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Abstract ii

Abstract

We study the phonon dispersion, cohesive and thermal properties of raxe gas solids Ne, Ar,

Kr, and Xe, using a variety of potentials obtained from different approaches; such as, fitting

to crystal properties, purely ab initio calculations for molecules and dimers or ab initio

calculations for solid crystalline phase, a combination of ab initio calculations and fitting to

either gas phase data or sohd state properties. We explore whether potentials derived with

a certain approaxih have any obvious benefit over the others in reproducing the solid state

properties.

In particular, we study phonon dispersion, isothermal ajid adiabatic bulk moduli, thermal

expansion, and elastic (shear) constants as a function of temperatiue. Anharmonic effects on

thermal expansion, specific heat, and bulk moduli have been studied using A^ perturbation

theory in the high temperature limit using the neaxest-neighbor central force (nncf ) model

as developed by Shukla and MacDonald [4].

In our study, we find that potentials based on fitting to the crystal properties have some

advantage, particularly for Kr and Xe, in terms of reproducing the thermodynamic properties

over an extended range of temperatiures, but agreement with the phonon frequencies with

the measured values is not guaranteed. For the lighter element Ne, the LJ potential which is

based on fitting to the gas phase data produces best results for the thermodynamic properties;

however, the Eggenberger potential for Ne, where the potential is based on combining ab

initio quantum chemical calculations and molecular dynamics simulations, produces results

that have better agreement with the measured dispersion, and elastic (shear) values. For
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At, the Morse-type potential, which is based on M0ller-Plesset perturbation theory to fourth

order (MP4) ab initio calculations, yields the best results for the thermodynamic properties,

elastic (shear) constants, and the phonon dispersion curves.





Contents iv

Contents

Abstract ii

Contents iv

List of Tables vi

List of Figures viii

Acknowledgements xiv

1 Introduction 1

1.1 Calculation of the Potential Energy 3

1.1.1 Types of Intermolecular Forces 3

1.2 Bonding in Rare Gas Solids 6

1.3 Ne, At, Kr, and Xe Pair Potentials 7

1.3.1 The Ne Potentials 7

1.3.2 The Ar Potentials 10

1.3.3 The Kr Potentials 14

1.3.4 The Xe Potentials 16

2 Lattice Vibrations 18

2.0.5 Theory of Lattice Vibrations 18

2.0.6 Phonon Frequencies via the Tensor Force Model 22



tj ;'



Contents v

2.0.7 Results for the Phonon Dispersion Curves 24

3 Thermodynamicgd Properties 32

3.1 Isothermal and Adiabatic Bulk Moduli, and Specific Heats 32

3.1.1 Results for the Thermal Expansion of the Isothermal and Adiabatic

Bulk Moduli, and Specific Heats 34

3.2 Elastic Constants via the Long Wavelength Limit 54

3.2.1 Results for the Elastic Constants via the Long Wavelength Limit ... 54

4 Anharmonic Corrections to the Thermal Expansion 67

4.1 Anharmonic Theory 67

4.1.1 Results for the Anharmonic Corrections to the Thermal Expansion of

the Isothermal and Adiabatic Bulk Moduh, and Specific Heats .... 71

4.1.2 Results for the Elastic Constants via the Long Wavelength Limit with

Anharmonic Corrections 82

5 Discussions and Conclusions 88

5.1 Discussions of the Phonon Dispersion Calculations 88

5.2 Discussions of the Thermodynamic Properties of Ne, Ar, Kr, and Xe 92

5.3 Elastic Constants Calculation Discussions via the Long Wavelength Limit . . 96

Bibliography 114



H '
'

* 'p ' ' ii'

rjry^m^



List of Tables vi

List of Tables

1.1 The parameters for the Aziz potential energy function of Ne in atomic units

(au) [14, 15] 9

2.1 List of neighbours for face-centred cubic crystals 24

4.1 Coefficients of the least-squares fit for the calculations of the BZ sums used

in the study of anharmonic effects [4] 71

5.1 Calculated percent errors for Ne, Ar, Kr, and Xe dispersion calculations at

the zone boundaries in the [100], and [111] principal symmetry directions. . . 91

5.2 Calculated elastic constant Cn in the quasiharmonic (QH) approximation for

Ne, and Ar. The labels are defined in the text 98

5.3 Calculated elastic constant Ci2 in the QH approximation for Ne, and Ar. The

labels are defined in the text 99

5.4 Calculated elastic constant C44 in the QH approximation for Ne, and Ar. The

labels are defined in the text 100

5.5 Calculated elastic constant Cn in the QH approximation for Kr. The labels

are defined in the text 101

5.6 Calculated elastic constant C12 in the QH approximation for Kr. The labels

are defined in the text 102





List of Tables vii

5.7 Calculated elastic constant C44 in the QH approximation for Kr. The labels

are defined in the text 103

5.8 Calculated elastic constant Cn in the QH approximation for Xe. The labels

are defined in the text 104

5.9 Calculated elastic constant C12 in the QH approximation for Xe. The labels

are defined in the text 105

5.10 Calculated elastic constant C44 in the QH approximation for Xe. The labels

are defined in the text 106

5.11 Calculated elastic constant Cn with the A^ anharmonic corrections for Kr.

The labels axe defined in the text 107

5.12 Calculated elastic constant C12 with the A^ anharmonic corrections for Kr.

The labels are defined in the text 108

5.13 Calculated elastic constant C44 with the A^ anharmonic corrections for Kr.

The labels are defined in the text 109

5.14 Calculated elastic constant Cn with the A^ anharmonic corrections for Xe.

The labels are defined in the text 110

5.15 Calculated elastic constant C12 with the A^ anharmonic corrections for Xe.

The labels are defined in the text Ill

5.16 Calculated elastic constant C44 with the A^ anhaxmonic corrections for Xe.

The labels axe defined in the text 112





List of Figures viii

List of Figures

1.1 Normalized plot for the comparison of the pair-potentials for Ne 9

1.2 Normalized plot for the comparison of the pair-potentials for Ar 13

1.3 Normalized plot for the comparison of the pair-potentials for Kr 15

1.4 Normalized plot for the comparison of the pair-potentials for Xe 17

2.

1

Phonon-dispersion relations in [100] ,[110], and [111] principal symmetry direc-

tions in Ne at 10 K. •, experimental measurements from [28]. The calculations

are from the quasiharmonic theory using the Eggenberger potential sixth-shell

calculations 25

2.2 Phonon-dispersion relations in [100] ,[110], and [1 1 1] principal symmetry direc-

tions for ^Ar at 10 K. •, experimental measurements from [27]. The calcula-

tions are from the quasiharmonic theory using the Exp-6 potential sixth-shell

calculations (black Unes), Aziz potential sixth-shell calculations (red lines),

Morse-type potential sixth-sheU calculations (blues Unes), LJ potential sixth-

shell calculations (green lines) 26





List of Figures ix

2.3 Phonon-dispersion relations in [100], [110], and [HI] principal symmetry di-

rections for Kr at 10 K. •, experimental measurements from [29]. The calcula-

tions are from the quasiharmonic theory using the Morse potential first-shell

calculations(black lines), Aziz potential sixth-shell calculations (red Unes), LJ

potential first-shell calculations (blues lines), Rydberg potential first-shell cal-

culations (green lines) 27

2.4 Phonon dispersion curves for Xe using the Exp)-6 potential sixth-shell calcu-

lations. The sohd hues are the theoretical calculations from quasiharmonic

theory. •, experimental measurements from [30] 28

2.5 Phonon dispersion cvurves for Xe using the Rydberg potential first-shell cal-

culations. The solid lines are the theoretical calculations from quasiharmonic

theory. •, experimental measurements from [30] 29

2.6 Phonon dispersion ctuves for Xe using the Morse potential first-shell calcu-

lations. The solid lines are the theoretical calculations from quasiharmonic

theory. •, experimental measurements from [30] 30

2.7 Phonon dispersion curves for Xe using the LJ potential first-shell calculations.

The solid fines are the theoretical calculations from quasiharmonic theory. •,

experimental measurements from [30] 31

3.1 Lattice constant (ar) at zero pressure for Ne. +, experimental points [31]; the

labels for each fine are defined in the text 34

3.2 Lattice constant (ar) at zero pressure for Ar. -I-, experimental points [31]; the

labels for each fine are defined in the text 35

3.3 Lattice constant (or) at zero pressure for Kr. -I-, experimental points [31]; the

labels for each line are defined in the text 36





List of Figures x

3.4 Lattice constant (ar) at zero pressure for Xe. +, experimental points [31]; the

labels for each Une are defined in the text 37

3.5 Isothermal bulk modulus {Bt) for Ne. +, experimental points [31]; the labels 1'

for each line are defined in the text 38

3.6 Isothermal bulk modulus (Bt) for Ar. +, experimental points [31]; the labels

for each line are defined in the text 39

3.7 Isothermal bulk modulus (Bt) for Kr. +, experimental points [31]; the labels

for each line are defined in the text 40

3.8 Isothermal bulk modulus {Bt) for Xe. +, experimental points [31]; the labels

for each line are defined in the text 41

3.9 Adiabatic bulk modulus (Bs) for Ne. +, experimental points [31]; the labels

for each line are defined in the text 42

3.10 Adiabatic bulk modulus (Bg) for Ar. +, experimental points [31]; the labels

for each line are defined in the text 43

3.11 Adiabatic bulk modulus (Bg) for Kr. +, experimental points [31]; the labels

for each fine are defined in the text 44

3.12 Adiabatic bulk modulus (Bs) for Xe. +, experimental points [31]; the labels

for each line are defined in the text 45

3.13 Specific heat at constant volume {Cy) for Ne. +, experimental points [31];

the labels for each Une are defined in the text 46

3.14 Specific heat at constant volume (Cv) for Ar. +, experimental points [32];

the labels for each Une are defined in the text 47

3.15 Specific heat at constant volume {Cy) for Kr. +, experimental points [33];

the labels for each Une are defined in the text 48



Tf*.



List of Figures xi

3.16 Specific heat at constant volume {Cv) for Xe. +, experimental points [34].

The labels for each hne are not shown because of the proximity of each curve '

-

with respect to the others are very close 49

3.17 Specific heat at constant pressure (Cp) for Ne. +, experimental points [31];

the labels for each Une are defined in the text 50

3.18 Specific heat at constant pressure (Cp) for Ar. +, experimental points [31]; '

the labels for each Une are defined in the text 51

3.19 Specific heat at constant pressm-e (Cp) for Kr. +, experimental points [31];

the labels for each line are defined in the text 52

3.20 Specific heat at constant pressure (Cp) for Xe. +, experimental points [31];

the labels for each line are defined in the text 53

3.21 Elastic constant Cn via the long wavelength limit for Ne. D are the experi-

mental points from [31]. The labels for each line are defined in the text. ... 55

3.22 Elastic constant Cu via the long wavelength limit for Ne. D are the experi-

mental points from [31]. The labels for each line are defined in the text. ... 56

3.23 Elastic constant C44 via the long wavelength limit for Ne. D are the experi-

mental points from [31]. The labels for each Une are defined in the text. ... 57

3.24 Elastic constant Cu via the long wavelength limit for Ar. D are the experi-

mental points from [31]. The labels for each Une are defined in the text. ... 58

3.25 Elastic constant C12 via the long wavelength Umit for Ar. D are the experi-

mental points from [31]. The labels for each Une are defined in the text. ... 59

3.26 Elastic constant C44 via the long wavelength Umit for Ar. D are the experi-

mental points from [31]. The labels for each line are defined in the text. ... 60

3.27 Elastic constant Cu via the long wavelength limit for Kr. D are the experi-

mental points from [31]. The labels for each Une are defined in the text. ... 61





List of Figures xii

3.28 Elastic constant c^ via the long wavelength limit for Kr. D are the experi-

mental points from [31]. The labels for each line are defined in the text. ... 62

3.29 Elastic constant C44 via the long wavelength limit for Kr. D are the experi-

mental points from [31]. The labels for each line are defined in the text. ... 63

3.30 Elastic constant Cn via the long wavelength Umit for Xe. D axe the experi-

mental points from [31]. The labels for each line are defined in the text. ... 64

3.31 Elastic constant c^ via the long wavelength limit for Xe. D are the experi-

mental points from [31]. The labels for each line are defined in the text. ... 65

3.32 Elastic constant C44 via the long wavelength limit for Xe. D are the experi-

mental points from [31]. The labels for each fine are defined in the text. ... 66

4.1 Lattice constant (07') at zero pressure for Kr. -I-, experimental points [31]; the

labels for each line are defined in the text 72

4.2 Lattice constant (or) at zero pressure for Xe. +, experimental points [31]; the

labels for each line axe defined in the text 73

4.3 Isothermal bulk modulus (Bt) for Kr. -I-, experimental points [31]; the labels

for each Une are defined in the text 74

4.4 Isothermal bulk modulus (Bt) for Xe. -h, experimental points [31]; the labels

for each line are defined in the text ; 75

4.5 Adiabatic bulk modulus (Bs) for Kr. +, experimental points [31]; the labels

for each line are defined in the text 76

4.6 Adiabatic bulk modulus (Bg) for Xe. -I-, experimental points [31]; the labels

for each line axe defined in the text 77

4.7 Specific heat at constant volume (Cy) for Kr. -I-, experimental points [33];

the labels for each Une axe defined in the text 78



<>-fc"



List of Figures xiii

4.8 Specific heat at constant volume (Cy) for Xe. +, experimental points [34];

the labels for eax^h Une are defined in the text 79

4.9 Specific heat at constant pressure {Cp) for Kr. +, experimental points [31];

the labels for each, line are defined in the text 80

4.10 Specific heat at constant pressure (Cp) for Xe. +, experimental points [31];

the labels for eax^h line axe defined in the text 81

4.11 Elastic constant cu via the long wavelength hmit for Kr. D are the experi-

mental points from [31]. The labels for each line are defined in the text. ... 82

4.12 Elastic constant Ci2 via the long wavelength limit for Kr. D axe the experi-

mental points from [31]. The labels for each fine are defined in the text. ... 83

4.13 Elastic constant C44 via the long wavelength Umit for Kr. D are the experi-

mental points fi*om [31]. The labels for each line are defined in the text. ... 84

4.14 Elastic constant Cn via the long wavelength hmit for Xe. D are the experi-

mental points from [31]. The labels for each line are defined in the text. ... 85

4.15 Elastic constant C12 via the long wavelength limit for Xe. D are the experi-

mental points fi-om [31]. The labels for each fine are defined in the text. ... 86

4.16 Elastic constant C44 via the long wavelength hmit for Xe. D are the experi-

mental points fi:om [31]. The labels for each line axe defined in the text. ... 87





Acknowledgements xiv

Acknowledgements

I would like to thank my supervisor, Dr. Bose for creating this project, for his guidance,

patience, and accepting me as a graduate student. I would also like to thank Dr. Shukla for

his help, and expert guidance. I'd like to thank my parents (Bill and Connie) for their loving

support, guidance, and encomagement. Finally, I'd like to thank the physics department for

providing me with the knowledge I received at Brock University.





Chapter 1. Introduction

Chapter 1

Introduction

In this thesis we calculate the dynamical and thermodynamic properties of the rare gas

solids Ne, Ar, Kr, and Xe. The potentials we consider, and how they are developed is

discussed below. Due to the fact that the electronic shells are filled, the charge density of

all inert gas atoms is spherically symmetric and these have been calculated accurately using

the tools of quantum chemistry. There has been a large body of work in calculating the

potential between inert gas atoms as well. These potentials can form the basic ingredient in

calculating the total energy of the rare gas soUds, provided one includes the contribution from

three-body and possibly other many-body interactions. A laxge number of studies have been

devoted to the study of the cohesive, thermal, and dynamical properties of rare gas solids

using this approach [1]. In many cases, studies have been based on two-body potentials

alone. In principle, if a two-body potential is constructed via calculations performed for

the solid phase, or by fitting to the properties of the crystal, then the effects of three and

higher-body interactions can be assumed to have been included impUcitly to some extent.

For rare gas sohds it is easier to construct such two-body potentials. Unlike covalent solids

with highly directional charge distribution and bonding, where the potentials often need

to include angle-dependent terms or metalfics systems, where the total energy is volume-

dependent because of the volume-dependent kinetic, exchange and correlation energy of the

conduction electrons; central two-body and volume-independent potentials have been foimd

to satisfactorily describe the properties of vaxe gas sohds.

In this work we study the phonon dispersion, cohesive and thermal properties of rare
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gas solids using a variety of potentials, obtained from different approaches. Some of these

potentials axe fully or partially based on ab initio calculations and others are derived by

fitting to the crystal properties. Among those which are based on ab initio calculations,

some are derived from the ab initio total energy calculations for the solid phase, and some

are based on calculations for dimers and molecules. Our goal is to explore whether potentials

derived with a certain approach have any obvious benefit over the others in reproducing the

soUd state properties. In particular, we would hke to see whether potentials obtained by

fitting to the crystal properties fare better than those based on full or partial ab initio

calculations. It is not possible to know a priori whether such potentials have an obvious

advantage. Most often the parameters of a two-body potential are obtained by fitting to

crystal properties such as the equilibrium lattice parameter, cohesive energy, and elastic

constants. If one fits the elastic constants cn, C12 and C44, then the slopes of the phonon

dispersion curves at the zone center should come out correctly. However, this does not

insmre that the phonon fi-equencies at high wave vectors, i.e. near the zone boundary will

be reproduced well and agree with the measured values. If instead of the elastic constants,

one simply fits the bulk modulus B = (cn + 2ci2)/3, then even the slopes of the phonon

dispersion curves at zero wave vector (long waves) are not guaranteed to have the correct

values. However, the frequencies at various other (off-symmetry) points of the Brillouin zone

may be reproduced satisfactorily. For reproducing the thermal properties of the solid over a

wide range of temperatmre and lattice parameter, it may be advisable to choose a potential

that can reproduce the total energy versus volmne relation of a solid (or the equation-of-

state) over an extended range of volume.

Most of the ab initio or semi ab initio (semi-empirical) two-body potentials used in this

work have not been used in previous studies of the thermodynamic properties of rare gas

solids. For the sake of comparison we have included two-body potentials, obtained by fitting

to crystal properties, which have been used previously in such studies [2, 3]. Such potentials
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usually have the famiUar Lennard-Jones, Rydberg or Morse form.

We have studied the anharmonic effects on thermal expansion and thermodynamic prop)-

erties by following the work of Shukla and MacDonald [4]. The details are given in chapter

4.

1.1 Calculation of the Potential Energy

The calculation of the potential energy arising from intermolecular interaction is the most

arduous and essential step in any molecular simulation [5]. Generally, the potential energy

(Epot) of TV interacting particles can be evaluated as

£^pot = J]0i(ri) + J]X]02(ri,r,) +^5] Y, Mrurj^Vk) + ..., (1.1)

i t j>i i j>i k>j>i

The first term represents the effect of an external field and the other terms represent particle

interactions, that is, 02 is the potential between pairs of particles and 03 is the potential

between particle triplets, et cetera. As discussed below, the interaction between particles is

commonly evaluated from a suitable potential function.

Typically, it is assumed that only two-body interactions are important and equation

1.1 is truncated eifter the second term. Two-body interactions definitely malce the most

contribution to particle interactions; however, there is evidence that three-body interactions

may be important in some cases [6, 7, 8].

1.1.1 Types of Intermolecular Forces

Intermolecular interaction is a result of both long-range and short-range effects. Short-range

interactions are represented by an exponential decay in the interaction energy with respect

to intermolecular separation. At small intermolecular separations, there is a considerable

overlap of the molecular wave functions causing either intermolecular exchange or repulsion.
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The long-range attractive part of the interaction is usually proportional to the inverse powers

of the intermoleculax distance. The two contributions, short-range (SR) and long-range

(LR), can be evaluated separately and the total potential energy is obtained by combining

the two parts:

AE^ = AE^'' + AE^''. (1.2)

A second approach to obtain the intermoleculax potential is to treat the interacting molecules

a and 6 as a single laxge molecule. The potential is obtained by calculating the energy of ab

and subtracting the energies of the separated a and b molecules:

AEab = Eab — Ea — Ef,. (1-3)

These methods can be apphed using quantum mechanics and by associating the molecules a

and b with imperturbed wave fimctions V'o a^id V'b- The interaxition Hamiltonian V^ resulting

from Coulombic interaction between the electrons and nuclei of a and the electrons and nuclei

of b can be introduced as a perturbation. If the wave functions do not overlap, the interaction

energy from first order perturbation [5] is

AiE^« = (^a^fclKtl^a^a). (1-4)

This is the rigid electronic interaction potential resulting from the Coulombic interaction

of unperturbed electronic distributions of the isolated molecules a and b. Second order

perturbation of the interaction Hamiltonian V^ is required because the first order treatment

fails to describe the long-range interaction between spherical systems. In order to account

for dispersion interaction, the second order perturbation of the interaction Hamiltonian V^

is

i^2E^ --2^2^— ^r—TTj TT- (1-5)
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where the superscripts represent the i-th excited state. It can be shown from equation 1.5

that the dispersion for spherical atoms is

A£5- = ^ +^ + |£+..., (1.6)

where the coefficients Cq,Cs, Cw • • are the dispersion coefficients that depend on the relative

orientations, and r represents the distance between the nuclei of atoms a and b. Third order

perturbation is required to determine the three-body interactions and in 1943 Axilrod and

Teller formulated an explicit expression for the triple-dipole potential [9] and has the form

jL/--i.\ Kl + 3cos^iCos^jCos^fc)
M^jk) = . ^ ^ ^3 , (1-7)

where 9 represents the inside angles of the triangle, r^, rik, Vjk are the intermolecular sep>-

arations, and u is the non-additive coefficient. A large number of two-body potentials have

been developed and historically, an empirical approach was used with the parameters of the

potential being obtained from experimental data such as second virial coefficients, viscosities,

molecular beam cross sections, et cetera. For example, to obtain the second virial coefficient,

the Lennard-Jones potential can be used as an approximation to the true potential. The

parameters a and e can then be measvured experimentally in the gas phase, and thus use the

results to malce predictions about the solid phase [10]. The gas-phase meastu-ements use the

following relation from the virial expansion:

^2 = l|dr-|l_e-MO], (1.8)

where = l/fc^T, and 0(r) is the potential energy function. The coefficient 62 enters the

virial expansion for the pressure P in the form

so measurements of the equation of state at low densities can be used to find 62, and hence

fit to the parameters in 4>{r).
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1.2 Bonding in Rare Gas Solids

The inert gases form the simplest crystals, and as mentioned previously, due to the fact

that the electronic shells are filled, the charge density of all inert gas atoms are spherically

symmetric. In the crystal the inert gas atoms pack together as closely as possible and the

crystal structures are all cubic close-packed fee, except for He^ and i/e"* [11]. Bonding in

raxe gas solids axise when quantum or thermal fluctuations continually induce tiny dipole

moments on each atom. The resulting electric field then polarizes the other atom producing

a small dipole moment in it of order r~^ and the resulting interaction is then of order r~^

[10]. This is referred to as the Van der Waals-London Interaction. The Hamiltonian for the

two-atom system is

H = Hi + H2 + Vat„ (1.10)

where Hi is the Hamiltonian for atom 1, i/2 is the Hamiltonian for atom 2 [12]. F is the

quantum operator for Coulomb interaction between all pairs of charged particles, one from

atom 1, and one firom atom 2 and has the form

Vab = e (1.11)

i=i \i* *i I 't / i,j=i i*i *j

where Z is the number of bound electrons surroimding each nuclei. The electrons bound

to the nucleus at origin have coordinates denoted by r) ' and the electrons bound to the

nucleus at r have coordinates r- ', where i = 1,...,Z. Using second order perturbation

theory, the interaction energy between the two atoms is given by

AE=(0|V.|0> +J:»I^, (U2)
„ C'O - C'n

where |0) is the ground state of the unperturbed two-atom system, and \n) is the excited

states. It can be shown that the leading term in equation 1.12 varies as 1/r^ and is negative

for large r. This is the Van der Waals-London Interaction.
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1.3 Ne, Ar, Kr, and Xe Pair Potentials

1.3.1 The Ne Potentials

The Lennard-Jones Potential

We start with the most famiUar potential; the (6-12) Lennard-Jones potential. It is usual to

write the potential of the two atoms at separation distance r as

,6'

<l>Lj{r) = 4e o"-a (1.13)

where a is the length parameter and e is the potential well depth. We chose the values of

a = 2.74 A and e = 50 x 10~^^ erg from [11]. These parameters were obtained from fitting

to the gas phase data. The attractive interaction in equation 1.13 varies as the minus sixth

power. This is called the Van der Waals interaction, as discussed above, and is also known as

the London interaction or the induced dipole-dipole interaction. It is the principal attractive

interaction in crystals of inert gases and also in crystals of many organic molecules.

The Eggenberger et. al. PotentiaJ

The Eggenberger potential from [13] has the following analytical form

-|r- = aiexp(-a2(r/ao)^)-|-a3exp(-a4(r/ao)^)

-I- as exp (-aeCr/oo)^) -h a7(r/ao)"^° + agCr/ao)"^ -I- agCr/ao)"^. (1.14)

ai = 1.174594, az = 0.355905, Og = 1.325805 x 10-\

04 = 0.214065, as = 976.69318 x 10-^ Cg = 0.105389,

aj = 5.412694 x 10^ ag = -3.512808 x 10^, og = -3.964331.

This potential is obtained by combining ab initio quantum chemical calculations, commonly

used to obtain properties of single molecules, with molecular dynamics simulations. The
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ab initio calculations of the potential incorporate electron-correlation by means of M0ller-

Plesset perturbation theory to fovu^th order with single, double, triple and quadruple excita-

tions (MP4(SDTQ)). Using this technique, properties of the condensed phase can be calcu-

lated without using any empirical data. This technique is referred to as global simulations.

No physical significance should be attached to the parameters above with the exception of

oo (the Bohr radius).

The Aziz et. al. Potential

The Aziz potential from [14, 15] has the following analytical form

/(r) = e-°''F(r) for r < 1.28r„„

= 1 for r > 1.28r„j,

F{r) = e-(l-28r„/r-l)2
f^j. ^ ^ i.28rm,

= 1 for r > 1.28r„. (1.15)

The parameters of the potential energy function were determined by fitting the function

to the second virial coefficient data of the system considered. It is appUed to the transport

properties of dilute Ne gas, Ne-Ne scattering cross-sections, and to calculate the spectroscopic

constants of the dimer. Three sets of parameters were obtained and are given in table 1.1. Ce,

Cg, and Cio are the dispersion coefficients, r is the interatomic separation, and r,„ is the value

of r corresponding to the van der Waals minimum in the potential. The parameters A, 7,

and a are adjusted to fit the experimentally determined properties of the system considered.

Figiure 1.1 depict the plots of the potential energy functions with reduced parameters for

comparison.
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Table 1.1: The parameters for the Aziz potential energy function of Ne in atomic imits (au)

[14, 15].

Parameter
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1.3.2 The Ar Potentials

The Aziz et. al. Potential

The Aziz potential used in the calculation HFD-C (Hartree-Fock Dispersion version C) from

[16] is expressed in a sUghtly different form than the Aziz potential for Ne. The potential

has the following analytical form

(j)A{r) = e0*(x),

<l>\{r) = Ax^e- -
(I + I + ^) F(:.), (1.16)

F{x) = e-(^/^-^)' for x < D,

= 1 for X > £>,

where D — 1.28 and x = r/rm- The parameters used in the calculations from [16] are

^ = 0.9502720(7), a = 16.345655, Cg = 1.0914254,

C8 = 0.6002595, Cio = 0.3700113, 7 = 2.0,

e/ksiK) = 143.224, r^(A) = 3.759.

The parameters defined above share the same meanings as those for the Ne Aziz potential

with the exception of e (the potential well depth at the minimum) and ks (the Boltzman

constant). This potential was developed by using a combination of an ab initio calculation

of the self-consistent field (SCF) Hartree-Fock repulsion between closed shell systems, a

semi-empirical estimate of the correlation energy, and empirically determined dispersion

coefficients c^, cs, and Cio obtained from gas-phase data which determined the long range

attraction of the potential. The contribution of the dispersion term in the potential is

regulated by the damping term

F{x) = e-^^/^'-^)' for x < D,

= 1 for X > D,
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and is considered to be universal for all spherical systems [16].

The Morse-Type Potential

Woon [17] used M0ller-Plesset perturbation theory to fourth order (MP4) ab initio calcula-

tion to determined the intermolecular forces between two argon atoms. The resvdts of the

ab initio calculations were then fitted to the Morse-type potential

(t>M{r) = e Qexp[ -
-^/

—

—

-{r-re)

- w+^'-»(-/^'^-^'') (1.17)

The parameters in equation 1.17 have the usual meanings: e is the well depth, Tg is the

equiUbrium separation and ke is the force constant (i.e. (P^M{f)/df^ evaluated at Tg); Q is

the weighting factor often set to 1 but has been optimized by Woon [17]. The parameters

used in the calculations are e{mEh) = 0.4700, re(ao) = 7.1324, ke{mEh/a^) = 0.7359, and

Q = 0.6804.

The Exponentizd-Six Potential

The exponential-six potential has the following form

0jBxp-6(^) = e ^-^exp(a(l-r/U)-^(^) (1.18)

where a = 13.0, e/ka = 122K, and r^ = 3.85A [18]. These parameters have the visual

meanings with the exception of a (the steepness of the potential energy function).

High-density fiuid-pertmrbation theory was employed using the inverse twelfth-power po-

tential as the reference system instead of the hard-sphere approximation to compute the

properties of a fluid of particles interacting by means of the exponential-six potential [18, 19].
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The Exponential-Six-Eight Potential

The exponential-six-eight potential has the following form

(f>Exp-6-s{r) = eexp{a{r-b))+cr-^ + dr-^, (1.19)

where a{A-^) = -3.832, b{A) = 4.994, c{KA^) = -5.84 x 10^ d{KA^) = -1.28 x 10^

and e{K) = 1.0483. The calculation employed the self-consistent augmented-plane-wave

statistical exchange (APW-Xa) method [20]. The empirical parameters for this potential

were obtained by least-squares fit of lattice stuns of the Born-Oppenheimer approximation

1 ^
^(^) = ^E'^M, (1-20)

t=2

for all V, and varying the parameters in 0ij to the lattice sums of the Barker-Bobetic pair

potential, including the triple dipole interactions [20].

The Lennard-Jones Potential

The parameters in the Lennard-Jones potential (defined above) used in the calculations for

Ar are cr{A) = 3.400, and e{K) = 119.4 and have the usual meanings [20]. The calculated

parameters were determined by varying them in ^i,i until the nonlinear-least-squaxes fit is

closest to the APW-Xa static lattice energies E{V) [20]. Figiure 1.2 depict the plots of the

potential energy functions with reduced parameters for comparison.
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Figure 1.2: Normalized plot for the comparison of the pair-potentials for Ar.
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1.3.3 The Kr Potentials

The Morse Potential

The Morse potential used in the calculations for Kr has the following form

<l>M{r) = e(exp(-2a(r - ro)) - 2exp(-a(r - ro))). (1.21)

The three parameters €{10~^*erg) = 3.254, ro(A) = 3.969, and a{A~^) = 1.556 in the poten-

tial function have the usual meanings and are determined by fitting to the crystal properties;

namely, the sublimation energy (including the harmonic zero-point energy), the equilibrium

lattice constant, and the isothermal bulk modulus all at T = OK via the experimental values.

The parameter a represents the steepness of the potential function [2].

The Rydberg Potential

The Rydberg potential used in the calculations for Kr has the following form

Mr) = -e[l + Q{r - ro)] exp {~a{r - ro)). (1.22)

The three parameters eilO'^'^erg) = 3.254, ro(A) = 3.971, and a{A-^) = 2.194 in the

potential function are determined by fitting to the crystal properties using the same method

as the Morse potential [2].

The Lennard-Jones Potential

The Lennard-Jones potential used in the calculations for Kr is written in a sUghtly different

form than previoulsy used:

(l>Lj{r) = € eT-^r' (1.23)
r)

The two parsimeters are e{10~^^erg) = 3.248, and ro(A) = 3.965 and have the usual mean-

ings. Again, these parameters were determined by fitting to the crystal properties using the

same method as the Morse, and Rydberg potentials [2].
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The Aziz HFGKR Potential

The potential HFGKR by Aziz [21] used in the calculations for Kr has the same form as the

Ar potential. Again, the parameters have the usual meanings and are given below.

A - 0.1215312(8), a = 16.496763, Cg = 1.1561739,

cg = 0.5414923, cio = 0.2839735, 7 = 2.4,

e/keiK) = 199.9, rm{A) = 4.012.

This potential was developed by using the same method for the Ar potential. Figure 1.3

depict the plots of the potential energy functions with reduced parameters for comparison.

Figiure 1.3: NormaUzed plot for the comparison of the pair-potentials for Kr.
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1.3.4 The Xe Potentials

Again, the Morse, Rydberg, and Lennard-Jones potentials «ill share the same form as those

for Kr. Furthermore, the parameters in the potential energy fimctions were all obtained by

using the same methods above.

The Morse Potential ParEuneters

The three parameters used in the calculations are e(10~^'*er^) = 4.576, J"o(A) = 4.321, and

a(A-i) = 1.375 [2].

The Rydberg Potential Parameters

The three parameters used in the calculations are e{10~^*erg) = 4.576, ro(A) = 4.322, and

a{A~^) = 1.941 in the potential function [2].

The Lennard-Jones Potential Parameters

The two parameters used in the calculations are e(10~^^er5) = 4.577, and ro(A) = 4.318 [2].

The Exponential-Six Potential

The Exponential-Six interatomic pair potential for Xe has the same form as Ar and the

potential parameters were obtained the same way. The potential parameters used in the

calculations are a = 13.0, e/fce = 23bK, and r^ = 4.47A [22]. Figiu-e 1.4 depict the plots of

the potential energy functions for Xe with reduced parameters for comparison.
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Figure 1.4: Normalized plot for the comparison of the pair-potentials for Xe.
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Chapter 2

Lattice Vibrations

2.0.5 Theory of Lattice Vibrations

Atomic Force Constants and Their Properties

It is particularly convenient to begin a discussion of the elements of lattice dynamics with

the assumption of an indefinitely extended crystal since the resulting perfect lattice peri-

odicity introduced by the absence of botmding surfaces greatly simplifies the formulation of

the theory [23, 24]. This assumption, however, leads to infinite values for extensive proper-

ties of the crystal. Their normalization to a finite volume by a suitable choice of boundary

conditions is discussed in the following section. We are then led to consider a crystal com-

posed of an infinite number of unit cells, each of which is a paxallelepiped bounded by three

non-coplanar vectors ai, a2, ag. Firstly, we denote the equilibrium position vector of the Ith

unit cell relative to an origin located at some atom by

r(Z) = Ziai -t- Z2a2 + k^^, (2-1)

where /i, I2, and I3 are any three integers, positive, negative or zero, which we will refer to

collectively as I. The vectors ai, a2, and as are called the primitive translation vectors of the

lattice. If there is only one atom per unit cell, we can take equation 2.1 to define the atomic

positions. These crystals are called Bravais or primitive crystals. If there are s atoms in

the unit cell (where s > 1) the locations of the s atoms within the unit cell are given by the

vectors t{k), where k distinguishes the different atoms in the unit cell and takes the values
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1, 2, • • •
, s. So in general, the position vector if the Kth atom in the /th unit cell is given by

t{Ik) = t{1) + t{k). (2.2)

Crystals that contain more than one atom per unit cell axe referred to as nonprimitive

crystals. As a result of thermal fluctuations, each atom is displaced from its equilibrium

position by an amount u(//t). So the total kinetic energy of the lattice becomes

T=\Y.M^vx\U) (2.3)

where M^ is the mass of the /cth atom, and Wq(Zk) is the a-Cartesian component of u{Ik),

where a = x,y, z. The total potential energy ^ of the crystal is assumed to be some function

of the instantaneous positions of all atoms. ^ can then be expanded in a Taylor's series in

powers of the atomic displacements u{Ik), and formally, we obtain that

$ = *0 + 5]] ^ailK)Ua{lK) +
2 XI *"-3(^'^; I'K')Ua{lK)u^{l'k') + • • • . (2.4)

In the harmonic approximation, we neglect all higher order terms. In equation 2.4, $o is

referred to as the static or equihbrium potential energy of the crystal, while clearly

^a{lK) = (2.5)
dUa{ll^)

and

(2.6)$a/3(Z«; I'k') =
dUa{lK)dup{l'k')

where the subscript zero means that the derivatives are evaluated in the equilibrium config-

uration. Prom its definition in equation 2.5, we see that the physical interpretation of the

coefficient ^(/k) is that it is the negative of the force acting in the a direction on the atom at

t{Ik) in the equiUbrimn configuration. However, in the equihbrium configmration, the force

on any particle must vanish, and so we have the result that in an equihbrium configiuration

^{Ik) = 0. (2.7)





Chapter 2. Lattice Vibrations 20

The Hamiltonian, H = T + ^, for the crystal in the harmonic approximation becomes

H = 9o + \Y. ^-^i^'^) + ^E ^-^(^'^5 l'K')Ua{lK)u0{l'K'), (2.8)

and the equations of motion of the lattice follow immediately:

M^il^ilK) = -^:;;-jj^ = - 5Z ^ap{lK; 1'k')u0{1'k'). (2.9)

t'K'0

The coefficients ^{Ik;1'k'), which are the second derivatives of the potential energy with

respect to atomic displacements in the equilibrium configuration, are called atomic force

constants.

^a^ilK- I'k') = ^i3ail'K'; Ik), (2.10)

$ = $0 +^ *a(/«)t^a +2YI ^c^fiill^; l'n')VaV0 + • . (2.11)

J^ $„(/«) = (2.12)

Ik

^$a^(ZK;/V) = 0. (2.13)

u
i'k'

-F^ilK) = ^—— = $,(;«) + Y. ^"/^(^'^i /'«')«/3(^'«') + • • • • (2.14)

J^ $a^(iK; /V) = 0. (2.15)

I'k'

The DynamicEd Matrix

The equations of motion from equation 2.9 form an infinite set of simultaneous linear dif-

ferential equations. Their solution is simplified by the periodicity of the lattice and via the

restrictions on the force constants due to the periodic natrnre of the lattice. We can then

choose as a solution to equation 2.9 a function of the form

Ua{lK) = (A4)-^/2«a(/c) exp [-iujt + ik • r(Z)]. (2.16)



. /
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If we substitute equation 2.16 into equation 2.9 we find that

(2.17)

where the elements of the matrix D(k), called the Fourier transformed dynamical matrix,

and are given by

Da0{KK'\k) = (M,M,0"'/' Yl ^c.0{Ik; I'k') exp [-ik-(r(Z) - r(/'))]. (2.18)

v

It can be shown that the potential derivatives are related to the atomic force constants via

the following relations for central forces

$a(f«;iV) = ^'0a(//c;/V)
Vk'

^ap{lK; I'k') = -(j)a0{lK- I'k'), (Ik) ^ {I'k')

^a0{ln;lK) = ^' (j)a0{lK;l'K'),

(2.19)

(2.20)

(2.21)

I'k'

where

4>a{lK\l'K')
dra

<l>KK'{r)

r=r(lK;l'K')

= f<t>KK'iT)
r=T(lK\l'K')

(2.22)

and

(j)a0{lK;l'k') =
&"

<l>KK'{r)

r=r(//c;/'/c')
dradrp

^ (flAr) - l<l>:Ar)) + ^-f^Ur) (2.23)

r=r{lK;l'K')

The condition that the set of equations 2.17 have a nontrivial solution is that the determinant

of the coeflEicients vanish

\Da0{KK'\k) - uHa05^^'
I

= 0. (2.24)
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Equation 2.24 is an equation of 3rd degree in a;^, and the 3 solutions for each value of k will

be denoted by a;s(k) where s = 1,2,3. The dynamical matrix of the crystal, without proof,

has the following properties

D^^in'Klk) = D;^(/cK'|k) (2.25)

Da0{KK'\ - k) = £);^(KK'|k) (2.26)

and is Hermitian. Since it is Hermitian the {^^(k)} axe real, so that u;s(k) is either real or

purely imaginary. A piurely imaginary value for a;s(k) means that the motion of the lattice

would explode exponentially and this means that the lattice becomes unstable. Thus, each

ujg{]s.) must be positive.

2.0.6 Phonon Frequencies via the Tensor Force Model

The derivation of the diagonal and off diagonal elements of the secular equation

\D{k) - uj^I\ = 0, (2.27)

where / is the 3x3 identity matrix, k is the propagation vector, and lu is the angular

frequency is given below [25, 26]. In our case we consider a cubic crystal (fee) with a lattice

constant of 2a, consisting of identical atoms each having mass M and one atom per unit cell.

We consider the sth shell having n* lattice points. Each lattice point has the coordinates

hia, /i2a, hsa, where hi, h^ and h^ are nonnegative integers with hi> h2> hz- The 3x3

force matrix 0*^- is symmetric and the elements are denoted by

<i>%
=

PI a^ Pi (2.28)
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The angvilar frequencies of the 3 phonons with wave vector k axe equal to the square roots

of the eigenvalues of the 3x3 symmetric matrix D, whose elements are given by

s j

« j

Cj^i = cos nahjki

Sj,i = sinirah^jki (2.29)

where i assumes the values 1, 2, 3, and the subscripts of the form i+ 1 and i+ 2 whose values

axe greater than 3 are to be interpreted as i — 2 and i — 1 respectively; j + 1 and j + 2 should

be treated ax^cordingly. The elements of the symmetric matrix axe defined by

ai = CB{s) + -^h{s)

al = CB{s) + j^k,is) (2.30)m

P^ = If fci(^) (2-31)

where h" = ^y{hl)^ + (^)2 + (^)2, and

Ceis)
1 d(^(r)

r dr )„

Table 2.1 show the values of hi, /12, /»3, and the number of neighbors n for the first 12 shells.
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Table 2.1: List of i
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natural Ar are not very accurate and only available in the large-wave-vector region. We

calculate the percent errors for the Ne, Ar, Kr, and Xe dispersion calculations at the zone

boundries in the [100], and [111] principal symmetry directions in chapter 5.

"I—I—I—I—T—I—I—I—I—T—I

—

\—I—
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0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0.1 0.2 0.3 0.4 0.5

REDUCED WAVE VECTOR

Figure 2.1: Phonon-dispersion relations in [100], [110], and [111] principal symmetry direc-

tions in Ne at 10 K. •, experimental measm-ements from [28]. The calculations

are from the quasiharmonic theory using the Eggenberger potential sixth-shell

calculations.
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0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0.1 0.2 0.3 0.4 0.5

REDUCED WAVE VECTOR

Figure 2.2: Phonon-dispersion relations in [100], [110], and [111] principal symmetry direc-

tions for ^Ar at 10 K. •, experimental measurements from [27]. The calculations

are from the quasiharmonic theory using the Exp-6 potential sixth-shell calcula-

tions (black lines), Aziz potential sixth-sheU calculations (red lines), Morse-type

potential sixth-shell calculations (blues lines), LJ potential sixth-shell calcula-

tions (green lines).
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1 I I I I I I I I I I I r
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REDUCED WAVE VECTOR

Figure 2.3: Phonon-dispersion relations in [100], [110], and [111] principal symmetry direc-

tions for Kr at 10 K. •, experimental measm-ements from [29]. The calculations

are from the quasiharmonic theory using the Morse potential first-shell calcula-

tions(black lines), Aziz potential sixth-shell calculations (red lines), LJ poten-

tial first-shell calculations (blues Hues), Rydberg potential first-shell calculations

(green Unes).
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REDUCED WAVE VECTOR

Figure 2.4: Phonon dispersion curves for Xe using the Exp-6 potential sixth-shell calcula-

tions. The solid lines are the theoretical calculations from quasihaxmonic theory.

•, experimental measurements from [30].
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REDUCED WAVE VECTOR

Figure 2.5: Phonon dispersion curves for Xe using the Rydberg potential first-shell calcula-

tions. The solid lines are the theoretical calculations from quasiharmonic theory.

•, experimental measvirements from [30].
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REDUCED WAVE VECTOR

Figure 2.6: Phonon dispersion curves for Xe using the Morse potential first-shell calculations.

The solid lines are the theoretical calculations from quasiharmonic theory. •,

experimental measurements from [30].
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REDUCED WAVE VECTOR

Figure 2.7: Phonon dispersion ciirves for Xe using the LJ potential first-shell calculations.

The solid lines are the theoretical calculations from quasiharmonic theory. •,

experimental measurements from [30].
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Chapter 3

Thermodynamical Properties

3.1 Isothermal and Adiabatic Bulk Moduli, and

Specific Heats

The harmonic Hamiltonian for lattice vibrations is given by

H„ = Y^ huJs{k)[A^Ay,, + 1/2]. (3.1)

The various symbols appearing in equation 3.1 are defined as follows: h is Planck's constant

divided by 2tt, cjs(k) where s = 1, 2, 3 are the phonon frequencies at wave vector k, Aj^^ and

i4ks are the creation and annihilation operators for a phonon of wave vector k and polarization

s. Ay^gAif,s = n^s is the number operator of the phonon state (k, s) with eigenvalue n^. Thus,

the harmonic energy of the set of riks phonons in each phonon state k is given by

EH{nia>} = Y^Y1 (
"•'^ +

2J^'^^^'
^^"^^

where n^s = 0, 1, 2, The harmonic partition function is

Z„ = Tr{exp{-PH)}, (3.3)

where (3 = l/keT.

00 00

-/?^/ia;«(k)(nk. + l/2)

00 00

n
exp(-^/3/iu;,(k))

. l-exx>{-dhujA\i))
^^-^^

Va

lu





Chapter 3. Thermodynamical Properties 33

The corresponding free energy is given by

Fh = -ksThiZH

= -ifcBT^{lne-^^'*"-('') + ln[l - g-^fi-Wj-i}

k5

A;BT^ln 2sinh(

ks L ^ 2kBT jy
(3.5)

The total free energy in the quasiharmonic approximation is just

F{a,T) = Ustatic{a)^F„{a,T)

1
^

kj

2sinh
^j(k, a)

2kBT
(3.6)

where j = 1, 2, 3, Ustatic{o,) is the total static energy for a given volume V, (p is the potential,

and s denotes the shell nimiber of the neighboring atoms n with respect to the origin 0. We

calculate the equilibrimn lattice parameter aeq{T) by fixing T, minimizing the free energy,

ajid solving for a:

'dFiaJT)^ dUja)
^ (

dFHia,T)
^^ ^^ ^3^^

da J

,

da da J,

We calculate the free energy per atom analytically by evaluating Fff on a 20 x 20 x 20 k-point

mesh in the Brillouin Zone. We obtain the thermodynamic properties from the following

equations:

is the specific heat at constant volume,

'd^F\
Bt = V

is the isothermal bulk modulus at fixed T,

dV^J,
(3.9)

is the volume expansion,

^ Bt \dVdTj

Cp = Cv + TVBtP^

(3.10)

(3.11)
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is the specific heat at constant pressure, and

Bs = -prBr (3.12)

is the adiabatic bulk modulus.

3.1.1 Results for the Thermal Expansion of the Isothermal and

Adiabatic Bulk Moduli, cmd Specific Heats

Figures 3.1-3.20 depict the results of the thermodynamic properties for Ne, Ar, Kr, and Xe.

The labels QH represent the quasiharmonic calculations. We discuss the results of these

calculations in chapter 5.
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Figure 3.1: Lattice constant (or) at zero pressure for Ne. +, experimental points [31]; the

labels for each line are defined in the text.
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Figure 3.2: Lattice constant (or) at zero pressure for Ar. +, experimental points [31]; the

labels for each Une are defmed in the text.





Chapter 3. Thermodynamical Properties 36

8
"ot"





Chapter 3. Thermodynamical Properties 37
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Figure 3.4: Lattice constant (or) at zero pressure for Xe. +, experimental points [31]; the

labels for each hne are defined in the text.





Chapter 3. Thermodynamical Properties 38

15.00

TEMPERATURE (K)

20.00

Figure 3.5: Isothermal bulk modulus (Bt) for Ne. +, experimental points [31]; the labels

for each line are defined in the text.
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Figiire 3.6: Isothermal bulk modulus {Bt) for Ar. +, experimental points [31]; the labels for

each line are defined in the text.
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Figure 3.8: Isothermal bulk modulus (Bt) for Xe. +, experimental points [31]; the labels

for each Une are defined in the text.
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Figure 3.10: Adiabatic bulk modulus (Bs) for Ar. +, experimental points [31]; the labels for

each Une are defined in the text.
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Figure 3.13: Specific heat at constant volume {Cy) for Ne. +, experimental points [31]; the

labels for each line are defined in the text.
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Figure 3.15: Specific heat at constant volume {Cy) for Kr. +, experimental points [33]; the

labels for each line are defined in the text.
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Figiire 3.17: Specific heat at constant pressure (Cp) for Ne. +, experimental points [31]; the

labels for each line are defined in the text.
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Figure 3.20: Specific heat at constant pressure (Cp) for Xe. +, experimental points [31]; the

labels for each Une are defined in the text.
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3.2 Elastic Constants via the Long Wavelength Limit

There are a number of ways to obtain the elastic constants: either via homogeneous defor-

mations method [35, 36], directly from the dispersion relations, or via long wave length limit

method [26, 37]. In this thesis we choose the long wavelength limit method. The relations

between the interatomic force constants and the elastic constants Cu, C44, and C12 are ob-

tained by allowing |k| to tend to zero and comparing the matrix D with the corresponding

matrix for elastic waves in a continuum. For face-centered cubic crystals the relations are

s 3

a j

a(ci2 + C44) = leEi^E^Vi^V^^I' (3.13)

« j

where a^, Pj, hj, and n* are defined above in chapter 2. The Cauchy equality for a cubic

crystal for the nearest neighbor model is defined as c^ — C44. This equality will hold for a

pair potential ^(r) when the potential has a minimum at the nearest neighbor distance r„„:

<^'(O|r=r„„ = 0. (3.14)

Differences between C12 and C44 increase with temperature because the minimum in 0(r)

moves further away from r = r„„.

3.2.1 Results for the Elastic Constants via the Long Wavelength

Limit

Figiu-es 3.21-3.32 depict the results of the calculation of the elastic constants Cn, C12, and

C44 as a function of temperature T, for Ne, Ar, Kr, and Xe. The labels QH represent the

quasiharmonic calculations. The elastic constants were obtained via the minimization of the



i.bov
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Helmholtz free energy at a given temperature T, solving for the lattice parameter a, and

using these results in equation 3.13. The subscripts E represent the Eggenberger potential,

A the Aziz potential, LJ the Lennard-Jones potential, Exp-6 the exponential-six potential,

Exp)-6-8 the exponential-six-eight potential, M the Morse potential, and R the Rydberg

potential. In chapter 5, we calculated the percent errors of the elastic constants Cn, Ci2, and

C44 for Ne, Ar, Kr, and Xe.
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Figure 3.22: Elastic constant Ci2 via the long wavelength limit for Ne. D are the experimental

points from [31]. The labels for each Une are defined in the text.
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Figure 3.23: Elastic constant C44 via the long wavelength limit for Ne. D are the experimental

points from [31]. The labels for each line are defined in the text.
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Figure 3.26: Elastic constant C44 via the long wavelength limit for Ar. D axe the experimental

points from [31]. The labels for each line are defined in the text.
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Figure 3.28: Elastic constant Cu via the long wavelength limit for Kr. D axe the experimental

points from [31]. The labels for each hne are defined in the text.
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Figure 3.30: Elastic constant Cn via the long wavelength limit for Xe. D are the experimental

points from [31]. The labels for each hne are defined in the text.
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Figure 3.31: Elastic constant Ci2 via the long wavelength limit for Xe. D are the experimental

points from [31]. The labels for each line are defined in the text.
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Figure 3.32: Elastic constant C44 via the long wavelength hmit for Xe. D are the experimental

points from [31]. The labels for each Une are defined in the text.
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Chapter 4

Anharmonic Corrections to the

Thermal Expansion

4.1 Anharmonic Theory

When pertixrbation theory (PT) is employed in the calculation of the Helmholtz function

(F) of an anharmonic crystal, the various anharmonic contributions to F are obtained in the

form of an infinite series [3]. This is due to the fact that the perturbation potential itself is in

the form of an infinite series. So in the systematic appUcation of PT in the calculation of F,

whose minimization gives the thermodynamic properties, the number of terms to be retained

in a given order of PT needs to be known. The Hamiltonian required for the enumeration

of the various contributions to F to order A^, is given by

H = Ho + XV3 + AV4 = Ho + V, (4.1)

where Hq is the harmonic portion of if , A is called the Van Hove perturbation expansion

parameter, and this is defined as the ratio of a typical root-mean-square displax;ement and

the nearest-neighbor distance. V3 and V4 are the cubic and quartic terms in the Taylor's

expansion of the crystal potential energy. With the above H, F can then be evaluated from

F=-(l//?)ln(Z), (4.2)

where /? = l/ksT and

Z = Tr[exp{-pH)]. (4.3)
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The Tr represents the trace of the operator exp{—PH). Since the operators Hq and V in

the above H do not commute with each other, the expansion of exp {—PH) can be carried

out in the form of

exp{-PH)S{P), (4.4)

where S{P) is an infinite series involving the various powers of V, the total perturbing

potential in equation 4.1. These terms can be evaluated by the diagrammatic method.

When the diagrammatic method is employed in the evaluation of F, the contributions can

be grouped according to the powers of A. For example, one finds two contributions of 0{X^).

In this work we incorporate the anharmonic corrections to O(A^) using only the nearest

neighbor contributions to the potential energy based on the work done by Shukla and Mac-

Donald [4]. The anharmonic corrections are valid for the nearest neighbor interaxitions only,

and for temperatures greater than O^.

The contributions to the free energy, Fq, F3, and F4 can be expressed in terms of deriva-

tives of 0(r) and dimensionless Brillouin Zone (BZ) sums which are functions of a parameter

Ci and is defined by

There are two contributions to Fq, given by Fq and Fq, and two contributions to F4 given

by F4 ' and F^ '. The total free energy of the lattice is

F{r, T) = F^'^ + fS"^ + Fi'^ + Ff^ + F3 -h C/. (4.6)

For the sake of clarity, both in calculation and in comparing with previous calculations, the

total free energy containing N atoms is

F{r, T) = 3N{{kBT)-'F{l) + F(2) + ksTFiZ) + {ksTflFiA) + F(5)]

- A;Br[ln(A;BT) + 0.4288]} + [/. (4.7)
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The vaxious contributions to F{r, T) defined as follows:

Fo^^^ = ZHkaTlFiZ) - In {keT) - 0.4288] (4.8)

and

F(3)

F^ = ZN{kBT)-^F{\)

(4.9)

(4.10)

and

F]^^ = ZNF{2)

(4.11)

(4.12)

aind

F(2) =
h^

24MB
1C 4H

DS2A{ai) +— S2B{ai) + -x-S2c{ai)
r r^

Fi'^ = ZN{kBTfF{4)

(4.13)

(4.14)

and

F(4) =
1

192B2

IC AR
DSiAidi) H 54B(ai) + —^54c(ai)

r 7-'

2 ;F3 = 3N{kBTyF{5)

(4.15)

(4.16)

and

and

F(5) =
C2

9216^3
^ , - i2B^ . . 452 ^ , ;
'33A(aij + -^53B(ai) + -^53c(ai)

iV
iV

f^=TE'^M'
«v7

where the sum is taken over i ^ j. For the nncf model,

(4.17)

(4.18)

U = 6N(j>{r). (4.19)
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The various symbols appearing in equations 4.7 to 4.18 are defined as follows: ks is Boltz-

man's constant, h is Planck's constant divided by 27r, M is the atomic mass, r is the nearest-

neighbor distance, and the operator D is given by

D = -^. (4.20)
rdr

B(r), C{r), and D{r) are defined as

B{r) = r^D^4>{r), (4.21)

C{r) = r^D^(l){r), (4.22)

and

D{r) = r^D'^^ir). (4.23)

The functions /(ci), S2A{ai), S2B{ai), S2c{ai), S^Aiai), S4B{ai), 540(01), SsAiai), Sssiai),

and Ssciai) are the BZ sums which depend on ai. The parameter Oi itself enters the problem

in the expression for the dynamical matrix in equation 2.29 which give the elements of the

dynamical matrix and these determine the phonon frequencies u. Shukla and MacDonald [4]

computed the BZ sums in F3 and FJ ' for values of ai in the range —0.1 < Oi < 0.1 in steps

of 0.02. Table 4.1 give the least squares coefficients that reproduce the numerical values of

the BZ sums to better than 1 peurt in 10^ for the range defined above. The functions in table

4.1 are defined as
6

f{a,) = J2bn{a^r, (4.24)

n=0

and S2a{o-i) to 53c(oi) are defined by

Saffiai) = exp

6

E^"(«i)"
71=0

(4.25)
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Table 4.1: Coefficients of the least-squaxes fit for the calculations of the BZ sums used in the

study of anharmonic eflFects [4].

Function
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potentials. The labels QH represent the quasiharmonic calculations, and the labels A^

represent the anharmonic corrections to F. We notice that all the A^ results for ut in figures

4.1 and 4.2 are lowered with respect to the QH results. This trend was also observed in the

work by Shukla and Shanes [2]. It is interesting to note that the A"* results in the work by

Shukla and Shanes tend to increase the results from A'^. Prom figiures 4.3-4.10 the A'^ results

for Bt and Bs are increased, and the Cv and Cp results are decreased with respect to the

QH results. Again, this trend was observed by Shukla and Shanes [2]. Furthermore, the A'*

results for Bt and Bs tend to lower the A^ resiilts, axid increase the Cy and Cp results in

the work by Shukla and Shanes [2].

80.00 90.00 100.00

TEMPERATURE (K)

110.00 120.00

Figure 4.1: Lattice constant (or) at zero pressiue for Kr. +, experimental points [31]; the

labels for each line are defined in the text.
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Figure 4.2: Lattice constant (or) at zero pressure for Xe. +, experimental points [31]; the

labels for each hne are defined in the text.





Chapter 4. Anharmonic Corrections to the Thermal Expansion 74

80.00 90.00 100.00

TEMPERATURE (K)

110.00 120.00

Figiire 4.3: Isothermal bulk modulus (Bt) for Kr. +, experimental points [31]; the labels

for each line are defined in the text.
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Figure 4.4: Isothermal bulk modulus {Bt) for Xe. +, experimental points [31]; the labels

for each line are defined in the text.
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Figiire 4.5: Adiabatic bulk modulus (Bs) for Kr. +, experimental points [31]; the labels for

each line are defined in the text.
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Figure 4.6: Adiabatic bulk modulus (Bs) for Xe. +, experimental points [31]; the labels for

each line are defined in the text.
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Figure 4.8: Specific heat at constant volume (Cy) for Xe. +, experimental points [34]; the

labels for eax:h line are defined in the text.
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Figvire 4.9: Specific heat at constant pressure (Cp) for Kr. +, experimental points [31]; the

labels for each fine are defined in the text.
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Figiire 4.10: Specific heat at constant pressure (Cp) for Xe. +, experimental points [31]; the

labels for each hne are defined in the text.
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4.1.2 Results for the Elastic Constants via the Long Wavelength

Limit with Anharmonic Corrections

Figvires 4.11-4.16 depict the results of the calculation of the elastic constants cn, Cu, and

C44 as a function of temperature T for Kr, and Xe. The labels QH represent the quasi-

harmonic calculations, and the labels A^ represent the anharmonic corrections to F. The

elastic constants were obtained via the minimization of the Helmholtz free energy at a given

temperature T, solving for the lattice parameter a, and using these results in equation 3.13.

From figiures 4.11-4.16 we note that the A^ anharmonic corrections tend to increase the QH

results for cn, C12, and C44. In chapter 5, we calculated the percent errors of the elastic

constants, with the anhaxmonic corrections, Cn, C12, and C44 for Kr, and Xe.

90.00 100.00

TEMPERATURE (K)

110.00 120.00

Figure 4.11: Elastic constant Cu via the long wavelength limit for Kr. D axe the experimental

points from [31]. The labels for each line axe defined in the text.
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Figvire 4.12: Elastic constant Ci2 via the long wavelength limit for Kr. D are the experimental

points from [31]. The labels for each Une are defined in the text.





Chapter 4. Anharmonic Corrections to the Thermal Expansion 84

80.00 90.00 100.00

TEMPERATURE (K)

110.00 120.00

Figure 4.13: Elastic constant C44 via the long wavelength limit for Kr. D are the experimental

points from [31]. The labels for each Une are defined in the text.
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Figure 4.14: Elastic constant Cu via the long wavelength limit for Xe. D are the experimental

points from [31]. The labels for each line are defined in the text.
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Figure 4.15: Elastic constant Ci2 via the long wavelength Umit for Xe. D are the experimental

points from [31]. The labels for each line are defined in the text.
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Figure 4.16: Elastic constant C44 via the long wavelength hmit for Xe. D are the experimental

points from [31]. The labels for each line are defined in the text.
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Chapter 5

Discussions and Conclusions

5.1 Discussions of the Phonon Dispersion

Calculations

The results of phonon dispersion calculations as compared to the experimental values at the

zone boundaries in the [100], and [111] in the principal symmetry directions for Ne, Ar, Kr,

and Xe are given in table 5.1. We calculate the percentage error by taking the absolute value

of the calculated value minus the experimental value, divided by the calculated value times

100.

Dispersion Results for Ne

From the calculated values in table 5.1 for Ne, we find that the (f)E potential, where the

potential is based on combining ab initio quantum chemical calculations and molecular

dynamics simulations, produced the best results in the [100]T, and [111]T principal symmetry

directions at the zone boundaries, followed by the 0ij, where the potential parameters were

obtained from fitting to the gas phase data, and the (p^ potential, where the parameters of

the potential energy function were determined by fitting the function to the second virial

coefficient data.
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Dispersion Results for Ar

For the dispersion calculations of ^Ar in the [100]L and [111]L symmetry directions, the

4>M potential, which is based on M0ller-Plesset perturbation theory to fourth order (MP4)

ab initio calculations, produced the best results at the zone boundary, followed by the (f>A

potential, which is based on a combination of ab initio calculations and gas phase data, the

4>Exp-6i which is based on high-density fluid-perturbation theory and the (f>Exp-6-8 potential,

which is based on the self-consistent augmented-plane-wave statistical exchange (APW-Xa)

method. The (f>A potential produced the best results in the [100]T direction followed by, the

(f>M, (t>Exp-6, <t^LJi and (j>Exp-6-8 pair potentials at the zone boundary respectively. The 0^

potential produced the best results in the [111]T direction followed by, the <i>Exp-6-8^ 0» 0lj,

and <f)Exp-6-8 pair potentials at the zone boimdary respectively.

Dispersion Results for Kr

For the dispersion calculations of Kr in the [100]L, [100]T and [111]L symmetry directions,

the (f)A potential, which is based on a combination of ab initio calculations and gas phase

data, produced the best results at the zone boundary, followed by the (pji potential, where the

potential is based on fitting to the crystal properties, the <I>m potential, where the potential

is based on fitting to the crystEil properties, and the (pu potential, where the potential is

based on fitting to the crystal properties. The (pLj potential produced the best results in

the [111]T direction followed by, the 0Afj <Pr, and 0/1 pair potentials at the zone boundary

respectively.

Dispersion Results for Xe

For the dispersion calculations of Xe in the [100]L, and [111]L symmetry directions, the

<f>Exp-6 potential, which is based on high-density fluid-perturbation theory, produced the best
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results at the zone boundary, followed by the (pR, which is based on fitting to the crystal

properties, the (I>m potential, which is based on fitting to the crystal properties, and the 4>lj

potential, which is based on fitting to the crystal properties. The 0/e potential produced the

best results in the [100]T direction at the zone boundary. The 0m > and the (j)ij produced

identical results, and (l>Exp-& produced the worst results at the [100]T zone boundary. The

0R. 4>Mi and (j>u produced similar results followed by the <f>Exp-6 pair potential at the [111]T

zone boundary.
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Table 5.1: Calculated percent errors for Ne, Ar, Kr, and Xe dispersion calculations at the

zone boundaries in the [100], and [111] principal symmetry directions.

Element





Chapter 5. Discussions and Conclusions 92

5.2 Discussions of the Thermodynamic Properties of

Ne, Ar, Kr, and Xe

We have studied the various thermodynamic properties for Ne, Ar, Kr, and Xe. The curves

for the various equations-of-state calculations are presented in figiures 3.1-4.10. To simplify

the discussion of the thermodynamic resiilts, we will discuss them in the order of the elements

Ne, Ar, Kr, and Xe.

Thermodyncunic Properties of Ne

Prom figure 3.1 we note that the ar results for the QHe calculations were too high as com-

pared to the experimental results. The ar results for the QH^ calculations did better than

the QHe results, but again, the calculations were too high as compared to the experimental

results. The ar results for the QH^j produced the best results and agreed very well with

the experimental values up to around 14 K. Prom figiures 3.5 and 3.9 the Bt and Ba results

were too low for all three QH calculations; however, the QHlj results produced the closest

results as compared to the experimental values. We find that from figures 3.13 and 3.17 the

QHa calculations produced the worst results for Cy and Cp followed by the QHu and QHe

calculations respectively. All three QH calculations produced results that were too high at

high temperatiures as compared to the experimental values; however, the QHu and QHe

results were close to experimental values for the temperatures between 8-12K. Generally, all

three potentials did very poorly at reproducing the thermodynamic properties of Ne. The

LJ potential, where the potentisJ parameters were obtained fi-om fitting to gas phase data,

did a better job than the other two potentials.
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Thermodynamic Properties of Ar

Prom figure 3.2 it is evident that the QHm results for the Morse-type potential produced the

best results overall, followed by the QHa calculations, the QHlj calculations, the QHexp-6

calculations, and the QHexp-g-s calculations as compared to the experimental values. We

find that from figure 3.6 that the QHm results for the Morse-type potential produced the

best results overall for Bt, followed by the QHa calculations. At temperatiures between

0-50K the QHexp-6-8, QHlj, and QHexp-6 Bt calculations produced values that were too

low compared to the experimental results. Prom figure 3.10 the QHm results for the Morse-

type potential produced best results overall for Ba but were still too high, followed by the

QHa calculations. At temperatures between 60-83K the QHexp-g-s, QHlj, and QHexp-6

Bs calculations produced values that were too low compared to the experimental results.

We find that from figures 3.14 and 3.18 all the QH calculations in the temperature range of

4-20K produced values that were too low for Cy and Cp. In the temperatiue range of 45-83K

the QH calculations for the LJ, Exf)-6-8, and the Exp-6 potentials produced values that were

too high. The QH calculations of Cy and Cp for the Aziz and Morse-type potentials in the

temperature range of 60-80K produced results that were too high. Overall, the Morse-type

potential, where the potential parameters were obtained purely via ah initio calculations

using M0ller-Plesset perturbation theory to fourth order (MP4), did a better job than the

other potentials.

Thermodynamic Properties of Kr

Prom figures 3.3 and 4.1 it is clear that the QHm results for the Morse potential produced

values that were closest to the experimentally determined lattice constant ot followed by the

QHr results. The QHlj results were too high and the QHa results were too low. At low T

the QHm, QHr, and QHlj results all converged to the zero temperatiure lattice parameter.
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All of the A^ calculations for ar produced results that were lower than the QH results.

The A^ results of Ot for 6d < T < T^ {Tm is the melting temperature) were improved but

were still too high as compared to the experimental values. The A^ results for the Morse,

Rydberg, and Aziz potential were all lower that the experimental ox values. From figures

3.7, 3.11, 4.3, and 4.5, it is clear that the QHm results were closest to the experimental

Bt and Bs values followed by the QHr results. The Bt and Bs results for QHa results

were too high and the QHlj were too low for all T. Prom figures 4.3 and 4.5 we see that

aJl of the A^ calculations for Bt and Bs were increased and bent upwards as T approached

the melting temperatmre Tm- This was also observed in the study by Shiikla and Shanes

[2] and the study by Shukla and Hiibschle [38]. We find that from figure 3.15 all the QH

calculations in the temperature range of 4-25K produced values that were too low for Cv

and too high in the temperature range 55-115K. Prom figure 4.7 we find that the A^ results

of Cv for 6d <T <Tm were improved but all of the curves bent down as T approached Tm-

The A|,j results were in good agreement with the experimental results. Prom figiure 3.19,

the QHr results in the temperatiure range 50-115K produced values that were closest to the

experimentally determined Cp values. Above 50K all the QH results were too high and

below 25K the results were too low. Prom figure 4.9 we find that all of the A^ curves bent

down as T approached Tm- The A^ results were in good agreement with the experimental

values in the temperature range 75-lOOK. Overall, the Morse and Rydberg potentials, where

the potential parameters were obtained by fitting to the crystal properties, did the best job

of reproducing the thermodynamic properties of Kr.

Thermodynamic Properties of Xe

Prom figures 3.4 and 4.2 it is clear that the QHm results for the Morse potential produced

values that were closest to the experimentally determined lattice constant ar followed by the

QHr results. The QHlj results were too high and the QHa results were too low. At low T
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the QHm, QHr, and QHu results all converged to the zero temperature lattice parameter.

All of the A'^ calculations for or produced results that were lower than the QH results. The

X%xp-6 ^^^ ^1j results of ar for 6d <T <Tm {Tm is the melting temperature) were improved

but were still too high as compared to the experimental values. The A^ results for the Morse,

and Rydberg potential were all lower that the experimental ot values. Prom figures 3.8, and

4.4, it is clear that the QHfi results were closest to the experimental Bt values followed by

the QHm results. From figures 3.12, and 4.6, it is clear that the QH^ results were closest

to the experimental Bg values followed by the QHr results. The Bt and Bs results for

QHexp-6 and QHlj were too low for all T. From figvues 4.4 and 4.6 we see that all of the

A^ calculations for Bt and Bs were increased and started bending upwards as T approached

the melting temperature Tm. This was also observed in the study by Shukla and Shanes

[2] and the study by Shukla and Hiibschle [38]. We find that firom figure 3.16 all the QH

calculations in the temperature range of 4-20K produced values that were too low and too

high in the temperatmre range 40-156K for Cy- Prom figvires 4.8 we find that the A^ results of

Cy for 9d <T <Tm were improved shghtly but all of the curves bent down as T approached

Tm- From figure 3.20 the QHr results in the temperature range 28-160K produced values

that were closest to the experimentally determined Cp values. Above 40K all the QHlj and

QHsxp-e results were too high and below 24K the results were too low. The QHm results

were too high above 84K. From figures 4.10 we find that all of the A^ ciurves were lower

than the QH ciurves and bent down as T approached Tm- The A^ results were in good

agreement with the experimental values in the temperatiue range 65-120K. Again, overall

the Morse and Rydberg potentials, where the potential parameters were obtained by fitting

to the crystal properties, did the best job of reproducing the thermodynamic properties of

Xe.
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5.3 Elastic Constants Calculation Discussions via the

Long Wavelength Limit

We have studied the temperature dependence of the elastic constants by employing the long

wavelength Umit relations for face-centered cubic crystals [26]. We first obtain the temper-

ature dependant lattice constants from figvires 3.1-3.4 and figures 4.1-4.2, and used these

results in equation 3.13 to calculate the elastic constants cn, cu, and C44 for Ne, Ar, Kr, and

Xe. The results of the calculated elastic constants as compared to the experimental values

are given in table 5.2-5.16. At low T all three potentials did a very poor job at reproducing

the elastic constants Cn, C12 and C44 for Ne. However, the Eggenberger potential produced

the most favoiurable results. This result was also observed in the dispersion relations for

Ne. This result is not siuprising because the slopes of the dispersion curves for small k are

related to the elastic constants via the following relations. In the [100] direction,

uj^p = cnk^, (longitudinal branch) (5.1)

and

u^p = c^k^, (transverse branch) (5.2)

where k is the wavevector, uj is the angular frequency, and p is the density. The elastic

constant Cn is related to the slope of the longitudinal branch in the [100] direction, and C44

to the transverse branch of the dispersion curves. The elastic constant cn can be obtained

from the [110] direction. At high T all potentials did a very poor job at reproducing the elastic

constants Cn, C12 and C44 for Ar. However, the Morse-type and Aziz potential produced the

most favoiurable results. At low T the Rydberg and Aziz potential produced the best results.

Prom figures 3.27 and 3.28 and tables 5.5-5.7 and 5.11-5.13 the QHa for Kr produced the best

results overall for Cn and Cn- From figure 3.29 the QHm followed by the QHr calculations

produced the best results overall. At low T the QHn, QHm, and QHlj for Xe produced the



lit-
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best results for Cn, Ci2 and C44. At high T the QHr and QHm produced the best results for

Cii, C12 and C44. All the anharmonic corrections increased the QH values for Kr and Xe in

figures 4.11-4.16 and tables 5.11-5.16.
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Table 5.2: Calculated elastic constant Cn in the quasihaxmonic (QH) approximation for Ne,

and Ar. The labels are defined in the text.

Element
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Table 5.3: Calculated elastic constant Ci2 in the QH approximation for Ne, and Ar. The

labels are defined in the text.

Element
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Table 5.4: Calculated elastic constant C44 in the QH approximation for Ne, and Ar. The

labels are defined in the text.

Element
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Table 5.5: Calculated elastic constant Cn in the QH approximation for Kr. The labels are

defined in the text.

Element
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Table 5.6: Calculated elastic constant Ci2 in the QH approximation for Kr. The labels axe

defined in the text.

Element
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Table 5.7: Calculated elastic constant C44 in the QH approximation for Kr. The labels are

defined in the text.

Element
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Table 5.8: Calculated elastic constant Cn in the QH approximation for Xe. The labels are

defined in the text.

Element



{-
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Table 5.9: Calculated elastic constant Ci2 in the QH approximation for Xe. The labels are

defined in the text.

Element
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Table 5.10: Calculated elastic constant C44 in the QH approximation for Xe. The labels are

iiuieu in It

Element
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Table 5.11: Calculated elastic constant cu with the A^ anhaxmonic corrections for Kr. The

labels are defined in the text.

Element
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Table 5.12: Calculated elastic constant Ci2 with the A^ anharmonic corrections for Kr. The

labels are defined in the text.

Element
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Table 5.13: Calculated elastic constant C44 with the A^ anharmonic corrections for Kr. The

labels are defined in the text.

Element
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Table 5.14: Calculated elastic constant cn with the A^ anharmonic corrections for Xe. The

labels are defined in the text.

Element
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Table 5.15: Calculated elastic constant C12 with the A^ anharmonic corrections for Xe. The

labels are defined in the text.

Element
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Table 5.16: Calculated elastic constant C44 with the A^ anharmonic corrections for Xe. The

labels axe defined in the text.

Element
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No single type of potential is found to fare better than the rest for all the properties

studied and for all the rare gas solids. For the heavier solids, namely Kr and Xe, potentials

based on fitting to the crystal properties (the 0-K sublimation energy, the 0-K equilibrium

lattice constant, and the 0-K isothermal bulk modulus) yield better results for the ther-

modynamic properties and the elastic (shear) constants, but not for the phonon dispersion

curves. For these two solids, the Aziz potential for Kr, which is based on a combination of an

ab initio calculations and fitting to gas phase data, and the Exponential-6 potential for Xe,

which is based on high-density fluid-perturbation theory, provide better agreement with the

inelastic neutron scattering experiments. For Ar, the Morse-type potential which is based

on M0ller-Plesset perturbation theory to fourth order (MP4) ab initio calculations, yielded

the best results for the thermodynamic properties, elastic (shear) constants, and the phonon

dispersion curves. For Ne, the LJ potential which is based on fitting to the gas phase data

yielded the best results for the thermodynamic properties. The Eggenberger potential for

Ne, where the potential is based on combining ab initio quantum chemical calculations and

molecular dynamics simulations, produced the best results for the elastic (shear) constants,

and the phonon dispersion curves.

In short, potentials based on fitting to the crystal properties may have some advantage,

particularly for Kr and Xe, in terms of reproducing the thermodynamic properties over

an extended range of temperatures, but agreement with the phonon frequencies with the

measured values is not guaranteed.
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