

Armor Coats, Inverse Grading, and Streambed Scour
 in Selected streams of Southern Ontario and Western New York
 by

Albert L. Maddalena

A thesis submitted to the Department of Geological Sciences in partial fulfillment of the requirements for the degree of Master of Science

Brock University
St. Catharines, Ontario
(C) October 1984

ABSTRACT

Surface size analyses of Twenty and Sixteen Mile Creeks, the Grand and Genesee Rivers and Cazenovia Creek show three distinct types of bed-surface sediment: 1) a "continuous" armor coat which has a mean size of -6.5 phi and coarser, 2) a "discontinuous" armor coat which has a mean size of approximately -6.0 phi and 3) a bed with no armor coat which has a mean surface size of -5.0 phi and finer. The continuous armor coat completely covers and protects the subsurface from the flow. The discontinuous armor coat is composed of intermittently-spaced surface clasts, which provide the subsurface with only limited protection from the flow. The bed with no armor coat allows complete exposure of the subsurface to the flow.

The subsurface beneath the continuous armor coats of Twenty and Sixteen Mile creeks is possibly modified by a "vertical winnowing" process when the armor coat is penetrated. This process results in a welldeveloped inversely graded sediment sequence.

Vertical winnowing is reduced beneath the discontinuous armor coats of the Grand and Genesee Rivers. The reduction of vertical winnowing results in a more poorly-developed inverse grading than that found in Twenty and Sixteen Mile Creeks. The streambed of Cazenovia creek normally is not armored resulting in a homogeneous subsurface which shows no modification by vertical winnowing. This streambed forms during waning or moderate flows, suggesting it does not represent the maximum competence of the stream.

Each population of grains in the subsurface layers of Twenty and Sixteen Mile Creeks has been modified by vertical winnowing and does not represent a mode of transport. Each population in the subsurface layers beneath a discontinuous armor coat may partially reflect a transport mode. These layers are still inversely graded suggesting that each population is affected to some degree by vertical winnowing. The populations for sediment beneath a surface which is not armored are probably indicative of transport modes because such sediment has not been modified by vertical winnowing.

Bed photographs taken in each of the five streams before and after the 1982-83 snow-melt show that the probability of movement for the surface clasts is a
function of grain size. The greatest probability of of clast movement and scour depth of this study were recorded on Cazenovia creek in areas where no armor coat is present. The scour depth in the armored beds of Twenty and Sixteen Mile Creeks is related to the probability of movement for a given mean surface size.

I would like to thank my dedicated supervisor Jean-Jacques Flint for his expert guidance and invaluable advise throughout the duration of this work. His innovative ideas are gratefully acknowledged. I would like to thank Dr. Dave Kennedy for reviewing the thesis and Dr. Uwe Brand for helpful suggestions in preparing my diagrams. I wish to thank the rest of the Geology faculty for always providing me with assistance and support. I am also indebted to my friends and fellow graduate students; Naveed Chaudhry, Stephen Kester, and John Barnsley for their helpful discussions and assistance in the field. Other friends who were kind enough to assist with the strenuous field work and to whom I am grateful include; James Yaki, James Duhaime, Sheri Holman, Carm Maddalena, Garth Maggaroch, Ed Lorek and Jean Polihonaris. Many thanks are extended to P.J. McCurry, L. Smith and L.J. Kamp from Environment Canada and Henry Zajd from the U.S. Geological Survey for supplying discharge data. I wish to thank Judy Otto from the U.S. Corps of Engineers for supplying data on the Genesee River. Thanks are extended to Jack Sentineal, Mark Ramella and Marty Vilma for their expert guidance in computing. I am grateful to my parents and my mother and father inlaw. Their undying support was invaluable. Most importantly I wish to thank Franny for having the patience and understanding to endure the difficult times, and for her never-ending faith in me. This work is dedicated to
her. Thanks are also extended to the National Research Council of Canada for providing financial assistance.

TABLE OF CONTENTS

Page
Abstract I
Acknowledgements IV
List of Figures VIII
Introduction 1
Present Study 1
Location of Study areas. 1
Physiography and Bedrock Geology 2
Previous Work 11
Streambed Armoring 11
Interpretation of Size Distribution Curves 14
Causes of Inverse Grading in Streams 16
Scour 19
Scour Below an Armor coat 20
Methods 21
Field Methods Using Streambed Photographs 21
Scour Gauges and Sampling. 25
Laboratory Methods 27
Discussion 28
Size Distributions for the Armor Coat in Different Streams 28
Inverse Grading 36
The Cause of Inverse Grading on Twenty and Sixteen Mile Creeks. 39
Population Analysis 43
The Traction Population 46
The Saltation Population 47
The Suspension Population 48
Downstream Changes in the Armor
Coat and Sublayers of Twenty Mile Creek 49
Armor Coat and Subsediment for Twenty and Sixteen Mile Creeks, the Grand and Genesee Rivers and Cazenovia Creek 63
Streambed Photographs 90
Probability of Motion. 90
Local Streambed Equilibrium 96
Scour and Probability of Movement 99
Hydrology 105
Hydraulic Data for Twenty Mile creek 111
Summary and Conclusions 118
References 121
Appendix I. 125
Appendix II 136
Appendix III 151
Appendix IV. 152

List of Figures

Figure Page
1 Study Locations 3
2 Scour Gauges and Photograph Locationsfor Twenty Mile Creek.43 Scour Gauges and Photograph Locationsfor Sixteen Mile Creek5
4567 Armor Coat Size Distributions for theCoarsest Bar on each Stream30
8
Armor Coat Size Distributions for theChannel and Bar at the Base of Balls'Falls on Twenty Mile Creek.31
9
10
11Armor Coat Size Distributions for theChannel in the Gorges of Twenty andSixteen Mile Creeks.35
12
13Size Distributions for the Sublayersof the Channel on Twenty Mile Creek38
14
Size Distributions for the Sublayers of a bar on Sixteen Mile Creek 40
1516Size Distributions for the ChannelSublayers in the Gorge of TwentyMile Creek44
17
Size Distributions for Bar Sublayers in the Gorge of Twenty Mile creek 45
18
Size Distributions for the ChannelArmor coat in the Gorge of Twenty MileCreek50
1920Size Distributions for the Channel Top-Sublayer in the Gorge of Twenty MileCreek.52
21
Size Distributions for the Channel Top-Sublayer downstream of Highway 8 on Twenty Mile Creek 53
22
Size Distributions for the Middle- Sublayer of the Channel in the Gorge of Twenty Mile creek 54
23
Size Distributions for the Middle- Sublayer of the Channel downstream of Highway 8 on Twenty Mile Creek 55
2425
26Straight-line Segments for the ChannelTop-Sublayer in the Gorge of TwentyMile Creek59
27 Straight-line Segments for the Channel Top-Sublayer downstream of Highway 8 on Twenty Mile Creek 60Size Distributions for the Top-Sublayerin the Gorge of Sixteen Mile Creek.76
40 Size Distributions for the Top- Sublayer of Bars on the Grand River. 78
41
Size Distributions for the Top- Sublayer of Bars on the Genesee River. 79
42
Size Distributions for the Top- Sublayer of Bars on Cazenovia Creek. 80
43
Comparison of Sublayers Beneath aContinuous and Discontinuous ArmorCoats and no Armor Coat.8244 Relation Between the Mean Surface Sizeand the Mean Size of the Top-Sublayer83
45
Straight-line Segments for the Top-Sublayer of Bars in the Gorge of TwentyMile Creek.85
46
Straight-line Segments for the Top-Sublayer in the Gorge of Sixteen Milecreek.86
47
Straight-line Segments for the Top-Sublayer of Bars on the Grand River.87
Straight-line Segments for the Top-Sublayer of Bars on the Genesee River88
49
Straight-line Segments for the Top-Sublayer of Bars on Cazenovia Creek89
Percent Probability of Movement withPhi Size for several Photographed Areasin the Channel of Twenty Mile Creek....... 91
51 Percent Probability of Movement withPhi Size for several Photographed Areason Bars of Twenty Mile Creek92
Percent Probability of Movement withPhi Size for several Photographed Areason Sixteen Mile Creek.93
Percent Probability of Movement withPhi Size of several Photographed Areason the Genesee River94
54 Percent Probability of Movement versus Phi Size for two Photographed Areas on Cazenovia Creek and one for theGrand River95
55 Total Sediment Weight Moved In versus Total Sediment Weight Moved Out for Photographed Areas on Twenty Mile Creek in the Gorge Downstream of Highway 8 97
56
Total Sediment Weight Moved In versusTotal Sediment Weight Moved Out ofPhotographed areas on Sixteen Mile Creek,the Genesee River, Cazenovia Creek andthe Grand River98
57
Percent Probability of Movement versusScour Depth for Photographed Areas onTwenty Mile Creek. Mean Sizes rangefrom -7.0 to -8.0 phi10058 Percent Probability of Movement versusScour Depth for Photographed Areas onTwenty Mile Creek. Mean Sizes rangefrom -6.5 to -6.0 phi101
Percent Probability of Movement versusScour Depth for Photographed Areas onSixteen Mile Creek. Mean Sizes rangefrom -6.0 to -7.0 phi102
60
Relation between Scour Depth and MeanSurface Size for Areas with 100 PercentMovement in all Creeks104
61
Recurrence Curve for Twenty Mile Creek 106
62
Recurrence Curve for the Grand River 107
63
Recurrence Iine for the Genesee River 108
64
Recurrence Line for Cazenovia Creek 11065 Dimensionless Water-Surface Slopeversus Discharge for the Two Siteson Twenty M1le Creek112
66
Average Bottom Shear Stress versus Discharge for Three Stations on Twenty Mile Creek 114
67
Size Distributions for the Transported Clasts of the Armor Coat at Three of the Four stations on Twenty Mile Creek 115
68 Comparison of the Shear Stress for the Largest Transported Clasts at Three Stations on Twenty Mile Creek with Baker and Ritter's (1975) Line 116

INTRODUCTION

Present Study

The purpose of this research was to study the relation between the armor coat, subsurface sediment and streambed scour. The relation between the armor coat and subsurface sediment was studied by comparing size distributions of the surface and subsurface sediment in five different streams. The relation between the armor coat and streambed scour was studied by comparing surface clast movement with the data obtained from scour gauges. This surface clast movement is measured by comparing streambed photographs taken before and after the 1982-83 snow-melt. The average bottom shear stress is calculated for the maximum instantaneous flow of this melt at three stations on Twenty Mile Creek. The average bottom shear stress at each of these stations was calculated and compared to the size distribution of the transported clasts at each station.

Location of Study Areas

The streams of this study are Twenty Mile Creek at Jordan, Ontario, Sixteen Mile Creek located approximately 5 km west of st. Catharines, ontario, the Grand River at Brantford, Ontario, Cazenovia Creek at Ebenezer, New York, and the Genesee River at

Portageville, New York (figure l). The positions of scour gauges and photographs on each stream are given in figures 2 to 6.

PHYSIOGRAPHY and BEDROCK GEOLOGY

Twenty and Sixteen Mile Creeks

Twenty Mile Creek originates approximately 7 km south of Hamilton, Ontario, and flows east parallel with the Niagara Escarpment. At the Balls' Falls Conservation Area, Twenty Mile Creek turns northward, and flows over the Lockport, Irondequoit and Whirlpool water-falls. Between Balls' Falls and Highway 8, Twenty Mile Creek cuts a steep, narrow gorge through the Niagara Escarpment. Downstream of Highway 8 , the creek has developed open meanders with a lower bank height and a wider cross-section than in the gorge. Twenty Mile creek then empties into a drowned lagoon near Lake Ontario.

Sixteen Mile Creek originates approximately 4 km south of Smithville, Ontario, and flows east parallel to Twenty Mile Creek. Sixteen Mile Creek eventually turns northward, and cuts a smaller gorge than that of Twenty Mile Creek. Near the Canadian National Railway, Sixteen Mile Creek empties into a drowned lagoon similar to that of Twenty Mile creek.

Figure 2. Scour gauges and photograph locations for Iwenty Mile paph.
(The base map was provided by J.J. Flint, Brock University).

Figure 3. Scour gauges and photopraph locations for Sixtcen Mile Creek. Six=Scour gauge on Sixteen Mile Creek, $\mathrm{PH}=\mathrm{Ph}$ otograph. (Base map after Rickard and Fisher 1970).

Figure 4. Scour gauges and photograph locations for the Genesce River. $G E N=$ Scour pauge on the Genesee River, $\mathrm{PH}=\mathrm{Photopraph}$.
(Base map 18 the Physical Map of New York State, United Statea Coast and Geodetic Survey).

Fipure 5. Scour gauges and photorraph locations for the Grand River. G=Scour gaupe on the Grand River, $\mathrm{PH}=$ Photograph. (Base map $1 s$ the Physical Map of New York State. United States Coast and Geodetic Survey).

Figure 6. Scour gauges and photograph locations for Cazenovia Creek. CAZ=Scour gauge on Cazenovia Creek, $\mathrm{PH}=\mathrm{Ph}$ otograph.
(Base map is after Rickard and Fisher 1970).

The sediment in Twenty and Sixteen Mile Creeks is derived mainly from the Niagara Escarpment (Fisher 1978). The dominant lithologies present in both creeks are the dolostones from the Lockport Dolostone (34 m thick); the limestones and shales of the Clinton Group (36 m thick) and the sandstones and shale of the Cataract Group (approximately 35 m thick). Sediment is also derived from the Queenston Shale. Approximately 31 m of this lithology is exposed in the Niagara Peninsula. The stratigraphy of the Niagara Escarpment is outlined by Sanford and others (1972). Downstream from Highway 8, both creeks cut through glacial Lake Iroquois sediment and the Halton Till (Feenstra 1972). In addition, minor amounts of sediment downstream of Highway 8 on Twenty Mile Creek are derived from previous stream terraces.

The Grand River

The Grand River originates in central southern Ontario, approximately 40 km south of Georgian Bay. It flows south, and empties into Lake Erie at Dunnville, Ontario. In the study area at Brantford, Ontario, the dominant bedrock formation is the Salina Dolostone which is approximately 92 m thick (Sanford 1969). Sediment is partially derived from this lithology but the main sources of stream sediment are glaciofluvial outwash gravels, the Wentworth, Port Stanley, Catfish,
and Canning Tills, the sediments of proglacial Lakes Warren and Whittlesey and the sand and gravel from the fluvial deposits comprising the modern flood plain (Cowan 1972).

The Genesee River

The Genesee River originates approximately 28 km south of Wellsville, New York, along the New York-Pennsylvania border, and flows across New York State before emptying into Lake Ontario at Rochester, New York. The Genesee River flows through the Glaciated Southern New York Subprovince and the Lake Ontario Plain (Muller and others 1976). Several dams are present on the Genesee River for both flood control and hydro-electric power.

The sediment in the study area at Portageville, New York is mainly shale with some sandstone derived from the Java Group which ranges in thickness from 30 to 60 m and the West Falls Group which ranges in thickness from 120 to 190 m (Rickard and Fisher 1970). Sediment is also derived from a moderately stony till of Port Huron age, previous fluvial terraces and glaciolacustrine clay (Muller and others 1976).

Cazenovia Creek

Cazenovia Creek originates in Erie County approximately 32 km south of East Aurora, New York. It flows to the northwest, and empties into the Buffalo River at Buffalo, New York.

The sediment in the study area is mainly shale with minor amounts of siltstone and limestone derived from the Hamilton Group which ranges in thickness from 60 to 150 m , the Genesee Group which ranges in thickness from 3 to 45 m , the Sonyea Group which ranges in thickness from 15 to 60 m , and the West Falls Group which ranges in thickness from 120 to 290 m (Rickard and Fisher 1970). In addition, a minor amount of sediment is derived from the Kent, Lavery and Hiram Tills and the deposits of proglacial Lakes Warren and Whittlesey. The glacial history of this area was described by Calkin and others (1980).

PREVIOUS WORK

Streambed Armoring

When a sediment mixture is exposed to a flow, the finest particles on the surface are entrained leaving the coarsest grains behind as a lag deposit. This lag is called an "armor coat" or "pavement" (Parker and Klingeman 1982) because it is a coarse surface layer
that protects the finer subsurface from the flow. Therefore, armor sediment is the end product of the selective removal of small particles from a bed surface.

Gessler (1965), Little and Mayer (1976), Gard and others (1977) , Parker and Klingeman (1982), Parker and others (1982), Parker, Klingeman and McLean (1982), Raudkivi and Ettema (1982) have simulated the armoring process in flume experiments using a known sediment distribution which was then exposed to a given flow.

Gessler (1965) indicated that the size distribution of the armor coat is determined by stochastic turbulence. He calculated the probability of each grain size remaining stationary. He also describes four methods by which this probability could be determined using an experimental starting sediment mixture, the eroded sediment and the resulting armor coat. Gessler showed that the probability of a given grain remaining stationary is a function of how often the critical shear stress of the grain is not exceeded by the bottom instantaneous shear stress.

Little and Mayer (1976) also describe the armoring process as stochastic and as the result of a distribution of turbulence acting on a given size
distribution. Based on flume experiments, they relate the ratio of the mean diameter (mm) of the starting experimental sediment and the mean diameter (mm) of the resulting armor coat to shear velocity. They show that as the shear velocity over an experimental size distribution is increased, the armor sediment coarsens. This coarsening continues until the flow reaches a shear velocity that is capable of entraining the coarsest sediment in the flume destroying the armor coat. Just before this destruction occurs, all of the fines are removed and therefore, the armor coat is composed of the largest size present in the original distribution. This size represents the largest clast capable of armoring the surface for a given size distribution. This suggests that the shear velocity controls the largest size present in a given armor coat for a given size distribution.

Gessler (1965), Little and Mayer (1975), Garde and others (1977), Parker and others (1982) and Raudkivi and Ettema (1982) further indicate that an armor coat forms fairly quickly after the initial sediment mixture is exposed to the flow. Further coarsening of the armor is a slow process (Garde and others 1977). However, results given by Parker and Klingeman (1982) show that when a clast of the armor coat is mobilized, the exposed subsurface grains are
also transported. In flume experiments by Parker, Klingeman and McLean (1982), small cobbles and granules were transported together, and were observed to interchange positions with particles of the armor coat.

Parker and others (1982) conducted flume experiments where sediment was continually fed in and transported over a bed which was already armored. Fines from the feed were deposited in openings left by grains of the armor coat which were entrained. This fine sediment then became immobile if another armor clast was deposited above it. Although the exact size range of these fines was not given, these experiments show that fine material in transport may be deposited in the openings left by entrained clasts of the armor coat.

Interpretation of Size Distribution Curves

A given sand-size distribution may be composed of three populations (Tanner 1964, Visher 1969, Middleton 1976, Sagoe and Visher 1977 and Bridge 1981). Each population is represented on a cumulative curve as a straight-line segment, and has been shown by Middleton (1976) to be indicative of sediment moved by a different transport mode. Three transport modes are associated with a given size distribution: 1) the
coarsest grains are transported by traction, 2) the intermediate grains by intermittent suspension, and 3) the finest grains by suspension. The "breaks" or changes of slope in the cumulative curve are interpreted as points where the sediment is changing from one transport mode to another. However, Visher (1969) and Sagoe and Visher (1977) indicate that these "breaks" represent a truncation of one subpopulation and the beginning of another, while spencer (1964), Tanner (1964) and Middleton and Southard (1977) suggest that "breaks" represent the overlap of one subpopulation with another.

Middleton (1976) and Bridge (1981) point out that individual grains of a given size may travel in more than one transport mode depending on the fluctuating shear stress. This suggests that "break" positions may be variable and perhaps, may reflect overlapping of populations. One important implication of the coarse/intermediate "break" as noted by Middleton (1976) and Bridge (1981) is that it defines the largest particle size that can be transported by intermittent suspension. Bridge (1981) indicates that the intermediate/iine "break" defines the largest size which can be held in suspension by the maximum fluctuation of bed shear velocity. He also states that armoring and grain packing change the behavior of particles. An armor coat protects the subsurface,
making it inaccessible to the flow except when a surface armor clast is mobilized. Tight packing of small particles between larger clasts and imbrication will cause grains to remain immobile at much higher shear stresses than would be necessary if they were lying separately on the bed. In addition, bed load measurements for sizes coarser than -5.0 phi are difficult to obtain in the field. Consequently, the transport modes for these sizes are not well-known. Therefore, cumulative distributions of the armor coat may not show the same populations and "breaks" as sand-size sediment.

Causes of Inverse Grading in Streams

Inverse grading as described by Maude and Whitmore (1956), Segre' and Silberberg (1961), and Naylor (1980) is explained in terms of processes which apply only to debris flows and therefore, may not apply to the stream environment.

Middleton (1970) proposed a mechanism called kinetic sieving. In this process, fine particles pass through the interstices between large grains which are agitated. In the stream environment this agitation may be caused by a bottom shear stress which is very close to, but not greater than the critical value for movement of a clast on the bed-surface. The
fine particles may filter down between the vibrating coarser grains, and accumulate as the bottom-most sediments. This mechanism for inverse grading has been demonstrated only for sand-size sediment (Naylor 1980).

Bagnold (1954) found that a dispersive pressure occurs on grains that are present in a fluid undergoing shear. He found that this pressure increases with the size of the grains which are present in the fluid. It is postulated that if a mixed distribution of clasts is transported, the largest clasts would move to the area of least shearing. This area is the surface of the sediment in transport. The dispersive pressure theory has been suggested as the cause of some inverse grading in streams (Scott and Gravlee 1968 and Leopold and others 1964).

Milhouse (1973) described a mechanism called "vertical winnowing" in a stream with a gravel bottom. Parker and Klingeman (1982) described this process as involving the removal of surface clasts, which causes a "gap" in the armor coat. Therefore, the first layer beneath the armor coat is exposed to the flow when a clast of the armor coat is entrained. Small particles in the gap may be partially protected by flow separation (Middleton and Southard 1977)
caused by the surrounding immobile armor clasts. Because of the fluctuating nature of turbulence, it is possible to have simultaneous deposition of clasts with different sizes into the gap during a turbulence low. These clasts would remain immobile if they are large enough to withstand future turbulent eddies that enter the gap.

The clasts deposited into the bottom of the gap may have a lower probability of being further eroded. Of these clasts, only the finest particles would be winnowed out. As the bed is rebuilt by continued deposition, the probability of erosion for all sizes deposited in the gap may increase because the bed is getting closer to the main flow. The next layer deposited is winnowed of larger sizes than the one below. Once the subsurface is fully rebuilt, the probability of erosion on the bed may be high enough to prevent further deposition of any clasts which are finer than those of the armor coat. Once a clast of the armor coat is permanently in place, vertical winnowing of the subsurface is terminated. This process would occur only during high flows because it requires penetration of the armored surface.

Vertical winnowing requires that the bed shear stress increases from the bottom to the top of the subsurface as it is rebuilt. Fenton and Abbott (1977)
conducted flume experiments relating particle exposure to incipient particle motion. The bed of their flume was composed of 2.5 mm particles that were glued in place. A test grain of this same size was placed over a hole which was drilled through the bottom of the flume. A threaded rod was slowly screwed upwards through this hole, pushing the test grain towards the top of the bed. When this test grain was entrained, the level of the top of the rod was measured to an arbitrary point. The top of the rod was used to determine how far the particle was protruding into the flow. This procedure was repeated twenty times for a given flow to determine the minimum protrusion necessary to entrain the particle. The critical shear stress of the test grain decreased thirty-fold from the bottom to the top of the bed-surface. Although only a single size was used, this study shows that the shear stress acting on a given grain increases as the grain is moved closer to the main flow.

Scour

Studies of scour and fill are normally conducted for rivers that transport just sand and gravel. Most of these works are undertaken by engineers who are concerned with undercutting of obstacles such as spur dikes, levees and bridge pillars (Garde and others
1961). Ashmore and Parker (1983) modelled scouring in a flume, and obtained results suggesting that scour tends to be greatest in well-sorted sand for a given flow. The flume study of scour around spur dikes by Garde and others (1961) shows that the maximum scour depth depends on the Froude number and the size of the bed sediment. These experiments pertain only to uniform sand-size material. Therefore, it is doubtful that these data apply to streams with an armor coat. Baumann (1962) studied scour in a mountain stream consisting of boulders, and found that maximum scour occurred when discharges were rising. Scott (1969) and Leopold and others (1964) indicated that scour usually occurs during rising stages, and fill normally occurs during receding flows. However, they also note that a large debris load introduced during rising stages may cause deposition instead of scour.

Scour Below an Armor Coat

Scour in the subsurface beneath an armor coat requires that the armor is penetrated. This means that the critical shear stress of armor coat clasts must be exceeded by the instantaneous shear stress on the bed. Penetration of the armor coat and subsequent scour of the subsurface should be related to the distribution of bottom shear stress.

Because the movement of surface clasts can be influenced by imbrication, packing (Bridge 1981), and exposure to the flow (Einstein 1950, Fenton and Abbot 1977, Andrews 1983), it is apparent that scour depth may be dependent on these same factors. In addition, scour depth can be influenced by the size and packing of the subsurface material, and by the size of the surface clasts surrounding the scour pit. Large clasts in the subsurface and packing of small clasts can also prevent excessive scour of subsurface grains.

Raudkivi and Ettema (1982) conducted experiments in a flume with a bed composed of 5.35 mm particles surrounded by 2.9 mm grains. They indicate that the scour of this bed is caused by the winnowing of the 1.9 mm grains, and is not related to the transport of the 5.35 mm grains. Therefore, scour of a discontinuous armor coat may be related to the removal of the fine grains rather than the transport of large clasts on the bed.

METHODS

Field Methods Using Streambed Photographs

The use of streambed photographs to measure sediment movement in this study was suggested by

Jean-Jacques Flint of Brock University.

A metal rectangle with dimensions 0.76 by 1.37 m was made by welding iron rods. This rectangle was placed on the streambed and provided the scale for all photographs. A number was placed in a corner, and the area within the rectangle was photographed. Metal pegs were put into both banks of the stream, and a tape measure was tied to each peg. The distance from one peg to the corner of the photograph was recorded on a rough field map of the local stream area. The long side of the rectangle was always parallel with the tape, therefore only one point was needed to locate each photograph. This measurement was used the following year to photograph the same bed area. For the Grand and Genesee Rivers, where the tape could not reach across, the photograph position was determined by triangulation.

A total of 204 photographs were taken of the bed in all five streams from the top of a stepladder. This method minimized the amount of distortion in each photograph.

Photographs of each site were taken before and after the 1982-83 snow-melt. By comparing the two photographs, it was possible to measure the movement of armor coat clasts during the 1982-83 melt. Clasts
of the armor coat photographed before this melt were not sieved in the field for fear of disturbing the bed and causing unnatural clast movement. Clasts photographed after the snow-melt were sieved in the field, and their sizes were recorded on an overlay for size analysis. Clasts of the armor coat within the rectangle and lying 50 percent within the border were sieved. If more than 50 percent of the clast was either lying outside the area or buried in the subsurface it was excluded. The smallest size sieved was -5.0 phi. Clasts were sieved in the field using a half-phi interval. This field sieving measures the intermediate clast diameter. Only the number frequency of each size was recorded. These frequencies were converted to weights using an exponential relation between phi size and weight based 2771 weighed particles. The correlation coefficient for this relation is $\mathbf{- 0 . 9 9 6}$. Most of the data used for this relation was obtained on Twenty Mile Creek by J. J. Flint and B. Edgar in 1980. The regression was calculated using a Fortran program written by J.J.Flint.

The sizes of armor coat clasts not sieved in the field were estimated directly from photographs. This estimate was obtained by comparing the clasts which were not sieved with those which were already sieved in the field. Photographs were printed so as to make
the rectangle identical for each photograph. This was necessary to accurately determine grain size. The size analysis estimated from photographs was not compared with the size analysis from sieving the same areas in the field. Therefore, it is not known if these two methods are comparable.

The sieved clasts in each photograph were labelled to record whether or not the clasts moved or remained stationary. It should be noted that occasional difficulties arose with this method. In the case where a large clast moved in and completely covered the space previously occupied by a smaller clast, it was difficult to determine if the smaller clast has been moved out unless the larger clast was lifted. This was not done during field work. Similarly, in the case where the area was once occupied by a very large clast and was later occupied by a smaller clast, it was sometimes difficult to determine if the smaller clast was actually moved into the area or was merely uncovered. In both cases the clasts of questionable origin were excluded from the size analysis. It is emphasized that these cases did not occur often. When 100 percent of the clasts in both the "before and after" photographs were different, it is not known if the clasts presently occupying the area were actually moved in or were
uncovered. If these clasts were moved in, they either replaced or completely covered the previous clasts. Therefore, photographs with 100 percent movement are of little use.

The percent probability of movement for a given size was determined from each photograph by the following method: if three clasts of -7.0 phi were initially present on the bed, and one of these clasts was transported out of the area, then the percent probability of movement for grains of -7.0 phi is 33.33 percent. Therefore, each grain size is represented by a single probability value for each photograph. This method is similar to that used by Gessler (1965).

Scour Gauges and Sampling

The United States Army Corps of Engineers in Los Angeles (1972) has measured maximum streambed scour by using scour gauges which consist of auger drilled pits filled with painted gravel. Similar gauges were installed for this study.

Scour gauges consist of a hand-dug pit in the streambed. Pits were dug as deep as possible, and ranged from approximately 45 to 82 cm deep. The excavated pit was approximately 30 cm in diameter. An aluminum casing of approximately 14 cm in diameter was
placed into the pit, and excavated material was placed around the outside of the casing. Blue-painted, 6 mm gravel was placed into the casing which was then slowly pulled out allowing the gravel to fill any open spaces in the subsurface. The elevation of the blue gravel with respect to a peg on the bank was obtained using a surveying level. The original clasts of the armor coat were then replaced. In the summer following the 1982-83 snow-melt, each pit was relocated and carefully re-excavated to the new surface of the blue gravel. This new elevation was surveyed with respect to the same peg installed the previous year. The scour depth was determined by subtracting the new elevation of gravel from the old one. The location of each scour gauge was determined in the same manner as that of the photographs.

It should be noted that excavation of the bed disturbs the packing of subsurface grains, and can result in excessive local scour. This is most important on Twenty and Sixteen Mile creeks, where subsurface packing is greatest. This fact was realized before excavation began and therefore, the diameter of the excavated pit was kept constant. Also the excavated material was replaced in the same order in which it was removed, and packed down with a shovel. It is recognized however, that this
"artificial" packing cannot reinstate the subsurface to its original condition and therefore, excessive scour may have occurred.

Samples of the subsurface below the armor coat were obtained when the scour gauges were excavated. The armor coat was removed, and a sample was taken each time a different subsurface layer was encountered. Thickness and depth of each sediment layer were also recorded. Clasts greater than -6.0 phi encountered in the subsurface were not included in the subsurface size analysis because removal of these sizes required re-excavation resulting in a pit larger than 30 cm in diameter. Therefore, subsurface sampling is biased toward sizes smaller than -6.0 phi. A total of 216 samples were used for subsurface size analysis. Approximately 120 of these samples came from Twenty Mile Creek.

Laboratory Methods

Subsurface samples from all five creeks and surface samples from Cazenovia Creek were brought back to the laboratory for size analysis. The total weight of each sample varied from 2.0 to 3.5 kg . The samples were wet sieved using a -1.0 and +4.0 phi mesh. The fraction coarser than +4.0 phi was then oven dried for 48 hours, and allowed to cool down to
room temperature before sieving. Sizes from -6.0 to -3.0 phi were sieved by a half-phi interval, and the remainder of the sample was sieved by a quarter-phi interval. Occasionally samples were split to obtain a workable portion. Samples were shaken for 15 minutes before weighing. The silt-clay fraction was collected during wet sieving, and then oven dried for 2 to 3 days. This fraction was then allowed to cool to room temperature before weighing. The dry silt and clay weight was added as a single unit to the total sample weight. It was not further analyzed because in most samples the silt-clay portion accounted for less than 5 percent of the total sample weight. The mean, standard deviation, skewness, and kurtosis for each sample were calculated using the method of moments outlined by Folk (1968).

DISCUSSION

Size Distributions for the Armor Coat in Different streams

It has been noted by Gessler (1965) and Parker and Klingeman (1982) that an armor coat will form if the stream sediment contains a mixture of coarse and fine sediment. The ilume study by Little and Mayer (1976) shows that increasing the shear velocity causes an increase in the size of the armor coat. Therefore, the two main parameters which cause an
armor coat are: l) size distribution which is ultimately controlled by the sediment source, and 2) shear velocity or shear stress which is controlled by flow velocity.

The coarsest size distributions for the armor coats on bars of all five creeks are plotted in figure 7. This figure indicates that Twenty Mile Creek has the coarsest armor coat of the creeks in this study. Sixteen Mile Creek is next, followed by the Grand and Genesee Rivers, while Cazenovia Creek has the finest surface sediment.

The average size of the surface sediment on Twenty Mile Creek changes from -9.0 phi upstream near Balls' Falls to +3.0 phi near the lagoon on Lake Ontario, a distance of about 5 km (Flint and Maddalena 1984). This large size decrease over such a short distance is caused by rapid changes in the stream width and slope.

Size distributions of the armor coat for the channel and nearby bars are shown from the base of Balls' Falls (figure 8) to a site 2.5 km downstream (figure 9) on Twenty Mile Creek. The size distribution of the armor coat in the channel is coarser than that of nearby bars in both figures. This reflects the higher flow velocity in the channel for a

Pigure 7. Armor coat size distributions for the coarsest hars present on Twenty and Sixteen Mile Creeks, the Grand and Genesee Rivers and Cazenovia Creek.

Figure 8. Armor coat bizo distributions for the channel and a nearby bar at the base of Balle' Falls on Twenty Mile Creek. Dataare derived from photographe 27. 28.29 and 30.

PHI SIZE
Pigure 9. Armor coat size distributions for the channel and a nearby bar 2.5 kllomoter downstreas of Balls. Falls. Data are derived from photographs 1.2 .3 and 4.
given flow. In addition, the size difference between the channel and bars is much greater in figure 8 than in figure 9. This suggests that the velocity difference between the channel and bars is probably higher in the gorge than downstream of Highway 8.

Figure 10 shows the distributions of armor sediment for the three environments at site number PH 68-70 in figure 2. The data indicate that the armor sediment is coarsest in the main channel, next coarsest is the bed of the back channel, while the armor coat of the bar is finest. The three sediment sizes for the armor coat suggest that each of these beds was deposited by a different bottom shear stress.

Sixteen Mile Creek is approximately 3 km east of Twenty Mile Creek, and also erodes through the escarpment. Therefore, both creeks have essentially the same source of sediment. However, the clast size distribution of the armor coat is different for both creeks. In figure ll, cumulative armor coat distributions are plotted for bars in the gorges of both Twenty and Sixteen Mile Creeks. The distributions for Sixteen Mile Creek are noticeably finer than those of Twenty Mile creek. Annual discharge and perhaps flow velocity are highest on Twenty Mile creek which has the larger lag deposit.

PHI SIZE
Pigure 10. Armor coat sizo distributions for the main channol. back channel and bar downstrean of Highway 8 on Twonty Milo Creok. (site locetion PH 68-70 in riguro 2).

Fieure 11. Armor coat size distributions for the channel in the gorges of Twenty and Sixteen Mile Creeks.

This comparison of Twenty and Sixteen Mile creeks possibly confirms the results of Little and Mayer (1976) suggesting that streams with the same source and higher shear velocities also have a larger armor sediment size.

Inverse Grading

Abstract

Representative size distributions for the subsurface material on bars and in the channel of Twenty Mile Creek are shown in figures 12 and 13 respectively. These figures show that a well-developed inverse grading is present below the armor coat on Twenty Mile Creek. This grading normally consists of three sublayers: the top-sublayer lies directly beneath the armor coat, the middle-sublayer is below the top, and the bottom-sublayer lies deepest. Although sublayer thickness is variable the top-sublayer is about 3 to 4 cm thick, the middle is about 15 cm and the bottom is about 25 cm thick. The downward increase in standard deviation and decrease in kurtosis values in figures 12 and 13 indicate that sorting decreases from the top to the bottom-sublayer. A comparison of size distributions for the three sublayers indicates that the smallest proportion of coarse material is in the bottom-sublayer. The data indicate that the inverse grading is present in all environments along the

Pigure 12. Size distributions for subsurface samples from bars on Twenty Mile Creek. STD= Standard Deviation, KUR=Kurtosis. Sample HOL 19.

Figure 13. Size distributions for subsurface samples from the channel of Twenty Mile Creck. STD=Standard Deviation, KUR=Kurtosis. Sample HOL 46.
stream.

Size distributions for the subsurface layers on a bar and in the channel of Sixteen Mile Creek are shown in figures 14 and 15 respectively. It is evident that inverse grading is also well-developed on Sixteen Mile creek. The sublayer sequence and sorting are very similar to those of Twenty Mile Creek.

The Cause of Inverse Grading on Twenty
and Sixteen Mile Creeks

A pertinent observation on inverse grading was made during summer field work for J. J. Flint in 1982. Red cement bricks were placed on the creek bed at a designated site upstream in the gorge of Twenty Mile Creek. After the spring flood bricks were found scattered over the bed downstream from their original starting position. However, bricks were also discovered beneath larger clasts of the armor coat. At times they were partially or entirely buried within the top-sublayer, and other times they were lying loose. Cement bricks were also found at greater depths after very high flows (J.J. Flint, personal communication). The presence of these bricks beneath the armor coat indicates that the armor sediment is penetrated at high flow, and that deposition of fine clasts occurs in the gaps left by entrained armor

Fifure 14. Size distributions for subsurface samples from the channel of Sixteen Mile Creek. STD= Standard Deviation, KUR=Kurtosis. Sample SIX-9.

PHI SIZE

Pigure 15. Slze distributions for subsurface samples from the channci of sixteen Mile Creek. Sample SIX-11. STD=Standard Doviation, KUR=Kurtosis.
clasts. This phenomenon was observed by Parker and others (1982) during flume experiments.

Bagnold's (1954) dispersive pressure theory for inverse grading is based on experiments that have not been verified by other authors, and cannot be applied to sediment with a mixture of sizes (Middleton and Southard 1977, Naylor 1980). In addition, the size distributions of sediments affected by dispersive pressure was not given in Bagnold's (1954) study. Therefore, it is impossible to determine whether or not the dispersive pressure theory is responsible for the inverse grading of this study.

The kinetic sieving model for inverse grading proposed by Middleton (1970) has been demonstrated only for sand-size sediment (Naylor 1980). Therefore, it is difficult to determine whether or not this process occurs for the coarser sediment of this study.

Studies by Spencer (1963) and McLaren (1981) show that a given size distribution may be altered when subjected to different amounts of winnowing. A series of distributions may represent different amounts of mixing between the coarse and fine populations. Each sublayer of the inverse grading in this study represents sediment exposed to a different degree of vertical winnowing. The downward decrease
in sorting suggested in figures 12 to 15 reflects the amount of vertical winnowing undergone by each sublayer.

The distributions for the bar sublayers (figure 12 and 14) seem to converge near the coarse end of the size scale, indicating that they are fairly similar in the proportion of sizes from -4.0 to -5.5 phi . Distributions for the channel sublayers appear to remain separate in this size range (figures 13 and 15). This implies that the distibutions for the channel sublayers probably converge over a coarser size range than do those for bars. Therefore, channel sublayers are winnowed of more fines than the sublayers of bars.

Population Analysis

To analyze the sediment distributions of Twenty Mile Creek in detail, straight-line segments were drawn for all distributions. These are numbered 1, 2 and 3 in figures 16 and 17. These segments separate each distribution into three populations, each characterized by a different length and slope. The terminology of Sagoe and Visher (1977) is used; therefore, the populations 1,2 and 3 are called the traction, saltation and suspension populations. It must be noted that these terms are used by sagoe and

Pigure 16. Size distributions for the channel sublayers in the gorge of Twenty Mile Creek. Arrows indicate "breaks" between populations. Sample HOL-35.

Visher (1977) for describing sand and gravel distributions, and may not have the same genetic meaning for the coarser distributions observed in this study.

The Traction Population

The traction population is composed of sizes ranging from -6.0 to approximately -2.75 phi. The "break" between the traction (population 1) and the next population appears to remain fairly constant at some sites (left arrows in figure 16) and is variable at others (left arrows in figure l7) from the top to the bottom-sublayer. The grains defining the population 1 may not be winnowed from any of the sublayers if their critical shear stress is not exceeded by the turbulent eddy that enters the gap made in the armor coat. Therefore, the fairly constant "break" may suggest that the largest size winnowed from each sublayer is similar. Fluctuation of the "break" may be due to variable grain removal which may be caused by the packing of subsurface grains. Therefore, the variable "break" suggests that winnowing is not uniform from one sublayer to the next.

Population 1 comprises a larger percentage of the top-sublayer than any other sublayer (figure 16). The
percentage or proportion of this population decreases significantly toward the bottom-sublayer. This is mainly because the greatest winnowing of sediment finer than about -2.75 phi occurs for the top-sublayer and decreases toward the bottom-sublayer.

The Saltation Population

The next population of the cumulative distribution is the saltation population. The straight-line segments of the saltation population (population 2) have not been included in figure 16 so that the increase in range of this population is more evident. Population 2 normally cannot be shown by just one straight-line segment and therefore, may be described as a mixture of population 1 and population 3. The size-range of population 2 increases downward from the top to the bottom-sublayer (figure 16). This size-range increase occurs toward the fine sizes. Therefore, as the size-range for population 2 increases a given particle may be considered to be part of a different population depending on the sublayer in which it is present. For example in figure 16 , a particle size of -0.5 phi is part of population 3 in the top-sublayer, but changes to population 2 of the middle and bottom-sublayers. This trend was found to occur for most of the subsurface samples on Twenty and Sixteen Mile Creeks. This
\qquad
\square
\square
suggests that mixing of populations 1 and 3 occurs at a decreasing size from the top to the bottom-sublayer.

> In figure 16, the population 2 comprises 0.1 percent of the top-sublayer, and increases to 55 percent in the bottom-sublayer. This suggests that population 2 also increases in percent of the total distribution from the top to the bottom-sublayer.

The range of sizes for population 2 increases from the top to the bottom-sublayer, and reflects the amount of mixing in each sublayer. In figure 16, the greatest mixing between the coarse and fine populations occurs in the bottom-sublayer. Therefore, as the subsurface sediment is winnowed, the mixing between populations 1 and 3 is decreased.

The Suspension Population

The suspension population (population 1) consists of two parts for the samples of this study: 1) a sand and 2) a silt-clay fraction. only the sand of population 1 is plotted because silt and clay comprises less than 5 percent of the total weight for most samples. The sand fraction is poorly sorted as indicated by the almost horizontal line segments in figures 16 and 17. Also evident from these figures is

Abstract

the fact that the percentage of silt and clay is smallest in the top and increases toward the bottom-sublayer. This trend is consistent in all the samples of this study, and also reflects the amount of winnowing that each sublayer has undergone.

Downstream Change in the Armor Coat and the Sublayers of Twenty Mile Creek

Figures 18 and 19 show the channel armor coat distributions in the gorge and downstream of Highway 8 respectively. Figures 20 and 21 show the distributions of the top-sublayer in the gorge and downstream of Highway 8 respectively. Although the armor coat shows a well-defined downstream size decrease, there appears to be no similar decrease for the top-sublayer. By comparing figures 20 and 21 it is evident that the coarse and fine fractions overlap, suggesting that the top-sublayer of the channel both in the gorge and downstream of Highway 8 have approximately equal percentages of these size fractions. However, some distributions in the gorge have a higher proportion of sizes ranging from -5.5 to -1.0 phi than do those downstream of Highway 8. This may indicate that winnowing of the top-sublayer is greater in the gorge than downstream of Highway 8.

Fipure 18. Size distributions for the channel armor coat in the gorge of Twenty Mile Creek.

Figure 19. Size distributions for the armor coat in the channel downstream of Hifhway 8 for Twenty Mile Creek.
$\stackrel{1}{*}$

Pigure 20. Size distributions for the channel topsublayer in the gorge of Twenty Mile Creek.

PHI SIZE
Figure 22. Size distributions for the channel middle-sublayer in the gorge of Twenty Mile Creek.

Figure 23. Size distributions for the middle-sublayer in the channel downstream of Highway 8 on Twenty Mlle Creek.
middle-sublayer for the channel in the gorge and downstream of Highway 8 respectively. The same trend is present for the middle as is evident for the top-sublayer.

Size distributions of the channel bottom-sublayer in the gorge and downstream of Highway 8 are shown in figures 24 and 25 respectively. Distributions for these figures overlap almost completely suggesting that the bottom-sublayer is similar both in the gorge and downstream of Highway 8.

Figures 26 and 27 show the populations of the top-sublayer in the gorge and downstream of Highway 8 respectively. The size-range of population 2 increases significantly downstream of Highway 8 (figure 27). This suggests that mixing of populations 1 and 3 is greater downstream of Highway 8 than upstream in the gorge.

Line segments representing the middle-sublayer in the gorge and downstream of Highway 8 are shown in figures 28 and 29 respectively. Comparison of these figures shows that the size-range of population 2 increases slightly downstream. This indicates that the amount of mixing between populations 1 and 3 for the middle-sublayer also increases downstream.

Figure 24. Size distributions for the bottom channel-sublayer in the gorge of Twenty Mile Creek.

Pigure 25. Size distributions for the bottom-sublayer in the channel downstream of Highway 8 on Twenty Mile Creek.

Figure 26. Straight-line segments for the channel top-sublayer in the gorge of Twenty Wile Creek.

Plgure 27. Straight-ilne segments for the channel top-sublayer downstrean of Highway 8 on Twenty Mile Creek.

Figure 28. Straight-line segments for the channel middle-sublayer in the gorge of Twenty Mile Creek.

Figure 29. Straight-line segments for the middlesublayer in the channel downstream of of Highway 8 on Twenty Mile Creek.

Abstract

Line segments for the distributions of the bottom-sublayer in the gorge and downstream of Highway 8 are shown in figures 30 and 31 respectively. Again, it is evident that the size-range of population 2 increases slightly downstream. These same trends are present for all sublayers in the bars of Twenty Mile Creek.

By comparing figures 26 and 31, a summary can be made to describe the relation between the size of the armor coat and the sublayer populations in Twenty Mile Creek. All three subsurface layers show a downstream increase in the size-range of population 2 . This reflects a downstream increase in mixing of populations 1 and 3. A downcurrent reduction in winnowing may be responsible for the downstream increase in population mixing for each sublayer in Twenty Mile Creek.

Armor Coat and Subsediment for Twenty and Sixteen Mile Creeks, the Grand and Genesee Rivers and Cazenovia Creek

As a result of discussions with J.J. Flint, three terms were obtained to describe the bed surfaces of the streams in this study: a "continuous" armor coat; a "discontinuous" armor coat; and no armor coat. The armored surfaces for Twenty and sixteen Mile creeks are mainly "continuous" because in these creeks surface clasts

Pigure 30. Straight-line segments for the channel bottom-sublayer in the gorge of Twenty Mile Creek.

Figure 31. Straight-line segments for the bottomsublayer in the channel downstream of Highway 8 on Twenty Mile Creek.
completely cover the finer subsurface. The armor coats for the Grand and Genesee Rivers are mainly "discontinuous" because they are composed of intermittently spaced coarse clasts which do not entirely cover the subsurface. Cazenovia Creek normally has no armor coat and therefore, the subsurface is completely exposed.

Cazenovia Creek exhibits another important aspect of armor coat formation. Although this creek normally has the finest surface sediment, a discontinuous armor coat is present in two areas. The clast sizes in both of these areas range from -7.0 to -4.0 phi . In the first area the discontinuous armor coat has formed because of the contribution of clasts from limestones and shales which outcrop in a steep bedrock gorge about 1 km upstream. In this area the discontinuous armor coat is formed mainly because of the contibution of clasts from this limestone. In the second area, the discontinuous armor coat has formed on a bar which is located on the inner bank of a channel bend partially protected from the main flow by a bedrock outcrop. The formation of this surface appears to be caused by a decrease in the main flow resulting in the deposition of clasts that are normally transported further downstream. Scour gauges in fine bars of the channel were completely washed away during the 1982-83 snow-melt. These bars must form during flow recession, and are not indicative of the maximum shear stress in the channel.

Therefore, Cazenovia Creek is an example of a stream with a maximum shear stress high enough to form an armor coat, but has sediment that is normally too fine for an armored surface to occur.

Continuous armor coats such as those of Twenty and Sixteen Mile Creeks have subsurface sediment that is inversely graded (figures 32 and 33 respectively). Even though the size of the armor surface changes significantly between Twenty and Sixteen Mile creek, the inverse grading is similar because vertical winnowing is active in both creeks.

Size distributions for the discontinuous armor coat and the subsurface material of the Grand River are shown in figure 34, while those of the Genesee River are shown in figures 35 and 36, and those of Cazenovia Creek are shown in figures 37 and 38. Sublayer thickness for the Grand and Genesee Rivers and Cazenovia Creeks ranges from 14 to 70 cm . Inverse grading is present but is not always well-developed. In figures 34,35 and 38 , the armor coat is discontinuous, resulting in a similar inverse grading to that of Twenty and Sixteen Mile Creeks. However, in figure 35 the bottom-sublayer appears to be coarser than the other sublayers. The grading of sediments shown in this figure can be explained by aggradation. The present armor coat is coarser than the bottom-sublayer. Therefore, the bottom-sublayex must have been formed under lower flow

$$
\because
$$

conditions than the present armor coat but under higher flow conditions than the other sublayers. The bottom-sublayer may represent a previous armored streambed over which sediment was later deposited as the stream aggraded. The coarse fraction of the bottom-sublayer also appears to be similar to that of the top-sublayer and sublayer 4 in figure 35 , suggesting that they differ only in the amount of fines removed.

Several areas on the Genesee River have a fine bed-surface which is not armored. The fine surfaces on the Genesee River and Cazenovia Creek are shown in figures 36 and 37 respectively. The nature of the subsurface layer in both figures indicates that this sediment is deposited instantaneously and is not later modified by vertical winnowing. Deposition of this sublayer may occur during a low turbulent fluctuation as the flow recedes. Complete removal of scour gauges during the 1982-83 snow-melt shows that this subsurface is completely replaced during high flow. Subsequently, the surface of the sediment which replaces the original deposit is winnowed by waning and moderate flows. This suggests that the fine bed-surfaces on the Genesee River and Cazenovia Creek do not represent maximum flow conditions.

Size distributions of the top-sublayer for Sixteen Mile creek are plotted in figure 39. Comparison of these distributions with those of figure 20 for Twenty Mile Creek

.
shows that the top-sublayer of Twenty Mile Creek is winnowed of more fines than that of sixteen Mile Creek. This suggests that vertical winnowing is more intense on Twenty Mile Creek than on Sixteen Mile Creek. Size distributions for the top-sublayer of the Grand River are plotted in figure 40. Comparison of these distributions with those in figure 39 shows that the top-sublayer of Sixteen Mile Creek is winnowed of more fines than that of the Grand River. Distributions for the top-sublayer sampled in the Genesee River (figure 41) and Cazenovia Creek (figure 42) show some striking similarities. The distribution with the largest percentage of coarse material in each figure represents the sublayer that occurs beneath a discontinuous armor coat in each creek. The distributions with the smallest percentage of coarse material in each figure represent the top-sublayers beneath a surface that is not armored. This large difference between distributions in each figure occurs because the top-sublayer forms under different flow conditions. The finest distributions in both figures represent the top-sublayer deposited during moderate and receding flows, and is not later modified by vertical winnowing. The coarsest distributions in both figures represent the top-sublayer which is partially modified by vertical winnowing. This partial modification may occur when the discontinuous armor coat is penetrated during high flow. A comparison of the middle and bottom-sublayers between all

*.

'
the streams is not possible because of insufficient data for the Grand and Genesee Rivers and the absence of these sublayers for most areas of Cazenovia Creek.

Figure 43 a to c summarizes the relation between the surface and subsurface sediment in this study. The sublayers beneath a continuous armor coat are subjected to the most vertical winnowing and therefore, show the greatest differences between one another (figure 43 a). The sublayers beneath discontinuous armor sediment are subjected to less vertical winnowing than those below a continuous armor coat. Inverse grading still occurs but the difference between sublayers is markedly decreased (figure 43 b). An unsorted, homogeneous subsurface occurs below a surface layer that is not armored because the sediments have not been modified by vertical winnowing (figure 43 c).

In addition, figure 44 may represent a method by which streambed armoring can be measured. It indicates that the mean size of the armor coat is related to the mean size of the top-sublayer. Three distinct fields are evident: 1) the first field represents the coarsest top-sublayer beneath a continuous armor coat, 2) the second field represents the next coarsest top-sublayer below a discontinuous armor coat, and 3) the third field represents the finest top-sublayer beneath a surface which is not armored. These results suggest that in at least the five

$\%$

rivers studied, a continuous armor coat has a mean size of -6.5 phi and coarser. A discontinuous armor coat has a mean size of approximately -6.0 phi , and a surface with no armor coat has a mean size of -5.0 phi and finer.

Figures 45 to 49 show straight-line segments for the top-sublayers of bars on Twenty and Sixteen Mile Creeks, the Grand and Genesee Rivers, and Cazenovia Creek respectively. Comparison of each consecutive figure shows that the size-range of population 2 expands from one stream to the next. This suggests that the least mixing of populations for the top-sublayer occurs in Twenty Mile Creek, next is Sixteen Mile Creek, followed by the Grand River, and the greatest mixing occurred in the Genesee River and Cazenovia Creek. However, the sizes comprising population l in the sublayers of each stream are also related to the source of sediment for each stream. This is suggested by Middleton and Southard (1977) who indicate that the sizes which constitute the traction population are partially dependent on the source area.

It must be noted that the populations of sublayers beneath a continuous armor coat are not indicative of transport modes because they are modified by vertical winnowing. However, vertical winnowing is significantly reduced for the subsurface beneath a discontinuous armor coat. Therefore, populations for this subsurface sediment may be indicative of transport modes, but are modified by

vertical winnowing. The populations for the sediment beneath a surface which is not armored are probably indicative of transport modes because they show no modification by vertical winnowing.

STREAMBED PHOTOGRAPHS

Probability of Motion

Probability of movement for given size sediment was determined using photographs. It is calculated by dividing the number of grains of a given size moved between the 1982 and 1983 photographs by the total number of grains of this size initially present in the 1982 photographs.

Figures 50 and 51 show the percent probability of movement versus phi size for photographed areas of Twenty Mile Creek in the channel and on bars respectively. Each graph represents a different photograph. Although some scatter is present, a good relation exists between percent probability of movement and size. In all sampled areas of Twenty Mile Creek, the coarsest sizes have the lowest, and finest sizes have the highest probability of movement.

Figures 52, 53 and 54 a and b show the percent probability of motion for a given size in the photographed areas of Sixteen Mile Creek, the Genesee and Grand Rivers and Cazenovia Creek respectively. All the streams show the same linear relation between probability of movement and

Plgure 50. Percent probability of movement with phi size for several photographed areas in the channel of Twenty Mile Creek.

Figure 51. Percent probabllity of movement with phi $81 z 0$ for several photographed areas on bars of Twenty Mile Creek.

Figure 52. Percent probablilty of movement with phi size for several photographed areas on Sixteen M1le Creck.
r
$\stackrel{4}{4}$

Figure 53. Percent probability of movement with phi size of several photographed areas on the Genesee River.

$$
\infty
$$

(x)d \%
size observed on Twenty Mile Creek. However, because most photographs of Cazenovia Creek showed 100 percent movement, only two photographs were used for determining probability of movement. only 20 photographs were taken on the Grand River because summer flooding prevented access to the bed. Only one of these photographs was used to determine probability of movement. The others showed either no clast movement or 100 percent movement.

Local Streambed Equilibrium

Size analysis from photographs was also used to measure the weight of sediment moved in and out of a given photographed area. If the total weight of sediment moved into a local bed area is greater than the total weight moved out, then the bed is aggrading. If the reverse is true, then the bed is degrading, and if sediment weight moved in and out is equal, then the streambed is in equilibrium.

Figure 55 a and b show the total weight moved in versus the total weight moved out of the photographed areas on Twenty Mile Creek in the gorge and downstream of Highway 8 respectively. It is evident that the total weight moved into most areas on Twenty Mile Creek is greater than the weight moved out suggesting that the bed has aggraded slightly during the 1982-83 snow-melt.

Figure 56 a to d shows the total weight moved in

versus the total weight moved out of photographed areas on Sixteen Mile Creek, the Genesee River, Cazenovia Creek and the Grand River respectively . These figures show that during the 1982-83 snow-melt degradation predominated for the unarmored bed of Cazenovia creek and the discontinuous and unarmored beds of the Genesee River, while aggradation was more common for the continuous armor coats of Twenty and Sixteen Mile Creeks.

Scour and Probability of Movement

Probability of motion determined from photographs may be related to local bed scour. This relation is determined by comparing data from a scour gauge to that obtained from the nearest photograph.

Figures 57 and 58 show scour depth versus percent probability of movement for a given photographed area on Twenty Mile Creek with mean sizes ranging from -6.0 to -8.0 phi. Figure 59 shows similar data for Sixteen Mile creek. In all three figures, two trends are present: one for the channel and one for bars. Although there is some scatter, the relation between probability of movement for a given mean bed size and scour depth is quite good.

Clasts of -5.0 phi and smaller were not included in figures 57 to 59. Clasts of these sizes may be transported during flows when the armor coat is not penetrated and should not be related to scour.

Figure 57. Percent probablilty of movement for photographed areas whose mean $81 z 018-7.5 \mathrm{phi}(\cdot),-7.0$ ph1 (+), and -8.0 ph ((0) versus scour depth for the 1982-83 Bnow-aelt. Data are shown for Twenty M1le Creek, and do not include clasts of -5.0 ph and smaller.

Figure 58. Percent probability of movement for the photographed areas whose mean sizo $18-6.5$ phi (+) and -6.0 phi (•) versus scour dopth for the 1982-83 snow-molt. Data are shown for Twonty M1le Creek and do not include clasts of -5.0 phi and smaller.

Plgure 59. Percent probabllity of movement for photographed areas whose mean size $18-7.0 \mathrm{ph} 1(0) .-6.5 \mathrm{ph} 1(+)$ and -6.0 phi (•) versus scour depth. Data were collected on Sixteen M1le Creek and do not include clasts of -5.0 phi and smaller.

Scour beneath the discontinuous armor coats of the Grand and Genesee Rivers may be caused by the winnowing of fines surrounding the large isolated surface clasts (Raudkivi and Ettema 1982). Scour of these beds should be related to the probability of movement of the fine surface grains. This is also true for the unarmored bed of Cazenovia Creek. The probability of movement for the surface clasts finer than -5.0 phi was not calculated for the creeks in this study. However, bed surfaces with clasts having 100 percent movement are related to scour depth. Each histogram in figure 60 represents a different scour depth that occured in a bed area with a different mean surface size. All the surface clasts in these areas had 100 percent probability of movement for the 1982-83 snow-melt. These histograms show that the greatest scour measured in this study occured in a streambed having a mean size between -5.5 and -4.0 phi.

Figure 60. Histograms representing scour depths for a given mean size of surface sediment. Probability of movement for these surfaces was 100 percent for the 1982-83 snow-melt. The data shown are from all creeks.

HYDROLOGY

The drainage area of Twenty Mile Creek is 293 square km with an average discharge of 2.8 cubic meters per second (cms) based on 19 years of records (Sangal and Kallio 1977). The recurrence curve for Twenty Mile Creek is shown in figure 61. This curve was constructed using data from Environment Canada (1982).

Construction of a similar recurrence curve for sixteen Mile Creek is not possible because of insufficient data. Therefore, a comparison of the hydraulics of Sixteen Mile Creek with the other streams of this study is not possible.

The drainage area of the Grand River at Brantford, Ontario is 5,210 square km with an average discharge of 55 cms based on 47 years of records (Environment Canada 1982). The recurrence curve for the Grand River is shown in figure 62. The data for this curve was obtained from Environment Canada (1982).

The drainage area for the Genesee River at Portageville, New York is 2,542 square $k m$ with an average discharge of 29 cms based on 62 years of record (United States Geological Survey 1976). The recurrence curve for the Genesee River is shown in figure 63. This curve was obtained from the United States Army Corps of Engineers, Buffalo, New York. The dam at Portageville, New York was

\% Chance of Occurrence
Figure 62. Recurrence curve
the Grand River.

built and has been maintained by the United States Army Corps of Engineers since 1946 (United States Geological Survey 1976). Consequently, the high flows of the recurrence curve after this date may have been affected by the dam.

Cazenovia Creek at Ebenezer, New York has a drainage area of 347 square km with an average discharge of 6.1 cms based on 30 years of records (United States Geological Survey 1976). The recurrence curve for Cazenovia Creek is shown in figure 64. The data for this curve was obtained from the United States Geological Survey (1965).

Because modest and more frequent floods are considered to do more work than infrequent catastrophic flows (Leopold and others 1964, p.71) the mean annual discharge with a recurrence of 2.33 years may be used to compare the streams in this study. Thus the mean annual flood is 66 cms for Twenty Mile Creek, 680 cms for the Grand River, 620 cms for the Genesee River and 190 cms for Cazenovia Creek.

Hourly discharge data for Twenty Mile Creek and the Grand River were obtained from Environment Canada. Data for the Genesee River and Cazenovia Creek was obtained from the United States Geological Survey. The maximum instantaneous flow was 44.1 cms on Twenty Mile Creek, 360.0 cms on the Grand River, 60.6 cms on the Genesee River and 17.1 cms on Cazenovia creek. As determined from the recurrence curves these flows occur approximately once every 1.6 years on

Twenty Mile Creek, every 1.6 years on the Grand River and every year on the Genesee River and Cazenovia Creek respectively. Therefore, the sediment transport measured during the 1982-83 snow-melt represents a very frequent event that occurs during flows which are well below the mean annual flood for each stream.

Hydraulic Data for Twenty Mile Creek

Two sites were selected on Twenty Mile creek. The upper site is located in the gorge approximately 280 m upstream of Highway 8. The lower site is approximately 65 m downstream of Highway 8. At each of these sites, two stations were designated from which water-surface elevation could be measured for a given discharge. Water-surface slope was then calculated between the two stations at each site. Figure 65 shows the relation between the dimensionless water-surface slope and discharge for both sites. This figure indicates that for a given discharge, the water-surface slope at the upper site is greater than that of the lower one.

The cross-sectional area at each station was also determined using a surveying level. These data were then used to calculate the hydraulic radius for a known discharge. Based on these relations the bottom shear stress was calculated for the maximum instantaneous flow of the 1982-83 snow-melt using the DuBoys equation:

*

$$
T=Y R S
$$

where T is the average bottom shear stress, Y is the specific weight of the water, R is the hydraulic radius, and S is the dimensionless water-surface slope. Figure 66 shows the average bottom shear stress versus discharge at three stations. A streambed photograph was not taken at Station 3 . Therefore, this station is not shown. It is evident that the average bottom shear stress decreases between the stations in the gorge and the one downstream of Highway 8.

Figure 67 shows the size distributions of the surface clasts transported on the bed at three of the four stations on Twenty Mile creek. Each distribution was determined from the nearest streambed photograph in each area. The average bottom shear stress for the maximum 1982-83 flow at each station is shown beneath each distribution. It is evident that the transported size distribution coarsens as the average bottom shear stress increases between the hydraulic stations.

Figure 68 is a comparison of Baker and Ritter's (1975) line with the shear stress of the largest transported clasts at the three stations on Twenty Mile creek. All the points corresponding to the largest clasts moved in photographs 48 (-7.5 phi), $50(-7.0 \mathrm{phi})$ and 68 ($-6.0 \mathrm{phi})$ plot below Baker and Ritter's line and suggests that the shear stress in all the areas was high enough to mobilize

Figure 66. Average bottom shear stress versus discharge for upper and lower stations. Station 1 is located approximately 298 meters upstream of Highway 8. Station 2 is approximately 272 meters upstream of Highway 8, and station 4 18 approximately 158 meters downstream of Highway 8.

$$
*
$$

Fipure 67. Size dictributions for the transported clasts of the armor coat at 3 of the 4 stations on Twenty Mile Creek during the 1982-83 snow-melt. The average bottom shear stress(T) at each station is in kgm^{-2}. The average bottom shear stress is calculated for the maximum flow of the 1982-83 melt.

clasts larger than these sizes. A clast of -8.0 phi is present in photograph 48 , clasts of $-8.9,-8.5,-8.0$ and -7.5 phi are present in photograph 50 and clasts of -7.0 and -6.5 phi are present in photograph 68. It is possible that clast packing and variable clast exposure to the flow may be the factors that prevented these sizes from being moved.

$$
\stackrel{ }{*}
$$

SUMMARY and CONCLUSIONS

It has been determined that the size distribution of the streambed armor coats in this study depends on two factors, 1) the nature of the source area, and 2) the flow competence of the stream. Both factors combine to determine the maximum size capable of armoring the streambed.

Comparison of the armor coat distributions of Twenty and Sixteen Mile Creeks suggests that the surface size difference between creeks with the same source must be due to differences in flow and perhaps, bottom shear stress.

Three types of streambed surfaces were categorized in this study: 1) a "continuous" armor coat, 2) a "discontinous" armor coat and 3) a bed-surface which is not armored. The continuous armor coats of Twenty and Sixteen Mile Creeks have a mean size of -6.5 phi and coarser. This armor sediment completely covers and protects the subsurface except at high flow. The discontinuous armor coats of this study have a mean size of approximately -6.0 phi. The large surface clasts of this armor coat are irregularly spaced causing the subsurface to be partially exposed to the flow. The bed of Cazenovia Creek is normally not armored and the subsurface is completely exposed.

The three types of streambeds differ in the amount of winnowing that occurs in the subsurface. Beneath a
continuous armor coat the subsurface is inversely graded, and is possibly formed by a vertical winnowing process. This mechanism requires the penetration of the armor coat, erosion of the subsurface, and winnowing of the sediment which rebuilds the streambed during high flow.

The sublayers beneath the discontinuous armor coats of the Grand and Genesee Rivers are more similar to one another than are those of Twenty and Sixteen Mile Creeks. The limited amount of vertical winnowing beneath a discontinuous armor coat is resposible for this similarity between the sublayers.

The bed of Cazenovia Creek usually has no armor coat resulting in a homogeneous subsurface which shows no signs of vertical winnowing. This suggests that the unarmored surface sediment is not deposited during high flow, and does not represent the maximum flow conditions of the stream.

Populations for a given sublayer beneath a continuous armor coat do not represent transport modes because they are modified by vertical winnowing. Vertical winnowing is greatly reduced in sediment beneath a discontinous armor coat and therefore, populations for these sublayers may be indicative of different transport modes. The subsurface of a bed which has no armor coat is not modified by vertical winnowing and therefore, the populations for this sediment probably represent transport modes.

Photographic analysis of the five streambeds before and after the 1982-83 snow-melt shows that degradation predominated on the discontinuous and unarmored beds of the Genesee River and Cazenovia Creek, while aggradation occurred on the continuous armor coats of Twenty and Sixteen Mile Creeks.

Photographic data also show that the probability of movement is a function of size. This relation is best defined on Twenty and Sixteen Mile Creeks, and the Genesee River, but is not well-developed for the Grand River and Cazenovia Creek because of insufficient data. However, 100 percent probability of movement occurs most often for the unarmored bed of Cazenovia Creek.

The data obtained from scour gauges show that the depth of scour is greatest in a streambed which has no armor coat. Scour depth beneath a continuous armor coat is a function of the probability of movement for a given mean surface size.

Hydraulic calculations relating the average bottom shear stress to the sediment transported on Twenty Mile Creek show that the competence decreases between stations in the gorge and the one downstream of Highway 8.

REFERENCES

Andrews, E.D., 1983, Entrainment of gravel from naturally sorted riverbed material: Geol. Soc. of America Bull., v.94, p.1225-1231.

Ashmore, P., and Parker, G., 1983, Confluence scour in coarse braided streams: Journal of Water Resources Research, v.19, No.2, p.392-402.

Bagnold, R.A., 1954, Experiments on gravity-free dispersion of large solid spheres in a newtonian fluid under shear: Proc. Royal Soc. London, v.A225, p.49-63.

Baker, V.R., and Ritter, D.F., 1975, Competence of rivers to transport coarse bedload material: Geol. Assoc. Geol. Assoc. of America Bull., v.86, p.975-978.

Baumann, P.F., 1962, Back scour during floods above pits and basins: Journal of the Hydraulics Division, A.S.C.E., V.88, No.HY2, p.139-151.

Bridge, J.S., 1981, Hydraulic interpretation of grain-size distributions using a physical model for bedload Transport: Journal of Sedimentary Petrology, v.5l, p.1109-1124.

Calkin, P.E., Muller, E.H., LaFleur, R.G., and Fakundiny, R.H., 1980, Late Wisconsin stratigraphy of the upper Cattaraugus basin: $43 r d$ Annual Reunion, Northeast Freinds of the Pleistocene, Springville, New York.

Cowan, W.R., 1972, Pleistocene geology of the Brantford area southern Ontario: Ont. Dept. Mines and Northern Affairs Ind. Min. Rept. 37.

Einstein, H.A., 1950, The bedload function for sediment transportation in open channel flow:U.S. Department of Agriculture Technical Bulletin No. 1026, 71p.

Environment Canada, 1982, Historical streamflow summary: Inland Waters Directorate, Water Resources Branch, Water Survey of Canada, Ottawa, Ontario. 520 p.

Feenstra, B.H., 1972, Quaternary geology of the Niagara area: southern Ontario, Ontario Div. of Mines. Prelim. Map, p.764, Geol. Series, Scale 1:50000, Geology 1969, 1970, 1971.

Fenton, J.D., and Abbott, J.E., 1977, Initial movement of grains on a stream bed: the effect of relative Protrusion: Proceedings of the Royal Society of London, ser.A, v.352, p.523-537.

Fisher, J.E., 1978, Textural characteristics of selected streams of the Niagara Peninsula, Ontario, unpublished M.Sc. Thesis, Brock University.

Flint, J.J., and Maddalena, A.L., 1984, Sediment accumulation zones: a mechanism for sediment fining downstream:[abs.], Sedimentology Symposium, Geological Association of Canada Annual Meeting, May 1984, London, ontario, p. 62.

Folk, R.L., 1968, Petrology of Sedimentary Rocks, Laboratory Manual, Hemphill's, Austin Texas, 170 p.

Garde, R.J., Subramanya, K., and Nambudripad, K.D., 1961, Study of scour around spur-dikes: Journal of the Hydraulics Division, A.S.C.E., v.87, No.HY6, p.23-37.
-----, Al-Shaikh Ali, K., and Diette, S., 1977, Armoring process in degrading streams: Journal of the Hydraulics Division, A.S.C.E., V.103, No.HY9, p.1091-1095

Gessler, J., 1965, The beginning of bedload movement of mixtures investigated as natural armoring in channels: Swiss Federal Institute of Technology:Translation; California Institute of Technology, Pasedena, California.

Leopold, L.B., Wolman, M.G., and Miller, J.P., 1964, Fluvial Processes in Geomorphology: San Francisco and London, Freeman and Company, 522 p.

Little, W.C., and Mayer, P.G., 1976, Stability of channel beds by armoring: Journal of the Hydraulics Division, A.S.C.E., v. 102, p.1647-1661.

Maude, A.D., and Whitmore, R.L., 1956, The wall effect and the viscosity of suspensions:British Journal of Applied Physics, v.7, p.98.

McLaren, P., 1981, An interpretation of trends in grain size measures: Journal of Sedimentary Petrology, v.51, No. 2, p.611-624.

Middleton, G.V., 1970, Experimental studies related to problems of flysch sedimentation: in Lajoie, J., ed., Flysch Sedimentation in North America:Geol.Assoc. of Canada, special Paper 7, p.253-272.
-----, 1976, Hydraulic interpretation of sand size distributions: Journal of Geology, v.84, p.405-426.
-----, and Southard, J.B., 1977, Mechanics of sediment movement: S.E.P.M. Short Course Number 3, Binghamton, New York.

Milouse, R.T., 1973, Sediment transport in a gravelbottomed stream: Ph.D. Thesis, Oregon State University, Cornvallis.

Muller, E.H., Young, R.A., Rhodes, D.D., Willette, P. and Wilson, M., 1976, Surficial geology of the genesee valley: Preliminary Draft, Report of Investigations, New York State Geological Survey.

Naylor, M.A., 1980, The origin of inverse grading in muddy debris flow deposits-a review: Journal of Sedimentary Petrology, v. 50 , No. 4, p.1111-1116.

Parker, G., Dhamotharan, S., and Stefan, H., 1982, Model experiments on mobile: paved gravel bed streams: Water Resources Research, v.18, No.5, p.1395-1408.
-----, and Klingeman, P.C., 1982, On why gravel bed streams are paved: Journal of Water Resources Research, v.18, No.5, p. 1409-1423.
-----, Klingeman, P.C., and McLean D.G., 1982, Bed load and size distribution in paved gravel-bed streams: Journal of the Hydraulics Division, A.S.C.E., v.l08, No. HY4, p.544-571.

Raudkivi, A.J., and Ettema, R., 1982, Stability of armor layers in rivers: Journal of the Hydraulics Division, A.S.C.E., v.108, No. HY9, p.1047-1057.

Rickard, L.V., and Fisher, D.W., 1970, Geological map of New York: Niagara Sheet, U.S. Geological Survey, Scale 1:250,000.

Sagoe, K.O., and Visher, G.S., 1977, Population breaks in grain-size distribution of sand-a theoretical model, Journal of Sedimentary Petrology, v.47, No.l, p.285310.

Sanford, B.V., 1969, Geology of the Toronto-Windsor Area: Ontario, G.S.C. Map No. 1263A, Scale 1:250,000.
-----, Martini, I.P., and Mosher, R.E., 1972, Niagaran Stratigraphy: Hamilton, Ontario, Michigan Basin Geological Society, Annual Field Excursion.

Sangal,B.P., and Kallio,R.W., 1977, Magnitude and frequency floods in Southern Ontario, Tech. Bull. Ser. 99, Inland Waters Directorate, Water Planning and Management Branch, Ottawa, 336p.

Scott, K.M., 1969, Scour and fill in Tujunga wash-a fanhead valley in urban southern California: U.S. Geol. Survey Prof. Paper 732-B, 29p.
-----, and Gravlee, G.C. Jr. 1968, Flood surge on the Rubicon River: California-Hydrology, Hydraulics and Boulder Transport. Prof. Paper, U.S. Geological Survey, 422-M, 40p.

Segre', G., and Silberberg, A., 1961, Radial particle displacements in poiseville flow of suspensions: Nature, v.189, p.209-210.

Spencer, W., 1963, The interpretation of grain size distribution curves of clastic sediments: Journal of Sedimentary Petrology, v.33, No.l, p.180-190.

Tanner, W.F., 1964, Modification of sediment size distributions: Journal of Sedimentary Petrology, v.34, No.l, p.156-164.

United States Army Engineering District, Los Angeles, 1972, Gages for determining maximum scour during flood flows: E.T.L. 1110-2-163.

United States Geological Survey, 1965, Magnitude and Frequency Floods in the United States: Water-Supply Paper 1677, Part 4, St. Lawrence Basin.
-----, 1976, Surface water supply of the United states, 1966-70: Water-Supply Paper 2112, Part 4, St. Lawrence Basin 738 p.

Visher, G.S., 1969, Grain size distributions and depositional processes: Journal of Sedimentary Petrology, v.39, p.1074-1106.
-
$*$

APPENDIX I

List of sediment weights (gm) by size fraction used for subsurface size analysis

Twenty Mile Creek

Phi Interval Used

$\begin{gathered} \text { sample nol } 12 \\ 0.000 \\ 1.263 \\ 0.113 \end{gathered}$	$\begin{aligned} & \text { T0p } \\ & 0.000 \\ & 0.769 \\ & 0.124 \end{aligned}$	$\begin{array}{r} \text { THICKMESS } \\ 0.000 \\ 0.791 \\ 0.142 \end{array}$	$\begin{gathered} 151.583 \\ 0.528 \\ 0.110 \end{gathered}$	$\begin{array}{r} C M \\ 463.193 \\ 0.465 \\ 0.168 \end{array}$	$\begin{array}{r} 712.063 \\ 0.452 \\ 0.058 \end{array}$	$\begin{array}{r} 197.093 \\ 0.362 \\ 0.162 \end{array}$	$\begin{array}{r} 223.163 \\ 0.278 \\ 0.082 \end{array}$	$\begin{array}{r} 59.033 \\ 0.332 \\ 1.027 \end{array}$	11.237 0.301	10.399 0.252	$\begin{aligned} & 5.661 \\ & 0.280 \end{aligned}$	$\begin{aligned} & 2.091 \\ & 0.140 \end{aligned}$	2.396 0.183
SMAPLL MOLI2 M10 IHICXNESS * 7 CE MCH													
0.000	0.000	0.000	537.418	266.128	751.768	338.938	675.796	266.108	97.288	126.328	112.398	62.740	61.938
43.139	29:80 ${ }^{3}$	2\%.064	18.537	8.147	? 0.553	S.037	3.211	\% 8.787	2.496	1.910	2.051	1.041	1.247
SAMPLE MOLI2 ROT THICKMESS - 21 Ce HEH													
$\begin{array}{r} 0.000 \\ 18.159 \end{array}$	$\begin{aligned} & 0.000 \\ & 12.09] \end{aligned}$	$\begin{array}{r} 0.000 \\ 10.302 \end{array}$	$\$ 9.160$	70.090 6.177	152.260	78.490 5.830	95.760	44.580	14.008	21.317	26.577	3.664	15.748
4.96	6.748	6.188	7.288	9.622	2.916	8.803	4.675	323.660					
85. 334	68.014	82.914	\$3.988	34.890	39.212	31.794	23.786	21.827	21.379	17.927	120.424 20.060	78.794	95.334 12.955
6.952	8.261	3.983	6.170	7.824	2.072	6.386	2.415	61.674					
SAMPLE MOLIS 10 THICKNESS = 36 ce AAE													
0.000	0.000	548.226	207.166	353.846	554.016	134.886	265.866	94.766	35.626	63.236	68.386	46.566	57.763
51.075	42.778	52.333	42.607	27.884	32.710	26.144	20.163	17.438	17.062	13.514	14.054	6.937	8.560
4.973	6.059	5. $3=8$	4.9\%	6.824	2.636	4.949	2.340	51.360					
SAMPLE MOLIS UDI THICXNESS 17 ce Das													
0.000	0.050	260.064	309.264	235.694	255.084	176.774	348.584	136.694	61.824	92.434	113.074	77.044	9.474
81.674	67.594	82.004	62.723	41.163	44.563	34.144	23.147	17.926	13.258	10.929	11.425	5.226	6.544
3.820	4.601	4.110	3.740	5.6ss	1.658	4.532	1.922	113.564					
18.873	18:899	8.850	14.317	132.113	692.873	207.893	316.833	135.283	49.773	64.503	60.163	26.933	25.959
0.668	0.068	0.112	0.075	0.176	0.060	0.228	0.141	3.214					
SAMPLE HOL23 0\% IHICKaESS - 18 Ce MCM													
0.070	O.000	0.000	0.000	42.789	139.508	181.818	445.838	247.738	100.978	152.958	177.678	108.148	127.928
98.379	79.128	84.838	59.657	35.583	35.757	25.739	16.808	13.263	11.821	8.533	8.705	4.166	4.719
2.413	3. 360	2.580	2.605	3.013	1.198	2.539	1.402	24.108					
3.000	0.000	3:7.733	232.783	172.963	483.063	159.723	259.873	122.703	14.183	72.403	88.363	57.133	71.213
61.63	53.623	63.663	53.472	35. 561	41.806	33.389	25.198	21.588	20.113	15.094	16.675	8.085	10.149
5.407	6.574	6.207	5.801	7.002	3.179	5.526	3.358	69.553					
SAMPLE HOL34	107	THICXMES5	- 11 C*										
0.000	0.000	0.000	301.686	339.976	348.896	51.226	237.126	96.766	37.746	51.186	54.526	28.910	36.286
$29.87 d$	$\begin{array}{r} 24.129 \\ 6.613 \end{array}$	29.194	21.049	14.966 8.993	15.650 1.530	17.478	10.045 3.096	10.880 112.140	11.831	10.077	11.858	6.243	8.595
SAMPLE MOL35 TOP THICVAESS A 4 CEMCH													
		359.746	630.776	793.246	612.136	113.336	87.036	12.338	0.951		0.317		
8.060 0.006	0.119	0.103	0.039	0.04\%	0.026	8.026	0.012	0.011	0.012	0.009	0.013	8.012	0.007
		0.014	0.010	0.026	0.014	0.031	0.024	0.475					
0.7%	13.709	12.307	0.761	1.181	0.422	1.072	-0.079	8.408					
74.659	70.145	70.765	31.814	30.198	31.134	22.265	14.307	11.252	9.481	6.467	6.187	3.906	3.242
1.692	2.147	1.917	1.908	2.538	0.844	3.569	1.628	27.661					
$\begin{aligned} & 0.209 \\ & 52.872 \end{aligned}$	$\begin{array}{r} 0.002 \\ 45.663 \end{array}$	$\begin{array}{r} 0.000 \\ 81.192 \end{array}$	-0.000	$\begin{array}{r} 0.000 \\ 27.392 \end{array}$	89.861 29.9%	76.603 23.846	143.133 16.485	75.923 13.496	29.308 11.794	56.439 8.470	69.433 8.160	43.335	56.910
2.169	2.401	2.117	1.782	2.344	0.737	1.973	1.102	20.499					
SANPLE MOI 36 TOP THICYNESS 4 Ce TAP													
$\begin{aligned} & 0.020 \\ & 8.021 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 3.008 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 3.3 * 4 \end{aligned}$	$\begin{aligned} & 7.933 \\ & 2.251 \end{aligned}$	$\begin{array}{r} 15.903 \\ 1.499 \end{array}$	127.793 1.574			9.813 1.268	18.758 1.550	25.301 1.630	16.594 1.229	8.208 1.286	8.176 1.811
1.15	4.8	1.410	1.313	1.670	0.759	1.117	1.641	9.950					
2.808	28.30\%	24.46\%	149.96\%	733.408	78.876	354.174	449.848	162.38	47.869	65.278 6.401	60.544	31.730°	34.5
8.141	6.889	5.035	5.799	7.364	3.003	5.121	2.359	39.031					
12.044	32.167	33.233	24.026	14.945	13.583	12.097	1. 366	7.690	8.467	6.968	8.141	4.302	6.438
3.506	4. $\% 4$	3.102	4.840	7.038	2.027	3.697	2.0%	07. 537					
44.70.2	3.211	K. 447	26.133	16.403	18.978	14.337	10.640	10.244	10.632	8.768	10.368	3.335	7.4\%5
+602	.02	200	4	c. 14	3.097	.132	3.62	$3 \% .17$					
3.200	0.009	04.112	40.007	191.702	400.172	162.972	210.022	143.392	51.742	68.922	82.062	47.742	36. 392
41.0\%2	11.702	46.443	37.773	25.149	27.600	23.057	19.208	19.034	20.197	16.360	19.533	10.514	13.400
0.001	11.739	11.119	11.779	16.651	8.210	14.651	6.925	57.315					
0.627	0.071	0.070	0.02 ?	0.0\%2	0.020	0.047	0.0 .9	0.47%	8.84				
63.111	-2.504	54.454	11.190	26.740	21.117	21.36	14.636	12.061	17.123	9.432	10.552	4.380	7.340
4.24	9.479	5.015	4.942	9.817	2.111	9.335	3.10	73.9\%					
0.009	0.000	-.000	209. 369	627.973	543.163	114.423	122.08]	47.113	10.735	23.340	28.064	16.76a	17.436
11.643	6.713	0.731	3.776	3.432	3.681	2.738	2.013	1.871	1.650	1.397	1.644	0.821	1.115
0.503	$0.73{ }^{\circ}$	0.706	0.577	0.6%	0.221	0.515	0.309	4.688					

$$
1
$$

suntie hot 0.000	$\begin{aligned} & 10{ }^{10} 1 \\ & 0.000 \end{aligned}$	$\begin{array}{r} \text { TMICXNESS } \\ 0.000 \end{array}$	$\begin{gathered} 13 \mathrm{Ca} \\ 0.000 \end{gathered}$	${ }_{219.239}$	400.479	187.829	344.609	176.839	71.689	109.829	130.769	76.469	
87.999	77.109	90.399	71.630	50.315	54.133	41.739	28.405	23.256	20.901	15.099	14.980	6.86\%	11.449 7.759
3. \%2	4.870						0.863	37.538					
SAMPLE HOL62 TOP THICKMESS - 4 CM ACM													
0.000	0.000	429.070	5.27 .140	102.310	329.050	194.810	270.470	109.010	35.110	52.880	50.250	24.460	28.690
23.018	20.460	17.990	12.238	7.118	7.249	4.938	3.178	2.630	2.070	1.490	1.530	0.770	0.918
59.197	51.899	54.049	13.119	28.707	29.759	21.099	13.939	10.729	9.079	6.529	6.497	3.059	4.099
2.419	2.663	2.379	2.589	3.329	1.169	3.642	1.639	62.050					
SAAPLE MSA	2 log	THICKNESS	- 15 com										
0.090	0.000	0.000	114.279	151.267	297.259	143.979	273.539	141.259	61.009	96.789	131.659	78.929	99.999
92.703	67.479	99.719	52.083	34.413	37.181	23.656	21.059	19.084	16.245	12.519	12.700	6.154	6.606
3.742	- 185	3.397	2.964	3.301	1.256	2.104	1.059	78.969					
0.600	0.000	0.020	0.000	215.999	309.317	111.639	146.049	76.609	22.596	33.904	38.339	22.305	29.041
34.947	26.133	29.002	24.005	16.630	18.157	13.543	4.279	7.366	6.550	4.685	1.950	2.477	3.295
	$2 . t 46$. 70	2.640	3.993	1.193	3.344	2.10 J	53.395					
Santle mol] 10 \%	\%nicrusjs	* 38 ctr										
0.06%	0.500	0.000	109.368	141.848	296.049	79.529	161.868	97.978	27.089	$45.8 \% 8$	48.700	31.58	38.658
33.6418	34.298	37.639 6.398	20.197	11.279	17.014 2.807	14.411	11.471	12.193	10.145	7.835	9.309	4.722	6.916
60.662	$4.54,2$	72.122	66.264	46. ${ }^{\text {a }}$	50. 394	41.849	33.262	27.929	24.7\%)	17.123	18.772	8.410	10.488
3.641	6.927	6.660	6.427	7.677	2.35\%	5.624	2.503	10\%. $3 \% 0$					
20. 2.1	12.961	10.700	8.153	3.963	3.76 .3	2.625	1.987	1.910	1.606	1.961	2.104	2.036	26.332
1.191	2.873	2.328	2.131	$2.8 \% 1$	0.051	2.214	1.107	$=0.650$					
74.047	71.879	71.759	63.909	40.302	42.643	37.395	18.357	15.185	11.331	9.116	10.974	6.331	9.275
-. 963	9.301	9.991	9.675	16.729	3.342	15.193	日.3.5	160.570			$1 .$.		
119*4*	154.347	120.739	$91.37{ }^{\circ}$	\$1.206	-77.8.305	172.379 35.399	331.619 23.879	151.829	6.479 17.363	110.869 17.462	151.219	95.119	123.269
14.58 sq	11. $\mathrm{c}_{\text {d }}$?	1\%.716	13.946	20.213	9.29\%	15.343	7.047	:76.474					
$\begin{aligned} & C .070 \\ & 0.00: \end{aligned}$	3.124	$\begin{aligned} & 2.861 \\ & 0.07 \% \end{aligned}$	1.711 0.087	$\begin{aligned} & 0.870 \\ & 0.138 \end{aligned}$	0.803	0.599	0.425	0.374 0.533	0.304	0.235	0.237	0.101	0.141
SAMPLE MOL66 M10 TMICKNESS - 37 MCH													
-1. 311	4. 39\%	46.267	1). 319	5. 3\%8	31.074	28.63 ${ }^{\text {a }}$	21.500	20.840	18.620	14.511	13.166	6.661	6.479
3.80,		4.036	2.862	1.829	1.1:7	3.293	1.3\%1	14.395					
\$9.411	52.211	81.771	4).161	39.049	1\%.890	137.059	338.07		$61.28!$ 30.189	R8.061 25.458	102.801	69.291 13.880	76.891
10.042	11.142	2.117	7.002	9.202	3.122	4.895	3.615	93.595					
41.949	44. 735	63.360	66.440	54.435	68.89)	$1 . .709$	50.031	39.701	40.277	26.931 26.292	27.097	27.392	11.762
6.519	7.776	7.137	6.487	0.022	3.116	6.958	4.438	164.860					
SAMPLI MOLG? MIO THICYMESS - J7 ce bah													
3.005	9.000	0.600	861.217	101.767	206.997	107.207	186.197	90.397	31.007	52.347	59.777	34.171	40.354
17.17\%	37.413	23:198		32.:33	35.140 13.4	$32.24{ }^{\text {a }}$	15. 219	\% 21.947	25.495	24.669	34.009	10.112	30.599
SAAPLE MCL67 Mnt TMICYMES5. 2\% ce lat													
$+1: 89$	44.90?	63.80	6.000	$\begin{gathered} 180.39 \% \\ 54.13 j \end{gathered}$	139.18	615.56			16.637	26.3\%	36.793	87.395	41.763
$6 . \% 19$		-127	6.137	8.025	9.116	6.958	4.4.09	$\begin{array}{r} 39.788 \\ 164.860 \end{array}$	40.277	26.292	27.097	11.167	14.327
-8.8)	24.147	8.7 .106	24.27]	17.998	11.062	20.276	196.621	79.911 19.772	23.65\%	39.875	42.134	25.123	30.797 54.359
21.36	47.266	39.903	41.077	\%6.073	84.362	35.936	17.388	337.860					
- 6	01.675	4.11%	23.70	-32.195	24\%.14 34.130	63.155	$17 \% .575$ 36.074	99.745	42.835	69.365 45.922	6. 6.545	53.435 31.644	70.275
25..64	26.602	26.751	:1. 3 8\%	21.646	11.743	17.990	9.954	398.789					
24.78	24.80	39.517	31.372	25.390	34.964	21.194	29.775	31.448	10.574	39.187	57.022	32.206	47.372
21.214	11.171	31.339	26.471	36.8:8	9.017	26.176	11.430	520.660					
18:87?	9.800	8. 307	54.3975	${ }^{65} \mathrm{f}$:37	1108.36	198.13	29\%.63?	78.887	38.734	38.837	39.878	14.819	14.48
-0:3	0.6 ± 1	0.030	0.059	0.049	$0.0: 1$	0.049	0.032	0.169					

$$
4
$$

TWULE 10173 0.000 6.008 6.008	$\begin{aligned} & M 18{ }^{8} \\ & 0.000^{8} \\ & 0.060 \\ & 6.04 \end{aligned}$	$\begin{array}{r} \text { ICKNES5 } \\ 0.000 \\ 9.070 \\ 4.017 \end{array}$	$\begin{array}{r} 32.801 \\ 0.000 \\ 0.710 \\ 3.867 \end{array}$	$\begin{array}{r} 1 \mathrm{CH} \\ 200.230 \\ 60.113 \\ 4.006 \end{array}$	$\begin{array}{r} 394.960 \\ 72.415 \\ 1.219 \end{array}$	$\begin{array}{r} 150.360 \\ 60.692 \\ 2.624 \end{array}$	$\begin{array}{r} 353.200 \\ 49.065 \\ 1.335 \end{array}$	$\begin{array}{r} 144.680 \\ 40.997 \\ 30.072 \end{array}$	$\begin{aligned} & 63.350 \\ & 37.181 \end{aligned}$	$\begin{array}{r} 99.540 \\ 27.618 \end{array}$	$\begin{array}{r} 120.450 \\ 25.953 \end{array}$	$\begin{aligned} & 74.860 \\ & 11.236 \end{aligned}$	99.080 12.139
0.00 C	0.000	0.000	0.000	30.775	66.868	03.378	209.408	115.708	46.858	79.948	95.328	64.128	86.068
77.988	73.769	91.388	83.379	61.942	79.126	72.873	61.809	57.743	54.733	14.106	46.591	21.184	26.629
13.003	13.893	11.603	¢. 38	10.133	2.798	6.135	2.387	353.086					
SAMPLE HOL74 TOP THICKNESS - 3 Ce MCH													
8.898	\$.838	117.979	334:243	767.958	1158.158	268. 69	20.288	48.388	73.378	18.138	8.718	8.798	8.468
0.0:0	0.050	0.080	0.000	0.120	0.050	0.150	0.060	1.290					
50.500	46.110	49.018	40.175	31.937	43.241	46.057	49.151	52.239	57.236	54.177	65.561	32.515	37.058
19.592	22.0e\%	16.182	13.144	14.842	¢.213	9.157	4.620	62.572					
SANPLI HOL74	101 0.000	ICRMES\$ 0.009	- $33 \mathrm{C} 0.00{ }^{\text {c }}$	$\mathrm{CH}_{55.0} \mathrm{O} 6$	167.026	95.756	175.496	05.406	39.946	90.38\%	62.016	37.456	
34.689	33.472	36.941	41.920	34.225	43.302	50.383	50.339	65.579	76.539	70.713	76.534	34.913	12.086 16.396
30.15\%	26.301	20.407	11.800	16.111	3.917	7.729	2.931	81.065					
32.884	27.95	27.136	22.366	13.419	14.795	17.343	9.500	8.436	8.336	7.464	9.152	5.115	7.627
	6.126	3.611	5.751	8.171	2.530	7.396	2.749	34.149					
36.012	33.937	37.15	23.316	17.709	20.141	19.779	18.042	18.306	19.397	16.706	19.871	10.595	14.881
9. 311	11.7*)	10.371	10.928	14.427	5.629	11.841	5.789	132.980					
46. 040	10.0\%\%	39.444	31.727	20.051	23.296	20.712	16.18.3	15.599	15.600	14.154	16.732	9.334	13.613
0.440	13.364	11.083	11.209	16.415	4. 989	12.047	3.766	130.976					
17.7×6	11.514	10.\%61	8.053	4.611	4.411	2.925	$1.64)$	1.645	0.862	0.338	0.514	0.201	0.236
0.124	$0.1 \% 2$	0.203	0.170	0.344	0.117	0.323	0.127	1.990					
Saple mot 76	$\cdots 10$	HCKMES5	- 20 con										
0.002	0.000	0.000	208.009	171.129	312.909	189.977	346.359	178.019	69.779	114.559	121.947	70.987	68.469
69:30	6-3.793	21.034	57.717	40.214	45.435	35.611	25.011	17.719	16.729	11.997	12.648	9.161	5.252
0.98\%	74.18\%	103.86	129.818	119.88\%	198.813	128:878	181.133	196.988		71:128	67.842	59.637	34:98\%
17.122	16.131	15.603	11.716	13.721	3.693	11.545	4.867	93.6\%					
62.380	34.269 3.303	-9.27	13. 314	-8.004	2.900	0.078	3.773	141.980					
73.143	60.293	57.041	43.122	37.011	27.370	20.762	13.773	10.416	9.847	2.020	8.470	4.093	
3.608	4. $\times 6$	5.337	6.012	0.926	3.000	9.832	5.748	168.459					
17.027	16.475	306.0\%	16.009	10.816	12.301	103.445	6.936	40.679	11.808	22.927 3.055	27.097	19.084	2.317
1.839	1.\%1	2.26\%	2.172	3.827	1.242	3.173	2.206	\$6.040					
1.3令	11.014	12.637	11.80	17.626	5.243	12.385	6.778	369.512					
16.112	13.401	13.419	10.009	6.805	6.369	4.276	2.191	2.335 12.634	1.857	1.486	1.617	0.780	0.999
-.583	0.607	$0.67{ }^{\circ}$	0.607	0.947	0.484	0.062	0.174	12.634					
20.319	21.449	26.009	27.67	17.817	21.669	10.259	20.869	11.069	9.299	6.309	6.419	2.769	3.001
1.461	1.971	1.801	1.471	1.061	0.691	1.461	0.891	33.151					
-.000	8.009	313.150	912.129	427.470	303.690	139.040	174.540	35.076	5.460	0.140	7.046	2.850	3.805
2.14]	2.25	$\frac{1}{2.0714}$	1.303 2.437	3.916	0.947 1.244	0.116	0.624 0.024	12.710	0.700	0.135	1.525	1.130	1.927
18.915	i1202\%	18.097	46. 130	26.791	24.447	13:96\%	12.817	$115: 1976$	14.076	12.379	17.451	9.614	14.434
0.000	0.009	0.000	0.050	787.00,7	211.857	393. 107	311.177	170.437	55.420	71.467	68.317	35.782	36.045
26.6\%	20.094	19.14	12.079	7.276	6.697	3. $\% 3$	2.276	1.673	1.227	1.697	0.963	0.502	0.615
0.36:	0.812	0.615	0.676	1.141	0.504	1.59	0.715	19.520					
33.046	วา. \times, 4	30, \%02	21.391	14.49\%	11.374	9.601	0.131	4.718	4.379	3.270	3.43)	2.019	3.103
1 LCO	こ. 26 ?	2.41	\%. 917	1. 0^{4}	1.812	3.134	1.677	52.19\%					

Grand River

Genesee River

Cazenovia Creek

$\begin{gathered} \text { SMPLE CA2 1 } \\ 0.000 \\ 3.026 \\ 3.026 \end{gathered}$	$\begin{aligned} & 411{ }^{7} \\ & 0.000 \\ & 3.178 \\ & 3.147 \end{aligned}$	$\begin{array}{r} 16 \text { CNES9 } \\ 111.700 \\ 5.553 \\ 2.379 \end{array}$	$\begin{gathered} 1.804 \\ 5.990 \\ 1.403 \\ 1.824 \end{gathered}$	$\begin{array}{r} 840.130 \\ 1.707 \\ 1.764 \end{array}$	$\begin{array}{r} 596.740 \\ 6.759 \\ 0.503 \end{array}$	$\begin{array}{r} 191.500 \\ 7.079 \\ 0.095 \end{array}$	$\begin{array}{r} 162.240 \\ 6.676 \\ 0.423 \end{array}$	$\begin{array}{r} 27.040 \\ 7.098 \\ 7.588 \end{array}$	6.323	9.013 6.727	8.336	4.884	6.432
$\begin{gathered} \text { smpte caz I } \\ 0.000 \\ 32.620 \\ 30.068 \end{gathered}$	$\begin{gathered} 110 \\ 0.000 \\ 40.390 \\ 21.308 \end{gathered}$	$\begin{array}{r} \text { ITCXNESS } \\ 0.000 \\ 99.900 \\ 13.683 \end{array}$	$\begin{gathered} 35 \text { ce } \\ 066.410 \\ 52.996 \\ \hline .394 \end{gathered}$	317.070 45.793	$\begin{array}{r} 292.660 \\ 57.213 \\ 2.189 \end{array}$	$\begin{array}{r} 118.770 \\ 58.643 \\ 2.486 \end{array}$	$\begin{array}{r} 244.390 \\ 54.356 \\ 1.087 \end{array}$	$\begin{array}{r} 119.130 \\ 57.133 \\ 22.152 \end{array}$	$\begin{aligned} & 47.641 \\ & 61.107 \end{aligned}$	60.350 47.729	$\begin{aligned} & 80.970 \\ & 60.417 \end{aligned}$	51.707 30.179	61.020 43.095
$\begin{gathered} \text { SAnPLI CAL I } \\ 0.000 \\ 16.109 \\ 16.440 \end{gathered}$	116 14.000 21.990	$\begin{array}{r} \text { IWICKwESS } \\ 0.000 \\ 17.490 \\ 21.397 \end{array}$	$\begin{aligned} & 41 \mathrm{ce} \\ & 0.000 \\ & 16.796 \\ & 21.865 \end{aligned}$	$\begin{array}{r} 0.000 \\ 13.633 \\ 16.456 \end{array}$	7.662 19.696 11.44	15.562 00.197 23.207	24.322 20.31 8.002	$\begin{aligned} & 32.012 \\ & 31: 761 \\ & 50.000 \end{aligned}$	29.109	13.514	18.542	13.388	16.891
$\begin{gathered} \text { Sample caz } 3 \\ 0.000 \\ 2.463 \\ 1.101 \end{gathered}$	$\begin{aligned} & \text { alm t } \\ & 0.000 \\ & 2.097 \\ & 1.132 \end{aligned}$		$\begin{gathered} 05.5(n i \\ 056.7751 \\ 2.431 \\ 0.654 \end{gathered}$	$\begin{array}{r} \mathrm{CH} \\ 327.989 \\ 2.080 \\ 0.644 \end{array}$	460.815 2.805 0.203	112.975 2.850 0.393	119.905 2.836 0.093	15.205 3.175 4.100	3.112	2.984	4.612 3.620	1.622	2.273
$\begin{gathered} \text { Sanple caz 3 } \\ 0.000 \\ 40.392 \\ 10.710 \end{gathered}$	$\begin{gathered} n 00 \\ 0.000 \\ 14.802 \\ 38.812 \end{gathered}$		$\begin{gathered} 29.88^{n} \\ 143.297 \\ 100.178 \\ 14.748 \end{gathered}$	$\begin{array}{r} 1 \mathrm{CH}^{192.622} \\ 81.860 \\ 13.216 \end{array}$	$\begin{array}{r} 333.572 \\ 110.241 \\ 3.784 \end{array}$	143.112 1158 2.158	$\begin{array}{r} 308.662 \\ 115.808 \\ 1.738 \end{array}$	$\begin{array}{r} 125.812 \\ 121.921 \\ 29.440 \end{array}$	49.532 148.291	119.342	65.302 132.298	48.292 63.959	60.152 07.722
$\begin{gathered} \text { Sanple caz } \\ 0.000 \\ 7.515 \\ 0.45 \$ \end{gathered}$	$\begin{aligned} & \text { ath } \\ & 0.000 \\ & 5.341 \\ & 0.464 \end{aligned}$	$\begin{array}{r} \text { HIEKNESS } \\ 0.000 \\ 1.908 \\ 0.128 \end{array}$	$\begin{array}{r} 1 \mathrm{c} \\ 214.342 \\ 1.398 \\ 0.330 \end{array}$	$\begin{array}{r} 141 \\ 328.892 \\ 3.071 \\ 0.443 \end{array}$	630.292 3.974 0.181	177.722 3.555 0.349	232.092 3.199 0.130	66.317 3.374 4.190	19.907 3.503	26.080 3.106	19.640 3.180	10.292 1.231	10.096 1.252
sample caz 6 0.300 16.264	$\begin{gathered} 107 \\ 0.009 \\ 76.868 \\ 14.067 \end{gathered}$		$\begin{aligned} & 30 c e \\ & 115.870 \\ & 74: 176 \\ & 6.218 \end{aligned}$	$\begin{array}{r} 138.509 \\ 69.93 \\ 6.319 \end{array}$	188.400 71.141 1.953	141.060 6.45 4.035	332.210 61.55 1.006	173.100 60.390 63.054	86.510	110.640 64.269	139.030	73:380	37.136
$\begin{gathered} \text { SAMILE CAZ } 9 \\ 0.000 \\ 2.812 \\ 0.173 \end{gathered}$	$\begin{aligned} & \text { a.14 } \\ & 0.000 \\ & 2.094 \\ & 0.062 \end{aligned}$	$\begin{array}{r} \text { THICKwIss } \\ \text { jÉ2.483 } \\ 1.13 ? \\ 0.570 \end{array}$	$\begin{gathered} 1 \frac{1}{c e} \\ 617.663 \\ 1.358 \\ 0.574 \end{gathered}$	$\begin{array}{r} 141 \\ 421.033 \\ 0.076 \\ 0.772 \end{array}$	530.723 0.976 0.331	$\begin{array}{r} 57.653 \\ 0.804 \\ 0.719 \end{array}$	$\begin{gathered} 72.953 \\ 0.686 \\ 0.277 \end{gathered}$	$\begin{aligned} & 27.679 \\ & 0.733 \\ & 5.148 \end{aligned}$	6.871 0.815	6.961 0.452	8.066 1.176	3.879 0.637	4.307
$\begin{gathered} \text { SAMPLE LAZ } 3 \\ 0.000 \\ 16.0 \% 9 \\ 13.52 \end{gathered}$	$\begin{array}{r} 307 \\ 9.000^{1} \\ 14.438 \\ 9.120 \end{array}$	$\begin{array}{r} \text { Th ICKNLSS } \\ 0.000 \\ 53.309 \\ 5.421 \end{array}$	31 177.198 34 3.851 3.851	$\begin{array}{r} 101.138 \\ 32.037 \\ 3.857 \end{array}$	272.018 40.231 1.201	95.346 40.662 2.751	168.160 37.425 0.823	$\begin{array}{r} 102.028 \\ 41.329 \\ 26.313 \end{array}$	\$9.886	63.208 49.930	80.278 99.693	48.738 20.814	53.808
$\begin{gathered} \text { SanPle cazlo } \\ 0.090 \\ 2.019 \\ 39.0 \% \end{gathered}$	$\begin{array}{r} \text { apm } \\ 0.000 \\ 2.036 \\ =1.059 \end{array}$	THICKmess 446.794 39.616	$\begin{gathered} 1, \mathrm{ce}^{2} \\ 694,204 \\ 3.216 \\ 26.398 \end{gathered}$	$\begin{array}{r} 14 \mathrm{R} \\ 170.334 \\ 1 . .693 \\ 20.967 \end{array}$	433.504 2.146 9.961	53.624 1.975 15.188	56.654 1.93 3.589	$\begin{array}{r} 17.608 \\ 2.327 \\ 34.510 \end{array}$	3.586 2.987	5.581 4.457	13.8026	${ }_{12.618}$	4.208
$\begin{gathered} \text { SAMPLE CA } 210 \\ 0.000 \\ 28.477 \\ 239.071 \end{gathered}$		$\begin{array}{r} \text { THIICNESS } \\ 9.000 \\ 17.797 \\ 190.590 \end{array}$	$\begin{gathered} 14.8 \\ 143.119 \\ 14.373 \\ 97.147 \end{gathered}$	$\begin{array}{r} 108.119 \\ 9.707 \\ 94.155 \end{array}$	46.909 10.985 30.333	35.939 11.577 37.885	73.069 12.993 10.771	$\begin{aligned} & 35.199 \\ & 18.996 \\ & 90.365 \end{aligned}$	${ }_{31.376}$	25.947 59.742	1:89.966	139.6414	+20.310
$\begin{gathered} \text { sambli caz10 } \\ 9.000 \\ 11.31 \\ 31.182 \end{gathered}$		$\begin{array}{r} \text { THILKMESS } \\ 279.039 \\ 19.383 \\ 72.682 \end{array}$		$\begin{aligned} & 42.78 .9 \\ & 14.616 \\ & 30.411 \end{aligned}$	113.019 19.576 12.292	34.019 21.09 21.104	85.169 20.69 6.407	$\begin{array}{r} 45.139 \\ 24.782 \\ 238.330 \end{array}$	15.844 34.227	26.517	32.667 54.500	315.140	21.160
$\begin{gathered} \text { sanple razl } \\ 0.010 \\ 1.452 \\ 1.731 \end{gathered}$	$\begin{array}{r} 1.418{ }^{\text {A18 }} \\ 1.712 \\ 1.52 \% \end{array}$	$\begin{array}{r} \text { THSVMESS } \\ 112 \mathrm{E} .110 \\ 1.742 \\ 1.185 \end{array}$	$\begin{array}{r} 1.81 \\ 06.978 \\ 0.993 \\ 0.661 \end{array}$	$\begin{array}{r} 706.672 \\ 0.91,9 \\ 0.033 \end{array}$	379.302 0.816 0.248	50.482 0.698 0.491	$\begin{array}{r} 122.152 \\ 0.659 \\ 0.1 .7 \end{array}$	$\begin{array}{r} 23.692 \\ 0.644 \\ 4.491 \end{array}$	6.662 0.671	8.802	6.202 1.392	3:923	2.672
$\begin{gathered} \text { sanple razs } \\ 0.090 \\ 0,9.462 \\ i, 2.417 \end{gathered}$	$\begin{aligned} & 1.10 \\ & 0.500 \\ & 61.072 \\ & 14.441 \end{aligned}$	$\begin{array}{r} \text { Twierwess } \\ 0.600 \\ 69.1,32 \\ 31.787 \end{array}$	$\begin{aligned} & 19 \mathrm{C} \\ & 0.000 \\ & =1.118 \\ & 30.196 \end{aligned}$	$\begin{array}{r} 102.42 \\ 40.107 \\ 20.232 \end{array}$	235.797 49.243 7.320	100.522 12.632 10.437	239.862 35.627 3.885	145.762 34.393 97.076	58.74 44.005	80.397 49.295	105.2032	64.572	102.272
	$\begin{gathered} 1001 \\ 0.000 \\ 84.041 \\ 89.34 \end{gathered}$	$\begin{array}{r} \text { twierness } \\ 0.000 \\ 30.271 \\ 34.420 \end{array}$		$\begin{aligned} & 47.821 \\ & 31.139 \\ & 28.622 \end{aligned}$	$\begin{array}{r} 296.171 \\ 39.451 \\ .936 \end{array}$	$139.07!$ 35.819 16.032	331.681 30.941 4.292	$\begin{aligned} & 168.201 \\ & 334.989 \\ & 134.8 \% \end{aligned}$	60.841 45.232	105.631	127.841 91.665	62.001 71.696	194.651
$\begin{gathered} \text { samplt CA219 } \\ 0.090 \\ 6.975 \\ 1.186 \end{gathered}$	$\begin{aligned} & \text { AbN } \\ & 0.009 \\ & 9.762 \\ & 1.116 \end{aligned}$	$\begin{array}{r} \text { INICKMESS } \\ 177.385 \\ 6.393 \\ 1.309 \end{array}$	373.665 4.469 1.1%	$\begin{array}{r} 1486.795 \\ 3.635 \\ 3.625 \\ 1.26 J \end{array}$	$\begin{array}{r} \text { 87\%. } 389 \\ 3.996 \\ 0.787 \end{array}$	$\begin{array}{r} 2: .465 \\ 3.106 \\ 1.001 \end{array}$	$\begin{array}{r} 46.245 \\ 2.752 \\ 0.017 \end{array}$	$\begin{array}{r} 88.075 \\ 1.850 \\ 8.517 \end{array}$	25.001 2.347	25.596 2.456	22.961 3.020	9.646 1.470	9.539 2.236
$\begin{aligned} & \text { Sanple cazls } \\ & 0.000 \\ & 71.04 \% \\ & 10.420 \end{aligned}$	$\begin{aligned} & 5.16 \\ & 0.000 \\ & 71.46 \% \\ & 18.24 \% \end{aligned}$	$\begin{gathered} \text { TMICrwzss } \\ 120.365 \\ 79.765 \\ 10.826 \end{gathered}$		$\begin{array}{r} 312.695 \\ 31.240 \\ 9.013 \end{array}$	$\begin{array}{r} 329.075 \\ 63.412 \\ 3.292 \end{array}$	$\begin{array}{r} 157.695 \\ 59.960 \\ 4.110 \end{array}$	$\begin{array}{r} 922.005 \\ 55.010 \\ 1.336 \end{array}$	$\begin{array}{r} 167.035 \\ 55.150 \\ 57.124 \end{array}$	50.075 62.920	14.425 34.942	109.035 64.8	67.925	66.495
$\begin{gathered} \text { sample CA:18 } \\ 0.009 \\ 8.239 \\ 4.214 \end{gathered}$	$\begin{aligned} & 9.100 \\ & 0.000 \\ & 4.979 \\ & 4.307 \end{aligned}$	$\begin{array}{r} \text { InICrwess } \\ 0.000 \\ 7.077 \\ 3.129 \end{array}$	$\begin{aligned} & 1.80 \\ & 17.1 \% \\ & 5.827 \\ & 2.297 \end{aligned}$	$\begin{array}{r} 4.759 \\ 4.218 \\ 2.304 \end{array}$	$\begin{array}{r} 942.299 \\ 5.564 \\ 0.757 \end{array}$	375.219 5.644 1.600°	$\begin{array}{r} 574.379 \\ 5.511 \\ 0.857 \end{array}$	$\begin{array}{r} 10 . .919 \\ 6.710 \\ 10.464 \end{array}$	52.657	64.889 4.603	$\begin{gathered} 45.279 \\ 13.441 \end{gathered}$	15.739 6.389	14.439 8.620
$\begin{gathered} \text { Sarte call } \\ 0.009 \\ =0.701 \\ 17.0 \% 9 \end{gathered}$		$\begin{array}{r} \text { therwes } \\ 0.060 \\ 11.321 \\ 10.317 \end{array}$	$\begin{gathered} 10 c 8 \\ 8.551 \\ 61.81 \\ 6.059 \end{gathered}$	$\begin{gathered} 97.491 \\ 90.719 \\ 5.723 \end{gathered}$	344.451 73.144 1.15	$\begin{array}{r} 14.351 \\ 01.605 \\ 3.150 \end{array}$	$\begin{array}{r} 394.051 \\ 89.192 \\ 1.377 \end{array}$	$\begin{array}{r} 148.321 \\ 102.900 \\ 32.659 \end{array}$	$\begin{array}{r} 54.121 \\ 131.826 \end{array}$	$\begin{array}{r} 94.721 \\ 119.935 \end{array}$	$\begin{aligned} & 100.021 \\ & 130.707 \end{aligned}$	$\begin{aligned} & 86.911 \\ & 51.535 \end{aligned}$	$\begin{aligned} & 72.341 \\ & 50.752 \end{aligned}$
sample caz:2 $18: 989$	$\begin{array}{r} 2 \\ j: 83 ? \\ 0.999 \end{array}$	$\begin{gathered} \text { Thicyness } \\ 1118: 5 \ell 8 \\ 0.014 \end{gathered}$	34	$\begin{array}{r} 181 \\ 3: 834 \\ 0.83 \% \end{array}$	162.191 1.213 0.300	14.14 .148 0.691	$\begin{array}{r} 239.889 \\ 0.923 \end{array}$	$\begin{array}{r} 123_{2}: i 11 \\ 5.029 \end{array}$	36.5037	57.134	43. Pl 9	2\%:308	29.888
$\begin{gathered} \text { sAnPl! CA122 } \\ 0.790 \\ 71.200 \\ 16.241 \end{gathered}$	$\begin{array}{r} 146 \\ 0.000 \\ 0.970 \\ 1.923 \end{array}$		$\begin{array}{r} 76.8 \\ 33.81 \\ 35.013 \\ 9.038 \end{array}$	$\begin{array}{r} 4 a! \\ 1 \leq 3.630 \\ 14.127 \\ 10.149 \end{array}$	$\begin{array}{r} 208.740 \\ \hline 9.75 \\ 3.725 \end{array}$	142.191 90.475 6.513	$\begin{array}{r} 320.760 \\ 45.217 \\ 2.021 \end{array}$	$\begin{array}{r} 156.779 \\ 14.694 \\ 66.205 \end{array}$	60.668 54.026	109.073 46.061	123.078	76.249	94.446
$\begin{gathered} \text { santit ca:2 } \\ 0.000 \\ 20.65 \\ 5.911 \end{gathered}$	$\begin{array}{r} 1207 \\ 0.00 \\ 26.64 \\ 5.000 \end{array}$	$\begin{array}{r} \text { TwICWESs } \\ 0.000 \\ 0.091 \\ 0.297 \end{array}$	$\begin{array}{r} 9 \text { ee } \\ 31.087 \\ 3.326 \end{array}$	$\begin{array}{r} \text { UA1 } \\ 106.367 \\ 16.987 \\ 3.614 \end{array}$	144.077 20.412 1.444	74.747 19.773 2.872	163.937 17.104 0.781	$\begin{aligned} & 61.257 \\ & 17.035 \\ & 32.011 \end{aligned}$	24.157 20.07	40.857 10.150	19.737 21.1010	27.197 10.293	35.077
$\begin{gathered} \text { cantis caz } \\ 0.000 \\ 8: 34 \end{gathered}$			$\begin{array}{r} 188 \mathrm{co} \\ \text { 8:idy } \end{array}$	$\begin{array}{r} 164 \\ 177.135 \\ 8.383 \end{array}$	$\begin{array}{r} 47.26 \% \\ 8.326 \end{array}$	$\begin{gathered} 69.225 \\ 8: .634 \end{gathered}$	$\begin{array}{r} 144.925 \\ 8.191 \end{array}$	$\begin{aligned} & =9.27 \\ & 2.87 \\ & 4.364 \end{aligned}$	17.626 3.151	30.801 2.877	30.459 3.006	15.919 1.390	14.893
$\begin{gathered} \text { sanMt cazz } \\ 0.090 \\ 11.74 \\ 0.064 \end{gathered}$			${ }_{405}^{21} 1124$ 55.36% 5.080	290.624 47.610	$\begin{array}{r} 257 .: 41 \\ 54: 574 \\ 2.172 \end{array}$	144.154 86.767 4.033	276.974 90.54 1.212	$\begin{array}{r} 119.004 \\ 45.7=1 \\ 9.918 \end{array}$	\$2.014	$\begin{array}{r} 7.564 \\ 39.317 \end{array}$	34.094	\$3.944	68.134

APPENDIX II

List of number frequencies determined from photographs and armor sediment sieved
in the field. Scour depths are also included.

PHUTO NO.	2.0	Scour	LEPTH	0.0	CH.	-7.00	-6.49	5.98	-5.46	05
PHI SIZE	-9.49	-8.9	-8.49	-8.00	-7. 0	-7.00	${ }_{4}$	13	20	析
EREO.OUT	0	0	0	0	0	2	4	13	20	25
FREU. AFTER	0	0	0	0	0	7	16	21	23	9
FKEO. IN	0	0	0	0	0	$\%$	16	21	23	9

PHOTO NO.	3	scuisk	UCPTH	27.1						
PHI SIZE	-4.49	-8.94	-8.49					19		i 05
EREO. REFORE	8	0	0	0	0	0	4	19	4.3	-
EREO. fiETER	0	0	0	0	0	0	9	22	43	23
EKET. IN	0	0	0	0	-	0	9	22	43	-2

PHOTO NO. PHI SIZE	${ }^{4}-9.49$	$\begin{aligned} & \text { SCOUR } \\ & -8.9) \end{aligned}$	$\begin{aligned} & \text { DEFTH } \\ & -0.49 \end{aligned}$	$\begin{gathered} 21.5 \\ -8.00 \end{gathered}$	${ }^{\text {C.M. }}$	-7.00	-6.49	- 98	-5. 46	505
EREO. HEFORE	-9.4	0	0	0	0	0	0	10	37	
fREO.OUT	0	0	0	0		0	0	10	$3 ?$	\%
FREO. AK'tek	6	,	0	0	1	1	8	3	36	4.3
EKEO.IN	0	0	0	0	1	1	3	22	36	4.3

photo no. PHI SIZE	$5_{-9.49}$	$\begin{aligned} & \text { st:0uin } \\ & -8.49 \end{aligned}$	[18.9.4	-8.00	CM.	-7.00	- 3.47	- 90	-5.413	$\therefore 0$
FFEO.ULEUKL	0	-	0	0			21	13	$2 y$	$1:$
FREO.OUT	0	0	0	0	0	2'	17	2	$\because 9$	12
EREO.AFTE:	0	0	0	0	1	2	13	? 9	12	8
l-WEO. IN	6	c	0	0	0	0	'	24	11	8

EREO. HEFURE	0	0	0	0	2	7	13	21	29	19
EREO.OUT	0	0	0	0	0	2	11	20	29	19
EKEO.AETEK	0	0	0	0	3	0	12	26	24	11
IKEU.1N	0	0	0	0	1	1	10	24	22	15

PHOTO NO. FHI SIZE	${ }^{11}-9.49$	$\begin{aligned} & \text { scouk } \\ & -0.9 \text { ר. } \end{aligned}$	$\begin{aligned} & \text { LEETH } \\ & -B .47 \end{aligned}$	$\begin{aligned} & 14.1 \\ & -11.00 \end{aligned}$	${ }_{0}^{C H}-7.50$	-7.00	-6.19	-5.90	-5.46	-5.05
EO.nEEOR	0	0	0	1	3	8	13	19	16	
FKEO.OUT	0	0	0	0	3	6	18	10	26	12
EREO.AETTR	0	0	0		1	8	ก	20	29	12
FKEO.IN	0	0	0	0						

Photo NO. 1	10.9	scuuk	U.PTH	$10 \cdot 40$	${ }_{\text {CM }} \mathrm{F} .50$	-7.00	-6.19	- 98	. 46	-5.05
PHl SI2E		-0.9				-	13	12	15	19
EREO. MEEOKE	-	0	,	O	2	1	9	11	15	19
EREO.AETER		0		3	5	5	15	11	26	6
EREO.	0	0	0	1	2	3	4			

YHOTO NO. 11 SCOUR UEFTH 7.7 CM.
PHI SI2E $-9.49-8.99-8.49-8.00-7.50-7.00-6.49-5.98-5.46-5.05138$

EREQ. BEFORE	0	0	0	0	3	9	9	13	2
FREQ. OUI	0	0	0	0	2	7	9	13	2
EREQ.AFIER	0	0	0	0	2	10	15	14	17
EKEQ.IN	0	0	0	0	0	8	14	14	17

$\begin{aligned} & \text { PHOTO NO. } 2 \\ & \text { PHISIZE } \end{aligned}$	23-9.49	SCOUR -8.99	DEFTII	5.9 -8.00	-7. ${ }^{\text {M }}$	-7.00	-6.49	-5.98	-5. 46
EREQ. HEFORE	0	0	0	1	1	8	8	14	13
EREQ.OUT	0	0	0	1	1	5	8	14	13
EREO. AETER	0	0	0	0	2	10	7	12	16
[kEO.IN	0	0	0	0	2	7	7	12	16

FHOTO NO.		SCOUK	DEITH	2.5	Сп.					
SHI SI2E	-9.49	-0.99	-8.49	-8.00	-7.50	-7.00	-6.49	-5.98	-5.46	-5.05
EKEQ. GEFORE	0	1	1	0	2	2	'	6	4	0
FREO.OUT	0	0	0	0	0	0	2	4	4	0
ERE゙Q.AETER	0	0	0	0	3	4	5	5	2	3
FREO. IN	0	0	0	0	1	2	2	3	2	3

PHOTO NO.		SCOUK	DEPTH	9.8	M.					
FHI SIZE	-9.49	-8.99	-8.49	-8.00	-7.50	-7.00	-6.49	-5.98	-5. 46	-5.05
EREQ.BEFORE	0	1	0	1	2	3	3	6	8	2
FKEQ.OUT	0	0	0	0	2	2	3	6	B	2
EREO.AETER	0	2	0	1	1	1	3	1	5	0
EREO. IN	0	1	0	0	1	0	3	1	5	0

FHOTO NO.		SCOUK	DEFTH	0.0	CM.					
PHI SI2E	-9.47	-8.79	-8.49	-8.00	- -\%.50	$\cdots 7.00$	-6.49	-5.98	-5.46	-5.05
EREQ. HEEORE	0	1	2	1	3	1	6	${ }^{5}$	11	0
EKER.OUT	0	0	1	0	2	1	6	5	11	0
EKEQ.AEIER	0	1	1	1	3	2	8	9	9	0
EKEQ.1N	0	0	0	0	2	2	0	9	9	0

PHUTO NO. 29 SCOUK LEEYTH 16.3 CM.
YHI SIZE $-7.49-8.99-8.49-8.00-7.50-7.00-6.49-5.98-5.46-5.05$

EREO. HEKORE	0	0	0	0	4	6	6	11	24
RREQ.OUT	0	0	0	0	2	5	4	11	24
EKEQ.AETEK	0	0	0	0	3	5	9	19	9
FREQ.IN	0	0	0	0	1	4	7	19	9
7									

PHOTO NO. 31 SCOUR DEPTH 12.5 CM .
$\begin{array}{lccccccccccc}\text { PHI SIZE } & -9.49 & -8.99 & -8.49 & -8.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { FREO. QEFORE } & 0 & 0 & 0 & 0 & 5 & 3 & 5 & 4 & 19 & 20 \\ \text { FREQ.OUI } & 0 & 0 & 0 & 0 & 2 & 3 & 3 & 4 & 19 & 20 \\ \text { EREO.AFIER } & 0 & 0 & 0 & 0 & 4 & 2 & 7 & 11 & 6 & 14 \\ \text { FREO.IN } & 0 & 0 & 0 & 0 & 1 & 2 & 5 & 11 & 6 & 14\end{array}$

FHOTO ND. 33 SCOUR EEEPTH 0.0 CH.
$\begin{array}{lccccccccccc} \\ \text { PHI SIRE } & -9.49 & -8.99 & -8.49 & -8.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { FREQ. REFORE } & 0 & 0 & 1 & 0 & 2 & 5 & 5 & 10 & 13 & 26 \\ \text { EREQ.OUT } & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 5 & 11 & 26 \\ \text { EKEQ. AFIER } & 0 & 0 & 1 & 0 & 2 & 4 & 9 & 11 & 10 & 6 \\ \text { EREQ.IN } & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 6 & 8 & 6\end{array}$

PHOTO NO. 34 SCOUR IEEPTH 0.0 CM.
$\begin{array}{lcccccccccc}\text { PHI SIZE } & -9.49 & -8.99 & -8.49 & -9.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { EREQ. BEFORE } & 0 & 0 & 0 & 0 & 1 & 8 & 13 & 16 & 9 & 17 \\ \text { EREO.OUI } & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 9 & 7 & 17 \\ \text { EREQ.AFTER } & 0 & 0 & 0 & 0 & 1 & 10 & 17 & 15 & 13 & 13 \\ \text { FREO.IN } & 0 & 0 & 0 & 0 & 0 & 2 & 7 & 8 & 11 & 13\end{array}$

PHOTO NO. 35 SCOUR IIEPIH 8.0 CM.
$\begin{array}{lccccccccccc}\text { PHI SIZE } & -9.49 & -8.99 & -8.49 & -8.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { EREO. REFORE } & 0 & 0 & 0 & 1 & 3 & 4 & 8 & 12 & 33 & 32 \\ \text { FREQ.OUI } & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 7 & 31 & 32 \\ \text { FREO.AETER } & 0 & 0 & 0 & 1 & 3 & 4 & 13 & 23 & 20 & 10 \\ \text { FREQ.IN } & 0 & 0 & 0 & 0 & 1 & 1 & 6 & 18 & 18 & 10\end{array}$

PHOTO NO. 37 SCOUR DEHTH 10.7 CM.
$\begin{array}{lcccccccccc}\text { PHI SIZE } & -9.49 & -8.99 & -8.49 & -8.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { EREO. BEFORE } & 0 & 0 & 0 & 0 & 5 & 3 & 7 & 23 & 35 & 10 \\ \text { EREO.OUI } & 0 & 0 & 0 & 0 & 2 & 3 & 7 & 23 & 35 & 10 \\ \text { EREO.AEIER } & 0 & 0 & 1 & 0 & 6 & 4 & 11 & 18 & 14 & 1 \\ \text { EREO.IN } & 0 & 0 & 1 & 0 & 3 & 4 & 11 & 18 & 14 & 1\end{array}$

PHOTO NO. 40 SCOUR DEFTH 0.0 CM
PHI SIZE $-9.49-8.99-8.49-8.00-7.50-7.00-6.49-5.98-5.46-5.05$

EREO. BEFORE	0	0	0	1	0	6	11	6	26
EREO.OUT	0	0	0	0	0	5	3	3	24
EREO.AETER	0	0	0	1	0	4	14	16	23
IREO.IN									

EREQ. IN

| 0 | 0 | 0 | 3 | 6 | 13 | 21 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PHOTO ND.		SCOUR	DEPIH	2	CH.					
PHI SIZE	-9.49	-8.99	-8.49	-8.00	-7.50	--7.00	-6.49	-5.98	-5.46	. 05
EREO. FEEORE	0	0	0	2	6	2	12	10	23	
EREQ.OUT	0	0	0	0	2	1	10	10	23	7
EREQ.AEIER	0	0	0	2	6	3	12	19	11	
EREQ.IN	0	0	0	0	2	2	10	19	11	

PHOTO NO. PHI SIZE	42-9.49	SCOUR -8.99	IICPTH -8.44	0.0 -8.00	CM.	-7.00	-6.49	-5.98	-5.46	-5.05
EREQ. BEEOKE	1	0	0	2	0	3	6	8	28	5
EREQ.OUT	0	0	0	0	0	3	6	8	28	5
EREQ.AETER	1	0	1	1	2	5	12	7	12	0
EREO.IN	0	0	0	0	2	5	12	7	12	0

FHOIO NO. PHI SIZE	$43-9.49$	$\begin{aligned} & \text { SCOUR } \\ & -8.99 \end{aligned}$	$\begin{aligned} & \text { DEPTH } \\ & -8.49 \end{aligned}$	$\begin{array}{r} 3.9 \\ -8.00 \end{array}$	CM. -7.50	-7.00	-6.49	-5.98	-5.46	-5.05
EREO. HEFORE	0	0	0	1	1	4	9	12	22	9
EREQ.OUT	0	0	0	0	0	0	0	0	18	2
EREQ.AETER	0	0	0	1	1	4	10	19	10	5
EREQ. IN	0	0	0	0	0	0	0	4	6	3

PHOTO NO. PHI SIZE	-9.49	$\begin{aligned} & \text { SCOUR } \\ & -8.99 \end{aligned}$	$\begin{aligned} & \text { LIEPTH } \\ & -8.49 \end{aligned}$	$\begin{gathered} 9.5 \\ -8.00 \end{gathered}$	-7.50	-7.00	-6.49	-5.98	-5.46	-5.05
EREQ. BEEORE	0	0	1	5	1	2	6	12	6	4
EREO.OUT	0	0	0	0	1	1	4	11	6	4
EREQ.AFIER	0	0	1	5	1	3	13	10	4	1
FREO. IN	0	0	0	0	1		11	9		

PHOTO NO. 46 SCOUR HEFTH 0.0 ch.

PHI SIZE	-9.49	-8.99	-8.49	-8.00	-7.50	-7.00	-6.49	-5.98	-5.46
FREQ. EEFORE	0	0	0	2	3	4	6	7	
EREO.OUT	0	0	0	0	1	2	0	6	12
FRERAFER	0	0	0	2	3	6	12	8	15
EREQ. IN	0	0	0	0	1	4	6	7	15

PHOTO NO. 48 SCOUR DEPTH 0.0 CK.
$\begin{array}{lcccccccccc} & \text { PHI SIZE } & -9.49 & -8.99 & -8.49 & -8.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 \\ \text { FRE } & -5.05 \\ \text { FRE. REFORE } & 0 & 0 & 0 & 1 & 5 & 5 & 6 & 9 & 2 & 9 \\ \text { FREOUU } & 0 & 0 & 0 & 0 & 1 & 2 & 4 & 7 & 2 & 9 \\ \text { FREO.AFIER } & 0 & 0 & 0 & 1 & 6 & 3 & 10 & 21 & 19 & 4 \\ \text { FREO.IN } & 0 & 0 & 0 & 0 & 2 & 0 & 8 & 19 & 19 & 4\end{array}$

PHOTO NO. 49 SCOUR IEFTH O.O CM.
$\begin{array}{lrrrrrrrrrr}\text { PHI SIZE } & -9.49 & -8.99 & -0.49 & -8.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { EREO.RERORE } & 0 & 0 & 1 & 2 & 3 & 4 & 7 & 7 & 7 & 11 \\ \text { FRE.OUI } & 0 & 0 & 0 & 0 & 0 & 4 & 6 & 6 & 6 & 11 \\ \text { FREOAETER } & 0 & 0 & 1 & 2 & 3 & 5 & 7 & 9 & 5 & 0 \\ \text { EREQ.IN } & 0 & 0 & 0 & 0 & 0 & 5 & 6 & 8 & 4 & 0\end{array}$

PHOTO NO. 50 SCUUR IEEPTH 0.0 CM.

$\begin{array}{lllllllllll}\text { EREO. EEFCRE } & 0 & 1 & 1 & 1 & 1 & 3 & 9 & 3 & 11 & 22 \\ \text { EREO.OUT } & 0 & 0 & 0 & 0 & 0 & 1 & 6 & 2 & 10 & 2 \tilde{n} \\ \text { EREN.AFTEK } & 0 & 1 & 1 & 1 & 2 & 2 & 8 & 9 & 6 & 0 \\ \text { EELU. } & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 6 & 0 & 5 \\ 0\end{array}$

PHOTO NO. Sl SCOUK [IEFTH 9.0 CM.

PHOTO NO. S3 SCOUR UEFTH O.O CH.
PHI SIZE $-9.49-8.99-8.49-8.00-7.50-7.00-6.49-5.98-5.46-5.05$

FREQ. GEFORE	0	0	0	1	8	7	7	9	11	1
EREQ.OUT	0	0	0	0	1	2	5	7	11	1
FREO.AFTER	0	0	0	1	8	5	9	7	3	0
FREO. IN	0	0	0	0	1	0	7	6	3	0

PHOTO NO. 54 SCOUR DEFTH 10.9 CM .
PHI SIRE $-9.49-8.99-8.49-8.00-7.50-7.00-6.49-5.90-5.46-5.05$

FREQ. HEFORE	0	0	1	1	3	6	4	4	10
EREO.OUI	0	0	1	1	1	5	4	1	10
EREO.AFTER	0	0	1	1	3	3	12	5	5
FKEO.IN	0	0	0	1	1	2	12	5	5

PHOTO NO. 55 SCOUR IEFTH 4.8 CM.
PHI SIZE $-9.49-8.99-6.49-8.00-7.50-7.00-6.49-5.98-5.46-5.05$
$\begin{array}{llllllllll}\text { EREO. REFORE } & 0 & 0 & 0 & 3 & 2 & 1 & 4 & 1 & 0\end{array} 0$
FREQ OUR OFIER
EREO. IN

FHOTO NO. 57 SCOUR DEFTH 9.9 CM.

PHI SIZE	-9.49	-8.99	-8.49	-8.00	-7.50	-7.00	-6.49	-5.98	-5.46	-5.05
EREQ. REFDRE	0	0	0	0	2	5	7	18	24	40
FREQ. OUT	0	0	0	0	0	4	6	17	34	40
EREO.AEIER	0	0	0	0	2	4	21	20	25	8
FREO.IN	0	0	0	0	0	3	20	19	25	8

FHOTO NO.		SCOUK	-	.	CM.					
PHI SI2E	-9.49	-8.97	-8.49	-8.00	-\%.50	-7.00	-6.49	- 5.98	- 4.46	-5.05
EKEO. BEFOKE	0	0	1	()	4	9	9	13	10	4
FkEO.DUT	0	0	0	0	1	2	7	10	9	1
EREQ.AFIEK	0	0	1	0	5	9	10	11	3	0
EKEO.IN	0		0	0			8	7		

FHOTO NO. 61 SCOUR IEPTH 16. 5 CM.
$\begin{array}{lccccccccccc}\text { FHI SIZE } & -9.49 & -9.79 & -8.49 & -8.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { FRER. HEFORE } & 0 & 0 & 0 & 1 & 5 & 2 & 3 & 5 & 10 & 0 \\ \text { EREO. DUT } & 0 & 0 & 0 & 0 & 2 & 1 & 2 & 4 & 10 & 0 \\ \text { ERER.AFTEK } & 0 & 0 & 0 & 1 & 7 & 4 & 7 & 8 & 5 & 0 \\ \text { FREO.IN } & 0 & 0 & 0 & 0 & 4 & 3 & 6 & 1 & 5 & 0\end{array}$

PHOTO NO. PHI SIZE	${ }^{64}-9.49$	$\begin{aligned} & \text { SCOUK } \\ & -8.99 \end{aligned}$	$\begin{aligned} & \text { UEFIH } \\ & -8.49 \end{aligned}$	$\begin{array}{r} 7.8 \\ -8.0 \end{array}$	M. -7.5	-7.00	-6. 49	-5. 98	.	
FREO. BEFORE	0	0	0	3	2	5	11	14	18	21
FREO. OUT	0	0	0	1	0	1	5	12	17	21
EREQ.AFTER	0	0	0	2	4	8	14	15	15	,
EREQ. IN	0	0	0	0			-		1	

PHOTD NO. 65 SCOUR IIEFTH 0.0 CM.

FHI SIZE	-9.19	-8.99	-8.49	-8.00	-7.50	-7.00	-6.49	-5.98	-5.46	-5.05
FREO. FEFORE	0	0	0	1	0	6	10	14	21	30
FREO.OUI	0	0	0	0	0	2	2	7	21	30
FREQ.AFIER	0	0	0	1	0	5	15	20	30	6
FREO.IN	0	0	0	0	0	1	7	13	30	6

PHOTO NO.	66	SCOUR	DEPTH	15.4						
PHI SI2E	-9.49	-8.99	-8.49	-8.00	-7.50	-7.00	-6.49	-5.98	-5.46	5.05
FREQ. BEFERE	0	0	0	0	0	4	9	13	31	0
EREO.OUT	0	0	0	0	0	1	6	12	31	0
EREG.aETER	0	0	0	0	0	7	11	26	30	7
FREQ. IN	0	0	0	-	0	4	8	25	30	7

PHOIO NO. 69 SCOUR DEPTH 0.0 CM.
$\begin{array}{lrrrrrrrrrr}\text { PHI SI2E } & -9.49 & -8.99 & -8.49 & -8.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { FREO. HEFORE } & 0 & 0 & 0 & 0 & 0 & 3 & 13 & 24 & 2 & 20 \\ \text { FREO. OUT } & 0 & 0 & 0 & 0 & 0 & 2 & 1 \\ \text { EREO.AETER } & 0 & 0 & 0 & 0 & 0 & 1 & 12 & 24 & 37 & 13 \\ \text { EREQ.IN } & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 7 & 3\end{array}$
PHOTO NO. 70 SCOUR UEFTH 1.0 CM.
$\begin{array}{lrrrrrrrrrr}\text { PHI SIEE } & -9.49 & -8.99 & -8.49 & -8.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { EREQ. FEFORE } & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 21 & 28 & 26 \\ \text { FREDOUI } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 3 & 5 \\ \text { EREDAFTER } & 0 & 0 & 0 & 0 & 0 & 0 & 6 & 20 & 27 & 25 \\ \text { EREO.IM } & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 2 & 4\end{array}$

Sixteen Mile Creek

PHOTO NO. 116		SCOUR	DEPTH	6.3	CH .					
PHI SI2E	-9.49	-8.99	-8.49	-8.00	-7.50	-7.00	-6.49	-5.98	-5.46	-5.05
EREQ. AEE ORE	0	0	0	0	2	,	5	7	21	42
EREO.OUT	0	0	0	0	0	3	0	5	17	42
EREQ.AFIER	0	0	0	0	2	3	10	16	30	40
EREQ.IN	0	0	0	0	0	0	4	14	26	40

PHOTO NO. 11		SCOUR	DEPTH	0.0	CM.					
PHI SI2E	-9.49	-8.99	-8.49	-8.00	-7.50	-7.00	-6.49	-5.98	-5.46	-5.05
EREO. AEEORE	0	0	0	0	1	6	4	6	24	18
FKEO.OUT	0	0	0	0	0	2	1	4	23	18
FREO.AETER	0	0	0	0	1	5	8	12	21	16
FREO.IN	0	0	0	0	0	1	5	10	20	16

FHOTO NO. 118 SCUUR DEPTH 2.9 CM.

| | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHI SIRE | -9.49 | -8.94 | -8.49 | -9.00 | -7.50 | -7.00 | -6.49 | -5.98 | -5.46 | -5.05 |
| FREO. HEFDRE | 0 | 2 | 0 | 2 | 2 | 1 | 10 | 14 | 12 | 15 |
| FREQ.OUT | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 12 |
| FKEQ.AETER | 0 | 2 | 0 | 2 | 2 | 2 | 10 | 13 | 20 | 10 |
| FREQ. IN | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 7 | 4 |

PHOTO NU.		Sc:!)	UEYTH	0.0						
FHI SI2E	-9.49	-0.9?	-8.49	- 3.00	-7.50	-7.0!	-6.49	-5.99	-5.46	. 0
EHEO. EEFURE	0	0	0	$?$	1	2	6	1%	12	24
EKEQ.OUT	0	0	0	0	0	0	3	15	12	24
EREO.AETEK	0	0	0	2	1	3	10	20	14	13
ERER. IN	0	0	0				7	18	14	

PHOTO NO. 122	SCOUR DEFTH	0.0 CM.				
PHI SIZE -9.49	-8.99-8.49	$-8.00-7.50$	-7.00-6.49	-5.98	-5.46	-5.05
FREQ. IEFORE 0	01	02	510	13	13	18
HREQ.OUT 0	$0 \quad 0$	0 0	00	5	7	16
EKEO.ATTEK 0	0 1	0 2	j 11	14	12	10
FREO.IN O	00	00	0 1	6	6	8

$\begin{aligned} & \text { PHOTO NO. } \\ & \text { PHI SIZE } \end{aligned}$	-9.49	$\begin{aligned} & \text { SCOIIK } \\ & -8.99 \end{aligned}$	$\begin{aligned} & \text { UEYTH } \\ & -8.49 \end{aligned}$	$\begin{array}{r} 0.0 \\ -9.00 \end{array}$	${ }^{C M}-\% .50$	-7.00	-6.49	-5.90	-5.46	-5.05
FREO. BEFOHE	0	0	0	0	0	0	6	8	. 4	26
EKEO.OUT	0	0	0	0	0	0	0	0	19	25
EGEO.AETEK	0	0	0	0	1	0	6	12	22	36
FHEQ.IN	0	0	0	0	0	0	0	4	17	35

PHOTO NO. 12		SCOUR	LIEFTH	11.						
PHI SIZE	-9.49	-8.99	-8.49	-8.00	-7.50	-\%.00	-6. 49	-5.98	. 46	-5.05
EREQ. AEFORE	0	0	0	0	2	7	12	11	26	13
FREO.OUT	0	0	0	0	0	5	10	10	26	13
EREQ.AETER	0	0	0	0	2	11	10	22		7
TKEO. IN	0	0	0	0	0	9	16	211		7

PHOTO NO. 131		scour	HEPTH	4.1	CM.					
PHI SIZE	-9.19	-8.99)	-3.49	-8.00	-\%.50	-7.00	-6. 4^{4}	-5.	-3. 16	-5.05
EREC. HEFORE	0	0	0	0	0	4	\%	20	28	25
FMEQ.OUT	0	0	0	0	0	1	1	4	16	11
EREO.AETER	0	0	0	0	0	4	8	24	33	24
FREQ. IN	0	0	0		0	1	2	8	21	10

PHOTO NO. 135		SCOUR	DEPTH	0.0	CM.					
PHI SIZE	-9.49	-8.99	-8.49	-0.00	-7.50	-7.00	-6.49	-5. 98	-5. 46	5.05
frico.out	0	0	0	0	0	3	0	6	13	17
FREO.AETER	0	0	0	0	2	6	11	16	32	19
FREQ. IN	0	0	0	0	0	2	's	11	30	16

Grand River

PHOTO NO. 16 SCOUR DEPTH 0.0 CM .
$\begin{array}{lrrrrrrrrrr}\text { PH SI2E } & -9.49 & -8.49 & -8.49 & -8.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { EREO. REFORE } & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 22 & 62 & 50 \\ \text { EREO. OUT } & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 2 & 6 \\ \text { EREO.AFTER } & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 22 & 62 & 50 \\ \text { EREO. IN } & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 2 & 7\end{array}$

PHOTO NO. 17 SCUUR LIEPTH G1.O CM.
PHI SIZE $-9.49-8.99-8.49-8.00-7.50-7.00-6.19-5.98-5.96-5.05$ $\begin{array}{lllllllllll}\text { EREO. REFORE } & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & 22 & 72 \\ \text { EREO.OUT } & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & 22 & 72 \\ \text { FREO.AFTER } & 0 & 0 & 0 & 0 & 0 & 1 & 5 & 15 & 39 & 38 \\ \text { EREO. } 1 \text { N } & 0 & 0 & 0 & 0 & 0 & 1 & 5 & 15 & 39 & 38\end{array}$

PHOTO NO. 10 SCOUK IEPTH S1.0 CM.
$\begin{array}{lcccccccccc}\text { PHI SI2E } & -9.49 & -8.94 & -0.49 & -8.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { EREO. HEFUKE } & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 20 & 26 & 86 \\ \text { EREO.OUT } & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 20 & 26 & 86 \\ \text { ERYO. METEK } & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 18 & 40 & 66 \\ \text { FREN.IN } & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 10 & 40 & 66\end{array}$

PHOTO NO.		SCOUK	LIE.TH	4.9	CM.					
PHI SI2E	-2.4)	-8.9	-3.49	$-\mathrm{H} .00$	-\%.50	-7.00	-6.49	-5.98	-5.46	-5.05
FREO. HEEOK:	0	0	0	0	0	0	7	30	45	75
EMEC.OUT	0	0	0	0	0	0	7	30	45	75
FRCO.ATIEK	0	0	0	0	0	1	4	8	6	4
EREO.IN	0	0	0	0	0	1	4	8	6	4

PHOTO NO. PHISI2E	${ }^{20}-9.49$	$\begin{gathered} \text { scuuk } \\ -9.99 \end{gathered}$	$\begin{aligned} & \text { lIEPTH } \\ & -8.47 \end{aligned}$	$\begin{aligned} & 13.1 \\ & -8.00 \end{aligned}$	$0_{0}^{C M} .7 .50$	-7.00	-6.41)	-5.90	-5. 46	J
EREO.BEFORE	0	0	-	0	0	0	8	14	37	110
FKEC.OUT	0	0	0	0	0	0	8	14	37	110
fREO.AETER	0	0	0	0	0	0	1	4	6	9
EREO. IN	0	0	0	0	0	0	1	4	6	9

PHOTO HO.	21.9 .49	Scouk -9.94	LIEPIH				-6.49			
EREO. OLEORE	0	0	-8.40	-80	-7.00	-7.00	-6.49 3	${ }_{18}^{-5}$	-5.46	${ }^{-5} .0$
EREO.OUT	0	0	0	0	0	0	2	14	19	82
FKEO.AFTER	0	0	0	0	0	0	6	18	43	49
EKEO. II	0	0	0	0	0	0	5	15	39	49

FREO. GEFORE	0	0	0	0	0	0	5	32	74	06
EREO.OUT	0	0	0	0	0	0	5	29	72	86
FREO. AFTER	0	0	0	0	0	0	1	14	50	52
EREO.IN	0	0	0	0	0	0	1	11	18	52

pulc!	- 0.1	-6.47	- .98	- - A 1 :	- -2.05	-4.	-4.0
E¢5!	\therefore	i		. 7	c. 4	¢	141

Pus S! \%i.		98	'.1'	. 0	- 5	4.0
Freq.	1	21	64	74	123	297

Genesee River

PHOIO NO. 72 PHI SIZE	$72-9.49$	$\begin{gathered} \text { SCOUR } \\ -8.99 \end{gathered}$	$\begin{aligned} & \text { DEPTH } \\ & -8.49 \end{aligned}$	$\begin{gathered} 0.0 \\ -8.00 \end{gathered}$	CH . -7.50	-7.00	-6.49	-5.98	-5.46	-5.05
EREO. BEFORE	-	0	-	-		0	11	17	32	46
EREO.OUT	0	0	0	8	0	0	$\begin{aligned} & 0 \\ & 15 \end{aligned}$	23	29	32
EREQ. IN	0	0	0	0	0	1	4	12	18	15

PHOTO NO. 73 SCOUR DEPTH 0.0 CM .

PHOTO NO. 74 SCOUR UEPTH O.0 CM.

PHOTO NO. 7 PHI SI2E	${ }^{75}-9.49$	$\begin{aligned} & \text { SCOUR } \\ & -8.99 \end{aligned}$	$\begin{aligned} & \text { DEFTH } \\ & \hline-8.49 \end{aligned}$		CM.	-7.00	. 49	. 98	. 46	,
EREO. AEFORE	0	-		0	O	0	0	7	64	7
FRED.OUT	0	0	0	0	0	0	0	3		122
EREU.AETER	0	0	0	0	0	0	0		29	50
EREO. IN										

PHOTO NO. 76 SCOUR UEPTH 0.0 CM .

PHI SIZE	-9.49	-8.97	-8.4)	-8.00	-7.50	-7.00	-6.49	-5.98	-5.46	.05
EREO.HEEORE	0	0	0		0	0	0	2	33	70
frea. OUT	0	0	0	0	0	0	0	1	18	58
FFEO.AFTER	0	0	0	0	0	0	0	1	31	104
FREO. IN	0	,	0	0	0	0	0	0	16	92

PHOTO NO. 77 SCOUK LEETH 0.0 CM .
$\begin{array}{lcccccccccc} \\ \text { FHI SI2E } & -9.49 & -8.99 & -8.49 & -3.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { FREO. HEEOKE } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 45 & 96 \\ \text { EREAOUT } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 45 & 96 \\ \text { EREO. FFTEK } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 21 & 68 \\ \text { FREC.IN } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 21 & 68\end{array}$

FKER. AEFORE	0	0	0	0	0	0	0	13	50	82
FREO.OUT	0	0	0	0	0	0	0	13	50	82
FREO. AFER	0	0	0	0	0	0	0	3	25	69
FREO. M	0	0	0	0	0	0	0	3	25	69

PHOTO NO. 80 SCOUR UEPTH O.0 CM.

YHI SIRE	-9.49	-8.4^{2}	-8.49	-8.00	-7.50	-7.00	-6.49	-5.98	-5.46	-5.05
FREO BEFORE	0	0	0	0	0	0	0	12	54	87
FREO.OUT	0	0	0	0	0	0	0	12	54	87
EREOAETEK	0	0	0	0	0	0	0	4	25	46
EREO.IN	0	0	0	0	0	0	0	4	25	46

FHOTO NO. $\quad 1$ SCOUR UEFTH 97.4 CH.
$\begin{array}{lccccccccccc}\text { FHI SIZF } & -9.49 & -8.99 & -8.49 & -8.00 & -7.50 & -7.00 & -6.49 & -5.98 & -5.46 & -5.05 \\ \text { FKEO. HEFORE } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 9 & 56 & 74 \\ \text { FKEQ.OUT } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 9 & 56 & 74 \\ \text { EKEO.AEIER } & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 37 & 92 \\ \text { FREO.IN } & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 37 & 92\end{array}$

PHOTO NO. PHI SIZE	$83-9.49$	$\begin{aligned} & \text { SCOUR } \\ & -8.99 \end{aligned}$	$\begin{aligned} & \text { UEPTH } \\ & -\quad-8.49 \end{aligned}$	$\begin{gathered} 0.00 \\ -8.00 \end{gathered}$	${ }_{0}^{C H}-7.50$	-7.00	-6.49	-5.98	-5.46	-5.05
FREQ. AEFORE	0	.	-	0	1	. ${ }^{\text {a }}$	5	14	29	52
frea.out	0	0	0	0	1	2	4	13	29	52
FREO.AFTER	0	0	0	0	0			16	19	32
FREO. IN	0	0	0	0	0	1	5	15	19	32

PHOTO NO. FHI SI2E	85 -9.49	$\begin{aligned} & \text { SCCOR } \\ & -8.99 \end{aligned}$	$\begin{aligned} & \text { DEFTH } \\ & -8.49 \end{aligned}$	$\begin{array}{r} 0.0 \\ -8.00 \end{array}$	${ }^{C M}-7.50$	-7.00	-6.49	-5.98	5. 46	-5.05
EREO.GEFORE	-9	-	0	-	-	.	98	is	26	50
EREO.OUT	0	0	0	0	0	1	96	11	$2 G$	50
EREO.AETER	0	0	0	0	1	1	5	22	26	20
FREO.IN	0	0	0	0	0	0	3	18	26	20

PHOTO NO.	$86-9.49$	SCOUR	DEFTH	$\begin{gathered} 5.8 \\ -8.00 \end{gathered}$	$0^{C M}-7.50$	-7.00	-6.49	-5.98	-5.46	-5.05
EREO.FEFORE	-	-	-		0	3	8	17	27	57
ERED.OUT	0	0	0	0	0	0	2	14	25	57
EREO.AETER	0	0	0	0	0	3	8	20	36	27
FREO. IN	0	0	0	0	0	0	2	17	34	27

PHOTO NO. 107 SCOUK DEPTH S5. 3 CM.

PHI SI2E	-9.49	-8.99	-8.49	-8.00	-9.50	-7.00	-6.49	-5.98	-5.46	-5.05
EREO. REFORE	0	0	0	0	0	0	0	4	18	59
ERER.OUT	0	0	0	0	0	0	0	4	18	59
FRE.AETEK	0	0	0	0	0	0	0	4	22	35
EREQ.IN	0	0	0	0	0	0	0	4	22	35

PHOIO NO. PHI SIZE	$87-9.49$	$\begin{aligned} & \text { SCOUR } \\ & -8.99 \end{aligned}$	$\begin{aligned} & \text { ПEPTH } \\ & -8.49 \end{aligned}$	$\begin{aligned} & 11.1 \\ & -8.00 \end{aligned}$	${ }_{0}^{C H}-7.50$	-7.00	-6. 49	-5.98	-5.46	-5.05
EREQ. AEEORE	0	0	0	0	-	0	0	0	1	66
EREO.OUT	0	0	0	0	0	0	0	0	1	66
EREQ.AFIER	0	0	0	0	0	0	0	1	3	9
EREQ.IN	0	0	0	0	0	0	0	1	3	9

Photo no. 9		Scouk	DEFTH	4.1	CM.					
PHI SIZE	-4.49	-8.99	-8.49	-11.00	-7.50	-7.00	-6. 49	-5.98	. 46	-5.05
EKEO. HEFORE	0	-	0	0	0	0	4	14	37	58
FREO.OUT	0	0	0	0	0	0	4	14	37	58
fred.after	0	0	0	,	0	0	2	12	30	19
FREO. IN	0	0	0	0	0	0	2	12	30	19

PHOTO NO. FHI SIZE	${ }^{92}-9.49$	$\begin{aligned} & \text { SCOUK } \\ & -8.99 \end{aligned}$	LEFTH -8.49	$\begin{gathered} 3.7 \\ -8.00 \end{gathered}$		-7.00	-6.49	-5.98	5.46	.05
EKEO.IEEORE	.	0	0	0	,	.	${ }_{4}^{4}$	is	44	48
FKEO.OUT		0	0	0	0	0		15	44	48
FREO.AFTEK	0	0	0	0	0	0	1	15	29	47
EREO. IN										

EREO. HEREKE	0	0	0	0	0	0	0	0	0	13
FREOOUT	0	0	0	0	0	0	0	0	0	13
FREOAETER	0	0	0	0	0	0	0	0	0	5
FREO. IN	0	0	0	0	0	0	0	0	0	5

PHOTO NO. 74 SCOUR DEPTH 59.0 CM .
PHI SI2E $-9.49-8.74-8.49-8.00-7.50-7.00-6.49-5.98-5.46-5.05$

FKEO. BEFOKE	0	0	0	0	0	0	0	0	1	17
EREO.OUL	0	0	0	0	0	0	0	0	1	17
EKEO.AETEK	0	0	0	0	0	0	0	0	0	4
IKEO.IN	0	0	0	0	0	0	0	0	0	4

PHOIO NO. 9 PHI SIZE:	${ }^{95}-9.49$	SCOUH	UEPTH	68.0	CM.	-7.00	-6.49			
FREO. HEFORE	0	.	0	-0	0	-7.00	-6.49	-5.98	-5.46	-5.05
EREO.OUT	0	0	0	0	0	0	0	0	0	37
EREO.AFIER	0	0	0	0	0	0	0	0	0	6
EREO. IN	0	0	0	0	0		0	0	0	6

PHOTO NO. 96 SCOUR IEPTH 11.6 CM.

FREO. BEFOKE	0	0	0	0	0	0	1	13	11
EREO.OUT	0	48							
EREOAETER	0	0	0	0	0	0	1	13	21
EREO.IN	0	0	0	0	1	1	4	5	10
	0	0	0	0	0	1	4	5	10

PHOTO NO. PHI SIZE	${ }^{98}$	$\begin{aligned} & \text { SCOUR } \\ & -6.99 \end{aligned}$	$\begin{aligned} & \text { IEPTH } \\ & -8.49 \end{aligned}$	$\begin{gathered} 0.0 \\ -8.00 \end{gathered}$		-7.00	-6.49	-5.98	. 46	. 05
FREO. AEEORE	0	0	0	0	0	0	5	8	20	63
EREQ.OUT	0	0	0	0	0	0	5		20	63
EfEQ.AETER	0	0	0	0	0	0	1		10	12
EREO. IN	0	0				0			10	

PHOTO NO. 100		SCOUR	DEPTH	0.0	CM.					
PHI SI2E	-9.49	-8.94	-8.49	-8.00	-7.50	-7.00	-6.49	-5.98	-5.46	. 05
freco. heeore	0	0	0	0	0	0	3	8	31	51
EREC.OUT	0	0	0	0	0		3	8	31	51
frea.agter	0	0	0	0	0	0	1	7	9	7
FREQ. IH	0	0	0	0		0	1	7	9	7

PHOTO NO. 101 SCOUK DEPTH 8.3 CM.

PHOTO NO. 102		SCOUR	UEETH	0.0						
FHI SIIE	-9.49	-8.99	-8.49	-8.00	-7.50	-7.00	-6.49	-5.98	-5. 276	5.05
FREO.OUT	0	0	0	0	0	1	4	7	26	37
EREU.AETEK	0	0	0	0	1	1	4	12	24	25
FREO. IN	0	0	0	0	0	()	4	12	23	25

PHOTO NO. 103 SCUUR DEPTH 8.0 CM.

APPENDIX III

Photographs taken before and after the spring flood of 1982 for all 5 streams of this study are included in 2 photo albums.

APPENDIX IV

Hydraulic Data for Twenty Mile Creek

The average bottom shear stress is calculated using the Duboys equation:

$$
T=Y R S
$$

```
where T = Average Bottom Shear Stress (kg/sq.m)
    Y = Specific Weight of Water (1000.000 kg/cu.m)
        (after Baker and Ritter 1975)
    R = Hydraulic Radius (m)
    s = Dimensionless Water-Surface Slope
```

Station 1

DISCHARGE (CMS)	DIMENSIONLESS SLOPE (M/M)	HYDRAULIC RADIUS (M)	AVERAGE BOTTOM SHEAR STRESS (KG/SQ.M)
24.3	0.0175	1.7780	31.12
6.1	0.0158	1.5608	24.66
9.8	0.0159	1.6263	25.86
1.9	0.0145	1.3836	20.06
10.0	0.0159	1.6467	26.18
13.0	0.0161	1.6934	27.26
13.1	0.0161	1.6967	27.32
10.8	0.0159	1.6589	26.38
7.1	0.0155	1.5843	24.56
4.5	0.0150	1.5140	22.71
7.6	0.0153	1.5926	24.37
4.3	0.0146	1.5049	21.97

-

Station 2

DISCHARGE (CMS)	DIMENSIONLESS SLOPE (M / M)	HYDRAULIC RADIUS (M)	AVERAGE BOTTOM SHEAR STRESS (KG/SQ.M.)
24.3	0.0175	2.4005	42.01
6.1	0.0158	2.2522	35.58
9.8	0.0159	2.3088	36.71
1.9	0.0145	2.1304	30.89
10.0	0.0159	2.3265	36.99
13.0	0.0161	2.3628	38.04
13.1	0.0161	2.3645	38.07
7.1	0.0159	2.3359	37.14
4.5	0.0155	2.2821	35.37
7.6	0.0150	2.2311	33.47
4.3	0.0153	0.0146	2.2335

Station 4

24.3	0.0136	0.5739	7.81
27.1	0.0120	0.5880	7.06
18.7	0.0118	0.4749	5.60
11.6	0.0113	0.3785	4.28
6.1	0.0110	0.2873	3.16
9.8	0.0116	0.3971	4.61
10.0	0.0114	0.4017	4.58
27.4	0.0134	0.7653	10.26
36.9	0.0135	0.8438	1.59

\square

Photographs of the Grand River
Before (left side) and After
(right side) the 1982-83 Snow-
melt

Photographs of the Genesee River
Before (left side) and After (right side) the 1982-83 Snow-melt

(2)
(

\square

1

The method of taking streambed photographs. Compliments of Jim Yaki.
Photographs of Twenty Mile Creek
$\begin{array}{cc}\text { Photograph Before } \\ \text { (left side) } & \text { Photograph After } \\ \text { (right side) }\end{array}$

mound $\uparrow 5.5 \mathrm{~m}$

24

$=\sim$

Photographs of Sixteen Mile Creek
Before (left side) and After (right side)
the 1982-83 Snow-melt

