequent replica plating of a 3 day GGM plate to YPG) . Resistant

vegetative segregants (those receiving higher levels of G in budding)

form the basis of the microcolony response by proliferating in response

to the selection pressure of GGM medium to form the small visible clones

here termed microcolonies. These microcolony cell lines would carry

higher levels of vegetative resistance due to the greater levels of G

inherited from the resistant founding cells. Such a pattern is indeed

displayed by microcolony isolates (eg. 6/4BL and 6/4BLr in Fig. 5).



'
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While the above hypothesis may be somewhat at variance with the

patterns of intracellular selection in mitochondrial E mutants described

by Birky (1973) , it does explain microcolony resistance where E type

mitochondrial selection would not. Birky described the development of

R S
pure E or E cell lines on the basis of intracellular selection, even

in non-selective glucose medium (Thomas 1969) . As already described,

such selection is not evident for cytoplasmic G factors. Cytoplasmic

R SGR mutants maintained a heterogeneous cytoplasmic population of G and G

determinants unless placed under selection pressure for G (enrichment

in GGM broth)

.

The possibility of spontaneous mutation playing a significant

role in microcolony resistance has not been seriously considered for

two reasons. The incidence of spontaneous mutants in parental strains

is extremely low (4B2, 4BL) with none scored for spread plates containing

7,300 colonies after 3 days. Secondly, microcolonies give rise to

sensitive clones with resistant microcolonies (6/4BL r, Fig. 3)

indicating that the microcolony resistance response is an inherited

phenomenon and not due to mutational divergence within cell lines

(c.f. segregation test as applied by BIRKY, 1973). Additional evidence

is supplied by the time scale: microcolony resistance is manifested

between 48 and 72 hrs whereas comparable numbers of spontaneous

mutants do not arise in the parental strains until 6-7 days at 30°C,

if at all (c.f. BIRKY, 1973).

Inheritance and Maintenance of Cytoplasmic G

The requirement for some critical level or ratio of G determinants

in a cell before it manifests glucosamine resistance is implied by the



-
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demonstration of G segregants from a sensitive strain (see 10P3,

Fig. 8) . Cytoplasmic G determinants must exist in such strains

(spontaneous mutants are rarely observed in the parental strains)

yet are not expressed due to a low multiplicity within such cells.

This is the major reason why replica plate testing of point inocula

has not proved an adequate method for assessing the existence of

cytoplasmic G factors.

Similarily it is not necessary for the cytoplasmic determinants to

be 100% G before a glucosamine resistant phenotype can be expressed.

Resistant microcolonies when subcultured to YPD broth and replated show

elevated but still rather incomplete resistance responses (6/4BL r,

in Fig. 5) . A rather simple minded but demonstrative calculation may

be used to clarify this point for 6/4BL r (see A -*D next page)

.

Since no selection pressure was brought to bear on the microcolony

isolate (6/4BLr) prior to replating, the value in (D) may be considered

the upper range for occurance of cells with threshold levels of cytoplasmic

G in a microcolony. The value range in (C) may in all probability be

orders of magnitude low, thus skewing the range of values in (D) to

higher than actual occurence. This calculation thus serves as rather

a dramatic illustration of the heterogeneous composition of even an

apparently resistant cell line (microcolony resistant)

.

Acceptance of such a composition for a resistant microcolony seems

to consitute a paradox ie. a resistant microcolony is composed almost

entirely of sensitive cells. Several factors may be involved in producing

such a situation. Depletion of localized glucosamine, especially on

solid medium may play an important role in the maintenance of a

heterogeneous population of cells in a resistant microcolony. Both





- 78 -

vegetative segregants with microcolonies 100% (A)

usual number of microcolonies per clone 3 to 5 (B)

number of cells transferred from velvet 10 to 10 (C)

to GGM plate per 2-4 mm clone

occurance of cells with threshold resistance in (D)

microcolony isolate

(D) - 5/10- >3/10
6

= 2.0 x 10~ >3.3 x 10

* 85% of clones fell into this range, 12% showed 1 or 2

microcolonies, and 3% showed from 6 to confluent growth

on GGM.

3 6
+ 10 to 10 cells is an assumed range designed to represent

what may be the lower limits of transfer to allow an upper

threshold value for (D)

.
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resistant and wild type (4B2) yeast cells take up glucosamine

(ERRINGTON and BALL, 1974) . Within the perimeter of an inoculum on

solid medium such uptake may result in a locally reduced concentration

of glucosamine allowing the growth of cell lines with cytoplasmic

G complements lower than what would normally be the threshold level.

Such cell lines would possess higher G levels than the bulk of the

background inoculum (thereby permitting establishment of a resistant

microcolony) , but on subculture and replating to GGM would still largely

exhibit sensitivity to the full concentration of glucosamine in the

medium (0.05%). Here again some transgessive cytoplasmically resistant

cells would be able to overcome respiratory inhibition due to the

locally reduced glucosamine content of the medium and estalbish microcolonies.

The micorocolony response in this subsequent plating would presumably

be greater than the original plating, and such is the case (c.f. 6/4BL,

6/4BLr, Fig. 5) . A localized depletion of glucosamine is supported

by observation of an inoculum effect for resistance on solid medium. It

was found that GGM replica plates which had received heavier than usual

inocula demonstrated greater resistance than could be attributed to

transfer of cells with a resistance proportional to the growth increase.

The greater inoculum, by greater uptake, may have reduce the locally

available glucosamine to such a low level that cells with much lower than

ID

what is usually the threshold G content could proliferate in addition

to normal microcolony cell lines. Consequently in the experiments

reported here the GGM plate was always third or fourth in any series of

plates replicated from one velvet pad.
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In contrast, drug resistance is an all or nothing response.

The process of inhibition does not consume the drug and it is therefore

R R
not surprising that G and E transmission exhibit different behaviours.

Another factor which must be considered in the attempt to understand

the nature of the microcolony resistance response, and its relation to

homogeneous resistance, is the intracellular basis of resistance. Strains

or cell lines grown for prolonged periods in selective medium (GGM broth)

will yield isolates of such high resistance that sensitive segregants are

not detectable [10P3r, 6L4r, (4B2/10P3)r, and (4B2/6L4)r, Fig. 8 and

Fig. 9] . Most dramatic of these is the history of 10P3r. This isolate

was derived by glucosamine broth growth of inoculum from a resistant

microcolony on a plate from the vegetative segregational analysis of

10P3, a glucosamine sensitive ascospore of the 10/4BL diploid (Fig. 8)

.

Evidently even cell lines with such low intracellular G complements that

they appear sensitive may be subjected to selection pressure to favour G

R S
determinants and sway the intracellular balance between G and G in

favour of the former. The result of this intracellular selection pressure

is establishment of stable and uniformly resistant cell lines. Does this

selection pressure completely eliminate G determinants? Demonstration

g
of the presence of G determinants in a mostly resistant population would

be very difficult by growth selection on plates as described in this

study. Microcolony sensitivity would be masked by the massive growth

of resistant cells.

The intracellular threshold of G necessary in a cell for eliciting

a glucosamine resistant response is the key to understanding the patterns

of resistance observed in microcolony and highly resistant strains. While
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R S
the concept of a stable, mixed intracellular population of G and G is

not consistent with the patterns observed for vegetative inheritance of

R S
E and E (THOMAS, 1969; RANK, 1970; BIRKY, 1973; LUKINS et al , 1973) it

may confer an extremely advantageous form of glucosamine resistance upon

cells. Erythromycin specifically and directly inhibits mitochondrial

ribosomal functioning (CLARK-WALKER and LINNANE 1966) . Sensitive mitoch-

ondria would rapidly be lost in the presence of erythromycin due to loss

of functionality. The intracellular selection pressure favors E completely.

In comparison, the action of glucosamine on mitochondrial function is

probably only indirect and may vary in severity depending upon the concen-

tration of inhibitor available (see preceding section) . If cellular Pi

depletion is responsible for glucosamine induced respiratory inhibition

R S
a critical balance between G and G within cells growing on glucosamine

medium may be optimal for growth based on the following conjectures.

Some or all cytoplasmic glucosamine resistance mutations affect the rate

at which ATP is made available to cytosol via either production or trans-

port. The mutant phenotype is that of a lower rate of ATP availability,

and therefore a lower rate of energy dependent metabolism. If G is on

mitochondrial DNA (discussed in next section) of which probably 50 to 100

molecules exist per cell (WILLIAMSON, 1969; DEUTSCH, DUJON, NETTER,

PETROCHILO, SLONIMSKI, BOLOTIN-FUKUHARA and COEN, 1974) the total rate

R Sat which ATP is made available would be the sum of output by G and G

containing mitochondria. If demonstration of the existence of only one,

highly branched mitochondrion per cell by HOFFMAN and AVERS (1973) is

R Saccepted, mitochondrial ATP output would be a direct function of the G /G

balance. Even if many mitochondria per cell exist this ratio would still

determine mitochondrial ATP output.
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R S
Alteration of this G /G ratio may produce a whole range of sensitivity

or resistance to glucosamine. For optimum growth at a particular glucosamine

R S
concentration a cell would require a G /G ratio which would incorporate the

P
minimum G complement necessary to prevent severe Pi depletion, and the

S
maximum G possible so as to least limit energy dependent metabolism, and

R S
therefore growth. Such a balance of G /G would obviously have a selective

advantage over more sensitive ratios which would be growth inhibited, but

R S
more significantly the proper G /G level would allow cells to grow faster

P
than a ratio higher in G and therefore more limited in energy metabolism.

The above model could account for the low resistance displayed by

P
microcolonies which would accumulate only the minimum G to allow growth

on solid medium. In liquid medium localized glucosamine depletion would

be minimal requiring GGM broth grown cells to have a considerably higher

R S
G /G ratio. It is not possible to decide whether or not this enrichment

P
process generates 100% G cell lines.

p
Location of G in GRIP

p
The non-Mendelian nature of the G locus in GR10 was rather evident

from the results of Phase I of this study. Microcolony resistance and

vegetative segregation of the resistance response initially lead to this

conclusion (Table I) . Unequivocal confirmation for the non-Mendelian

p
inheritance pattern of G in GR10 was gained from tetrad analysis of the

10/4BL backcross which exhibited tetrad classes including 1:3, 2:2, 3:1

and 0:4 (resistant: sensitive or r:s) all with resistant microcolonies

(Table I) . Demonstration that even sensitive spore isolates could vegeta-

tively segregate resistant microcolonies reinforced the suspicion that

cytoplasmic and not nuclear factors were involved in transmission of G

in this strain.
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The capacity of mitochondrial E mutations to become intracellularly

predominant in cell lines placed under selection pressure has been quanti-

fied by BIRKY (1973) . Under analagous selection pressure (plating to GGM)

the sensitive spore isolate 10P3 (from 10/4BL) displayed some resistant

microcolonies, one of which when subcultured into GGM broth (which placed

it under severe selection pressure) yielded a very resistant isolate 10P3r

(Fig. 6). To demonstrate the extent to which this intracellular selection

could be invoked a further test was carried out. The enriched isolate,

10P3r was crossed to the parental 4B2, and a zygote clone was subcultured

into liquid GGM. An isolate from this treatment (4B2/10P3)r exhibited

dramatically increased levels of resistance over the analagous but unenriched

backcross diploid 10/4BL (Fig. 6) . No sensitive vegetative segregants

were detected from this resistant diploid and 100% of the vegetative

colonies showed confluent resistance. Tetrad analysis was even more emphatic.

All tetrads exhibited 4:0 (R:S) spores [compare (4B2/10P3)r and 10/4BL in

Table V] with each spore showing confluent resistance. Selective enrich-

ability of the phenotypic response (glucosamine resistance) such as has

just been described, along with the non-Mendelian inheritance pattern

displayed in tetrad analysis constitutes very strong evidence for the

cytoplasmic nature of this mutation.

If the basis of cytoplasmic glucosamine resistance in GR10 is a

function ceded by a cytoplasmic DNA such as mitochondrial DNA (mtDNA)

,

then the loss of this DNA should result in a concomittant loss of gluco-

samine resistance. Ethidium bromide (EB) complexes with mtDNA to block

mitochondrial transcription (GRIVELL and METZ, 1973) and produces an acid

labile breakdown product, thus eliminating mtDNA (MAHLER and BASTOS, 1974)

.

Ethidium bromide treatment of the highly resistant isolate 10P3r should

therefore have produced a petite strain (10P3/) ~) which possesed no
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mtDNA and therefore was without the base sequences involved in glucosamine

Sresistance or sensitivity (G°) . Backcross of this G° strain to the G

gparental strain should then have resulted in only G determinants in all

cells derived from zygotes.

Tetrad analysis of the diploid 4B2/10P3/> ~ failed to show any survival

R •
of G determinants in the EB petite 10P3p~ . All tetrads scored unfiormly

as 0:4 (r:s) (Table V), as would be expected if G were a mutation on

mtDNA. Vegetative segregational analysis also suggested that a dramatic

loss of G determinants had been induced in EB treatment of 10P3r. Scoring

of vegetative segregant clones showed that 98% were completely sensitive

to glucosamine with the remaining 2% containing only one microcolony each

(Fig. 8) , also compatible with a mtDNA location for G in GR10 and its

derivatives

.

The reverse series of tests were also carried out to further substan-

tiate the mtDNA location of G in GR10. Tetrad analysis of the EB derived

rho
-
diploid 4B2 /10P3r demonstrated a definite increase in resistant

spores per tetrad over the simple backcross (compare 4B2 A~/10P3r with

10/4BL in Table V. Analysis of vegetative segregant clones also showed

an increase in resistance. The significant appearance of a number of

confluently resistant clones was observed compared to the control 10/4BL

(Fig. 8) . However, neither the increase in vegetative resistance nor the

shift toward greater resistance in tetrads was of the magnitude that one

might predict. Failure of the cross to produce a diploid (4B2ij"/10P3r)

of similar resistance to the contributing resistant haploid (10P3r) as was

predicted may have been due to one or both of the following factors:

m S
1. 4B2^> may contain surviving G mtDNA

S
2. 10P3r may contain residual G determinants.
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Though the EB treatment used to induce 4B2P as well as 10P3/P and

rip

6L4^ was 100% efficient in petite induction it may not have been adequate

to ensure complete elimination of mtDNA. Higher concentrations (104jg/ml)

over equivalent treatment intervals have been employed with more success

(SAUNDERS et al, 1971; BIRKY, 1973) . It may therefore be true that there

was some mtDNA survival in all three induced petites. This must have

been minimal for 1OP3^0"". Another possibility is that while the EB treat-

ment employed was mostly effective at mtDNA elimination, the isolate

4B2^ may have been an unfortunate choice containing surviving mtDNA.

The second of the above factors has already been disucssed at some

length above. It is not possible to decide between these possibilities

on the present evidence. Although the results are not as clear cut as

was hoped, they still strongly support the hypothesis that G is a

mitochondrially located mutation. Further evidence of a mtDNA location

for G in GR10 would be evidence of an alteration in mtDNA in GR10

derivatives or demonstration of recombination between known mtDNA markers

and G . The considerations above, it is felt constitute rather strong

evidence in support of the conclusion that a mutation on mtDNA is the

basis of glucosamine resistance in GR10. It has already been proposed that

this locus be designated [CAT-1] (ELLIOT and BALL, 1975) . That this locus

is different from known mitochondrial loci is supported by the lack of

cross resistance reported in the results section.

Location of G in GR6

In preliminary analysis GR6 displayed much the same patterns of

vegetative inheritance of glucosamine resistance as GR10 (Table I) and

also exhibited similar patterns in tetrad analysis (Table III) . These

patterns were not compatible with classical Mendelian inheritance and

therefore the same series of tests were carried out as for GR10.
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As before, a heterogeneous tetrad was chosen from the backcross

64BL and each spore clone was subjected to vegetative segregational

analysis. Of the three sensitive spores, two (6L1, 6L2 in Fig. 9)

exhibited resistant microcolonies and one failed to show the presence of

resistant determinants (6L3 in Fig. 9). The one spore isolate that had

displayed microcolony resistance in tetrad analysis (6L4) contained

resistant microcolonies in 71% of vegetatively segregated clones (Fig. 9)

.

One microcolony from 6L4 was chosen and enriched from resistance in the

manner described for 10P3r. This isolate 6L4r, showed confluent resis-

tance in 100% of vegetative segregant clones (Fig. 9) indicating that

intracellular resistance levels could be raised under selection pressure

for resistant determinants. Selective enrichability of the G mutation

in 6L4r was further investigated by its backcross to 4B2 and passage of

the resultant diploid through GGM broth. An isolate from this sequence,

(4B2/6L4)r showed greatly enriched resistance in vegetative segregational

analysis (Fig. 9) with confluent resistance in all vegetative clones.

Tetrad analysis was made difficult by low tetrad production in (4B2/6L4)r,

and a high incidence of non-viable spores in tetrads (see Results Table VI)

but all tetrads scored were 4:0, r:s with confluent resistance and no

sensitivity detected. This evidence indicates that the G factor in GR6

behaves in the same manner as GR10 i.e. cytoplasmic inheritance.

The EB induced petite of 6L4r (6L4p") was backcrossed to 4B2 (cf.

10P3/> backcross). In this case however, the diploid 4B2/6L4/>~ rather

than displaying loss or at least reduction of resistance levels over the

simple backcross (6/4BL) displayed more resistant spores in tetrads (Table

VI) . Vegetative segregational analysis of 4B2/6L4p" showed a similar

pattern to 6/4BL with 99% of vegetative segregants containing one or more

resistant microcolonies.
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The results from the reverse cross (4B2
f>

X 6L4r) were very similar

to those described for 4B2/>""/10P3r . Tetrads showed more resistant spore

responses that the simple backcross 6/4BL (compare 6/4BL and 4B2A /6L4r

in Table VI) . Vegetative segregational analysis showed a similar pattern

for 4B2yO /6L4r and 6/4BL with 100% of segregants containing microcolonies

(Fig. 9).

The above behavior of the GR6 derivatives does not unequivocally

support the contention that GR6 contains a mutation on mtDNA which confers

glucosamine resistance. However, no concievable combination of Mendelian

mutations could be considered compatible with the tetrad segregation

patterns observed in these strains (Table VI) . The most likely explan-

ation of the anomalous patterns displayed by 4B2/6L4/J and 4B^/»/6L4r in

tetrad and vegetative segregational analysis is that EB treatment was

unsuccessful in eliminating all mtDNA in 6L4/> and 4B2^ as has already

been discussed above. Partial elimination of mtDNA can lead to suppress-

ive petite production (MEHROTA and MAHLER, 1968; NAGLEY and LINNANE, 1970;

MICHAELIS, DOUGLAS, TSAI and CRIDDLE , 1971). If 6L4y9~ was a suppressive

P -
petite the anomalously high inheritance of G in the 4B2/6L4/D backcross

would be explained. Similar results have been obtained by GINGOLD et al

(1969) with a spontaneous petite of an E strain. Mutant GR6 and its

derivatives do show the cytoplasmic inheritance patterns and intracellular

selection under pressure characterisitc of cytoplasmic inheritance of

altered mtDNA (RANK, 1970; BIRKY, 1973) which are not compatible with

patterns expected from mutation of one or more Mendelian genes conferring

glucosamine resistance.

Subsequent studies on 6L4r using 25/lg/ml of EB for 48 hr produced

6L4 A~ clones (5) which when backcrossed to 4B2 showed no retention of G

at all (A.J.S. BALL personal communication) thus confirming the mitochondrial
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location of G in strain GR6.

Recently, WAXMAN and EATON (1974) have suggested that the strain

D587-4B, the original 4B2, possesses a nuclear gene controlling the

transmission of mitochondrial DNA. If 6L4r did not contain this locus,

4B2 mitochondrial markers would act as suppressives in such crosses.

This might also explain the behavior of 4B2 f> /6L4r and 4B2/6L4 [> (Fig. 9,

Table VI )

.

The Mendel ian Locus gay-1

Occurence of only one nuclear glucosamine resistant mutant (GR133)

in the group studied is not too surprising. Naked, cytoplasmic DNA's

such as mtDNA are more suceptible to U.V. mutagenesis than nuclear DNA

(MOUSTACCHI 1969) . There was some degree of putative cytoplasmic resistance

evident in GR133 as demonstrated by the microcolonies of 4B2/133 (Table II)

.

Since expression of nuclear resistance was much faster (24 hr) than

cytoplasmic resistance (72 hr minimum) , a clear differentiation between

the two responses *as easy. It is clear from the tetrad analyses of

the crosses 4B2 vs GR133 and aLl vs 133F2 (Table II and IV) that the

factor responsible for glucosamine resistance in GR133 is carried on

nuclear DNA.

Because the mutations carried by aLl only covered limited parts

of linkage groups VII, IX and XI (see Appendix I), finding linkage to

known loci in this cross (133F vs aLl) would have been fortuitous indeed.

Though some workers have been so blessed in other studies, the same grace

did not prevail here . Other multi marker strains available at the time

were either sterile or formed asporogenous zygotes with GR133 or 133F2.

Due to such limitations linkage studies of the gay- 1 locus were not

pursued.
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Status of G in the Balance of the Mutants

The discussion of Phase I above covers the entire group of mutants

under study. However, in the light of the discussion of GR133, GR10

and GR6 some final considerations are in order at this point. The apparent

conditional lethality exhibited by the strains GR120, GR124 and GR125 is

R Sof considerable interest in relation to the proposal of an optimum G /G

p
balance in maintaining a heterogeneous cytoplasmic state in stable G

p_mutants. It may well be that the 100% G state is lethal. Rather than

R S
an optimum G /G being merely advantageous perhaps it is an obligate

state for survival on glucosamine medium. It may be then the G loci

in these conditional lethal strains tend to purify themselves vegetat-

p
ively, as do other mitochondrial drug resistant loci (eg. E ; RANK, 1973;

BIRKY, 1973), thus budding off lethal vegetative segregants.

The cytoplasmic inheritance patterns of resistance displayed by

strains GR5, GR8, GR9, GR22 and GR127 were similar to those of GR10 and

GR6 (Table I, Table II, Table III). These mutations are most probably

due to altered mtDNA. Mutants GR7, GR62 and GR112 exhibited rather

anomalous growth characteristics and mating behavior which may or may

p
not have been due to a G mutation. These strains, as well as the cond-

itional lethals mentioned above were unlike the GR10 group (GR5, GR6, GR8

etc.) but still displayed clearly cytoplasmic inheritance patterns

of resistance (Table I, Table II, Table III). On that basis they

probably contain altered mtDNA which may or may not be allelic to [CAT-1]

.

Absence of a larger number of nuclear mutants in the group may not

mean that most catabolite repression loci are on mtDNA but may reflect

mutagen specificity (discussed above) . Continuing characterization studies

on other nuclear and cytoplasmic glucosamine resistant mutants not included

here (Laboratory of Dr. A.J.S. BALL) should help indicate the number of
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Mendelian and mitochondrial functions involved. Subsequent elucidation

of the operational relationships of such mutants should certainly

contribute toward an integrated understanding of mitochondriogenesis.
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ADDENDUM

It has been suggested by Dr. Sherman that some variety of mitotic

recombination phenomenon (MORTIMER AND HAWTHORNE, 1969) might explain

the vegetative segregation phenomena observed for all strains excepting

GR133- A similar result was obtained for mikamycin resistance by Linnane

et al who falsely concluded that vegetative segregation was sufficient

evidence for for cytoplasmic inheritance . These authors started by

isolating mutants in a diploid strain, a practice not followed here (see

METHODS). The mechanism invoked is as follows:

crossover
1—: +~ "* •—:

r1
"12 12

if in this situation 1 and 2 are alleles of the same locus, and 1 2~

- +
and 1 2 are inactive forms of the locus, the equilibrium will exist

between I (resistant) and II (wild type or sensitive). During meiosis

one might observe 2:2 (r:s) segregation (from II) or k:0, 1:3 or 2:2

(from I). One difference between this phenomena and true cytoplasmic

inheritance is that if one isolates k:0 (r:s) tetrads one should not be

able to isolate 0:k (r:s) tetrads (from I). This explanation can only

be used to explain segregation in the haploid strains (Tables I and II)

by postulating a chromosome duplication followed by successive mutations

to give alleles 1 and 2 (see above) in the GR strains. In general,

mitotic recombination events and/or chromosome loss in aneuploids occur at

a relatively constant rate for any one locus or any one chromosome pair

(MORTIMER AND HAWTHORNE, 1969). One would not expect to see the large

variations in segregation rates within strains or between strains if this
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explanation was true , unless one invokes several different GR loci all

of which (co-incident ally) were subjected to chromosome duplication in

the haploid form.

If GR6 and GR10 were aneuploids carrying two different GR loci

,

then the occurence of vegetative segregation in the diploids could

be explained (although not its variability) and also the enrichment for

GR isolates in GGM broth. However, this phenomena cannot account for

the simultaneous observations of 0:U, 1:3, 2:2, 3:1 and U:0 tetrads

(Table III).

Similarly the role of EB and theo mutation in reducing either G or

or G input/output in diploids (Figures 8 and 9) is not explained by

the mitotic recombination theory. This result is much more compatible

with cytoplasmic, and particularly mitochondrial inheritance.

Although it may be possible to construct more complicated nuclear

models, involving multiple copies of nuclear genes and/or chromosomes

to explain the observed data, the most parsimonious explanation which

readily explains all of the observed data for GR6 and GR10 is that of

cytoplasmic inheritance.

Lastly, one must acknowledge that the persistence of mixed (or

R S
apparently mixed) G /G clones through many diploid generations is not

P T> "D "D

typical of the drug resistance markers C , E , and P (LLNNANE,

HOWELL AND LUKINS, 197*0 studied by other workers. We have no

explanation to offer, other than that postulated in the body of the

R S
thesis i.e. some form of positive selection for G /G mixtures.
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Appendix I (a) . Linkage Map of Saccharomyces*

(b) . Linkage Map of Saccharomyces Showing

Markers carried by aLl.

* from MORTIMER and HAWTHORNE (1973)
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Appendix II . Proposed Mitochondrial Gene Maps

All loci represent drug resistant mutation.

a) 0L1 = oligomycin resistance
ERY = erythromyan resistance
CAP = chloramphenical resistance
MIK = mikamycin resistance
SPI = spiramycin resistance

from LINNANE, HOWELL and LUKINS, 1974

b) R , R , R = mutations affecting ribosome functions
I II III

and are equiva ient to go, 85 and 90 in (a)

.

is equivalent to 30, 35 in (a)

is the second oligomycin resistant gene

T = triethyltin resistance
V = venturicidin resistance
P = rho factor

broken lines indicate the presence of unliked loci

on the same mtDNA.

from GRIFFITHS, HOUGHTON and LANCASIRE, 1974
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