

The Surficial Geology, Sedimentology and Geochemistry of the Late Glacial Sediments and Paleozoic Bedrock in the Campbellford Area, Ontario, with Special Reference to the Dummer Complex.

by

MARYANN MIHYCHUK

A thesis submitted to the Department of Geological Sciences in partial fulfillment of the requirements for the degree of Master of Science

BROCK UNIVERSITY
St. Catharines, Ontario

(C) March, 1984

ABSTRACT

The Dummer Complex extends 180 km along the Precambrian - Paleozoic contact from Tamworth to Lake Simcoe. It is composed of coarse, angular Paleozoic clasts in discontinuous, pitted, hummocky deposits. Deposits are usually separated by bare or boulder strewn bedrock, but have been found in the southern drumlinized till sheet. Dummer Complex deposits show rough alignment with ice-flow. Eskers cross-cut many of the deposits.

Dummer sediment subfacies are defined on the basis of dominant coarse grain size and lithology, which relate directly to the underlying Paleozoic formation. Three subglacial tills are identified based on the degree of comminution and distance of transport; the immature facies of the Dummer Complex; the mature facies of the drumlinized till sheet and; the submature facies which is transitional.

Carbonate geochemistry was used for till-bedrock correlation in various grain sizes. Of the 3 Paleozoic formations underlying the Dummer Complex, the Gull River Fm. is geochemically distinctive from the Bobcaygeon and Verulam Formations using Ca, Mg, Sr, Cu, Mn, Fe and Na. The Bobcaygeon Fm. and Verulam Fm. can be differentiated using Ca and the Sr/Ca ratio. The immature facies from 1.0 phi and finer is dominated by the non-carbonate, long distance transported component which decreases slightly downice. The submature till facies contains more long distance material than the immature facies. Sr and Mn can be used to correlate the Gull River immature till facies to the underlying bedrock the other subfacies could not be distinguished from each other or their respective source formation. This method proved to be ineffective for sediments with greater than 35% non-carbonate component, due to leaching of elements by the dissolving acid.

The Dummer Complex is produced subglacially, as the compressional ice encounters the permeable Paleozoic carbonates. The increased shear strength of the ice and pore pressures in the carbonates results in the basal ice zones becoming debris ladden. Cleaner ice overrides the basal debris laden dead ice which then acts as the glacier bed. During retreat, the Simcoe lobe stagnates as flow is cut-off by the Algonquin Highlands.

ACKNOWLDGEMENTS

Foremost, I wish to thank Dr. Jaan Terasmae for his help, patience, encouragement and understanding. My sincerest appreciation to Dr. J.J. Flint and Dr. P. Peach who made time, to Dr. H. Williams who offered and to Dr. E. Mirynech who encouraged me and provided stimulating and very useful discussions. To Dr. E. Nielsen for critically reading the manuscript and suggesting useful changes.

My gratitude to the Ontario Geological Survey for permission to use information collected while in their employment during the 1980 field season.

My appreciation to Cam B. Steele and Peter Brown who provided excellent drafting advice, and to my fellow students, Naveed, Al, Judy, John, Brad, Shane, Barbara and Steve who provided the laughs and moral support when needed most.

I am especially thankful to the University of Winnipeg for adopting me and to my friends Heather Groom and Yvonne Myal who kept me going. To Linda Shydlowsky for typing the manuscript.

I wish to dedicate this work to my family, who without their strength and understanding, this would not have been accomplished.

Dedicated with love to

Johnny and Mom

	TABLE OF CONTENTS	page
ABSTRACT	1	2
	DGEMENTS	4
	CONTENTS	5
LIST OF		7
	ILLUSTRATIONS	8
1.0 INT	RODUCTION	10
1.1	General Statement	10
1.2	Previous Work	10
1.3	Purpose	11
1.4	Location	13
1.5	Present Geological Survey	13
1.6	Bedrock Geology	15
	a.) Precambrian	15
	b.) Paleozoic	16
	i.) Shadow Lake Formation	16
	ii.) Gull River Formation	16
	iii.) Bobcaygeon Formation	17
	iv.) Verulam Formation	19
2.0 SUR	FICIAL GEOLOGY	20
2.1	Introduction	20
2.2	Campbellford Airfield Deposit	20
2.3	Drumlinized Basal Till	20
2.4	Dummer Complex	23
2.5	Ice-Contact Deposits	26
2.6	Glaciofluvial Outwash	28
2.7	Glaciolacustrine Deposits	28
	a.) Shoreline	28
	b.) Littoral and Basinal	29
2.8		31
2.9	Organic Deposits	31
2.1	O Quaternary History	31

TABLE OF CONTENTS con't

			page
3.0		IMENTOLOGY	33
	3.1		33
	3.2	Methods	33
		a.) Field Methods	33
		b.) Laboratory Methods	33
	3.3	Results	37
		a.) Immature Till Facies	37
		b.) Submature Till Facies	44
		c.) Mature Till Facies	46
		Discussion	48
	3.5	Conclusion	52
4.0	GEO	CHEMISTRY	54
	4.1	Introduction	54
	4.2	Methods	55
	4.3	Results	56
		a.) Bedrock	56
		b.) Till	60
	4.4	Discussion	65
	4.5	Conclusion	67
5.0	MOD	EL OF DEPOSITION	70
	5.1	Introduction	70
	5.2	Traditional Interpretation of the Dummer Complex	70
	5.3	Problems with the Traditional Interpretation	71
		a.) Flow Indicators and Morainic Systems	71
		b.) Regional Deglaciation History	72
		c.) Occam's Razor or a Matter of Simplicity	73
	5.4	Determination of Depositional Environment	73
	5.5	Model of Deposition Environment	77
	5.6	Conclusion	81
REFE	RENCI	ES CONTRACTOR OF THE PROPERTY	83
APPE	NDIX	I	88
APPE	NDIX	II	90
APPE	NDIX	III	96

7

Comparison of immature and submature till facies

Aluminum versus insolu ble residue.

Up-ice marble distribution.

Sr content of immature till subfacies.

Mn content of immature till subfacies.

63

64

66

66

68

24.

25.

26.

27.

28.

insolu_ble residue.

	<u>ILLUSTRATIONS</u> con't	page
29.	Active ice conditions over the Algonquin Highlands	77
30.	Ice conditions at the Precambrian - Paleozoic bedrock contact.	78
31.	Overriding of cleaner ice at the Precambrian - Paleozoic contact.	79
32.	Ice stagnation and melt-out of the Dummer Complex.	80
	MAP 1 (In po	ocket)

1.0 INTRODUCTION

1.1 General Statement

The Dummer Moraine is a late glacial feature found along the Precambrian - Paleozoic contact consisting of discontinuous patches of sediment with very coarse, angular Paleozoic clasts. The Dummer Moraine extends as a broad belt from Lake Simcoe to north - east of Kingston.

In recent years there has been renewed interest in a late Wisconsin glacial feature known as the Dummer Moraine. Schluchter (1979), Gadd (1980), and Terasmae (1980) have addressed the problem of the genesis of the Dummer Moraine and its stratigraphic correlation to other features related to the deglaciation of Southern Ontario. This interest has come to the forefront because of the rapidly increasing understanding of ice dynamics through work on modern glaciers.

The commonly used term for referring to this deposit is the "Dummer Moraine", for purposes of this study the term "moraine" will not be used, as the word itself implies a genetic meaning. Rather, the author will use "Dummer Complex" when referring to the feature in general, and "Dummer Complex sediment" or "Dummer Complex till" when referring to the sediments of which it is composed.

1.2 Previous Work

The Dummer Complex has been studied by a number of workers. Early regional studies by Spencer (1889) and Coleman (1890) refer to the feature but it was during the 1950's and 1960's that most of the work on the complex was done by the Geological Survey of Canada. Gravenor (1957), Mirynech (1962) and Henderson (1966) mapped portions of the Dummer Complex and and interpreted the feature as a recessional end moraine. Chapman and

Putman (1966) in their classic work mentioned the Dummer Complex and some of its most striking characteristics and refer to the Complex as a moraine. The Dummer Complex is also a recognized feature on the Glacial Map of Canada (Prest, 1970).

More recently, Schluchter (1979) did more detailed work on the Dummer Complex in the Norwood area and suggested that the feature could be the result of ice dynamics and not necessarily an end moraine. Terasmae (1980) discusses the Dummer Complex as a major geochronological problem, as extensive work in the area has provided no evidence for the moraine's formation. He suggested that it represents an ice stagnation feature produced as the ice thinned along the Algonquin Highlands during the last stages of deglaciation, was cut off, and thereby down wasted in situ. Gadd (1980) discusses the Dummer Complex and suggests it is not a moraine, but rather a feature produced by its' unique geological setting, referring to the fact that the Dummer Complex lies a short distance from or right along the Precambrian - Paleozoic bedrock contact.

1.3 Purpose

The purpose of this study was to map and investigate the "Dummer Complex" in terms of morphology, sedimentology and its' relationship to other glacial and non-glacial features in the map area.

Specifically the purpose was to map the surficial geology of the west half of the Campbellford NTS sheet at a 1:50,000 scale. To determine the relation between the Dummer Complex and the associated sediments in terms of spacial and stratigraphic position. Investigate the lithology of Dummer sediments and correlate to bedrock geology. Define the sedimentary facies, and facies

FIGURE 1. Location map of the Dummer Complex and map area.

Extent of Dummer Complex from Chapman and Putnam (1966).

associations of the Dummer complex and other related glacial sediments. Geochemically analyze the till and the bedrock to investigate the relationship between grain size and the geochemistry. Propose a depositionary model for the Dummer Complex and associated glacial features.

1.4 Location

The Dummer Complex trends east-west in a broad belt from Tamworth to the eastern margin of Lake Simcoe, a length of 180 kilometers. It is discontinuous and varies from 6 km. to 24 km. in width, averaging 16 km.

The study area is between 44° 15'N and 44° 13'N latitude and 77° 30' E to 78° 00' E long_itude in the Campbellford 31 C/5 NTS map sheet (Fig. 1). Two major highways service the area, the TransCanada Highway # 7 and Provincial Highway # 30. The map area has a well developed road network and 4 major communities; Campbellford, Norwood, Hastings and Havelock. The major water systems are the Trent River and 3 lakes; Round Lake, Belmont Lake and Crowe Lake which are located partially in the map area.

1.5 Present Geological Survey

Mapping of the Quaternary geology of the Campbell-ford area was initiated in the spring and summer of 1980 for the Ontario Geological Survey mapping program of Trenton - Campbellford map area. Additional field work was done during the summer of 1981.

Field data were obtained from the examination of available natural and man-made exposures and by the use of soil augers. Two sets of aerial photographs

FIGURE 2. Bedrock geology map.

were used for the aerial photography interpretation, the 1:50,000 Federal photographs for regional trends and 1:15,840 photographs for the delineation of surficial geology units.

1.6 Bedrock Geology

A.) Precambrian

Precambrian bedrock underlies 3-7 percent of the map area, primarily in the north-east corner (Fig. 2). There are 2 inliers in the area, a relatively small inlier 1.5 km south of Belmont Lake and the second which is known as the Preneveau inlier which is found on the north side of Hwy.

7, 3 km. south east of Belmont Lake. Although the distribution and extent of the Precambrian bedrock is very limited, it deserves mention as it has special relationship to the Dummer Complex. Dummer sediments have not been found on Precambrian rock except where a Paleozoic outlier is up-ice as for example 1.5 km. east of Belmont Lake. Schluchter (1979) and Gadd (1980) make reference to this specific relationship.

The Precambrian bedrock is composed mainly of granites, granite gneiss, crystalline limestone and other highly metamorphosed rocks, Henderson (1973) estimates surficial sediments cover 30 percent of the Precambrian bedrock surface. In the map area the Precambrian bedrock surface is almost bare with only one till deposit located at the southern end of the Preneveau inlier. The Precambrian surface is quite rugged with a scoured rock-knob topography. The till which is found over the Precambrian bedrock is generally thin, discontinuous and is composed of Precambrian clasts set in a sandy loose matrix.

B.) Paleozoic

The Paleozoic bedrock was mapped by Winder (1955), Carson (1980) and Liberty (1960). Four formations are recognized in the map area, the Shadow Lake, the Gull River, the Bobcaygeon and the Verulam (Fig. 2), ranging in age from the Cambro-Ordovician to the Middle Ordovician. The Paleozoic rocks terminate in a series of north facing escarpments. The Paleozoic rocks dip gently southwards at 3 degrees.

The major portion of the Dummer overlies the Bobcaygeon and Verulam Formation. There is only one location where the Shadow Lake outcrops and it is north of the Dummer Complex. Therefore, this study concentrates on the other 3 formations. Dunham's (1962) classification for carbonate rocks is used in this study.

- i.) Shadow Lake Formation Carson (1980) describes the Shadow Lake Fm. as consisting of red and green shales, siltstones and sandstones, in beds up to 30 cm. thick.
- divided into 3 members. The Lower Member is a dolomitic feldspathic wacke with a shaley appearance where weathered. This member outcrops 0.5 km. south of Round Lake (Fig. 2). The Middle and Upper Members of the Gull River Fm. are mudstones, generally light to medium grey or dark grey brown with ostracods, stylolites and salt casts characteristic of some beds. The Middle and Upper Members are thick to massively bedded and range from 0.5 1.0 m. in thickness, averaging 0.75 m. (Fig. 3).

FIGURE 3. Upper Member of the Gull River Formation 2 km. east of Round Lake.

The results of petrographic investigation of the Gull River mudstones are given in Appendix I. According to Folk's (1962) classification for thin sections the Middle and Upper Members are composed of micrite to dismicrite depending on the amount of spar in the rock. Allochems include bryozoans, crinoids and ostracods with some clastic fragments of quartz and feldspar.

iii.) Bobcaygeon Formation - The Bobcaygeon Fm. overlies the Gull River Fm. This formation is generally grey to brown wackestone and medium to dark grey wackestone to packstone. The Bobcaygeon Fm. also has a facies of light tan grainstone. This formation is highly fossiliferous. Allochems include brachiopods, crinoids peloids, coral fragments and trilobites. Thin section analysis indicates the matrix is highly variable with pseudospar - and sparite being most dominant (Appendix I). Stylolite fractures are also very common in this formation. Bedding is medium averaging 20 cm. in thickness.

		,	
-			

FIGURE 4. Thin to medium bedded Bobcaygeon Fm. overlying the massive to thickly bedded Gull River Fm. on Hwy. 7, 5km. east of Havelock.

11970 30 D equal w very if the contract of and one to some the

iv.) Verulam Formation - The Verulam Fm., which overlies the Bobcaygeon Fm., is a dark to medium grey coarse grained packstone imbedded with subequal beds of mudstone. Fossil allochems are very abundant including trilobites, brachiopods, gastropods, bryozoans, crinoids with concentrated layers of rip-up clasts. Bedding is thin, averaging 3 - 10 cm. thickness (Fig. 5).

FIGURE 5. The Verulam Formation showing thin beds of interbedded packstone and mudstone 3 km. north of Campbellford.

H C 9H

o rabero

its. The Walls

- town

campbellion.

depositionary period

ford Airfield Jepus. " und

of southern Ontario doeps

than the other glacial day the other glacial day

deposit is covered by larger lake frog aand flanked by the drumlins. The

linized Basel Til.

2.0 SURFICIAL GEOLOGY

2.1 Introduction

The Quaternary deposits were mapped according to the procedures used by the Ontario Geological Survey map units. The areal relations of the surficial units are shown in Map 1 (pocket). Each unit is discussed in a generally chronological order from oldest to youngest.

2.2 Campbellford Airfield Deposit

The assumed oldest Quaternary deposit in the map commonly known as the "Campbellford Airfield Deposit". It is a deposit 38 m above the surrounding surface and is found on Hwy. 30, 4 km. northwest of Campbellford. It is considered to predate ice advance because the drumlins which are the last related to the last major ice flow, are deflected around the Campbellford Airfield Deposit (Fig. 6). This suggests the Campbellford Airfield Deposit predates the drumlin depositionary period. It is not known how the Campbellford Airfield deposit relates to the regional chronology of southern Ontario except that it appears to be older than the other glacial deposits in the area. deposit is covered by later Lake Iroquois near shore sands and flanked by the drumlins. The composition of the feature is not known.

3.3 <u>Drumlinized Basal Till</u>

The basal till which comprises the drumlins and now referred to as "drumlin till" is considered to be the oldest deposit of the last ice advance (Mirynech, 1962).

There are over 364 drumlins in the map area, concentrated in the southern half of the area. The drumlins are situated south of the Norwood esker and

•		

FIGURE 6. Drumlin orientation and assumed flow lines in the Campbellford Airfield Deposit area.

south and southeast the Trent River (Fig. 7). Many of the drumlins are very well developed, reaching heights of over 38 m. in the area between Hastings and Campbellford. The drumlins indicate a southwestwards ice-flow direction.

The till which makes up the drumlins is brown-grey, sandy-silty with sub-angular to subrounded clasts and has a fissile matrix. This till is also found between the drumlins in the southern part of the map area where the drumlins are more dense.

FIGURE 7. Drumlin location and orientations.

2.4 Dummer Complex

The Dummer Complex consists of pitted, hummocky deposits ranging from 1 to 10 meters in thickness, but averaging 3 to 5 meters (Fig. 8). Deposits are located on Paleozoic carbonate bedrock in discontinuous patches separated by expanses of bare to boulder strewn rock plains. Even the mapped deposits of Dummer sediment are often thin and discontinuous with bedrock exposed between hummocks. The Dummer Complex deposits mapped appear to be roughly aligned in the direction of ice flow as determined by the drumlins (Fig. 9).

FIGURE 8. Characteristic pitted, hummocky topography of the Dummer Complex, 6 km. west of Havelock.

FIGURE 9. Relation of Dummer Complex deposits, drumlins and eskers.

The Dummer Complex sediments are characterized by the predominance of large, very angular Paleozoic clasts, often as large as 50 cm. to 1 meter in diameter (Fig. 10). The diamicton is matrix supported and massive, with no apparent clast orientation. The matrix is sandy-silty, brown-grey with weak to well developed fissility.

FIGURE 10. Dummer Complex sediment 6 km. west of Round Lake.

Dummer deposits predominate in the area north of the Norwood esker and Trent River in the Burntwood Point Bay area, becoming less common towards the south. The most southerly deposit occurs 6.4 km. south-east of Campbellford in a drumlinized area. This is one of several areas where Dummer deposits are within an area of drumlins and in some places Dummer sediments are completely surrounded by drumlins (Fig. 9). However, even though Dummer patches and drumlins are found in very close proximity, the sediments have not been found in the Campbellford area and in adjoining eastern areas (Leyland, 1984).

2.5 Ice-Contact Deposits

A hummocky belt of ice-contact sediment 1.6 km. wide and 5 km. long is situated on Hwy. 30 north of Havelock. The deposit was initially mapped as a Dummer Complex deposit because of its topographical expression, but detailed examination revealed a complex association of rapidly changing sediments of basal till, and ice-contact sands and gravels. The deposit has been mapped as a kame - moraine.

Eskers comprise the other ice-contact deposits in the area. The Norwood esker is the largest and best developed. Tributaries from Crowe Lake, Belmont and Round Lake join near Havelock to form a large braided esker complex trending southwest parallel to Hwy. 7. The surface of the Norwood esker is pitted in the area between Havelock and Norwood (Fig. 11 and 12).

Two other eskers are found in the map area. The larger of the two runs through Campbellford southwestwards and the other is 6.5 km. west of it.

FIGURE 11. Aerial photograph of the Norwood esker complex.

The south side of the esker has been modified by Lake Iroquois.

FIGURE 12. Norwood esker showing pitted surface.

a. go bea.

(

2.6 Glaciofluvial Outwash

Outwash deposits are related to the esker systems of the area. Extensive outwash deposits are found along the flanks of the Norwood esker. Two outwash fans are mapped, one associated with an area of Dummer Complex in the northwest corner of the map area and the other south-east of Hastings in a drumlinized area.

2.7 Glaciolacustrine Deposits

a.) Shoreline - Well developed beach deposits are found in the southern portion of the map area. The best developed beach, assumed to be related to glacial Lake Iroquois (Johnston, 1916; Coleman, 1937) is found at an elevation of 197 m asl at Hermiston Lake and rises to 212 m asl by Healey (Fig. 13). Other beach deposits are found in the area, but their correlation is difficult because the deposits are not well developed. The shoreline development in the area north of the Trent River is not definitive, suggesting the lake abutted the ice margin along its northern shore. Minor shore deposits found in the Campbellford area are at lower elevations than Lake Iroquois and are correlated with the lower stages of glacial Lake Iroquois as defined by Mirynech (1962).

FIGURE 13. Differential uplift of the Iroquois strandline, at 9.4 meters per 10 kilometers.

b.) Glaciolacustrine - Littoral and basinal deposits

Extensive areas of sand occur southwest of Campbellford up to Round Lake and beyond the map area. The origin of the sands is unknown and it may have been deposited as littoral sand or glaciofluvial outwash sands. No attempt was made in this study to define the specific origin of the sands.

Silt and clay deposits are found east and south of Campbellford, where deep water sediments were deposited between the drumlins. Two areas of lacustrine deposits have been mapped south of Hastings which do not appear to be related to any specific major post glacial lake level. These deposits consist of massive to laminated silt and clay found in local depressions and are correlated to the Schomberg ponds described by Gravenor (1957).

	,		
	,		

FIGURE 14. Sample location map.

2.8 Older Alluvium

A good exposure of what has been mapped as older alluvium is found 3 km. west of Hasting on the north side of the Trent River. The deposit consists of well rounded clast supported imbricated cobble gravel. The specific origin of these local deposits is not clearly understood, but they appear to be related to the Trent Waterway system.

2.9 Organic Deposits

Peat deposits are found primarily in the northern portion of the map area. Overall they are of minor importance and distribution. The organic deposits are generally less than 2 meters in thickness.

2.10 Quaternary History

The surficial sediments in the map area are all of late Wisconsin age. The only evidence of older deposits is the deflection of drumlins around the feature upon which the Campbellford Airfield was built, commonly known as the Campbellford Airfield deposit.

The last ice advance flowed southeastwards depositing drumlins in the southern portion of the map area. These drumlins are part of the larger Peterbrough drumlin field which Gravenor (1957) attributed to deposition by the Simcoe Lobe.

As the Simcoe Lobe retreated north of the Oak Ridges Moraine, numerous local pondings developed, collectively known as the Schomberg Ponds (Gravenor, 1957). Speculation on the nature of the retreat of the Simcoe lobe has been expressed and Terasmae (1980) suggested that as "the Lake Simcoe lobe thinned over the Algonquin Highlands, large masses of ice became stagnant to the lee of these highlands and the melt-out of englacial debris resulted in the ...Dummer Moraine."

Lake Iroquois came into being with the retreat of the Simcoe Lobe. Glaciolacustrine sands are found between and over Dummer Complex deposits in the Belmont Lake - Crowe Lake area. This relationship has also been reported by Mirynech (1962), Leyland (1984) and Henderson (2973) in adjoining eastern and northern areas. It seems that deposition of the Dummer occured prior to the Lake Iroquois stage dated 12,500 B.P. Lake Iroquois drained shortly after 12,000 B.P. (Karrow, et. al., 1975; Terasmae, 1980) with several lower lake stages developing for short periods of time (Mirynech, 1962).

•	

3.0 SEDIMENTOLOGY

3.1 Introduction

Sedimentological characteristics of the Dummer Complex and other glacial deposits were examined. Properties studied included structure, texture, bedding, dominant coarse grain size, pebble lithology and roundness. The purpose was to characterize the sedimentological properties of the Dummer Complex and thereby define the till facies; then to determine the relationship of the till facies.

3.2 Field Methods

Dummer sediments are found in roadside sections where rapid slumping make fresh exposures difficult to locate. Samples were collected 30 cm. to 70 cm. into the face of the exposure, as it was generally not manually possible to excavate any deeper. This resulted in the collection of samples which have probably been affected by soil forming processes. It is considered unlikely that even if deeper excavation were possible, unaltered samples could be collected because of the coarse characteristics of the sediment. The degree of alteration is unknown. A total of 71 locations were sampled (Fig. 14).

At each sampling location a sediment matrix sample was taken as well as a separate random pebble collection of approximately 100 clasts ranging from 1 cm. to 6 cm. in diameter.

B. Laboratory Methods

Pebble Counts - Pebble collections from Dummer deposits and from the basal till of the drumlins were washed and cracked to expose unweathered surfaces. The clasts were then categorized according to lithology and roundness.

i.) Lithology

Pebbles were first divided into 2 groups, the Precambrian clasts and the Paleozoic clasts. The Precambrian clasts included granites, gneisses and gabbros. Many of the pebbles, particularly the gneisses, were very friable and broken into a number of fragments. In those situations where the pieces were identifiable as belonging to one clast, they were counted one pebble.

The Paleozoic clasts were subdivided into formations. The clasts included mudstones, feld-spathic wackes, wackestones, packstones and some grainstones of the Gull River, Bobcaygeon and Verulam Formations. Analysis of fresh and weathered surfaces of bedrock outcrops provided information for identifing pebble lithologies (Table 1).

Identification of the clasts as to their formation was difficult because of the variety of lithologies found in each formation. Particular difficulty occured in differentiating the wackestone of the Bobcaygeon Formation from the wackestone of the Verulam Formation. This is because the boundary defining the Bobcaygeon and Verulam is based on bedding characteristics (Carson, 1980). The Verulam Fm. is identified when the beds of wackestone are of sub-equal thickness to the beds of mudstone, and the lithological change from primarily a wackestone in the Verulam Fm. is gradational. In situations where the clast could not be specifically defined as either Bobcaygeon or Verulam, preference was given to the underlying bedrock formation.

	Rock		-			Surface	A110-	Dist.
	Type	Lithology	Color	Friability	Texture	Texture	chems	Charact.
Precambrian	variable	variable	variable	high	cryst.	smooth	absent	hardness
Gull River	mudstone	micrite	lt. grey- lt. brown	low	fine	smooth	few	lith.&color
	feldspathic- wacke	micrite with non-carbonate grains	red-green	high	fine	smooth	v.few- absent	rock type & color
Bobcaygeon	wackestone	sparite	pinkish	medium	fine- medium	smooth - mod.	mod. abundant	color
	grainstone	carbonate grains	med.grey	medium	cryst.	mod.rough frag.	frag.	rock type
Verulam	packstone	packed sparite	med.grey	medium	coarse cryst.	rough	v. abund.	allochem
		micrite	v. dark grey	medium	fine cryst.	smooth	few	oxidized zones

Table 1 Identifying Characteristics for Pebble Classification

FIGURE 15. Photographs of the Gull River, Bobcaygeon and Verulam immature subfacies.

Total Control Control

ſ.;.

ii.) Roundness

Roundness was determined using Folk's (1968) visual roundness chart for all the samples after the clasts were identified. Five categories were recognized; very angular, angular, sub-angular, sub-rounded, and rounded.

iii.) Till Matrix Grain Size Analysis

Sediment samples were first soaked and then wet sieved using deionized water. Samples were then dried and sieved at 1/2 phi intervals between 2.25 \emptyset and 4.00 \emptyset . The silt and clay fraction was retained for geochemical analysis.

3.3 Sedimentology Results

Field observations of glacial sediments led to the recognition of three gradational till facies. The 3 facies are referred to as the immature, submature and mature till facies related to the Dummer Complex, the drumlinized basal till and a transitional sediment.

A.) Immature Facies

The immature facies which covers most of the map area is generally associated with the classic Dummer Complex. The coarse fraction is dominated by large, angular clasts of Paleozoic bedrock. The size of the clasts range from over 2 meters in diameter to less than 5 cm. the average being dependant on the bedding patterns of the source bedrock (Fig. 15). The immature till which is dominated by the Gull River Fm. is generally boulder dominated with the average being 0.5 - 1.0 m. in diameter. The immature till on the Bobcaygeon Fm. is dominated by cobble sized clast, averaging 0.25 - .50 m. in diameter, while the immature

till on the Verulam Fm. is characterized by pebble sized clasts. The size and angularity of the coarse component of this facies is the most prominent characteristic.

The matrix is sandy-silty with an average sand content of 42.55 percent and mud content of 20.63 percent (Table 2). The color is generally grey-brown with an overall loose structure and poor to well developed fissility.

Sedimentological characteristics of the immature till facies as observed in the field are given in Table 3.

		Pebble	Sand	Mud	Sand/Mud Ratio
57	Igr	32.54	50.77	16.69	3.04
55	Ibb	26.70	49.30	24.00	2.05
48	Ibb	34.16	40.67	25.17	1.62
44	Ibb	39.66	34.27	26.07	1.31
43	Ibb	30.75	42.24	27.01	1.56
36	Ibb	69.21	21.91	8.88	2.47
35	Ibb	40.49	37.53	21.98	1.71
34	Ivr	43.00	30.03	26.97	1.11
30	Ivr	27.05	49.87	23.08	1.16
05	Ivr	24.68	68.89	6.43	10.71
	means	36.82	42.55	20.63	2.77

Table 2. Grain size analysis by weight percent of the immature till facies.

Morphological

Sedimentological

- Situated on Paleozoic bedrock Very coarse
- Down-ice of Precambrian contact Dominant clast size
- Hummocky and pitted
- Down-ice lineations
- Discontinuous patches
- Close proximity with drumlins and eskers
- Average height 3-5m

- varies with bedrock
- Clasts angular
- No bedding or stratification
- No observed pebble fabric
- Matrix shows weak fissility

Table 3. Morphological and sedimentological characteristics of the immature till facies.

Field observations suggest a good correlation between the boulder - cobble size fraction of the immature till facies to the underlying Paleozoic bedrock formations. The immature till facies was subdivided according to the underlying formation.

i.) Pebble Counts:

Pebble counts on clasts collected from the immature till facies sites are given in Table 4. Of the 48 locations, 10 were on the Gull River Fm. 20 from the Bobcaygeon Fm. and 18 from the Verulam Fm. In most situations the clasts are primarily derived from the underlying formation, except at those locations which are located, slightly down ice from the contact between two formations.

Contours of the pebble counts are shown in (Fig. 16). Maps were constructed for the 3 Paleozoic formations, but not for the Precambrian component because of the low percentages in the samples. The average percentages of the Precambrian component is given in Table 5.

mple	Bedrock		% Lith				minant	% Other			
mber	Fm.	PC	GR	BB	VR	Li	thology		Lithology		
51	GR-Im	1.0	99.0	-	-		GR	1.0	99.0		
57	GR-Im		78.0		-		GR	22.0	78.0		
60	GR-Im	-	100.0	-	-		GR	-	100.0	n = 10	
62	GR-Im	-	100.0	-	-		GR	-	100.0		
63	GR-Im	-	100.0	-	-		GR	-	100.0	Gull River	
77	5B-Im	2.7	52.7	44.6	-		GR	47.3	52.7		
78	BB-Im	6.2	61.1	32.7	-		GR	38.9	61.1	subfacies	
79	BB-Im	1.0	92.4	6.6	-		GR	7.6	92.4		
81	BB-Im	5.6		32.3	-		GR	37.9	62.1		
84	GR-Im	4.6	95.4	-	-		GR	4.6	95.4		
	mean	4.3	84.1	11.6							
28	BB-Im	-	400	100.0	-	BB		•	100.0		
.36		-	-	100.0	-	BB		-	100.0		
37	BB-Im		10.8	87.2	-	BB		12.8	87.2	n = 20	
40			11.5	81.6	-	BB		18.4	81.6	Pohoning	Cub
42			30.7	64.6	-	BB		35.4	64.6	Bobcaygeon	
43	00	-	-	100.0	-	BB		-	100.0		facio
44		-		100.0	_	BB		13.3	100.0		
55	BB-Im		11.5	86.7	_			5.6	94.4		
58	BB-Im		4.6	94.4		BB		5.5	94.5		
59	BB-Im BB-Im		4.2		_	BB		3.6	96.4		
70 72	BB-Im		0.9	96.4	_	BB		1.0	99.0		
73	BB-Im		9.9	89.3	_	BB		10.7	89.3		
75	BB-Im		-	100.0	_	BB		-	100.0		
76	BB-Im		1.0	98.0	_	BB			98.0		
80	BB-Im		-	94.7	_	BB		5.3	94.7		
82	VR-Im		3.8	65.1	20.7	BB		34.9	65.1		
48			3.6	48.8	45.2	BB		51.2	48.8		
86		0.9	3.5	92.0	3.5	BB		8.0	92.0		
87		4.0	1.0	95.0	-	ВВ		5.0	95.0		
	mean	2.3	4.8	89.4	3.5		-				
01	VR-Im	_	_	1.8	3.1	81.9	VR	18.1	81.9		
02	VR-Im	-	-		5.1	93.9	VR	6.1	93.9		
05	VR-Im	-	-			100.0	VR	-	100.0		
07	VR-Im	1.	6 -		2.5	95.9	VR	4.1	95.9		
12	VR-Im		8 0.9		1.8	95.4	VR	4.6	95.4		
15	VR-Im	_	-		5.4	93.6	VR	6.4	93.6	n = 18	
17	VR-Im					100.0		-	100.0		
21	VR-Im		0 10.0			81.0		18.0	81.0	Verulam	
24	VR-Im		6 1.9		5.6	80.9		19.1	80.9	faci	es
29	VR-Im		7 11.9		2.6	74.B		25.2	74.8		
30	VR-Im		1 1.1		2.3	75.5	VR	24.5	75.5		
33	VR-Im				1.2	94.1		5.9	94.1		
34	VR-Im	-	0 10.7		8.6	71.4		28.6	71.4		
66	VR-Im				5.4	92.0		B.0	92.0		
	VR-Im				1.0	98.0		2.0	98.0		
68	VR-Im		9 -		0.9	97.2	VR	2.8	97.2		
69	VR-Im	-			3.7	54.2	VR	45.8	54.2		
69 83						98.3	VR	1.7	097		
69	VR-Im	-	-		1.7	70.3	AV	1.7	98.2		

Table 4. Pebble counts of the Gull River, Bobcaygeon and Verulam immature till subfacies.

	,		

FIGURE 16. Isomlet's of the Cull Diver, Bobcaygeon and Verulam Formations in the immature till facies. Contour interval is 20 percent.

Immature Till	Average Precambrian
Subfacies	Component (%)
Igr	4.3
Ibb	2.3
Ivr	1.3

Table 5. The average Precambrian component in percent for the 3 immature till facies; Igr - Immature Gull River facies, Ibb - Immature Bobcaygeon facies - Ivr - Immature Verulam facies.

The pebble contours from the immature facies follow formational contacts. In those areas where few samples were collected the contours were drawn to follow the formational contacts as supported by the areas where sample locations are abundant. A cross section of isopleths and bedrock geology is illustrated in Fig. 17.

FIGURE 17. Cross-section isopleths and bedrock.

The rapid increase of a particular formational constituent is directly related to the underlying bedrock. The immature facies reflects the underlying formation in the pebble size range within 1 to 3 kilometers from the contact. This relationship between the immature facies and the underlying bedrock was used for bedrock identification in those areas where outcrops were absent.

ii.) 'Roundness

The immature facies is dominated by angular to subangular clasts. The dominant roundness class is angular for all 3 subfacies, averaging 60.7% for the Gull River, 64.2% for the Bobcaygeon and 70.1% for the Verulam. Rounded and subrounded clasts are not common (Table 6). The percentage of rounded clasts was an average 0.5 and the subrounded clasts averaged 3.1 percent. The degree of rounding appeared to be related to the clast lithology as illustrated by sample 57. This sample is dominated by the Lower Member of the Gull River Fm. which is very soft and highly friable.

B. Submature till facies

The submature till facies is found at the southern margins of the area dominated by Dummer deposits and at the northern margin of the area dominated by drumlins. Nine locations have been mapped in the area (Fig. 14). The morphology of the deposits is hummocky and indistinguishable from deposits of the immature till facies. Sites of submature and immature facies can be found together in the same deposit, for example sites 15,16 and 6, 7.

							1	Dominant
							1	Round-
Comple	Till Facies	Number Counted	Very Angular	Roundness Angular	Sub- Angular	Sub- Rounded	Rounded	ness Class
Sample	racies	Counted	Vudatat	Angulat	Angulai	Rounded	Rounded	Class
51	Igr	104	9.6	30.8	54.8	3.8	1.0	SA
60	Igr	110	24.5	75.5		-	-	A
62	Igr	121	45.5	54.5	-	-	-	K
63	Igr	119	7.6	49.6	35.3	5.9	1.7	A
64	Igr	124	8.1	37.9	34.7	12.9	6.5	A
77	Igr	110	18.2	70.0	8.2	0.9	2.7	7
78	Igr	113	11.5	71.7	14.2	2.6	-	/
79	Igr	107	8.6	67.6	20.0	3.8	_	A
81	Igr	124 108	23.4	72.6 76.8	4.0 13.0	_	_	A
*57	Igr Igr	109	10.2	7.3	43.1	47.7	1.8	SR
n=10			16.7	60.7	22.7		1.4	A
n+10		mean	16.7	60.7	22.1	3.0	1.4	A
28	Ibb	114	13.2	86.8				
36	Ibb	100	12.0	85.0	3.0	_	_	A A
37	Ibb	102	6.9	58.8	24.5	9.8	_	A
40	Ibb	87	27.6	51.7	12.6	4.6	_	۸
4.2	Ibb	127	7.1	59.8	18.9	11.0	3.1	Ä
43	Ibb	166	6.0	73.5	20.5	-	-	A
4.4	Ibb	191	8.9	64.9	24.6	1.6	-	Ä
48	Ibb	84	-	84.5	11.9	3.6	-	Λ
55	Ibb	113	-	24.8	73.5	1.8	-	SA
58	I bb	108	13.9	69.4	16.7	-	-	A
59	Ibb	165	6.1	43.0	31.5	16.4	3.0	A
70	Ibb	110	2.7	28.2	50.9	16.4	1.8	SA
72 73	Ibb Ibb	101 121	6.9	88.1	4.0	1.0	-	A
7.5 7.5	Ibb	106	0.8	38.0	44.6	15.7	0.8	SA
76	Ibb	103	5.8	78.6	14.6	1.0	-	A A
80	Ibb	114	7.9	74.6	17.5	1.0	-	A
82	Ibb	106	8.5	50 9	23.6	9.4	8.5	A
86	Ibb	113	6.2	82.3	4.4	6.2	0.9	A
87	Ibb	101	8:9	61.4	25.7	4.0		A
n=20		mean	8.1	64.2	21.5	5.1	0.9	A
				0	25	3.1	0.9	n
01	Ivr	116	3.4	80.2	16.4	_		F ₁
02	Ivr	115	15.7	75.7	8.7	-	_	A
0.5	Ivr	114	9.6	76.3	12.3	1.8	_	, A
07	Ivr	121	19.0	77.7	1.6	1.6	-	A
1.2	Ivr	110	13.6	63.6	14.5	8.2	-	. A
15	Ivr	110	31.8	66.4	1.8	-	~	A
17	Ivr	129	19.4	79.8	0.8	-	-	A
21	Ivr	100	10.0	63.0	16.0	10.0	-	Λ
24 29	Ivr	157	3.8	89.2	5.7	1.3	-	A
30	Ivr Ivr	135	2.2	63.0	28.9	5.9	-	A
33	Ivr	94 118	1.1	51.1	40.4	5.3	2.1	K
34	Ivr	112	2.7	84.7 64.3	10.2 15.2	12.4	-	A
66	Ivr	125	2.7	64.8	21.6	13.4	4.5	V
68	Ivr	102	1.0	57.8	31.4	8.8	1.6	A A
69	Ivr	107	10.3	79.4	9.3	0.9	1.0	٨
83	Ivr	96	28.1	54.2	16.7	1.0	-	Ä
n=17		mean	10.4	70.1	14.8	4.1	0.5	Λ.

Table 6. Pebble roundness results for the immature till facies.

The sediments of the submature till facies are less stoney than the immature till facies but are considerably more so than those of the mature till which comprises the drumlins. The sediment is browngrey and has a sandy-silty matrix ranging from 40 to 50 percent sand and 15 to 38 percent mud, with a dense to loose structure. The matrix shows well developed fissility and there is no apparent stratification. The submature till facies varies in sedimentological characteristics and is characterized by its variability. It is recognizably not immature or mature till facies but has characteristics that are transitional between these two facies.

Pebble counts and roundness determinations are shown in Table 7. Most samples lie on the Verulam Fm. except for site 74 which is on the Bobcaygeon Fm. The average percentage of Precambrian clasts is 4.7. The dominant roundness class is angular to subangular and the average amount of subrounded and rounded clasts is only 14.8% compared to 75% for the immature facies and 41.5 for the mature facies.

C.) Mature Till Facies

The mature till facies comprises the drumlinized areas regionally, and shows all the characteristics of a lodgement till. The matrix is silty-sandy, and massive. Clasts are subrounded to sub-angular and have an orientated fabric (Mirynech, 1962). The till appears to be overconsolidated and shows well developed fissility.

(This page does not exist in this thesis)

Pebble lithology and roundness determinations were done on five samples (Table 8).

The samples were all collected from drumlins on the Verulam Fm. The average content of Precambrian clasts was 7.6 percent, the Gull River Fm. clasts constituted 5.5, the Bobcaygeon Fm. 65.2 and the Verulam Fm. 20.9 percent. The pebble population is dominated by the Bobcaygeon Fm. clasts unlike the immature and submature till facies, suggesting longer distance transport.

Sample		8	Lith	ology			Roui	ndnes	5	
Number	n=	PC	GR	BB	VR	VA	A	SA	SR	R
03 09 61 65	103 125 137 118 111	9.7 5.6 9.5 5.9 7.2	3.2 5.1 5.9	77.7 47.2 68.6 45.8 86.5	44.0 16.8 38.1	- - 0.8	51.2 3.8 29.7	37.6 41.4 38.1	29.1 10.4 36.1 18.6 43.2	0.8 18.8 8.5
	mean	7.6	5.5	65.2	20.9	0.4	21.4	35.8	27.5	14.0

Table 8. Pebble counts and roundness determinations for the mature till facies.

2.4 Discussion

The immature till facies which comprises most of the Dummer is distinctive and easily recognizable even though it overlies three Paleozoic bedrock formations of varying lithological and structural characteristics.

,			

The most striking feature of the immature facies is the abundance of the coarse fraction and angularity of the clasts and the morphology of the deposits. This is even more striking when compared to the till comprising the drumlins which lie in very close association with patches of the Dummer Complex.

Pebble counts of the three till facies are shown in Fig. 18. The sample sites all lie on the Verulam Fm. and are from approximably the same area. The pebble fraction of the immature till is dominated by the underlying bedrock type to the vertual exclusion of other lithologies. The mature till has less of the local component and a correspondingly high percentage of long distance transported clasts. The lithology of the submature facies is intermediate between the two other facies.

FIGURE 18. Histograms of percent lithology for the immature, submature and mature till facies.

Roundness determinations for the three till facies also show a trend (Fig. 19). The immature facies is dominated by the angular class, while the submature facies is angular to subangular and the mature facies is subangular to subrounded. Table 9 outlines the characteristics of the three facies.

FIGURE 19. Roundness in percent for the immature, submature and mature till facies.

	Immature	Submature	Mature
Morphology	Hummocky	Hummocky - Rounded	Rounded
Lineation	Roughly	Weak - strong	Strong
Dominant grain size	Clast	Clast - Matrix	Matrix
Structure	Loose	Loose - Dense	Dense
Stratification	None	None	None
Matrix	Silty - Sandy	Silty - Sandy	Silty - Sandy
Orientated Fabric	Non decernable	Non decernable - Weak	Well developed
Pebble Lithology	Local	Primarily local	Long distance and local
Fissility	Well developed	Well developed	Well developed
Roundness	Very Angular -	Angular -	Sub-angular to
	Angular	Sub-Angular	Sub-rounded

Sedimentological characteristics of the immature, submature and mature till facies. 6 Table

3.5 Conclusions

Three till facies are recognized in the map area; an immature facies which comprises the Dummer Complex, a submature facies which is mapped with the Dummer Complex but has properties of both other two facies, and a mature till facies which comprises the drumlinized area.

The Dummer Complex is of predominantly one till which is composed of coarse, angular clasts in a silty-sandy matrix. The coarse fraction consists primarily of clasts of the underlying Paleozoic bedrock formation. On the basis of dominant lithology, which is the underlying formation, three subfacies of the immature facies are recognized. The immature subfacies differ in lithology and the size of the dominant coarse fraction, relating to bedrock bedding patterns. The immature facies matrix which is grey-brown, silty-sandy with fissility and massive appears to remain relatively constant. The Dummer Complex deposits show rough alignment with the ice flow direction.

The mature till facies comprises the drumlinized till sheet has all the characteristics of lodgement till. This till appears consistant regionally and has undergone long distance transport.

The submature till facies, although indistinguishable morphologically from the Dummer Complex has characteristics of the immature and mature till facies. The submature till facies has a greater amount of rounding than the immature facies and much less than the mature facies. Clast lithology shows a dominance of local bedrock clasts but less than the immature till facies.

The three till facies appear to be in a continuum related to ice transport. The immature facies shows little to no transport, the submature a variable amount and the mature till facies reflects long distance ice transport. The exclusion of the immature and mature till facies suggests the processes were mutually exclusive and contemporaneous.

4.0 GEOCHEMISTRY

4.1 Introduction

The close association of the dominant lithology in the Dummer sediments to the underlying Paleozoic carbonate bedrock formations, was illustrated in the previous chapters. To see if this relationship also holds for the finer grain sizes samples were analyzed geochemically.

A selective leach technique for carbonates developed by Brand and Veizer (1980), was used in an attempt to recognize geochemical signatures for the Gull River, Bobcaygeon and Verulam Formations in the map area. (Leyland-Mihychuk and Brand, 1982). The aim of the geochemical study was to (1) establish geochemical signatures of the three Paleozoic formations, and to (2) correlate these geochemical signatures to the sediments comprising the Dummer Complex in various grain sizes if possible and thereby (3) gain some indication of the processes of erosion, transport and deposition of the glacier during the formation of the Dummer Complex.

There have been numerous attempts to correlate till to bedrock in order to determine provenance (Warren and Delavault, 1961; May and Dreimanis, 1973; Shilts, 1973; Stea and Fowler, 1979). These studies used bulk rock methods on a particular grain size range, usually the mud fraction. This approach has certain inherent disadvantages, such as the masking of various elements due to their concentration in certain rock types, as the lithology of the Dummer sediments is directly related to the Paleozoic carbonate bedrock it would be advantageous to remove the Precambrian fraction thereby making correlation of the

carbonate fraction of the till to the carbonate bedrock much more direct.

4.2 Method

Bedrock and till samples were analyzed chemically in the same way. The till samples were pretreated in the following manner.

The till samples were first wet sieved on a 63 mesh stainless steel screen using deionized water. The coarse fraction was dry sieved at 1/2 phi intervals from -0.05 phi to 4.00 phi and the silt and clay fraction retained. The individual sieved fractions were then powdered. Bedrock samples were cleaned and then powdered manually.

The powdered samples were oven dried and cooled in a dessicator after which 0.5 gram of sample was leached with 18 ml of (5% v/v) HCl for 5 hours (Brand and Veizer, 1980). The insoluble residue was washed and weighed. The sample solutions were analyzed on a Varian 1475 atomic absorption spectrophotometer with HP. 85 control. The samples were analyzed for Ca, Mg, Sr, Na, Fe, Al, Cu, Mn, Zn, Ba and Ni.

Intially the 2.0 and 4.0 phi fractions were analyzed on 3 selected till samples. Once the method was tested for effectiveness in identifying chemical trends in various grain sizes, the number of fractions were increased. For some samples all 1/2 phi fractions were analyzed. For others only selected fractions were analyzed to confirm geochemical grain size trends identified by the 1/2 phi fraction till analysis.

4.3 Results

A.) Bedrock Geochemistry

Samples of the three Paleozoic formations were collected from eleven bedrock outcrops and five Dummer Complex locations (Fig. 20). Dummer Complex sites were used where bedrock outcrops were not available. In total, 32 bedrock samples were analyzed for 11 elements and insoluble residue (I.R.). All chemical data are given on 100 percent carbonate basis in parts per million except for I.R. which is reported in weight percent Apprendi II.

FIGURE 20. Site location map of bedrock geochemistry samples collected from bedrock and immature till sites.

	•	

Ten Gull River, ten Bobcaygeon and twelve
Verulam Formation samples were analyzed. Access
to bedrock outcrops of the Gull River Fm. was
particularily difficult in the map area.
Therefore, in 4 of the 5 locations pebbles were
collected from Dummer Complex sediments overlying the Gull River Fm.

Average accuracy and precision as compared with standard rocks NBS- 631 and 634 is better than 5 relative percent for Ca, Mg, Sr, Mn and Fe, and better than 10 relative percent for Cu, Na, Zn, Ba, Al and Ni (ef. Brand and Veizer, 1980). Insoluble residue was determined gravimetrically and precision was better than 7 relative percent.

Statistical analysis of the bedrock geochemistry is given in Appendix II. A difference
of means test (student's t test) was used to
define significant differences between the formmations at the 95 percent confidence level.
The results of the student's t - test are summarized in Table 10.

Formations T - Tested	I.R.	Ca	Mg	Sr	Cu	Mn	Fe	Na	Zn	Ва	Al	Sr/CA ratio
Gull River to Bobcaygeon	Х	Х	Х	Х	-	Х	Х	Х	Х	_	-	Х
Gull River to Verulam	Х	Х	Х	Х	Х	Х	Х	х	-	-	-	Х
Bobcaygeon to Verulam	_	х	_	_	_	_	_	_	Anton	_	_	Х

Table 10. Results of t-test for the bedrock formations;
X significant difference - no significant difference

Calcium and the strontium - calcium ratios are significantly different between all three formations. The I.R., Mg. Sr, Mn, Fe and Na differentiates the Gull River Fm. from the Bobcaygeon and Verulam Formations. Cu is significantly different between the Gull River and Verulam Fms. Ba and Al show no significant difference between means for any of the formations.

Figure 21 illustrates the relationship of mean and standard deviation of the Gull River, Bobcaygeon and Verulam Formations for I.R., Ca, Sr, Mn, Fe, Na and the Sr/Ca ratio, all of which showed a significant difference of means between at least two of the formations.

Insolu ble residues decrease from the Gull River to Bobcaygeon to the Verulam Formation, whereas the values of Ca and Na show the opposite trend. The mean values of Mn and Fe for the Gull River Fm. are substantially higher than for the other two formations which are similar in values. The Bobcaygeon Fm. has the highest values of Sr and Sr/Ca ratio. The Verulam Fm. and the Bobcaygeon Fm. both have lower mean values of 230 ppm and 500 ppm respectively (Fig. 20).

Geochemically the Gull River Fm. is chemically distinct from the Bobcaygeon and Verulam Fms. for I.R., Ca, Mg, Mn, Fe and Na. The Bobcaygeon and Verulam Fms. can only be differentiated using Ca and the Sr/Ca ratio.

FIGURE 21. Means and standard deviations for the Gull River, Bobcaygeon and Verulam Formations.

	Y		
		•	

B.) Till Geochemistry .

Nine till samples were selected for geochemical analysis; six are of the immature facies and three are of the submature facies. Figure 22 illustrates the location of the till sites on the underlying bedrock.

The samples were sieved as described previously and a total of 64 samples were analyzed (Appendix II).

FIGURE 22. Location of till samples collected for geochemical analysis.

The non-carbonate component is represented by the insoluble residue. In the till samples, the I.R. increases rapidly form - 1.5 phi to 4.0 phi, decreasing slightly in the silt and clay fraction (Fig. 23).

FIGURE 23. Insolumble residue in weight percent for the Gull River, Bobcaygeon and Verulam Formations, and the immature till subfacies.

Comparison of the **insoluble** residue of the immature and the submature till facies, at locations approximately the same distance downice. (Fig. 24), shows that the submature facies has a greater Precambrian Shield component. The difference increases from 13% at -0.05 phi to 24% at 1.0 phi, indicating the submature till facies is transporting a greater amount of long distance material than the immature till facies.

The Precambrian Shield component, representing long distance transport, can be calculated by subtracting the average I.R. value of the underlying Paleozoic formation from the I.R. of the associated till. For example sample 57 Igr (Immature Gull River till subfacies);

I.R. of 57 Igr at $0.0 \phi = 43\%$ Average Gull River Fm. I.R. 15% Precambrian Shield component 28%

The Gull River subfacies of the immature till has more IR than the other two subfacies. The Precambrian Shield component of sample 57 Igr increases from 25 percent at 0.0 phi to 65 percent at 4.0 phi, and decreases to 45 percent in the silt and clay fraction. The immature Bobcaygeon and Verulam subfacies both have less than 10 percent Precambrian Shield component in the - 0.5 phi fraction. This increases to 75 percent at 4.0 phi for the Bobcaygeon subfacies and 56 percent for the Verulam subfacies.

FIGURE 24. Insoluble residue and grain size for the immature and submature till facies.

residue are Al, Zn, Cd and Cu (Brand and Terasmae, 1983). To test the amount of leaching of the insoluble residue by the dissolving acid, Al was plotted against I.R. (Fig. 25).

Aluminum is fairly constant at 500 ppm with increasing I.R. up to 30% I.R., where Al increases exponentially with increasing I.R. to over 5000 ppm at 80% I.R. This indicates that there is leaching of elements from the insoluble residue when values of I.R. are greater than 35 percent. For the Gull River subfacies of the immature till the I.R. concentrations are greater than 35% for

all grain sizes analyzed (Fig. 23). The I.R. is greater than 35% in the size fractions less than 1.0 phi. for the Bobcaygeon subfacies, and in the size fractions less than 1.5 phi for the Verulam subfacies. As a result, the geochemistry results of samples with greater than 35 percent I.R. are reflecting the process of leaching from the non-carbonate fraction rather than true values on the carbonate component.

FIGURE 25. Aluminum concentration in ppm against insolu_ble residue for till geochemistry samples.

To overcome this problem of leaching, elements associated solely with the calcium carbonate lattice such a Sr and those elements partially associated with it such as Fe and Mn (Brand and Terasmae, 1983) were used to correlate till and bedrock geochemistry.

Figure 26 illustrates Sr values for the Gull River, Bobcaygeon and Verulam immature till facies. Sample 57 Igr correlates directly with the range of Sr determined for the Gull River Fm. in all grain sizes analyzed. Bobcaygeon and Verulam subfacies show higher values and can be differentiated from the Gull River Formation and immature subfacies. However, they cannot be differentiated between themselves on the basis of geochemistry. A similar situation is seen in the Mn values (Fig. 27) where the Gull River subfacies can be correlated to bedrock geochemistry and differentiated from the other two subfacies. However, the Bobcaygeon and Verulam subfacies can not be distinguished. Both show a progressive increase of Mn in the finer grain sizes, where I.R. concentrations are greatest, suggesting some leaching effect.

4.4 Discussion

Bedrock geochemistry of the Gull River, Bobcaygeon and Verulam Paleozoic Formations indicates that only Ca and the Sr/Ca ratio can be used to differentiate these formations. The insolu ble residue and Sr, Mn, Fe and Na values are significantly different between the Gull River and the other two Formations. Cu, Ba, Zn and Al are not useful as formational geochemical signatures. Although Mg shows a significant difference between the Gull River and the other two formations, the range is so

FIGURE 26. Sr content in ppm for the immature till subfacies.

FIGURE 27. Mn content in ppm for the immature subfacies in varying grain sizes.

great in the results it cannot be considered as a useful indicator. The standard deviation of the other results is quite large as well (Fig. 10), making differentiation between the formations, especially between the Bobcaygeon and Verulam, tenuous. The Bobcaygeon and Verulam Fms. are not chemically distinctive from each other using the elements in this study.

The insoluble residue trend in the till samples may be related to terminal grades of the mineral constituents (Dreimanis and Vagners, 1971), or secondary enrichment of calcium carbonate in the silt and clay by ground water percolation. The submature till facies has a great amount of I.R. in all grain sizes, indicating more long distance transported Precambrian Shild material than in the immature till.

The method developed by Brand and Veizer (1980) for use on carbonate rocks is not effective when analyzing sediments with greater than 35 percent insoluble residue. The relationship between elements such as Al, which are associated with the non-carbonate component, illustrates the amount of leaching that has occured. By using elements which are primarily associated with the carbonate component, this leaching problem can be reduced.

4.5 Conclusions

Geochemistry of the Gull River, Bobcaygeon and Verulam Formations indicates the Gull River Fm. as signicantly distinctive from the other two formations. The Bobcaygeon and Verulam Formations are not chemically distinctive.

By using Sr and Mn analysis associated with the calcium carbonate lattice, correlation of the immature Gull River subfacies to the Gull River Formation was possible. Correlation of the Bobcaygeon and Verulam subfacies were not possible to their bedrock sources.

The contribution of marbles from the Precambrian Shield is unknown (Fig. 28). The potential incorporation of marble must be considered as it constitutes approximately 30 percent of the immediate area in an up ice direction.

FIGURE 28. Generalized bedrock map indicating extent of marbles in an up ice direction from the map area.

The rapid increase of insoluble residue in the sand fraction indicates the immature till is composed of two components. A coarse fraction which is dominated by local carbonate bedrock constituents and a matrix composed of long distance Precambrian Shield material. The submature till facies which has more long distance transported clasts and more rounding, appears to have a greater amount of long distance transported material in its matrix.

The method used for till geochemistry is not effective due to the effects of leaching from the insoluble fraction. Modification of the method may reduce this effect.

The identification of a specific element which is chemically distinctive and localized would be of greater value than broad spectrum carbonate geochemistry, especially if attempting to correlate sediments to bedrock sources. The processes of erosion, transportation and deposition modify sediments. Identifying a specific geochemical signature which can be traced in distance and grain size would provide a valuable tool in understanding glacial processes.

5.0 MODEL OF DEPOSITION

5.1 Introduction

Controversy exists over the interpretation of the Dummer Complex. Traditionally the Dummer Complex has been interpreted as an end moraine (Mirynech, 1962, Chapman and Putnam, 1966). More recent work on the Dummer Complex by Schluchter (1979) and regional deglaciation studies of southern Ontario (Terasmae, 1979, Gadd, 1980) have proposed an alternative view as to origin of the Dummer Complex.

Studies on modern glaciers (eg. Boulton, 1968, 1970, Johnston 1971, Lawson 1979, Eyles, 1979) have provided insight into processes and sedimentation in the glacial environment. With this information and the data collected in this study, a model of deposition is proposed for the Dummer Complex using sedimentology, geological setting and glacial processes.

5.2 Traditional Interpretation of the Dummer Complex

Traditionally the Dummer Complex has been regarded as an end moraine (Mirynech, 1960; Chapman and Putnam, 1966; Prest, 1970; Dreimanis, 1977; Vivian, 1973).

The orientation of the Dummer Complex is parallel to the Oak Ridges Interlobate Moraine was considered additional evidence for its interpretation as an end moraine (Gadd, 1980).

The traditional view (Mirynech, 1962), holds that during the late Wisconsin glacial ice flowed southwestward across the area as evidenced by striae and drumlin orientations. During deglaciation the Simcoe lobe retreated to a point north of the Paleozoic - Precambrian contact. A cooling of the climate resulted

in the re-activation of the ice and the glacier re-advanced, ripping up blocks of Paleozoic bedrock producing the sediments which characterize the Dummer Complex. The period of re-activation was short lived and the ice advanced only 4 to 20 Kilometers, not over-riding the drumlins. The end of the re-activation period was caused by warming of the climate and the ice retreated rapidly northwards.

The re-advance of the Simcoe lobe was used to explain the closing of the Kirkfield - Fenelon Falls outlet, resulting in the Main Lake Algonquin phase.

5.3 Problems with the Traditional Interpretation

Papers by Terasmae (1980) and Gadd (1980) discuss the problems of the traditional interpretation of the Dummer Complex and overall deglaciation history of southeastern Ontario.

A.) Flow Indicators and Morainic Systems

Striae measurements by Henderson (1966),
Terasmae (1965) and Gadd (1980) suggest changing
ice-flow directions during the late Wisconsin.

South of the Ottawa River the oldest set of striae
indicate a southwesterly flow. Superimposed on
this set are another set which trend in a westerly
direction is the Kingston area. This change is
not seen in the area north of the Oak Ridges
Moraine covered by the Simcoe lobe - Striae and
drumlin orientations are southwesterly suggesting
there was no change of flow direction during
retreat. The east-west orientation of the Dummer
Complex is not normal to ice-flow as would be
expected for an end moraine.

Although the Dummer Complex does parallel the Oak Ridges Moraine, it is important to mention that the Oak Ridges is an interlobate lateral moraine and the Dummer Complex interpreted as an end moraine. The Dummer Complex is parallel to the Precambrian - Paleozoic bedrock contact.

The Dummer Complex terminates at Tamworth and the Oak Ridges Moraine terminates at Trenton with no eastward extensions of these features (Henderson, 1973). This means there is no evidence that the margin of the ice sheet extended to the Adirondacks (Terasmae, 1980; Gadd, 1980). The termination of the Dummer Complex at Tamworth is coincidental with the eastern limit of the Paleozoic carbonates.

B.) Regional Deglaciation History

The regional deglaciation history of southeastern Ontario is poorly understood (Terasmae, 1980; Gadd, 1980; Sharpe, 1979; Karrow et. al., 1975). Specific problems relate to the opening and closing of the Fenelon Falls - Trent Valley outlet system between glacial Lake Algonquin, the Iroquois shoreline which disappears in the Trenton - Belleville area and the Champlain Sea C¹⁴ dates which are considerably older than the dates on Lake Iroquois. The overall relationship of Lake Algonquin - Lake Iroquois and the Champlain Sea (Sharpe, 1979) to the deglaciation of southeastern Ontario remains a problem.

C. Occam's Razor or a Matter of Simplicity

Recent work on modern glaciers and glacial sediments has provided insight into glacial processes. Although there is no modern equivalent of the continental glaciers of the past, ancient deposits can be related to modern glacial processes. Emphasis should be placed on the interpretations which are the simplest, relating where possible the deposit to a depositional environment without invoking a catastrophic event. If the Dummer Complex can be explained in terms of glacier ice dynamics without the necessity of a cooling climate and a change in ice mass, this interpretation should be given preference. As Occam's razor states, when there are more than one explanation, one must choose the one that involves the least number of assumptions.

5.4 Determination of Depositional Environment

The Dummer Complex is composed of scattered, pitted hummocks of blocky, angular debris. The northern margin is the Precambrian - Paleozoic bedrock contact. The southern margin is irregular and diffuse, with Dummer Complex deposits separated by drumlins. The drumlins do not show any indications of having been overridden. Dummer sediments are often associated with large expanses of bare or boulder strewn Paleozoic bedrock and have not been found overlying any other type of sediment. Deposits show rough alignment with southwest ice-flow indicated by the drumlins. One set of striae located in the Dummer Complex, 2 km. west of Round Lake, show parallel orientation with the drumlins. Subglacial or englacial eskers cut through deposits of the Dummer Complex.

Dummer sediments have a sandy-silty matrix supporting a large coarse component. The coarse component is made of large blocks of angular clasts of Paleozoic bedrock. The Paleozoic clasts are composed of the underlying bedrock lithology. There is no indication of sorting or stratification in the Dummer Complex.

The glacial depositional environment can be determined by examining sedimentological characteristics of the deposits and their relationship to other lateral sedimentary units (Boulton, 1970, 1976; Eyles et. al., 1983). Sediments associated with ice marginal processes are usually a complex association of resedimented flows. The flows often show layered or banded structures and an internal upward fining organization. These supraglacial flow tills are generally associated with meltwater and evidence of sorting, such as sand lenses in the till, is common. (Boulton, 1972).

Dummer sediments lack the characteristic sorting and bedding associated with secondary or supraglacial flow tills. Its massive, unstratified, unsorted structure suggests a subglacial environment of deposition. The rough alignment of the Dummer Complex hummocks with ice-flow as well as the cross-cutting by subglacial or englacial eskers supports the sedimentological evidence of a subglacial environment.

Sediments deposited subglacially are divided into lodgement till, melt-out till and deformation till (Boulton and Deynoux, 1981). As the Dummer sediments show no evidence of deformation, they must be either lodgement or subglacial melt-out till.

	Subglacial Melt-out till	Lodgement till	Dummer till
Sedimentary sequence	Above lodgement or glacier bed	Glacier bed	Glacier bed
Grain - size composition	Substantial fine sand/ mud fraction	Substantial fine sand/ mud fraction with boulder clusters	Substantial mud fraction, bouldery
Clast shape	Sub-rounded, facetted and striated	Sub-rounded, bullet - shaped, striated	Angular, equidimentiom al few striated clasts
Bedding	Massive	Massive	Massive
Clast orientation	Large scale areal con- sistancy with flow	Strong flow-parallel peaks	None decernable
Folding and faulting	Rarely apparent	May or may not be apparent	None apparent
Nature of contacts	Sharp	Sharp	Sharp
Geotechnical properties	Normally consolidated	Overconsolidated	Unknown
Jointing	Rarely	Common	None observed
Thickness	Thin, less than 2m	Any thickness	3 - 10 m
Uniquely diagnostic characteristic	None	Orientated bullet - shaped clasts	

Table 11 . Dummer Complex till compared to the criteria of differentiating primarily tills from Boulton and Deynoux (1981).

The immature till of the Dummer Complex has sedimentological properties of both lodgement and melt-out tills (Table 11). The immature till is found directly on the glacier bed, in this case the Paleozoic bedrock. Lodgement till always overlies the glacier bed or lodgement till. The thickness of Dummer deposits is up to 10 meters which exceeds the maximum thickness (2m) of subglacial melt-out till deposits. Lodgement tills can be of any thickness. The angular, equidimensional shape of the clasts of the immature till is not characteristic of either lodgement or melt-out till.

Over all, the sediments of the Dummer Complex appear to be a type of lodgement till in which the clasts have undergone little comminution or transport.

Three subglacial tills have been recognized in the area; the till which comprises the drumlinized areas, the immature till of the Dummer Complex and a transitional till with characteristics between the other tills. The immature till shows little or no transport while the mature till of the drumlins represents long distance transport, as illustrated by the pebble counts reported in chapter 3. The geochemistry appears to support this concept, as the matrix of the submature (transitional) till has more Precambrian Shield component than the immature till as represented in the insoluble residue values. The three tills appear to be lodgement facies subglacially produced, with distance of transport the controlling factor accounting for their differences.

		-

5.5 Model of Deposition

Regional ice-flow south of the Ottawa Valley was southwestwards. As the ice flowed over the Algonquin Highlands the compressive flow changes to extensive (Fig. 29). This resulted in higher ice velocities and higher basal temperatures. The impermeable glacial bed of Precambrian bedrock along with the other factors mentioned formed a basal water film. This type of situation has also been reported in Sweden by Minell (1980).

As the ice progressed down the lee of the Algonquin Highlands, the extensive flow changed to compressional. In compressive zones, the lowering of ice velocities results in lower basal temperatures and this allows onfreezing of material at the base (Weertman, 1961).

FIGURE 29. Schematic diagram of active ice conditions over the Algonquin Highlands.

Once the Paleozoic carbonates, in a series of north-facing escarpments, are encountered there is a change in ice dynamics. The basal water film dissipates into bedding phases, fractures, and solution features of the carbonate bedrock (Fig. 30).

FIGURE 30. Ice conditions at the Precambrian - Paleozoic bedrock contact.

The result of the loss of the basal water film and the lower basal temperatures produces freezing-on at the glacier bed. The erosional capacity of the ice is aided by 1.) compressional flow, 2.) the saturation of the glacial bed producing excessive pore pressures thereby reducing the shear strength of the bed, and 3.) a frozen bed, thus lowering the effective glacier base below the ice-rock interface (Clayton and Moran, 1974: Kupsch, 1962). Since all these conditions are present in this situation, the ice has a great amount of erosive potential. The carbonate bedrock is sheared and plucked with the aid of freezing at the base, to the point where the ice becomes debris laden beyond its capacity to transport. The debris within the ice increases the shear strength of the basal ice to the point where cleaner ice overrides it and the debris ice acts as the glacier bed (Fig. 31).

FIGURE 31. Schematic diagram of overriding of cleaner ice at the Precambrian - Paleozoic bedrock contact.

As the ice downwasted it thinned to such a point over the Algonquin Highlands that the ice to the south was cut off (Fig. 32). This resulted in the down-wasting of the ice over the area which contained the basal debris laden dead-ice, producing the pitted, hummocky topography of the Dummer Complex, Garnes and Bergersen (1980) have discussed similar situation in South Norway.

FIGURE 32. Ice stagnation and melt-out of the Dummer Complex.

5.6 Conclusion

The model presented explains the Dummer Complex in terms of the ice dynamics. It is felt that this interpretation answers many of the problems discussed earlier in terms of regional deglaciation of southeastern Ontario .

The position and orientation of the Dummer Complex is due to a particular set of geomorphological characteristics and the change from the Precambrian Shield to the Paleozoic carbonates. The parallel alignment of the Dummer Complex with the Oak Ridges Moraine has nothing to do with ice marginal positions.

The distribution of Dummer Complex deposits is defined by the Precambrian - Paleozoic contact at its northern margin and specific ice conditions along its southern margin. Ice conditions changed dramatically over short distances, as seen by the relationship of the drumlins and the Dummer Complex. The Dummer Complex representing an erosional zone and the drumlins a depositionary zone. The Dummer Complex may be similar to the subglacial transitional morainic forms described by Markgren and Lassila, 1980; Kurimo, 1980.

The sedimentological characteristics of the Dummer Complex represent a subglacial till which has not undergone any significant transport. The immature till of the Dummer Complex is composed of two components, the coarse angular fraction made of the underlying bedrock lithology and a long distance transported matrix, defined geochemically.

The pitted, hummocky morphology of the Dummer Complex, separated by expanses of bare or boulder strewn

bedrock plains is the result of large scale ice stagnation. Meltwaters washed areas between hummocks clean of debris.

In terms of the regional deglaciation history, this model of ice stagnation and subsequent rapid disintegration would result in rapid rebound as discussed by Terasmae (1980). The rapid rebound would provide the mechanism of the closing of the Kirkfield-Fenelon Falls outlet and the development of the Main Algonquin phase, without the necessity of a readvance. The massive stagnation of the Simcoe lobe caused the cessation of southwesterly discharge routes could account for the change in flow patterns of the Ontario basin lobe. This type of situation is reported by Aario and Forsstrom (1979).

Finally, the model presented here has the least number of assumptions compared to the alternative view of a cooling climate, short lived re-activation and advance of the ice front.

REFERENCES

- Aario, R., and Forsstrom, L., 1979. Glacial stratigraphy of Koillismaa and North Kainuu, Finland. Fennia, v. 157, No. 2., pp. 1-49.
- Boulton, G.S., 1968. Flow tills and related deposits on some Vestspitsbergen glaciers. Journal of Glaciology, Vol. 9, pp. 213-229.
- _____, 1970. On the deposition of subglacial and melt-out tills at the margins of certain Svalbard glaciers. Journal of Glaciology, Vol. 9, pp. 231-245.
- , 1972. Modern Arctic glaciers as depositional models for former ice sheets. Journal of the Geological Society of London, v. 128, pp. 361-393.
- , 1976. A genetic classification of tills and criteria for distinguishing tills of different origin. Geografia. Vol. 12, pp. 65-80.
- Boulton, G.S. and Deynoux, M., 1981. Sedimentation in glacial environments and the identification of tills and tillites in ancient sedimentary sequences. Precambrian Research., Vo. 15, pp. 397-422.
- Brand, U. and Terasmae, J., 1983. Source-rock geochemistry of Pleistocene tills of Southern Ontario. Unpublished research report, Ontario Geological Survey.
- Brand, U. and Veizer, J. 1980. Chemical Diagenesis of a Multicomponent Carbonate System-1: Trace Elements; Journal of Sedimentary Petrology, Vol. 50, pp. 1219-1236.
- Carson, D.M. 1980. Paleozoic Geology of the Burleigh Falls-Peterborough Area District of Southern Ontario; Ontario Geological Survey Preliminary Map p. 2337, Geological Series, Scale 1:50000. Geology 1979.
- Chapman, L.J. and Putnam, D.F. 1966. The physiography of southern Ontario. 2nd ed. University of Toronto Press, Toronto, Ont. p. 386.
- Coleman, A.P. 1937. Geology of the North Shore of Lake Ontario; Annual Report, Ontario Department Mines 45, pt. 7, pp. 75-116.
- Clayton, L., and Moran, S.R., 1974. A glacial process form model; In; Coates, D.R., ed., Glacial geomorphology: Binghamton, State University of New York, pp. 89-119.

- Dreimanis, A. 1977. Correlation of Wisconsin Glacial Events between the Eastern Great Lakes and the St. Lawrence Lowlands. Geographie Physique et Quaternaire, Vol. 31, pp. 37-51.
- Dreimanis, A., and Vagners, U.J. 1971. Bimodal distribution of rock and mineral fragments in basal tills. In:Goldthwait, R.P. (ed.) Till, a symposium, Ohio State Univ. Press, p. 27-37.
- Dunham, R.J., 1962. Classification of carbonate rocks to depositional texture, in W.E. Ham, ed., Classification of carbonate rocks: AAPG Memoir 1, pp. 108-121.
- Eyles, C.H. and Eyles, N. 1983. Sedimentation in a large lake: A reinterpretation of the late Pleistocene stratigraphy at Scarborough Bluffs, Ontario, Canada. Geology, v. 11, pp. 146-152.
- Folk, R.L., 1962. Spectral subdivision of limestone types, in W.E. Ham, ed., Clsssification of carbonate rocks: AAPG Memoir 1, pp. 62-84.
- 1968. Petrology of Sedimentary Rocks. Austin, Texas: Hemphills.
- Gadd, N.R. 1980. Late-Glacial Regional Ice-flow Patterns in Eastern Ontario; Canadian Journal Earth Sciences, Vol. 17, pp. 1439-1453.
- Garnes, K., and Bergersen, O.F., 1980. Wastage features of the inland ice sheet in central South Norway. Boreas, Vol. 9., pp. 251-269.
- Gravenor, C.P. 1957. Surficial geology of the Lindsay-Peterborough area, Ontario. Geological Survey of Canada, Memoir No. 288, p. 60.
- Henderson, E.P. 1966. Surficial geology, Gananoque Wolfe Island, Ontario. Geological Survey of Canada, Map 13 - 1965.
- 1973. Surficial geology of Kingston (north half) maparea, Ontario. Geological Survey of Canada, Paper 72-48. p.6
- Johnston, P.G. 1972. Ice-cored moraine formation and degradation, Donjek glacier, Yukon Territory, Canada. Geografiska Annaler, Vol. 53 A., pp. 198-203.

- Johnston, W.A. 1916. The Trent valley outlet of Lake Algonquin and the deformation of the Algonquin water-plane in Lake Simcoe district, Ontario. Canada Department of Mines, Geological Survey, Museum Bulletin No. 23, Geological Series, p. 22.
- Karrow, P.F., Anderson, T.W. Clarke, A.H., Delorme, L.D., and Sreenivasa, M.R. 1975. Stratigraphy, paleontology, and the age of Lake Algonquin sediments in southwestern Ontario, Canada. Quaternary Research, 5, pp. 49-87.
- Kupsch, W.O. 1962. Ice-thrust ridges in western Canada: Journal of Geology, V. 70, pp. 582-594.
- Kurimo, H. 1980. Depositional deglaciation forms as indicators of different glacial and glaciomarginal environments. Boreas, Vol. 9, pp. 179-191.
- _____, 1982. Ice-lobe formation and function during the deglaciation in Finland and adjacent Soviet Karelia. Boreas, Vol. 11, pp. 59-78.
- Lawson, D.E. 1979. A comparison of the pebble orientations in ice and deposits of the Matanuska Glacier, Alaska. Journal of Geology, Vol. 87. pp. 629-645.
- , 1981. Sedimentological characteristics and classification of depositional processes and deposits in the glacial environment. United States Army Corps of Engineers, Cold Regions Research and Engineering Laboratory. Report 81-27. p. 16.
- Leyland, J.G. 1984. Quaternary Geology of Northeastern Lake Ontario basin from the Lake Ontario shore to the Precambrian Paleozoic contact. M.Sc. thesis Brock U. St. Catharines, Ontario.
- Leyland-Mihychuk, M. and Brand, U. 1982. Sedimentology and Geochemical Analysis of Late Wisconsin Glacial Sediments and Paleozoic Bedrock, Havelock, Ontario; Geological Association Canada, Program with Abstracts, Vol. 7, p. 63.
- Liberty, B.A. 1961. Belleville and Wellington map areas, Ontario; Geological Survey of Canada. Paper ** 60-31.
- Markgren, Martin and Lassila, Mauno. 1980. Problems of Moraine morphology: Rogen moraine and Blattnick moraine. Boreas, Vol. 9. pp. 271-274.

		,

- May, R.W. and Dreimanis, A. 1973. Differentiation of Glacial Tills in Southern Ontario, Canada. Based on their Cu, Zn, Cr, and Ni Geochemistry; Geological Society America, Memoir 16, pp. 221-228.
- Minell, H., 1980. The distribution of local bedrock material in some moraine forms from the inner part of northern Sweden. Boreas, Vol. 9, pp. 275-281.
- Mirynech, E. 1962. Pleistocene geology of the Trenton-Campbellford map-area, Ontario. Ph.D. thesis, University of Toronto, Toronto, Ont. p.176.
- Prest, V.K. 1970. Quaternary Geology of Canada; In: Geology and Economic Minerals of Canada (R.J.W. Douglas, 'ed.); Geological Survey Canada, Economic Geology Report, pp. 675-764.
- Sharpe, D.R. 1979. Quaternary geology of the Merrickville area, Southern Ontario. Ontario Geological Survey, Report 180. 54p.
- Schluchter, C. 1979. The Dummer Moraine in southern Ontario. Geological Association of Canada, Annual Meeting, May 1979. Program with Abstracts, 4, p.77.
- Shilts, W.W. 1973. Glacial Dispersion of Rocks, Minerals, and Trace Elements in Wisconsin Till, Southeastern Quebec, Canada; Geological Society America, Memoir 16, p. 189-219.
- Spencer, J.W. 1888. Notes on the origin and history of the Great Lakes of North America. Proceedings of the American Association for the Advancement of Science, 37, pp. 197-199.
- Stea, R.R. and Fowler, J.H. 1979. Minor and Trace Element Variations in Wisconan Tills, Eastern Shore Region, Nova Scotia; Nova Scotia Department of Mines and Energy, Paper 79-4, 30 p.
- Terasmae, J., 1965. Surficial geology of the Cornwall and St. Lawrence Seaway Project areas, Ontario. Geological Survey of Canada, Bulletin 121, 54 p.
- 1980. Some Problems of Late Wisconsin History and Geochronology in Southeastern Ontario; Canadian Journal Earth Sciences, Vo. 17, p. 361-381.
- Vivian, R., 1980. The nature of the ice-rock interface; the results of investigation on 10000 m² of the rock bed of temperate glaciers. Journal of Glaciology, Vol. 23, No. 89, pp.267-277.

- Warren, H.V. and Delavault, R.E. 1961. The Lead, Copper, Zinc and Molybdenum content of some Limestone and related Rocks in Southern Ontario; Economic Geology, Vol. 56, p. 1264-1272.
- Winder, C.G. 1955. Campbellford Map area, Ontario; Geol. Surv., Canada, Paper 54-17.
- Weertman, J. 1961. Mechanism for the formation of inner moraines found near the edge of cold ice caps and ice sheets. Journal of glaciology, Vol. 3, p.965-978.

APPENDIX I

		,

APPENDIX II

01Ivr	VA	Α	SA	SR	R		105	V۸	Λ	SA	SR	R	
P€						0	₽€					0.9	0.9 1.8
GR BB		15.5	2.6	1		0 18.1	GR BB		2.7	0.9	0.9	2.7	75.0
_VR	3.4		13.8	1		81.9	VR	5.4	17.0	4	20.0		22.3
			16.4			16			19.7	42.0	29.5	3.6	112
							110						
02Ivr P€				-		0	11S P€	0.9					0.9
GR						0	GR						
BB	0.9	3.5	1.7			6.1	BB		5.4	10.7	3.6		19.7
VR	14.8	72.2	7.0			93.9	VR		39.3	25.9	7.2	1	79.5
	13.7	13.7	10.7	'		1113		11.0	144.7	30.0		' '	
03M			1	-			121	vr		-			
P€ GR	1.0	1.0	2.9	3.9	2.9 1.9	9.7	P€ GR			0.9	0.9	1 1	1.8
BB		6.8	18.4	23.3	29.1	77.7	BB			0.9	0.9		1.8
VR		2.9	1.9			4.9	VR		63.6	12.7	5.4		95.4
	1.0	11.7	24.3	29.1	33.9	1103		13.6	63.6	14.5	8.2		110
05Ivrı						E	145			,			
P€						0	P€		0.9	-			0.9
GR						0	GR					1, 1	~ ~
BB	9.6	76.3	12 3	1.8		0	BB VR	2 7	41.3	1.8	11.0	2.7	7.3 91.7
YF	9.6	76.3	12.3	1.8		1114	VIC		42.2	36.7	13.7	4.5	109
				•						•			
06 S		0.8	2.4	2.4	1.6	7.2	151 PE	vr	-	1			0
GR		0.0	2.4	4.7	0.8	7.9	GR						o
BB			2.4	10.2	8.7	21.3	BB	1.8					6.4
VR		15.8	31,6	9.7	5.6	63.9	VR		61.8	1.8			93.6
	1.6	117.3	132 - 5 1	27.0	18.0	1127.		31.0	00.4	1 1.0	1		110
07Ivr	0.8	0.8	-			 ,	165 PC	5	1 0	 			
P€ GR	0.8	0.8		ł		1.0	GR		1.0	1.0	4.2		5.2 4.2
BB			0.8	1.6		2.5	BB		1.0	5.2	2.1		8.3
VR		76.9	0.8			95.9	VR		57.3	20.8			82.3
I	19.0	77.7	1.6	1.6		1 121		4.2	59.4	27.1	9.4		96
085			. 1			1	171	lvr	1				
PE			0.6	0.5		11.2	P€						0
GP		1.9	05.0			1.9							0
BB VR		10.3	25.2	13.1		48.6		19 4	79.8	0.8		1 1	100.
			46.4	17.3		107		19.4		0.8		-	129
0011													
09M P€			3.2	2.4		5.6	205	2	1.0		-	-	1.0
GR			0.8	2.4			GR		7.0	1.0	1.0	1.0	2.9
BB		12.0	28.8	5.6	0.	8 47.2	BB		1.0	3.8	1.0		5.8
VR		39.2	4.8	50-1		44.0	VR	1.9	82.7	5.8	1 2		89.4
		51.2	37.6	10.4	0.	8 125		1.9	84.6	10.6	1.9	1.0	104

Pebble lithology and roundness results.

- PC Precambrian clasts, GR Gull River Fm., BB Bobcaygeon Fm., VR- Verulam Fm.
- I Immature; S submature, M- mature till facies.
- vr Verulam, bb- Bobcaygeon, vr Verulam immature subfacies.

21Ivr VA A SA SR R PE 2.0 1.0 3.0	36 I bb VA A SA SR R
GR 3.0 2.0 4.0 10.0	GR
BB 4.0 2.0 6.0 VR 10.060.0 8.0 3.0 B1.0	BB 12.0 85.0 3.0 150
10 63 16 10 100	12.0 85.0 3.0 100
24Ivrl 1 1 1 .	371bb
P€ 0.6 0.6	P€ 1.0 1.0 2.0
GR 0.6 1.3 1.9 16.6	GR 2.9 2.0 5.9 10.8 BB 6.9 55.9 21.6 2.9 87.2
VR 3.875.2 1.9 80.9	VR
3.689.2 5.7 1.3 157	6.9 58.8 24.5 9.8 102
275	401bb
P€ GR	P€ 2.3 4.6 6.9 GR 3.4 3.4 1.1 11.5
BB 13.286.8 100	GR 3.4 3.4 1.1 11.5 B1.6
VR 13.256.8 114	VR 27.6 51.7 12.6 4.6 87
	27.6 51.7 12.6 4.6 87
291VR P€ 0.7 0.7	P€ 0.8 0.8 2.4 0.8 4.7
GR [2.2 4.4 5.2 11.9	GR 4.7 15.0 8.7 2.4 30.7
BB 9.6 3.0 12.6 VR 2.251.121.5 21.5 74.8	BB 7.1 54.3 3.1 64.6
2.263.028.9 5.9 135	7.1 59.8 18.9 11.0 3.1 127
30Ivrl 1	431bb
PE 1.1 1.1	PE 0
GR BB 3.212.8 4.3 2.1 22.3	GR BB 6.0 73.5 20.5
VR 1.146.827.7 75.5	VR
1.151.140.4 5.3 2.1 94	6.0 73.5 20.5 166
325	44155
P€ 0.8 0.8 GR	P€ GR
BB 31.745.8 11.7 89.2	BB 8.9 64.9 24.6 1.6 100
VR 10.0 10.0	VR
	8.91 64.9 24.6 1.6 1191
PC 0.8 0.8 1.7	46M
GR	P€ 1.0 0
BB 2.5 1.7 4.2 VR 5.181.4 7.6 94.1	BB 3.9 50.5 2.9 57.3
5.164.710.2	VR 12.6 29.1 41.7
_34Ivr	481 bb
P€ 2.7 2.7 2.7 8.0	FF 1.2 1.2 2.4
GR 0.9 3.6 2.7 3.6 10.7 BB 0.9 4.5 3.6 0.9 9.8	GR 1.2 1.2 1.2 3.6
VR 2.759.8 4.5 4.5 71.4	BB 36.9 10.7 1.2 4B.B VR 45.2 45.2
2.764.305.2 13.41 4.5 112	. 84.5 11.9 3.6 84
	•

.

		,

PC GR BB 9.6 30.8 53.8 3.8 1.0 99.0 BB VR 45.5 54.5	51Iqr	VA	l A	ı SAI	sr I	R		621gr	VA I	Α Ι	SA I	SR I	R I	
Second S					21/				- 40	_^	20	311	- 1	0
BB	GR	0.6	30.0						45.5	54.5				
VR		9.6	30.8	23.8	3.8	1.0	99.0							
S51bb	VR							VR				i		
Pe		9.6	30.8	54.8	3.8	1.0	104		45.5	54.5				121
Pe	55166							63Iarl			. 1	1	1	
STIGHT S	PE			1.8			1.8	P€						0
VR 24.8 73.5 1.8 113 7.6 49.6 35.3 5.9 1.7 119 571gr Pe 1.8 7.3 11.0 1.8 22.0 Pe Octoor Pe<				7.1			11.5	GR	7.6	49.6	35.3	5.9	1.7	
24.8 73.5 1.8 113 7.6 49.6 35.3 5.9 1.7 119			21.2	64.6	0.9		86.7						- 1	
STIGE	VR							VR						
Pe	'		124.8	73.51	1.8		413		7.6	49.6	35.3	5.91	1.7	119
Selection Sel	571gr						1				1			
BB						1.6			0 1					
VR			1 3.3	33.0	30.7				0.1	37.1	31.3	12.1	0.5	95.2
Pe	VR		1											
PC 0.9 2.8 1.8 0.9 PC 1.7 4.2 5.9 BB 13.9 65.7 14.8 94.4 BB 7.6 22.0 13.6 2.5 5.9 BB 13.9 69.4 16.7 108 0.8 19.5 10.2 4.2 3.4 38.1 BB 13.9 69.4 16.7 108 0.8 29.7 38.1 18.6 8.5 118 PC 0.6 0.6 1.2 1.2 4.2 GR 0.8 29.7 38.1 18.6 8.5 118 PC 0.6 0.6 1.2 4.2 GR 0.8 0.8 1.6 4.2 3.4 38.1 VR 1.2 1.8 1.2 4.2 GR 0.8 0.8 1.6 4.2 6.4 9.0 9.0 4.2 3.2 6.4 4.2 6.4 9.5 9.0 9.0 9.0 9.0 9.0			7.3	43.1	47.7	1.8	109		8.1	37.9	34.7	12.9	6.5	124
PC GR BB VR 0.9 2.8 13.9 65.7 14.8 VR 0.9 4.6 94.4 94.4 94.4 90.8 94.4 94.4 94.4 94.4 94.4 94.4 94.4 94	58166							65M			1		1	
GR BB 13.9 65.7 14.8 94.4 BB 94.4 BB 97.6 22.0 13.6 2.5 45.8 VR 13.9 69.4 16.7 108 0.8 29.7 38.1 18.6 8.5 118 Petalog			0.9				0.9	PE		1.7	4.2			5.9
VR 0 VR 0.8 19.5 10.2 4.2 3.4 38.1 13.9 69.4 16.7 108 0.8 29.7 38.1 18.6 8.5 118 59Ibb 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>GR</td><td></td><td>0.8</td><td></td><td>0.8</td><td>2.5</td><td></td></t<>								GR		0.8		0.8	2.5	
13.9 69.4 16.7 108 0.8 29.7 38.1 18.6 8.5 118		13.9	65.7	14.8									2.5	45.8
S91bb PC	VR							VR						
PC GR BB 6.1 0.6 0.6 1.2 1.8 1.2 1.2 3.0 94.5 BB 0.8 2.4 3.2 6.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	- 1	13.9	69.4	116.7		1	1 108		0.8	29.7	38.1	18.6	8.5	118
GR											1)]
BB										0.8	0.8			1.6
VR 6.1 43.0 31.5 16.4 3.0 165 VR 63.2 18.4 8.8 1.6 92.0 1.6 125 601gr P€ GR 24.5 75.5 BB VR 100 GR 1.8 1.8 1.8 1.8 5.4 0.5 6.3 86.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9														
6.1 43.0 31.5 16.4 3.0 165 64.8 21.6 12.0 1.6 125 60Igr Pe		6.1	41.2	29.1	15.2	3.0								
60 I gr PC	VR	6.1	43.0		16.4	3 0		VR						
PC GR 24.5 75.5 100 GR 1.8 1.8 1.8 5.4 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9		0.1	143.0	121.21	10.4	3.0	105			1 64.8	121.6	112.0	1.61	125
GR 24.5 75.5 100 GR 1.8 1.8 1.8 5.4 0 BB 8.1 31.5 40.5 6.3 86.5 0 VR 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9							-					1		
BB VR		24 5	75 6				1.00			2.7				
VR 0 VR 0.9 0.9 0.9 24.5 75.5 110 10.8 37.8 43.2 8.1 111 61M PE 2.2 5.1 2.2 9.5 PE 1.0 1.0 GR 2.2 2.2 2.7 5.1 GR 0 0 UR 3.6 5.1 5.1 2.9 16.8 VR 1.0 55.9 31.4 8.8 1.0 98.0		24.3	173.3							0 1				
24.5 75.5 110 10.8 37.8 43.2 8.1 111 61M PC										0.1		40.5	6.3	
61M		24.5	75.5					- 41		10.8		43 2	8 1	
PC 2.2 5.1 2.2 9.5 PC 1.0 1.0 GR 2.2 2.2 0.7 5.1 GR 0 0 BB 2.9 35.0 24.1 6.6 68.6 BB 1.0 1.0 VR 3.6 5.1 5.1 2.9 16.8 VR 1.0 55.9 31.4 8.8 1.0 98.0											, , , , , ,	1312	0	
GR 2.2 2.2 0.7 5.1 GR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-	-	-		- C				-	1		
0B 2.9 35.0 24.1 6.6 68.6 BB 1.0 1.0 VR 3.6 5.1 5.1 2.9 16.8 VR 1.0 55.9 31.4 8.8 1.0 98.0			2.2			0.7				1.0				
VR 3.6 5.1 5.1 2.9 16.8 VR 1.0 55.9 31.4 8.8 1.0 98.0			2.9							1 0				
									1.0		31 4	8 8	1.0	
					33.6	10.2		-11-	1.0			8.8	1.0	102

			•	

69Ivr	VA F	A I	SAI	SR I	R I		77Igr	I VAI	Α.	SA	I SR I	RI	
P€			1.9			1.9	P€			1.8		0.9	2.7
GR	- 1		- 1			0	GR	6.4	42.7	2.7	0.9		52.7
BB				0.9	- 1	0.9	BB	11.8	27.3	3.6		1.8	44.5
VR	10.3	79.4				97.2	VR					-	0
1	10.3	79.4	9.3	0.9	'	107		18.2	70.0	8.2	0.9	2.7	110
70155							701						
P€ PE		1.8	0.9	-		2.7	781qr P€		2.6	3.5	-	-	6.2
GR		1.9	0.9			0.9	GR	8.8	40.7	8.8	2.6		61.1
BB	2.7	26.44		16.4	1.8	96.4	BB	2.6	28.3	1.8			32.7
VR						0	YR						0
	2.7	28.2	50.91	16.4	1.8	110		11.5	71.7	14.2	12.6		113
721bb			-		i		79Igr	1 (ı	1	. 1	
P€			1.0			1.0	P€			1.0			1.0
GR						0	GR	8.6		18.1	3.8		92.4
BB	6.9	88.1	3.0	1.0		99.0	BB		5.7	1.0			6.6
VR	- 2 0	88.1	1 0			0	VR		67.6	30.0	1 2 0		105
	6.9	88.1	4.0	1.0	'	101		8.6	67.6	120.0	13.8	1	105
731bb							801bb	1					1
P€		0.8				0.8	P€		3.5	1.8			5.3
GR		3.3	4.1	2.5		9.9	GR						0
BB	0.8	33.9	40.5	13.2	0.8	89.3	BB	7.9	71.1	15.8		1	94.7
VR	0.8	38.0	77	15.4	0.8	121	VR	7.9	74.6	17.5	-	-	114
,	0.01	30.01	44.6	15.4]	0.8	121		1 7.9	74.6	117.5	1	1	114
745							81Igr	1	1		1	1 .	1
156		10.5	4.4	1.8		16.7	₽€		4.0	1.6			5.6
GR		3.5	2.6			6.1	GR	10.5	49.2	2.4			62.1
BB		27.2	33.3	16.7		77.2	BB	12.9	19.4	1			32.3
VR							VR						
- 1	1	41.2	40.3	18.4	-	114		23.4	72.6	4.0	1	1 1	124
751bb				1			821bb			f	1	1	t
P€						0	P€		0.9	7.5	0.9	0.9	
GR						0	GR			0.9		2.8	
BB	13.2	80.2	6.6			100	BB	5.7	33.0	14.2	8.5	4.7	
VR		0 A 3	- 7 /			106	VR	2.8	17.0	0.9	10-1	-	106
1	13.2	80.2	6.6	'		106		8.5	50.9	23.6	19.4	8.5	106
76Ibb	1	1	1				83Ivr		1		1		
PE		1.0				1.0	PE						
GR		77.7		1.0		1.0	GR		22.0	1.0	1.0		2.1
BB VP	5.8	11.7	14.6			98.0	BB VR	5.2	31.2	15.6			43.7
A Is						0	A.K.	22.9	31,2				19.6
	5.8	78.6	14.6	1.0		103		28.1	54.2	16.7	1.0		96

			٠	
	•			

84Ibb	VA	A 1	SA	SR	R	
P€		3.7	0.9			4.6
GR	10.2	73.7	12.0			95.4
BB						
VR		92.0	-13.0			100
1	10.2	76.8	13.0	Į.	- 1	108
851bb						
P€	-	-	3.71	1.9		5.6
GR	- 1		0.9	0.9	- 1	1.9
BB		5.6	12.1	15.0	15.9	48.6
VR	3.7	15.9	14.0	7.5	2.8	43.9
	3.7	21.5	30.8	25.2	18.7	107
		,				
861bb				1		
PE					0.9	0.9
GR			0.9	2.6		3.5
BB	6.2	78.8	3.5	3.5		92.0
VR		3.5				3.5
	6.2	82.3	4.4	6.2	0.9	113
00711						
87Ibb			3.0	1.0		4.0
P€	1 }	1.0	3.0	1.0		1.0
GR BB	8.9	60.4	22.8	3.0		95.0
VR	0.7	60.4	22.0	3.0		73.0
4 1/	8.9	61.4	25.7	4.0		101
	0.7	0				
88Ivr	1 1		1	1		1
PE						0
GR						0
BB		1.7				1.7
VR	9.4	86.3	2.6			98.3
	9.4	88.0	2.6			1117 .

			٠	

APPENDIX III

\$ 3KS	0.71	19.64	164.	0.43	\$0	2.12	0.76	9.40	19.0	11	151-	2.01	29.2	2.26	2.41	2.58			-	1 °	,	_	ς.		1-	_	7	1.24			
-		٠	•	,	٠	,	٠	* 1		,		•	• (,	٠	4.98			6.69	60.4	5 . 9 8	3.71	2.03		2.60	1.64	6 . 6	:.53	•	٠.	
71	27	267	459	363	133	109	2 61	251	376	248	264	1 3.7		5.5	595	3	63		2.57	192	6.0	161	66	127	1 36	308	79	57 EV	percent		
4 9	510	111	26.8	6 50	340	067	225	233	24.5	705	122	5n2	38.2	396	248	24.5	361	S	156	113	163	123	25.7	100	215	202	30 :	377			
Z	9.35	2 . 16	12.15	1.46	0.00	0.98	2.32	5.27	11.03	0.47	241	71.0	0 -	17.7	1 - 62	11.89	9.7		1.19	4.6	16.0	1-1-	y	7.08	2.18	**	6	1.54	weight	1	
N A	5.7	77	159	6.8	6.1	4	9 3 1	N	4 40	130	7	7 7	200	199	162		122		150	169	134	26.3		2 A 3	1 6 2	269	232	201	in		
ess la	2.3	1225	1221	\$21	135	1121	700	1 536	1721	\$12	225	323	199	15.1	115	416	25.		56.7	431		1/9	791	545	312	33.5	1 7 1	101	action		
ř	177	356	1130	1 /2	262	917	1	103/	0 0 6	15.6	25	166	213	971	512	7	992	9 9	25.5	2:1	20 51	1 8 6	202	18.9	155	49 	156	9 7	fr		
CU	2.63	4.11	5.61	1.95	1.65	5 . 4 3	90 - 1	2.65	\$. \$ \$	3.59	1461	3.61	0 1 0	3.50	11.1	2			111	3.54	10.4	m 1	92-3	2	3.36	1.57	3.25	2.73	Insoluable		
& &	290	267	230	342	34.9	612	262	0 4	1/1	1551	626	628	618	900	696		5/2		512	435	473	553	216	\$18	205	250	253	57.6	Inso		
	3613	9599	15555	3619	3317	1995	6636	28862	11618	3746	1 2 2	3576	5077	3977	5913	4751	9 7 9 6		1919	3621	3165	4659	3000	5242	\$368	5 1 1 9	2610	4519	, mdd		
42	413930	067611	25.25.2	412690	36 37 7 0	336410	365453	531915	27 5680	6	127.003	079927	41 1550	391510	340333	125250	026234		46.2494	453273	163180	29866	457 340	156150	659370	05.08.44	010464	456320	lts in		
2	91-22	33.36	75.63	90 - 79	93.46	90	86.38	91.44	2	82	31-32	77 - 16	83.76	94.32	93.02	00 00			91. 20	93.63	95-12		93.27	A2.63	61.76	2.		93.03	al resul		
×0110	•	19.61	21.2	17.94	9.52	7.94	13.62	2 - 2	24.72	en :	200	6.36	19.26	\$		7-		4	A-20	01.9	7	7.32	1.73	-	5.31	0 0	3 -	200	geochemical	- not a	
NU HBC B	02	20	534	5 36	3 3	\$ 10	354	574	878	02		***	450	659	75 7	1	7 7		40	770	~	2 2	2 \$4	258	250	2.5	8 6	31			
ON	ی	2		ر		¥.	m 7		402	- 0		.	4	-	٠,٠	0							, ex	11	- ب		r		Bedrock		

10 '

		1	
			•

* * *	14.400	01 07 07 0	100.00.00.00.00.00.00.00.00.00.00.00.00.	01	91	•	•	
7	4.798	74.009	70 00 00 00 02	1127.040	161.040	116.00	113-400	
***	13.120	15. 110	11 11 10.000	91931.000	14 9. 000	3.030	1207-500	
20000	26.140	000000	17 1010.000	12744.009	100.00	2000	1034-266	
-	002.4	14.160	2 1 1 10 . 000	3327.000	163.000	1.030	175 - 950	
						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	=	•	2	10	:	•	21	
4 4	221.0	91.000	401361.004	3062.300	619.100	3-116	202.600	
440	10.20	44. 410	3000.000	203.000	000-1-2	0.0.0	166.00	
39000	12.530	15.	\$100 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2007-000	200.000	477.4	363:492	
910 m 96 c	1.6.1	80 9 9	10110.730	610.000	204.177	0.340	10.17	
-	000-2	60.710	20010.000	2010.040	271.000	3.100	146.00	
. 1 mg to						0 0 0 0 0		
				4				
1		21	21	~	21	18	18	A STATE OF THE PARTY OF THE PAR
1	0.00		299-15001	4785.750	503-193	1.995	111.902	
	17.176	16. 060	16 71 80 . 000	007.0110	44 0 000	20.7.2	114.000	
29000	14,510	14. 330	64510.000	4974.500	14 3.000	1.69.	234-50	
100 0011	990-1	0.066	11737-453	1116.076	53.692	291.0	30.366	
-	2.040	9. 9.2	10 10 10 . 0 00	1144.000	*17.000	2.730	114.000	
					* *************************************	ı		
	7.6	4	100	13	79		\$1761	
ent elvis						0 0 5 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
•	11	91	•	0.1	9.0	•	•	
	1133.780	97. 500	4.516	500.000	266.600	170	6.125	
0 0	7061.000	10 4. 000	17.050	414.44			9000	
39410	203-1612	114.000	12.004	197 - 54.0	917.000		D	
110 10	265.500	41.636	4.460	131.146	155.710	6 / 8	2 2 2 2	
	900-707	000.17	26	233.662	000-74	9/0	0.426	
*0 394 9							000000000000000000000000000000000000000	
•	31		3	:	•	٠	:	
: 7	111.700	125, 100	1.160	193.166	144.300	4.215	916-1	
1300	151.035	114.000	6 - 170	814.660	80.00	4 . 4 6 6	249.0	
2000	060.799	2:5.060	4.170	363.600	315.000	3+650	2.620	
200 10	300-011	000-111	200	997.466	206-650	2.476	200.7	
• -	131.000	114.060	0.170	872-412	2 0.000	7 - 9 00	224.0	
01000								
- :	20 000	21	2 :	21	1.5	=	2.5	
200	10/-000	166.00	6-710	156.760	000-001	180-2	1.176	
***	201.00	11:000	/ . 0 0 0	441.700	151.000	2.484	3000	
19 94 0	149.006	173.000	0.1%	400-142	307.000	9.000	244.0	
200	2/0.115	25.035	1.00	199-184	119.113	3.636	0.112	to comment or comment
	107.761	100.900	0.714	201.142	64.00	2 B B C	340.0	
+			1+0 0+	1 () () () () () () () () () (
1	+		0	40.00	1			

				*		
					•	

-	100 0	COC#(#]\$	14.1													
10	1100	cacatals	131.1													
_	3400 []	PHI				3.0	**	**	AL			24	8+			
-					1210	340	1/0	540	A10	******			*****		•	
	61303	9.00	22.00		3490	360	100	3782	330	3-20	248	1.20	485	1/A		
,	0120 A C1203	1.50	37.51	426441	16-00	350 360	170	1172	50 g	7 - 00	746	1-28	39E	N/A		
	11701	2.50	37-30	37 8041	37.00	626	2 4 0	1570	920		240	2-70	250	9/4		
	01204	3.03	60.40	343141	41.69	530	210	1070	1140	1.10	290	1.20	79E	N/4		
	61719 61211	4.03	11.44	320701	4230	110	340	1110	1700	10.40	100	1.10	356	674		
				0 - 1 - 0 - 0		\$78	\$10	2 8 40	1076	15.45	100	16.20	330 200	4/4		
	81412 81413	-1-17	14.50			140	111	050	410	11-20	220	1.90	940	1.30		
	E1414 C1415	-1-00	17.78	463236	4160	630	145	150	150	13.38	250	7.01	37 C	1.40		
	C141/	9.25	-21-12	404190	42.1C 37.20		190	1110	910	11.50	200	14.76	23.4	4.29		
	61419	2.60	47.73	4 6 6 6 4 5	45.76	310	310	1710	1000	23.38	315	11.00	316	3 - 41		
1 3	01424	2.51	32.54	1987 43	4598	330	37 e 330	1270	1148	12.00	105	14.10	291	9.20		
		******							-	76.70	140	11.30	386	11-10		
	0 10 2 1			399145	37.90	318	120	750								
.1	01423	9.00 9.30	37.70	396196	27 10	929	740	1479	710	12.00	173	7.00	451	974		
	C1024	1-50	49.30	37 17 26	42.00	130	27.0	2420	1724	12.78	778	4-10	510	4/4		
	61424	2.00	71.00	320050	21.00	640	150	1210	1970	17,90	142	2.40	275	3/4		
	61624	1.00	86.48	332186	3350 3330	640	303	4230	1090	24-60	480	12-00	330	9/4		
	01436	3-50	32.49	303470	\$450 \$150	330	745	4366	3990	34.66	916	16.28	346	6/4		
			21.60		1.122	622	170	5212	2590	19.90	730	11.96	171	4/4		
					••••••											
	C2013	4.50	31.70	249365	2770	142	110	870	220	7.40	144	3-80	160	C.0.		
	****					350		1970	770	1 0. 10	74.0	14.60	100	0.80		
	62634	2.41		35 30 + 0	25.10	570	230	1696			******	*******	******			
	6 26 15	4.33	35.40	1341/1	2426	3.65	275	2475	1156	9-06	110	17.65	240	9/4		

	03514 03537	2.00	41-88	419210 323120	20.10	528	2.00	1545	350	17.70	163	3.40	345	4/4		
	61712	*2.58	16.56	472340	4P 1C	3.68	130	2716	3/50	7.50	128	22.48	390	14/ A		
,	67146	-94-36-	_11.62_	422244	1040	400 402	160	188 810	100	4.30	110	1.05	316	5/1		
												4144		4/1		
	ERZAL	2.00														
* *	61747	7.50	76-18	169528	0070	460	320	2350	1539	2/4	450	1.00	446	9/4		
	67744	1.50	17.10	346488	92 4 9 3 6 6 9	328	958	3678	47F0	17.60	110	10.96	53C	6/4		
1 .	03745	4+52	11.20	35/130	12969	4.00	416	3 (30	3638	47.40	510	73-36 17-18	411 180	6/6		
		******			********	*******						*******	******			
	67346 67346	2-00	71-19	J3914C	11330	320	420	2240	I fwe	11.50	100	15.90	100	17.45		
	61346	- 3-36_	#1.00 #1.10		17660 2862u	100	1100	3628	2290 4120	122.00	1410	26.20	196	4.56		
	*******				28024		_221	3160 _	-2180	AZ-EC.		21.00	_A2C	_bacc		
	6275-	*****	11.45	347934	4-4-							••••••	• • • • • • •			
	15751	-1.73	35.90	3 144 B C	{*!*	240	366	7116	900	14.16	97;	13.40	196	4+1		
-	£2731 £2734	21.5C	37.00	4117/8	2303	203		1275	- 116	10.40	1111	11.90 G.0C	111	101		
	09795	-4.30 C.43	43-42	197050	6169	910	215	2279	1974	23.24	1418	12.18	100	1.12		
	19794	3-50	47.70	413740	4343	2 10	7+6	2730	958	24-10 74-15	1900	11.40	791	1.50		
-	16752	1.30	31.40_	411960	IVER	241	0/ 4	-3/1	1111	21-11	3/1	19.00	245	Jack Comment		
	67744	2.55	71.11	115456	14150	270	4/4	5/6	1710	11.70	2/1	11-61	740	1416		
	69762	1-56	15.62	115440	1100-	230	9/4	4/4	1700	13.75	2/4	11.50	147	Seat .		
-	43/44	4.50	10.70	323346	-176A_	244	3/4	4/4	2370	14.10	6/4	11.79	195	4.70		
											711	21-70	-142			

Till geochemical results, IR (insoluable residue) in weight percent, chemical results in ppm. N/A - not analyzed.

					**			
		1=101 / 6	65	The Table	5.0	54	71	-
	CIS SAMPLE							
	•	14	11	11	11	11	11	
	96 LV	17.720	37 44 12. 727 71 51 10. 010	1710.40v	191.210	227.223 176.600	1407.000	CONTRACTOR OF THE STATE OF THE
	H & &	304.54	441316.000	4230.604	849.000	340.000	2140.000	
	1140 OCV	17.767	170110.000	1040.307	100-663	170-406	1901.006	
	419	17.100	313110.040	362.654	34.423	170.000	149.053	
	C14 54-PLC							
	4	1			1			
	P4 3H 33 0H	27.000	26 28 4 6 . 0 6 6	4210.000	347.770	/51.111 160.00u	907.222	
	8 4 6	33.700	61 62 1 64 0 60	47 51 - 0 60	660.000	320.000	1269,500	
	9346C 930 04412	10.702	14 22 16, 80"	1061.000	139.500	710.000	340.000	
	H E N	10.551	24 2 6 4 6 . 6 6 0	318.382 2720.000	519.600	140.000	217.012	
	E14 149217							
	Ele teartt							
	4	11	11	11	ii	407.071	11	The second section and the second section of the second section of the second section of the second section se
	#€ 8# #0 0¢	61.464 71.464	35 3 24 3. 4 55	5100.987 2210.000	\$17.172 \$30.200	170.000	3170.000	
1	H A A	02.606	177142-000	8450.00	640-688	754-000	3210.000	
- 1	33F4W	57.000	/1618-004	2144.074	/0.000	110.000	4170.000	
	5140 C DEF	21.303	32 0 0 7 0 - 3 2 3	1122-013	3/0-200	203.621	1164.230	
3	850 2 marf £							
		2			2		2	
	P4 34	33.736	27 46 2 5 . 80 0	2625.044	110.CC0 120.CO0 140.CC0	- 743.036	1285.000	allo H (15% * 15 475 KH17 / 45)
	444	11.000	770714.014	1110.000	140.200	110.00	1850.000	
	RAUGE	9-100	41716-040	710.000	28.000	170.000	1230.600	
	51467 BCF		24641.916 24981C.060	203.001	14.142	120.200	681.683 670.000	
					350-600			
	CTH TAPPLE							
	4	2			2	2		
	₽€ ± ™ ₩0 ₩€	11.400	47 1013.009	1915-094	4/5.600	240,000	1745.000	
	884	42-206	18 +1 / 6 - 0 C 0 36 1 0 2 C - C 0 0	2420-000	140-640	238,999	1000.00	
	94966	2.000	177710.000	1176-100	199.000	093.95	1190-800	A STANDARD COME OF THE STANDARD CONTROL OF THE STANDAR
	1110 BCV	15.400	12 26 17. 746	2420.000	114.210	250.42	107.8/4	
	C15 51-FLC							
	4	ż	2	ž	1		1	
	#E 64	44.116	401483- 600	1939.000	\$25.000	2 70.000	1175.000	
	441	11.440	20 1010.000	1610.00	\$25.008 525.000 529.000	186.000	2710.000	
	94466	7.300	13016. 404	150.490	10.000	20.000	1679.004	
	STANC BET	7-301	24615-377	1610.00J 130.40v . 105.466	7 - 971	14+142	1140 - 260	spirits direction in the real consequence of the co
	914	51.990		1.60.000	329.000	484.09a	1940.009	
		-1.476	374744.86*	7464.000		/80,004	1740.004	
	637 SA# LE							
	MC AN	54.161	25 2 1 4 2 . 0 6 0	1410.250	403.000	674.250	2742.500	2000
	10 04	16.570	324 150, 000	1074.090	400.000	160.004	/ qn . 8 < n	Age US-
	449	11-146	*21246.600	10000.004	40.000	1040.000	3370.C09	
	5144E BC#	27.429	13712-4/1	#£74.335	41.311	142.194	1721.499	
_ 1	4[4	14.394	126156.000	4/10.000	460.600	150.000	100.000	
1	955 SAMPLE				*		-	registrate in the state of the
	PA 34	73.436	J11445.0CE	11/25.500	120.100	/15.000	1700.000	
	≈0 0¢	40.340	/655fC. 000	1007.000	794.000	214.400	2767.000	
	180	17.700	137146-060	21820-00.	210.000	1379.000	3020.500	
	11456 065	7.353	14110.739	74 9 1 - 7 12	45-640	311-644	1227.364	
	414	64.166	261502.040	9402.000	300.000	226.489	2265.000	
	817 340766							
					1.80	į		Regional de
	P(00	33-107	19 0 17 4 - 0 0 0	11147-500	13 212-210 259-200	100-037	4034.204	
	38.00	11.406	177 716.000	12110.000	250.600	210.000	1.00.000	
	444	41.096	121716.161 /41416.461	* 2116 . 6 8 - / 630 . 000	270.015	170.000	1440.661	
	114m2 047	16.223	1.111.100	1114.474	70.000 21.440 200.000	30.020	160.081 160.004	
	434	13-704	277 110-005	12716-000	200.000	210.000	1409.004	

Statistical results of till geochemistry.

		•

	44	cu	нч	24	0.4	* 6.1	
618 51-066							
P 434	423.271	10, 143	11	11	210.000	0.0	
336=	11 423.277 434.006 1206.006	4- 103	246.403	1.700	250-09U	474	
3200	100.000	10.400	116.000	10.400	450.00e 210-60u 67.731	5/6 9/6	
\$110 C GEV	776.696 292.154 456.000	2. A G #	11 317,275 246,403 578,000 316,400 97,587 246,800	2.157	330.036	6/6	
	*) (, 00 0	4.167	540.000	1.100			
CIA SAPPLE							
4		1		*			
#f 24 #9.05	134.067	17.760	265.550	11.711	4 90 . w0 u	6.167	
9 6 6	1126.006	22.000	146.000	22-109	610-974	11-109	
*1400 0CT	71E.00u 255.049	7. 458	46.394	4.516	120-100	7 - 635	
*14	734.647 414.006 1126.006 716.000 253.049 416.006	11. 500	210.000	4.500	290.090	1. 300	
CIO SAPPEC							
•	11	11	11	11	LI.	0	
96 84	11 7171.010 366.000 1776.000	25. 092	410.000	0.111	11 166.432 171.606 660.000	974	
33.00	3776.400	12.000	010.000	16.100	460.000	678	
3300 000	1416.096	70.660	640.009	12.700	161.273	9/4	
919	346.006	10. 309	640.009 221.314 170.009	2.105	171.640	1/4	
CZO SOMPLE							
HE AY	343.006	12. 920	200.000	1.260	110.000	0.000	
₩000	376.496	7.400	169.000	1,540	100.000	0.090	
94460	41 6. 000	15. 700	60.004	10.190	60.000	0.000	
\$1408 849	316.178	1.566	54.367 160.000	7.137	100.000	0.600	
110 64mPl (549.00C 374.496 776.404 496.00C 388.198 376.00C						
636 grantf							
e 20	493.406	249-113	113,00	30.600	214.00	*/4	
39.00	54 C . 000	9.060	100.004	4.700	240.000	6/4	
8 4 4 3 2 6 4 8	316.000	476.100	70.000	93.400	70.000	1/1	
1140 017	273.006 546.000 1136.000 316.005 364.624	1+0, 141	40.497	46.044	140.000	975	
	*************	** 6 C 6	(44 - 64)	*****			
011 614568							
	:	2		i	i i		-to-
9 9 2 3 4 3 0 5 m	120106 57606	2 20-110 12-700	; \!\.\0. !\0.v00	14.460 3.460	165.006 165.006	6/4	way .
9 Pa 3m 70 Dm 10 D	188100 076.006 1756.000	2 10-170 13-700 11-40	8 4 1 6 - 6 2 . 3 6 0 - 4 0 0 4 0 6 - 6 7 .	14.460 3.400 27.400	165-076	978	-
Pa 3m 30 8m 4 4 6 50 9 6 6 7 6 7 6 8 7 6 7 6 7 6 8 7 6 8 7 6	1885-06 -525-06 -1755-006 -1755-006 -777-017	2 10-110 13-700 11-020 10-900 10-110	26.60. 360.000 400.000 120.000	14.460 3.460 27.440 27.680 13.124	365.006 360.000 370.000 10.000	6/A 6/A	-
\$1446. 074 4406 470 470 470 470 470 470 470	120 E 0 E - 57 E - 10 C - 175 E - 10 C - 11 0 E - 10 C - 177 E - 17	2 13.70 13.70 17.40 14.90 16.916	626-68 160-68 400-68 120-69 44-851	14.440 5.400 87.440 28.600 13.154	355-006 360-000 370-000 15-353	6/A 6/A 6/A	-
9 mg bg was a 4 a gg 5 f a 4 g G g	120106 53606 175606 110106 777017	2 20-110 11-70 11-50 11-50 16-316	2 426-60 360-400 40-40 120-000 64-871	16.60 3.60 27.40 27.40 27.40 27.40	\$ 155.006 340.000 50.000 15.355	6/A 6/A 6/A	
m a made made was aage stare old	1201-06 531-06 531-06 1711-09 1311-09 777-017			28.680 12.556	10.000	6/A 6/A 6/A	
mind modi man mange man mange man man mange man man man man man man man man man man	1201.00 516.00 516.00 1756.00 1101.00 777.017			28.680 12.556	10.000	0/A 6/A 0/A 6/A	
486		12.760	\$ 426-60. \$60-400 406-000 44-872	28.680 12.556	10.000	0/A 6/A 0/A 6/A	
414 CTF SA4PEE	\$\$¢.00¢	33.760	160.00c	27.500 13.556	19.000 19.193	0/A 6/A 9/A 9/A 6/A 0/A	
414 CTF SA4PEE	\$\$¢.00¢	33.760	160.00c	27.500 13.556	19.000 19.193	0/A 6/A 0/A 6/A	
410 (17 SAUPLE 0 MEAQ MOSE	\$\$¢.00¢	33.760	160.00c	27.500 13.556	340.07 y	674 675 676 676 676	
CTF SAMPEE O MEAN MOC AAT VANGE	\$\$¢.00¢	33.760	160.00c	27.500 13.556	340.079 340.079 340.079 463.770 340.000 440.000	674 674 674 674 674	
0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$\$¢.00¢	33.760	160.00c	27.500 13.556	31-0-09 15.393 31-0-079 31-0-079 4-63.730 140.000 140.000 140.000 140.000 140.000 140.000	674 674 674 674 674 674	
010 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000	0	13.760 4 16.440 3.444 49.469	160.00c	20.200 13.220	340.079 340.079 340.079 463.770 340.000 440.000	674 674 674 674 674	
010 0 mg an 000 0 an 0 an 0 an 0 an 0 an 0 an 0	00000000000000000000000000000000000000	15, 760 16, 640 1, 649 47, 650 11, 767 2, 680	168.00c	27.400 12.176 12.176 3.400 2.107 2.107 2.109 2.109 2.109 2.109	30.000 15.355 310.079 4.63,730 100.000 64.000 101.000 101.000	674 674 674 674 674 674	
010 0010000 00000 0000 0000 51400 0100 01	00000000000000000000000000000000000000	15, 760 16, 640 1, 649 47, 650 11, 767 2, 680	168.00c	27.400 12.176 12.176 3.400 2.107 2.107 2.109 2.109 2.109 2.109	30.000 15.355 310.079 4.63,730 100.000 64.000 101.000 101.000	674 674 674 674 674 674	
010 0 mL a0 0 00 00 0 00 00 0 00 00 0 00 00 0 00 0	00000000000000000000000000000000000000	15, 760 16, 640 1, 649 47, 650 11, 767 2, 680	168.00c	27.400 12.176 12.176 3.400 2.107 2.107 2.109 2.109 2.109 2.109	30.000 15.355 310.079 4.63,730 100.000 64.000 101.000 101.000	674 674 674 674 674 674	
010 0 000 0 000 00	00000000000000000000000000000000000000	15, 760 16, 640 1, 649 47, 650 11, 767 2, 680	168.00c	27.400 12.176 12.176 3.400 2.107 2.107 2.109 2.109 2.109 2.109	30.000 15.355 310.079 4.63,730 100.000 64.000 101.000 101.000	674 674 674 674 674 674	
010 010 010 010 010 010 010 010 010 010	00000000000000000000000000000000000000	15, 760 16, 640 1, 649 47, 650 11, 767 2, 680	168.00c	27.400 12.176 12.176 3.400 2.107 2.107 2.109 2.109 2.109 2.109	30.000 15.355 310.079 4.63,730 100.000 64.000 101.000 101.000	674 674 674 674 674 674	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	15, 760 16, 640 1, 649 47, 650 11, 767 2, 680	168.00c	27.400 12.176 12.176 3.400 2.107 2.107 2.109 2.109 2.109 2.109	30.000 15.355 310.079 4.63,730 100.000 64.000 101.000 101.000	674 674 674 674 674 674	
010 00 ME 40 00 ME 40 0	\$100.000 \$110.000 \$100.000 \$100.000 \$100.000 \$200.000 \$200.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000	13.760 10.40 10.40 11.40 11.967 11.967 11.90 11.90 11.90 11.90 11.90 11.90 11.90	148.000 111.75 111.000 111.000 14.000 14.000 14.000 14.000 15.000 15.000 15.000 15.000 15.000 15.000	27.400 12.176 12.176 12.177 3.400 27.100 27.100 10.127 3.760 11.727 11.000 20.1760 11.727 11.000 10.1760 11.727 11.000	30.009 15.355 310.009 4.63,730 100.009 64.000 101.009 101.009 100.009 124,000 100.009 126,000 100.009	674 674 674 674 674 674	
010 00 ME 40 00 ME 40 0	\$100.000 \$110.000 \$100.000 \$100.000 \$100.000 \$200.000 \$200.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000	13.760 10.40 10.40 11.40 11.967 11.967 11.90 11.90 11.90 11.90 11.90 11.90 11.90	148.000 111.75 111.000 111.000 14.000 14.000 14.000 14.000 15.000 15.000 15.000 15.000 15.000 15.000	27.400 12.176 12.176 12.177 3.400 27.100 27.100 10.127 3.760 11.727 11.000 20.1760 11.727 11.000 10.1760 11.727 11.000	30.009 15.355 310.009 4.63,730 100.009 64.000 101.009 101.009 100.009 124,000 100.009 126,000 100.009	674 674 674 674 674 674 674 674 674 674	
010 00 ME 40 00 ME 40 0	\$100.000 \$110.000 \$100.000 \$100.000 \$100.000 \$200.000 \$200.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000	13.760 10.40 10.40 11.40 11.967 11.967 11.90 11.90 11.90 11.90 11.90 11.90 11.90	148.000 111.75 111.000 111.000 14.000 14.000 14.000 14.000 15.000 15.000 15.000 15.000 15.000 15.000	27.400 12.176 12.176 12.177 3.400 27.100 27.100 10.127 3.760 11.727 11.000 20.1760 11.727 11.000 10.1760 11.727 11.000	30.009 15.355 310.009 4.63,730 100.009 64.000 101.009 101.009 100.009 124,000 100.009 126,000 100.009	674 674 674 674 674 674 674 674 674 674	
010 00 ME 40 00 ME 40 0	\$100.000 \$110.000 \$100.000 \$100.000 \$100.000 \$200.000 \$200.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000 \$100.000	13.760 10.40 10.40 11.40 11.967 11.967 11.90 11.90 11.90 11.90 11.90 11.90 11.90	148.000 111.75 111.000 111.000 14.000 14.000 14.000 14.000 15.000 15.000 15.000 15.000 15.000 15.000	27.400 12.176 12.176 12.177 3.400 27.100 27.100 10.127 3.760 11.727 11.000 20.1760 11.727 11.000 10.1760 11.727 11.000	30.009 15.355 310.009 4.63,730 100.009 64.000 101.009 101.009 100.009 124,000 100.009 126,000 100.009	674 674 674 674 674 674 674 674 674 674	
010 00 ME 40 00 ME 40 0	00000000000000000000000000000000000000	13.760 10.40 10.40 11.40 11.967 11.967 11.90 11.90 11.90 11.90 11.90 11.90 11.90	148.000 111.75 111.000 111.000 14.000 14.000 14.000 14.000 15.000 15.000 15.000 15.000 15.000 15.000	27.400 12.176 12.176 12.177 3.400 27.100 27.100 10.127 3.760 11.727 11.000 20.1760 11.727 11.000 10.1760 11.727 11.000	30.009 15.355 310.009 4.63,730 100.009 64.000 101.009 101.009 100.009 124,000 100.009 126,000 100.009	674 674 674 674 674 674 674 674 674 674	

Statistical results of till geochemistry.

		,

		-	

