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Abstract 

The overarching goal of this thesis was to determine if the initiation of a positive emotional state 

could antagonize the expression of a negative emotional state in rats. The hypothesis of the thesis 

argued that the initiation of a positive emotional state would ameliorate the vocal expression of a 

negative emotional state. The subjective emotional state of the rat was indexed by the quantity 

and type of pharmacologically induced ultrasonic vocalizations (USVs). Adolescent and adult 

rats can emit vocalizations above the upper threshold of human hearing (>20 kHz) termed 

ultrasonic vocalizations (USVs). These USVs are broadly divided into 50-kHz, reflective of a 

positive emotional state, and 22-kHz USVs, reflective of a negative emotional state. 

Pharmacologically, injection of dopamine agonists into the nucleus accumbens shell is sufficient 

for the initiation of 50-kHz USVs, while injection of cholinergic agonists into the anterior 

hypothalamic-medial preoptic area (AH-MPO) or the lateral septum (LS) can initiate 22-kHz 

USVs. In chapter two of the thesis, I demonstrated that microinjection of the dopamine agonist, 

apomorphine, into the medial shell of the nucleus accumbens attenuated the extent of carbachol-

induced 22-kHz USVs from the AH-MPO. I also demonstrated that this effect was dependent 

upon the microinjection of apomorphine into the central region of the nucleus accumbens shell. 

In chapter three, I demonstrated that apomorphine could also decrease the extent of carbachol-

induced 22-kHz USVs from the LS providing evidence that the effect reported in chapter two 

was not isolated to the AH-MPO, but rather extending along the medial cholinoceptive 

vocalization strip. In the third chapter. I also demonstrated that the magnitude of the reduction in 

the number of 22-kHz USVs was correlated to the number of emitted frequency-modulated (FM) 

50-kHz USVs induced by apomorphine. In the fourth chapter, I investigated whether blocking 

dopamine receptors, either systemically using the typical D2-antipsychotic agent, haloperidol, or 

microinjection of the D2 antagonist, raclopride, into the nucleus accumbens shell could increase 
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the emission of carbachol-induced 22-kHz USVs from the LS. The results showed that 

antagonism of dopamine receptors, either systemically or intracerebrally, did not increase the 

number of 22-kHz USVs. Interestingly, it was also observed that after the prolonged recording of 

carbachol-induced 22-kHz USVs, some 50-kHz USVs spontaneously appeared after roughly 300 

s into the recording. I argued that these 50-kHz USVs, which I defined as “rebound 50-kHz 

USVs” are not initiated by carbachol since they occurred when the carbachol-response weaned. 

It was also demonstrated these rebound 50-kHz USVs were dependent upon dopamine release 

within the nucleus accumbens since both systemic, and intracerebral application of dopamine 

antagonists into the central division of the nucleus accumbens shell blocked the occurrence of 

rebound 50-kHz USVs. Altogether, the data supports the thesis that activation of a positive 

emotional state decreases the expression of the negative emotional state in rats when measured 

using ultrasonic vocalizations.  
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1.0 General Introduction 
 

Mental health is a vital component to the overall wellness of an individual and is 

impacted by variables such as emotions, other psychological processes, and social well-being 

(Galderisi et al., 2015). Mental health helps predict coping strategies, how individuals 

accommodate and handle stress, and the formation of interpersonal relationships (Reblin & 

Unchino, 2008). Factors that contribute to the overall status of mental health include biological 

factors such as neurochemistry, neuroanatomy, and genetics, as well as environmental factors 

such as familial relationships and social factors. Deficits in these biological and environmental 

factors can precipitate psychiatric diseases like generalized anxiety disorder, schizophrenia, 

obsessive-compulsive disorder, bipolar disorder, major depressive disorder, psychosis, etc. (Mala 

et al., 2015). The impact of these psychiatric disorders limits the quality of life of the afflicted, 

but also increases the economic burden of Canadians due to lost taxes, increased health care 

costs, increased disability utilization, and legal costs (Lim et al., 2008) 

It is unfortunate that psychiatric disorders cannot be entirely cured using today’s medical 

treatments, rather people suffering from these diseases try and manage their illness using a 

variety of pharmaceuticals or social therapies. (Bower & Gilbody, 2005). Thus, in order to 

increase the effectiveness of treatment of patients suffering from a psychiatric disorder, and to 

ultimately better improve the quality of life of the afflicted, a better understanding of the 

neurobiological basis of emotion is required. 

The investigation into the biological basis of emotion in humans has been divided into 

neuroimaging studies and biochemical studies. Neuroimaging studies are appealing because they 

are non-invasive, while biochemical studies use more invasive methods to try and correlate 
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biochemical markers to mood disturbances. For instance, endogenous molecules like 

somatostatin (Rubinow, 1986), tau proteins (Paquet et al., 2016), or homovanillic acid (Maas et 

al., 1997) have been analyzed from cerebral spinal fluid of normal and psychiatric patients to see 

if correlations exist between the concentration of these endogenous molecules and psychiatric 

disturbance. However, due to ethical concerns, the scope and invasiveness of human studies are 

limited, and thus a strong emphasis is placed on animal models to try and develop experiments 

that mimic both behavioural and physiological manifestations of different psychiatric illnesses. It 

is the hope that probing the networks responsible for emotional initiation and regulation in the rat 

will translate to human studies, and eventually, better healthcare management for the psychiatric 

community.  

Now, emotions and emotional behaviour should be defined. 

Although no formal definition of emotion exists, this thesis will adopt the definition 

proposed by Kleinginna & Kleinginna (1981), that defines emotion as an emergent property 

arising from the subjective interpretation of physiological changes integrated with sensory 

information from the environment. This integration of information from viscera and environment 

(the subjective experience of emotion) energizes the animal motorically and autonomically to 

deal with complex issues associated with fitness and survival. The emotionally driven changes in 

the animal motor system that tries to solve goal-directed behaviour can be defined as emotionally 

driven behaviour. Emotionally driven behaviour can range from approach behaviour, avoidance 

behaviour to vocal behaviour. These types of emotionally-driven behaviours can be initiated 

unconditionally or initiated via classical conditioning (Kleinginna & Kleinginna, 1981).  
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An investigation into the biological basis of emotion has led to two prominent 

hypotheses: the constructionist hypothesis and basic hypothesis. Research using a constructionist 

lens argues that emotions like anger, sadness, happiness, disgust, and fear arise from common 

and overlapping neural systems (Posner et al., 2008; Russell, 1980; Watson et al., 1990).  

However, the basic view of emotions hypothesizes that each emotion is evolutionary conserved 

and hard-wired within unique and separable brain circuit that, when activated, produces a unique 

physiological, psychological and behavioural pattern of activation (Barret & Wagner, 2006; 

Ekman, 1972; Nesse & Ellsworth, 2009; Panksepp, 1982).  

1.1: Cross-mammalian comparison of subcortical structures involved in emotional regulation: 

emphasis on rats and humans.  

In order to use rats in studying the neurobiology of emotion, the argument first must be 

made that rats are capable of the expression of emotional states. In this thesis, I will take the 

explicit assumption that rat ultrasonic vocalizations (USVs) are forms of emotional expression 

and that USVs can be initiated by the stimulation of specific circuits that are organized within the 

brain. Stimulation of these brain nuclei initiates USVs in rats that have the same sonographic 

features observed when rats emit USVs in negative or positive natural contexts. Likewise, these 

subcortical brain circuits are evolutionary conserved neural circuits that are also found in humans 

which, when electrically stimulated, produce self-reported measures of positive or negative 

emotional states. In rats, two different types of USVs are reflective of emotional states: 50-kHz 

USVs reflect a positive emotional state and 22-kHz USVs reflect a negative emotional state (see 

Figure 1) 
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Investigations into the neurobiology of emotions in humans come from neuroimaging 

studies, and intracranial self-stimulation (ICSS) studies combined with verbal feedback. For 

example, human participants readily self administer electrical current (intracranial self-

stimulation) into the septal nucleus because of the reported feelings of intense pleasure, sexual 

excitation, euphoria, relaxation, sexual vigor and motivation they experience from it (Heath, 

1963; Moan & Heath, 1972). The adjectives used by the patients are presumed to be associated 

with positive emotional states since the subjective feeling resulting from ICSS produces and 

reinforces the subject to repeat the behaviour. Other brain areas that support ICSS in humans are 

the nucleus accumbens, and the ventral tegmental area (VTA). For example, Heath (1972) 

described a patient where ICSS of the VTA produced the most pleasurable sensation the subject 

has ever experienced in their life (Heath, 1972).  

Imaging and recording studies also support the role of subcortical nuclei that are 

associated with a positive effect. Electroencephalogram recordings from the human septum show 

increased activity during heterosexual intercourse and orgasm (Heath, 1972; Moan and Heath, 

1972). Likewise, the activity of dorsal/ventral striatal regions has been shown to be activated by 

laughter (Osaka & Osaka, 2005) and electrical stimulation of these regions have been shown to 

induce mirth in patients with treatment-resistant anxiety disorders (Greenberg et al., 2006; 2010). 

Thus, stimulation of subcortical brain structures like the lateral septum, nucleus accumbens, 

hypothalamus, and ventral tegmental area have all been able to induce measurable levels of 

positive emotional states in humans. These same brain nuclei, when artificially stimulated in rats 

can also initiate positive or negative emotional states. In this thesis, the expression of an 

emotional state will be measured via the emission of USVs.  
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During adolescences and adulthood, rats are capable of emitting vocalizations above the 

upper threshold of human hearing (>20 kHz); these vocalizations have been defined as USVs and 

are categorized as either 50-kHz and 22-kHz USVs (See Figure 1; Brudzynski, 2013; Takahashi 

et al., 2017). These USVs are hypothesized to serve as social communication signals 

(Brudzynski & Chiu, 1995) and/or the expression of affective states (Knutson et al., 1999; 2002).  

The social communication hypothesis of USV production in rodents suggests that, 

contained within the 50-kHz or 22-kHz USVs, are social signals that inhibit or facilitate 

interactions with conspecifics. Evidence that supports this hypothesis primarily comes from 

playback studies in which naturally recorded or artificially generated 50-kHz and 22-kHz USVs 

are played back through a speaker to conspecifics, and the behaviour of the rat is concurrently 

recorded.  Recorded 50-kHz USVs were studied under two different contexts: sexual contexts 

and non-sexual contexts. 

In socio-sexual contexts, 50-kHz USVs serve as a communication tool to coordinate 

sexual activity between rats. The proceptivity of a female is correlated to behaviours, such as 

orientation to the male, ear wiggling, and darting (Beach, 1976; McIntosh et al., 1978). The 

sensory cue that appears to initiate sexual solicitation from a male rat to an oestrus female is the 

emission of 50-kHz USVs by the male (White & Barfield, 1989). In studies where the inferior 

laryngeal nerve was severed in rats, estrus females preferred to spend time with vocalizing males 

that emitted USVs as opposed to devocalized males (Pomerantz et al., 1983).  
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Figure 1: Sonographic representations of ultrasonic vocalizations in rats. The sonograph displays 

the variety of different types of USVs that rats are capable of producing. The x-axis shows time 

(in ms or s) and y-axis sound frequency (in kHz). 22-kHz USVs are divided into short and long 

calls. Short 22-kHz USVs are hypothesized to reflect an internal anxiety-driven state while 

longer vocalizations are hypothesized to signal proximity to predators. Typically, 22 kHz USVs, 

both long and short, have a peak frequency of ~22-kHz. The duration of short 22 kHz USVs 

range from roughly 20-100 ms, while long 22-kHz USVs have a duration that ranges from 100-

3000 ms. 50-kHz USVs can be divided into flat and frequency modulated (FM) calls. Flat 

vocalizations have a peak frequency between 50-58 kHz and duration between 20-100 ms. FM 

50 kHz USVs can have a duration ranging between 20-80 ms and a peak frequency ranging from 

56-80 kHz. Picture was taken from: Brudzynski, S. M. (2013). Ethotransmission: communication 

of emotional states through ultrasonic vocalization in rats. Current Opinion in Neurobiology, 

23(3), 310-317. 
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Similarly, deafening an oestrus female does not dramatically change copulatory contacts between 

males and females, but rather significantly decreases sexual solicitation in females regardless of 

the amount of 50-kHz USVs emitted by the male (Barfield et al., 1979). The decreasing 

solicitation of females and the decreased preference of females to mute males suggest that the 

production of 50-kHz USVs is critical to the proper socio-sexual interaction and mating between 

male and female rats.  

Rats are a gregarious species and choose to spend time with conspecifics as opposed to 

solitude life (Latane, 1969). A critical measure of social interaction in rats and a predictor of 

aberrant social behaviour in later years is adolescent play (Argue & McCarthy, 2015; Barale et 

al., 2015).  Adolescent play is the earliest form of non mother-oriented social behaviour in rats 

and is characterized as “rough-and-tumble” play with the emissions of large numbers o 50-kHz 

USVs (Vanderschuren et al., 1997; Panksepp 1986). The play behaviour is characterized by both 

somatosensory contact via pinning behaviour, as well as the emission of 50-kHz USVs. The 

facilitation and engagement in play behaviour seem to be dependent upon emission and receiving 

50-kHz USVs. Rats that have had their auditory canals sealed with bone-wax engage in fewer 

bouts of play behaviour compared to rats that have somatosensation reduced via subcutaneous 

lidocaine injections suggesting that vocal cues are more important for coordinating and engaging 

in bouts of play behaviour than direct contact (Panksepp, 1986)   

Playback studies also suggested a communicative role for 50-kHz and 22-kHz USVs. 

During the playback of naturally occurring 22-kHz USVs, rats exhibited defensive responses 

such as freezing (Brudzynski & Chiu, 1995; Sales, 1991; Wöhr & Schwarting, 2007). However, 

some experiments do report rats will engage in running and jumping, which are 

defensive/escape-like behaviours in response to the presentation of either artificially generated 



9 
 

22-kHz USVs or naturally recorded 22-kHz USVs (Commissaris et al., 2000). The duration of 

emitted 22-kHz USVs seems to be critical for the signaling of aversive cues, as opposed to the 

temporal patterns and peak frequencies observed during the communication with 50-kHz USVs. 

For example, during cocaine, alcohol, or opioid withdrawal, the duration of recorded 22-kHz 

USVs are short and lasting between 300-1000 ms (Berger et al., 2013). However, longer 

vocalizations ranging between 1000-3000 ms possibly communicates dangers, such as proximity 

to predators (Blanchard et al., 1991) since long 22-kHz USVs are observed being emitted by rats 

in proximity to a predator (Blanchard & Blanchard, 1991).  These vocalizations have been 

dubbed “alarm cries” (Litvin et al., 2007).   

Evidence suggesting that USVs can also signal emotional states comes from 

pharmacological studies. Injection of anxiolytics, drugs that reduces anxiety in humans and can 

decrease the number of emitted 22-kHz USVs in rats in response to aversive contexts such as 

anticipation to foot shocks, air puff to the snout, or acoustic startle (Jelen et al., 2003; Naito et 

al., 2003; Vivian & Miczek, 1993). Likewise, injection of anxiolytics into rats decreased the 

number of emitted 22-kHz USVs in response to withdrawal from drugs that are abused by 

humans such as morphine, nicotine or cocaine  (Berger et al., 2003; Gawin, 1991; Knapp et al., 

1998; Lembke et al., 2007; Miczek & Barros, 1996; Mutschler & Miczek, 1998; Moy et al., 

2000). Typically, the withdrawal from morphine, cocaine, or nicotine in humans is associated 

with emotional instability and anxiety (American-Psychiatric Association, 2007). These negative 

emotional states can be attenuated with pharmacological compounds in humans and can also 

decrease 22-kHz USVs in rats.   

Contrary to the punishing circumstances that can initiate 22-kHz USVs, frequency 

modulated FM 50-kHz USVs are typically emitted during positive pro-social encounters or 
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during anticipation of rewarding stimuli. These positive circumstances which can initiate FM 50-

kHz USVs suggesting these vocalizations signal a positive emotional state. For example, in 

anticipation of electrical stimulation of areas that are reported to cause pleasure in humans, social 

play with conspecifics or with experimenters will increase the number of emitted of frequency 

modulated (FM) 50-kHz USVs (Burgdorf et al., 2000). Likewise, when paired with an 

environment that the rat had previously been exposed to addictive pharmacological agents such 

as amphetamine, morphine, nicotine or cocaine, rats will increase the number of FM 50-kHz 

USVs (Knutson et al., 1995). These pharmacological drugs that increase the number of FM 50-

kHz USVs have a unique propensity to increase the concentration of dopamine within the 

mesolimbic dopamine system. 

1.2. Anatomy and physiology of the mesolimbic dopamine system 

The initial description of the ventral tegmental area was reported by Tsai (1925) in a 

series of investigations that examined the pathway of the optic tracts through the opossum brain. 

Tsai documented a group of cells lying medial to the optic tectum called the nucleus tegmenti 

ventralis (Tsai, 1925), which was later defined as the ventral tegmental area of Tsai by Nauta 

(Nauta, 1956;1958). Tsai’s description of the VTA was strictly anatomical and did not speculate 

as to the chemical identity of the neurons localized within this region of the opossum brain.  

The initial neurochemical identification of monoamine-containing neurons within the 

VTA was visualized using Falck and Hillarp method. In this method, sections of frozen neural 

tissue, when exposed to formaldehyde vapor, converts derivatives of phenylalanine, and 

phenylethylamine (such as dopamine, serotonin, and noradrenaline) into 1,2,3,4-

tetrahydroisoquinoline, which subsequently emits green or yellow fluorescence (Falck et al., 

1962). Using this histochemical method, Dahlstroem and Fuxe (1964) identified locations of 
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nuclei within the brain that contain dopamine, noradrenaline, and serotonin. They introduced a 

nomenclature of individual nuclei, A1-12 and B1-9, with A10 being classified as the ventral 

tegmental area of Tsai (Dahlstroem and Fuxe, 1964) and being neurochemically consistent with 

catecholamine-containing neurons. 

As histochemical and fluorescence techniques developed, the VTA has been understood 

as a composite collection of dopamine cells that span several zones. These zones are called the 

paranigral nucleus (PN), parabrachial pigmented nucleus (PBP), parafasciculus retroflexus (PR), 

caudal linear nucleus (cLN), rostral linear nucleus (rLN), interfascicular nucleus (IN) and 

rostromedial tegmental nucleus (RTMg) (the tail of the VTA). These zones can be further 

grouped based on dopamine-rich and poor regions, as well as the specificity of their connections 

to other subcortical and cortical structures (Ikemoto, 2007). The most-dense dopamine regions 

within the collection of subnuclei are the PN and PBP, while dopamine-poor zones are the PR 

and RTMg (Morales & Margolis, 2017). 

The dopamine-rich and dopamine poor regions of the VTA are associated with distinct 

ascending circuits identified as the mesolimbic dopamine system, mesocortical system, and the 

nigrostriatal system (Björklund & Dunnett, 2007). The term ”meso” was described by the 

anatomist Ungerstedt (1971) to separate the pathway of dopamine neurons that innervate 

subcortical structures other than the nigrostriatal system. Since the fibers originated from the 

mesencephalon, the term “mesolimbic” describes dopamine neurons within the ventral tegmental 

area that innervate subcortical structures such as the olfactory tubercle, nucleus accumbens, 

amygdala, and lateral septum while the term “mesocortical” identifies a subset of dopamine 

neurons within the VTA that innervates the prefrontal cortex of the rat (Ungerstedt, 1971; see 

Ikemoto, 2007 for review). This thesis will focus on the projections of the mesolimbic dopamine 
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system to the nucleus accumbens and its role in the initiation of 50-kHz USVs in rats (See Figure 

2).  

 

Figure 2: Parasagittal cross-section of the rat brain diagramming both the cholinoceptive 

vocalization strip and the mesolimbic dopamine system (green pathway). Injection of dopamine 

agonists into the nucleus accumbens (yellow arrow) induces species-typical 50-kHz USVs. The 

figure is taken from Brudzynski, S. M. (2007). Ultrasonic calls of rats as indicator variables of 

negative or positive states: acetylcholine–dopamine interaction and acoustic coding. Behavioural 

Brain Research, 182(2), 261-273. 

 

The initial anatomic description of the nucleus accumbens was introduced by the 

anatomist Ziehen (1904) who described the nucleus as a ventromedial extension of the striatum 

extending dorsally into the lateral parts of the septum. (Ziehen, 1904; Salgado & Kaplitt, 2015). 

Although initially, the nucleus accumbens seemed separate from the dorsal striatum because of 
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its relationship with the lateral septum, later, with the development of tracing techniques, the 

nucleus accumbens became a distinct striatal region separate from the dorsal striatum (Zahm & 

Brog, 1992). The introduction of autoradiographic tracing methods by Weiss and Holland (1967) 

provided significant improvements on the classical anatomical tracing methods of tract-tracing 

and visualization of degenerating neurons (Swanson, 1981; Weiss & Holland, 1967). This 

technique, used by a variety of different experimenters, delineated three efferent systems from 

the nucleus accumbens: extrapyramidal connection, striatopallidal connections, and 

striatomesencephalic connections (Nauta et al., 1978; Zahm & Brog, 1992). 

The striatopallidal projection system is the efferent system originating from the nucleus 

accumbens and projecting to the ventral pallidum (VP.) The core and shell projects to the VP in 

distinct patterns. The core projects to the lateral division of the VP (VPl) while the medial 

division of the shell projects to the medial division of the ventral pallidum (VPm) (Usuda et al., 

1998; Voorn et al., 2004). The output of the lateral and medial VP bifurcates to target different 

mesencephalic structures. The VPm feedbacks onto dopamine-rich zones on the VTA, 

completing what has been called a long-feedback loop (see Figure 3). The VPl, however, 

projects to motor regions such as the cholinergic pedunculopontine tegmental nucleus, as well as, 

the substantia nigra pars compacta (Rahman et al., 2001). 
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Figure 3: Long loop feedback from the nucleus accumbens to dopamine neurons in the VTA. 

Activation of dopamine neurons in the VTA excites GABAergic projection neurons of the 

nucleus accumbens (NAcc) to inhibit VPm GABAergic neurons. Since the VPm tonically 

inhibits dopamine neurons in the VTA, inhibition of these neurons by NAcc release VTA 

dopamine neurons from tonic inhibition. This causes irregular spontaneous firing leading to the 

tonic release of dopamine in the extracellular space. Figure adapted from: Grace, A. A., Floresco, 

S. B., Goto, Y., & Lodge, D. J. (2007). Regulation of firing of dopaminergic neurons and control 

of goal-directed behaviors. Trends in Neurosciences, 30(5), 220-227. Abbreviations: GABA: 

Gamma-aminobutyric acid; NAcc: Nucleus accumbens shell; VPm: medial division of the 

ventral pallidum.  

The extrapyramidal connections of the nucleus accumbens shell encompass forebrain 

projections to subcortical nuclei that are separate from basal ganglia nuclei. Using tract-tracing 

methodology, it has been demonstrated that the nucleus accumbens sends medium spiny neuron 

(MSN) projection neurons to the lateral hypothalamus, anterior hypothalamus-medial preoptic 
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area, lateral septum, cingulum, and thalamus (Zahm & Heimer, 1993). Finally, the 

striatomesencephalic projections encompass projections that terminate in regions of the 

mesencephalon such as the medial and lateral divisions of the VTA, substantia nigra pars 

compacta and pars reticulata, periaqueductal grey and raphe nucleus (Conrad & Pfaff, 1976; 

Groenewegen & Russchen, 1984; Nauta et al., 1978). These findings, amongst others, had led to 

the argument that the nucleus accumbens is a key nodal point that integrates subcortical 

information related to emotions and translates this to motivated behaviours with its connections 

to the PPTg and pars compacta (see Figure 4; Floresco, 2015; Heimer & Wilson, 1975; 

Mogenson et al., 1980). 

 

Figure 4: Diagram of the afferent (arrows leading to) and efferent (arrows leading away) 

connections of the nucleus accumbens. The nucleus accumbens core receives dense projections 
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from the dorsal prefrontal cortex. The output of the core primarily targets the lateral division of 

the ventral pallidum which targets one of the final common targets of the basal ganglia, the 

thalamus. The shell of the nucleus accumbens receives input from a variety of structures that are 

related to homeostatic maintenance and emotional regulation. The figure is adapted from studies 

by: Pennartz, Groenewegen, & da Silva (1994). The nucleus accumbens as a complex of 

functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and 

anatomical data. Progress in Neurobiology, 42(6), 719-761; Usuda, Tanaka, & Chiba, (1998). 

Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of 

the nucleus: biotinylated dextran amine study. Brain Research, 797(1), 73-93; and Zahm, & 

Brog, (1992). On the significance of subterritories in the “accumbens” part of the rat ventral 

striatum. Neuroscience, 50(4), 751-767. 

 

The release of dopamine into the nucleus accumbens has been categorized as occurring in 

either tonic or phasic patterns (Goto et al., 2007; Grace, 1991). The tonic release of dopamine 

into the nucleus accumbens shell results from the disinhibition of dopamine neurons within the 

VTA by inhibition of GABAergic projection neurons within the medial division of the ventral 

pallidum. This causes a subset of dopamine neurons within the VTA to fire irregularly and 

provide a bassline dopamine level within the extrasynaptic space of the nucleus accumbens 

(Zhang et al., 2009). During rewarding stimulation, dopamine neurons within the VTA are 

observed to undergo synchronized burst firing. This burst firing causes dopamine to be released 

within the synaptic space at high concentrations to stimulate postsynaptic dopamine receptors 

and stimulate the dopamine reuptake transporter (DAT). This spatially restricts dopamine within 

the synaptic compartment opposed to the extrasynaptic space. (Blaha et al., 2006; Floresco et al., 

2003; Grace, 2000; Sombers et al., 2009; Schultz, 1998). The phasic release of dopamine into the 

nucleus accumbens requires not just disinhibition of dopamine neurons within the VTA but is 
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also dependent upon glutamatergic input on dopamine neurons from areas like the subthalamic 

nucleus and the prefrontal cortex (Smith & Grace, 1992) (See Figure 5).   

The phasic release of dopamine within the nucleus accumbens can be artificially 

recreated by intracerebral injection of dopamine agonists into the nucleus. Injection of dopamine 

agonists can bind to postsynaptic dopamine receptors and augment the activity of GABAergic 

projection neurons of the nucleus accumbens.  

 

Figure 5: Phasic release of dopamine within the nucleus accumbens. Dopamine neurons within 

the VTA are inhibited by tonically active GABA neurons from the VPm. Activation of dopamine 

neurons in the VTA, leading to the phasic release of dopamine within the nucleus accumbens 

shell, can be accomplished by release of glutamate onto dopamine cells within the VTA from 

areas such as the prefrontal cortex or the subthalamic nucleus in combination with the inhibition 

of tonically active GABA cells from the VPm (Schultz, 1998).  
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1.3: Involvement of the ascending mesolimbic dopamine system in pro-social 50-kHz USVs in 

rats 

Dopamine is a catecholamine neurotransmitter that is synthesized from the amino acid 

tyrosine. Tyrosine is converted to dihydroxyphenylalanine (DOPA) by the enzyme tyrosine 

hydroxylase. DOPA is then converted to dopamine via the enzyme aromatic amino acid 

decarboxylase (Daubner et al., 2012). Within the brain, there are three major neural pathways 

that synthesize and release dopamine. The nigrostriatal dopamine pathway innervates the dorsal 

striatum and is important for locomotor activity and sensory integration. The mesocorticolimbic 

dopamine system originates within the VTA and innervates the olfactory tubercle, nucleus 

accumbens shell, amygdala and the prefrontal cortex (PFC) (Ranaldi, 2014; Sun, 2011); and the 

tuberoinfundibular system originates within the arcuate nucleus of the hypothalamus and travels 

to the median eminence (Dawson, 1985). 

The action of dopamine on receptors is neither directly excitatory or inhibitory. Instead, 

dopamine functions as a neuromodulator that can alter the electrophysiological properties of 

neurons via five distinct G-protein coupled receptors: D1, D2, D3, D4, and D5 (Beaulieu & 

Gainetdinov, 2011). The five different receptors are classified into two groups: D1-like and D2-

like groups. The grouping of the five distinct dopamine receptors was based on biochemical 

studies showing D1/D5 receptors stimulate the formation of the intracellular signaling molecule 

adenyl cyclase (D1-like group) while the D2-like group inhibits the formation of adenyl cyclase 

(D2, D3, D4) (Jackson & Westlind-Danielsson, 1994).   

Initial evidence that was put forth arguing that dopamine transmission within the shell of 

the nucleus accumbens was responsible for the initiation of 50-kHz USVs was from the 

intracerebral application of the indirect dopamine agonist amphetamine. Burgdorf and colleagues 
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(2001) showed a reliable dose-dependent effect of amphetamine (ranging from 0.3µg-10.0µg) on 

the increased emissions of FM 50-kHz USVs. The emission of 50-kHz USVs was not observed 

when the same doses of amphetamine were injected into the caudate-putamen or core of the 

nucleus accumbens shell. (Burgdorf et al., 2001). Despite amphetamine blocking the reuptake of 

dopamine, noradrenaline, and serotonin, optogenetic experiments investigating VTA neurons 

provided substantial information on the importance of dopamine release in the nucleus 

accumbens shell and its association with behaviours reflecting positive emotional states.   

Optogenetic tools use genetically modified light-gated proteins for the excitation or 

inhibition of neural tissue. Some of the most commonly used light-gated proteins are 

channelrhodopsin-2 (ChR2), which can be activated by 450-500 nm light pulses (1-7 ms) (Ye & 

Kaszuba, 2017). These light pulses cause a conformation change in the 7-transmembrane protein 

located in the neural tissue that allows for large influxes of calcium (Ca2+) or sodium (Na+) 

ultimately leading to neuron depolarization (Boyden et al., 2005).  

To assess the role of dopaminergic neurons involved in reward-related behaviour 

Adamantidis and colleges (2011) was able to express ChR2 in dopamine-containing neurons of 

the VTA using a viral vector. The results demonstrated two important consequences of 

stimulating dopamine neurons in the VTA: 1) Optogenetic excitation of dopamine neurons at 5 

ms light-pulses delivered at a frequency of 25 Hz in the VTA resulted in phasic release of 

dopamine signals within the shell of the nucleus accumbens measured via fast-scan cyclic 

voltammetry (FSCV); 2) Optical stimulation that results in the release of phasic dopamine within 

the nucleus accumbens was sufficient to promote self-stimulation-like behaviour (Adamantidis et 

al., 2011). 
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Consistent with the rewarding-like effects of optical stimulation of dopamine neurons in 

the VTA that promotes self-stimulation behaviour, Scardochio and colleagues (2015) showed a 

comparison between electrical stimulation of the VTA and optical stimulation of dopamine 

neurons in the VTA and their ability to induce 50-kHz USVs. Electrical stimulation of the medial 

forebrain bundle, which contains dopamine axons originating from the VTA, was sufficient to 

induce intracranial self-stimulation, increased the release of dopamine within the nucleus 

accumbens and increased the emissions of 50-kHz USVs (Fiorino et al., 1993; Scardochio et al., 

2015) The authors further demonstrated that optogenetic activation of dopamine neurons in the 

VTA that is sufficient to release dopamine in the nucleus accumbens shell in a phasic manner 

could initiate FM 50-kHz USVs (Scardochio et al., 2015)  

1.4: Acetylcholine and negative emotional states 

Acetylcholine (ACh) contains two prominent projection system: a basal forebrain system 

that innervates the entirety of the cortical mantle and a pontomesencephalic system that 

innervates subcortical structures (Woolf, 1990). Like the catecholamine system, the pathways in 

the brain that contain acetylcholine synthesizing neurons have been labeled Ch1-Ch6, which are 

segregated into basal forebrain systems and ponotomesencephalic systems (Mesulam et al., 

1983). Ch1-Ch2 systems are located in the medial septal nucleus, and vertical limb of the 

diagonal band of Broca and subsequently provide the major acetylcholine input into the 

hippocampus. Ch3 is located in the horizontal limb of the diagonal band of Broca which 

innervates the olfactory bulb. Ch4 contains cholinergic neurons that provide the major 

cholinergic innervation to the cortical mantle. Ch5 group cholinergic neurons are located within 

the pedunculopontine tegmental (PPTg) nucleus and innervate locomotor regions of the 

forebrain. Ch6 contains neurons located within the laterodorsal tegmental nucleus (LTDg) which 
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provides cholinergic input to a variety of different brain nucleus such as the VTA, nucleus 

accumbens, anterior hypothalamus, and lateral septum (Mesulam et al., 1983; Woolf, 1991; 

Woolf et al., 1983; Woolf et al., 1985; Woolf et al., 1985).  

Once released into the synapse, the effects of acetylcholine are mediated by two different 

classes of receptors: metabotropic muscarinic receptors and ionotropic nicotinic receptors 

(Taylor et al., 1980). The muscarinic metabotropic receptors contain five distinct classes of 

receptors (M1-M5) and are G-protein coupled receptors that signal through different intracellular 

pathways. For example, M1, M3, and M5 receptors signal through Gαq pathway which leads to 

activation of phospholipase C and eventually the formation of diacylglycerol (DAG) and inositol 

triphosphate (IP3) via hydrolysis of 4,5-bisphosphate (PIP2). Conversely, muscarinic receptors 

M2 and M4 signal through the Gαi pathway that inhibits the production of cyclic AMP (cAMP) 

via suppression of the enzyme adenylate cyclase (Wess, 1996; van Koppen & Kaiser, 2003).  

Acetylcholine can also exert an excitatory influence on neurons via ionotropic nicotinic 

receptors. These receptors are pentameric ion channels that can be homomeric channels 

composed of multiple α subunits (α2-7) or heteromeric channels that are composed of a mixture 

of α (α2-7) and β (β2-4) subunits (Higley & Picciotto, 2014; Paterson & Nordberg, 2000). The 

termination of acetylcholine within the synapse is mediated by the enzyme acetyolcholinesterase 

(AChE), which hydrolyzes the neurotransmitter into choline and acetate (Čolović et al., 2013).  

External or endogenous stimuli that impose a demand on the body can be defined as a 

“stress.” Stress can impact almost all divisions of a human’s physiological systems, including 

gastrointestinal, cardiovascular, endocrine, immunological, etc. These responses to stress have 

been termed stress responses. Depending on the system that is being investigated, stress can be 

measured by quantifying cardiovascular changes such as increased heart rate, vasodilation, or 
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increased respiration rate (Yuenyongchaiwat, 2017). Stress can also be quantified using self-

report from patients themselves while under a stressor. Self-report is assumed to reflect 

psychological changes indicative of mood and behaviour and can include anxiety, depression, 

hostility, agitation, paranoia, and emotional malaise (Julian, 2014). In general, stressors that 

decrease the fitness of the animal can induce negative emotional states (Brudzynski, 2013).   

Hypotheses speculating of the involvement of acetylcholine in negative emotional states 

involved the evaluation of effects of organophosphates which are, by design, anticholinesterase 

agents (anti-AChE). Organophosphates like sarin, EA-1701, diisopropylfluorophosphate exert 

their influence by binding to acetylcholinesterase (AChE), the main enzyme that is responsible 

for the breakdown of the neurotransmitter acetylcholine (Taylor & Brown, 1999). The inability 

of ACh to be hydrolyzed by AChE results in an abnormally increased availability of 

acetylcholine within the synapses that is capable of interacting with both pre- and post-synaptic 

acetylcholine receptors, which can induce a variety of different physiological results.  

The behavioural manifestations of patients within the clinical setting in response to anti-

AChE compounds paralleled the affective changes noted by Holmes and Gaon (1956) in a 

population of roughly 600 people (mostly factory workers and farmers) that were exposed to the 

anti-AChE compounds paraoxon, diisopropyl fluorophosphate or tetramethyl pyrophosphate. In 

the study, patients reported marked increase in confusion, lethargy, irritability, insomnia, 

paranoia, anxiety, anger and depression upon exposure (Bowers et al., 1964; Holmes & Ganon, 

1956; Grob & Harvey, 1958; Janowsky et al., 1973; Levin et al., 1976). Since organophosphates 

increase the synaptic concentration of acetylcholine within the nervous system, the identity of the 

receptor system or pathway mediating the psychiatric symptomology of organophosphate 

exposure was obscure.  
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Evidence that specifically began to narrow the involvement of acetylcholine receptors in 

the negative emotional states emerged with clinical experiments using drugs that bind to 

muscarinic receptors but do not induce any biology effect. These drugs are known as muscarinic 

antagonists and include the compound scopolamine. Scopolamine’s influence on psychiatric 

symptomatology was reported by Khajavi and colleagues (2012). They evaluated the efficacy of 

oral scopolamine (oral ingestion of 1mg/day) in forty patients suffering from a major depressive 

disorder in a randomized, double-blind placebo-controlled study. They reported that 

scopolamine-treated group increased their self-reported measure of positive emotional state and 

that their overall energy and motivation levels (Khajavi et al., 2012). Similar improvements in 

mood were observed when scopolamine was given to clinically depressed patients suffering from 

alcoholism. Intramuscular injection (0.4 mg i.m.) of scopolamine decreased self-reported 

measures of tension, anxiety, frustration, anger, fatigue, confusion, and depression (Gillin et al., 

1991). Similar results of scopolamine’s anti-depressant and anti-anxiety effects were reported in 

other clinical cases (see Drevets et al., 2010; Furey et al., 2006; Furey et al., 2010). The positive 

effects of scopolamine on emotional states have been mimicked by other muscarinic antagonists 

such as hydroxyzine (Guaiana et al., 2010), promethazine (Jalbout et al., 1994), and tofenacin 

(Capstick & Pudney, 1976) suggesting that an aspect of negative emotionality is mediated by the 

muscarinic family of receptors. 

1.5: The neurobiology of the ascending mesolimbic cholinergic system: a comparison between 

rats and cats 

Experimental methods that have been used to investigate the neurobiological systems that 

can initiate emotional responses include electrical stimulation and injection of drugs into brain 

nuclei or ventricles. For example, electrical stimulation of the hypothalamus in the cat can 
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produce a prototypical emotional defense response consisting of defensive postures, retraction of 

ears, an extension of the tail, hissing, spitting, pupil dilation, and piloerection (Brown et al., 

1969; Hess & Akert, 1955). A similar defensive response could be initiated from cats via 

injection of the muscarinic agonist (a muscarinic agonist is a drug that binds to the muscarinic 

receptor and acts like acetylcholine) carbachol into the same region that was electrically 

stimulated by Brown and colleagues (1969). The defensive response induced by carbachol 

injections resulted in protraction of claws, growling vocalization, hissing, pupil dilation, arching 

of the back, and piloerection (see Figure 6; Baxter, 1967; Brudzynski, 1981).  The strip of tissue 

that can initiate defensive responses in cats begins at the tegmental region and extends along the 

neuraxis to the lateral septum (Decsi, 1974) (see Figure 7). 

   

A) Electrical stimulation of AH-MPO               B) Chemical stimulation of AH-MPO 

Figure 6: Development of defensive behaviour in the cat in response to electrical (Figure A) and 

chemical stimulation of the AH-MPO with the cholinergic agonist carbachol (Figure B). In both 

cases, stimulation of the AH-MPO produces a growling response, piloerection, pupillary dilation, 

and slight retraction of the ears. Figure A taken from Brown, Hunsperger, & Rosvold (1969). 

Defense, attack, and flight elicited by electrical stimulation of the hypothalamus of the cat. 

Experimental Brain Research, 8(2), 113-129. Figure B was taken from Brudzynski (1981). 
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Carbachol-induced agonistic behavior in cats: aggressive or defensive response. Acta 

Neurobiologiae Experimentalis, 41, 15-32. 

 

Figure 7: A parasagittal cross-section of the rat brain displaying the medial cholinoceptive 

vocalization strip. The dark lines emanating from the LTDg represent cholinergic axons 

innervating various areas of the midbrain and forebrain. The regions that are shaded from the 

hypothalamus in the caudal division (red arrow) to the LS (black arrow), the most rostral division 

represents the medial cholinoceptive vocalization strip. Injection of carbachol into the AH-MPO 

(red arrow) or the LS (black arrow) induced species-typical 22-kHz USVs. Sime abbreviations: 

AH – anterior hypothalamus; LDT – laterodorsal tegmental nucleus; LS – lateral septum. The 

figure is taken from: Brudzynski, S. M. (2007). Ultrasonic calls of rats as indicator variables of 

negative or positive states: acetylcholine–dopamine interaction and acoustic coding. Behavioural 

Brain Research, 182(2), 261-273. 
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 The strip of neural tissue that is sensitive to cholinergic stimulation that results in the 

initiation of defensive behaviours in cats is also found in rats. In rats, the laterodorsal tegmental 

nucleus (LTDg) is a prominent cholinergic nucleus within the pons that innervates nuclei along 

the neuraxis. Projections of the LTDg overlap extensively with stimulation points that have been 

reported to induce defense responses in cats observed upon cholinergic or electrical stimulation 

(Woolf et al., 1984; Wolf & Butcher, 1986). This strip of tissue has been defined as the medial 

cholinoceptive vocalization strip since it is a strip of neural tissue composed of medially 

positioned nuclei that, upon stimulation with muscarinic agonists, induce species-typical vocal 

responses.  

In rats, injection of the excitatory amino acid, glutamate, into the LTDg activated 

cholinergic neurons and induced species-typical 22-kHz USVs without the occurrence of 50-kHz 

USVs. (Brudzynski & Barnabi, 1996). These glutamate-induced 22-kHz USVs from the LTDg 

can be significantly attenuated when the muscarinic antagonist scopolamine is injected into the 

anterior hypothalamus-medial preoptic area, an area that can initiate growling responses in cats 

when stimulated (Brown et al., 1969; Brudzynski & Barnabi, 1996). Consistent with a 

scopolamine-induced decrease of glutamate-induced 22-kHz USVs from the LTDg, direct 

injection of carbachol into the AH-MPO can induce species-typical 22-kHz USVs suggesting 

muscarinic receptors within the medial cholinoceptive vocalization strip are important for the 

initiation of 22-kHz USVs in rats (Brudzynski, 2007).   

The most rostral division of the medial cholinoceptive vocalization strip contains the 

lateral septum (LS); a structure that is involved in the processing of fear and anxiety. For 

example, foot-shocks and air-puffs, both conditions, which induced emission of 22-kHz USVs 

(Brudzynski & Holland, 2005; Inagaki & Sato, 2016; Knapp & Pohorecky, 1995), can increase 
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the neural activity within the LS measured by the activation of the protooncogene c-fos (Duncan 

et al., 1996). Likewise, pharmacological injection of carbachol into the LS can induce species-

typical 22-kHz USVs. The increase in 22-kHz USVs upon carbachol microinjection into the LS 

was correlated with an increase in cholinergic cell activity within the LTDg (Brudzynski et al., 

2011). The observations that glutamate injection into the LTDg induced 22-kHz USVs that were 

attenuated by scopolamine, a muscarinic antagonist, and 22-kHz USVs can be directly initiated 

by direct application of the muscarinic agonist, carbachol, into the AH-MPO and the LS, 

suggests that: 1) muscarinic receptors are involved in the initiation of species-typical 22-kHz 

USVs and that 2) the emission of 22-kHz USVs is an indirect measure of acetylcholine release 

within the medial cholinoceptive vocalization strip (Brudzynski, 2007).  

1.6: Summary 

Rats can emit 50-kHz and 22-kHz USVs that signal distinct, mutually exclusive 

emotional states; 50-kHz USVs, specifically FM 50-kHz USVs, signals a positive emotional 

state while 22-kHz USVs signal a negative emotional state. The initiation of 50-kHz USVs is 

induced by phasic dopamine release within the shell of the nucleus accumbens, while 22-kHz 

USVs is induced by acetylcholine being released along the medial cholinoceptive vocalization 

strip. The occurrence of the expression of each type of USVs is mutually exclusive with 22-kHz 

USVs only being observed in situations that initiate a negative emotional state, while 50-kHz 

USVs are only observed in situations that are associated with positive emotional states.  Despite 

the exclusivity of these two types of USVs, there has been no direct investigation of whether the 

systems that initiate these USVs are antagonistic to each other. However, there is indirect 

evidence briefly summarized below: 
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1) The anticipation of drugs of abuse, or natural rewards like food, increase the phasic 

release of dopamine within the nucleus accumbens. Phasic release of dopamine is 

associated with the initiation of 50-kHz USVs in rats. However, failure to deliver an 

expected reward, conditions that initiate 22-kHz USVs, inhibit dopamine neurons in the 

VTA indirectly by activating GABAergic neurons in the tail of the VTA that projects 

onto dopamine cells in the VTA (Barrot et al., 2012). 

 

2) The anticipation of foot-shock or air-puff increases fos immunoreactivity in brain 

structures that can initiate 22-kHz USVs upon electrical or cholinergic chemical 

stimulation (Brudzynski et al., 2011; Duncan et al., 1996; Kroes et al., 2007; Singewald 

et al., 2003) 

 

3) Drugs that decrease anxiety in humans like fluoxetine or benzodiazepine, decreases 

nucleus accumbens shell acetylcholine release (Chau et al., 2011).  

 

4) Tickling adolescent rats, which has been shown to increase both phasic releases of 

dopamine into the nucleus accumbens and increase the emission of FM 50-kHz USVs 

decreases audible pain vocalizations (Cloutier et al., 2014) 

 

5) Rats selectively bred for low levels of 50-kHz USVs have increased cortical 

measurements of the peptide cholecystokinin (CCK), which is correlated to increased 22-

kHz USVs during the social defeat in rats (Burgdorf et al., 2006; Panksepp et al., 2004).  
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6) Expected electrical stimulation of the VTA increases the emission of FM 50-kHz USVs, 

but failure to the expected electrical stimulation shifts the emission of FM 50-kHz USVs 

to 22-kHz USVs (Burgdorf et al., 2000). A similar result is observed in cocaine self-

administration studies. Self-administration of cocaine at doses lower than expected shift 

the emissions of FM 50-kHz USVs to 22-kHz USVs (Barker et al., 2000).  

 

7) Induced morphine withdrawal using the pharmacological agent naloxone, a condition 

which increases 22-kHz USVs, decreases nucleus accumbens dopamine concentration 

while increasing nucleus accumbens acetylcholine concentration (Pothos et al., 1991; 

Rada et al., 1991).  

 

8)  Electrical stimulation of the nucleus accumbens relieves drug-resistant depression, 

anxiety and obsessive-compulsive disorder in men (Bewernick et al., 2010; Bewernick et 

al., 2012; Grubert et al., 2011; Taghva et al., 2013). 

 

1.7: Purpose of experiment and hypotheses 

 The purpose of this thesis is to examine whether the initiation of a positive emotional 

state can decrease the magnitude of expression of a negative emotional state. In this thesis, the 

positive emotional state will be induced by microinjections of a dopamine agonist R-(-)-

apomorphine in the nucleus accumbens shell and the magnitude of the emotional state will be 

reflected by the number of emitted FM 50-kHz USVs. The negative emotional state will be 

induced by microinjections of the muscarinic agonist carbachol into the AH-MPO and the most 

rostral division of the medial vocalization strip, the LS. The magnitude of the negative emotional 
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state will be indexed by the number of emitted 22-kHz USVs. The overarching hypothesis of this 

thesis is that the initiation of a positive emotional state inhibits the initiation of a negative 

emotional state. 

In order to achieve the intended purpose of the thesis, three questions will be asked, 

which are divided into three chapters: 

 

1)  Can initiation of a positive emotional state, induced by apomorphine injection into 

the medial nucleus accumbens shell, decrease carbachol-induced 22-kHz USVs from 

the AH-MPO? (Chapter 2). The first hypothesis was that initiation of positive pro-

social FM 50-kHz USVs via injection of the dopamine agonist apomorphine into the 

nucleus accumbens would be able to decrease the number of emitted 22-kHz USVs 

initiated by injection of carbachol into the AH-MPO. To validate the hypothesis, 

apomorphine was injected into the shell of the nucleus accumbens; then carbachol 

was injected into the AH-MPO a few minutes later. The number of 22-kHz USVs 

were automatically recorded, then manually analyzed.  

 

2) Can initiation of a positive emotional state, induced by apomorphine injection into the 

medial nucleus accumbens shell, decrease carbachol-induced 22-kHz USVs from the 

LS? (Chapter 3). To answer this question, apomorphine was injected into the medial 

division of the nucleus accumbens shell followed by carbachol injection into the LS. 

The number of 22-kHz USVs were then automatically recorded and manually 

analyzed. The second hypothesis was that apomorphine would be capable of 

decreasing carbachol-induced 22-kHz USVs from the LS. The purpose of the 
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experiment was to demonstrate that the antagonism of the positive emotional state on 

a negative emotional state was not restricted to the anterior hypothalamus. The 

methodology used to examine the second hypothesis was similar to the first 

experiment. However, carbachol was injected into the LS instead of the AH-MPO. 

 

3) Can pharmacological antagonism of dopaminergic neurons done by systemic 

haloperidol or microinjection of the D2 antagonist raclopride, increase carbachol-

induced 22-kHz USVs induced from the LS? (Chapter 4). The final hypothesis of the 

thesis was that blocking dopamine receptors within the mesolimbic system would 

increase the magnitude of the negative emotional state induced by carbachol injection 

into the LS. The increased magnitude of the negative emotional state would be 

hypothesized to be reflected in the increased quantity of emitted 22-kHz USVs. This 

question was divided into two experiments. In the first experiment, haloperidol, a D2 

receptor antagonist, was injected systemically followed by injection of carbachol into 

the LS. The number of 22-kHz USVs were then recorded. In the second experiment, 

raclopride, a D2 receptor antagonist, was injected directly into the nucleus accumbens 

shell followed by carbachol injection into the LS. The number of 22-kHz USVs were 

then automatically recorded.  
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Chapter 2: Intracerebral injection of R-(-)-Apomorphine into the nucleus accumbens 
decreased carbachol-induced 22-kHz ultrasonic vocalizations in rats 

 

 

Chapter two published in full in: Silkstone, M., & Brudzynski, S. M. (2019). Intracerebral 

injection of R-(-)-Apomorphine into the nucleus accumbens decreased carbachol-induced 22-

kHz ultrasonic vocalizations from the anterior hypothalamic-medial preoptic area. Behavioural 

Brain Research, (364): 364-273 

 

 

2.0: Abstract 
 

Rats can produce ultrasonic vocalizations (USVs) in a variety of different contexts that signal 

their emotional state to conspecifics. Under distress, rats can emit 22-kHz USVs, while during 

positive pro-social interactions, rats can emit frequency-modulated (FM) 50-kHz USVs. It has 

been previously reported that rats with increasing emission of FM 50-kHz USVs in anticipation 

of rewarding electrical stimulation or positive pro-social interaction decrease the number of 

emitted 22-kHz USVs. The purpose of the present investigation was to determine, in a 

pharmacological-behavioural experiment, if the positive emotional arousal of the rat indexed by 

the number of emitted FM 50-kHz USVs can decrease the magnitude of a subsequent negative 

emotional state indexed by the emission of 22-kHz USVs. To induce the positive emotional 

arousal, an intracerebral injection of a known D1/D2 agonist R-(-)-apomorphine (3.0µg/0.3µl) 

into the medial nucleus accumbens shell was used, while the negative emotional arousal was 
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induced by intracerebral injection of carbachol (1.0µg/0.3µl), a known broad-spectrum 

muscarinic agonist, into the anterior hypothalamic-medial preoptic area. Our results 

demonstrated that the initiation of a positive emotional state was able to significantly decrease 

the magnitude of subsequently expressed negative emotional state measured by the number of 

emitted 22-kHz USVs. The results suggest the neurobiological substrates that initiate positive 

emotional state antagonize the brain regions that initiate negative emotional states.    

 

2.1: Introduction 
 

In the past few decades, it has been documented that rats can vocally express their 

emotional states through the emission of ultrasonic vocalizations (USVs) (Cuomo et al., 1992; 

Knutson et al., 2002; Brudzynski, 2009; 2013; 2015). These vocal signals are valence-specific 

and directed to other rats (Brudzynski, 2007; Takahashi et al., 2010; Laplagne & Costa, 2016). 

Prototypical USVs are classified into two different categories based on their sonographic features 

(Brudzynski, 2007; Portfors, 2007).  

22-kHz USVs are a category of USVs that are emitted by rats during defensive or 

aversive contexts (Brudzynski, 2007). For example 22-USVs are emitted in response to 

proximity to a predator (Blanchard et al., 1991; 1992), anticipation of electrical shock (Borta et 

al., 2006; DeVry et al., 1993; Jelen et al., 2003), anticipation of an air-puff directed to the head 

or nape of the rat (Brudzynski & Holland 2005; Knapp & Pohorecky, 1995), in response to 

acoustic startle response (Kaltwasser, 1991), or withdrawal from prolonged treatment of drugs of 

abuse like cocaine (Mutschler & Miczek, 1998). Structurally, 22-kHz USVs are unmodulated or 
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flat frequency calls with a duration ranging between 100-3000 ms, and a peak frequency between 

18-32-kHz (Brudzynski et al., 1993; Brudzynski., 2007). The number of 22-kHz USVs that are 

emitted during conditioned anxiogenic circumstances can be attenuated by administration of 

anti-anxiety medications (Sánchez, 1993; Tomazini et al., 2006) further supporting the argument 

that 22-kHz USVs are reflective of a negative emotional state. 

In contrast to the 22-kHz USVs, rats can also emit 50-kHz USVs in positive and pro-social 

contexts. 50-kHz USVs are divided into flat (F) and frequency modulated (FM) 50 kHz USVs 

although F calls seem to mediate a form of social coordination (Biały et al., 2000; Brudzynski and 

Pniak, 2002; Schwarting et al., 2007; Wöhr et al., 2008). Rats usually emit higher numbers of FM 

50 kHz USVs than F 50 kHz USVs during heterospecific play (Burgdorf et al., 2008; Brugdorf et 

al., 2011; Burgdorf & Panksepp, 2001; Panksepp & Burgdorf 2000), drug-reward cues (Meyer et 

al., 2012), or in anticipation of rewarding electrical brain stimulation of brain regions mediating 

reward (Burgdorf et al., 2000; Burgdorf et al., 2007; Scardochio et al., 2015). 

Emission of 22-kHz or 50-kHz USVs is initiated by two separate neurotransmitter 

systems arising from two separate brain nuclei located in the midbrain tegmentum of the rat 

brain. The initiation of 50-kHz USVs has been reported to be dependent on the phasic release of 

dopamine within the nucleus accumbens shell from terminals originating from the ventral 

tegmental area (VTA) (Burgdorf et al., 2001; Thompson et al., 2006; Brudzynski et al., 2012), 

while the initiation of 22-kHz USVs has been reported to be dependent on the release of 

acetylcholine into the medial cholinoceptive vocalization strip, including the anterior 

hypothalamus-medial preoptic area (AH-MPO) and lateral septum (LS), by activity of 

cholinergic cell bodies located in the laterodorsal tegmental nucleus (LTDg) (Brudzynski & 

Bihari, 1990; Brudzynski, 2001; 2007; Brudzynski et al., 2011; Brudzynski & Barnabi, 1996).  
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Results of behavioural-pharmacological investigations of the neurotransmitter systems 

involved in addiction suggested a possible dynamic relationship between the VTA and the LTDg 

in promoting behaviours associated with positive or negative emotive states. 22-kHz USVs are 

reliably recorded from rats during withdrawal from opiate drugs like morphine (Vivian & 

Miczek, 1991), alcohol (Berger et al., 2013), cocaine (Miczek et al., 1996; Simmons et al., 2018) 

and nicotine (Rada et al., 1991); all conditions, which decreased the concentration of dopamine 

within the nucleus accumbens shell (Hildebrand et al., 1998; Rossetti et al., 1991; Rada et al., 

2004; Liu & Jun 2004). Likewise, drugs of abuse that increase the concentration of dopamine 

within the nucleus accumbens increase the propensity of rats to emit 50-kHz USVs (Brudzynski 

2007; 2013; Simola et al., 2018; Wright et al., 2010).   

The purpose of the present experiment was to further investigate the role of 

acetylcholine-dopamine interactions during pharmacologically induced expression of emotional 

states. We chose to examine the emission of USVs since it is a sensitive measure of the rat’s 

emotional state (Brudzynski, 2007).  In this experiment, the non-selective dopamine agonist R-(-

)-apomorphine was injected into the medial shell of the nucleus accumbens to induce a positive 

emotional state, while carbachol was subsequently injected into the AH-MPO to induce a 

negative emotional state. If there is an antagonistic relationship between the neurochemical 

system, the initiation of a positive emotional state by R-(-)-apomorphine will reduce the 

magnitude of 22-kHz USVs emission. If there is no antagonistic relationship between the two 

neurochemical systems, then the initiation of a positive emotional state by R-(-)-apomorphine 

will not change. 

 



48 
 

2.2: Methods and Procedure 
 

2.2.a: Recording of 50-kHz USVs after intracerebral injection of R-(-)-apomorphine 

This group of rats was used to demonstrate the effects of R-(-)-apomorphine on the 

emission of 50-kHz USVs after its injection into the nucleus accumbens shell alone.  

2.2.b: Subjects and Surgery 

Fifteen adolescent male Long-Evans rats (Charles River Laboratories, Saint-Constant, 

QC, Canada) with body weights ranging from 270-350 g at the time of surgery served as the 

experimental subjects. All animals were housed in polycarbonate cages (48 x 27 x 20 cm) in a 

room with a constant temperature (23° C ± 2° C) and humidity settings. Rats were on a 12:12 h 

light-dark cycle with ad libitum access to standard food pellets and filtered tap water. 

Rats underwent stereotaxic surgery for unilateral implantation of guide cannula into the 

nucleus accumbens shell in the left hemisphere. Briefly, rats were anesthetized with gaseous 

isoflurane at a concentration of 3% and placed in a Kopf stereotaxic apparatus (Model 900, 

David Kopf Instruments, Tujunga, CA). While in the apparatus, burr holes were drilled into the 

skull using an electric drill. A guide cannula (O.D. = 650 µm) was implanted into the left 

hemisphere. Guide cannulae were constructed from a 23 G stainless steel syringe needles 

(Beckton-Dickinson Canada, Mississauga, ON) and were implanted 1 mm above the intended 

injection site. Stereotaxic coordinates for implantation measured from the interaural plane, were 

as follows: A-P: 9.8-11.7; L: 0.8-1.8; D-V: 5.8-6.4 mm. The guide cannula was permanently 

attached to the skull with jeweler’s screws and methyl methacrylate resin (Perm Resin, Hygenic 

Corporation of Canada Inc., St. Catharines, ON). Rats recovered for 5 days after the surgery 
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before they began 72 hours of habituation, for further details see Fornari et al. (2012). All 

research protocols were approved by Brock University Animal Care and Use Committee and 

complied with guidelines and policies set forth by the Canadian Council on Animal Care. 

2.2.c: Pharmacological agent and intracerebral injection procedure 

R-(-)-apomorphine hydrochloride hemihydrate (Sigma Chemicals Co., St Louis MO) was 

diluted with warm sterile 0.9% saline and 0.1% ascorbic acid. Vehicle injection conditions 

consisted of 0.9% saline combined with 0.1% ascorbic acid. Fresh R-(-)-apomorphine and 

vehicle were prepared for each injection day. 

2.2.d: Intracerebral injection procedure and USV recording 

Intracerebral injection of R-(-)-apomorphine was accomplished with a constant rate 

Hamilton® CR-700-20 micro-syringe (Hamilton Company, Reno, NV) at a rate of ~4.5 nl/s to a 

volume of 0.3µl. Once the injection of the drug or vehicle was finished, the injection cannula 

was left in place for 60 s to allow for the diffusion of the substance, the injection cannula was 

removed, and the guide cannula was closed with a sterile plug-pin. The rat was then placed in its 

home cage for approximately 90 s to recover from the handling and injection process. After the 

time spent in the home cage, the rat was placed in a Plexiglass recording chamber (25 cm x 18 

cm x 18 cm). On top of the recording chamber, an Avisoft® CM16/CMPA condenser 

microphone (frequency range 2-250 kHz, Avisoft® Bioacoustics, Berlin, Germany) was placed 

with an average distance of 25 cm to the rat’s head. Recording of the USVs was stored in a 16-

bit format for later analysis. Analysis of USVs was done off-line using Avisoft® SAS LabPro 

program.  
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Identification of 22-kHz and 50-kHz USVs was followed as described in previous studies 

(Brudzynski et al. 1991, Brudzynski 2007, Thompson et al. 2006). Briefly, vocalizations that had 

a peak frequency that fell between 19-29 kHz and had a duration longer than 100 ms were 

classified as 22-kHz USVs while calls that had a peak frequency that fell between 39-80 kHz and 

had a duration less or equal to 100 ms were classified as 50-kHz USVs. USVs with peak 

frequency from 30-40 kHz were very rare and were not taken for analysis. Subsequent 

classification of 50-kHz into frequency modulated (FM) and flat (F) calls, i.e., unmodulated 

USVs, was based on morphological characteristics of calls on the sonograms consistent with the 

study by Burgdorf (2007). Recording of USVs took place for 10 min. After that time, the rat was 

placed back into its home cage. Each rat received a clean cage for recording time, and each 

soiled cage was removed from the test room. Before each additional animal was tested, the table 

was wiped down with Virox® (Virox Technologies Inc., Oakville, ON) then further cleaned with 

a diluted ethyl alcohol solution.  

After the rat had received the final injection, it was anesthetized with an overdose of 

sodium pentobarbital. Before removal of the brain, an India-ink solution was prepared (1:100 

dilution) and injected into the brain for histological determination of injection sites. 

2.2.e: Histology and Localization of Injection sites 

After injections were finished, animals underwent transcardial perfusion with 10% 

formalin. The brains were postfixed with formalin solution for 24 h and were removed and 

coronally sectioned on a freezing microtome (Cryo-Histomat, Hacker Instruments and Industries, 

Fairfield, NJ) to a thickness of ~40 µm. Sections were placed on 1% poly-lysine-coated slides, 

then underwent Nissl staining procedure with buffered thionin. Slides were then coated with 
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Permount™ mounting medium (Fisher Scientific Co., Ottawa, ON) and were coverslipped. 

Details of the histological procedures were followed as described by Lindroos & Leinonen 

(1983). 

2.2.f: Statistics 

A non-parametric repeated measures ANOVA (Friedman’s ANOVA followed by Sign-

ranked post hoc test) was used to assess the statistical difference between the number of 50-kHz 

USVs induced by R-(-)-apomorphine or vehicle from the nucleus accumbens shell. Analysis of 

sonographic features (call duration and peak frequency) was done using repeated measures 

ANOVA. A Shapiro-Wilks test was used to assess the normality of sonographic features to 

ensure the appropriate statistical procedure. All statistics were done using SPSS v 17.0 (SPSS 

Inc, Chicago, U.S.A). Multiple comparisons were corrected with Bonferroni method. Reported 

means are followed by the standard error of the mean (S.E.M).  

2.2.i: Stereotaxic implantation of cannula into the left nucleus accumbens shell and left anterior 

hypothalamic-medial preoptic area (AH-MPO) 

This group of rats was used for a double injection of pharmacological agents into two 

different brain areas that induce either 50-kHz USVs or 22-kHz USVs. R-(-)-apomorphine was 

injected into the medial shell of the nucleus accumbens to induce positive emotional arousal 

while carbachol was injected into the AH-MPO to induced negative emotional arousal. The 

intensity of emotional states was measured by the type and number of USVs emitted.  

2.2.ii: Subjects and Surgery 
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Thirty-three adult male Long-Evans rats (Charles River) with body weight ranging from 

300-350 g at the time of surgery served as the experimental subjects. All animals were housed in 

polycarbonate cages in constant room temperature and humidity conditions as described in 2.1.a.  

Rats were on a 12:12 h light-dark cycle with ad libitum access to food and water. After a 5-day 

recovery period from stereotaxic surgery, animals were handled and acclimated to the 

experimental procedure for 3 days before the start of the experiment.  

Rats underwent stereotaxic surgery for unilateral implantation of guide cannula into the 

left hemisphere. Briefly, rats were anesthetized with gaseous isoflurane at a concentration of 3% 

and placed in a Kopf stereotaxic apparatus. While in the apparatus, burr holes were drilled into 

the skull and two guide cannula (O.D. = 650 µm) were implanted, one into the AH-MPO 

(stereotaxic parameters from the interaural line ranged from A-P: 8.04-7.44; L: -2.0-0 from the 

midline, and D-V: -6.4 to -8.2 from the surface of the skull), and the other cannula into the left 

nucleus accumbens shell (parameters from the interaural line ranged from A-P: 9.8-11.7; L: 0.8-

1.8; D-V: 5.8-6.4). Cannulae were permanently secured to the skull by methyl methacrylate 

resin. For further details see subsection 2.1.a, above, and Fornari et al. (2012). 

2.2.iii: Drugs and Injection Procedure 

Carbachol (carbamylcholine chloride, Sigma Chemical Co., St. Louis MO.) was 

dissolved in 0.9% sterile saline and was injected unilaterally into the AH-MPO by a constant rate 

Hamilton® CR 700 micro-syringe in a dose of 1.0 µg/0.3µl at a rate of ~4.5 nl/s.  R-(-)-

apomorphine hydrochloride (Sigma, St. Louis, MO) was dissolved in saline with a 0.1% ascorbic 

acid and injected in a concentration of 3.0 µg/0.3µl at the same rate. Other details and vehicle 

preparation was described in section 2.1.b. 
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R-(-)-apomorphine (3.0 µg/0.3µl) was first injected into the shell of the nucleus 

accumbens. After injection of the drug or vehicle was finished, the injection cannula was left in 

place for an additional 60s to allow for proper drug diffusion, and after that, the rat was placed in 

its home cage. After 90 s, the rat was taken out of his cage, and carbachol was injected into the 

AH-MPO at the same rate and volume as R-(-)-apomorphine. After the injection of carbachol 

was finished, the injection cannula was left in place for an additional 60 s to allow for proper 

diffusion of the drug after which the injection cannula was removed, and the guide cannula was 

closed using a plug-pin. The rat was then immediately placed in the recording chamber, and 

vocalizations were recorded for 10-minutes.  

2.2.iv: Recordings of USVs 

The procedure for recording and analyzing USVs after intracerebral injections were the 

same as described in section 2.1.d. 

2.2.v: Histology and localizations 

After the experiment, animals underwent transcardial perfusion with 10% formalin. 

Brains were removed, postfix with formalin solution for 24 h, and coronally sectioned on a 

freezing microtome to a thickness of ~40 µm. Sections were placed on 1% poly-lysine coated 

slides, then underwent Nissl staining and were coverslipped. Details of the histological procedure 

were described in subsection 2.1.d, above, and in Lindroos & Leinonen (1983). 

2.2.vi: Statistics 

The statistical analysis for analyzing the number of calls and the analysis of 

spectrographic features of USVs was the same as described in section 2.1.f. 
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2.3: Results 

 

2.3.a: Injection of R-(-)-apomorphine alone into the medial shell of the nucleus accumbens but 

not other striatal regions, significantly increased the number of frequency-modulated (FM) 50 

kHz USVs. 

Injection of R-(-)-Apomorphine into the nucleus accumbens shell increased the emission 

of frequency modulated (FM) 50-kHz USVs (χ2(3) = 16.7, p < 0.05, n = 10, see Figure 8A) when 

compared to saline injection in the same region. There was no difference in the number of 

emitted flat (F) 50-kHz USVs when comparing R-(-)-apomorphine or saline injection into the 

same brain region (p > 0.95, n = 10; Table is at the end of the text). For localization of injection 

into the nucleus accumbens shell see Figure 8B. 

Injection of R-(-)-apomorphine into the ventral caudate-putamen, dorsal accumbens core, 

and lateral nucleus accumbens shell did not induce a change in the number of recorded F or FM 

50-kHz USVs (χ2(3) = 3.96, p = 0.27, n = 5; figure 8C and Table 1). 
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Figure 8: The mean number of F (Flat) and FM (frequency modulated) 50-kHz USVs recorded 

after injection of apomorphine into the centro-medial shell of the nucleus accumbens (n = 10) or 

regions outside the shell (Control, n = 5). Injection of apomorphine into the shell was able to 

increase the number of FM 50-kHz USVs in a statistically significant manner when compared to 

vehicle injection (Veh) (χ2(3) = 16.7, p < 0.05, n=10). There was no statistically significant 

change in the number of recorded F 50-kHz USVs between apomorphine or vehicle [p > 0.95, n 

= 10]. Injection of vehicle or apomorphine into regions outside accumbens (ventral caudate-

putamen, dorsal accumbens core, and far-lateral shell labeled as “control”) did not induce a 

statistically significant change in either F or FM 50 kHz USVs (χ2(3) = 3.96, p = 0.266, n = 5). 

Localization of injection sites (circles, n = 10) in the shell of the accumbens is shown in B, and 

outside of the accumbens in C (n = 5). The frontal planes are 10.7 mm from the interaural plane 

(INT). Abbreviations:  AC – core of the nucleus accumbens, AS- shell of the nucleus accumbens, 

ca – anterior commissure, cc – corpus callosum, CP – caudate-putamen, DB – diagonal band, EN 

– entopeduncular nucleus, LS – lateral septum, LV – lateral ventricle, OT – olfactory tubercle, 

VP – ventral pallidum. 
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2.3.b. Injection of R-(-)-apomorphine into the central division of the medial shell of the nucleus 

accumbens significantly increased the number of FM 50-kHz USVs when followed by injection 

of the vehicle into AH-MPO (Figure 9). 

Rats in this experiment had unilateral implantation of cannula into the medial nucleus 

accumbens shell and the AH-MPO. Rats underwent four injections: veh+veh, rats received 

vehicle injection into the medial shell of the nucleus accumbens followed by vehicle injection 

into the AH-MPO; veh+carb, vehicle injection into the medial shell of the nucleus accumbens 

followed by carbachol injection into the AH-MPO; apo+carb, R-(-)-apomorphine into the medial 

shell of the nucleus accumbens, followed by carbachol injection into the AH-MPO, apo+veh, R-

(-)-apomorphine injection into the medial shell of the nucleus accumbens followed by vehicle 

injection into the AH-MPO.  

Injection of R-(-)-apomorphine into the central medial region of the nucleus accumbens 

shell (A-P: 10.4-10.9) was able to significantly increase the mean number of FM 50-kHz USVs 

compared to veh+veh injection condition [χ2(3) = 28.55, p < 0.05, n = 14; See Figure 9, for 

values see Table 2]. There was no difference in the ability of R-(-)-apomorphine or vehicle to 

induce F 50-kHz USVs from the central division of the medial nucleus accumbens shell (p = 

0.54, see Figure 9; Table 2) for localization of injection sites see Figure 10 B.  

R-(-)-apomorphine failed to increase both F and FM 50-kHz USVs when injected in the 

rostral and caudal divisions of the nucleus accumbens shell ([χ2(3) = 1.96, p = 0.59, n = 10; see 

Figure 1A). For localization of injection sites see Figures 10 D, and E.  
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Figure 9: Injection of R-(-)-apomorphine (apo) into the centro-medial shell of the nucleus 

accumbens (labeled “Central,” left four bars) significantly increased the number of FM 50 kHz 

USVs as compared to vehicle result [χ2(3) = 28.55, p < 0.05]. The mean number of F 50-kHz 

USVs was not significantly changed [p = 0.54, n = 14]. Injection of the vehicle (veh) or 
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apomorphine into the rostral and caudal division of the medial nucleus accumbens did not 

significantly change the number of F or FM 50 kHz USVs [χ2(3) = 1.96, p = 0.58, n = 10]. 

Abbreviations: veh+veh: vehicle-injected into the nucleus accumbens followed by vehicle-

injected into the AH-MPO; veh+carb: vehicle injection into the nucleus accumbens followed by 

carbachol injection into the AH-MPO; apo+carb apomorphine injected into the nucleus 

accumbens followed by carbachol injection into the AH-MPO; apo+veh: apomorphine injected 

into the nucleus accumbens followed by vehicle injected into the AH-MPO. Localization of the 

injection sites is shown in Fig. 10: 10B. Localization of injection sites (circles, n = 14) in the 

frontal section of the centro-medial accumbens 10.7 mm from the interaural plane. Localization 

of injection sites in the rostral medial shell (10D, 11.5 mm from the interaural plane, n = 7) and 

in the caudal medial shell (10E, 9.9 mm from the interaural plane, n = 3). Abbreviations: CX – 

cortical regions, fcc – forceps of the corpus callosum, MS – medial septum. 

2.3.c. Injection of R-(-)-apomorphine into the medial shell of the nucleus accumbens decreased 

the mean number of recorded carbachol-induced 22-kHz USVs initiated from the AH-MPO 

Injection of R-(-)-apomorphine into the centro-medial division of the medial shell of the 

nucleus accumbens (A-P: 10.4-10.9 mm) was able to significantly decrease the mean number of 

subsequent carbachol-induced 22-kHz USVs (apo+carb condition) when compared to vehicle 

injection (veh+carb condition) [χ2(3) = 39.46, p = 0.013, n = 14]; see Figure 10A; for localization 

of nucleus accumbens injection sites, see Figure 10B; for localization of AH-MPO injection sites 

see Figure 10C See Table 2 for values).  

Injection of R-(-)-apomorphine into the rostral or caudal division of the accumbens (for 

localizations see figure 10 D, 10E) was unable to decrease the mean number of recorded 22-kHz 
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USVs (Figure 10A) caused by subsequent injection of  carbachol into the AH-MPO (for 

localization of injection sites in the AH-MPO, see Figure 10F) (apo+carb condition, p = 0.73, n = 

10; see Table 2 for values).  

Injection of R-(-)-apomorphine outside the medial shell of the nucleus accumbens did not 

significantly increase the mean number of recorded FM 50-kHz USVs ((χ2(3) = 0.831, p = 0.842, 

n = 10, see Figure 11) and was unable to significantly decrease the mean number of 22-kHz 

USVs recorded after carbachol was injected into the AH-MPO [χ2(3) = 24.9, p > 0.95, n = 9; see 

figure 12A]; localization of injection sites correspond to figure 12 B,C; n = 9, See Table 2 for 

values).   
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Figure 10. A. Injection of apomorphine into the centro-medial division of the nucleus 

accumbens (labeled “Central,” two left bars) significantly attenuated emission of 22-kHz USVs 

induced by subsequent carbachol injection into the AH-MPO (χ2(3) = 39.46, p = 0.01, n = 14). 

Injections of apomorphine into the rostral and caudal divisions of the shell did not significantly 

change the mean number of recorded 22 kHz USVs (p = 0.73, n = 10). All injections were 

double-injections. Injection Abbreviations: See Figure 1. B. Localization of injection sites 

(circles, n = 14) into the centro-medial shell of the accumbens. C. Localization of injection sites 

in the AH-MPO (n = 14) in the frontal section 7.7 mm from the interaural plane. Localization of 

injection sites in the rostral (D, n =7) and caudal (E, n =3) divisions of accumbens. F. 

Localization of injection sites in the AH-MPO in the frontal section 7.7 mm from the interaural 

plane. Injection sites coupled with the rostral shell are labeled with open circles and with caudal 

shell with filled circles. Abbreviations are explained in Figure 1 and 2. Abbreviations: AA – 

anterior amygdaloid area, AM – anteromedial thalamic nucleus, AH – anterior hypothalamic 

area, ci – internal capsule, fx – fornix, GP – globus pallidus, LA – lateroanterior hypothalamic 

nucleus, LH – lateral hypothalamic area, MPO – medial preoptic area, ox – optic chiasm, RE – 

nucleus reuniens, RT – reticular thalamic nucleus, sm – stria medullaris. 
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Figure 11. A. Mean number of 50-kHz USVs emitted after R-(-)-apomorphine was injected 

outside the medial shell of the nucleus accumbens. These areas include the ventral caudate-

putamen, dorsal, and central core of the accumbens and peri-commissural areas. There was no 

statistical difference in the ability of apomorphine to induce either F or FM 50-kHz USVs when 

compared to the vehicle injection [(χ2(3) = 0.831, p = 0.842, n = 10]. Abbreviations: veh+veh – 

injection of the vehicle into the shell of accumbens followed by injection of the vehicle into the 

AH-MPO; apo+veh – injection of apomorphine into the shell followed by injection of the vehicle 

into the AH-MPOA. 12.B. Localization of injection sites (circles, n = 9) outside of the medial 

shell of the accumbens shown on the frontal section of the centro-medial accumbens 10.7 mm 
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from the interaural plane. Abbreviations the same as in Figure 1. Localization of corresponding 

injection sites for the vehicle (n = 9) in the AH-MPO 7.7 mm from the interaural plane 

corresponds to figure 12C. Abbreviations the same as in Figure 9. 
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Figure 12. A. Injection of apomorphine outside the nucleus accumbens shell failed to reduce the 

emission of 22-kHz USVs induced by carbachol injection into the AH-MPO. Injection of 

apomorphine into areas outside the medial shell of the nucleus accumbens failed to increase the 

mean number of recorded F and FM 50-kHz USVs compared to control injections. Injection of 

apomorphine outside the nucleus accumbens shell also failed to significantly decrease the mean 

number of 22-kHz USVs emitted after carbachol was injected into the AH-MPO compared to 

control injection [χ2(3) = 24.9, p > 0.95, n=9]. Injection Abbreviations: See Figure 9. No 22 kHz 

USVs were observed under the veh+veh or apo+veh injection condition. B. Localization of 

injection sites (circles, n = 9) outside of the medial shell of the accumbens shown on the frontal 

section of the centro-medial accumbens 10.7 mm from the interaural plane. Abbreviations the 

same as in Figure 10. C. Localization of corresponding injection sites for the vehicle (n = 9) in 

the AH-MPO 7.7 mm from the interaural plane. Abbreviations are the same as in Figure 10. 

2.3.d: There was no statistical difference in the duration or peak frequency of USVs across 

injection conditions 

Injection of apomorphine failed to alter the duration of recorded 22-kHz USVs induced 

by subsequent carbachol injections into the AH-MPO [apo+carb; F(1.95, 62.41) =1408.1, p = 

0.62] compared to veh+carb injections.  The peak frequency of recorded 22-kHz USVs did not 

significantly change when comparing veh+carb and apo+carb injection conditions             

[F(1.76, 56.35 )= 2955.95, p = 0.34; see Figure 13 and Table 3 for values]. 
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The spectrographic features of the recorded 50-kHz USVs were consistent with 

parameters reported elsewhere (see Brudzynski, 2007). There was no statistically significant 

change in the duration of recorded F or FM 50-kHz USVs [(F (2.7, 35.8) = 4.52, p > 0.95] or 

peak frequency of flat or FM 50-kHz USVs [F(1.8, 26.2) = 159.3, p > 0.95; see Figure 14 and 

Table 3 for values] when compared to vehicle controls.  
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Figure 13. Spectrographic features of recorded 22-kHz USVs. No 22-kHz USVs were recorded 

during the veh+veh or the apo+veh conditions. Duration of vocalizations (Duration in ms, dark-

shaded bars) relates to the scale on the left vertical axis, while peak frequency (P.F. in kHz, 

horizontally shaded bars) relates to the scale on the right vertical axis. There was no difference in 

the duration [F(1.95, 62.41) = 1408.1, p = 0.62] or peak frequency [F(1.76, 56.35) = 2955.95, p = 

0.34] of recorded 22-kHz USVs under the various injection conditions. In the conditions of 

veh+veh and apo+veh, 22-kHz USVs were not emitted. For abbreviation of different conditions, 

see Figure 8 

 

 

Figure 14. Spectrographic features of recorded 50-kHz USVs in different conditions. The mean 

duration (Duration) is shown by densely stippled bars, and peak frequency (P.F.) is shown by 

sparsely stippled bars for F 50-kHz USVs (Flat) and FM 50-kHz USVs (FM). There was no 
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statistical difference in the mean duration among F 50-kHz USVs [F(2.03, 65.09) = 2162.66, p = 

0.552] or FM 50-kHz USVs (p > 0.95). There was also no significant difference when comparing 

the peak frequency among injection conditions (p>0.95). Injection Abbreviations: See Figure 8. 

 
2.4: Discussion 
 

The main purpose of the experiment was to investigate if the initiation of a positive 

emotional state could decrease the magnitude of a subsequent negative emotional state. In this 

experiment, the initiation of a positive emotional state was achieved via intracerebral injection of 

R-(-)-apomorphine into the medial shell of the nucleus accumbens and a negative emotional state 

was initiated by intracerebral injection of carbachol into the AH-MPO. The expression of the 

type of emotional state was gauged by the type of USV that was emitted, and the magnitude of 

the emotional state was gauged by the quantity of USVs emitted. 

Our results suggest that upon initiation of a positive emotional state, there is a reduction 

in the magnitude of a negative emotional state induced by carbachol. This was demonstrated by 

the significant decrease in the number of emitted 22-kHz USVs when comparing veh+carb and 

apo+carb injection conditions. This decrease in recorded 22-kHz USVs was not due to an 

increase in the length of 22-kHz USVs since there was no statistical difference found between 

any injection conditions with regards to sonographic features. The evidence suggests that the 

initiation of a positive emotional state has an inhibitory effect on the initiation of a negative 

emotional state.   
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2.4.a: R-(-)-apomorphine increased the mean number of emitted FM 50-kHz USVs when 

injected into the central region of the nucleus accumbens shell, but not in the rostral or caudal 

divisions of the nucleus accumbens shell. 

The nucleus accumbens shell is a forebrain structure that receives dopaminergic input 

primarily from the ventral tegmental area (Ikemoto, 2007). Phasic dopamine release into the 

medial shell of the nucleus accumbens is thought to be associated with the initiation of 

behaviours that reflect positive emotional states (Panksepp et al., 2002; Wanat et al., 2009; 

Willuhn et al., 2010). Consistent with this line of reasoning, injection of a mixed dopamine 

agonist R-(-)-apomorphine into the medial shell of the nucleus accumbens was able to 

significantly increase the mean number of FM 50-kHz USVs, which is reflective of a positive 

emotional state (Brudzynski, 2007; Knuston et al., 2002). Our results are consistent with other 

reports of significantly increased 50-kHz USVs in response to intracerebral injections of 

dopamine agonists into the central medial shell of the nucleus accumbens (Burgdorf et al., 2001; 

Brudzynski et al., 2012; Thompson et al., 2006).  

An interesting finding in the experiment was that the initiation of FM 50-kHz USVs was 

not consistent across the whole rostral-caudal extension of the medial nucleus accumbens shell, 

but was rather localized to a region bound between A-P: 10.2-10.9 mm from the interaural plane.  

The regional selectivity of the response within the nucleus accumbens to initiate the production 

of 50-kHz USVs may involve the formation of D1/D2 heterodimers. Indirect evidence for the 

involvement of 50-kHz USVs in response to D1/D2 heterodimer formation was demonstrated 

with the selective reduction of amphetamine-induced 50-kHz USVs with the anti-psychotic 

clozapine (Wright et al., 2013). Using FRET, it has been suggested that the anti-psychotic 
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property of Clozapine stems from the uncoupling of D1R-D2R heterodimers (Faron-Górecka et 

al., 2008).  

Systemic injections of amphetamine in rats has been reported to increase D1-D2 

heterodimer expression within the nucleus accumbens (Perreault et al., 2010), as well as the 

emissions of 50-kHz USVs (Mulvihill & Brudzynski., 2018). The signaling cascades initiated via 

activation D1-D2 oligomers are distinct from those of D1 or D2 receptors. While D1 receptors are 

coupled to Gα/olf subunit and indirectly generate the second messenger cAMP through activation 

of PKA, D2 receptors are coupled to Gi/o and negatively regulate the production of cAMP 

decreasing the intracellular activity of PKA (Beaulieu & Gainetdinov, 2011). In contrast, 

activation of the D1-D2 heterodimer hydrolyzes phosphatidylinositol phosphate to diacylglycerol 

and inositol triphosphate (IP3). Formation of IP3 increases the cytoplasmic concentration of Ca2+, 

leading to a myriad of different signals. One important enzyme that is activated via increased 

cytosolic calcium is calcium/calmodulin-dependent protein kinase II (CaMKII) by way of Gq/11, 

independent of cAMP function (Ng et al., 2010). 

Drugs that have been known to increase the prevalence of 50-kHz USVs, such as cocaine 

and amphetamine (Barker et al., 2014) have shown increased expression of the protein 

calcium/calmodulin-dependent protein kinase II (CaMKII) in the shell but not the core of the 

nucleus accumbens (Anderson et al., 2008; Loweth et al., 2013; Robison et al., 2013). In some 

cases, the expression of CaMKII is dependent on the formation of D1/D2 heterodimers (Ng et al., 

2010).  

The importance of CAMKII in relation to emotional arousal became apparent during 

overexpression and deletion experiments. Overexpression of CaMKII in the nucleus accumbens 
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by herpes simplex viral vectors caused enhanced locomotor activity in response to both systemic 

and intracerebral injection of amphetamine. (Loweth et al., 2010). Conversely, injection of the 

CaMKII inhibitor KN-93 into the nucleus accumbens impairs the locomotor effects of 

amphetamine and the phasic dopamine release within the nucleus accumbens shell in response to 

amphetamine intake. Likewise, KN-93 significantly decreased i.v. self-administration of 

amphetamine when measured on a progressive ratio schedule of reinforcement (Loweth et al., 

2008). It is interesting to note that intracerebral injection of amphetamine into the nucleus 

accumbens shell, but not the core, significantly increased 50-kHz USVs in rats (Burgdorf et al., 

2001). The effects of KN-93 on the emission of FM 50-kHz USVs should be investigated.  

The co-expression of D1 and D2 receptors within the nucleus accumbens shell has 

previously been shown on a subset of nucleus accumbens shell GABAergic medium spiny 

neurons using fluorescence resonance energy (FRET) (Perreault et al., 2011), complemented 

donor-acceptor resonance energy transfer (CODA-RET) (Urizar et al., 2011), and transgenic 

mice expressing GFP (Gangarossa et al., 2013). Recently, the regional selectivity of D1/D2 co-

expressing neurons was found in abundance within the central region of the nucleus accumbens 

shell (Gagnon et al., 2017). Although the co-expression of D1/D2 receptors is modest, this may 

indicate that a subset of GABAergic medium spiny neurons participates in a unique ventral basal 

ganglia circuit distinct from GABAergic neurons expressing either D1 or D2 receptors (Frederick 

et al., 2015; Ikemoto et al., 2015). This third unique pathway would be akin to the novel pathway 

within the dorsal striatum (Perreault et al., 2011). The co-localization of D1/D2 receptors within 

the central region of the accumbens may explain why rats are more sensitive to self-

administration of D1/D2 agonists than D1 or D2 agonists alone (Ikemoto et al., 1997). Further 

investigation should determine if the formation of D1/D2 heterodimers and subsequent activation 
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of CaMKII, within the central division of the medial shell of the nucleus accumbens is sufficient 

or necessary for the production of 50-kHz USVs and if GABAergic neurons expressing D1/D2 

receptors participate in unique circuits.  

2.4.b. R-(-)-apomorphine decreased the mean number of recorded 22-kHz USVs induced by 

subsequent intracerebral application of carbachol. 

Emotional states were indexed by the type and number of USVs emitted by rats. The 

positive emotional state was initiated by R-(-)-apomorphine injection into the medial shell of the 

nucleus accumbens (Williams & Undieh, 2010; Simola et al., 2016), and the negative emotional 

state was initiated by carbachol injections into the AH-MPO (Brudzynski, 2001; 2007). The 

main finding of the experiment was that pharmacological initiation of a positive emotional state 

(increased FM 50-kHz USVs) decreased the magnitude of the subsequent negative emotional 

state (decreased 22-kHz USVs). 

In addition to results of the present experiment that documented a decrease in the 

negative emotional state by prior initiation of a positive emotional state, other studies have also 

shown a potential antagonism between both these emotive states. For example, injection of 1.0 

mg/kg of R-(-)-apomorphine was able to selectively increase the time spent in open arms of the 

elevated-plus maze without concurrent changes in motor activity (Garcia et al., 2005) suggesting 

an anxiolytic effect induced by activation of the dopaminergic systems. Likewise, systemic 

injection of R-(-)-apomorphine was able to ameliorate startle potentiation during nicotine 

withdrawal and was able to decrease conditioned aversion associated with morphine withdrawal, 

two conditions known to increase the emission of 22-kHz USVs (Radke & Gewirtz, 2012). 
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These results, along with our own, provide support for the hypothesis that activation of a positive 

emotional state antagonizes a subsequent negative emotional state in rats.   

Although our data suggest an antagonistic interaction between the positive and negative 

emotional systems, the results are not in agreement with conclusions from some other reports. 

For example, it was postulated that dopamine release within the nucleus accumbens seems to 

play an important role in mediating fear/anxiety response (Albrechet-Souza et al., 2013; 

Salamone, 1994; Wenzel et al., 2014; Yorgason et al., 2013). Although some of our results 

showed that injection of R-(-)-apomorphine into rostral and caudal portions of the shell of the 

accumbens failed to decrease the number of 22-kHz USVs, they also failed to increase the 

number of emitted 22-kHz USVs, suggesting that dopamine within the nucleus accumbens, at the 

very least, cannot potentiate a state of anxiety. Dopamine release in these regions in response to 

environmental stimuli could be related to sensorimotor systems and not necessarily related to 

emotional processing (Mannella et al., 2103; Wan & Swerdlow, 1996). 

2.5: Conclusion 
 

Rats produce different types of USVs in a variety of situations that index their emotional 

states. Two main classes of USV signals exist. Positive emotional arousal is signaled by the 

emission of FM 50-kHz USVs, while negative emotional arousal is signaled by the emission of 

22-kHz USVs. It has been hypothesized that the initiation of given emotional arousal will 

antagonize the development of the opposite emotional state (Brudzynski, 2007). Our results lent 

support to this hypothesis and showed that an initial increase in a positive emotional state 

decreased the magnitude of a subsequent negative emotional state. 



74 
 

 

Table 1: Mean (± S.E.M)  number of emitted Flat (F) and Frequency Modulated (FM) 50-kHz 

USVs recorded after injection of vehicle or R-(-)-Apomorphine (Apo) into the medial shell of the 

nucleus accumbens, and inside the rostral/caudal division of the shell.  

 Medial Shell Rostral/Caudal Shell 

Category 

 

Vehicle Apo Vehicle Apo 

F 

 

17.2 ±2.3 26.4 ± 3.3 14.04 ± 2.9 9.7 ± 1.3 

FM 10.2 ± 1.9* 35.3 ± 5.1* 11.8 ± 3.0 6.7 ± 1.6 
 

Note: Statistically significant differences in the post-hoc analysis for the number of emitted F or 

FM 50-kHz USVs during different injection conditions are denoted by the superscript asterisk (p 

< 0.05). 

Table 2: Mean ( ± S.E.M)  number of emitted 22-kHz, Flat (F) 50-kHz and Frequency 

Modulated (FM) 50-kHz USVs recorded during injection conditions. 

 Medial Shell + AH-MPO Outside the Shell + AH-MPO 

Category veh+veh veh+carb apo+carb apo+veh veh+veh veh+carb apo+carb apo+veh 

22 0 182.2 ± 

10.6 

89.4 ± 

15.2a 

0 0 168.4 ± 

12.8 

142.8 ± 

8.3 

0 
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F 10.3 ± 

2.1 

N.A N.A 18.7 ± 

1.7 

6 ±    

1.6 

N.A N.A 6.8 ± 

1.5 

 

FM 7.2 ± 

1.4 

N.A N.A 29.3 ± 

3.7a 

4.6 ± 

1.2 

N.A N.A 7.7 ± 

1.8 

 

Note: Statistically significant differences in the post-hoc analysis for the number of emitted F or 

FM 50-kHz USVs during different injection conditions are denoted by the superscript letter “a” 

(p < 0.05). Abbreviations: veh+veh, rats received vehicle injection into the medial shell of the 

nucleus accumbens followed by vehicle injection into the AH-MPO; veh+carb, vehicle injection 

into the medial shell of the nucleus accumbens followed by carbachol injection into the AH-

MPO; apo+carb, R-(-)-apomorphine into the medial shell of the nucleus accumbens, followed by 

carbachol injection into the AH-MPO, apo+veh, R-(-)-apomorphine injection into the medial 

shell of the nucleus accumbens followed by vehicle injection into the AH-MPO. N.A - Not 

Applicable.   

Table 3: Mean ( ± S.E.M) spectrographic features of recorded USVs during various injection 

conditions.  

  Pooled Injection data 

  veh+veh     veh+carb    apo+carb apo+veh 

22-kHz 

 

Duration (ms) 0 760.1 ± 17.8 724.9 ± 24.1 0 

 P.F (kHz) 0 23.1 ± 0.33 23.8 ± 0.41 0 
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F 50-kHz 

 

Duration (ms) 

 

45.8 ± 

4.7 

 

N.A 

 

N.A 

 

38.2 ± 3.5 

 P.F (kHz) 52.3 ± 

1.7 

N.A N.A 50.5 ± 3.4 

 

F.M 50-kHz 

 

Duration (ms) 

 

31.5 ± 

4.2 

 

N.A 

 

N.A 

 

32.7 ± 5.1 

 P.F (kHz) 59.8 ± 

1.8 

N.A N.A 58.6 ± 2.5 

Note: There was no statistical difference within groups when comparing the sonographic features 

of duration (ms) and peak frequency (P.F). Abbreviations: veh+veh, rats received vehicle 

injection into the medial shell of the nucleus accumbens followed by vehicle injection into the 

AH-MPO; veh+carb, vehicle injection into the medial shell of the nucleus accumbens followed 

by carbachol injection into the AH-MPO; apo+carb, R-(-)-apomorphine into the medial shell of 

the nucleus accumbens, followed by carbachol injection into the AH-MPO, apo+veh, R-(-)-

apomorphine injection into the medial shell of the nucleus accumbens followed by vehicle 

injection into the AH-MPO. N.A- Not Applicable.  
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Chapter 3: Inhibition of carbachol-induced 22-kHz USVs from the LS by apomorphine 

injection into the nucleus accumbens shell 

 

 

 

This chapter has been published in full as: Silkstone, M., & Brudzynski, S. M. (2019). The 

antagonistic relationship between aversive and appetitive emotional states in rats as studied by 

pharmacologically-induced ultrasonic vocalization from the nucleus accumbens and lateral 

septum. Pharmacology Biochemistry and Behavior, 181, 77-85. 

 

 

3.0: Abstract 
 

Rats can emit ultrasonic vocalizations (USVs) in a negative, as well as positive contexts and 

USVs are reflective of the emotional state of the signaler. 22-kHz USVs are emitted during 

aversive contexts and can be initiated by activation of the ascending cholinergic pathways 

originating from the laterodorsal tegmental nucleus or initiated pharmacologically by injection of 

cholinergic agonists into target areas of these pathways (medial cholinoceptive vocalization 

strip). Conversely, 50-kHz USVs are emitted during positive pro-social contexts and can be 

initiated by stimulation of ascending dopaminergic pathways originating from the ventral 

tegmental area or by injection of dopamine agonists into target areas of these pathways (nucleus 



85 
 

accumbens shell). Recently, we have shown an inhibitory effect that a positive emotional state 

has on a negative emotional state reflected in the emission of carbachol-induced 22-kHz USVs 

from the anterior hypothalamic/medial preoptic area (AH-MPO). However, this structure is a 

fragment of that cholinoceptive vocalization strip. We wanted to examine if we could observe 

similar effect when the aversive state is induced from the lateral septum, the most rostral division 

of the cholinoceptive vocalization strip.  The results have confirmed that the initiation of positive 

emotional arousal by injection of R-(-)-apomorphine into the medial shell of the nucleus 

accumbens significantly decreased emission of carbachol-induced 22-kHz USVs from the lateral 

septum. The second finding was that the positive emotional arousal was expressed by frequency-

modulated 50-kHz vocalizations and not by flat 50-kHz calls. Thus, the decrease in the number 

of recorded 22-kHz USVs was proportional to the emission of FM 50-kHz USVs and not the 

emission of F 50-kHz USVs. This research provides further support to the hypothesis that the 

initiation of a positive emotional state functionally antagonizes initiation of a negative emotional 

state in rats. 

3.2: Introduction 
 

Adolescent and adult rats communicate by producing two different categories of 

ultrasonic vocalizations (USVs) identified as 22-kHz USVs and 50-kHz USVs, which can be 

further subdivided into flat (F) and frequency modulated (FM) USVs (Knutson et al., 2002; 

Brudzynski, 2007; 2009; 2013; Burgdorf et al., 2008). In sonographic analyses, 22-kHz USVs 

have a flat temporal pattern, a long duration between 100-3000 ms, a peak frequency between 

19-27 kHz and bandwidth of 3-5 kHz, while 50-kHz USVs have a duration ranging from 20-100 
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ms, a peak frequency ranging between 48-70 kHz and a bandwidth of 7-25 kHz (Brudzynski, 

2001; Wright et al., 2010).  

Both types of USVs have been hypothesized to be an inseparable component in signaling 

emotional states (Brudzynski, 2007; 2013).  Ethological and pharmacological experiments 

provided evidence that 22-kHz USVs reflect a negative emotional state that can be initiated 

either conditionally or unconditionally. For example, emission of 22-kHz USVs can be initiated 

by presence of fox or lion urine (Fendt et al., 2018), by presentation of a cat to rats living in a 

visible burrow system (Blanchard et al., 1991), by social defeat (Kroes et al., 2007), or by 

anticipation of foot-shock (Jelen et al., 2003). 

Pharmacological evidence supporting the thesis that 22-kHz USVs are associated with 

negative emotional states comes from investigations using anxiolytics and anxiogenics. 

Anxiolytics, drugs that decrease the self-reported measure of anxiety in humans, can decrease the 

emissions of 22-kHz USVs (Cullen & Rowan, 1994; Jelen et al., 2003; Miczek et al., 1995; 

Sánchez & Meier, 1997; Sun et al., 2010; Vivan et al., 1994). Likewise, pentylenetetrazole, an 

anxiogenic drug, has been shown to increase the number of cue-emitted 22-kHz USVs (Jelen et 

al., 2003) as well as increase the duration of immobility (Willadsen et al., 2018). Further 

evidence that supports the argument that 22-kHz USVs reflect a negative emotional state comes 

from studies reporting emission of 22-kHz USVs during withdrawal from drugs of abuse or in 

the absence of expected rewards (Barker et al., 2015; Covington & Miczek, 2003; Vivian & 

Miczek, 1991). These contexts are associated with self-reported measures of negative affect in 

humans (Barr et al., 2002; Corr, 2002; Pelchat, 2002)  
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Conversely, the emission of 50-kHz USVs by rats has been argued to be indicative of a 

positive emotional state. Rats will increase the number of FM 50-kHz USVs in play behaviour 

with other conspecifics (Burke et al., 2017) or with the experimenter (heterospecific play or 

ticking) (Burgdorf et al., 2008; Panksepp & Burgdorf, 2000). 50-kHz USVs can also be initiated 

both pharmacologically and by anticipation of delivery of rewarding electrical brain stimulation 

(Burgdorf et al., 2000; Scardochio et al., 2015), in response to intravenous amphetamine 

application (Ahrens et al., 2009), or in anticipation of cocaine consumption (Browning et al., 

2011).  

Cholinergic cell bodies located within the laterodorsal tegmental nucleus (LTDg) and 

dopamine neurons located in the ventral tegmental area (VTA) play a vital role in the initiation 

of 22-kHz or 50-kHz USVs, respectively (for review see Brudzynski, 2007; 2014). The 

ascending cholinergic pathways (mesolimbic cholinergic system) to medial mesencephalic and 

diencephalic structures reaching up to the lateral septum (LS) are responsible for the initiation of 

aversive arousal, while the ascending mesolimbic dopaminergic pathways reaching to ventral 

striatal regions and nucleus accumbens are responsible for the initiation of appetitive arousal.  

These two anatomical systems are important for the initiation of USVs in rats as an expression of 

emotional states. In addition to that, indirect evidence supports an antagonistic relationship 

between the action of acetylcholine and dopamine during the initiation of an emotional state.  

Systemic injection of the dopamine agonist amphetamine, a condition that reliably initiates the 

production of 50-kHz USVs (Mulvihill & Brudzynski, 2019) decreases brain acetylcholine levels 

(Domino & Olds, 1972; Vasko et al., 1974). Likewise, systemic injection of morphine, which 

can induce conditioned place-preference (a measure of an appetitive state) in mice (Cole et al., 

2013), increases the extracellular levels of dopamine in the nucleus accumbens (Leone et al., 
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1991) while decreasing basal acetylcholine levels in the nucleus accumbens (Rada et al., 1991). 

The morphine effect on basal dopamine and acetylcholine levels in the nucleus accumbens is 

reversed upon pre-treatment with the opioid antagonist naloxone (Rada et al., 1991). Pre-

treatment with naloxone also induces withdrawal-like symptoms, conditioned place-aversion (a 

measure of anxiety) (Lin et al., 2018) and emission of 22-kHz USVs (Vivian & Miczek, 1991). 

Thus, the initiation of 22-kHz and 50-kHz USVs are not only indirect measures of emotional 

states in the signaler, but they are also an indirect measure of dopamine/acetylcholine ratios in 

selected forebrain areas.  

Recently, we have also shown an antagonistic interaction of dopamine on acetylcholine-

induced initiation of vocal expression of an emotional state. Our result showed decreased 

emissions of carbachol-induced 22-kHz USVs from the anterior hypothalamic-medial preoptic 

(AH-MPO) area after R-(-)-apomorphine was injected in the medial shell of the nucleus 

accumbens (Silkstone and Brudzynski, 2019). However, the AH-MPO is only one of the nuclei 

in the medial cholinoceptive vocalization strip (Brudzynski, 2010). This strip, which stretches 

from the LTDg to the most rostral extent of the basal forebrain is involved in the initiation of 

aversive vocalization in both cats and rats. 

The purpose of the current experiment was to investigate if the injection of the dopamine 

agonist R-(-)-apomorphine into the nucleus accumbens could decrease carbachol-induced 22-

kHz USVs from the LS, a nucleus located in the most rostral extent of the medial cholinoceptive 

vocalization strip (Bihari et al., 2003; Brudzynski et al., 2011). This will help clarify if the 

reduction in emission of 22-kHz USVs in response to R-(-)-apomorphine injection into the 

medial shell of the nucleus accumbens, is a response localized to AH-MPO stimulation or if the 
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reduction in the expression of a negative emotional state is a general response across the medial 

cholinoceptive vocalization strip. 

3.3: Methods and Procedure 

3.3.a: Stereotaxic implantation of the cannula into the left nucleus accumbens shell and left LS. 

Twenty-five Long-Evans rats were used for double injections of pharmacological agents 

into two different brain areas that induce either 50-kHz USVs or 22-kHz USVs. R-(-)-

apomorphine was injected into the medial shell of the nucleus accumbens to induce positive 

emotional arousal signaled by the emission of FM 50-kHz USVs, while carbachol was injected 

into the LS to induce negative emotional arousal reflected by the emission of 22-kHz USVs. The 

intensity, or magnitude, of emotional states, as measured by the number of emitted USVs.  

3.3.b: Subjects and Surgery 

Twenty-five adult male Long-Evans rats (Charles River) with bodyweight ranging from 

280-320 g at the time of surgery served as the experimental subjects. All animals were housed in 

polycarbonate cages (48 cm x 25 cm x 20 cm high) with constant room temperature (23°C ± 

1°C), controlled humidity conditions and in a 12:12 h light-dark cycle. Animals were housed in 

pairs with a dust-free corn cob bedding (Fisco Enterprises, Bolton, ON) with black polyvinyl 

tubing for hiding, wooden blocks for play with ad libitum access to water and pelleted Rodent 

Lab Diet (#5001, Ren's Feed & Supplies Limited, Oakville, ON).  After five days of acclimation, 

rats underwent stereotaxic surgery.  

Rats underwent stereotaxic surgery for unilateral implantation of guide cannula into the 

left hemisphere. Briefly, rats were anesthetized with gaseous isoflurane at a concentration of 3% 

and placed in a Kopf stereotaxic apparatus (Model 900, David Kopf Instruments, Tujunga, CA) 
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in a flat skull position. While in the apparatus, burr holes were drilled into the skull and two 

guide cannula (constructed from 23 G syringe needles with O.D. = 650 µm, Beckton-Dickinson 

Canada, Mississauga, ON) was implanted according to the coordinates from the Paxios & 

Watson (2005) stereotaxic atlas. One cannula was implanted into the lateral septum (LS, 

stereotaxic parameters from the interaural line ranged from A-P: 9.12-8.6; L: 0.6-1.2 from the 

midline, and D-V: -4 to -4.6 mm from the surface of the skull), and the other cannula was 

implanted into the left shell of the nucleus accumbens (parameters from the interaural line ranged 

from A-P: 10.4-10.8; L: 0.8-1.8; D-V: 5.8-6.4). Cannulae were permanently secured to the skull 

by stainless steel jeweler’s screws and methyl methacrylate resin (Perm Resin, Hygenic 

Corporation of Canada Inc., St. Catharines, ON). For further details, see Fornari et al. (2012). 

Rats were placed in the study upon five days of recuperation from surgery and subsequent 

inspection of their condition by the veterinarian.  

3.3.c: Drugs and Injection Order 

Carbachol (carbamylcholine chloride, Sigma Chemical Co., St. Louis MO.) was 

dissolved in 0.9% sterile saline and was injected unilaterally into the LS by a constant rate 

Hamilton® CR 700 micro-syringe (Hamilton Company, Reno, NV) in a dose of 1.0 µg/0.3µl at a 

rate of ~4.5 nl/s.  R-(-)-apomorphine hydrochloride (Sigma, St. Louis, MO) was dissolved in the 

vehicle and injected in a concentration of 3.0 µg/0.3µl at the same rate of carbachol. The vehicle 

was prepared by adding 0.1% ascorbic acid to sterile saline and buffered to a  pH at about 5. The 

vehicle (veh) served as a control for apomorphine, while saline (sal) was the control for 

carbachol. 
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R-(-)-apomorphine or vehicle was first injected into the shell of the nucleus accumbens. 

After injection of the drug or vehicle was finished, the injection cannula was left in place for an 

additional 60 s to allow for proper drug diffusion. After 60 s the injection cannula was slowly 

withdrawn and a sterile plug-pin was used to seal off the cannula, the rat was then placed in its 

home cage for 60 s. After 60 s, the rat was taken out of his cage, and carbachol or saline was 

injected into the LS at the same rate and volume as R-(-)-apomorphine. After the injection was 

finished, the injection cannula was left in place for an additional 60 s to allow for proper 

diffusion. After 60 sec, the injection cannula was removed, the guide cannula was then closed 

using a sterile plug-pin. The rat was then immediately placed in the recording chamber and 

recorded for 10-minutes.  

3.3.d: Recording Ultrasonic Vocalizations 

Recording of ultrasonic vocalizations took place in a Plexiglass recording chamber (25 

cm x 18 cm x 18 cm). On top of the recording chamber, an Avisoft® CM16/CMPA condenser 

microphone (frequency range 2-250 kHz, Avisoft® Bioacoustics, Berlin, Germany) was placed 

with an average distance of 25 cm to the rat’s head. Recording of the USVs was done in real-

time and stored in a 16-bit format for later analysis. Analysis of USVs was done off-line using 

Avisoft® SAS LabPro program. Spectrograms were created using Fast Fourier transform 

(length: 552; Frame: 100%; Window: Hamming; Overlap: 75%).  

Identification of 22-kHz and 50-kHz USVs was followed as described in previous studies 

(Brudzynski et al. 1991, Brudzynski 2007, Thompson et al. 2006). Briefly, USVs that had a peak 

frequency that fell between 19-29 kHz and had a duration longer than 100 ms were classified as 

22-kHz USVs while calls that had a peak frequency that fell between 39-80 kHz and had a 
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duration less or equal to 100 ms were classified as 50-kHz USVs. USVs with peak frequency 

from 30-40 kHz were very rare and were not taken for analysis. Subsequent classification of 50-

kHz into frequency modulated (FM) and flat (F) calls, i.e., unmodulated USVs, was based on 

morphological characteristics of calls on the sonograms consistent with the study by Burgdorf et 

al. (2008). Recording of USVs took place for 10 min. After that time, the rat was placed back 

into its home cage. Each rat received a clean cage for recording time, and each soiled cage was 

removed from the test room. Before each additional rat was tested, the table was wiped down 

with Virox® (Virox Technologies Inc., Oakville, ON) then further cleaned with a diluted ethyl 

alcohol solution followed by distilled water.  

After the rat had received the final injection, it was anesthetized with an overdose of 

sodium pentobarbital. Before removal of the brain, an India-ink solution was prepared (1:100 

dilution) and injected into the brain for histological determination of injection sites. 

3.3.e: Histology and Localization 

After the experiment, animals underwent transcardial perfusion with 10% solution of 

formalin. Brains were removed, postfix with formalin for 24 h, and coronally sectioned on a 

freezing microtome (Cryo-Histomat, Hacker Instruments and Industries, Fairfield, NJ) to a 

thickness of ~40 µm. Sections were placed on 1% poly-lysine coated slides, then underwent 

Nissl staining and were coated with Permount™ mounting medium (Fisher Scientific Co., 

Ottawa, ON) and coverslipped. For further details of the histological procedure, see Lindroos & 

Leinonen (1983).   

Localizations were performed using a projection microscope. Small depositions of India 

ink before perfusion were used to confirm injection sites. After marking localization of all 
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injection sites, they were transferred according to their stereotaxic coordinates on a selected 

medial stereotaxic section. The medial stereotaxic section was used as a composite diagram of all 

injection sites for a given group.   

3.3.f: Statistics 

        A non-parametric repeated measures ANOVA (Friedman’s ANOVA followed by Sign-

ranked post hoc test was used to assess the statistical difference between the number of 50-kHz 

USVs induced by R-(-)-apomorphine or vehicle from the nucleus accumbens shell. Analysis of 

sonographic features (call duration and peak frequency) was done using repeated measures 

ANOVA. A Shapiro-Wilks test was used to assess the normality of sonographic features to 

ensure the appropriate statistical procedure. All statistics were done using SPSS v 17.0 (SPSS 

Inc, Chicago, U.S.A). Multiple comparisons were corrected with Bonferroni method. Reported 

means are followed by the standard error of the mean (S.E.M). A Pearson correlation was used to 

assess the relationship between the change in recorded 22-kHz USVs between injection 

conditions, and the number of recorded F or FM 50-kHz USVs.  

3.4: Results 

3.4.a. R-(-)-apomorphine was able to increase the mean number of recorded F and FM 50-kHz 

USVs compared to control injection.  

Injection of R-(-)-apomorphine into the medial shell of the nucleus accumbens, followed 

by injection of saline into the LS (apo+sal), significantly increased the mean number of F 50-kHz 

USVs (χ2[3] = 20.5, p < 0.008), and FM 50-kHz USVs (χ2[3] = 32.9, p < 0.001) compared to 

veh+sal controls (see Figure 15, see Table 4 for values, and for localizations see Figure 17; n = 

16). However, when R-(-)-apomorphine was injected outside the medial shell of the nucleus 

accumbens, the emission of 50-kHz USVs was very low and sporadic, and there was no 
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difference in the number of recorded F or FM 50-kHz USVs as compared to veh+sal condition 

(see Figure 18 and localizations of injection sites in Figure 19, n = 9). Thus, apomorphine was 

effective in initiating 50 kHz USVs but only from the medial division of the nucleus accumbens 

shell. 

 

Figure 15: Mean (±S.E.M) number of flat (F) and FM (FM) 50-kHz USVs recorded during 

various injection conditions. There was a significant difference in the number of recorded F 50-

kHz USVs when comparing the number of recorded vocalizations between veh+sal and apo+sal 

injection conditions (χ2[3] = 20.5, p < 0.008, lightly stippled bars). There was also a significant 

increase in the number of recorded FM 50-kHz USVs when comparing veh+sal and apo+sal 

(χ2[3] = 32.9, p < 0.001, densely stippled bars). Injection conditions: : veh+sal – injection of 

vehicle into the accumbens followed by saline in the LS; veh+carb – injection of vehicle into the 

accumbens followed by carbachol in LS; apo+carb – injection of apomorphine into the 
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accumbens followed by carbachol in LS; apo+sal – injection of apomorphine into the accumbens 

followed by saline in LS. 

 

3.4.b: Intracerebral injection of R-(-)-apomorphine into the medial shell of the nucleus 

accumbens decreased carbachol-induced 22-khz USVs from the LS 

This set of experiments was designed to investigate if R-(-)-apomorphine injections into 

the nucleus accumbens shell could decrease subsequent carbachol-induced 22-kHz USVs from 

the LS. Injection of vehicle to the shell of the accumbens followed by carbachol into the LS 

(condition veh+carb) induced robust emission of 22 kHz USVs with 127.4 ± 11.3 per 10-minute 

recording (Figure 16, left bar). Injection of R-(-)-apomorphine into the accumbens shell followed 

by carbachol injected to LS (condition apo+carb) significantly attenuated the mean number of 

recorded 22-kHz USVs as compared to vehicle condition (χ2[3] = 44.7, p = 0.037, see Figure 16, 

and see Figure 17 for localizations, n=16). There were no 22-kHz USVs recorded during the 

veh+sal or the apo+sal injection conditions (see Figure 16). 

Thus, R-(-)-apomorphine injection into the medial shell region of the nucleus accumbens 

significantly attenuated emission of 22 kHz USVs. However, when R-(-)-apomorphine was 

injected outside the medial shell of the nucleus accumbens , there was no difference in the mean 

number of recorded 22-kHz USVs between conditions veh+carb vs. apo+carb (χ2[3] = 24.9, p > 

0.95; see Figure 18, for localizations see Figure 19, n=9).  Again, no 22-kHz USVs were 

recorded during the veh+sal or the apo+sal injection conditions.  Thus, apomorphine injection 

into the medial shell of the nucleus accumbens was effective at attenuating emissions of 22 kHz 

USVs from the LS. 



96 
 

 

Figure 16. Mean (±S.E.M) number of 22-kHz USVs recorded during four different injection 

conditions. Injection of R-(-)-apomorphine into the shell of the nucleus accumbens and 

followed by carbachol in the LS (apo+carb) was able to significantly decrease the mean 

number of recorded 22-kHz USVs when compared to veh+carb injection condition (χ2[3] = 

44.7, p = 0.037, n = 16). There was no recorded 22-kHz USVs under the veh+sal or the 

apo+sal injection conditions. For explanation of injection conditions, see Figure 15 and for 

localization of injection sites see Figure 17  
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Figure 17. Localization of injection sites (dark circles) in the medial shell of the nucleus 

accumbens (n = 16) and corresponding localization of injection sites in the LS (n = 16). Each site 

was injected four times with different combination of vehicles or drugs. Coronal sections of the 

rat brain at the interaural (INT) stereotaxic planes 10.0 and 9.1, respectively, have been based on 

the stereotaxic atlas by Paxinos and Watson (2005). Abbreviations: AC – core of the nucleus 

accumbens; AS – shell of the nucleus accumbens; ca- anterior commissure; cc – corpus 

callosum; CP – caudate-putamen; DB – diagonal band; LS – lateral septum; mfb – medial 

forebrain bundle; MP – medial preoptic area; MS – medial septum; oc – optic chiasm; OT – 

olfactory tubercle; SH – striohypothalamic nucleus; V – lateral ventricle; VP – ventral pallidum. 
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Figure 18: Mean (± S.E.M) number of 22-kHz USVs recorded during four different injection 

conditions. Injection of R-(-)-apomorphine outside the medial nucleus accumbens shell, followed 

by carbachol injection into the LS was unable to significantly reduce the mean number of 

recorded 22-kHz USVs (χ2[3] = 24.9, p > 0.95). There were no recorded 22-kHz USVs during 

the veh+sal and the apo+sal injection conditions. For the sequence of injection conditions and 

abbreviations, see Figure 19 for localizations.  
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Figure 19: Localization of injection sites (dark circles) outside of the medial shell of the nucleus 

accumbens (n = 9) and corresponding localization of injection sites in the LS (n = 9). Coronal 

sections of the rat brain at the interaural (INT) stereotaxic planes 10.6 and 9.1, respectively, have 

been based on the stereotaxic atlas by Paxinos and Watson (2005).  For list of abbreviations, see 

legend to Figure 17. 

3.4.c: Increased emission of FM 50-kHz USVs, during apo+sal injection condition, is correlated 

with a reduction in the number of recorded 22-kHz USVs during the apo+carb injection 

condition 

To investigate the relationship between the number of emitted F and FM 50-kHz USVs 

and the subsequent decrease in the number of emitted 22-kHz USVs, emitted F and FM 50-kHz 

calls were plotted against the magnitude of the subsequent decrease in 22-kHz USVs. The x-axis 

in Figure 20 and Figure 21 are the total number of F or FM 50-kHz USVs, respectively, that 

were recorded per rat (n = 16) during the apo+sal injection condition. The y-axis in Figure 20 

and Figure 21 depict the standardized change (z-score) in the number of emitted 22-kHz USVs 

between veh+carb and apo+carb injection conditions.  
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No correlation between the number of recorded F 50-kHz USVs and the change in the 

number of recorded 22-kHz USVs between veh+carb and apo+carb injection conditions was 

observed (rs[14] = -0.39, p = 0.133, Figure 20.). However, there was a significant negative 

correlation between the number of FM 50-kHz USVs emitted and the subsequent decrease in 

recorded 22-kHz USVs (rs[14] = -.54, p = 0.030, Figure 21). Thus, the stronger the positive 

emotional state signaled by FM 50 kHz USVs, the greater the suppression of the negative 

emotional state reflected by the smaller number of emitted 22 kHz USVs. 

 

 

Figure 20. Difference in the number of recorded 22-kHz USVs between veh+carb and 

apo+carb injection conditions expressed as a function of z-score (y-axis) and plotted as a 

function of the number of recorded F 50-kHz USVs during a 10-minute recording session (x-
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axis). There was no significant correlation between the number of F 50-kHz USVs and the 

change in number of recorded 22-kHz USVs between veh+carb and apo+carb injection 

conditions (rs[14] = -0.392, p = 0.133, n=16). Each data point represents an individual rat.  

 

 

Figure 21: Difference in the number of recorded 22-kHz USVs (standardized, y-axis) as a 

function of the number of FM 50-kHz USVs recorded during 10-min (x-axis). There was a 

statistically significant correlation between the number of emitted FM 50-kHz USVs during the 

apo+sal injection condition and the change in the number of recorded 22-kHz USVs between 

veh+carb and apo+carb (rs[14] = -0.541, p = 0.030; n=16).  
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3.4.d: Time-course of changes in the number of recorded 22-kHz USVs during veh+carb and 

apo+carb injection conditions 

Plotting the number of recorded 22-kHz USVs as a function of time displays a slow 

decay of emitted 22-kHz USVs over the duration of the recording. Maximal responses occurred 

within the first three minutes and decayed to a minimum response between the 9-10 min mark 

during the veh+carb injection condition (see Figure 22, n = 16). The overall pattern of recorded 

22-kHz USVs after apomorphine, i.e., during the apo+carb injection condition, was dissimilar to 

veh+carb injection condition. The maximal response occurred in the first minute, reaching a 

minimum between the 5th-6th minute and finally terminating between the 8th-9th minute (Figure 

5). Thus, recording of 22-kHz USVs during the apo+carb injection condition showed 

suppression of aversive vocalizations and a faster decay of recorded 22-kHz USVs. The initial 

injection of R-(-)-apomorphine changed the calling profile of the carbachol response and 

shortened its total response.  
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Figure 22. Time-course of the responses shown in 1 min bins for the number of recorded 22-kHz 

USVs during the veh+carb and apo+carb injection condition. Overall, injection of apomorphine 

into the shell of the nucleus accumbens prior to injection of carbachol into LS decreased the 

quantity of 22-kHz USVs and changed the dynamics of the response by increasing the decay of 

emitted 22-kHz USVs.  

3.4.e: Acoustic parameters of recorded USVs 

There was no statistical difference in the call duration of recorded 22-kHz USVs (F[1.9, 

46.5] = 0.368, p = 0.11, partial ŋ2 = 0.015) or the peak frequency of recorded 22-kHz USVs 

(F[1.9, 46.8] =1.5, p = 0.32, partial ŋ2 = 0.059) (see Figure 23 and Table 5 for values). 
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There was no difference for any injection condition to significantly alter the duration of F 50-

kHz USVs (F[2.6, 63.8] = 4.83, p = 8.84, partial ŋ2 = 0.168) or FM 50-kHz USVs (F[2.4, 58.7] = 

8.4, p = 0.97, partial ŋ2 = 0.259). There was also no difference in the peak frequency of F 50-kHz 

USVs (F[2.3, 56.4] = 3.0, p = 0.61, partial ŋ2 = 0.11) or FM 50-kHz USVs (F[2.6, 62.2] = 2.4, p 

= 0.53, partial ŋ2 = 0.091) across the injection conditions (Figure not shown; see Table 4 for 

values). These results confirmed that all emitted 22 kHz USVs and 50 kHz USVs were species-

typical calls and were not modified by intracerebral injections. 

 

Figure 23. Mean (±S.E.M) values of spectrographic features of recorded 22-kHz USVs across 

injection conditions. There was no statistical difference in the single call duration (Duration) of 

recorded 22-kHz USVs (F[1.9, 46.5] = 0.368, p=0.11, partial ŋ2 = 0.015) or in the peak 

frequency (P.F.) of recorded 22-kHz USVs (F[1.9, 46.8]=1.5, p = 0.32, partial ŋ2 = 0.059). 
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3.5: Discussion 

The purpose of the experiment was to determine if the initiation of a positive emotional 

state with 50 kHz USVs induced by injections of R-(-)-apomorphine into the medial shell of the 

nucleus accumbens, could supresses the vocal expression of 22-kHz USVs induced by carbachol 

injection into the LS.  

3.5.a: Injection of R-(-)-apomorphine into the nucleus accumbens shell increased the number of 

F and FM 50-kHz USVs 

Injection of apomorphine into the medial shell of the nucleus accumbens produced 

species-typical F and FM 50-kHz USVs. These results were consistent with our previous reports, 

and with other publications, showing increased F and FM 50-kHz USVs after intracerebral 

injection of dopamine agonists into the medial shell of the nucleus accumbens, or systemic 

injection of dopamine agonists like amphetamine (Burgdorf et al., 2001; Wintink & Brudzynski, 

2001; Thompson et al., 2006; Ahrens et al., 2009; Burgdorf & Moskal, 2010; Brudzynski et al., 

2011; 2012; Brudzynski, 2015; Mulvihill & Brudzynski, 2019). Emission of 50-kHz USVs, and 

particularly FM 50-kHz calls seem to be indicative of the initiation of a positive emotional state 

since rats will emit these types of vocalizations during amphetamine-induced conditional place 

preference (Ahrens et al., 2014; Knutson et al., 1999), during the anticipation of consumption of 

cocaine or sucrose (Browning et al., 2011), or during mating or during juvenile play in rats 

(Burke et al., 2017).   

Other studies using emotional modulation of the startle reflex, which expresses a negative 

state, have also reported that maximal startle amplitudes were decreased by systemic 

apomorphine (Martin-Iverson & Stevenson, 2005). Our results corroborate their findings and 
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further provide evidence that suggests an antagonistic influence that a positive emotional state 

has on the expression of a negative emotional state.  

3.5.b: Injection of carbachol into the lateral septum increased species-typical 22-kHz USVs 

Our results indicated that injection of carbachol into the LS was able to significantly 

increase the mean number of 22-kHz USVs compared to control injections. Anatomically, the LS 

is located rostrodorsally to the anterior commissure and caudally to the nucleus accumbens and is 

involved in the expression of defensive behaviours, anxiety, and fear (Treit & Menard., 1997; 

Ouagazzal et al., 1999; Singewald et al., 2003; Reis et al., 2010). It is the most rostral portion of 

the medial cholinoceptive vocalization strip (Brudzynski, 2001; 2010; 2013; 2014), i.e., the area 

from which cholinergic agonists can induce aversive arousal with the emission of 22 kHz USVs.  

The medial cholinoceptive vocalization strip is a strip of neural tissue that originates 

within the rostral division of the laterodorsal tegmental nucleus (LTD) (Brudzynski, 2010; 2014; 

2015). The cholinergic neurons within the LDT form ascending pathways through the brain 

(mesolimbic cholinergic system) and terminate in extensive areas of the midbrain and forebrain. 

The release of acetylcholine from a limited subset of these pathways that terminates in the 

medial cholinoceptive vocalization strip will initiate aversive arousal and emission of 22-kHz 

USVs (Brudzynski, 2010; 2014).  Pharmacological activation of the areas of the strip by 

muscarinic acetylcholine agonists induced species-typical aversive 22-kHz USVs in rats. In the 

current study, intracerebral injection of carbachol into the LS, as the rostral part of the medial 

cholinoceptive strip, produced species-typical 22-kHz USVs that did not differ from those 

reported in previous studies (Bihari et al., 2003; Brudzynski et al., 2011). 
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3.5.c: R-(-)-apomorphine significantly decreased carbachol-induced 22 kHz USVs from the 

lateral septum 

Our current results have confirmed that the initiation of a positive state by apomorphine 

significantly reduced the development of the subsequent aversive state. The number of emitted F 

50-kHz USVs was not correlated with a reduction in the number of recorded 22-kHz USVs 

caused by apomorphine. However, there was a significant negative correlation between the 

number of emitted FM 50-kHz USVs and the change in recorded 22-kHz USVs after 

apomorphine. This result suggests that, unlike F 50 kHz calls, emission of FM 50 kHz USVs can 

antagonize the expression of a negative emotional state in rats. Hence, the more FM 50 kHz 

calls, the greater the magnitude of the positive arousal and the deeper is suppression of the 

carbachol-induced aversive response. F 50 kHz vocalizations are primarily used in social-contact 

settings and might not be directly involved in outward expression of an internal positive 

emotional state (Brudzynski & Pniak, 2002; Snoeren & Ågmo, 2014; Wöhr et al., 2008).  Since 

50-kHz is indirectly reflective of increased dopamine concentration in the shell of the nucleus 

accumbens and 22-kHz USVs is indirectly reflective of acetylcholine concentration along the 

medial cholinoceptive vocalization strip, decreased vocal expression of 22-kHz USVs in 

response to apomorphine could indirectly reflect decreased levels of acetylcholine along the 

medial cholinocpetive vocalization strip. 

Despite apomorphine’s antagonism of the aversive state induced by carbachol, 

apomorphine was unable to eliminate emitted 22-kHz USVs. This could be a result of the 

pharmacokinetic profile of apomorphine or the efficacy of the drugs. Pharmacokinetic data in 

humans demonstrated a half-life time of apomorphine lasting approximately five minutes with 

clearance time around 4 hours (Gancher et al., 1989). Given the design of the current experiment, 
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there is a 120 s delay between the injection of apomorphine and carbachol. Thus it is possible 

there was a decay of apomorphine action before carbachol was injected into the LS. Another 

explanation could simply be attributed to the fact that carbachol could be more efficacious at 

initiating a negative emotional state than apomorphine is at initiating a positive emotional state.  

3.6: Conclusion 

It has been hypothesized that rat may signal only one of the emotional states at any given 

time, suggesting that emissions of 22-kHz or 50-kHz calls become mutually antagonistic 

(Brudzynski, 2007). The main purpose of the present experiment was to determine if the 

initiation of positive emotional state by apomorphine microinjection into the nucleus accumbens 

could decrease the expression of a negative emotional state reflected in the number of emitted 

22-kHz USVs. Our current findings showed that FM 50-kHz USVs, which signal positive 

emotional states, were correlated with reducing the effects of carbachol-induced 22-kHz USVs 

from the LS. This results further extends previous working showing apomorphine injection into 

the nucleus accumbens shell decreased 22-kHz USVs induced from the AH-MPO. Our results 

thus far show that apomorphine can reduce carbachol-induced 22-kHz USVs from the caudal and 

rostral divisions of the medial cholinoceptive vocalization strip.  
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Table 4: Mean number (±S.E.M) of recorded 22-kHz, F 50-kHz and FM 50-kHz USVs across 

different injection conditions for R-(-)-apomorphine injected into the medial shell of nucleus 

accumbens (left side of the Table) or outside of the medial shell of accumbens (right side of the 

Table).  

 

Medial nucleus accumbens shell  

+ LS (n=16) 

 

 

Outside medial nucleus accumbens shell  

 

+ LS (n=9) 

USVs veh+sal veh+carb apo+carb apo+sal veh+sal veh+carb apo+carb apo+sal 

 

FM 50-

kHz  

 

2.1 ± 

0.8a 

 

N.A 

 

N.A 

 

33.8 ± 

4.8a 

 

2.6 ± 1.1 

 

N.A 

 

N.A 

 

4.4 ± 

1.5 

 

F 50-kHz 

 

3.5 ± 

1.0b 

 

N.A 

 

N.A 

 

23.6 ± 

4.1b 

 

6.2 ± 1.4 

 

N.A 

 

N.A 

 

5.5 ± 

0.9 

 

22-kHz 

 

0 

 

127.4 ± 

11.3c 

 

57.9 ± 

10.8c 

 

0 

 

0 

 

109.7 ± 

12.3 

 

89.1 ± 

15.2 

 

0 

Note: Statistically significant differences in the post-hoc analysis for the number of emitted F or 

FM 50-kHz USVs during different injection conditions are denoted by the superscript letters. 
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Superscript letters and significance: a:p=0.037; b:p<0.001; c: p=0.008;d: p=0.024.. 

Abbreviations: veh+sal, rats received vehicle injection into the medial shell of the nucleus 

accumbens followed by vehicle injection into the LS; veh+carb, vehicle injection into accumbens 

shell followed by carbachol injection into the LS; apo+carb, R-(-)-apomorphine into the medial 

shell of the nucleus accumbens, followed by carbachol injection into the LS, apo+sal, R-(-)-

apomorphine injection into the medial shell of the nucleus accumbens followed by vehicle 

injection into the LS. N.A - Not Applicable.  
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Table 5. Pooled sonographic features of recorded USVs during injection conditions.  

 

 

Duration (ms) of recorded USVs 

 

 

Peak Frequency (kHz) of recorded USVs  

USVs veh+sal veh+carb apo+carb apo+sal veh+sal veh+carb apo+carb apo+sa

l 

 

22-kHz 

 

0 

 

683.1 ± 

33.8 

 

662.9 ± 

23.3 

 

0 

 

0 

 

22.8 ± 

0.34 

 

23.3 ± 

0.26 

 

0 

 

F 50-kHz 

 

40.1 ± 

   1.1 

 

N.A 

 

N.A 

 

32.6 ± 

3.1 

 

47.1 ± 

1.4 

 

N.A 

 

N.A 

 

53.2 ± 

1.8 

 

FM 50-kHz 

 

  28.5 ±   

     1.6      

 

 N.A 

 

N.A  

 

30.8 ± 

2.1 

 

58.2 ± 

1.3 

 

N.A 

 

N.A 

 

56.1 ± 

2.9 

 

Note: Mean (±S.E.M) spectrographic parameters of recorded 22-kHz and 50-kHz USVs. There 

were no statistically significant differences between the duration or peak frequency of recorded 

22-kHz USVs or 50-kHz USV across injection conditions. For abbreviations, see note to Table 1. 
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Chapter 4: Dissimilar interaction between dopaminergic and cholinergic systems in the 

initiation of emission of 50-kHz and 22-kHz vocalizations 

 

This chapter has been submitted to Pharmacology, Biochemistry and Behavior in 2019. 

 

 

4.0: Abstract 

Rats emit 22-kHz or 50-kHz ultrasonic vocalizations (USVs) to signal their emotional 

state to other conspecifics. The 22-kHz USVs signal a negative emotional state while 50-kHz 

USVs reflect a positive affective state. The initiation of 22-kHz USVs is dependent on the 

activity of cholinergic neurons within the laterodorsal tegmental nucleus that release 

acetylcholine along the medial cholinoceptive vocalization strip. Emission of 50-kHz USVs is 

dependent upon the activation of dopaminergic neurons located within the ventral tegmental area 

that release dopamine into the medial shell of the nucleus accumbens. There have been reports 

that showed an antagonistic interaction between acetylcholine and dopamine during the 

expression of emotional states, and dopamine agonists decreased carbachol-induced emission of 
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22-kHz USVs. The current study tests the hypothesis that initial antagonism of dopamine 

receptors by systemic haloperidol or microinjection of raclopride into the nucleus accumbens 

shell should increase the subsequent emission of 22 kHz USVs induced by carbachol from the 

lateral septum. Our findings showed that antagonism of dopaminergic signaling either via 

systemic haloperidol or via intracerebral raclopride did not alter the number of emitted 22-kHz 

USVs. Thus, inhibition of the mesolimbic dopamine system did not increase the magnitude of a 

negative emotional state. It was found, however, that prolonged emission of 22-kHz USVs 

initiated by carbachol caused a delayed rebound emission (R) of 50-kHz USVs appearing after 

300 s of emission of 22-kHz USVs, i.e., when the response was subsiding. The R-50-kHz USVs 

were predominantly frequency modulated (FM) USVs and their number was directly 

proportional to the number of recorded 22-kHz USVs. The emission of R-50-kHz USVs was 

inhibited by systemic pretreatment with haloperidol or intraacumbens injection of raclopride. We 

argue that these the R-50-kHz USVs represent a rebound emotional state that is opposite in 

emotionality from carbachol-induced 22-kHz USVs. Importantly, prolonged emission of 

amphetamine-induced 50 kHz USVs failed to show any vocalization rebound effect. 

4.1: Introduction 
 

Adolescent and adult rats can emit 22-kHz ultrasonic vocalizations (USVs) and 50-kHz 

USVs that signal their emotional state to conspecifics. 22-kHz USVs are emitted typically in 

close proximity to a predator (Blanchard & Blanchard, 1991), in response to contact with 

unfamiliar humans (Brudzynski et al., 1993), in anticipation to air-puff (Knapp & Pohorecky, 

1995), and in response to fox urine (Fendt et al., 2018). These calls are also induced by 

anticipation to foot shock (Kim et al., 2013), withdrawal from drugs of abuse (Berger et al., 
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2003; Miczek & Barros, 1996), or failure to deliver expected rewards (Baker et al., 2011). Since 

the emission of 22-kHz USVs are emitted during negative contexts and can be significantly 

decreased using benzodiazepines (Nielsen & Sánchez, 1995; Jelen et al., 2003), or selective 

serotonin reuptake inhibitors (SSRIs) (Sánchez, 1993) these vocalizations have been 

hypothesized to reflect a negative emotional state similar to anxiety (Brudzynski, 2007; 2013)  

The initiation of 22-kHz USVs is dependent upon the activation of the ascending 

mesolimbic cholinergic system that originates within the laterodorsal tegmental nucleus (LTDg) 

(Brudzynski et al., 2011). The axons of the LTDg ascend and innervate a variety of limbic 

structures such as the medial hypothalamus, lateral habenula, and lateral septum (LS) (Cornwall 

et al., 1990). Intracerebral injection of carbachol into the anterior hypothalamic-medial preoptic 

region (AH-MPO) or the LS easily induces species-typical 22-kHz USVs. Also, intracerebral 

injection of glutamate into the LTDg, which activated local neurons, produced robust emission 

of species-typical 22-kHz USVs (Brudzynski & Barnabi, 1996). This emission could be 

significantly decreased with intracerebral injection of scopolamine, a muscarinic antagonist, into 

the anterior hypothalamus (Brudzynski & Barnabi, 1996; Brudzynski et al., 1996). These 

pharmacologically induced 22-kHz USVs have comparable duration, sound pressure levels, peak 

frequency and bandwidth as non-pharmacologically induced 22-kHz USVs (for review see 

Brudzynski, 2007).   

Unlike 22-kHz USVs, emission of 50-kHz USVs signal a positive emotional state in rats 

(Brudzynski, 2007; 2013; Burgdorf et al., 2007; Burgdorf et al., 2008).  Emission of FM 50-kHz 

USVs appears during the anticipation of rewarding interactions among rats like heterospecific 

play (Burgdorf et al., 2008; Hori et al., 2013; Knuston et al., 1998), during sexual behavior 

(Barfield et al., 1979), in positively conditioned place preference (Knutson et al., 1999) and 
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anticipation of rewarding electrical brain stimulation of the medial forebrain bundle (Burgdorf et 

al., 2007). 

Evidence from numerous studies suggests that the initiation of 50-kHz USVs is 

dependent upon the release of dopamine into the nucleus accumbens shell from the ventral 

tegmental area (Ikemoto, 2007). For example, optical stimulation of dopamine cell bodies within 

the ventral tegmental area, intracerebral application of dopamine agonists (quinpirole, 

amphetamine, R-(-)-apomorphine) into the nucleus accumbens, or systemic injection of 

dopamine agonists (amphetamine) have been demonstrated to be sufficient for the initiation of 

50-kHz USVs (Brudzynski et al., 2012; Burgdorf et al., 2001; Engelhardt et al., 2017; Engelhardt 

et al., 2018; Mulvihill & Brudzynski, 2018; Rippberger et al., 2015; Scardochio et al., 2015; 

Thompson et al., 2006). The emission of 50-kHz USVs can be blocked by injections of 

dopamine antagonists such as U-99195A, raclopride or haloperidol (Brudzynski et al., 2012; 

Wright et al., 2013).  

Thus, the initiation of positive or negative emotional states in rats, reflected by the 

emission of either 50-kHz or 22-kHz USVs, is an indirect measure of dopamine release within 

the nucleus accumbens shell or acetylcholine release along the ascending mesolimbic cholinergic 

system. However, evidence suggests a possible interaction between acetylcholine and dopamine 

during the initiation of emotional states in rats (Brudzynski, 2007), akin to dopamine-

acetylcholine interactions in the regulation of motor movement within the dorsal striatum, 

(Benarroch, 2012; Lester et al., 2010; Rizzi & Tan., 2017; Tarsy, 1979; Weiner et al., 1990). 

Thus, this hypothesis would predict that increased activity of the mesolimbic cholinergic system 

would decrease the activity of the mesolimbic dopaminergic system and vice versa. 
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Although indirect, some evidence for an acetylcholine-dopamine interaction during 

development of emotional states is evident in pharmacological and behavioural studies. For 

example, apomorphine has been reported to decrease whole brain acetylcholine concentrations in 

some conditions (Waldmeier, 193l; Ulus, 2010) as well as decrease the immobility time rats 

exhibit during the forced swim test (Brocco et al., 2006). Similar results are also observed when 

rats are injected with organophosphates that increase synaptic levels of acetylcholine, like 

chlorpyrifos and permethrin (López-Crespo et al., 2009; Phillips & Deshpande, 2016; Sánchez-

Amate et al., 2001; Savy et al., 2015; Shaheen et al., 2014). Likewise, organophosphates have 

been demonstrated to decrease striatal dopamine neurotransmission as well as decrease open arm 

exploration in the elevated plus maze (Karen et al., 2001; Shahabi et al., 2008).  

Further indirect evidence of acetylcholine-dopamine interactions is observed during 

application of cholinergic agonists and dopamine antagonists within the clinical population. 

Injection of the dopamine antagonist metoclopramide has been reported to induce panic attacks, 

generalized anxiety, depression and nightmares (Anfinson, 2002; Kluge et al., 2007; Shearer et 

al., 1984; Weddington & Banner, 1986). These clinical symptomatologies are similar to patients’ 

reports when administered cholinergic agonists. 

Antagonists of dopamine have also been reported to increase quantitative measures of 

anxiety in both the clinical populations. For example, the dopamine antagonist metoclopramide 

has been reported to induce panic attacks, generalized anxiety, depression and nightmares in the 

clinical population observed (Anfinson, 2002; Kluge et al., 2007; Shearer et al., 1984; 

Weddington & Banner, 1986). Interestingly the clinical manifestations after metoclopramide 

administration can be observed after administration with the acetylcholinesterase inhibitor 

physostigmine (Janowsky et al., 1979; 1981). Conversely, application of dopamine agonists like 
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piribedil has been shown to exhibit antidepressant-like properties via its affinity for D2 receptors 

(Brocco et al., 2006).  

Recently, we have reported a decrease in the emission of carbachol-induced 22-kHz from 

the LS after apomorphine injection into the medial shell of the nucleus accumbens (Silkstone & 

Brudzynski, 2019). If these two mesolimbic systems remain in a mutually antagonistic 

relationship, one may expect that the pharmacologic antagonism of the mesolimbic dopaminergic 

system will increase the sensitivity of the mesolimbic cholinergic system to initiate 22-kHz 

USVs after cholinergic stimulation. The current experiment was designed to investigate if 

antagonizing dopamine transmission by systemic injection of haloperidol or by intracerebral 

injection of the D2 antagonist, raclopride, into the medial shell of the nucleus accumbens can 

increase carbachol-induced 22-kHz USVs from the LS. 

4.2 Methods and Procedure 

4.2.a: Investigating if systemic haloperidol increases carbachol-induced 22-kHz USVs from the 

LS 

4.2.a. Subjects and Surgery 

Twenty-four adolescent male Long-Evans rats (purchased from Charles River 

Laboratories, Saint-Constant, QC, Canada) with body weights ranging between 270-295 g at the 

time of surgery were used in the study. All animals were housed in polycarbonate cages (48 cm x 

27 cm x 20 cm) in the room with constant temperature (23° C ± 2° C) and humidity control. Rats 

were on a 12: 12 h light-dark cycle with ad libitum access to standard food pellets and filtered 

tap water.  
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 Rats underwent stereotaxic surgery for unilateral implantation of guide cannula into the 

LS of the left cerebral hemisphere. Rats were anesthetized with gaseous isoflurane at a 

concentration of 3% and placed in a Kopf stereotaxic apparatus (Modell 900 David Kopf 

Instruments, Tujunga, CA). When securely fastened into the apparatus, burr holes were drilled 

into the skull using an electric drill. Guide cannula (O.D.=650 µm) was implanted into the left 

LS. The cannula was constructed from a 23 G stainless steel needle (Beckton-Dickinson Canada, 

Mississauga, ON) and was implanted 1 mm above the intended injection site. Coordinates for the 

LS injections were taken from (Paxinos & Watson, 2007): A-P: 8.5-8.8 mm; L:0.8-1.1 mm; 

V:4.8 – 5.4 mm below the surface of the dura. The cannula was secured to the rat’s skull using 

jeweler’s screws and methyl methacrylate resin (Perm Resin, Hygenic Corporation of Canada 

Inc., St. Catharines, ON). Rats recovered for 5 days after the surgery before they began 72 hours 

of habituation upon approval of their condition by staff veterinarian. For further details on 

stereotaxic procedure see Fornari et al., 2012). All research protocols were approved by Brock 

University Animal Care and Use Committee and complied with guidelines and policies set forth 

by the Canadian Council on Animal Care.  

4.2.b. Pharmacological agents and intracerebral injection procedure 

Haloperidol, a D2-antagonist, was used to determine if blocking dopamine receptors via 

intraperitoneal injection of a dopamine antagonist could increase carbachol-induced 22-kHz 

USVs from the LS.  

First, haloperidol (Precision Biochemicals, Vancouver, BC) was dissolved in a 1% lactic 

acid solution at a dose of 1.0 mg/kg and injected intraperitoneally at a volume of 0.5 ml. After 

interperitoneal injection of haloperidol, the rat was placed in its home-cage for fifteen minutes. 



127 
 

After fifteen minutes, the rat was retrieved, and 1.0 µg/0.3 µl of carbachol was injected into the 

LS using a constant rate Hamilton® CR 700 micro-syringe (Hamilton Company, Reno, NV) at a 

rate of ~4.5 ml/s. The injection cannula was left in place for the 30 s to allow for proper drug 

diffusion. After the 30 s, the injection cannula was slowly withdrawn, and a sterile plug-pin was 

inserted into the guide cannula. The rat was then placed in the recording chamber for a duration 

of 10 min.  

Injections were divided into four sections: veh+sal: vehicle (a control for haloperidol 

injection) was interperitoneally injected followed by intracerebral injection of saline (a control 

for carbachol injection) into the LS 15-minutes later; veh+carb: vehicle was interperitoneally 

injected followed by carbachol injection into the LS 15 min later; hal+sal: haloperidol was 

interperitoneally injected in the rat followed by saline injection into the LS 15 min later; 

hal+carb: haloperidol was interperitoneally injected followed by carbachol injection into the LS 

15 min later.  

4.2.c: Recording of ultrasonic vocalizations 

Recordings of ultrasonic vocalization took place in a 25 cm x 18 cm x 18 cm plexiglass 

recording chamber. The floor of the recording chamber was lined with a single paper towel since 

corn-cobb bedding contributes to the acoustic noise and can influence the emission of USVs 

(Natusch & Schwarting, 2010). The top of the recording chamber contained an Avisoft® 

CM16/CMPA condenser microphone (frequency range 2-250 kHz, Avisoft® Bioacoustics, 

Berlin Germany). Although the distance from the microphone to the snout of the rat is difficult to 

standardize since the rat rears, the approximate distance from the microphone to the dorsal 
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surface of the skull was 25 cm. Recording of vocalizations was obtained in real time and stored 

in a 16-bit format for later analysis in the Avisoft® SASlab program (Avisoft, Germany). 

Recorded vocalizations were analyzed off-line by using sonograms. Sonograms were 

constructed from wave files using a 512 FFT-length with a Hamming window and a 75%-time 

overlap. Spectrograms were produced with a 488 kHz resolution, and calls were marked for their 

durations, peak frequency, and category manually.  Call categories consisted of flat vocalizations 

(F), and frequency modulated vocalizations (FM), for a full list of categorized FM calls see 

Wright et al., 2010.      

4.2.d: Histology and Localization of injection sites 

After injections were finished, animals were anesthetized with an overdose of sodium 

pentobarbital and received an injection of Indian ink (1:100 dilution) for histological 

determination of injection sites. After injection of India ink, rats underwent transcardial 

perfusion with 10% formalin and the brains were extracted and stored for 48 hours. The brains 

were then coronally sectioned on a freezing microtome (Cryo-Histomat, Hacker Instruments and 

Industries, Fairfield, NJ) to a thickness of ~40 µm. Sections were placed on a 1% poly-lysine 

coated slides then underwent Nissle staining (see Lindroos and Leinonen, 1983, for details). 

Slides were then coverslipped, and injection sites were histologically verified via India ink 

granules under projection microscope.  

4.2.e: Statistical Analysis 
 

Results are presented as means with the standard error of the mean (S.E.M). Since the 

total number of vocalizations followed a non-parametric distribution, differences between 
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injection groups were assessed using non-parametric Friedman’s ANOVA followed by Wilcoxon 

Signed Rank test.  Acoustic parameters (peak frequency and duration) were analyzed using an 

ANOVA. P-values less than 0.05 were considered significant. Multiple comparisons were 

corrected using the Bonferroni correction. To investigate the relationship between the number of 

rebound F and FM 50-kHz USVs, the number of recorded 22-kHz USVs were plotted against a 

standardized z-score of the number of recorded F and FM 50-kHz USVs.  

4.2.f: Investigating if the intracerebral injection of raclopride increases carbachol-induced 22-

kHz USVs from the LS. 

Twenty-four adolescent male Long-Evans rats (purchased from Charles River 

Laboratories, Saint-Constant, QC, Canada) with body weights ranging between 275-325 grams at 

the time of surgery were used in the experiment. All animals were stored in polycarbonate cages 

(48 cm x 27 cm x 20 cm) in the room (23° C ± 2° C) with constant humidity settings. Rats were 

on a 12: 12 h light-dark cycle with ad libitum access to standard food pellets and filtered tap 

water.  

Rats in the second experiment underwent bilateral implantation of guide cannula into the 

left hemisphere. One guide cannula was implanted into the medial shell of the nucleus 

accumbens and the second guide cannula was placed into the LS. For implantation into the 

nucleus accumbens shell, the coordinates were taken from (Paxinos & Watson, 2007) and were 

as follows: A-P: 10.4 mm – 10.8 mm; L: 0.8-1.6 mm and D-V: 5.6-6.4 mm below the dura. 

Injection for the LS was as follows: A-P: 8.5-8.9 mm: L:0.6-1.0 mm; D-V: 4.8-5.6 mm below the 

surface of the dura. Procedures for chronically securing the cannula, the O.D of the guide 

cannula and recovery can be found in section 4.1.a.  
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4.2.f: Pharmacological agent and intracerebral injection procedure 

The drug was changed from haloperidol to raclopride for intracerebral injection studies 

because it has been shown previously that intracerebral injection of haloperidol can partially 

increase the emission of 50-kHz USVs (Thompson et al., 2005). Briefly, 7µg/0.3 µl of raclopride 

(Sigma-RBI, Oakville, Ont., Canada) was injected into the medial shell of the nucleus 

accumbens using a constant rate Hamilton® CR 700 micro-syringe (Hamilton Company, Reno, 

NV) at a rate of ~4.5 nl/s. After injection of raclopride, the injection cannula was left in place for 

30 s then withdrawn. The guide cannula was then closed using a sterile plug-in, then the rat was 

placed in its home cage for 60 s. After 60 s the rat was taken, and 1.0 µg/0.3 µl of carbachol was 

injected into the LS using a constant rate Hamilton® CR 700 micro-syringe (Hamilton 

Company, Reno, NV) at the same rate as raclopride. After injection of carbachol, the injection 

cannula was left in place for an additional 30 s then withdrawn slowly. The guide cannula was 

closed using a sterile plug-pin, and the rat was then placed into the recording chamber for 10 

min.  

For the recording of ultrasonic vocalizations, histological analysis of injection sites and statistical 

analysis of recordings see sections 4.1.c-4.1.d. 

4.3: Results 

4.3.a: Pretreatment with systemic haloperidol failed to increase the mean number of carbachol-

induced 22-kHz USVs from LS 

Injection of the dopamine antagonist haloperidol failed to increase the mean number of 

recorded 22-kHz USVs compared to veh+carb injection (χ2(3) = 31.6, p>0.95, see Table 1 [tables 

at end of text] and Figure 24, n=12). Injection of haloperidol also failed to increase the mean 
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number of recorded 22-kHz USVs when carbachol was injected outside the LS (see Table 1, 

figure not shown).    

 

Figure 24: Mean number of recorded 22-kHz USVs during a 10 min recording. There was no 

statistical difference observed between the number of recorded 22-kHz USVs during veh+carb 

and hal+carb conditions (χ2[3] = 31.6, p > 0.95, n = 12 rats) Abbreviations: veh+sal: vehicle is 

injected systemically followed by saline injection into the LS 15 min later; veh+carb: vehicle is 

injected systemically followed by carbachol injection into the LS 15 min later; hal+carb: 

haloperidol is injected systemically followed by carbachol injection into the LS 15 min later; 

hal+sal: haloperidol is injected systemically followed by saline injection into the LS 15-minutes 

later. Veh+sal or hal+sal did not induce any 22-kHz USVs. Localization of injection sites for 

carbachol is shown in Figure 25C (right side of the brain). 
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4.3.b: Pretreatment with intracerebral raclopride into the medial shell of the nucleus accumbens 

failed to increase the mean number of carbachol-induced 22-kHz USVs from the LS 

Injection of the dopamine antagonist raclopride into the medial shell of the nucleus 

accumbens (rac+carb) failed to increase the mean number of recorded 22-kHz USVs compared 

to veh+carb injection condition (χ2(3) = 45.3, p>0.95, see table 3, figure 25A, for localizations 

see Figure 25 B and C). Injection of raclopride into the medial shell of the nucleus accumbens 

followed by injection of carbachol outside the LS failed to increase the number of 22-kHz USVs 

(see table 6, Figure not shown).    
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Figure 25. The mean number of carbachol-induced 22-kHz USVs during a 10 min recording 

session (A). There was no statistical difference between the number of 22-kHz USVs recorded 

during sal+carb or rac+carb injection conditions (χ2[3] = 45.3, p > 0.95, n = 12 rats). 

Amphetamine followed by saline in LS (amph+sal) was injected as a negative control. 

Localization of injection sites in the medial shell of nucleus accumbens is shown in B while 

injection sites in the ipsilateral LS are shown in C (left side of the diagram). The right side of the 

diagram shows the localization of injection sites for carbachol after systemic haloperidol. 

Abbreviations: sal+sal: saline injected into the medial shell of the nucleus accumbens followed 

by saline injection into the LS; sal+carb: saline injected into the medial nucleus accumbens shell 

followed by injection of carbachol into the LS; rac+carb: raclopride injected into the medial shell 

of the nucleus accumbens followed by carbachol injection into the LS; rac+sal: raclopride 

injected into the medial shell of the nucleus accumbens followed by saline injection into the LS; 

amph+sal: amphetamine injected into the medial shell of the nucleus accumbens followed by 

saline injection into the LS. There were no 22-kHz USVs recorded during sal+sal, rac+sal or 

amph+sal injection conditions. Anatomical abbreviations: AC – core of the nucleus accumbens; 

AS – shell of the nucleus accumbens; ca- anterior commissure; cc – corpus callosum; CP – 

caudate-putamen; DB – diagonal band; LS – lateral septum; mfb – medial forebrain bundle; MP 

– medial preoptic area; MS – medial septum; oc – optic chiasm; OT – olfactory tubercle; SH – 

striohypothalamic nucleus; V – lateral ventricle; VP – ventral pallidum. 
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4.3.c: Injection of saline into the medial shell of the nucleus accumbens followed by carbachol 

injection into the LS induced delayed rebound emission of 50-kHz USVs 

Although carbachol injection into LS invariably initiated consistent and long-lasting 

emission of 22 kHz USVs, we have noticed that this pharmacological response brought about a 

rebound effect in the form of delayed emission of 50 kHz USVs. These rebound 50 kHz USVs 

have been termed R-50 kHz calls (see Figure 26). The R-50-kHz calls of both F R-50-kHz USVs 

and FM R-50-kHz USVs were appearing around the 5th min or later post injection. Time 

analysis showed the R-50-kHz USVs increased in number with time and reached a maximum 

after 9-10 min post-injection when the carbachol effects subsided and emission of 22 kHz USVs 

was waning or was discontinued. Since the R-50-kHz USVs started to appear during the decay of 

the 22-kHz USV response, and these vocalizations were sensitive to haloperidol and raclopride 

(see following sections), they were not pharmacologically initiated by carbachol.  

An analog rebound phenomenon was not observed after injection of amphetamine into 

the medial shell of the nucleus accumbens. Amphetamine induced emission of species-typical 

50-kHz USVs, and this response gradually subsided. Amphetamine injection condition 

(amph+sal) was able to significantly increase the mean number of recorded FM 50-kHz USVs 

when compared to sal+sal injection conditions (χ2[3] = 37.6, p = 0.006, Figure 29). After the 

emission of 50-kHz USVs subsided, there was no rebound in the form of emission of 22-kHz 

USV signaling an opposite state to that induced by amphetamine (Figure not shown). Thus, the 

appearance of the rebound emission of USVs signaling opposite state to that initially induced by 

the pharmacologic agent was asymmetric. Based on vocalization analysis, the negative emotional 

state transitioned into a rebound positive emotional state reflected in the number of emitted 50-
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kHz USVs. However, the positive emotional state did not transition into a negative emotional 

state indexed by the number of emitted 22-kHz USVs.  

 

Figure 26. Time bin observations of the mean number of carbachol-induced 22-kHz (dark bars) 

and R FM 50-kHz USVs (lightly stippled bars) emitted during a 10-minute recording after 

carbachol. Each bin represents the mean number of recorded 22-kHz USVs, and R FM 50-kHz 

USVs pooled together from both, veh+carb and sal+carb injection conditions (n = 24, n=12 rats 

from figure 24 and n=12 rats from figure 25). The maximum response was recorded within the 

first few minutes, with a trend to a slow decrease to a minimum at the 10 min mark. This trend 

was opposite when analyzing the rebound FM R-50-kHz USVs. Rebound FM 50-kHz USVs 

were at a minimum at the 5th min time-bin but reached a peak at the end of the recording where 

the magnitude of carbachol-induced 22-kHz USVs was at a minimum. Since the 50-kHz USVs 
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were not initiated by carbachol, but rather began to emerge at the 300 s mark, we have termed 

these vocalizations rebound (R) FM 50-kHz USVs since they are likely to reflect a gradual 

change to the opposite emotional state of the rat and seem to be initiated by a different 

neurotransmitter system. 

4.3.d: Number of emitted FM R-50-kHz USVs is correlated with the number of carbachol-

induced 22-kHz USVs. 

After carbachol control injections, i.e., both after sal+carb and the veh+carb injection 

conditions, when carbachol-induced emission of 22-kHz USVs was subsiding, an increased 

number of both F and FM R-50-kHz USVs was observed. Thus, we wanted to examine the 

potential role of the 50-kHz subtypes to determine any relationship between the number of 

rebound F 50-kHz or FM 50-kHz USVs and the initially emitted 22-kHz USVs.  

First, we standardized the number of emitted F or FM R-50-kHz USVs by changing the 

vocalizations into z-scores. Then the number was plotted against the corresponding number of 

recorded 22-kHz USVs after carbachol (Figure 27). There was no observed correlation between 

the number of recorded 22-kHz USVs and the following number of recorded F R-50-kHz USVs 

(rF[22] = 0.11, p = 0.59, dotted correlation line). However, there was a significant correlation 

between the number of emitted 22-kHz USVs and the number of emitted FM R-50-kHz USVs in 

the rebound phase of the response (rFM[22] = 0.56, p = 0.005; Figure 27, dashed correlation line). 

The positive correlation suggested that with an increasing number of emitted 22-kHz USVs, the 

magnitude of the emotional rebound state increased, which was reflected in the increased number 

of R-FM-50-kHz USVs. The FM 50-kHz USVs truly reflected the positive emotional state. 
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Figure 27: Number of recorded F and FM 50-kHz USVs (standardized) as a function of recorded 

22-kHz USVs during veh+carb and sal+carb injection conditions (total n=48). There was a 

significant correlation between the number of emitted 22-kHz USVs and the number of emitted 

FM 50-kHz USVs (dashed correlation line, r[22] = 0.56, p = 0.005). There was no correlation 

between the number of emitted 22-kHz USVs and the number of emitted F 50-kHz USVs (dotted 

correlation line, r[22] = 0.11, p = 0.59). Note: each point represents the total number of calls 

emitted by an individual rat. Circles represent total vocalizations emitted/rat, and triangles 

represent total vocalizations emitted/rat plotted against a number of recorded 22-kHz USVs/rat. 
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4.3.e: Systemic pre-treatment with haloperidol eliminated the emission of R-50-kHz USVs 

In order to investigate the origin of R-50-kHz USVs, we have induced carbachol response 

from the LS after systemic administration of the dopamine antagonist haloperidol (hal+carb 

condition).  

Intraperitoneal injection of haloperidol followed by carbachol injection into the LS 

(hal+carb) significantly decreased the mean number of F R-50-kHz USVs compared to veh+carb 

(p = 0.027) and also significantly decreased the number of FM R-50-kHz USVs (χ2[3] = 30.7, p 

= 0.043, see Figure 28). To understand if these R-50-kHz USVs were a result of carbachol 

injections into the LS, we analyzed rebound vocalizations when carbachol was injected outside 

the LS. There was no significant difference in the number of recorded F R-50-kHz USVs (χ2[3] = 

15.25, p = 0.581) or FM R-50-kHz USVs (χ2[3] = 9.0, p > 0.95) when carbachol was injected 

outside of LS compared to veh+carb and veh+sal conditions (Table 7, left part of the table). 
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Figure 28: Mean number of recorded R-50 kHz USVs during various injection conditions. Flat 

USVs (F) are shown by darkly filled bars on the left-hand side. Injection of veh+carb 

significantly increased the mean number of F 50-kHz USVs compared to both veh+sal condition 

(χ2[3] = 26.5, p < 0.009, n = 12) and hal+sal condition (p < 0.001). Pretreatment with haloperidol 

significantly decreased the F 50 kHz USVs (hal+carb, (χ2[3] = 26.5, p = 0.021). Frequency-

modulated (FM) USVs are shown by lightly stippled bars on the right-hand side.  In the 

veh+carb condition, the mean number of recorded FM 50-kHz USVs increased compared to 

veh+sal (χ2[3] = 30.7, p < 0.001), and hal+sal (p < 0.001). Pretreatment with haloperidol 

significantly decreased the FM 50 kHz USVs (hal+carb, χ2[3] = 30.7, p = 0.043). For a full 

explanation of injection conditions, see Figures 24 and 25). 
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4.3.f: Intracerebral pretreatment with raclopride into the medial shell of the nucleus accumbens 

decreased the emission of R-50-kHz USVs. 

In order to provide further evidence that the emissions of both F and FM R-50-kHz USVs 

were dependent on dopamine transmission in the nucleus accumbens shell, raclopride, a D2 

dopamine antagonist, was intracerebrally injected into the shell of the nucleus accumbens. 

Injection of raclopride into the medial shell of the nucleus accumbens followed by injection of 

carbachol into the LS significantly attenuated FM R-50-kHz USVs (p = 0.016) and F R-50-kHz 

USVs (χ2[3] = 23.9, p = 0.002, see Figure 29). To further asses if rebound FM R-50-kHz USVs 

were induced by carbachol from LS, the number of FM R-50-kHz USVs was recorded when 

carbachol was injected outside the LS.  When carbachol was injected outside the LS, there was 

no longer a significant difference between the number of recorded FM R-50-kHz USVs between 

sal+carb and sal+sal conditions (χ2[3] = 37.4, p > 0.95) and F R-50-kHz USVs (χ2[3] = 39.8, p > 

0.95, see Table 7). 
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Figure 29: Mean number of recorded 50-kHz and R-50 kHz USVs during various injection 

conditions. Flat USVs (F) are shown by darkly filled bars on the left-hand side. Injection of 

sal+carb significantly increased the mean number of recorded F R-50-kHz USVs compared to 

sal+sal condition (p = 0.002). Amph+sal was also able to significantly increase the mean number 

of F 50-kHz USVs compared to sal+sal condition (p < 0.001). Pretreatment with raclopride in the 

nucleus accumbens has significantly decreased the number of F R-50 kHz USVs (rac+carb,  

χ2[3] = 23.9, p = 0.002). Frequency-modulated (FM) USVs are shown by lightly stippled bars on 

the right-hand side. Injection of amph+sal significantly increased the mean number of recorded 

FM 50-kHz USVs compared to sal+sal condition (χ2[3] = 37.6, p = 0.006), and rac+sal (p < 

0.001). Injection of sal+carb also significantly increased the mean number of FM R-50-kHz 

USVs compared to and sal+sal (p = 0.030). Pretreatment with raclopride in the nucleus 
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accumbens (rac+carb) significantly decreased the FM 50 kHz USVs compared to sal+carb 

injection condition (χ2[3] = 37.6, p<.016) For a full explanation of injection conditions, see 

Figures 24 and 25). 

 

4.3.g: Intracerebral injection of amphetamine, followed by intracerebral injection of saline into 

the LS, did not cause emission of 22-kHz USVs. 

Initially, the injection of amphetamine was used as a positive control to ensure that 

raclopride was being injected into neural tissue that was sensitive to producing 50-kHz USVs. 

Since carbachol was able to induce a rebound of calls representing opposite-valence emotional 

state, we wanted to determine if amphetamine also caused rebound 22-kHz USVs after the decay 

of the initial response. Although amphetamine significantly increased both F and FM 50-kHz 

USVs (Figure 29), there were no recorded 22-kHz USVs during this injection condition upon 

analysis.  

4.3.h: Sonographic features of 22-kHz and 50-kHz USVs recorded during different injection 

conditions 

To determine if there were any significant differences in the acoustic parameters (call 

duration and peak frequency) of recorded F 50-kHz USVs, FM 50-kHz USVs, and 22-kHz 

USVs, a one-way repeated measures ANOVA was used. There was no statistical difference in 

the peak frequency of all recorded 22-kHz USVs (F[1.1, 25.5] = 0.040, p = 0.867, partial ŋ2 = 

0.044) or in the call duration (F[1.8, 43.3] = 0.412, p = 0.652, partial ŋ2 = 0.018) between 

veh+carb and halo+carb conditions (Figure not shown). 
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 There was also no significant difference in the sonographic features of all recorded F and 

FM R-50-kHz USVs, neither in the call duration (F[1.9, 62.1] = 2.09, p = 0.133, partial ŋ2 = 

0.061 and F[1.18, 27.3] = 2.02, p = 0.165, partial ŋ2 = 0.300), for F and FM USVs respectively, 

nor in the peak frequency (F[1.7, 40.3] = 0.563, p = 0.552, partial ŋ2 = 0.024 and F[1.54, 35.5] = 

.829. p = 0.417, partial ŋ2 = 0.035), respectively (Figure not shown). 

We have also analyzed potential acoustic differences across injection conditions. 

Recording of 22-kHz USVs induced by intracerebral injection of carbachol into the LS preceded 

by raclopride or saline injection into the medial shell of the nucleus accumbens showed also no 

significant differences in single call duration (F[1.5, 35.4] = 1.8, p = 0.186, partial ŋ2 = 0.073) or 

peak frequency (F[1.4, 33.8] = 1.5, p = 0.224, partial ŋ2 = 0.064) (Figure not shown).  

 Analysis of recorded F 50-kHz USVs did not reveal any significant differences in 

recorded duration [F(2.15, 49.6) = 1.1, p=.348, partial ŋ2=.045] or peak frequency [F(2.2, 

50.8)=1.9, p=.182, partial ŋ2=.070) across injection conditions. There was no significant 

difference between the duration [F(2.6, 61.3)=.642. p=.567, partial ŋ2=.028] or peak frequency 

[F(1.3, 31.8) = 2.0, p=.192, partial ŋ2=.080] across injection conditions (Figure not shown). 

4.4: Discussion 

4.4.a: Systemic injection of haloperidol or intracerebral injection of raclopride into the shell of 

the nucleus accumbens does not increase carbachol-induced 22-kHz USVs from the LS 

The main finding of this experiment was that blocking dopamine receptors via acute 

systemic injection of haloperidol, or microinjection of the dopamine antagonist raclopride into 

the medial shell of the nucleus accumbens failed to increase the mean number of carbachol-

induced 22-kHz USVs from the LS. Our findings are consistent with previous reports showing 
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that acute systemic injection of haloperidol did not significantly change the number of recorded 

22-kHz USVs in response to anticipation of foot shocks or in other conditioned paradigms (De 

Vry et al., 1993; Mead et al., 2008; Molewijk et al., 1995; Naito et al., 2003; Sánchez, 2002).  

Despite reports showing no changes in the number of emitted 22-kHz USVs in response 

to acute treatment with haloperidol, there have been reports that show chronic haloperidol 

treatment can increase anxiety-like behaviours in rats (chronic haloperidol treatment is defined as 

once per day for at least a seven-day period) (Karl et al., 2006; Rygula et al., 2008). Karl and 

colleagues (2006) administered haloperidol every day for four weeks and showed high measures 

of anxiety as compared to controls. The authors in this study measured anxiety using the 

light/dark box, elevated plus maze, and the open field test. Likewise, Rygula and colleagues 

(2008) administered haloperidol for three weeks and examined the compounding effects of 

psychological stress. Consistent with Karl and colleges (2006), chronic haloperidol-treated rats 

exhibited decreased locomotor activity, rearing, and sniffing behaviours. Rats also displayed a 

decreased preference for sucrose as well as increased immobility as a result of the forced swim 

test (Karl et al., 2006). Unfortunately, since there were no recordings of 22-kHz USVs during 

chronic haloperidol-treated rats in these experiments, it would be interesting to see if chronic 

haloperidol treatment could change the number of emitted 22-kHz USVs in foot-shock 

paradigms.  

The increase in anxiety after haloperidol in rats has also been reported in human subjects. 

After six hours of taking 5 mg of haloperidol, human subjects have reported restlessness, 

dysphoria, agitation,  anxiety, and emotional withdrawal (Anderson et al., 1981). The emotional 

deficits reported by a 5 mg oral dose of haloperidol in humans are paralleled to anxiogenic 
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experiences reported by human subjects after intravenous injection of 5 mg/kg of haloperidol 

(Belmaker & Wald, 1977).  

The adverse behavioural effects associated with oral or intravenous administration of 

haloperidol is mimicked by the dopamine depleting drug alphamethylpara tyrosine (AMPTA). 

Oral administration of 4.5 mg of AMPTA caused, within a six-hour period, feelings of 

detachment and anhedonia. After a 24-hour period, the subject began to suffer from severe 

anxiety, restlessness, shame, fear, and depression (de Haan et al., 2005).  

The juxtaposition of the different effects of acute haloperidol on the emission of 22-kHz 

USVs and the increase in anxiety-like behaviours during chronic haloperidol treatment in rats 

may be attributed to the pharmacokinetic profile of haloperidol. Acute administration of 

haloperidol, along with other first-generation antipsychotics, increased the firing behaviours of 

dopamine neuron population within the ventral tegmental area (Grace & Bunny, 1986). 

However, chronic injections of haloperidol have been shown to decrease the firing pattern of 

dopamine neurons in the VTA to a largely inhibitory state via a depolarization block mechanism 

(Chiodo & Grace, 1983; Grace, 1992; Valenti & Grace, 2010; Valenti et al., 2011). The 

depolarization block leads to decreased levels of dopamine release along target areas of the 

mesolimbic dopamine system, such as the nucleus accumbens (Blaha & Lane, 1987; Lane & 

Blaha, 1987; Moore et al., 1998).  Thus, the differences in emotional behaviour in rats attributed 

to acute or chronic haloperidol treatment may be reflected in the pharmacological profile of how 

haloperidol changes the electrophysiological behaviour of VTA dopamine neurons over time.  

Previous results have shown that microinjection of the dopamine agonist apomorphine 

into the medial shell of the nucleus accumbens was able to decrease carbachol-induced 22-kHz 
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USVs from the LS. Reports have also shown that acute haloperidol is able to increase the release 

of dopamine within the nucleus accumbens (Osborne et al., 1994) consistent with findings that 

acute haloperidol treatment changes the firing pattern of dopamine cells in the VTA from 

irregular to phasic fast-spiking, yet we did not find any decrease in the number of recorded 22-

kHz USVs. A possible mechanism that explains our finding is simply the increased release of 

dopamine by haloperidol into the nucleus accumbens if off-set by post-synaptic antagonism of 

D2 receptors by the antipsychotic (Madras, 2013) 

The altered electrophysiological properties of dopamine neurons in the VTA in response 

to acute haloperidol treatment may not have altered forebrain levels of acetylcholine that 

promote either expression of behavioural phenotypes associated with anxiety, or the emission of 

22-kHz USVs. Despite the lack of evidence of acute haloperidol treatment altering midbrain and 

forebrain acetylcholine levels, chronic administration of haloperidol has been shown to increase 

acetylcholine receptor density within the nigrostriatal system (Stock & Kummer, 1981), to 

increase nucleus accumbens acetylcholine turn-over rate (Bluth & Langnickel, 1985), and to 

increase fos expression within the LS, a condition which can be blocked via application of the 

muscarinic antagonist scopolamine (Guo et al., 1992).  Thus, although acute haloperidol did not 

alter 22-kHz USVs, chronic treatment may lead to increased sensitivity of the medial 

cholinoceptive vocalization strip. 

4.2: Rebound R-50-kHz USVs were recorded during sal+carb injection condition  

An unexpected finding in this experiment was that an injection of carbachol into the LS, 

which induced expected and lasting emission of 22 kHz USVs, was also able to induce delayed 

emission of 50-kHz ultrasonic USVs labeled R-50-kHz USVs. The parameters of R-50-kHz 
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USVs recorded following carbachol injection into the LS did not differ from the parameters of 

50-kHz USVs recorded after amph+sal or veh+sal conditions. 

We argue that the recorded R-50-kHz USVs are positively emotionally driven 50-kHz 

USVs that result from the release of dopamine within the nucleus accumbens shell after the 

response to carbachol fades. The time-bin analysis provides support for this argument since the 

R-50-kHz USVs observed during the sal+carb injection condition did not appear until the 300 s 

mark, i.e., after 300 s of uninterrupted emission of 22 kHz USVs. The time bin result combined 

with the antagonizing effects of dopamine antagonists on R-50-USVs clearly indicate that R-50-

kHz USVs were not pharmacologically induced by carbachol but generated a subsequent 

physiological rebound process initiated by dopaminergic release into the nucleus accumbens. 

The recorded R-50-kHz USVs displays characteristics of the opponent-process theory 

suggested by Solomon and Corbit (Solomon & Corbit, 1974; Solomon, 1980). The opponent-

process theory suggests a pattern of emotional dynamics that is described by five different 

phases. The first phase is the peak of the primary emotional response. After the peak of primary 

emotional response, the adaptation phase initiates, which transitions into a steady-state, which 

eventually transitions into the peak of the emotional rebound state. Eventually, the decay of the 

rebound affective state terminates, and the organism returns to an emotionally neutral state. 

The appearance of the R-50-kHz USVs follows the typical patterns that are outlined in 

the opponent-process model. Initially, carbachol-induced the negative emotional state reflected 

in the increased number of emitted 22-kHz USVs. However, after the peak response induced by 

carbachol, the rebound affective state begins to occur with the subsequent emergence of FM R-

50-kHz USVs after the initial 300 s. In our recording, the peak rebound affective response 
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occurred at the 600 s mark where the number of FM R-50-kHz USVs was the highest. Our 

recording time did not allow us to observe the full reduction and of the emotional rebound and 

return to the emotionally neutral state.  

4.5 Conclusions 

The previous research has shown that the initiation of a positive emotional state by 

apomorphine decreased expression of a subsequent negative emotional state induced by 

carbachol. The current study examined further the opposite relationship between these emotional 

states and tested the hypothesis that initial antagonism of dopamine receptors will increase vocal 

expression of the negative emotional state induced by carbachol measured by emission of 22-

kHz USVs.  

 Our findings showed that antagonism of dopaminergic signaling either via systemic 

haloperidol or via intracerebral application of the dopamine receptor antagonist raclopride into 

the shell of the nucleus accumbens did not alter the number of emitted 22-kHz USVs. Our data 

indicate that inhibition of the mesolimbic dopamine system does not amplify or increase the 

magnitude of a negative emotional state. 

It was also found that prolonged emission of 22-kHz USVs induced by injection of 

carbachol into the LS brought about delayed rebound effects in the form of emission of R-50-

kHz USVs, while prolonged emission of 50-kHz USVs induced by amphetamine did not show 

such rebound in the form of 22-kHz USVs.  
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Table 6. The number of carbachol-induced 22 kHz USVs (± SEM) from LS after systemic 

antagonism by haloperidol (hal+carb) or intraaccumbens antagonism with raclopride (rac+carb) 

when carbachol was injected into the LS or outside LS. 

 Systemic injection 

(veh or hal) followed 

by carb injection in 

LS (n = 12) 

Systemic injection (veh 

or hal) followed by carb 

injection outside LS 

(n = 12) 

Microinjection of sal 

or rac into the shell of 

the nucleus accum-

bens followed by 

carb into LS (n = 12) 

Microinjection of sal or 

rac into the shell of the 

nucleus accumbens 

followed by carb outside 

LS (n = 12) 

 veh+carb 

in LS 

hal+carb 

in LS 

veh+carb 

outside LS 

hal+carb 

outside LS 

sal+carb 

in LS 

rac+carb 

in LS 

sal+carb 

outside LS 

rac+carb 

outside LS 

22-

kHz 

USVs 

130.4 

±15.3 

148.9 

±18.7 

1.3 

± 1.1 

1.2  

± 0.8 

95.1  

± 12.4 

125.0  

± 15.4 

5.5  

± 1.3 

1.1 

± 0.6 

Note: For abbreviations of injection conditions see figure 24.  

 

Table 7. Number of rebound R-50 kHz USVs and their subtypes (± SEM) that appeared after 

injection of carbachol into or outside of the LS and their antagonism with systemic haloperidol 

(hal+carb) or intraacumbens raclopride (rac+carb). 

 Carbachol injection 

inside LS (n = 12) 

Carbachol injection 

outside LS (n = 12) 

Carbachol injection 

inside LS (n = 12) 

Carbachol injection 

outside LS (n = 12) 
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Call  

category 

veh+carb 

 

hal+carb 

 

veh+carb 

 

hal+carb 

 

sal+carb 

 

rac+carb 

 

sal+carb 

 

rac+carb 

 

F R-50-

kHz USV 

16.6 

± 1.8 

3.3 

± 0.88 

1.25 

± 0.6 

0 15.1 

± 3.3 

8.8 

± 1.8 

3.7 

± 1.1 

0 

FM 50-

kHz USV 

42.3 

± 6.7 

9.75 

± 3.1 

0 0 34.9 

± 5.8 

2.25 

± 1.4 

2.9 

± 1.6 

0 

For statistical analysis see results.  
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Chapter 5: General Discussion 
 

 

 

 

 

 

 

5.1: Summary of main findings 

The overarching goal of this thesis was to examine the possible antagonistic interactions 

between the mesolimbic dopamine system and the mesolimbic cholinergic system during the 

initiation of emotional states. The thesis specifically focused on whether the initiation of a 

positive emotional state could influence the magnitude of a subsequently expressed negative 

emotional state. To accomplish this goal, the thesis was divided into three questions, each 

examining an aspect of the possible antagonistic effect of positive emotionality has on the 

negative emotionality. 
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The results obtained in the thesis supported the hypothesis of the thesis. In chapter 2 it 

was shown that the injection of a dopamine agonist, apomorphine, into the central region of the 

medial nucleus accumbens shell, decreased the magnitude of carbachol-induced 22-kHz USVs 

from the main division of the medial cholinoceptive vocalization strip, the AH-MPO. In chapter 

3, the injection of apomorphine into the central division of the medial nucleus accumbens shell 

decreased the magnitude of carbachol-induced 22-kHz USVs from the LS, the most rostral 

division of the medial cholinoceptive vocalization strip. Since there was a significant decrease in 

the number of emitted 22-kHz USVs, without changes in spectrographic parameters, it is argued 

that initiation of a positive emotional state decreased the magnitude of a negative emotional state 

suggesting an antagonistic relationship between the two ascending mesolimbic systems. 

 

5.2: The lateral habenula has bi-directional connections with both the LTDg and the VTA and 

may serve as an important nodal point during the regulation of emotional behaviour in rats.  

The primary efferent pathway of the lateral habenula (LHb) is the longitudinal fiber 

bundle the fasciculus retroflexus (fr, Viswanath et al., 2014). This fiber bundle connects the LHb 

to both the VTA and the LTDg positioning it strategically to influence both tegmental structures 

that can initiate either 50-kHz USVs or 22-kHz USVs. Conversely, both structures project back 

to the LHb and can influence LHb function. For example, the VTA sends glutamatergic fibers 

that co-release GABA and dopamine to the LHb (Mizumori & Baker, 2017). Optogenetic 

stimulation of these neurons that express dopamine markers but release GABA into the LHb 

promote conditioned place preference, a measure of positive emotionality (Stamatakis et al., 

2013). Whereas optogenetic activation of glutamatergic neurons in the VTA that project to the 
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LHb promote conditioned place aversion, a measure of negative emotional state (Root et al., 

2014) 

Conversely, the LHb influences the microcircuitry of the LTDg, and subsequently the 

expression of anxiogenic behaviours. The LTDg is a heterogeneous nucleus that is composed of 

glutamatergic, cholinergic, and GABAergic neurons along with the rostral, medial, and caudal 

divisions. Within the rostral part, the LTDg displays the highest concentration of neurons 

expressing vesicular glutamate transporter type 2 (VGluT2) mRNA suggesting this subdivision 

is primarily composed of glutamatergic neurons. The medial division of the LTDg is suggested 

to contain the highest density of cholinergic neurons since it contains the highest concentration 

of ChAT-immunoreactivity, while the caudal division has the highest density of GABAergic 

neurons since this region contains the highest concentration of the glutamic acid decarboxylase 

isoform 67 (GAD-67) (Wang & Morales, 2009). Yang and colleagues (2016) have fleshed out 

some of the important circuity connecting glutamatergic neurons from the LHb to GABAergic 

interneurons within the LTDg in relation to defensive behaviours in mice. The authors showed 

that optogenetic stimulation of glutamatergic terminals originating from the LHb and terminating 

inside the LTDg results in freezing behaviour in mice (Yang et al., 2016). Thus, the LHb can 

inhibit dopaminergic neurons within the VTA by exciting GABAergic neurons within the 

rostromedial tegmental nucleus (tail of the VTA) and promote the expression of anxiogenic 

behaviours by exciting GABAergic interneurons within the LTDg. However, vocal expression in 

mice was not recorded during the optogenetic stimulation of glutamatergic input into the LTDg. 

Despite the lack of evidence involving the LHb in the regulation of initiation of 22-kHz 

USVs, there is indirect support for its role in the initiation of defensive-related behaviours during 

experimental designs. For example, Brown and Shepard (2013) showed the effects of footshock 
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and lesion of the fr. Foot shock in rats was able to induce c-fos expression in both the lateral 

habenula as well as the trail of the ventral tegmental area. However, upon lesioning the fr, c-fos 

expression in the tail of the ventral tegmental area is prevented. (Brown & Shepard, 2013). 

Lateral habenula neurons are also shown to increase c-fos expression during exposure to 

predators. Roseboom and colleagues (2007) showed that, upon exposure to ferret odor, increased 

Fos positive cells in the lateral habenula within 30 min that remained at a steady level for approx. 

120 min. This effect was absent in the medial habenula suggesting a strict role for the lateral 

habenula in processing anxiety-related information (Roseboom et al., 2007). Although exposure 

to Ferret odor has not been demonstrated to induce 22-kHz USVs, exposure to the predator odor 

Fox urine has shown to increase both Fos reactivity in the lateral habenula (Vincenz et al., 2007) 

and has also been shown to be capable of initiating 22-kHz USVs (Fendt et al., 2018, see Figure 

31).  
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Figure 30: Proposed synaptic connection arguing for the lateral habenula as an important link 

between the VTA and the LTDg. During aversive conditioned experiments, that can initiate 22-

kHz USVs, Fos reactive cells in the tail of the VTA as well as lateral habenula neurons are 

increased. Fos reactive neurons in the LHb and the tail of the VTA are also increased upon 

exposing to fox odor, which initiates 22-kHz USVs. Activation of VTA can depolarize a select 

population of neurons that can inhibit LHb neurons by releasing GABA resulting in conditioned 

place preference in mice. No study has looked at inhibition or activation of subnuclei within the 

LHb and 50 kHz or 22-kHz USVs. Data to construct the wiring diagram taken from Brudzynski, 
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S. M. (2013). Ethotransmission: communication of emotional states through ultrasonic 

vocalization in rats. Current opinion in neurobiology, 23(3), 310-317: Sánchez-Catalán, M. J., 

Faivre, F., Yalcin, I., Muller, M. A., Massotte, D., Majchrzak, M., & Barrot, M. (2017). 

Response of the tail of the ventral tegmental area to aversive stimuli.Neuropsychopharmacology, 

42(3), 638: Ikemoto, S. (2007). Dopamine reward circuitry: two projection systems from the 

ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain research reviews, 

56(1), 27-78: Yang, H., Yang, J., Xi, W., Hao, S., Luo, B., He, X., ... & Duan, S. (2016). 

Laterodorsal tegmentum interneuron subtypes oppositely regulate olfactory cue-induced innate 

fear. Nature Neuroscience, 19(2), 283. 

 

5.3: Amphetamine did not induce rebound 22-kHz USVs.  

The purpose of the fourth chapter was to investigate whether blocking dopamine receptors in the 

nucleus accumbens, then injecting carbachol into the LS could increase 22-kHz USVs. The 

results did not support an inverse relationship between the two systems, i.e., that blocking 

dopamine receptors in the nucleus accumbens did not increase the number of carbachol-induced 

22-kHz USVs from the LS.  

Interestingly, it was found that 50-kHz USVs were being emitted after carbachol 

injection roughly 300-400 s after injection. I argued that, since these 50-kHz USVs did not occur 

directly after carbachol injection and were blocked by both systemic and intracerebral 

application of dopamine antagonists, they represented an emotional rebound state dependent 

upon dopamine release within the nucleus accumbens. Despite the emotional rebound after 

carbachol response, there was no 22-kHz USVs observed as a rebound after amphetamine or 
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apomorphine responses. Despite the lack of rebound 22-kHz USVs, this does not preclude 

initiation of a rebound negative emotional state after apomorphine or amphetamine 

microinjections. For example, Ettenberg and colleagues (1999) examined the opponent-process 

theory by examining the behaviours of rats in a conditioned place preference experimental 

paradigm after intravenous cocaine administration. They found that the rats that were placed 

back into the environment 0-min or 5-min after receiving cocaine they returned to the cocaine-

paired environment, but rats that were placed back into the apparatus 15-min post cocaine 

infusion exhibited place aversion response (Ettenberg et al., 1999). Thus, it is possible that the 

rats would exhibit negative emotionality if given an alternative and more sensitive behavioural 

tests.  

5.4: Alternative hypotheses to 50-kHz USVs that argue against positive emotionally driven 

vocalizations 

Although there is ample evidence to support the role 50-kHz USVs in positive emotions, 

there are also competing hypotheses that argue 50-kHz USVs are not initiated by positive 

emotional states. Blumberg & Alberts (1992) makes two separate proposals for the existence of 

USVs in rats; he proposes that rat pup vocalizations are a by-product of laryngeal breaking used 

in thermoregulation and adolescent and adult vocalizations are a mechanical by-product of 

locomotor activity (Blumberg & Alberts, 1991; Blumberg, 1992). Examining Blumberg’s 

hypothesis, Hofer and Shair (1993) examined the effects of removing the laryngeal nerve on 

thermogenesis in rat pups. The hypothesis was stated that if rats cannot produce USVs, then it 

should be reflected in their inability to thermoregulate properly. Their results did not fully 

support Blumberg’s thesis. For example, laryngeal-denervated and tracheostomized pups were 

able to thermoregulate and increase body temperate at a rate comparable to controls. However, 
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their long-term ability to regulate their temperature waned after the 30-min mark, and they fell 

behind controls after an hour. Likewise, there is a substantial amount of experimental data that 

shows mother-dam retrieval is initiated by pup vocalizations suggesting an active signal is 

contained within the USVs. This suggests that temperature is important for the initiation of 

USVs in pups, but the USVs are not a by-product of laryngeal activity but rather is a response to 

external cues that signals separation from conspecifics and expose to dangerous conditions 

(Hofer et al., 2002).  

The second hypothesis put forward by Blumberg was that emission of USVs is a 

mechanical by-product of locomotion. Analyzing tapes, Blumberg argued that the majority of 

USVs occur during forepaw compression and thus USVs were a direct product of locomotor 

activity. However, this hypothesis failed to explain the lack of correlation between locomotion 

and 50-kHz USVs production as well as the <10% of 50-kHz USVs that occur within 0-0.5 s 

after forepaw contact with the ground (Knutson et al., 2002; Panksepp & Burgdorf, 2003).  

5.5: Conclusions 

Our results were sufficient to warrant further investigation into the antagonistic 

interaction that positive emotional states have on the expression of negative emotional states. 

However, the thesis did not investigate the possible antagonistic effects a negative emotional 

state has on the expression of a positive emotional state. Further, the main method to induce 

either positive or negative emotional states in this thesis was by intracerebral injection of 

pharmacological compounds. Future research could use more precise control of dopaminergic 

cells in the VTA and cholinergic cells in the LTDg via optogenetic analysis. Overall, however, 
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our results to support the hypothesis that positive emotional states antagonize the initiation of a 

negative emotional state in rats (Brudzynski, 2013).  
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Appendix A – Failed Experiment 
Initiation of USVs via intracerebral injection of muscarinic and GABAergic agonists into 

the Lateral Habenula 

 

 

 



171 
 

 

 

 

 

 

 

 

A. Introduction 

Rats can emit ultrasonic vocalizations to signal conspecifics, either positive or negative 

emotional states (Brudzynski, 2007; 2009; 2013). Negative emotional states can be signaled via 

the emissions of 22-kHz USVs.  These vocalizations have a very long call duration lasting 

between 300-3000 ms with a low peak frequency (~18-30 kHz) and are emitted in contexts that 

can cause external physical harm, such as submissive posturing in resident-intruder paradigms 

(Burgdorf et al., 2008; Kroes et al., 2007). 22-kHz USVs can also be emitted during conditions 

that cause psychological destabilizations. These conditions include conditioned experiments 

subjecting rats to air puffs (Naito et al., 2003) or foot-shocks (Prus et al., 2015).  

Contrary to the emission of aversively-driven 22-kHz USVs, rats can also emit 

vocalizations reflecting a positive emotional state. Vocalizations that reflect a positive emotional 

state are termed 50-kHz USVs. These types of vocalizations have a high peak frequency (~35-

80-kHz) and short duration 10-100 ms). The frequency of the vocalizations can be modulated, 

increasing the peak frequency of the vocalization (Brudzynski, 2013). Rats consistently emit 50-
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kHz USVs in response to contexts that promote psychological well-being, such as during rough-

and-tumble play (Burgdorf et al., 2008) or expectation of rewarding electrical brain stimulation 

(Burgdorf & Panksepp, 2000). The non-overlapping acoustic features of 22-kHz and 50-kHz 

USVs, and the contexts in which they are emitted ensure proper signal fidelity to the receiver.  

The anatomical substrates that subserve emission of 50-kHz and 22-kHz USVs are 

uniquely distinct. The initiation of 50-kHz USVs is in part dependent upon the fidelity of 

dopamine signaling within the nucleus accumbens shell. Microinjections of dopamine agonists 

into the shell of the nucleus accumbens unconditionally elicit 50-kHz USVs (Burgdorf et al., 

2001; Thompson et al., 2006). The release of dopamine within the nucleus accumbens shell 

depends upon the activity of dopamine neurons within the VTA. The tonic firing of dopamine 

VTA neurons leads to an increase in steady-state extracellular dopamine leaves while phasic 

firing correlates with an increase in the synaptic concentration of dopamine. Under anesthesia, 

the pattern of activity of VTA neurons presents firing in a highly regular, slow pacemaker 

pattern. However, in an awake state, afferent influences and GABAergic influences from the 

RTMg, and local GABAergic interneurons change the behaviour of dopamine neurons that 

exhibit spontaneous, slow depolarizing membrane currents.  

Descending GABAergic control of dopamine neurons in the VTA comes from a variety 

of different forebrain nuclei that influence rat behaviour. For example, direct GABAergic inputs 

arise from the VP (Grace, 2016; Root et al., 2015) as well as the lateral hypothalamus (Nieh et 

al., 2016). Feedforward inhibition of dopamine neurons within the VTA is also provided by the 

LHb. Glutamatergic fibers of the lateral habenula descend within the dorsal diencephalic 

conduction system by way of the fasciculus retroflexus to synapse onto GABAergic neurons 

with the RTMg. Once excited, GABAergic neurons within the RTMg inhibit dopamine neurons 
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within the VTA (Browne et al., 2018; Graziane et al., 2018; Hong et al., 2011; Jhou et al., 2009; 

Jhou et al., 2009; Yang et al., 2018).  

The activity of glutamatergic projection neurons within the LHb are preferentially excited 

by stimuli that promote the expression of 22-kHz USVs. For example, reward omission or foot-

shock predictive cues conditions, both cause an increase in 22-kHz USVs (Brudzynski, 2007) 

and excite LHb neurons and inhibit VTA dopaminergic neurons (Jhou et al., 2009). Conversely, 

a unique population of GABAergic cells within the VTA provides inhibitory input into the LHb.  

Optogenetic stimulation of these unique GABA cells inhibits LHb neurons and increases 

the spontaneous firing rate of VTA neurons in vivo (Stamatakis et al., 2003). Despite the 

evidence involving the LHb in the processing of negative emotional states and its inhibition 

during positive emotional states, as well as, its a bi-directional connection with both the VTA 

and the LTDg, the role of the LHb in the USVs initiation has not yet been investigated. Thus, the 

purpose of the current experiment was to determine if LHb activation or inhibition could initiate 

either 50-kHz USVs or 22-kHz USVs.  

B: Methods and Procedures 

B.i: Subjects and Surgery 

Twenty-four male adolescent Long-Evans rats (Charles River Laboratories, Saint-

Constant, QC Canada) with body weights ranging from 275-300 g at the time of surgery were 

used in the study. Rats were housed in polycarbonate cages with dimensions of 48 cm x 27 cm x 

20 cm at a room temperature-controlled housing facility (23° C ± 2° C) with constant humidity. 

Rats were on a 12:12 h light dark cycle with ad libitum access to standard food pellets and 

filtered tap water.  
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After five days of acclimation, rats underwent stereotaxic surgery for unilateral 

implantation of guide cannula into the LHb. Rats were anesthetized with gaseous isoflurane at a 

concentration of 5%, then reduced to 3% to maintain the depth of anesthesia. Rats were then 

placed in a Kopf stereotaxic apparatus (Model 900 David Kopf Instruments, Tujunga, CA). After 

the rat has been mounted, burr holes were drilled into the skull using an electric drill. Guide 

cannula (O.D.=650 µm) was implanted into the left LHb. The cannula was constructed from 23 

G stainless steel needle (Beckton-Dickinson Canada, Mississauga, ON) and was implanted 1 mm 

above the intended injection site. Coordinates for the LHb injection were taken from Paxinos & 

Watson, 2007): A-P: 5.04-6.0 mm; L: 0.6-1.2 mm; D-V: 4.2-4.6 mm below the surface of the 

dura. The cannula was secured to the rat’s skull using jeweler’s screws and methyl methacrylate 

resin (Perm Resin, Hygenic Corporation of Canada Inc., St. Catharines, ON). Rats recovered for 

a duration of five days after the surgery before they began 72 hours of habituation, and their 

condition was approved by the staff veterinarian. For further details on stereotaxic surgery, see 

Fonari et al. (2012). All research protocols were approved by Brock University Animal Care and 

Use Committee and complied with guidelines and policies set forth by the Canadian Council on 

Animal Care.  

B.ii: Pharmacological agents and intracerebral injection procedure 

Muscimol (Tocris, Oakville, ON) , a potent GABAA receptor agonist, was used to inhibit 

the LHb neurons. Muscimol was dissolved in sterile physiological saline at a concentration of 

29.2 µM, 292 µM, and 2.92 mM solution. Sterile physiological saline was used as an injection 

control for muscimol injections.  Since the LHb receives direct input from the LTDg and 

contains muscarinic receptors (Vilaró et al., 1990), we also used carbachol to try and initiate 22-

kHz USVs from the LHb. 
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Carbachol was dissolved in sterile physiological saline at a concentration of 18.2 µM, 

182 µM, and 1.8 mM. Sterile saline was used as a control for carbachol injections. Injection of 

drugs and pharmacological controls were used using a constant rate Hamilton® CR 700 micro-

syringe (Hamilton Company, Reno, NV) in a volume of 0.3 μl and at a rate of ~4.5 nl/s. The 

injection cannula was left in place for the 30 s to allow for proper drug diffusion. 

 
B.iii: Recordings of ultrasonic vocalizations 

Recording of ultrasonic vocalizations took place in a 25 cm x 18 cm x 18 cm Plexiglas 

recording chamber. The floor of the recording chamber was lined with a paper towel as corn 

cobb bedding can influence the emission of USVs (Natusch & Schwarting, 2010). An Avisoft ® 

CM16/CMPA condenser microphone with a frequency range between 2 kHz – 250 kHz 

(Avisoft® Bioacoustics, Berlin Germany) was used to record USVs in real time and the data 

stored in a 16-bit format for later spectrographic analysis using the Avisoft® SASlab program 

(Avisoft, Germany).  

Recorded vocalizations were analyzed off-line by using sonograms. Sonograms were 

constructed from wave files using a 512 FFT-length with a Hamming window and a 75%-time 

overlap. Spectrograms were produced with a 488 kHz resolution, and calls were marked 

manually for their durations, peak frequency, and category of call.  Call categories consisted of 

flat vocalizations, and frequency modulated vocalizations (FM), for a full list of categorized FM 

calls see Wright et al., 2010.   

B.iv: Histology and Localization of injection sites 
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After injections were finished, rats were anesthetized with an overdose of sodium 

pentobarbital and received an intracerebral injection of Indian ink (1:100 dilution) for 

histological determination of injection sites. After injection of India-ink, rats underwent 

transcardial perfusion with 10% formalin and were stored in formalin for 48 hours. The brains 

were then coronally sectioned on a freezing microtome (Cryo-Histomat, Hacker Instruments, and 

Industries, Fairfield, NJ) to a thickness of ~40 µm. Sections were placed on a 1% poly-lysine 

coated slides then underwent Nissle staining procedure (see Lindroos and Leinonen, 1983 for 

details). Slides were then cover-slipped, and injection sites (with India ink granules) were 

histologically verified under projection microscope.  

B.v: Statistical Analysis 

Results are presented as means with a standard error of the mean (S.E.M). Since the total 

number of vocalizations was not normally distributed, differences between injection groups were 

assessed using non-parametric Friedman’s ANOVA, followed by Wilcoxon Signed Rank test. 

Acoustic parameters (peak frequency and duration) were analyzed using an ANOVA. Probability 

values less than 0.05 were considered significant. Since multiple comparisons were performed, 

inflation of Type-1 error was controlled using the Bonferroni correction.  

C: Results 

C.i: Intracerebral injection of various doses of muscimol did not initiate 22-kHz USVs or 50-kHz 

USVs 

The purpose of the current experiment was to investigate if the injection of the potent 

GABAA agonist into the LHb could initiate the emission of USVs. A dose-response curve was 

constructed in order to ascertain the optimal dose of muscimol for the experiment. Injection of 
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29.2 µM, 292 µM, 2.92 mM, or saline did not induce any 22-kHz USVs. There was also no 

statistical difference between the number of emitted F 50-kHz USVs (χ2[3] = 0.000, p>.95) or 

FM 50-kHz USVs (χ2[3] = 8.3, p>.95, see figure 32, and table 8 for values). 

 

Figure 32: Mean number of recorded FM 50-kHz USVs recorded after Muscimol was injected 

into the LHb (n = 12). There was no statistical difference in the number of recorded FM 50-kHz 

USVs across doses of muscimol injected (χ2[3] = 8.3). 

Injection of carbachol was used to assess the ability of broad-spectrum cholinergic 

stimulation of both nicotine and muscarinic receptors within the LHb. Injection of carbachol did 

not induce 22-kHz USVs across different doses. Injection of carbachol did not increase the 

number of F 50-kHz USVs or FM 50-kHz USVs across any doses.   
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Figure 33: Mean number of recorded F 50-kHz USVs with various doses of carbachol (n=12). 

There was no statistical difference between the number of recorded F 50-kHz across injection 

doses.   
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Figure 34: Localization of 12 injection sites (circles) aimed at lateral habenula (left side of Hb). 

Only one injection site was on target and the second one partially in the Hb. Abbreviations: Am – 

amygdalar complex; CM – centrum medianum; DM – dorsomedial hypothalamic nucleus; Hb – 

habenula; Hi – hippocampal formation; ic – internal capsule; LH – lateral hypothalamus; MD – 

dorsomedial thalamic nucleus; RE – nucleus reuniens; TH – other thalamic nuclei; V – cerebral 

ventricle; VM – ventromedial hypothalamic nucleus; ZI – zona incerta. The coronal stereotaxic 

section is 5.8 mm from the interaural plane (INT 5.8). Scale in mm. 

C.ii: Sonographic features of recorded USVs during carbachol injection 

Since no 22-kHz USVs were recorded during the injection conditions, no sonographic 

analysis of 22-kHz USVs could be accomplished.  

C.iii: Sonographic features of recorded USVs during muscimol or carbachol injection conditions.  
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Since no 22-kHz USVs were recorded, and minimal 50 kHz USVs were recorded during 

the muscimol and carbachol injection conditions, sonographic analysis was not performed.  

D: Discussion 

The purpose of the experiment was to determine if intracerebral injection of the 

cholinergic agonist carbachol, or GABAA receptor agonist muscimol, could initiate the emission 

of USVs in rats. The HLb is a very small structure that is smaller than the diameter of the 

injecting cannula. Histological analysis has revealed that it was a too difficult task to implant 

properly cannula and inject into the desired nucleus. Such an experiment would require thinner 

cannulae and a large number of animals, which was not feasible in this thesis. Due to the lack of 

experimental results, one cannot conclude or exclude the role acetylcholine, or GABA signaling 

within the LHb plays in the initiation of USVs in rats. Furthermore, without an indication of 

USVs signaling or proper localizations, we cannot accurately validate the hypothesis. This failed 

experiment can serve as a preliminary approach that is pointing in the direction of further studies. 

 

E. References  

Browne, C. A., Hammack, R., & Lucki, I. (2018). Dysregulation of the lateral habenula in major 
depressive disorder. Frontiers in Synaptic Neuroscience, 10, 46.  

Brudzynski, S. M. (2007). Ultrasonic calls of rats as indicator variables of negative or positive 
states: acetylcholine–dopamine interaction and acoustic coding. Behavioural Brain Research, 
182(2), 261-273.  

Brudzynski, S. M. (2009). Communication of adult rats by ultrasonic vocalization: biological, 
sociobiological, and neuroscience approaches. ILAR Journal, 50(1), 43-50.  

Brudzynski, S. M. (2013). Ethotransmission: communication of emotional states through 
ultrasonic vocalization in rats. Current Opinion in Neurobiology, 23(3), 310-317.  

Burgdorf, J., Knutson, B., & Panksepp, J. (2000). Anticipation of rewarding electrical brain 
stimulation evokes ultrasonic vocalization in rats. Behavioral Neuroscience, 114(2), 320-327.  



181 
 

Burgdorf, J., Knutson, B., Panksepp, J., & Ikemoto, S. (2001). Nucleus accumbens amphetamine 
microinjections unconditionally elicit 50-kHz ultrasonic vocalizations in rats. Behavioral 
Neuroscience, 115(4), 940-944.  

Burgdorf, J., Kroes, R. A., Moskal, J. R., Pfaus, J. G., Brudzynski, S. M., & Panksepp, J. (2008). 
Ultrasonic vocalizations of rats (Rattus norvegicus) during mating, play, and aggression: 
Behavioral concomitants, relationship to reward, and self-administration of playback. Journal of 
Comparative Psychology, 122(4), 357-367.  

Gill, M. J., Ghee, S. M., Harper, S. M., & See, R. E. (2013). Inactivation of the lateral habenula 
reduces anxiogenic behavior and cocaine seeking under conditions of heightened stress. 
Pharmacology Biochemistry and Behavior, 111, 24-29.  

Graziane, N. M., Neumann, P. A., & Dong, Y. D. (2018). A focus on reward prediction and the 
lateral habenula: functional alterations and the behavioral outcomes induced by drugs of abuse. 
Frontiers in Synaptic Neuroscience, 10, 12.  

Hikosaka, O., Sesack, S. R., Lecourtier, L., & Shepard, P. D. (2008). Habenula: crossroad 
between the basal ganglia and the limbic system. Journal of Neuroscience, 28(46), 11825-11829.  

Hong, S., Jhou, T. C., Smith, M., Saleem, K. S., & Hikosaka, O. (2011). Negative reward signals 
from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus 
in primates. Journal of Neuroscience, 31(32), 11457-11471.  

Jhou, T. C., Fields, H. L., Baxter, M. G., Saper, C. B., & Holland, P. C. (2009). The rostromedial 
tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes 
aversive stimuli and inhibits motor responses. Neuron, 61(5), 786-800.  

Jhou, T. C., Geisler, S., Marinelli, M., Degarmo, B. A., & Zahm, D. S. (2009). The mesopontine 
rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the 
ventral tegmental area of Tsai and substantia nigra compacta. Journal of Comparative 
Neurology, 513(6), 566-596.  

Kim, E. J., Kim, E. S., Covey, E., & Kim, J. J. (2010). Social transmission of fear in rats: the role 
of 22-kHz ultrasonic distress vocalization. PloS One, 5(12), e15077.  

Kroes, R. A., Burgdorf, J., Otto, N. J., Panksepp, J., & Moskal, J. R. (2007). Social defeat, a 
paradigm of depression in rats that elicits 22-kHz vocalizations, preferentially activates the 
cholinergic signaling pathway in the periaqueductal gray. Behavioural Brain Research, 182(2), 
290-300.  

Mahadik, S. P., Laev, H., Korenovsky, A., & Karpiak, S. E. (1988). Haloperidol alters rat CNS 
cholinergic system: enzymatic and morphological analyses. Biological Psychiatry, 24(2), 199-
217.  

Mizumori, S. J., & Baker, P. M. (2017). The lateral habenula and adaptive behaviors. Trends in 
Neurosciences, 40(8), 481-493.  

Nieh, E. H., Vander Weele, C. M., Matthews, G. A., Presbrey, K. N., Wichmann, R., Leppla, C. 
A., . . . Tye, K. M. (2016). Inhibitory input from the lateral hypothalamus to the ventral 



182 
 

tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron, 90(6), 
1286-1298. 

Paxinos G. & Watson Ch. (2007). The Rat Brain in Stereotaxic Coordinates. 6th ed., Academic 
Press-Elsevier, San Diego CA.   

Root, D. H., Melendez, R. I., Zaborszky, L., & Napier, T. C. (2015). The ventral pallidum: 
Subregion-specific functional anatomy and roles in motivated behaviors. Progress in 
Neurobiology, 130, 29-70.  

Russo, S. J., & Nestler, E. J. (2013). The brain reward circuitry in mood disorders. Nature 
Reviews Neuroscience, 14(9), 609.  

Scardochio, T., Trujillo-Pisanty, I., Conover, K., Shizgal, P., & Clarke, P. (2015). The effects of 
electrical and optical stimulation of midbrain dopaminergic neurons on rat 50-kHz ultrasonic 
vocalizations. Frontiers in Behavioral Neuroscience, 9, 331.  

Stephenson-Jones, M., Floros, O., Robertson, B., & Grillner, S. (2012). Evolutionary 
conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-
hydroxytryptophan (5-HT) systems. Proceedings of the National Academy of Sciences of USA, 
109(3), E164-E173.  

Sutherland, R. J. (1982). The dorsal diencephalic conduction system: a review of the anatomy 
and functions of the habenular complex. Neuroscience & Biobehavioral Reviews, 6(1), 1-13.  

Vilaró, M. T., Palacios, J., & Mengod, G. (1990). Localization of m5 muscarinic receptor mRNA 
in rat brain examined by in situ hybridization histochemistry. Neuroscience Letters, 114(2), 154-
159.  

Yang, Y., Wang, H., Hu, J., & Hu, H. (2018). Lateral habenula in the pathophysiology of 
depression. Current Opinion in Neurobiology, 48, 90-96.  

Yee, N., Schwarting, R. K., Fuchs, E., & Wöhr, M. (2012). Juvenile stress potentiates aversive 
22-kHz ultrasonic vocalizations and freezing during auditory fear conditioning in adult male rats. 
Stress, 15(5), 533-544. 

 

 

 

 

 



183 
 

 

 

 

 

 

Table 8: Mean ( ± S.E.M)  number of emitted 22-kHz, Flat (F) 50-kHz and Frequency 

Modulated (FM) 50-kHz USVs recorded during injection conditions. 

 Intracerebral injection of Muscimol 

into the LHb 

Intracerebral Injection of Carbachol 

into the LHb 

Category 

(kHz) 

Saline 29.2 µM 292 µM 2.92 

mM 

Saline 18.2 µM 182 µM 1.8 mM 

 

22 kHz 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

50 F 

 

0 

 

0 

 

0 

 

0 

 
 

 

.25 ± 

.25 

 

0 

 

.33 ± .19 

 

0 

50 FM  

0 

 

0 

 

0.73 ± 

.38 

 

1.18 ± 

1.18 

 

0 

 

0 

 

0 

 

 

0 
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