
Design, Development and Assessment of the

Java Intelligent Tutoring System

Edward R. Sykes, M.Ed., REd., RSc.

Department of Graduate and Undergraduate

Studies in Education

Submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Faculty of Education, Brock University

St. Catharines, Ontario

© September 2005

lAMIS AGIBSON LIBRARY
IDlOCI UNIVERSITY
ST. CAmARINXS (t,N

Abstract

The "Java Intelligent Tlltoring System" (JITS) research project focused on

designing, constructing, and determining the effectiveness of an Intelligent Tutoring

System for beginner Java programming students at the postsecondary level. The

participants in this research were students in the School of Applied Computing and

Engineering Sciences at Sheridan College. This research involved consistently

gathering input from students and instructors using llTS as it developed. The cyclic

process involving designing, developing, testing, and refinement was used for the

construction of JITS to ens"ure that it adequately meets the needs of students and

instructors. The second objective in this dissertation determined the effectiveness of

learning within this environment.

The main findings indicate that JITS is a richly interactive ITS that engages

students on Java programming problems. llTS is equipped with a sophisticated

personalized feedback mechanism that nlodels and supports each student in his/her

learning style. The assessment compollent involved 2 main quantitative experiments

to determine the effectiveness of llTS ill terms of student performance. In botll

experiments it was detemlined that a statistically significant difference was achieved

between the control group and the experimental group (i.e., JITS group). The main

effect for Test (i.e., pre- and postiest), F(l, 35) == 119.43,p < .001, was qualified by a

Test by Group interaction, F(l, 35) == 4.98,p < .05, and a Test by Time interaction,

F(l, 35) == 43.82, p < .001. Similar findings were found for the second experinlent;

Test by Group interaction revealed F(!, 92) == 5.36, p < .025. In both experinlents tIle

JITS groups outperformed tIle corresponding control groups at posttest.

ii

Table of Contents

Page

Abstract ' ii
List of Tables v
List of Figures viii

CHAPTER ONE: THE PROBLEM 1
Problem Statement 2
Rationale 4
Definition ofTern1s 7
Assumption and Limitations 7
Feasibility 8

. Olltline of Remainder of the Document 10

CHAPTER TWO: LITERATURE REVIEW 12
The Psychological Framework of ITS 12
Student-Teacher Perspectives 21
Current State of Development for Intelligent Tutoring Systems 24
ACT-R Cognitive Theory for Developing Tutors 30

CHAPTER THREE: DESIGN 35
Initial Designs for the Java Intelligent Tutoril1g Systen1 35
Motivation for the Design of the Java Error Correction Algorithm 37
Java Error Correction Algorithm Design 38
Java Intelligent Tutoring Systen1 Design and Architecture 43

CHAPTER FOUR: IMPLEMENTATION 51
Initial Java Error Correction Algorithm (JECA) Implementation 51
Il1itial Java Intelligent Tutoring System In1plementation 64
Human-Computer Interaction 65
Hint Generatiol1 69
Initial User Modelil1g Design 79

CHAPTER FIVE: METHODOLOGY AND PROCEDURES 80
Subjects 80
Statement of Procedures 82
Methodology and Procedures: A Sllmmary 88

CHAPTER SIX: FINDINGS (ANALYSIS AND EVALUATION) 92
Sllmmary of JITS Developn1ent Research 93
Summary of Student Performance Score Analysis 96
First Program Development Sessiol1: Section #1: JITS Developmental
Research l 00

111

First Program Development Session: Section #2: TITS Performance Score
Analysis 127
First Program Development Session: Section #3: Summary and
Recomn1endations for Further JITS Development 127
Second Program Development Session: Section #1: JITS Developmental
Research 140
Second Program Development Session: Section #2: JITS Performance Score
Analysis 143
Second Program Development Session: Section #3: Summary and
Recommendations for Further JITS Development eo 143
Third Program Development Session: Section #1: JITS Developmental
ResearcI1 150
Third Program Development Session: Section #2: JITS Performance Score
Analysis 170
Third Program Development Session: Section #3: JITS Summary and
Recommendatiol1s for Further TITS Development 182

CHAPTER SEVEN: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 190
Summary 190
Conclusions 196
Contriblltions to the Fields of Computer Science and Education 197
Implications ~ 199
Recommendations 201

References 203

Appendix Brock Ethics Approval 208

iv

Table

List of Tables

Page

1 Student Modeling: Assessment and Instructional Adaptation. Excerpt

from ANDES Physics Tutor 17

2 Java Reserved Words and Keywords 40

3 Extended Java Reserved Words and Keywords 41

4 Internal JECA Parse Tree Permutations and Competition for the Selection

of the Best Trees 63

5 Initial JITS ORACLE Schema Tables 70

6 Hint Objects Utilization and Typical Dialogue Between TITS and the Student 78

7 Interview Sheet 84

8 Performance of Students in JITSC and Control Prior Exposure to TITS

and After Exposure to JITS 90

9 Sample Database Student Tracking Information Indicating Number of

Attempts, Solved (true/false), and Student's Solutions 107

10 Sample Database Student Tracking Information Indicating Current Problem

Set, Problem_id, Performance Rating, Skill level, Number of Times Connected

to TITS, and the Date of Last Connection 109

11 Redesigned JITS ORACLE Schema Tables 118

12 Redesigned JITS ORACLE Schema Showing the Newly Created

Programmil1g Topics al1d Correspol1ding Descriptions 119

13 Performance of Students in Class JITSC 128

14 Performance of Students in Class C 129

v

15 Standard Statistical Measures for C and JITSC 130

16 Two-way ANOVA with Repeated Measure: Between-Subjects Effects for

C and JITSC 131

17 JITS Qualitative Summary Results for JITSC Students 134

18 Performance of Students in Class JITSC 144

19 Performance of Studel1ts in Class C 145

20 Standard Statistical Measures for C and JITSC 146

21 Two-way ANOVA with Repeated Measures: Between-Subjects Effects for

C and JITSC 147

22 Redesigned JITS ORACLE Schema Tables to Accommodate Pictures 164

23 Performance of Students in JITSC Class Taught by Instructor "A" 173

24 Performance of Students in C Class Taught by Instructor "A" 174

25 Standard Statistical Measures for C and JITSC Taught by Instructor "A" 175

26 Two-way ANOVA with Repeated Measures: Between-Subjects Effects for C

and JITSC Taught by Instructor "A" 176

27 Performance of Students in JITSC Class Taught by Instructor "B" 177

28 Performance of Students in C1 and C2 Classes Taught by Instructor "B" 178

29 Stal1dard Statistical Measures for Cl, C2, and llTSC Taught by Instructor "B" .. 179

30 Two-way ANOVA with Repeated Measures: Between-Subjects Effects for

C1, C2, and JITSC Taught by Instructor "B" 177

31 Two-way ANOVA witll Repeated Measllres: Between-Subjects Effects for

C1 and JITSC Taught by Instructor "B" 181

vi

32 Two-way ANOVA with Repeated Measures: Between-Subjects Effects for

C2 and JITSC Taught by Instructor "B" 183

33 JITS Qualitative Sllll1mary Results for JITSC Students 187

Vll

List of Figures

Figure Page

1. Architecture of an Intelligent Tutoring System 15

2. First Component of JECA - Scanner Correction Activities 44

3. Second Component of JECA - Parser Correction Activities 45

4. Initial desigl1 for the JITS User Interface 48

5. Model View Controller (MVC) design pattern implemented in JITS 50

6. Keyword object and _keyword data structure 54

7. BestMatch object-used for the refinemel1t process in detennil1ing an

identifier or a keyword 57

8. BestMatch menlber contains the Transformation string from Edit_Distance

algorithm 58

9. Burke-Fisher error correction algorithm with a 4-tokel1 queue in the

middle ofprocessing a statement production 60

10. Burke-Fisher error correction algorithm with a 4-token queue completing the

processing of a statement production and commencil1g a new production 61

11. JITS multithreaded distributed web-based infrastructure 66

12. JITS login screen 67

13. Initial JITS User Interface 68

14. Hint categories 71

15. A JECA Hint object representing a grammatical error 74

16. Arithmetic sum Java program with grammatical errors and syntax errors 75

17. Internally corrected JECA source program for the arithmetic sum problem 76

VI11

18. Sample perforn1ance test for quantitative investigation 86

19. Completed version of the JITS User Interface 94

20. Showing (a) the two-way Semester by Test interaction due to the smaller gap

between pretest and posttest later in the semester, and (b) the two-way Group

by test interaction due to the superior performance of the JITS group at posttest. .. 97

21. Showing the two-way Group by Test interaction for responses il1dicating

superior performance for the JITS group at post-test. 99

22. "View Top Hint" results. JITS selects the n10st sigl1ificant 11int to offer

the student 103

23. "View All Hints" results. JITS displays all of the 11ints relating to all of the

problems JITS has enCOl111tered with the student's submission 104

24. JITS analysis and response to a subn1ission that is identical to the required

output. JITS responds in the same mam1er as a human tutor would. 106

25. JITS Authoring Tool User Interface 113

26. "View Solution" presenting solutiol1s for the current problem :. 115

27. Redesigned JITS User Interface incorporating Programmil1g Topic

selection panel.. 11 7

28. JITS abstract internal object representation showil1g relationsl1ips and

depel1dencies betweel1 JECA, AI_Module, student, and otl1er components 120

29. Redesigned JITS User Il1terface depicting the list of Programming topics in

a drop-down combo list. 121

30. Resigned JITS User Interface depicting the "Previous Problem" and "Next

Problen1" buttons 122

IX

31. llTS Tutorial window and main llTS User Interface. The tutorial window

is launched from the main llTS User Interface by clicking the

"View Tutorial" button as indicated by the arrow 125

32. llTS Tutorial window displaying a sample tutorial from the list of

Programming Topics 126

33. llTSC versus C performance comparison using pretest and posttest means

as data 133

34. Initial design of the output from the "My Performance" button 139

35. Performance ofC and llTSC students using mean grades as data 149

36. "My Performance" button displays performance information for each student. 155

37. Top right section of JITS' User Interface displaying the "Help Me" button 159

38. llTS Help screen is used to assist new users to get oriented with this ITS 160

39. Improved JECA demonstrating filtered output from the compiler and JITS

presenting the results in a friendly way for the student to make corrections......... 161

40. A variation of a compiler error due to a student's submission. Previous

versions of JECA would simply return a hint: "Sorry. No hints available."

The improved JECA is intended to be more helpful and presents compiler

errors in a more friendly way 162

41. Revised JITS User Interface accommodating a link to the image for the

current problem 165

42. llTS Image Viewer depicting the image for the current problem 166

x

43. Revised "My Performance" button output showing links to previously

attempted problems, font, and colour distinctions between solved and unsolved

problems 169

44. Classifying control groups and experimental groups based on instructors 171

45. TITSC versus Cl and C2 performance comparison using pretest and

posttest means as data 184

46. JITSC versus Cl performance comparison using pretest and posttest

means as data 185

47. TITSC versus C2 performance comparison using pretest and posttest

means as data 186

48. Final version of the TITS User Interface 192

49. TITS Exit Screen thanking the participant. 194

Xl

CHAPTER ONE: THE PROBLEM

Accessibility to computers and computer resources is increasing in our society at

a staggering rate. Not only is computer technology changing more rapidly now than at

any other time in history, but the price of computers is continually decreasing inversely

proportional to the power they deliver. Over 50% of households in Canada and the

United States have computers (Vasilevsky, 2003). Internet connections and capabilities

are growing at amazing rates due to the number ofpeople who want to be connected to

the world of information (Vasilevsky, 2003). Internet Service Providers (lSP) are rapidly

upgrading their infrastructure to support real-time video and audio to their clients.

Personal Digital Assistants (PDA) such as cellular telephones and palm-pilots, are

Internet ready and becoming commonplace in our society. In spite of the advances in

computer technology and accessibility, educators have been relatively slow in seizing

technology to enhance student learning. There are significant problems in the context of

personalized student instruction in current educational systems that can be remedied

through the use of appropriate technologies.

Online teaching tools such as WebCT and Blackboard are becoming extremely

popular for distance education and mainstream in-class education. In fact, entire colleges

and universities have implemented online teaching tools as the central mechanism for

delivering all of their courses (Boyd, 2003). The strength of these tools is their ability to

provide the teacher and student with a great deal of versatility within the learning

environment. Unfortunately, they do not provide any means by which a student may

receive ongoing personalized instruction. Teaching students on a one-on-one basis

significantly influences the degree of knowledge and skill retained by the student; Bloom

2

suggests that one-to-one tutoring is the most effective strategy known, generally yielding

two standard deviations better performance than traditional instruction. He suggests

further that mastery learning approaches one-to-one instruction in terms of measured

learner gains (Bloom, 1984).

This raises the following crisis in the educational community. In order for

students to reach their potential, they need individual tutoring. However, due to a

plethora of factors such as the limitations of online teaching tools, financial

considerations, and sheer logistics, each student cannot be granted access to a

personalized human'tutor for a consistent duration of time. After all, traditionally there is

only one teacher in a classroom of students. So, what can be done to solve this problem?

One solution is to design and implement Intelligent Tutoring Systems (ITS). A generally

accepted definition for an ITS is a system that employs artificial intelligence methods to

assist trainees to improve their problem solving skills by monitoring their reasoning,

tracking errors to their source, and, based on the diagnosis, providing advice and

assistance to strengthen problem solving skills (Tracey, 2003). ITS allows for more

open-ended programs (Tracey, 2003).

Problem Statement

The nature of learning and teaching has not changed significantly since the days

of Socrates. Experienced teachers understand the value of Socratic dialogue to lead

students to deeper levels of understanding and higher levels ofperformance. Effective

instruction involves establishing the right level of difficulty coupled with engaging and

realistic coached-practice simulations (de Koning & Bredeweg, 2001). A significant goal

3

for developers of Intelligent Tutoring Systems is to embed the Socratic dialogue method

within a media-rich environment. Developers of ITS attempt to establish an interactive

environment that leads to the suspension of disbelief by students, uses a spiral

instructional pattern, and accounts for how humans process information and learn.

Intelligent Tutoring Systems represent advanced forms of cognitive technologies

that use computational intelligence. Like human tutors, ITS are useful in reducing the

time required by students to acquire knowledge and expert skills. For example,

Koedinger (2001) found that in traditional approaches, student tasks take two to three

times longer than in ITS environments.

The core of all ITS is an Artificial Intelligence (AI) module that is responsible for

many tasks including capturing the student's knowledge state, delivering an appropriate

lesson, assessing and evaluating student performance, and providing valuable feedback to

the student. Thus, ITS are explicitly designed to assist in resolving the crisis in education

regarding personalized student education by providing a means through which students

may reach their potential.

The "Java Intelligent Tutoring System" (JITS) research project focused on

designing, constructing, and determining the effectiveness of an Intelligent Tutoring

System for beginner Java programming students at the postsecondary level. First and

foremost, this research involved consistently gathering input from students and

instructors using TITS as it developed. The cyclic process involving designing,

developing, and testing, and back to redesigning was used for the construction of JITS to

ensure that it adequately met the needs of students and instructors. The second objective

in this dissertation determined the effectiveness of learning within this environment by

4

comparing students exposed to JITS with those taught Java in a traditional classroom

environment.

Rationale

Currently, Java is one of the most popular programming languages for Internet

programming (Chen, 2004). Due to the rapid growth of Java, virtually every university

and college in North America now offers a Java course (Martinez, 2002). This study is

in tune with the current trend and demands of the science and technology and education

sectors of our society. A third justification for this study is the fact that there is no

Intelligent Tutoring System for the Java programming language at this time. A fourth

reason supporting this study is based on the international support and interest the

scientific community has had during the development of JITS (Sykes & Franek, 2003,

2004a, 2004c).

Additional justification for this study is drawn from a provincial level. The

double-cohort students of Ontario secondary schools may cause significant problems

when they enter postsecondary institutions. For instance, Lakehead University expected

a 35% increase of students entering first-year programs in 2003 compared to the previous

year (Gilbert, 2003). Despite the accommodations that were performed, class sizes rose

significantly. Intelligent Tutoring Systems may be an answer to provide individualized

attention for students who would otherwise be disadvantaged. In light of these and other

recent statistics, the Intelligent Tutoring Systems like the one proposed in this dissertation

may prove to be extremely beneficial to the current set of crisis in education.

5

Context

Recent advancements in multimedia, high-speed Internet connections, and

computer-mediated communication and communities for individual and distance learning

all have the potential for revolutionary improvements in education. Numerous countries

are striving to support this revolution and are learning how best to adopt these new

technologies (Aleven & Ashley, 1997).

An even larger revolution is approaching. This revolution will be based on the

widespread use of Artificial Intelligence in educational technology (Koedinger, 2001).

The two fundamental bodies of research that support this paradigm shift come from

cognitive science and Artificial Intelligence (Aleven & Ashley, 1997). One reason for

the increase in Artificial Intelligence in education is due to the fact that powerful

computers are becoming very affordable.

Another reason for this revolution has been scientific progress which comes from

two sources. First, progress in Artificial Intelligence has led to a deeper understanding of

how to represent knowledge, how to reason, and how to describe procedural knowledge

(i.e., "how to" knowledge). Second, research in cognitive science has led to a deeper

understanding of how people think, solve problems, and learn. There is a powerful

synergy here. Cognitive scientists often use Artificial Intelligence techniques to build

simulation models of cognitive processes, dependencies, and represent behaviours

(Conati & Van Lehn, 1999). Artificial Intelligence scientists use results from cognitive

science to guide their explorations and to design software with more human-like

characteristics. When applied to education, this synergy leads to combinations of

software and activities that can help more students achieve better learning.

6

Intelligent Tutoring Systems are being used in numerous areas of education

including mathematics, physics, cognitive skill development, and workplace simulations

(Koedinger, 2001). For instance, an ITS called the Pump Algebra Tutor (PAT), was

developed by Kenneth Koedinger of Carnegie Mellon University which had extremely

positive results (Anderson, Corbett, Koedinger, & Pelletier, 1995). PAT is currently used

in several hundred high schools, middle schools, and colleges around the United States

and in Europe. PAT is designed to help students to learn to model real-life problem

situations using algebraic representations including tables, graphs, equations, and words.

Modem mathematics is less about computing single answers and more about creating

models that can provide answers to multiple questions. Thus, PAT's curriculum

emphasizes the use of activities that draw on students' common sense and prior informal

strategies to help them acquire and make sense of formal mathematical strategies and

representations. The goal is to help all students be successful in algebra and see its

relevance in both academics and the workplace. Both teachers and students have been

enthusiastic about PAT's use as part of the Algebra I curriculum. Field studies have

shown dramatic student achievement gains relative to control classes: 15-25% better on

standardized tests of basic skills and 50-100% on assessments of problem solving and

representation use.

In summary, the purpose of this study is to design and construct an ITS for entry­

level college and university students learning Java and to conduct a performance score

quantitative study to ascertain the effectiveness of the system. The proposed research

will be pioneering and will impact the fields of cognitive science, Artificial Intelligence

and education. However, to design and construct an Intelligent Tutoring System can take

7

several years of work for a team ofpeople such as, Educational Psychologists, Computer

Programmers, Knowledge Engineers, and AI experts. Since this is a dissertation, I am

responsible for all components of this study. As a result, this project proposes to

construct an ITS designed to tutor students in a very specific fashion using a subset of the

Java programming language. In this way, a prototype may be constructed which will be

sufficient to prove the concept is sound and provide a means by which a quantitative

study may be performed. There is little doubt that e-learning and related technologies are

becoming important tools in education, and it is imperative that research be conducted in

the area of intelligent tutoring systems. By doing so, educators will be enabling students

to gain personalized instruction which will help them achieve better learning.

Definition of Terms

General Definitions

AI Artificial Intelligence

ITS Intelligent Tutoring System

JITS Java Intelligent Tutoring System

Assumption and Limitations

Instructors selected for this study were drawn from the School of Applied

Computing and Engineering Sciences (ACES), Sheridan College, Institute of Technology

and Advanced Learning, Ontario, Canada. Students were drawn from the population of

computer studies courses in their first year. An overriding assumption is that usual

classroom characteristics were in play in the TITS.

8

Feasibility

The Timeliness Factor

Currently, Java is one of the most popular programming languages for

development of multiplatform applications and enterprise level business solutions (Chen,

2004). Many colleges and universities in North America are offering Java programming

courses at various levels in various certificate, diploma, and degree programs (Martinez,

2002). These two factors, among others, signify that the Java Intelligent Tutoring System

research project is of merit and an important study at this time.

The Cost Factor

The cost associated with this study was quite minimal. As expected, there were

incidental fees such as travelling between Sheridan's two main campuses and printing

questionnaires, forms, and letters throughout the duration of the study.

The Time Factor

To design and construct an Intelligent Tutoring System takes years of work for a

team consisting of researchers and programmers. Clearly, such resources were not

available. The researcher was responsible for all aspects of the research project. The

initial design and development for the Java Intelligent Tutoring System took nearly 1,000

hours of research and programming work. Over the last 2 years, the researcher worked

on TITS approximately 20 to 30 hours per week. During the third year, a quantitative

investigation study involving control groups and experimental groups was conducted.

The purpose of this component of the study was to determine performance score

differences between control and experimental groups.

9

The Accessibility ofData

Within the School of Applied Computing and Engineering Sciences at the

Sheridan Institute of Technology and Advanced Learning there were many students who

were interested in trying out TITS. There were many introductory Java classes offered

every semester (i.e., May, September, and January). As a result, there were many

opportunities to conduct studies and elicit feedback to improve the Java Intelligent

Tutoring System. The motivation for selecting ACES at the Sheridan Institute of

Technology and Advanced Learning was due to circumstance and convenience. I have

been a professor in the School of ACES for 10 years, am very comfortable with the

faculty and staff, and have developed over 20 courses within the curriculum for the

school. An additional benefit is that ACES has just recently changed all of the first-year

programming courses to Java. These factors contribute to the fact that data in various

forms were easily accessible for this study.

Inconvenience to Participants

The degree of inconvenience for instructors and students was very low. Students

in the experimental group were exposed to TITS during classroom break periods or at the

end of a classroom period. The amount of time allocated for the students to try out JITS

was between 30 minutes and one hour per week. When some students were participating

in the research study, nonparticipants were encouraged to work on course-related

exercises and other activities as set out by the professor of the class as per usual class

activities. At Sheridan, classes are typically 3 hours in duration in a mobile environment

where each student has their own laptop computer. A typical instructional period consists

ofa sequence ofa 15-30 minute lecture followed by a 15-30 minute hands-on activity.

10

This sequence is repeated until the end of class. However, there are usually several I0- to

15-minute breaks during a 3-hour class. I conducted the TITS experiments to coincide

with the break periods and at the end of class periods.

The time spent on the research project by participants did not detract from course

objectives due to the nature of exposure to the instruments in this research project. One

of the goals of this research was to determine if the research project can be ofbenefit to

students to more quickly and effectively reach course objectives. The overall time spent

by students in the research study did not detract participants in their academic objectives.

Outline of Remainder of the Document

Chapter Two contains a literature review analysis of Intelligent Tutoring Systems.

Within this chapter, a discussion of the psychological framework of ITS is presented.

This chapter gives background information to the reader as to what has previously been

accomplished in the field of Intelligent Tutoring Systems. In this chapter, the popularly

accepted ACT-R theory of cognition for ITS development is discussed.

Chapter Three contains the design framework for TITS. Within this chapter, a

discussion involving the initial design for TITS is presented. Design considerations such

as user interface considerations, online persistency, number of concurrent users, student

tracking, student modeling, and other considerations are reviewed and presented in this

chapter.

Chapter Four presents the implementation details of the Java Intelligent Tutoring

System. Following from the previous chapter, which specified the design approach, this

chapter focuses on details involving the Java Error Correction Algorithm and the initial

11

construction of TITS. The initial designs for TITS' Human-Computer interaction, Hint

Generation, and User Modeling issues are also included in the chapter.

Chapter Five describes the methodology and procedures by which this research

was conducted. Included in this chapter is the design and development methodology for

TITS. This chapter also includes the manner in which data were gathered regarding

student performance in TITS.

Chapter Six discusses the findings of the research in the form of three case studies

coupled with the statistical analysis of the data. The case studies summarize the students'

comments about TITS and how these suggestions were used in the redesign and

redevelopment ofTITS. Tables in this chapter contain statistical information including

performance data, descriptive statistics, two-way ANOVAs, and charts.

The last chapter of this document summarizes the results and discusses the

implications of the analysis. The recommendation section of this chapter offers

suggestions for future work on JITS and in the area of online e-learning tutors.

Following the chapters are the references and appendix.

CHAPTER TWO: LITERATURE REVIEW

This chapter presents the main foundational areas which support the study by

demarking the boundaries of investigation, reviewing existing Intelligent Tutoring

Systems, and providing motivation for the proposed direction of investigation. The areas

reviewed include:

1. The psychological framework ofITS;

2. Student-Teacher perspectives;

3. Current State of Development for Intelligent Tutoring Systems; and

4. ACT-R Cognitive Theory for Developing Tutors.

The Psychological Framework of ITS

The psychological underpinnings within Intelligent Tutoring Systems are not new.

The principles that form the foundation ofITS are thousands of years old. Throughout

the years, researchers have probed into the complexity of the human mind to understand

and explain its functionality. The psychological framework supporting ITS is based on

this corpus of knowledge about human cognition and learning. In this section, the

psychological framework and pedagogical strategies involved with Intelligent Tutoring

Systems are presented. The infrastructure supporting the development of Intelligent

Tutoring System relies on cognitive activities.

Cognitive Activities

Cognitive activities include such things as perceiving, thinking, learning,

remembering, and problem solving. In order for Intelligent Tutoring Systems to be

effective for the student, the learning process must support two distinct purposes. First,

the ITS must exhibit cognitive-type activities so that the learner will interact and respond

13

appropriately to the tutoring process. Second, the ITS must be able to identify these

types of activities in the learner and plan the next set of steps in the student's learning

process.

The details behind cognitive activities include a range of information processing

activities that take sensory data and engage in processes to create meaningful information

for some specific purpose. For example, some of these activities involve the following:

• Attention: acquiring information by paying attention to what is happening and

perceiving the relevant;

• Encoding: transforming sensory data into mental propositions and constructs for

processmg;

• Associating: relating new mental propositions and constructs to existing knowledge;

• Storing: keeping information and knowledge for future use. This involves short­

term, intermediary, and long-term memory stores;

• Retrieving: timely access to stored information and knowledge;

• Communicating: producing results and desired outcomes; sharing knowledge with

others.

The psychological and pedagogical framework of the proposed Java Intelligent

Tutoring System is based on the developments of cognitive science and artificial

intelligence. The framework is based on the foundational cognitive and information

processing activities. ITS are typically comprised of four modules including: Expert,

Student, Instructional Agent, and Interface. These modules collectively represent the

following modeling activities required to effectively tutor a student in a specific domain.

The modeling activities are: Curriculum Knowledge Modeling, Student Modeling,

14

Expert Modeling, Mixed-Initiative, and Self-Learning. Figure 1 depicts an architecture

of an Intelligent Tutoring System.

The following is an example illustrating the abstract operations of an Intelligent

Tutoring System. Suppose the goal is to tutor the student to spell the word "cat." The

Student Model represents the characteristics of similar students and, in particular, specific

characteristics of the student being tutored. The Instructional Agent is one part of the

Intelligent Tutoring System that takes this goal and, aided with the Curriculum

Knowledge, commences the tutoring process. While there are many different types of

Intelligent Tutoring Systems, rich interaction is a key component to all current tutoring

systems. The interaction between the Student and the ITS is depicted in Figure 1 by the

arrows "Tutoring" and "Student Response." The action of "Tutoring" is based on

information retrieved from the Student Model by the Instructional Agent, the Expert

Model, the goal, and the Curriculum Knowledge module. When the student responds to

the system, the Instructional Agent updates the Student Model appropriately to ensure

that the ITS always knows the current state of the learner. This cycle continues until the

goal has been achieved.

Instructional agent. As illustrated in the example, the Instructional Agent is

designed to guide the student towards a solution during the tutoring process. The

Instructional Agent is adaptable in that it makes changes to the instructional strategies

based on changes in state in the student model. Depending on the domain, various

strategies may be used, such as explanation, guided discovery learning, coaching, and

probing. Human teachers and tutors do this regularly within the delivery of a lesson

(Bloom, 1984).

Data from users of
the tutor

Student
Model

Teaching goals and
sub-goals

15

Tutoring

Student

Student
Response

Figure 1. Architecture of an Intelligent Tutoring System.

16

How and why human teachers alter their teaching style is an interesting question and is

currently being researched (Koedinger, 2001; B. P. Woolf, Beck, Eliot, & Stem, 2001).

Research in cognitive science will lead to more effective modules that will better adapt to

the needs of the student (B. P. Woolf et aI., 2001).

Curriculum Knowledge Modeling. The Curriculum Knowledge (CK) module

generates appropriate instructional material based on the context of the student's

performance. Components in this module include problems, solutions, exercises, hints,

and help. The CK module presents the student with the appropriate instructional

information to stimulate student learning while minimizing discourse and frustration.

The ITS needs to be able to distinguish from predefined responses and genuine responses

that would most help the student.

Student Modeling (SM). This component models each student in the system.

There are two main components of the Student Model. The first is a collective student

model representing common characteristics that all students in the system share. The

second component is the unique model for the student being tutored. The Student Model

is used in the assessment of the student's knowledge and in the instructional process by

the Instructional Agent. In some Intelligent Tutoring Systems, the assessment need not

be formalized as a quiz or test but may include informal approaches such as coaxing or

subtle probing questions. For example, Table 1 describes a typical dialogue between a

student (S) and the ANDES Physics Tutor (T).

17

Table I

Student Modeling: Assessment and Instructional Adaptation. Excerptfrom ANDES

Physics Tutor

Problem: An elevator slows to stop from an initial downward velocity of 10.0 mls in
2 seconds. A passenger in the elevator is holding a 3 kg package by a vertical string.

T: What is the definition ofacceleration?
S: I don't know.

T: Let's look at it a different way. IfI am driving north and you want to stop me
which direction do you have to push?

S: north

T: But if the acceleration went the same direction as the velocity, then the elevator
would be speeding up. Try again, ifI am driving north and you want to stop me
which direction do you have to push?

S: south

T: Right! What does that tell you about my acceleration?

18

Expert Modeling (EM). This component of an Intelligent Tutoring System

models an expert's knowledge for a particular domain. The Expert Model is used by the

Instructional Agent in determining appropriate feedback for the student. Current systems

vary in the type of knowledge they teach. This is because each ITS is extremely domain

specific; that is, each ITS provides a means by which each student may construct their

knowledge in a very specific domain. Some Intelligent Tutoring Systems teach formal

logic and formal knowledge while others teach overall processes in the context of the

domain. For example, MathTutor and Algebra Tutor, both associated with mathematics,

teach formal logic and knowledge (Anderson & Reiser, 1985; Beal, Beck, Woolf, & Rae­

Ramirez, 1998). On the other hand, Intelligent Tutoring Systems such as MeTutor focus

on processes involved in firefighting which are more process-oriented in terms of the

curriculum tutored (Rowe & Galvin, 1998).

Constructing the expert model requires specifying the relative difficulty of the

topics, knowledge of the strategies that can be used by the tutor, a large amount of

analogies, examples, and error diagnosis abilities to effectively tutor the student (B. P.

Woolf et ai., 2001).

Mixed-Initiative (MI). This component of the ITS is based on the development

of human-computer interaction (B. P. Woolf et ai., 2001). The dynamics involved are

based on human-human interaction that have been studied and analyzed from a

communication perspective (Graesser & Person, 1994; Graesser, Person, & Harter,

2001). As a result, the mixed-initiative module determines the most effective way for the

ITS to communicate with the student while ensuring rich interactivity and productivity.

Natural language dialogue is used more frequently in the design of recent Intelligent

19

Tutoring Systems (Graesser et aI., 2001). Another responsibility of the Mixed-Initiative

module is its ability to recognize mistakes. Error diagnosis will help the ITS to diagnose

mistakes, plausible misconceptions, and recognize missing information. The goal is to

establish a balance between the student controlling the conversation and the ITS.

Self-Learning. The ITS needs to have the capacity to monitor, evaluate, and

improve its own teaching performance as a function of experience. In other words, based

on the information in the Student Model and student responses, the Instructional Agent

reflects upon what was successful, what was not, and refines the process for the current

student and future students (see Figure 1).

In their most sophisticated form, Intelligent Tutoring Systems might reason based

on knowledge about how students solve problems and make inferences in the domain.

The theoretical focus has shifted from exclusive diagnosis and remediation to recognizing

and supporting students in managing their own cognitive processes. In other words, ITS

may provide a way for students to develop their metacognitive abilities. A tangential, yet

related element to Intelligent Tutoring Systems is a philosophical debate regarding Strong

versus Weak Artificial Intelligence. Strong AI is defined as a hypothetical form of AI

that can truly reason and solve problems; Strong AI is said to be sapient, or self-aware,

but mayor may not exhibit human-like thought processes. The term Strong AI was

originally proposed by John Searle and was applied to digital computers and other

information processing machines (Searle, 1980). Searle defined Strong AI as, "according

to Strong AI, the computer is not merely a tool in the study of the mind; rather, the

appropriately programmed computer really is a mind" (Searle, 1980, p. 417).

20

Weak AI, on the other hand, refers to the use of software to study the

behavioristic and pragmatic view of intelligence. In Weak AI, there is not the claim for

software actually being intelligent, but simply being a tool that can be used to assess

hypotheses regarding the nature of intelligence. Formality is a necessity if a mechanistic

approach is required. Weak AI also covers probabilistic systems where results are not

deterministic (Searle, 1980). If results are based not on "real" cognitive mechanisms with

a deep enough complexity as to accommodate intentionality, though the input/output

interface layer would appear to the user as hiding an intelligent "mind". This is clearly an

illusion; like watching an animation which, to the observer, appears perfectly "real".

Since the perspective impression is perfect from the observers point of view, the observer

ignores common sense and accepts as fact that the images are real (Searle, 1980). The

definition of "Weak AI" accepts this reality and is opposed to Strong AI.

In summary, the framework of an ITS is supported by progress in the fields of

philosophy, cognitive science, and Artificial Intelligence-specifically Weak AI.

Intelligent Tutoring Systems are constructed based on interdisciplinary studies, a wealth

of human tutoring knowledge, and have been met with notable success (Graesser et aI.,

2001; Koedinger, 2001). At this time however, Intelligent Tutoring Systems do not

display the appearance of "true" intelligence from an external perspective. In other

words, ITS do not inherently imply that there is a "real" mind hidden in the machine with

the same cognitive capabilities as those, or equivalent to, human ones. As a result, ITS,

are currently being designed and constructed as Weak AI systems, as the one developed

in this disseration. However, the future looks promising for more sophisticated ITS due

to advancements in cognitive science, human-neural modelling, and the rapid progress of

21

computer technology. The philosopher Rene Descartes identified thinking as proof of

one's existence. "I think, therefore I am." From such simple intuitions, we can

generalize in order to say "thinking things exist" (Cottingham, Stoothoff, Murdoch, &

Kenny, 1991). Perhaps one day Intelligent Tutoring Systems will be considered thus.

Student-Teacher Perspectives

The Student's Perspective

Cognitive studies of instruction have shown that students need to remain active

and motivated to succeed (Fletcher, 1995; Regian, 1997; Seidel & Perez, 1994). Students

must want to learn and to be involved, active, and challenged to understand and

manipulate the material presented. The experience must be authentic and relevant to the

learner's world (Woolf, 1992; Woolf & Hall, 1995). Simple presentations of text,

images, or multimedia usually result in systems that encourage passiveness. As a result,

the learning can be less effective than intended. Interactive exercises are required that

involve students in the material (B. P. Woolf et aI., 2001). Not surprising, human tutors

actively engage students. This often leads to significant improvements in the learner's

achievement (Bloom, 1984). In fact, one-on-one tutoring by human tutors can increase

the average student's performance by 2.0 standard deviations. That is a two-letter grade

improvement (Bloom). Intelligent Tutoring Systems emulate the behaviour of human

tutors and have been met with significant success (Koedinger, 2001; B. P. Woolf et aI.,

2001).

Another benefit ITS have is the speed of knowledge acquisition. For example, an

ITS was designed for the LISP programming language with the goal to improve students'

programming abilities at the postsecondary level (Anderson, Conrad, & Corbett, 1989).

22

In this study, comparisons were conducted between a control group in which students

solved the same programming problems without the aid of the ITS and an experimental

group which used the ITS. Students in the experimental group completed the problems in

one third ofthe time with better posttest performance than students in the control group

(Anderson et aI., 1989).

Intelligent Tutoring Systems have many benefits for education. By adapting

curriculum to each student, learning could be customized for normal students, gifted

students, learning-disabled students, and minority groupSl. This allows self-directed or

asynchronous learning to occur. Many current ITS are being constructed to support e-

learning techniques and pedagogies. Thus, the goal for Intelligent Tutoring System

designs is to provide worldwide access to an electronic personalized tutor for students in

domain-specific areas. These concepts were important in the design of the Java

Intelligent Tutoring System.

The Teacher's Perspective

Traditional classrooms in Ontario typically range from 20 to 32 students.

Postsecondary institutions in this province may have hundreds of students per class.

Clearly, a teacher will struggle to be effective under these circumstances. One-on-one

tutoring is by far the preferred and most successful instructional model (Bloom, 1984;

Koedinger,200l). The use ofIntelligent Tutoring Systems would be extremely

beneficial for teachers trying to help each student in a classroom. The individual teacher

needs to be empowered to deliver the curriculum as effectively as possible for each

individual student. Schofield, Evans-Rhodes, and Huber (1990) found that teachers take

1 The terms "normal," "gifted," "learning-disabled," and "minority group" students used in this context are
defined by the Ministry of Education and Training. Please see:
htto://mettowas21.edu.gov.on.caJeng/generaVpostsec/taskbgl.html for more information about these terms.

23

a greater facilitator role in student-centred learning environments. This in tum would

result in higher achievement for most students (Bloom, 1984; Schofield, Evans-Rhodes,

& Huber, 1990). Since Intelligent Tutoring Systems effectively engage students, teachers

are more able to provide a personalized assistance tool to students who most need it

(Wertheimer, 1990).

Intelligent Tutoring Systems provide many benefits for teachers. First, ITS help

teachers with day-to-day responsibilities such as tracking student performance on

quizzes, tests, assignments, exercises, and readings. This in tum assists teachers by

providing more time for them to focus on curriculum development and delivery. In this

way, teachers are in a better position to more effectively meet the needs of their students.

Consequently, the students' interests can be more easily incorporated and formalized by

the teacher through the use of authoring tools available for Intelligent Tutoring Systems.

This is essentially the same as specialized learning plans quite common in the school

setting.

Another benefit of ITS is that they minimize the disruptions in class, since

students are focused and engaged in working through the course material. An extreme

example provided by Anderson et aI., 1995,

a student in a school in another state had the LISP tutor. The student, frustrated

by restrictive access to the LISP tutor, deliberately induced a 2-day suspension by

swearing at a teacher. He used those 2 days to dial into the school computer from

his home and complete the lesson material on the LISP tutor. (p. 22)

Intelligent Tutoring System research is currently focused on three main areas:

cognitive modeling, communication modeling, and implementation (D. P. Woolf et aI.,

24

2001). A clear direction ITS researchers have is to fully include teachers and students as

equal partners in the research (Heffernan & Koedinger, 2001). There is little doubt that

this combined effort will improve the quality of Intelligent Tutoring Systems of the

future.

Current State of Development for Intelligent Tutoring Systems

This section presents a review of the current research in Intelligent Tutoring

Systems. The review was important as it guided the design and development of the Java

Intelligent Tutoring System. The framework for the construction ofnTS was based on

the widely accepted ACT-R theory of skill acquisition which was developed by a group

of computer and cognitive scientists at University of Pittsburgh and Carnegie-Mellon

University (Anderson, 1998; Anderson et aI., 19952). This theory identifies a set of

cognitive principles for the development of tutors described below (Anderson, Boyle,

Corbett, & Lewis, 1990; Anderson et aI., 1995).

Intelligent Tutoring Systems have undergone significant changes over the years

and can be classified into three main categories. The first generation onTS were basic

Computer Aided Instruction (CAl) systems. They presented text or graphics and

depending on the student's response, different pages would be shown. Model-tracing ITS

were second generation tutors that allow the tutor to follow the student's actions as they

work through a problem. The current level of research and development for Intelligent

Tutoring Systems is the third generation. These tutors engage in dialog with the student

to allow students to construct their own knowledge of the domain. For third generation

tutors, interaction with the student is the key element in the design since it is essential to

keep the student's attention on task and as close as possible to the solution path. This has

25

the benefit of minimizing student frustration and reducing off-task activities that do not

yield in increased learning (Anderson & Pelletier, 1991).

Heffernan and Koedinger, 2001, state:

We think that if you want to build a good [third generation] ITS for a domain you

need to:

i) study what makes that domain difficult, including discovering any hidden

skills, as well as determining what types of errors students make;

ii) construct a theory of how students solve these problems (We instantiated that

theory in a cognitive model); and

iii) observe experienced human tutors to find out what pedagogical and content

knowledge they have and then build a tutor model that, with the help of the

theory of domain skills, can capture and reproduce some of that knowledge.

(p.24)

The following section elaborates on Heffernan and Koedinger's (2001)

recommendations for the construction of an Intelligent Tutoring System. With reference

to item i), there is a need to discover what makes the domain difficult. Understanding the

conceptual challenges beginners have when learning to program was an important issue

for the researcher to formalize before designing the Java Intelligent Tutoring System. In

order for a student to program effectively, slhe needs to (a) understand the syntax and

semantics of the language; (b) have the ability to work abstractly on a programming

problem; and (c) know how to test and validate the proposed solution.

Item (a) involves the knowledge and skill set to enter code into the computer in a

manner that the syntax of the language is satisfied and the semantics of the expressions in

26

the solution match the grammar of the language. Item (b) involves the knowledge and

skills to develop algorithms to solve specific problems. Sometimes small algorithms are

used collectively to solve large problems. This ability to decompose a large problem into

discrete modules is an additional ability a programmer must have to solve programming

problems. In this context, one can envision this characteristic of a programmer by the

programmer's ability to effectively "zoom-in" and "zoom-out" on details in the program

at various levels. Item (c) involves the ability to objectively critique one's work from a

functional perspective. Programmers need to be able to test their programs to determine

the validity of their solution. When unexpected results are produced as output of a

program (known as a logic error), the programmer needs to be able to "zoom-in" on the

related area of the program and ascertain how to correct the problem. Typically, this

involves a misunderstanding on the student's part in the manner in which hislher program

is executing. In order to solve logic errors, it usually involves a change to the algorithmic

design of the program in order to generate the desired output.

Additionally, there is a distinction between overt skills and hidden skills. In the

domain of programming, overt skills may include the ability to type and use the mouse

effectively to enter code and manipulate text in the computer. An even more difficult

issue is the proper identification of hidden skills which needs to take place in the

development of an ITS. Hidden skills in the area of beginner Java programmers may

include the ability to recognize a syntax error, understand why the error is generated, and

know how to remedy the error. This is a hidden skill because there are potentially an

infinite number of different scenarios that give rise to a specific syntax error, and the

27

student needs to have the ability to associate from previous knowledge and experiences

with the current unique situation.

The following is another example of a hidden skill. Consider a programming

problem to calculate the factorial of a nonnegative integer number provided by the user of

the program. There are a number of elements that need to be addressed in the solution for

this problem. The solution may be divided into three distinct abstract sections:

(S 1) prompt the user for a nonnegative integer number;

(S2) use recursion or a loop to calculate the factorial of this user-entered number;

(S3) display the factorial to the user.

Within each section in this modelled solution exist many hidden skills. The

student needs to have the knowledge and skills to program a prompt for the user to enter

a number. There are many different datatypes in Java, so the student needs also to

understand these differences in order to select the appropriate type for this particular

programming problem. For instance, a student may select a "double," "short," or

"Integer" instead of the desired "int" type. The selection of "double," "short," or

"Integer" may lead to difficulties in future steps in the solution being constructed.

Another hidden skill in (Sl) is the proper validation that the user-entered number is an

integer and is not negative. The student needs to be able to recognize this requirement

and have the knowledge and skills to be able to translate this requirement into appropriate

programming code. In this case, it would be to use an "IF-ELSE" construct, such as:

IF user entered number < 0

THEN issue_invalid_input_to_user

ELSE proceed_with_computation_ofjactorial.

28

Within section (82) the student needs to have knowledge of the various loop

constructs in the Java programming language and have the skills to implement a solution

using them. The hidden skills involved in this step are numerous. They involve

preconditions, identifier declaration and initialization, temporary variables, the

specification of the test condition, loop body syntax and semantics (i.e., the test condition

must change in the body of the loop, syntactical knowledge including when to use

opening and closing braces, etc.), and other such low-level details of implementation in

Java.

Last, in section (83), the student needs to have the knowledge of how to display

information within a Java program, the types ofproblems that may be encountered in

outputting information, and the knowledge of how to correct these errors.

The last section of Heffeman and Koedinger's (2001) statement in i) states:

"determining what types of errors students make." In programming, this involves

recognizing that the student may perform many different variations of the two classes of

errors: syntax errors and logic errors. In the factorial example provided above, there are

many different errors that the beginner programmer may encounter. In each of the

sections (81,82, and 83), numerous syntax and logic errors may be generated and, in

each unique case, the student needs to be able to understand why the error is occurring

and be able to correct it.

As presented above in the example of the factorial problem, programming is a

difficult domain to model because of the vast and detailed knowledge and skills required

for a student to have, the ability to "zoom-in" and "zoom-out" at various levels of detail

in a program, the ability to deal with and manage various levels of abstraction, and the

29

ability to "troubleshoot" program errors and to remedy them in a reasonable amount of

time.

Furthermore, items i) and iii) are well covered by the researcher's experience in

programming for over 20 years and being a Professor of Computer Science for 10 years

at the Sheridan Institute ofTechnology and Advanced Learning. The researcher was the

co-ordinator of the Computer Science Technology program for several years and has

extensive firsthand knowledge of the curriculum implemented. The researcher has

learned and taught over 10 different programming languages at the postsecondary level.

The researcher understands Java very well and knows the fundamental skills required by

students to solve programming problems. Regarding Heffernan and Koedinger's (2001)

statement i), the researcher has gained years of experience in the types of errors students

make. The researcher has determined that when a student encounters a syntax problem

and cannot overcome it, it is largely due to a conceptual gap (i.e., lack of knowledge) or

misunderstandings in the grammar of the particular programming language. As a

comparison to the English language, a student who does not use the period character

properly may lack the understanding that the period character is a special symbol that

denotes the end of a sentence. This is a direct analogy to the Java programming language

except instead of a period, it is the semicolon character and instead of sentences, the

collection of grammatically correct symbols is called a statement. To remedy these types

of cognitive issues (i.e., conceptual gaps or misunderstandings), usually all that is

required is a minilesson on a few similar examples to the problem at hand and the student

fills in the conceptual gap or corrects the knowledge associations. However, if the

student has encountered a logic error and cannot overcome it, then this typically reveals a

30

difficulty in the student's ability of abstraction. The student does not have the ability to

carefully step through his/her solution with a critical eye while examining the developed

algorithm. The researcher has discovered that the main reason, particularly for beginner

programmers, is their inability to remain patient and focused while analyzing their

solution slowly and carefully. This very significant ability is often the one that separates

a student from being successful in programming or not. This is a reflection of the

student's inability to "zoom-in." In other words, the student fails to be able to "zoom-in"

enough to gather all the related attributes of the algorithm and troubleshoot the precise

problem.

Referring to item ii), Heffernan and Koedinger (2001) state: "construct a theory of

how students solve these problems (We instantiated that theory in a cognitive model)."

The theory used in this dissertation is based on the ACT-R theory, which can be

summarized by four principles. The ACT-R theory is described in the following section.

ACT-R Cognitive Theory for Developing Tutors

The first principle derived from ACT-R (Architecture of Cognitive Tutors) is that

it is essential to define the target cognitive model as a set of production rules (Anderson,

1998; Anderson & Pelletier, 1991). Production rules are a set of IF-THEN-ELSE

constructs which outline discrete knowledge components which collectively represent the

steps required for a student to reach a solution for a problem. A typical ITS may have

several hundred production rules to effectively cover the domain and the various states a

student may be in within a realm of feasibility and predictability. Heffernan and

Koedinger (2001) reinforce this principle: "Without this [principle] one does not have a

well-defined educational goal" (Koedinger, 2001). In other words, in the context of

31

ACT-R, tutoring is assuring students (a) construct the production rules, (b) practice the

production rules, and (c) remediate the errors in the production rules. Additionally, it is a

goal of the Intelligent Tutoring System to guide the student towards a solution. However,

it is not mandatory that the solution be achieved by the student. In other words, the ITS

recognizes that the student may become frustrated and not wish to continue. The ITS

records the current state of the student's progress, noting the degree oflearning that has

taken place even though a solution may not have been achieved.

The second principle concerns how these production rules are to be

communicated to the student (Anderson, 1998). According to ACT-R theory, one cannot

directly tell students the underlying rules (Anderson, 1998; Graesser et ai., 2001). The

goal for ITS is to provide a vehicle by which students construct knowledge for

themselves as opposed to having the information told to them (B. P. Woolf et ai., 2001).

ITS need to communicate the production rules to students by providing them with

examples that illustrate the rules. As a result, the most effective way for students to

construct knowledge is to acquire these rules as a by-product of problem-solving. This

form of experiential learning is an effective way for students to construct knowledge and

increase their cognitive abilities (O'Reilly & Munakata, 2000).

The third principle of ACT-R theory is that one wants to maximize the rate at

which students have opportunities to form and practice these production rules (Anderson,

1998). Based on other research by ITS researchers, it was shown that what predicts

students' final achievement is how much practice they have had of these rules and not

how that practice occurs (Anderson et ai., 1995; Anderson & Pelletier, 1991). Associated

with the concept that "practice makes perfect" is the corollary to minimize floundering

32

which is incorporated into many leading-edge Intelligent Tutoring Systems. The basic

idea is to reduce student frustration during the problem-solving session and select

problems that offer practice on those production rules where students most need practice

(Anderson et ai., 1995). A production rule in the ACT-R theory is a statement ofa

particular contingency that controls behaviour in the Intelligent Tutoring System. The

following are two examples of production rules:

IF the goal is to classify a person
AND he is unmarried

THEN classify him as a bachelor

IF the goal is to add two digits dl and d2 in a column
AND dl + d2 = d3

THEN write d3 in the column

A production rule is a condition-action pair. The condition specifies a pattern of

input symbols that must be present for the production rule to execute. The action section

specifies the action that is to take place. A typical ITS may have hundreds ofproduction

rules to encapsulate the knowledge of the domain of instruction. For the design of the

Java Intelligent Tutoring System, the set ofproduction rules is represented by the

grammar of the Java language coupled with custom production rules augmented to the

language. Chapters 3, 4, and 5 discuss the JITS production rules in greater depth.

The fourth principle of ACT-R cognitive theory for tutoring deals with how to

treat errors in student problem solving (Anderson, 1998). Anderson et ai. base this

principle on an earlier work in 1990, which states, "people learn best when they generate

the answer for themselves rather than are told" (Anderson et ai., 1990). However, the

consequence of letting people generate their own knowledge is that errors are inevitable.

Fortunately, there are four considerations outlined in ACT-R theory that deal with error

remediation (Anderson, 1998). First, many errors do not reflect misunderstandings or

33

lack of knowledge; rather the errors are simply unintentional slips. The second

consideration is that people learn best when they construct the knowledge themselves.

This is analogous to hands-on training as opposed to lecture-based teaching. The third

consideration is that a lot of time can be wasted when the student is floundering while

trying to solve a problem. This state is called an error state and is not beneficial for

learning. The fourth consideration is that when students have problems with their

knowledge, it is more effective to provide another opportunity to learn the correct

production. Since the student does not need a deep appreciation of their error, it is not

effective for the ITS to expound on it (Heffernan & Koedinger, 2001).

The ACT-R Theory for the development of tutors has led to a standard framework

for the design and construction of Intelligent Tutoring Systems. The goal of this

framework is to ensure that Intelligent Tutoring Systems will provide rich learning

environments for students that will support their cognitive development in the specific

domain of study in as effective means as possible. Many researchers in the area ofITS

support the following steps to design and construct an Intelligent Tutoring System.

1. construct the interface;

2. define the production rules;

3. create the declarative instruction; and

4. set up the Instructional Agent to manage the curriculum and engage the

student through rich-interaction (Anderson, 1998; Anderson et ai., 1990;

Heffernan & Koedinger, 2001).

During the design of the Java Intelligent Tutoring System, these steps were

performed but not in the order presented. Due to the complexities involved with the way

34

in which JITS is designed, a massive amount of effort was spent on step 2, that is,

defining the production rules. This is because JITS was designed to recognize any small

Java program and offer "intelligent" feedback when there is no authored solution

available. In other words, unlike other Intelligent Tutoring Systems, there is no

predetermined solution for each problem. As a result, the focus of this step in the project

was on compiler error correction strategies which used extensive production rules in the

form of Backus-Naur Form (BNF) for the grammar of the Java language. Once this was

completed, the next step the researcher pursued was step 3.

Once the production rules were in place and validated, the declarative instruction

became the focus of the researcher. Declarative instruction was designed and

implemented by a series of tutorial web pages with ease of navigation and quick

reference ofparamount design consideration. For more information regarding this step in

the design of JITS please refer to Chapters 3, 4, and 5.

In step 4 of the ACT-R theory recommendation, a prototype for the Instructional

Agent including a hint generation module was designed and developed. Small

curriculum modules were also created to test the interaction between user and the ITS

prototype. After extensive testing of the prototype system, the last step for design and

development was the construction of the User Interface (step 1). Please see Chapters 3,

4, and 5 for a detailed description of the design and implementation of the Java Intelligent

Tutoring System User Interface.

CHAPTER THREE: DESIGN

This chapter presents the design framework for the Java Intelligent Tutoring

System. The design incorporates leading-edge techniques that are used by current

developers of Intelligent Tutoring Systems. Design considerations such as website

persistency, concurrency, student tracking, student modeling and other considerations are

reviewed and presented in this chapter.

The design for the construction of TITS is based on the popularly accepted ACT-R

theory of skill acquisition. The ACT-R theory was developed by a group of cognitive

scientists at University of Pittsburgh, and Carnegie-Mellon University (Anderson, 1998;

Anderson et aI., 1995; Anderson & Pelletier, 1991). This theory identifies a set of

cognitive principles for the development of tutors. The proposed Java Intelligent

Tutoring System is based on this accepted theory of tutor construction. Four main

sections are included in this chapter: "Initial Designs of the Java Intelligent Tutoring

System"; "Motivation for the design of the Java Error Correction Algorithm"; "Java Error

Correction Algorithm Design"; and "Java Intelligent Tutoring System Design and

Architecture".

Initial Designs for the Java Intelligent Tutoring System

During the design ofTITS, the four ACT-R cognitive theory principles for

developing tutors were carefully considered. According to the ACT-R theory, the

following steps are recommended:

1. construct the interface;

2. define the production rules;

3. create the declarative instruction;

36

4. set up the pedagogical agent to knowledge trace, manage the curriculum,

and engage the student through rich-interaction (Anderson, 1998; Anderson et

al., 1990; Heffernan & Koedinger, 2001)

The first step is to define the target cognitive model as a set of production rules

(Anderson, 1998; Anderson & Pelletier, 1991). These production rules, although not

written in traditional IF-THEN-ELSE constructs are embedded in the Java language

specification grammar which is used by the Java Error Correction Algorithm (discussed

in the following section). This grammar definition contains hundreds of grammatical

production rules that support the Java programming language. As a result, TITS

upholds the first principle of this cognitive theory.

The second principle of the ACT-R theory states that these productions need to

be communicated to the student. A subcomponent of this principle is that one cannot

tell students the underlying rules (Anderson, 1998; Graesser et al., 2001). TITS is

designed with rich-interaction throughout the entire tutoring session. Rules are never

directly told to students. Rather, JITS communicates with the student in the form of

well-defined hints that are customized to each student in the system. JITS is designed to

provide various opportunities for students to engage in problem-solving activities for

the beginner programmer, which is an effective way for students to construct their skills

and cognitive abilities.

The third principle of ACT-R theory is the old adage "practice makes perfect."

TITS maximizes the rate at which students have opportunities to form and practice the

production rules. JITS does this by engaging the student continually in problem-solving

questions. As a result, JITS is designed to support this principle.

37

The last principle of ACT-R cognitive theory describes how the tutor should

deal with errors in student problem solving. TITS is designed with a Java Error

Correction Algorithm which intelligently determines the intent of the student even when

s/he makes mistakes. JITS quickly recognizes students in an error state and

immediately encourages the student to make appropriate changes. This has the benefit

of minimizing students getting "stuck" and at the same time minimizes their frustration.

The initial designs for TITS include the Java Error Correction Algorithm, the User

Interface, and web-based infrastructure. These components are described in the

following sections.

Motivation for the Design of the Java Error Correction Algorithm

JITS is designed to provide extensive hands-on practice for students learning Java

in the form of attempting to solve programming problems. All entry-level programming

students make syntax mistakes and logic errors. Thus, a module that sophisticatedly

determines the intent of the student and can identify various types of errors that students

make is a necessary component for an ITS for the Java programming language.

While text correction is commonplace in word processors, mobile phones, etc., it

is not commonplace in the area of compiling a computer program. When a person writes

a program in any language, it must precisely follow the syntax and grammar rules of that

language. Any mistake, even so minute as forgetting a ";" will cause the program to fail

compilation. This dissertation research proposes an intriguing new use in teaching

programming by autocorrecting typical mistakes that beginner programming students

make. From a pedagogic/didactic perspective, support for the beginner programmer

when these types of errors occur can be very helpful. Thus an error correction algorithm

38

would be very helpful for students. Reviews from the learning and teaching sciences

yields this to be true (O'Reilly & Munakata, 2000). As a result, the Java Error Correction

Algorithm fits in this chosen theory. Furthermore, based on the principles of the ACT-R

cognitive theory for developing tutors, the Java Error Correction Algorithm also

coincides with this philosophy.

Java Error Correction Algorithm Design

This section describes the design of the Java Error Correction Algorithm (JECA).

The design arose from research involving decision trees, expert systems, and compiler

tools. It became clear after preliminary research that JavaCC provided the best features

for the development of an error correction algorithm. JECA is designed to consider three

distinct cases:

CASE 1: student enters perfect code and it compiles and runs;

CASE 2: student enters code that needs modification but with JECA changes will

compile and run; and

CASE 3: student enters code that needs modification but will not compile regardless of

all corrections employed by JECA; however, suggestions are presented to the

student to bring the code to a closer state for compilation.

The Java Intelligent Tutoring System's intelligence is accomplished by this

embedded logic module (i.e., the Java Error Correction Algorithm). This module

performs a number of operations behind the scenes. It implements a sophisticated

scanner and parser that autocorrects the student's code when appropriate as well as

generates a number of parse trees that have small permutations. This module then

attempts to compile the best trees to ascertain the most likely path the student

39

"intended" to follow. With this knowledge, JITS can efficiently and effectively tutor

the student. The goals JECA are to:

1. analyze the student's code submission;

2. intelligently recognize the "intent" of the student;

3. "auto-correct" where appropriate (e.g., converting "While" into the keyword

"while," "forr" into "for," etc.);

4. learn individual student's misconceptions, and categorize the types of errors

s/he makes;

5. produce a "modified code" that will compile (or bring the code closer to a

state of successful compilation); and

6. prompt the student programmer for information when necessary via well­

defined hint support structures.

JECA, combined with a well-defined student modeling mechanism and dynamic

hint generation capabilities, enables JITS to significantly improve the performance of

beginner Java programmers. Over the last 2 years, JECA took over 1,500 hours of the

researcher's work.

The algorithm used by JECA is presented below.

1. Create a copy of the student's submission (i.e., "modified_source").

2. The scanner examines the student's code and attempts to extract a token. Let

S be the stream ofcharacters to be validated as a token.

3. A validation process ensues in which comparisons are done using the reserved

words and keywords of Java (Table 2), extended keywords (Table 3), and

previously declared identifiers.

Table 2

Java Reserved Words and Keywords

abstract else interface super
boolean extends long switch
break false a native synchronized
byte final new this
case finally null a throw
catch float package throws
char for private transient
class goto b protected true a

const b if public try
continue implements return void
default import short volatile
do instanceof static while
double int strictfp C

Note. a true, false, and null are reserved words. bindicates a keyword that is
not currently used. cindicates a keyword that was added for Java 2.

40

Table 3

Extended Java Reserved Words and Keywords

Boolean
Character
Number
Byte
Double
Float
Integer
Long
Short
String
StringBuffer

Note. This list is a subset of the objects defined in java. lang. *

41

42

4. For a given identifier, if the scanner discovers, within a certain threshold, that

S can undergo transformations to convert S into a valid token (i.e., a reserved

word or keyword, an extended keyword, or as a previously defined identifier),

then it will do so. However, if the scanner determines that S is sufficiently

different from all of the items previously compared to, then it will be left

unchanged (i.e., it will remain as a new identifier).

5. Update the modified_source code to reflect these changes and the newly

constructed token is submitted to the parser.

6. Repeat 1 through 4 until all input from the student's source code has been

processed and the parser has completed the construction of the parse tree

representing the modified_source code.

7. Try to parse and compile the modified_source code. If the compilation

succeeds, then relay the modifications performed to the student in order for

them to correct their code and stop processing.

8. If the previous step fails, then extract information regarding why it failed and

set up a competition of permutated parse trees containing insertions, deletions,

and replacements at the problem area.

9. Run these permutated trees through the parser. The goal of this stage is to

determine if the specific problem where the parse failed has been corrected.

10. Select the "best tree(s)" and compile these. The "best tree" is defined as the

tree that allowed the parser to successfully consume the largest number of

tokens compared to the other trees in the competition.

43

11. If one or more of these trees successfully compiles, then present this

information to the user, indicating the changes made to the student's source

code.

12. If none of the trees successfully compile then present the information to the

student regarding the selection of the best tree.

13. Let the student respond/make corrections to the source code.

14. Repeat the process from 1 to 13.

The algorithm employed by JECA is presented in flowchart form in Figure 2 and

Figure 3.

Java Intelligent Tutoring System Design and Architecture

The design of the Java Intelligent Tutoring System heavily relied on JECA to

provide the necessary information in order to offer suitable feedback to the student

programmer. However, there were a number of factors that were considered in the design

of JITS beyond what JECA offered. The two main perspectives that were considered in

the design of JITS were both the student's and the instructor's perspectives. In order for

an ITS to be successful in today's e-leaming society, JITS was designed with the

following qualities.

Student Perspective

The following qualities were deemed important in the design to satisfy students

and were part of the desired list of criteria in the design of TITS:

1. provide an easily understood, student-friendly user interface that provides all

the necessary features for effective ITS tutoring;

44

Pass to parser
no "keyword" token

Update
modifed_source

code
2

yes

Pass to parser
no the correct token

yes

Update
modifed_source

code
2

yes

no
Pass to parser

"identifier" token

Update
modifed_source

code

Pass to parser the identifier
token

Update
modified_source

code

Figure 2. First Component of JECA - Scanner Correction Activities.

Relay appropriate
Succeed? yes message to student (Le.,

identifier correction(s»

no

Run it through parser

45

Succeed?

no

Relay appropriate
yes message to student (Le.,

identifier correction(s»

Setup a competition of
permutated parse trees
containing insertions/

deletions/replacements

Run them through parser

Select the "best trees"

Succeed?

yes

no

Relay appropriate
message to student (Le.,

all corrections made to the
"best trees")

Relay appropriate
message to student (Le.,

grammar correction)

Figure 3. Second Component of JECA - Parser Correction Activities.

46

2. provide access via an ordinary browser;

3. will not need a high-speed internet connection (i.e., dial-up connection will

work fine; thus, students in remote locations have full access to this resource);

4. process student's code submission and respond quickly to the student;

5. support many students concurrently working with the ITS;

6. engage the student by communicating in a clear and concise personalized

fashion (e.g., unique hints and error messages for each student);

7. track student performance in a database (e.g., ORACLE); and

8. model the user as s/he works through a problem.

Instructor Perspective

The design of nTS also considered the instructor perspective. The following

factors were important in meeting the needs ofteachers using this ITS.

1. requires the author of the problem to provide minimal information (e.g.,

problem statement, program requirements, and required output);

2. the author of the problem does *not* specify any solutions (this is based on

the premise that for a given programming problem there may in fact be

numerous solutions);

3. nTS must be able to recognize a very large number of possible solutions for a

particular programming problem;

4. student performance information should be easily accessible;

5. an instructor-friendly, web-based user interface to author problems (i.e.,

Authoring Tool).

47

This section includes the initial JITS User Interface and a description of the initial

web-based infrastructure architecture.

Initial JITS User Interface

The initial design of the TITS user interface was representative of fundamental

features of a professional programming Integrated Development Environment (IDE).

Students are presented with a problem, the problem specification, the skeleton code, the

code editor, and a number of buttons with which to interact with the tutor. For example,

once the student is ready to submit the code to TITS, the "Submit" button may be

pressed. The user interface was designed so that students could view the hints by

pressing "View Hint" button, see solutions by pressing the "View Solution" button.

Hints were initially designed as "canned responses" to specific states the students would

be in based on their code submission. At any time, the student would be able to see a

record of their activities by pressing the "View Log" button. This would simply show

the student the history of what had transpired in the current session. Over the last two

years, the initial interface and supporting infrastructure for TITS has taken

approximately 500 hours of the researcher's work. Figure 4 depicts the initial design of

the user interface for TITS.

Infrastructure Design

The infrastructure design for TITS draws from the area of leading-edge

techniques and technologies for multithreaded distributed concurrent e-Iearning

application designs. The Model-View Controller (MVC) design pattern was used to

ensure that concurrency and robustness would be provided by TITS. The MVC

contains three main tiers: the client's browser, the middle-tier, and the database-tier.

48

Problem: A problem of
the appropriate level and
difficulty is presented to
the student.----------------------------,

IProblem Statement

The student may select
a different question
from a bank of suitable
skill-level questions.

A record of student
activities including
problems attempted
and JITS' responses.

While the student works
on a solution it must
successfully "Parse,"
"Compile," and "Run."

Based on the current
problem, the student
may ask for a hint or for
clarification.

Parse

Exit

Compile

Run
Editor

Output

1'----_---------

IProblem Specifications

Source
Code Area

Results of parsing,
compilation, and
execution. This area IS

also used for displaying
hints, solutions, and
current student statistics.

Figure 4. Initial design for the TITS User Interface.

49

By design, there were no restrictions placed on the browser. In other words, TITS was

designed to work with any browser, and no custom installed client software of any sort

was required. The middle-tier is a server running a TomCat web server, currently

equipped with 4GB RAM and 2 Pentium-IV processors. The database-tier is a separate

server running ORACLE. The initial TITS database schema was designed to support the

core functionality of TITS consisting of 3 tables: student, problems, and

student-problems. The student table contains information regarding each student in the

system such as student name, password, current problem, etc. The problems table

contains details regarding programming problems used by TITS such as problem

description, specifications, templates, etc. The student-problems table is an intersection

relation representing details regarding each student's attempt at a problem.

The Model-View-Controller design pattern was a core component to the design

of JITS. Figure 5 depicts the MVC design pattern. First the student makes a request

(via HTTP in the browser). The Controller module receives the request and performs

operations that include instantiating JavaBeans. These beans are used to model the

student as slhe works with TITS. The collection of these beans represent the modeling

of each student in JITS. During specific operations, beans may need to retrieve

information from the TITS database schema (e.g., to select a new problem or retrieve

solutions to a problem, etc.). These data are stored in the ORACLE TITS database

schema represented in the figure as the Enterprise Information System (ElS). The

information is gathered up and processed by the bean, which then forwards it to the

View component (i.e., the Java ServerPage [JSPD, which then formats it appropriately

for the student in the TITS user interface and returns it to the student's browser.

50

MVC Design Pattern

Responsei

3

(Controller)
Servlet

~ "'1

~2 I 0
~~~·,.(Model)

r----(-~-<-~e-;-)-~ :avo··.,.ani--

I

----.,.,.: EJ
t ~ ~ , :

5

1

Request

Servlet Container EIS

Figure 5. Model View Controller (MVC) design pattern implemented in TITS.



CHAPTER FOUR: IMPLEMENTATION

This chapter presents the implementation details of the first version of the Java

Intelligent Tutoring System. Following the previous chapter, which specified the initial

design of JITS, this chapter focuses on details involving the Java Error Correction

Algorithm and the initial construction of JITS. The initial designs for nTS' Human-

Computer interaction, Hint Generation, and User Modeling issues are also included in the

chapter.

Initial Java Error Correction Algorithm (JECA) Implementation

The core module of the Java Intelligent Tutoring System is the Java Error

Correction Algorithm (JECA). The first component of JECA involves scrutinizing the

identifiers that the scanner has tokenized by comparing them to keywords, reserved

words, extended keywords, and to currently validated identifiers. The second component

has the parser perfonn a rigorous deep level error recovery technique implemented by a

variation on the Burke-Fisher Error Recovery algorithm (Burke & Fisher, 1987). This

algorithm is explained in greater depth in the following sections.

First Component ofJECA: Error Recovery in the Scanner (Lexical Analyzer)

It is sometimes desirable to change what the scanner has interpreted to a single

Java keyword. The reserved words and keywords in the Java programming language are

presented in Table 2. As an example, suppose the beginner programmer submitted the

following code:

public class Test (
public static void main{)

lnt sum = 0;
For (iint i=O; i<=10; i++)

sum = sum + i;
System.out.println("Sum is:" + sum);



52

There are 3 distinct syntax errors. The "Int sum = 0;" statement, the "For, " and

the "iint." It is desirable to present the appropriate information to the student

programmer in a way that is both supportive and direct. In this example, the student

mistakes the "Int" and "For" for the keywords "int" and "for" respectively. A

typical compiler will produce the following:

Test.java:5: ')' expected
For (iint i=O; i <=10;

Test.java:5: not a statement
For (iint i=O; i <=10;

Test.java:5: I;' expected
For (iint i=O; i <=10;

3 errors

i++ )

i++ )

i++

The proposed error recovery algorithm, JECA, attempts to understand the "intent"

behind the student's program and, by prompting the student, and behind-the-scenes

modifies the submitted program as follows:

public class Test {
public static void main (String args []) {

int sum = 0;
for (int i=O; i <=10; i++

sum = sum + i;
System.out.println("Sum is: II + sum);

}

}

generating the anticipated result:
Sum is:55

The student will receive prompts for each "assumption" the JECA intent

recognition module is performing. For example, on encountering the "Int" in line 3, a

message such as "I found an 'Int'. Would you like to replace it with 'int'? (yin)." In

this fashion, the student of the system is fully aware ofall changes that are taking place

on the submitted code. In other words, all changes are made explicitly known to the user.



53

This philosophy is different from other compiler designs that make changes to the source

program without notifying the user (Fischer & LeBlanc, 1991). For example, an analogy

is found in the C programming language. Given a simple program like:

main () {
return 0;

}

may be interpreted by a compiler as:

int main () {
return 0;

}

The compiler implicitly puts in the default type' int' during compilation. Such

implicit changes can be misleading to the user (Fischer & LeBlanc, 1991). JECA, on the

other hand, does not do any implicit changes to the code. All code changes are overt. A

supporting mechanism used to do this is depicted in Figure 6.

A Keyword object houses all attributes and functionality associated with a

keyword in the language. It contains the name of the keyword (i.e., String _name),

the symbol table ID for the keyword (i.e., int id), dynamically learned variations on

the keyword (i.e., String _variation []), the number of times these

corresponding variations have occurred (i.e., int count []), and the total number

of variations learned at this time (i.e., int _variation_count). The Keyword

object contains useful information that can be used for statistical analysis and capturing a

representative model of the student of the system. By keeping track of the types of errors

the student makes and the number oftimes these types of errors occur, the system is in a

good state to offer meaningful feedback to assist the student to program better.



Keyword

_keyword

Figure 6. Keyword object and _keyword data structure.

54



55

Similar data structures are implemented for Extended_Keywords, and Identifiers in order

to record information regarding these types of data. This information is gathered during

the lexical analysis phase by JECA.

Given a lexeme that has currently been classified as an identifier token, the

objective is to analyze this lexeme and determine if it should remain as an identifier or be

classified as a different type of token. The algorithm includes a reference to the

Edit_Distance object that has a method to determine the edit distance between two

strings. For example, given the strings, "while" and "wiles," the edit distance is 2 (i.e., a

count of I for the missing character "h" and I for the additional character "s"). The

algorithm for this identifier-classification process is presented below:

loop
i = 0
go through the _keyword array
extract the keyword name at position i
d = Edit_Distance (lexeme to keyword)
if (d <= THRESHOLD)

add it to a refinement collection
i++

end loop

perform refinement on the refinement collection and determine if it
should be considered a keyword, extended_keyword, or as a new
identifier

JECA uses an additional object called "BestMatch" to assist in refining the search

for appropriate potential keyword matches. The refinement collection is a Java

Collection of BestMatch objects which represents the best matches of all the keywords

that are similar to the identifier in question. The refinement process proceeds and applies

additional rules and constraints to narrow the number of BestMatches until it is

determined that the identifier is indeed a valid identifier or should be converted into a

keyword. Once this is determined, the lexical analyzer (i.e., TokenManager in JavaCC)



56

returns the appropriate Token to the parser. A figure of the BestMatch object is presented

in Figure 7.

A member of the BestMatch object is _transformation_string. This member

receives this value from the Edit_Distance algorithm. The Edit_Distance algorithm

accepts two strings for comparison and determines the closeness of these strings by

performing insertions, deletions, and character replacements (Sykes & Franek, 2003).

The cost for an insertion, deletion, transposition, or character change is 1. Figure 8

depicts a transformation string given two strings "Forr" and "for." The algorithm is

quite flexible and can be easily modified to accommodate various scenarios. For

example, the edit distance in Figure 8 could be 2 (i.e., case-mismatch "F" and an

additional "r"). It could also be configured to produce an edit distance of 1.5 (i.e., case­

mismatch = 0.5 and 1 for the additional "r") or any other cost depending on setting some

switches. The rationale behind this is based on the premise that the algorithm should

draw close relationships between strings that have the correct sequence of characters but

may not have the correct case. Researchers in the area of education and psychology

believe this concept is pedagogically sound (O'Reilly & Munakata, 2000). A student who

uses "For" instead of "for" has a clearer conceptual understanding of the "for loop"

construct than a student who uses "Fore" for instance. These different cognitive models

are reflected in the algorithm.



57

Keyword
--~

BestMatch - _

_Iexeme

_edit_distance [TI
_transformation_string I "-II"

Figure 7. BestMatch object-used for the refinement process in determining an identifier

or a keyword.



Forr
-I I
fo-r

Figure 8. BestMatch member contains the Transformation string from Edit_Distance

algorithm.

58



59

Second Component ofJECA: Error Recovery in the Parser

JECA's parser component algorithm implementation is loosely based on the

Burke-Fisher Error Recovery algorithm (Burke & Fisher, 1987; Fischer & LeBlanc,

1991). This algorithm exhaustively tries single token insertion, deletion, or replacement

at every point within k tokens before where the error occurs. In other words, k represents

a window of tokens where the problem resides. Given N, representing the total number

of tokens in the language, there are k+kN+kN possible deletions, insertions, and

substitutions within the k token window (Burke & Fisher, 1987). The k token window is

kept on a queue. In this algorithm, all semantic actions must be delayed to prevent

unwanted side effects until parse is validated (Burke & Fisher, 1987).

The Burke-Fisher Error Recovery algorithm uses 2 stacks, current and old, and a

queue of ktokens (Burke & Fisher, 1987). old stack contains all successfully parsed

tokens so far. current stack contains potential tokens covering a window of the next k

tokens. old stack and queue are used together to reparse string after replacement, deletion

or insertion of single token into queue. Figure 9 and Figure 10 depict an example using

the Burke-Fisher error recovery algorithm.

The proposed parser error recovery algorithm for JECA is similar in nature to the

Burke-Fisher algorithm. However, there are some significant differences. First, since

JECA is aimed at the beginner Java programmer, the size of the source program will

always be very small (i.e., 50 lines of code or less). As a result, a Vector (i.e.,

java.lang.Vector) Abstract Data Type (ADT) is used to store the entire source program in

memory. In this fashion, the tokens can be easily traversed and manipulated, thus

providing opportunities for greater analysis on the input program.



old stack new stack

60

INT_LTR ~

=
ID

Top of stack

4 token queue

Top of stack -----. INT_LTR

=

ID

,

Input stream

I
i = 22 j = -2 * 5 .... EOF,

Figure 9. Burke-Fisher error correction algorithm with a 4-token queue in the middle of

processing a statement production.



61

new stackold stack
c==J.- Top of stack

~

Top of stack -----. *

INT_LTR

=
10

4 t ka en aueue

i = 22 j = -2 * 5 .... EOF,Input stream

Figure 10. Burke-Fisher error correction algorithm with a 4-token queue completing the

processing of a statement production and commencing a new production.



62

Second, the Burke-Fisher algorithm delays semantic actions to prevent unwanted side

effects. In JECA there are no semantic actions as would be expected in a typical

compiler. In other words, unlike other compilers that generally produce assembler code

or intermediate code, the proposed algorithm's goal is to correct errors so that the parse

will be as valid as possible. It does not have extensive semantic actions like other

compilers. The output of the proposed algorithm is a modified source code that is

intended to successfully parse by the standard "javac" executable (i.e., Java compiler).

The standard Java compiler will be invoked next to perform the translation from the

modified source program to byte code. The third main difference between Burke­

Fisher's algorithm and JECA's is that the student programmer will be asked for

clarification during the error recovery session. Instead ofusing Burke-Fisher's approach

to exhaustively insert, replace, or delete tokens in a k-window token list, only the most

probable tokens will be presented to the student programmer. As a result, the student has

a significant degree of control over the error correction process. This is supported by an

inner module which generates parse tree variations which are then tested against the

parser and Java compiler. These variations are based on a number ofconsiderations

involving token replacements, deletions, insertions, and transpositions. A competition is

arranged such that the parse tree(s) that succeed in recognizing the most tokens in the

source code are selected for further scrutiny. It then becomes a competition among the

best trees to determine the appropriate course of action in terms of determining the

specific hints issued for the student. Table 4 depicts this internal JECA functionality.

Please note the student does not see any of these computations.



63

Table 4

Internal JECA Parse Tree Permutations and Competitionfor the Selection ofthe Best

Trees

'. ,,II missingi++ )

Given the following program:
1 public class Test {
2 public static void main (String args []) {
3 iint sum = 0 ;
4 FOR ( Int i=O; i<10
5 sum = smu + i;
7
8 }

and submitting it to JECA will yield a ParserException stating:
Line 4 Column 30
Offending token: kind=>identifier, image=> "i"
Previous to Offending token: kind=>integer_literal, image ==> "10"

The ParserException contains a list of expected tokens:
Expected ...

>
<

<=
>=

etc.

JECA takes this "expected" list, creates permutations on the base parse tree involving
insertions, deletions, replacements, and transpositions, and then sets up the competition
to determine the best tree ...
Nothing compiled successfully ... but here is the best tree ...

public class Test (
public static void main (String args [] ) {

int sum = 0 ;
for ( int i = 0; i < 10; i++

sum = smu + i;



64

The fourth difference between the Burke-Fisher algorithm and JECA is that the

parsing stops when it encounters a situation that it cannot satisfy the current production.

The justification for this stems from the philosophy behind teaching beginning

programmers (Anderson et aI., 1995; Sykes, 2003). It is important that the student

programmer does not become overwhelmed by the number of error messages produced

by compilers when errors occur (Graesser et aI., 2001; Koedinger, 2001). Rather, it is

more helpful to:

1. extract detailed information regarding the single error message and stop

parsmg;

2. provide one clear and meaningful error message to the student; and

3. encourage the student to make the correction (O'Reilly & Munakata, 2000).

Initial Java Intelligent Tutoring System Implementation

The TITS infrastructure supports the student via a browser accessing information

from the tutor via an HTTP request/response process model. The processing is

accomplished by JavaBeans™ within a servlet engine web server. The presentation layer

uses JavaServer Pages™ technology which communicates to the bean representing the

student and creates an XHTML page for the student's browser. During processing, the

bean gathers all the information about the student's code and submits it to JECA for

processing. The infrastructure architecture uses a JDBC connection from the

JavaBeans™ to an external database which stores and retrieves specific information

about the student including student history and performance statistics.



65

The implemented architecture has numerous benefits (Pawlan, 2004). It is

scalable, platform independent, and lightweight (Pawlan, 2004). The student will never

need to install software on his/her machine and will not need a high-speed network

connection to use JITS. Other benefits include fast execution, as all processing is done

on the middle-tier web server, currently equipped with 4GB RAM and 2 Pentium-IV

processors. The net result is a product that increases the accessibility for TITS to many

students-a vital requirement for an equitable and successful educational product in

today's Internet-ready community. Figure 11 presents a pictorial view of the TITS

multithreaded distributed Web-based Infrastructure.

Human-Computer Interaction

The interface for computer-based programming tutors was given careful

consideration during the design of the Java Intelligent Tutoring System (TITS). The user

interface is based on a presentation format implemented in many popular Integrated

Development Environments used by professional programmers (e.g., Visual Cafe,

JDeveloper, JBuilder, etc.). The TITS login screen and user interface are shown in

Figure 12 and Figure 13 respectively.

Students are presented with a problem, the problem specification, the skeleton

code, the code editor, and a number ofbutlons with which to interact with the tutor. The

student types in his/her solution in the Source Code Area (see Figure 13) and presses

"Submit." This invokes a call to the corresponding JavaBean™ representing the student.



66

Client 1
browser

1) Individual tudent Information
(i.e., student history, statistics,
problems solved, learning style, etc.)

2) Problem sets (statement,
specification, solution, etc.)

Enterprise Information System (database)

JOBC SQL querylstateme~t .----.J;~~'ll:lf141

JOBC ResultSet
..

Student view ,
(presen1ation logic)

JavaBeans
(business logic)

Client N
browser

Client 2
browser

A modue:
.. selects the most appropriate response
for tutoring the student using information from
Intent Recognition module

Inlent
Recognition

module

Figure 11. TITS multithreaded distributed web-based infrastructure.



Java Intelligent Tutoring System
~.,....-.,....--....---

weko'm,e to th~Jav~rnt:elli~llrThtQ~S~stetrl,Pt~asre~tfr~o~1o~i4 ai;Ld)<lssW?rq,·

usefname :lfY~~~_""" ..
password ~ (!••••.!••.!I j

67

:i)oone

Figure 12. JITS login screen.



68

'!:Ii Java Intelligent Tutoring System - Microsoft Internet EMplorer , , .' ,,~,~' r.

public class Sununer {
public static void main(String [] args) {

int sum =·0;

Wo}come sykes!

Search U Favorites

Java Intelligent Tutoring Sy~tem

Problem: (1 of 4)
Write a program called Smntner which adds all the integer numbers from 1 to a specmed number (1\1). For
example, ifN were assigned the value 10, then the sum ofthe numbers from 1 to 10 is 55.
Program specifications:
This program requires the use of a for-loop structure, A skeleton structure ofthe solution is given. Fill in the
code to complete this program.
Required Output:
Sum = 55

Eile ~dlt :!.lew FglJOrltes Iools tlelp

1 __ - ~ ...
System.out.println("Sum " + sum);

}
}

OUTPUT:

Done

New Problem

Figure 13. Initial JITS User Interface.



69

The code is then dispatched to JECA, which processes the submission and generates a set

of appropriate hint objects. The student, at any time, may explicitly request a hint from

JITS by pressing "View Top Hint" or "View All Hints." The hints are dynamically

generated based on the problem details and the student's submission.

The initial design of JITS used both static content and dynamic content. In other

words, some of the information was loaded into the student's browser from the database

while other information was hard coded. The dynamic content was extracted via JDBC

from an ORACLE database schema and embedded into the JITS web page. The initial

schema is presented in Table 5.

Hint Generation

An additional design consideration is the categories of hints that are generated by

JECA for JITS. There are a number of different categories of hints that may be created as

a result of the student's code submission. They are presented in Figure 14.

A KEYWORD REPLACEMENT HINT arises from a situation where the student

typed in a suitably close representation to a Java keyword. For instance, if the student

typed in "Whiles," this would be interpreted as the keyword "while." An

EXTENDED_TYPE_REPLACEMENT_HINT is when the student wrote "Sting" which

will interpreted as "String"-the java .lang. String class. An

IDENTIFIER_REPLACEMENT_HINT is used in the situation where a suitably close

match to an existing identifier has been found.



Table 5

Initial JITS ORACLE Schema Tables

CREATE TABLE PROBLEMS
problem_id
problem_desc
problem_spec
problem_output
template_top_section
template_bottom_section
problem_difficulty

) ;

CREATE TABLE STUDENTS (
student name
student_password
problem_set_id
problem_id
skill level
performance_rating
performance_history
times connected
date last connection
picture

) ;

CREATE TABLE STUDENT PROBLEMS
student name
problem_set_id
problem_id
number_of_attempts
solved
students solution
solution date

) ;

NUMBER (3),
VARCHAR2(400) NOT NULL,
VARCHAR2(400) NOT NULL,
VARCHAR2 (50) ,
VARCHAR2(400) ,
VARCHAR2(400),
VARCHAR2 (20)

VARCHAR2 (30) ,
VARCHAR2 (15) ,
NUMBER(3),
NUMBER (3),
NUMBER (3) ,
NUMBER(3),
VARCHAR2(2000),
NUMBER(5),
VARCHAR2(30),
LONG RAW,

(

VARCHAR2(30),
NUMBER (3) ,
NUMBER(3),
NUMBER (3) ,
CHAR (1),
VARCHAR2 (500),
VARCHAR2 (30) ,

70



KEYWORD_REPLACEMENT_HINT = 1;
EXTENDED TYPE REPLACEMENT HINT 2;

- - -
IDENTIFIER REPLACEMENT HINT = 3;
GRAMMATICAL HINT = 4;
CLOSE BUT LOGIC ERROR = 5;

- - -
SUCCESSFULLY SOLVED PROBLEM 6;
GENERAL HINT = 7;
OTHER TYPE OF HINT = 8;

Figure 14. Hint categories.

71



72

For example, consider the following snippet of code:

int my_int = 0;
my_it = my_intt + 1;

II declaration
II and use

There would be two IDENTIFIER_REPLACEMENT_HINTs generated for this piece of

code:

Identifier Replacement Hint: Would you like me to replace "my_it" with "my_int"?
Identifier Replacement Hint: Would you like me to replace "my_intl" with "my_int"?

A GRAMMATICAL_HINT is generated when the parser fails on a particular

production in the Java grammar. Specific information regarding the error is recorded in

the Hint object depicted. The last two types of hints are GENERAL_HINT and

OTHER TYPE OF HINT. GENERAL HINT is used in the situation when the student is

far from the solution path and needs to be realigned with the program statement and

program specifications for the posed problem. If the student's code compiles but

produces output that is not the same as the required output, as specified in the problem

statement, the CLOSE_BUT LOGIC_ERROR is used. When the student solves the

problem the SUCCESSFULLY_SOLVED_ PROBLEM hint is used. Last,

OTHER TYPE OF HINT is reserved for future research.

There are a number of important pieces of information represented in a Hint

object. The Hint object is depicted in Figure 15. The _type member corresponds with

one of the six types of categories of Hints currently supported in JECA. The _col and

_line members specify where the error occurred. The _line_of_ code and

error_pointer represent the source code and the exact location of where the error

occurred. There are two tokens to assist in identifying where the error occurred in terms

of the tokens. _offending_token represents the precise token the parser failed on,



73

and _previous_to_ offending_token represents the last successfully parsed

token during parsing. The _hint member is a String summarizing the actual hint relying

on the values of other data members in this object. It is intended to be used during the

feedback process during student tutoring. The last member of the Hint class is the

_ confidence, which will be assigned an integer from I to 10. A confidence value of

1 indicates a high level of certainty, indicating the suggested hint is correct and will bring

the student closer to a compiled program. On the other hand, a confidence value of 10,

indicates uncertainty on behalf of the hint generated. In these situations, the student will

have to use their own judgment based on the detailed information provided to them by

the Hint objects, namely the data members, _type, _col, _line, _line_of_code,

error_pointer, offending_Token,and

_previous to offending_Token.

An example follows to illustrate these design aspects of the proposed error

correction algorithm. Given the source program depicted in Figure 16, JECA would

modify the program to the program depicted in Figure 17. As a result, the following Hint

objects would be created by JECA:

1) Keyword replacement hint: Would you like me to replace "Int" with "int"?
2) Keyword replacement hint: Would you like me to replace "FOR" with "for"?
3) Keyword replacement hint: Would you like me to replace "Hnt" with "int"?
4) Grammatical hint: Look near line: 8 column: 10. Look between the "++,, and

the "sum"

The following section depicts how the Hint objects are used in a typical dialog

between JITS (via the supporting JECA module) and the student programmer.



_type I GRAMMATICAL_HINT

_col QQ]
line m
Iine_oCcode Ir--t-o-r_(i_nt_i_=_O_;i-<-=-1-0-;-i+-+-1

_error_pointer I A......I
_offending_Token I sum 1

_previous_to_offending_Token I++ I
_corrected_line_oCcode I,......t-o-r-(i-nt-i-=-O-;i-<-=-1-0-;-i+-+-)"""I

hint Grammatical hint: Look near line: 8 column:
1O. Look between the "++" and the "sum"

confidence 1.....1_....1

Figure 15. A JECA Hint object representing a grammatical error.

74



public class Test {
public static void main() {

Int sum = 0;
For (iint i=O; i<=lO; i++

sum = sum + i;
System.out.println("Sum is:" + sum);

}

}

Figure 16. Arithmetic sum Java program with grammatical errors and syntax errors.

75



public class Test (
public static void main (String args []) {

int sum = 0;
for (int i=O; i <=10; i++)

sum = sum + i ;
System.out.println("Sum is:" + sum);

}

}

Figure 17. Internally corrected JECA source program for the arithmetic sum problem.

76



77

Using tIle example presellted in Figure 16, focusing only on the area where the student

enters code in the "source code area" (see Figure 13), a dialogue occurs between JITS

and the student. Table 6 presellts a typical dialogue that would occur between JITS and

the student for this example.

TIle tutoring process is dynanlic. At any time, the student is able to interject,

disagree with JITS' suggestions, or modify the S011rce code. JECA is designed to be

invoked many times to support the JITS tutoring process.

JECA is significantly different fronl other standard Java compilers. Given the

source program in Figure 16, all ordinary java compiler would produce tIle following:

Test.java:5: ')' expected
Forr (Int i=O; i <=10; i++

Test.java:5: not a statement
Forr (Int i=O; i <=10; i++

Test.java:5: ';' expected
Forr (Int i=O; i <=10; i++

3 errors

The embedded JECA system in JITS is much clearer and more llelpful than

stalldard Java error systenls. JECA has been designed for the beginner Java programmer

alld intelligently recognizes the intent behind the student's code submissions.



Table 6

Hint Objects Utilization and Typical Dialogue Between JITS and the Student

Student's slLbmission:
For (intt i = 1; i <= 10; i++

sum = smu + i;
}

JITS: Would you like to replace "For" with "for"? (Keyword replacement hint)
Student: Clicks Yes, or cllanges tIle code manually.
Resulting code:
for (intt i = 1; i <= 10; i++ {

sum = smu + i;
}

JITS: Would you like to replace "Int" with "int"? (Keyword replacement hint)
Student: Clicks Yes, or changes the code manually.
Resulting code:
for (int i = 1; i <= 10; i++ {

sum = smu + i;

Confidence... : 1 (high certainty)
Student: Makes the appropriate changes to the code.
Resulting code:
for ( int i = 1; i <= 10; i++) {

sum = smu + i;
}

JITS: Would you like to replace "smu" with "sum"? (Identifier replacement hint)
Student: Clicks Yes, or changes the code manually.
Resulting code:
for ( int i = 1; i <= 10; i++) {

sum = sum + i;

78



79

Initial User Modeling Design

The initial JITS user modeling component tracked some information, but once the

students finished a session this information was lost. For instance, the information that

was capturing included: the number of attempts for each problem the student has tried;

the number and type of misconceptions involving keywords, extended keywords, and

identifiers are recorded (e.g., "For," "fro" instead of "for," etc.); whether the student has

solved the problem or not; and the difficulty level of the problems that have been solved

by the student.



CHAPTER FIVE: METHODOLOGY AND PROCEDURES

The methodology employed in this dissertation is supported by two distinct

research components. The first component is related to the manner in which JITS was

designed and constructed. In this research section, students and professors using the

prototype JITS offered suggestions and comments for the improvement of JITS. The new

knowledge was fed back into the redesign and construction of JITS. Beyond the initial

development of JITS, a cyclic process was used: design, develop, test, modify, redesign,

redevelop, retest, etc. This research methodology involved qualitative instrumentation

including observation, surveys, and personal interviews. The goal of this methodology

was to improve JITS.

The second component of the methodology is related to the manner in which JITS

was evaluated. In order to determine the degree and quality of learning that took place by

students using the Java Intelligent Tutoring System, a quantitative investigation on

performance scores was conducted. The research methodology for this section involved

an experimental design with repeated measures. As a result, the researcher was able to

compare pretest and posttest performance differences as well group differences (i.e.,

Control versus JITSC). One advantage of this type of analysis is that interaction effects

were able to be calculated and analyzed.

Subjects

The population of this study were students across the province taking a

comparable course in programming. The sample in this study were the students in their

first year of college taking a beginner Java programming course at the Sheridan Institute

of Technology and Advanced Learning. During the summer of June to August 2004,



81

there were two such classes taking this course. aIle class was located at the Davis

campus. This class was the experimental group (i.e., JITSC). The other class was

located at the Trafalgar Road campus. This class was the control group, which consisted

of 23 students. One professor taught both classes for the first 7 weeks. After a nlidterm

break for week 8 ill the term, anotller professor took over and taught both classes for the

remainder of the term (i.e., for the last 7 weeks). Fourteen students consented to try the

Java Intelligent Tutorillg System (i.e., JITSC). Approximately every week, 'l2 to 1 hour

long sessions were conducted by the researcher to elicit specific information about their

experience with the Java Intelligent Tutoring System.

A similar study was conducted during the fall of September to December 2004.

During this period there were two instructors teachillg a first year Java programming

course. Instructor "A" had two classes; the JITSC group consisted of fourteen students,

and the C group consisted of 25 students. Instructor "B" had three classes; the TITSC

group consisted of fourteen students, the C1 group consisted of eighteen students, and the

C2 group consisted of23 students. Both instructors taught for the entire semester (i:e., 14

consecutive weeks). Every week, 'li to 1 hour long sessions were conducted by the

researcher to elicit specific information about their experience with the TITS.

During botll time periods (Summer and Fall 2004) the JITSC group were talked to

alld observed during tIle 'li to 1 hour long sessions. Additionally, many JITSC students

emailed the researcher with comments and suggestions for improvement. The manller in

which students were interviewed was primarily individually based; however, tllere were

some occasions when an issue was raised that were a shared concern among several

studellts. The total number of studellts involved in this entire research project (i.e., all



82

JITSC students) was 14*3 == 42. The kind ofnote taking procedures were observations

recorded ill a researcher's log book. Such observations included infoffilation regarding

individual student's progress through a specific programming problem in TITS. For

exanlple, the programming topic, the problem number, types of mistakes and errors, and

JITS' response to the student were all recorded ill the researcher's log book.

Professors were also selected to participate in tllis study. TIle selection of

professors was based on a number of factors including their knowledge of the Java

programming language, level of course offerings, and interest in offering critical

opinions on the Java Intelligent Tutoring System. A total of 4 professors were selected

for this study.

Statement of Procedures

Two global procedures were required:

PART A Design and develop the Java Intelligent Tutoring System; and

PART B Data gathering for the quantitative investigation.

PARTA: Design and Development Procedure for the JITS

Although the initial JITS was already designed and developed, the 'system had

never been tested by students. Once students and instructors started working with JITS,

there were many features to be included. The cyclic process involving designing,

developing, and testing, and back to redesigning was used for tIle ollgoing refinement of

JITS to ensure that it adequately met tIle needs of students and illstructors.

An interview-style survey sheet was constructed to aid in gathering input from

students in the JITCS groups alld professors. The survey included six open-ended

questions to facilitate a great number ofperspectives and opinions. One of the



83

measurement instruments for this component of the study was this survey, depicted in

Table 7. By presenting the survey to students and teachers who have used JITS,

feedback representative of these two perspectives was gathered. Additionally, the

researcher often visited the classroom to informally assess TITS. Between 12 hour and I

hour per week was spent with students and professors, who offered important

suggestions for improving TITS. This information was recorded in the researcher's

logbook. This form of data gathering proved to be the most effective way of receiving

feedback from students and instructors for the refinement and improvement of TITS.

PART B: Quantitative Investigation Procedures

A series of programming problems were developed for both the Java Intelligent

Tutoring System Class (JITSC) and the Control group. Students in the control group

were taught in a traditional format such as instructor-led instruction, group-work,

demonstration, etc. The TITSC group received this same instruction as well. This

investigation involved both intragroup and intergroup comparison of student achievement

by using pre- and posttest performance tests. Performance tests are small quizzes

containing two to four programming problems and space for the student to write their

solutions.



84

Table 7

Interview Sheet

Project Interview

I am conducting a survey of those participants who were taught using the Java Intelligent Tutoring System at
Sheridan. The information gathered from our interview will be used for my research. This involves determining
the effectiveness ofleaming in this environment. For each question, select the most appropriate response based
on the following scale:
1 = strongly favourable to the concept, 2 = somewhat favourable to the concept, 3 = undecided, 4 = somewhat
unfavourable to the concept, 5 = strongly unfavourable to the concept. The following questions will be asked
during the interview.

Not Useful
5

1. How do you rate the Java Intelligent Tutoring System's usefulness?
Very Useful

1 2 3 4
Comments: ~ _

2. Do you feel the Java Intelligent Tutoring System is beneficial to your studies? List and explain the
advantages/disadvantages of this learning environment.

No Benefits
5432

Very Beneficial
1

Comments:
-----------------------------

JITS is much
worse than
traditional
classroom

5432

3. Compare nTS with a traditional classroom. Do you feel JITS is better or worse than an ordinary classroom
teaching environment? Identify any similarities and differences between a traditional classroom experience and
the JITS learning experience.

JITS is much
better than
traditional
classroom

1
Comments: _

4. How do you rate the ease with which you use and understand the tutoring style of the JITS?
Very easy Very difficult
to use & understand to use & understand

1 2 3 4 5
Comments:-----------------------------

Not enjoyable
54

5. Have you enjoyed TITS? Explain why or why not.
Very Enjoyable
123

Comn1ents: _

Learn the same
5432

6. Do you feel you learn more detailed information or about the same as a regular classroom when using JITS?
Explain why or why not.

Learn Better
1

Comments:
-----------~--~--------------



85

The performance tests were administered at the beginning of the term and at midterm

(i.e., week 7 in the term). As a result, there were statistical analysis opportunities. Figure

18 presents a sample performance test.

These nonsubjective measurements quantify the performance level of students

prior to exposure to JITS and allow comparison to the level after exposure to JITS. In

addition, comparisons were made between the JITSC and the Control group. Regardless

of the measurement category, there were three possible outcomes: (a) there was no

difference in performance between the JITS group and the Control group; (b) students in

the JITS group performed higher than the Control group; and (c) students in the JITS

group performed lower than the Control group. This is summarized as follows:

I JITSC I = I C I (no difference), or

I JITSC I> I C I (Java ITS resulted in higher performance than C), or

IJITSC I< IC I (Java ITS resulted in lower performance than C).

The following section describes the details of the way in which this quantitative

investigation procedure was performed. Prepare a series of programming problems for

the Control group:

1. Select a series of topics that are routinely taught to students when learning the

Java programming language in one semester, for example, datatypes,

identifiers, scope, methods, looping constructs, and arrays;

2. develop a series of programming problems that are based on those selected

topics; and



For-loop quiz

Ql. Write a program that computes the sum of all the odd numbers from 1 to 5000. Use a for-loop in
your solution. Complete the following program in the space provided.

public class Odd {
public static void main(String[] args)
{

int eotal = 0;

System.out:.println("Total of all odd numbers is " + total);
}

l

86

Q2. The Fibonacci sequence is described by u(n+2) = u(n+1) + u(n); where u(O)=I, u(1)=1. In other
words is looks like: 1, 1, 2, 3, 5, 8, 13, ... etc. So, u(2) = u(1) + u(O) = 1+1=2, u(3) = u(2) + u(l)
= 2 + 1 = 3, etc.
Complete the following program using a for-loop that computes the Fibonacci number for u(20).
Use the space provided below.

public class Fibonacci {
public static void main(String[] args)
{

int total 0;
int start 0;
int end = 20;
int last fib number 1;

System.out:.println("The Fibonacci number for 20 is " + total);
}

}

Figure 18. Sample perfonnance test for quantitative investigation.



87

3. ensure that they meet the requiremellts of the unit or subunit of study by

encouraging several teachers with expertise in this area to review the series of

lessolls developed.

Prepare a series ofprogramming problems for the Java Intelligent Tlltoring

System:

1. Select the same topical area corresponding to the Control group's lessons;

2. develop a series ofproblems for the Java Intelligent Tutoring System; and

3. ensure that they meet the reqllirements of the unit or subllnit of study of the

Java programming language by encouraging several teachers with expertise in

this area to test the series of lessons developed in the JITS.

Collect data to determine the effectiveness of the learning experience by using JITS by:

1. conducting the pretest for baseline data on students in the JITSC and Control groups

prior to exposure to the experiment.

2. determining the mean and standard deviation for the TITSC and Control groups.

3. conducting ultoring sessions using the Java Intelligent Tlltoring System to the

experimental group.

4. conducting traditional-form lessons for the Control group.

5. conducting the posttest given to both JITSC and Control group. 2

6. conlputing standard statistical measures between pre- and postexposllre to TITS lesson

and traditional-form lesson for tIle two groups respectively (i.e., TITSC and Control

groups).

2 All tests for this study were knowledge-based and skill-set-based programming
problems corresponding to the material covered ill the classes.



88

7. Compllting additional statistical information such as two-way ANOVA with repeated

measures. The template of the organizational layout of the results is presented in the

form of tables as shown in Table 8.

8. A cyclic process involving designing, developing, testing, and back to redesigning

was used for the development and refinement of JITS to ensure student and instructor

satisfactiol1. For the quantitative component, the methodologies for data-gathering of

student performance were presented. This involved conducting pre- and posttests to

the Control and JITSC groups. The posttests were administered after the JITSC

group used the Java Intelligent Tlltoring System for a period of time.

Methodology and Procedures: A Summary

Tllis chapter described the methodology by which this study was conducted. It

contains the specifications of the procedllres used for which data were gathered for the

refinenlent of JITS al1d the qualitative aspects of this study.

A cyclic process involving designing, developing, and testing, and back to

redesignil1g was used for the development and refinement of JITS to ensure student and

instructor satisfaction. For the qual1titative component, the methodologies for data­

gathering of student performance were presented. Tllis involved conductil1g pre- and

posttests to the Control and nTSC groups. The posttests were administered after the

JITSC group used the Java Intelligent Tutoring System for a period of time. The last

component of the methodology was to compllte standard descriptive statistical measures

and to compute ANOVAs to determine degree of difference between JITSC and the

Control groups. In the first study a three-way analysis of variance (ANOVA) was

computed with Group (C, JITS), Semester-Point (first half, second half) and Test -Time



(pretest, posttest) as the independent variables, and test score as the dependent variable.

In this analysis, Semester-Point and Test-Time were treated as repeated measures." For

the second study a two-way ANOVA was computed with Group (C, JITS) and Test­

Time (pretest, posttest) as the independent variables, and test score as the dependent

variable.

89



Table 8

Performance ofStudents in JITSC and Control Prior Exposure to JITS and After

Exposure to JITS

90

JITSC
Student Pre-Test Post-Test

81

82

...
mean
standard
deviation

Control
Student Pre-Test Post-Test

C1

C2

...
mean
standard
deviation



91

It should be noted that this experiment grew in the real world-no preassigned

classes were formed specifically for this study. Rather, the formation of classes under

study resulted in the natural selection process of the course offerings in the institute. As a

result, the data have a high degree of natural validity. On the other hand, it is a

limitation, since the researcher did not have random assignment to groups. Thus, it is a

quasi-experimental study.



CHAPTER SIX: FINDINGS (ANALYSIS AND EVALDATION)

Due to the nature of this dissertation involving the extensive details relating to the

design and construction of TITS and the formal evaluation of the tutor, this chapter first

presents a summary of the TITS developmental research, which includes the final version

of JITS as of completion of this research project. The second summary presents the

results of the student performance assessment, which includes a discussion regarding the

effectiveness of the JITS.

The process employed in the design and refinement of TITS was a student-centred

approach which elicited students' comments for the improvement of JITS. Additionally,

instructors using TITS offered comments which helped shape JITS. The methodology

used was a cyclic process reflecting the students' comments: design, develop, test,

modify, design, develop, test, etc. The second objective set out in this research was to

determine the effectiveness of learning within this environment by comparing students

exposed to TITS with those taught Java in a traditional classroom environment.

Beyond the summary sections, this chapter provides many details about both

components of this research, namely, the design and refinement of JITS (including

qualitative analysis) and the quantitative analysis of students using the system as it was

being developed. The results are presented by way of a collection of three Program

Development Sessions, with qualitative and quantitative findings for each. Each Program

Development Session presents a number of sections entitled: "JITS Developmental

Research," "TITS Performance Score Analysis," and "Summary and Recommendations

for further TITS Development." Each section is further divided into parts typically

representing research work conducted between I and 3 weeks in duration. Each part is



93

identified by a start date and an end date representing the scope during which the research

was performed.

Summary of JITS Development Research

The following section describes the completed Java Intelligent Tutoring System in

terms ofthe user interface only. The final version of nTS includes many other features

beyond the user interface; however, for brevity of this summary, these details may be

found after the summary sections in this chapter.

JITS User Interface

The user interface for the Java Intelligent Tutoring System underwent a number of

significant changes throughout the duration of the research study. During some of the

experiments, major changes were conducted within very short timelines to ensure the

student's suggestions were taken seriously and that significant changes were done to the

user interface. Figure 19 depicts the completed JITS user interface. The first section (i.e.,

label 1) presents a personalized welcome to the student logged in. Label 2 presents a

note relative to the current state of solving the problem at hand. In this section, notes are

dynamically created by nTS that are personalized to each student. Label 3 presents the

problem template structure including the problem statement, the problem specifications,

and the required output. This section also draws reference to the problem number out of

the total number of problems available in this programming topic. At the end of Section

3, a link (i.e., label 4) is provided to a picture if the problem has a visual component (i.e.,

an equation or relevant drawing) to assist the student in more clearly understanding the

problem. If the student clicks the link, the picture is shown in a separate window to allow

the student to refer to the picture while at the same time work



94

Java~~elllg,=-nt Tut~rlng Syslen~-_MII:!o~ort Internet. EKplorel __ _ _ . ~ •.•Ii.... ' _

NOTE: You have atiempted this problem 4 times. You have not yat solved this problem. Your last aUempt ;spresentedjoryou in
the code area. Please try again.

Java Basics
Java Statements
If statement
for loops
do while loops
while loops
Arrays

Teke me !here

® ViewlheTutorial

Java Intellillent Tutllrine System

}
public static void rnain(String [] args) {

Power p = new Power();

®
double result

6 p.powergen(19);

Problem: (3 of 5) in Problem Set # 2 (Topic: Java StaJements)
Write a program called Power Generator which calculates the result of a number multiplied by itself

Program Specification.:
This program requires the use of a function. A skeleton structure of the solution is ~en. You need to declare the
variable: result View the image for this problem.rA\

Required Output: ~
Result = 10000

public class Power {
public int powergen(int nurn) {

return num 4 num;

o
Systern.out.println("Result - " + reSUlt);

}

Submit I View Top Hint View All Hints Vtg.ySo!lI1ion '~
_----' ----' . ---'_-'--__----', ~.~ 12PreYlOU6 Ptoblem Next Ptoblem My Perlormence . =.

OUTPUT: ® d
:·""'Iil..-----\ 8 f------'----'---"-----'-~--------IIIIII=.--:-Int-..net--,.----=4=.1

Figure 19. Completed version of the TITS User Interface.



95

with the main JITS user interface. Label 5 shows the template provided by JITS for each

problem in the system. Label 6 presents the editing region where the student types

his/her solution. Label 7 depicts the various buttons which the students use to interact

with JlTS. Buttons include "Submit" to submit a solution to a problem and to receive

feedback. The two buttons, "View Top Hint" and "View All Hints" provide the means

by which students can see the hints that JlTS provides. The "View Solution" button

provides potentially various solutions to the current problem based on the

Collective Student ModeL The "Previous Problem" and "Next Problem" buttons are

used for navigating within a problem set. The "My Performance" button yields detailed

information about the student's performance including problems solved, problems

attempted, the number of attempts for each problem, and comparison information to the

"average" JITS student. Links are provided in the "My Performance" output for rapid

access to any problem the student wishes to retry. Label 8 shows where the majority of

the responses from JITS are presented. Information such as hints, solutions, performance

scores, and errors are all shown in this area of JITS. Label 9 presents the choices of the

various programming topics that the student may choose. The "Take Me There" button is

used to bring the student to the selected programming topic. Labell 0 presents the "View

the Tutorial" button which launches the JITS Tutorial window. The tutorial window may

be viewed at the same time as the student is working with the main JITS user interface

(i.e., the tutorial may be referenced while working on a problem in JITS). Label 11 shows

the "Help Me" button which opens a separate window displaying the screenshot of JlTS

with labels to all of the components in JlTS.



96

The purpose of this window is to orient new users of JITS so that they feel supported and

can more quickly become productive in this ITS. The last label (i.e., 12) is the "Exit"

button. This button brings up a screen which thanks the student for trying out the system

and performs some system-wide cleanup procedures behind the scene.

Summary of Student Performance Score Analysis

This summary presents the main findings regarding student performance scores

involving students that were exposed to JITS (experimental groups) and those taught in a

traditional classroom environment (control groups). Two main testing periods are

presented in this section consisting of equal periods of time (i.e., one semester). The first

semester was from May 2004 to September 2004 which entailed the First Program

Development Session (7 weeks: May to July) and the Second Program Development

Session (7 weeks: July to August). The second term was from September 2004 to

December 2004 (14 weeks in total). This term entailed the Third Program Development

Session.

First and Second Program Development Sessions (May 2004 to September 2004)

A 2 x 2 x 2, three-way Analysis ofYariance (ANOYA) was computed with

Group (i.e., JITS, Control), Time (i.e., Early Semester [May to July], Late Semester [July

to August]), and Test (i.e., pretest, posttest) as the independent variables, with the last

two variables treated as repeated measures. The dependent variable was performance on

the competency tests. The main effect for Test, F(1, 35) = 119.43,p < .001, was qualified

by a Test by Group interaction, F(l, 35) = 4.98,p < .05, and a Test by Time interaction,

F(1, 35) = 43.82,p < .001. As may be seen in Figure 20, the Test by Time interaction is

due to a larger gap between pretest and posttest early in the semester as compared to the



JITS Performance Score Comparison during
the First and Second Program Development

Session (May to September, 2004)
Group

100 r--------------------l.JITS

GControl

97

80 ---------

60

40

20

o
Pretest1 Posttest1

Early Semester

Pretest2 Posttest2

Late Semester

Figure 20. Showing (a) the two-way Semester by Test interaction due to the smaller gap

between pretest and posttest later in the semester, and (b) the two-way Group by test

interaction due to the superior performance of the JITS group at posttest.



98

difference late in the semester. Tllis would seem to indicate, al1d logically so, a more

dramatic learning curve early in the semester. More interesting, and more to the point of

this study, was the Test by Group interaction, which showed the superior performance by

the TITS group. Since there was no three-way interaction we can infer tllat the JITS group

was performing better than the comparison group at posttest for both points of time (i.e.,

early semester, and late semester). (Means and standard deviatiol1s are reported later in

this chapter, in Table 15).

Third Program Development Session (September 2004 to December 2004)

A 2 x 2, two-way ANOVA was computed with Group (i.e., JITS, Control) and

Test (pretest, posttest) as the independent variables, witll the secol1d variable treated as a

repeated nleasure. The dependent variable was performance on the competency tests. The

nlain effect for Test, F(1, 92) == 61.12, p < .001, was qualified by a Test by Group

interaction, F(I, 92) == 5.36,p < .025. As may be seen in Figure 21, the Test by Group

interaction is due to the superior performance of the JITS group at posttest. (Means and

standard deviations are reported in Table 20 wllich is found later in this cllapter).

The remainder of this chapter presents various details associated with the two

componel1ts of this dissertation, namely, the refinement of JITS (including the

qualitative analysis) and the quantitative analysis of students using the system as it was

being refined. The findings are presented as a collection ofProgram Development

Sessions, with qualitative and quantitative findil1gs for each.



JITS Performance Score Comparison during
the Third Program Development Session .------,

Group
(September to December, 2004)

99

100 .-------------------j JITS

UControl

Q)
OJ
$
c

~
Q)
Il..

90 --------------------------------------------------

80 --------------------------------- ----------------

U

70 ------------U---

60 '--------------------------'
Pretest1 Posttest1

Figure 21. Showing the two-way Group by Test interaction for responses indicating

superior performance for the JITS group at post-test.



100

Within each Program Development Session there are a three numbered sections

entitled: "JITS Developmental Research," "JITS Performance Score Analysis," and

"Summary and Recommendations for further JITS Development." Each section is

further divided into parts which represent work conducted between land 3 weeks in

length.

The process employed in the design and refinement of JITS was a student­

centred approach which elicited students' comments for the improvement of JITS.

Additionally, instructors using JITS offered comments which helped shape JITS. The

methodology used was a cyclic process reflecting the students' comments: design,

develop, test, modify, design, develop, test, etc.

The second objective set out in this dissertation was to determine the

effectiveness of learning within this environment by comparing students taught Java in

a traditional classroom environment with those exposed to JITS. The results from this

quantitative component of the study are presented below. Each of the three Program

Development Sessions contains three sections entitled: "JITS Developmental

Research," "JITS Performance Score Analysis," and "Summary and Recommendations

for further JITS Development." Each section consists of one or more parts representing

work conducted over several weeks.

First Program Development Session: Section #1: JITS Developmental Research

This session presents the findings from the first "live" test of JITS with students.

It includes student and teacher comments and the researcher's observations as students

tried JITS. A significant amount of redesign and program refinement took place during

this session which spanned from May through June, 2004.



101

Session #1, Section #1, Part #1: May 3 to May 17,2004

This study was the first field test of JITS for students and instructors. During

this study, a number of issues were raised. A number of students found that the hints

generated by nTS were confusing. The researcher addressed this issue by introducing a

number of new features to nTS.

The first feature added was a pointer (i.e., the caret character: "1\"). This

"pointer" was introduced to indicate the exact location of where an error has occurred in

the student's submission. For example, suppose the student submitted the following

snippet as part of a solution:

for (int i=Oj i<10 i++)

After the student clicks "Submit" button to send the code to nTS for analysis, nTS

replies to the student with the following response:

Suggestion:

Look near line: 4 column: 37. Look between the "10" and the "i"
Change:

for (int i=Oj i<10 i++)
A

to:
for (int i=Oj i<10j i++)

The use of this pointer makes it easier for students to see exactly where the error is

occurring. The researcher also added a "Suggestion" section to the reply that describes

the exact location of where the error is taking place, the symbols used, and the corrected

code.

Another issue raised during this part of the research was associated with the hints

JITS generates. One teacher suggested more information should be provided in the hints

that nTS offers. The researcher addressed this suggestion by creating and designing the



102

infrastructure for two buttons: "View Top Hint" and "View All Hints." These two

buttons provide different detail of information regarding the student's submission.

Depellding on the student's conlfort level, s/he may select one over the other. The "View

All Hints" is significant in the context ofprofessional programmer's Integrated

Development Environments (IDE) in which SUCll features are common. This is because

in a professional environment, the compiler purposely flushes out all errors in the

programmer's code. It is not unreasonable for dozens of errors to be listed during

compilation while a programmer is working on developing a solution to a problem.

However, working with dozens of errors would be overwhelming for a beginner

programmer. As discussed in Chapter 3 and 4, the philosophy behind JECA supports

beginner programmers by focusing students on one specific error in the solution being

developed. The "View Top Hint" is a human-computer interaction design feature aimed

to support the student. Behind the scenes, JECA is performing the support for the "View

Top Hint."

The "View All Hints" is designed to act as an intermediary step to a more

advanced level of competence as would be instilled in professional programmers. Figure

22 and Figure 23 depict examples of the functionality of these two buttons.

Another interesting issue was raised during this part of the research. One

student discovered that they could simply type in the text stated in the "Required

Output" section into the code section, submit it, and JITS would happily say,

"Congratulations-you have solved the problem." It was not long before all of the

students learned tllis trick to outsmart JITS!



Java InteUipnt Tutorina System
W.rkoZM

tl'a_s<mt4jilltfent22!

103

NOTE: You have tried this problem only once. You have notyet solved this problem. Your last aUempt is presentedjoryou in the
cod. area. Please try again.

Problem: (1 of 4) in Problem Set # 4
Write a program called Sununer which adds all the integer numbers from 1 to a specified number (N). For example. ifN were assigned the value
10, then the sum of the numbers from 1 to 10 is 55.
Program Specifications:
TIlls program requires the use of a for-loop structure. A skeleton structure ofthe solution is given. FiJI in the code to complete this program.
Required Output:
Sum = 55

public class Summer {
public static void main(String [] args) {

int sum = 0;

For I Inc 1=0, 1<10 1++)

sum = smu + i;1

System.out

I· Subm~ I ViewTop Hint

OUTPUT:

View AU Hints My Performance New Problem .I~

Suggestion: Replace 'For" with 'for'

Figure 22. "View Top Hint" results. TITS selects the most significant hint to offer the

student.



104

Java Intelligent Tutoring System

NOTE: You have attempted this problem 2 times. You have not yet solved this problem. Your last attempt is presentedfor you in the
code area. Please try again.

Problem: (1 of4) in Problem. Set # 4
Write a program calleclSwnmer which adds all the integer numbers from 1 to a specified number (N). For example.ifN were assigned the
value 10. then the sum ofthe numbers from 1 to.l0 is 55.
Program Specifications:
This program requires the use ofa for-loop structure. A skeleton structure ofthe solution is given. Fill in the code to complete this program.
Required Output:
Sum = 55

public class Summer {
public static void main(String l] args) {

int sum = 0;

For (Int 1=0; 1<10 i++)
:::l'Un'l=: smu + i;

"y,sel.m ,. O,le .prIneln ("Sum " + sum);

Submit I"-__....;. H ---'.:... .H.__....:...__----Il...-----....I,'------"

OUTPUT:

1. Keyword replacement hint
Suggestion: Replace "For" with "for"

2. Keyword replacement hint:
Suggestion: Replace llInthwith '"int"

3. Grammatical hint:
Look near line: 4 column: 36, Look between the "10" and the "i"
Suggestion:
Change:

for (int i=O; i<10 i++)

to:
for (int i=O; i<10; i++)

.....::.1

Figure 23. "View All Hints" results. nTS displays all of the hints relating to all of the

problems nTS has encountered with the student's submission.



105

The problem with this is that a student could simply type in the final answer to a

programming problem without using the required structures as specified in the outline of

the problem description and specification. In order to address this problem, the

researcher designed and implemented a solution that prohibits this from being admissible

as a suitable solution. JITS recognizes that the student has entered the correct solution

but has not solved the problem using the constructs as requested. A separate Artificial

Intelligence (AI) module was introduced to solve this problem. Please see Figure 24 for a

pictorial explanation of how JITS responds to such requests.

Session #1, Section #1, Part #2: May 17 to May 31, 2004

One teacher stated that he wanted a tracking system that would show various

statistics abollt student performance and student activity. The teacher suggested that the

information could be used for assessment purposes and later for instructional purposes.

As a result, the researcher developed a solution entailing a redesign of the JITS ORACLE

database schema in order to address the teacher's request. A report generation script was

writtel1 in Struchlred Query Language (SQL) tllat tracks the students' activities in JITS

and records them into the ORACLE database. The student tracking information cllrrently

includes the nllmber of questions attempted, the number of times an attempt was made to

answer a specific question, the current state of all student submissions for all of the

questions, and many other facts about the current student and all other students using,

JITS. Table 9 and Table 10 depict some of the student tracking information.



106

-Jj Java Intelligent TutorIng System - Microsoft Internet EMplorer "_ ' !,"lJ'~

Java InteJli&ent Tutorin& System

NOTE: You have attempted this problem 3 times. You have not yet solved this problem. Your last attempt is presentedforyou in the
code area. Please try again.

Problem: (1 of4) in Problem Set # 4
Write a program called Summer which adds all the integer numbers from 1 to a specified number (N). For example, uN were assigned the value
10, then the sum ofthe numbers from 1 to 10 is 55.
Program Specifications:
This program requires the use of a for-loop structure. A skeleton structure ofthe solution is given. Fill in the code to complete this program.
Required Output:
Sum = 55

public class Summer {
public static void main(String [] args) {

int sum = 0;

+ sum);= "

••••••••••••••••••••~.A •••••• ~ ••••~_~ •• ~

System. out. println ( "Sum

[

Good Try.
You have the correct output.
However, your solution does not use the constructs required.
Please re-read the Problem Specification.

Submtt I View Top Hint

OUTPUT:
Sum = 55

View All Hints View Solution My Perlormence NewProblem I~

Figure 24. JITS analysis and response to a submission that is identical to the required

output. JITS responds in the same manner as a human tutor would.



,...
o

Table 9

Sample Database Student Tracking Information Indicating Number ofAttempts, Solved (truelfalse), and Student's Solutions

STUDENT NAME

dav sem3 student10
dav sem3 student16

dav sem3 student16
dav sem3 student20
dav sem3 student3

dav sem3 student3

dav sem3 student3

dav sem3 studentS
dav sem3 student6

dav sem3 student6

dav sem3 student6

dav sem3 student7

dav sem3 student7

e

PROBLEM SET ID PROBLEM ID
-------------- ----------

4 1
4 1

4 2
4 1
4 1

4 2

4 3

4 1
4 1

4 2

4 3

4 1

4 2

4 1

NUMBER OF ATTEMPTS SOLVED

6 F
8 T

o F
2 F
3 T

1 T

16 F

o F
1 T

1 T

10 F

1 T

1 T

4 T

STUDENTS SOLUTION

for (int i = l;i <= 10;i++)
sum sum + i:

fdsf
for (int i = 0; i <= 10; i++)

sum = sum + i;

for (int i = 4; i > 1; i--)
fact = fact * i;

for (int i = 1; i 500; i
total = total + i;

for (int i=l; i<=10; i++)
sum += i;

for (int i=l; i<=4; i++)
fact *=i;

for (int i=O; i<=SOO; i=i+l)
total +=i-1;

for (int i=l; i<=10; i++)
sum +=i;

for(int i=l; i<=4; i++)
fact *=i;

for ( int i=O; i<=10; i++ )
sum = sum +i;

i + 2)

(table continues)



10
o

STUDENT NAME PROBLEM SET ID PROBLEM ID NUMBER OF ATTEMPTS SOLVED STUDENTS SOLUTION

e

e

e

daY sem3 student7

daY sem3 student7

daY sem3 student8

daY sem3 student8

daY sem3 student9

daY sem3 student9

4

4

4

4

4

4

4

4

4

2

3

4

3

4

1

2

1

2

5 T

12 F

6 F

16 F

12 F

1 T

14 T

6 F

5 T

for (int i=l; i<5; i++)
fact = fact * i;

for (int i=O; i<lO; i++)
total = total + 0

for (int i=O; i<=l; i++)
total = total + start + end +
last_fib_number;

for (int i=l; i<=500; i +=2)
total +=i;

for (int i = 1; i<=82; i++)
total +=i + (i-l)+;

for (int i = 1; i <= 10; i++)
sum = sum + i;

for (int i= 1; i <= 4; i++)
fact = fact * i;

for (int i = 1, i < 11, i++)
{

sum = sum + i;

for (int i = 4; i > 0; i--)

fact fact * i;

daY sem3 student9 4 3 4 F for (int i = 1; i < 500; i
{

total = total + i;
}

i + 2)



Table 10

Sample Database Student Tracking Information Indicating Current Problem Set, Problem_id, Performance Rating, Skill level,

Number ofTimes Connected to JITS, and the Date ofLast Connection

STUDENT NAME PROBLEM SET- ID PROBLEM ID SKILL LEVEL PERFORMANCE RATING PERFORMANCE TIMES CONNECTED DATE LAST CONNECTION- -
-------------------- -------------- ---------- ----------- ------------------ ------------ --------------- --------------------
e 4 1 1 81 null 12 Fri Jun 04 15:56:56
EDT 2004
dav sem3- student1 4 1 1 1 0
dav sem3- student10 4 1 1 1 null 2 Wed Jun 02 12:54:26-
EDT 2004
dav sem3 student11 4 1 1 1 0
dav-sem3

-
student12 4 1 1 1 0-

dav sem3- studentl3 4 1 1 1 0-
dav sem3- student14 4 1 1 1 0
dav sem3- student15 4 1 1 1 0
dav sem3- student16 4 1 1 1 null 1 Wed Jun 02 13:03:10
EDT 2004
dav sem3 student17 4 1 1 1 0-
dav sem3- studentl8 4 1 1 1 0-
dav sem3 student19 4 1 1 1 0- -
dav- sem3- student2 4 1 1 1 0
dav sem3- student20 4 1 1 1 null 2 Fri Jun 04 15:54:40
EDT 2004
dav sem3- student21 4 1 1 1 0
dav sem3- student22 4 1 1 1 0
dav sem3- student23 4 1 1 1 0-
dav sem3- student24 4 1 1 1 0
dav sem3- student25 4 1 1 1 0
dav sem3 student26 4 1 1 1 0-
dav sem3- student27 4 1 1 1 0
dav sem3- student28 4 1 1 1 0
dav sem3- student29 4 1 1 1 0
dav sem3- student3 4 1 1 83 null 1 Wed Jun 02 12:56:44
EDT 2004
dav sem3 student30 4 1 1 1 0-
dav- sem3- student31 4 1 1 1 0
dav- sem3- student32 4 1 1 1 0
dav sem3- student33 4 1 1 1 0-

(table continues)



o

STUDENT- NAME PROBLEM SET- ID PROBLEM ID SKILL LEVEL PERFORMANCE- RATING PERFORMANCE TIMES- CONNECTED DATE- LAST- CONNECTION
-------------------- -------------- ---------- ----------- ------------------ ------------ --------------- --------------------

dav sem3 student34 4 1 1 1 0-
dav sem3 student35 4 1 1 1 0

sem3
-

student36 1 0dav 4 1 1-
dav sem3 student37 4 1 1 1 0-
dav sem3 student38 4 1 1 1 0-

1 0dav sem3 student39 4 1 1-
1 0dav sem3 student4 4 1 1- -
1 0dav sem3 student40 4 1 1-
1 null 1 Wed 02 12:53:27dav sem3 student5 4 1 1 Jun

EDT 2004
dav sem3 student6 4 1 1 81 null 2 Wed Jun 02 12:52:45-

2004EDT
dav sem3 student7 4 1 1 81 null 3 Wed Jun 02 12:52:31

- -
EDT 2004
dav sem3 student8 4 1 1 81 null 2 Wed Jun 02 13:02:53-
EDT 2004
dav sem3 student9 4 1 1 81 null 1 Wed Jun 02 12:51:58
EDT 2004



111

Some of the teachers involved in the TITS research project wanted a web-based

means to create problems for TITS to use for students. An authoring system is a tool that

allows authorized people (i.e., a teacher) to be able to create, modify, and delete problems

that are used in an Intelligent Tutoring System. The authoring tool the researcher is

currently developing will enable teachers to work with problems easily and quickly

within TITS. Teachers want these problems to be immediately available for TITS to use

for students. Most of the teachers stated that they wanted access to TITS from anywhere

and everywhere. Some teachers stated that they wanted to enter only the minimum

amount of information required for TITS to do its job. In other words, they did not want

to spend too much time in the development and typing of new problems in JITS.

The design and development of the JITS Authoring Tool was initiated during this

period of time in the project. Approximately 150 hours ofprogramming has already been

done on the authoring tool, and work is still in progress. The goal of this tool is to

provide the teacher a convenient means to add problems to the database for TITS to use.

This will enable teachers to easily manipulate illS programming problems because the

teacher needs to provide only the following information:

1. the problem statement;

2. the problem description;

3. the required output; and

4. the skeleton structure of the program.

As a result, the TITS Authoring Tool is intended to be extremely user friendly in

order to add many problems of various levels of difficulty. Once the teacher has



112

submitted the problems, they are immediately available to llTS and thus to students of

the system. The llTS Authoring Tool User Interface is shown in Figure 25.

The llTS Authoring Tool provides a means for the instructor to view all the

problems in the lesson set and edit selected problems. In the Java Intelligent Tutoring

System, the author of problems does not provide a solution. llTS carefully scrutinizes

the student's submission based on the problem description, specification, required output,

and template code and determines the appropriate feedback for the student. This ensures

the greatest degree of independent knowledge creation for each student.

Session #1, Section #1, Part #3: Week ofMay 31, 2004

In this part of the llTS Developmental Research section of the First Program

Development Session, a number of students stated that they wanted to be able to see the

solution after a certain number of attempts at a problem or if they got frustrated.

Essentially, they said, "It would be nice for solution button to be available." As a result,

the researcher designed and developed a "View Solution" button with supporting

infrastructure. In the Java Intelligent Tutoring System, teachers are not required to

submit solutions during problem authoring. This is based on the premise that given

virtually all programming problems, there are potentially limitless solutions. Supplying

only one solution for a given programming problem is not an acceptable approach. As a

result, a Collective_Student_Model representing the sum knowledge of all students was

designed and developed. This Collective_Student_Model analyzes all the students'

submissions and extracts those that are solutions to the particular problem the student is

currently working on.



113

Creete New Problem

WeJcamtl Sylce6 !

Edil this ProblemNext Problem

[] args) {

:a
.....•...... ..:./

Previous Problem

p,ub~ic class Fact {
public static void main(Str1ng

int fact == 1;

Write- a program called Fa-c't wh1chcalculates.the ":factor1al.1:ota specified ,...
ntmlber (N). For .example, if N were assigned the value 4, then 4! ==,24.

This program requires the use of a for-loop structure. A skeleton
the solution is given. Fill in the code to complete this program.

. :=.J

Problem Description:

Problem #:2 of 4

Program Specifications:

Top Section ofCode Template:

Required Output:

Ir Subm~

.... - __J~a~v~a__In~t~e~Ili..:·g::.ent Tutoring System Authoring Tool

Figure 25. TITS Authoring Tool User Interface.



114

The AI Module uses the information in Collective Student Model to determine- -

appropriate feedback. The revised TITS user interface is shown in Figure 26, with a

small example illustrating this additional functionality due to student suggestions.

Session #1, Section #1, Part #4: June 7 to June 17,2004

One student suggested a list of different programming topics should be listed on

the side of TITS User Interface page. The student suggested that it would make TITS

more useful for students with varying levels of Java expertise and/or interest and add a

significant degree ofprofessional "look" to TITS. The student suggested that "students

want to have a choice over their own learning-that is, students want to be able to select

the area of study they are interested in (e.g., Java arrays, loops, etc.)." Addressing this

problem required a great deal of work. In order to fulfill the request, a complete redesign

of the following TITS components was necessary: the ORACLE database schema, the

User Interface, and a number of JITS' internal infrastructure components. In total, the

researcher spent several hundred hours on these tasks. The redesigned TITS now contains

the following programming topics:

1. Java Basics;

2. Java Statements;

3. The "if' statement;

4. The "for" loop;

5. The "do-while" loop;

6. The "while" loop; and

7. Arrays in Java.



115

~ Java Intelligent Tutoring System - M-.!crosot~ Internet Explorer . ~ -: .., _• - -

Java Intelligent Tutoring SysU!m W""""'"
w ....semJ_stutlsllt20!

NOTE: You have tried this problem onl)l once. You have not yet solved thisproblem. Your last attempt is presentedforyou in the cod.
ar~a. Please try again.

Problem: 0- of4) in Problem Set # 4
Write a program called Summer which adds all the integer numbers from 1 to a specified number (N). For example. ifN were assigned the value
10, then the sum ofthe numbers from 1 to 10 is 55.
Program Specification>:
This program requires theuse of a for-loop structure. A skeleton structure ofthe solution is given. Fill in the code to complete thi,program.
Required Output:
Sum = 55

public class Summer {
publi.c static void main (String [] args) {

int swn-- = 0;

System .out .println ('IISum " + sum);

I Submit 1'-__-'---.,._....1.--.,. • ;,..._Vi_'_Wl_S_O_lu_tiO_"_H...._..:..._--.,. , "- ...JI~

OUTPUT:

Below are possible solutions to this problem.

Solution 1:
for lint i=O; i<=10; i++ )

sum = sum +i;

Solution 2;
for (int i=l; i<=10;i++)
sum +=i;

Solution 3:
for lint i=l; i<=10; i++)
sum +,;" i;

Solution 4:
for (int

sum
i = 1; i <= .10; i++)
sum + i;

.:.J
:.It1'D:.I;::Don:=-.---------------""----------:;r.-Irl"'.,..,lnt-:-.......----=~I

Figure 26. "View Solution" presenting solutions for the current problem.



116

Each Problem Set was at least 2 problems. The redesigned JITS User Interface is

presented in Figure 27. With the addition ofprogramming topics, new fields were

needed in the tables for the JITS ORACLE schema to track student performance more

accurately. Two new tables were added to provide separate learning topics. Table 11

and Table 12 depict the schema structure of the tables that are currently used by JITS.

An extensive degree of redesigning and redeveloping was necessary to create a list of

"Programming Topics" within JITS. Additional objects were redesigned and rebuilt

including: the StudenCModel, the Problem, the JITS User Interface. Figure 28 depicts

JITS' abstract internal object representation. Further modifications were necessary on

the User Interface due to technical problems. As a result, the screen shot depicted in

Figure 29 shows the revised User Interface developed during this time. Notice the

difference in the "Programming Topics" list.

Session #1, Section #1, Part #5: Week ofJune 17,2004

During this part of the JITS Developmental Research for the First Program

Development Session, a number of interesting issues were raised. One student suggested

that she would like to be able to navigate both forwards and backwards through the

problem sets. The current JITS system allowed only forward movement through the

problems to encourage incremental skill development by presenting increasingly more

difficult problems to the student. However, the researcher decided that allowing the

student full control over the movement through the problem sets has merits. The

researcher designed the infrastructure for the "Previous Problem" and tested it out.

Figure 30 depicts the newly designed JITS User Interface including the "Previous

Problem" and "Next Problem" buttons.



Java Intellieeltt Tntorin& System

NOTE: You have alumpledlhis problem 4 times. You have succes'ifully solved Ihisproblem l

Problem: (1 of 4) in Problem Set #4 0
Write a program called Summer which adds all the integer numbers from I to a specified number (N). For example. iN were
assigned the value 10. then the sum of the numbers from 1 to 10 is 55.

Program Specifications:
Ths program requires the use ofa for-loop structure. A skeleton structure ofth,; solution is givenc Fill in the code to complete this
program.

Required Output:
Sum = 55

public class Summer {
public static void main(Strins [] arss) {

int sum = 0;

!
fO< ( ,nt ,-0; 1<-10; H+ )

~urn :: swn +1.;

117

W"lcoms,,1

Prn~Topi.s

~a"a Basics
Java StabJ_nts
jfstaummtL

~
do whikJ 100M
whik lOO7!$ i

~

System.out.println(IISum " + sum);

OUTPUT:

Figure 27. Redesigned TITS User Interface incorporating Programming Topic selection

panel.



Table 11

Redesigned JITS ORACLE Schema Tables

118

CREATE TABLE PROBLEM SETS
problem_set_id
problem_set_title
problem_set_desc

) ;

(

NUMBER (3) ,
VARCHAR2 (30) ,
VARCHAR2(400),

CREATE TABLE PROBLEMS
problem_set id
problem_id
problem_desc
problem_spec
problem_output
template_top_section
template_bottom_section
problem_difficulty
problem_keywords

) ;

CREATE TABLE STUDENTS (
student name
student_password
problem_set_id
problem_id
skill level
performance_rating
performance_history
times connected
date last connection
picture

) ;

CREATE TABLE STUDENT PROBLEMS
student name
problem_set id
problem_id
number of_attempts
solved
students solution
solution date

) ;

NUMBER (3),
NUMBER (3) ,
VARCHAR2(400) NOT NULL,
VARCHAR2(400) NOT NULL,
VARCHAR2 (50),
VARCHAR2 (400),
VARCHAR2(400),
VARCHAR2(20),
VARCHAR2 (200),

VARCHAR2 (30),
VARCHAR2 (15),
NUMBER (3),
NUMBER (3) ,
NUMBER (3) ,
NUMBER (3) ,

VARCHAR2 (2000),
NUMBER (5),
VARCHAR2 (30),
LONG RAW,

VARCHAR2 (30),
NUMBER (3) ,
NUMBER (3) ,
NUMBER (3) ,
CHAR (1),

VARCHAR2 (500),
VARCHAR2 (30) ,



119

Table 12

Redesigned JITS ORACLE Schema Showing the Newly Created Programming Topics and

Corresponding Descriptions

PROB ID PROBLEM SET TITLE PROBLEM SET DESC

1

2

3
4
5
6
7

Java Basics

Java Statements

If statement
for loops
do while loops
while loops
Arrays

variables, variable names, numeric variable types,
String type, variable declarations
simple and complex expressions, compound
statements, operators, precedence
simple and complex if statement problems
problems requiring the use of for loops
problems requiring the use of the do while loop
problems requiring the use of while loops
single dimension array problems



120

AI Module
Edit_Distance

uuu

statistics for each ke ord for this student)

Collection of Hint Ob'ects

On login JITS loads the student and
studenCmodel objects and selects the appropriate
problem for the student

Collection of Extended Ke ord Ob'ects additional student statistics

Extended Keyword

- examines _source
- creates _mooified_source,

and Hint objects

JECA

_typcial_errors

_keywords

e<U:.eywads

_sludenLname ~I;;;;;;~==J
skill level DO

_problems_attemptadFI=;;:pr50b~'em=,,"""".3'.4'.'7-..---,
_problems_solved I Problems: 1,4,7,.

_oexLproblem I Problem_ld I
_performance_rating 00
_performance_history c==J

_times_connected c==J
_date_last_connection c=:::===J

Figure 28. TITS abstract internal object representation showing relationships and

dependencies between JECA, AI_Module, student, and other components.



121

Java Intollieent TutoJinl: Sy.ten,

NOTE: You have attempted this problem 5 timos. You have succosifr;llysolved this problem!

Problem: (1 of2) in Problem Set # 1 (Topic: Java Basics)
Write a program called Grosspay which calculates the gross pay using variables. The variables are provided for you in the template.

PrDgram Specifications:
This program requires you to calculate the gross pay using the hours worked and the hourly rate ofpay. A skeleton structure ofthe
solution is given. Fill in the code to complete this program.

Required Output:
Gross Pay ~ 460.35

public class Grosspay {
public static void main(String [] args) {

double gross_pay' 0;
int hours_worked-33;
double hourly_pay-13.9S;

System.out.println(1I0ross Pay· " + gross_pay);

Progranunine Topics

Java Basics
Jave. Statements
Jfste.tement
for loops
do while loops
while loops
Arrays

Takemelhere

OUTPUT:

Vi"" All Hints View Solutioo My Pertormonce NewProblem I~

Jr .-
Figure 29. Redesigned JITS User Interface depicting the list of Programming topics in a

drop-down combo list.



Jan Intellip.t TDtoriJIg em

NOTE: PleastJ TYiad over the problem carefully and submit your answer.

Problem: (3 of 4) in Problem Set # 4 (Topic: for loops)
Write a program called Odd which calculates the sum of the odd numbers from 0 to 500.

Program Specifications:
This: program requires the use of afor-loop construct and an ifconstruct. A skeleton structure of the solution is given. Fill in the code to
complete this program.

Required Output:
Total = 62500

public class Odd {
public static void main(String [} ,args) {

int total-O;

....~

Systern.out.println("Total :: " + total);

)

Subm.. I"-_---'__ll. H.... -'-'

OUTPUT:

Jove. Basics
Jeve. Sta1ements
tfstalement
for loops
do while !'oops
white loops
Arr8yS

Takemetheftl I

View the T\ItOrial I

122

x

Figure 30. Resigned TITS User Interface depicting the "Previous Problem" and "Next

Problem" buttons.



123

An additional interesting issue was the fact that JITS did not retain information

about the exact state a student was in between login sessions. In other words, if a student

logged into JITS, attempted to solve a problem and then logoff, TITS would not retain the

partial solution. As a result, students had to retype the code that was lost and get back

into the same mental state again to attempt to solve the problem that they were last

working on. If a student changed from the "For loop" topic to the "While loop" topic,

attempted to solve problem 3 of the "While loop" topic, and then logoff, JITS should

bring the student back to the exact location where s/he left off.

The researcher designed and developed a solution to this problem. TITS now

maintains the exact student state between logins and between all transitions a student may

make in TITS. The researcher felt it was important to ensure that the student continues

developing skills and knowledge from the point where the student was last working to

minimize the loss of cognitive gap between TITS sessions and to reduce the amount of

frustration a student may experience when learning to program.

Another issue raised during this study was associated with the "View" buttons

(i.e., "View Top Hint," "View All Hints," and "View Solution"). There were some

problems with the user interface design. For instance, at certain times these buttons

should be disabled, for example, at the beginning of a new problem. When the student is

in a different state, TITS should enable some or all of these buttons. As a result, the

researcher investigated the various states that JITS offered and redesigned and developed

more suitable human-computer interface properties for these buttons.

The last issue raised during this part of the research showed how finicky TITS

could be in some situations. The researcher became aware of a problem in TITS



124

from a student who demonstrated the problem to the researcher. JITS encountered a

rounding error and did not correctly identify a student's correct response unless the

program output was accurate to an extreme level of decimal precision. For example, if a

student's submission produced an answer such as, "Gross Pay = 460.349999999" and the

required output, as described in the problem statement section stated: "Gross Pay =

460.35," then TITS would not accept it as a correct answer. The researcher identified that

TITS was being too particular in the degree of accuracy in the required output of a

student's solution. The researcher designed and constructed a solution to the problem

that involved a number of renovations to the internal design ofTITS. The researcher

worked on the AI_Module object and defined a "suitably_close" function which checks

these sorts of situations and returns "true" indicating that it is close enough to be

considered a correct solution to the problem.

Session #1, Section #1, Part #6: June 21 to June 29, 2004

During this study, students mentioned they would be interested in a small tutorial

section to be incorporated into TITS. This tutorial section would explain each of the

different programming topics designed and developed earlier in JITS. The purpose of the

TITS tutorial would be to remind students about basic problem-solving strategies, basic

syntax associated with specific Java constructs (e.g., if statements, for-loops, etc.). This

issue required approximately 100 hours of work by the researcher. The researcher

needed to do a significant amount of research on browser pop-ups and JavaScript.

However, after much labour, the embedded tutorial was completed. Figure 31 shows the

activation of the TITS Tutoring pop-up window from within the TITS User Interface.

Figure 32 depicts contents of the tutorial window for the "for" programming statement.



125

.:J

,... I JeJll-.lJ..: ..tI_l leAM."U~ J__C"
_t.t_t

_~~ ( UI~ I"U 1'-101 '''1 I
S,On•._.Jlu... t.(.....it '" -t-tli

tt.laJlJ.aI.&UIJ....~apmA-..__' .. 1o<Ptt '.~4Slt, .... '"....of_koop.~', ......J._
~t.I~.~'*"'ll)lIlmCI:flbt~lbls~ac'-..dIll~""'.,t~iItIW'Ool6it1top.ln.o~n:pff'*'"

....,~U\,p_..loop~~. ~~,._",U...~I_..ItUMokM.na.ia'_.....~ Alflfu.
~.-tcpoM._FOf~~~..~Pe4~~ltw:,......ml.1r)....blKp

Figure 31. JITS Tutorial window and main JITS User Interface. The tutorial window is

launched from the main JITS User Interface by clicking the "View Tutorial" burton as

indicated by the arrow.



Progranuning Topics Select the tutorial topic you would would like to view.

JavaBasics
Java Statements
If statement
for loops
do while loops
while loops
Arrays

126

View the Tutorial

The for Statement

Close the Tutorial.
..

The for statement provides a compact way to iterate over a range ofvalues. The general
form of the Iorstatement can be expressed like this:

for (initialization; termination; increment) {
statement

The ini ti aliz a ti on is an expression that initializes the loop. It is executed once at the
beginning ofthe loop. The termination expression determines whento terminate the
loop. This expression is evaluated at the top of each iteration of the loop. When the
expression evaluates to false, the loop terminates. Finally, incrementis an expression that

II. Internet

Figure 32. JITS Tutorial window displaying a sample tutorial from the list of

Programming Topics.



127

First Program Development Session: Section #2: JITS Performance Score Analysis

The following presents the First Program Development Session results of the

Performance Scores for students in the nTSC group and Control groups. The dates for

this section of the research started at the beginning of the term in May and ended 7

weeks later in July. Table 13 and Table 14 display the performance scores of students

in classes C and nTSC. Table 15 presents a summary of the descriptive statistical

findings on the performance scores in Table 13 and Table 14. In order to determine the

relationship between the performance scores in C and nTSC for the first 7 weeks of this

course, a two-way ANOVA with repeated measures was conducted. Table 16 show

these results.

A two-way ANOVA with repeated measures was conducted, producing the

following results, F(1,35) = 541.645,p = .459, indicating there was no significant

difference between the two groups (i.e., C and nTSC). Table 16 shows the results from

theANOVA.

First Program Development Session: Section #3: Summary and Recommendations

for Further JITS Development

This section presents a summary and recommendations for the refinement of nTS

for the first program development session. The summary presents the results of the

performance score analysis, and student and professor perspectives. The

recommendations section discusses areas for improvement in the Java Intelligent

Tutoring System.



Table 13

Performance ofStudents in Class JITSC

JITSC Class

JITSC Class

Student Pretest (%) Posttest (0/0)
8 1 35.00 100.00
82 35.00 92.86
83 55.00 61.43
84 47.50 80.00
85 25.00 54.29
86 80.00 100.00
87 60.00 97.14
88 30.00 88.57
89 57.50 100.00
8 10 65.00 100.00
8 11 85.00 100.00
8 12 25.00 54.29
8 13 55.00 100.00
8 14 62.50 100.00

128



Table 14

Peiformance ofStudents in Class C

Class C

Student Pretest (%) Posttest (%)

C1 50.00 97.14
C2 50.00 57.14
C3 60.00 100.00
C4 50.00 95.71
C5 55.00 41.43
C6 40.00 72.86
Cy 30.00 85.71
C8 35.00 87.14
C9 67.50 88.57

C1Q 45.00 68.57
C11 35.00 91.43
C12 75.00 87.14
C13 72.50 87.14

C14 35.00 28.57
C15 30.00 78.57
C16 65.00 94.29
C17 30.00 98.57

C18 77.50 100.00

C19 25.00 37.14

C20 25.00 68.57

C21 75.00 94.29

C22 65.00 92.86

C23 62.50 97.14

129



Table 15

Standard Statistical Measures for C and JITSC

Group Pretest Posttest
mean and (standard deviation) mean and (standard deviation)

C 50.217 (17.579) 80.433 (21.046)

JITSC 51.250 (19.209) 87.756 (17.882)

130



Table 16

Two-way ANOVA with Repeated Measure: Between-Subjects Effects/or C and JITSC

Type IV sum
Source of squares df Mean square F Sig.
Intercept 316408.112 1 316408.112 584.161 .000

Group 303.708 1 303.708 .561 .459
Error 18957.576 35 541.645

131



132

Summary

Figure 33 shows a pictorial summary of performance scores between C and

TITCS using the means as the data. Although there appears to be a visual difference

between the two groups, the standard deviation was so large that there was no statistical

differentiation at any level of significance. (See Table 13, Table 14, and Table 15 for

specific results.)

However, from a qualitative perspective, the results from the survey

administered to the TITSC group show generally positive feelings towards the Java

Intelligent Tutoring System (Please see Table 7 for the interview survey). Overall,

students appeared to enjoy the Java Intelligent Tutoring System and found it beneficial

and friendly to use. The researcher took the raw data from the interview surveys and

computed basic statistics as shown in Table 17. Please see Table 7 for the interview

survey. The survey consisted ofa Likert 5-point scale for each of the six questions. It

can be seen that TITS performed above "average" in all categories and scored the

highest in two categories: "Enjoyable" and "Ease of TITS Tutoring Style" (The term

"average" in this context refers to the third item on the 5-point scale on the survey).

The findings also revealed important issues regarding how to improve TITS.

The comments are discussed below and will be reviewed for potential inclusion in

subsequent versions of JITS. The comments presented were gathered from two

perspectives: student's and professor's.



133

JITSC versus C Performance Score Comparison Using Pretest
and Posttest Means as Data

90.00

80.00

~ 70.00

E
C)

60.00

50.00

"II
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I,

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

Group

- ••• - C

-JITSC

Pretest Posttest

Figure 33. JITSC versus C performance comparison using pretest and posttest means as

data.



Table 17

JITS Qualitative Summary Results for JITSC Students

1. Usefulness 71%
2. Beneficial 64%
3. JITS is better than a traditional classroom 36%
4. Ease of JITS Tutoring Style 79%
5. Enjoyable 79%
6. Learn Better. 71 %

134



135

The Students' Perspective. Most of the students enjoyed working with JITS,

and a number of students identified the following features as definite strengths of JITS:

1. Feedback mechanism-It provides hints quickly and they are to the point.

The hints are also not overwhelmingly complicated, and this is quite unlike

traditional programming environments and compilers.

2. One student stated, "[JlTS] tells me the exact spot in the code where I need

to make my correction-I like that. I wish other systems would do that."

3. JlTS helps students solve syntax and logic errors while developing a solution

to a problem. One student stated, "I like learning in this environment better

than having the instructor demonstrate how to do something."

4. Several students stated that they like the User Interface of JlTS. They said

that it is similar to other Integrated Development Environments which are

designed for professional programmers.

5. Many students stated that they felt JITS was very useful since it is available

at all times and students need only a browser to use JlTS.

6. One student said, "Can we have this system in our course from now on?"

Regardless of the apparent success of JITS, this study showed that the

suggestions from students helped in making JITS more beneficial for their education.

Students felt that the hints were extremely good when the programming error was a

syntax error. The Java Error Correction Algorithm (JECA), for the most part, was able

to determine the intent of the student and offer meaningful and helpful corrective

feedback. However, some students suggested that it would be even more beneficial if

JlTS could offer help in situations where there was logical mistake in a student's



solution. For instance, given the following submission to calculate the sum of the

numbers from 1 to 10:

for (int i=O; i<10; i++)
sum = sum + i;

The submission is syntactically correct; however, there is a logic error. nTS would

respond as follows:

Sum = 45

Nice Try.
However, there may be a logic error in your program.
Take a look at your formula. If you are using a loop
check the range of values for the beginning and ending of
your loop.

As a result, the student needs to reexamine the submission and try to determine

the logic error. In this example, the problem is that the loop is not incrementing far

enough. Two correct solutions are provided below:

Solution #1:

for (int i=O; i<=10; i++)
sum = sum + i;

Solution #2:

for (int i=O; i<ll; i++)
sum = sum + i;

The researcher made note of the need to support students making logic errors,

and in later versions of JITS, more detailed hints are generated. Overall, however, the

students seemed quite happy with the prototype of nTS. They all seemed eager to see

and try out future versions of the Java Intelligent Tutoring System.

136



137

The Professors' Perspective. The section summarizes the views ofprofessors

involved in this study. Two of the professors said they were pleased with JITS in the

following ways:

1. One professor stated, "The embedded logic unit called JECA is a sound

tool-it picks out the most significant error the student needs to focus on. I

feel the student is developing core programming debugging skills with

JITS."

2. One professor said the idea behind JITS' User Interface is similar to popular

Integrated Development Environments, which should make the transition

from JITS to a professional programming environment a little easier.

3. Both of the professors said that they would like to use JITS to augment their

existing Java courses. They felt that JITS provided a means for students to

receive extra tutoring when the professor is not available.

4. One professor said, "The quality of tutoring that JITS performs is

comparable to a human tutor."

5. Both of the professors said that they liked the fact that there was no client

installation required for them or their students (i.e., there is no software to

install on the client's computer).

6. Many professors were happy that JITS was available at all times. This made

it easier for students to work on problems at their own time and at their own

pace.

7. One professor said, "JITS provides additional programming practice that can

only benefit students."



138

Although there was no significant level of differentiation between the Control

group and JITSC group for performance scores, there are many explanations for this.

First, JITS was undergoing extensive redesign and redevelopment during the first 7

weeks of the course in which JITS was tested. Second, there may not have been a

suitable number of problems embedded in JITS at the time of testing. For instance,

initially, there were only 4 programming problems in JITS. Third, students may not

have used JITS enough to reach a higher level ofperformance. In other words, learning

a new software tool requires some initial loss in productivity from the way in which one

customarily does things. It will be interesting to note students' results in future field

studies now that most of the "bugs" have been worked out of JITS. However, getting

over this small hurdle gives way to certain potentials. In this case it may give rise to the

student performing better by increasing their knowledge and skill set in programming.

Recommendations

This section presents recommendations for the refmement of JITS for the first

program development session. The recommendations include student and professor

comments for improvement in the Java Intelligent Tutoring System.

Student Perspective. A number of the students raised a concern about the "My

Performance" button's output. A sample output after pressing the "My Performance"

button is shown in Figure 34. Students felt that a more detailed representation of their

performance could be helpfuL Currently, JITS takes a number of factors into account

when computing the student's performance. JITS correlates the student's skill level

with the problem difficulty and ranks the points accordingly. JITS determines the

number ofproblems solved against the number of problems attempted in combination.



OUTPUT:
My Performance:

Problems Attempted: 4
Problems Solved: 2
Overall Performance: 72

Figure 34. Initial design of the output from the "My Performance" button.

139



140

Furthermore, JITS combines this information with other gathered facts about the student

as represented in the established student model. See Figure 28 for a depiction of the

student model and related modules. As can be seen from the diagram, there is a

tremendous amount of information available for analysis regarding the student's

performance. Future versions of JITS will provide much more detail regarding student's

performance.

Professor Perspective. One professor suggested that JITS could produce a

report representing the student's performance over a period of time. This would also

be helpful in identifying students who need additional assistance. It could also be used

to identify those students who are doing extremely well and may be interested in more

challenging problems.

All of the professors enjoyed the prototype of the JITS Authoring tool.

Although still under development, the prototype made professors aware that they can

easily create, edit, and review problems. Once the problems have been added, they are

immediately available to the students. Currently, the researcher is busy working on

designing and developing the JITS Authoring Tool.

Second Program Development Session: Section #1: JITS Developmental Research

During this session, JITS underwent a number of design changes to both internal

infrastructure and the User Interface. The changes were based primarily on the

suggestions of students from the First Program Development Session. This section

presents the [mdings of experiments that were conducted during the last half of the

summer term (i.e., July I to Aug 20, 2004). The control group and the experimental

group consisted of the same students as the First Program Development Session.



141

Session #2, Section #1, Part #1: July 1 to July 14, 2004

Two students completed all of the programming problems in TITS and suggested

that more problems be created. As a result, the researcher spent this time reviewing

suitable material that would be fitting to the curriculum and the level of students in the

JITSC.

At the completion of this study JITS offered at least four problems for each of the

seven Problem Sets: Java Basics, Java Statements, Ifstatement, for loops, do while loops,

while loops, and Arrays. During this period of time, the researcher also tested each of the

new problems as rigorously as possible by simulating various errors. The students

seemed to enjoy having more choice. With the full navigation in TITS fully functional,

students could navigate from problem set to problem set and problem to problem to find

areas that were of interest to them.

Session #2, Section #1, Part #2: July 14 to Aug 11, 2004

One student mentioned that tIle "Solutions" button did not display information

correctly. The problem was with the display ofsollltions in the student's browser. For

example, solutiollS like:

for (int i=Oj i<arr.lengthj i++)

sum = sum + arr[i] j

were showing up as:

for (int i=Oj i sum sum + arr[i] i



142

which is clearly incorrect. A number of important elements were not being displayed

(i.e., the "<arr . length; i++)" was being omitted)

This problem took approximately 4 hours for the researcher to determine the root

cause ofproblem. The researcher checked the database and confirmed that the correct

solution was being recorded in the tables of the database. The researcher then

investigated the "Student" class and its method: Store_State_to_databaseO, and the

"Collective Student_Model" class and its find_solutionsO method. Apparently, the

problem is exclusive to the browser's interpretation in HTML of the "<" sign. Browsers

were confusing it as a markup symbol as opposed to simply leaving it as an ordinary

character as desired. The researcher corrected the problem by using the appropriate

HTML tags instead of using "<". A reference that assisted me was:

http://www.w3.orglMarkUp/htm13/latinl.html

which provided the following information:

lt

gt

amp

quot

&It;

&gt;

&amp;

&quot;

Less than sign

Greater than sign

Ampersand

Double quote sign

The researcher tested and confirmed the correct behaviour using various scenarios

and test accounts. The "Solution" was now producing correct results even when specific

symbols were used in the solution.



143

Second Program Development Session: Section #2: JITS Performance Score

Analysis

Table 18 and Table 19 display the performance scores of students in the control

group (C) and the experimental group (JITSC). Table 20 presents a summary of the

descriptive statistical findings on the performance scores in Table 18 and Table 19. In

order to determine the relationship between the performance scores in C and JITSC for

the last 7 weeks of this course, a two-way ANOVA with repeated measures were

conducted.

Second Program Development Session: Section #3: Summary and

Recommendations for Further JITS Development

This section presents a summary and recommendations for the refinement of

JITS for the second program development session. The summary presents the results of

the performance score analysis, and student and professor perspectives. The

recommendations section discusses areas for improvement in the Java Intelligent

Tutoring System.

Summary

In this Program Development Session, the students who used JITS outperformed

the students in the traditional classroom. A two-way ANOVA with repeated measures

was conducted and confirms these results, indicating there was a significant statistical

difference in performance scores between the two groups.

From a more personal perspective, students during the last 7 weeks of this

course appeared to have gained more and more interest in JITS and offered many

suggestions for the improvement of this ITS. Table 21 shows these results.



Table 18

Performance ofStudents in Class JITSC

JITSC Class

Student Pretest (%) Posttest (%)
81 62.00 81.00
82 73.30 83.10
83 64.40 75.80
84 58.90 69.40
85 22.20 78.30
86 78.90 89.40
87 73.30 85.20
88 65.60 77.10
89 72.20 86.10
810 80.00 90.00
8 11 66.70 83.30
8 12 45.70 70.00
813 71.40 74.30
8 14 74.40 87.20

144



Table 19

Performance ofStudents in Class C

Control Class

Student Pretest ('Yo) Posttest ('Yo)
C1 64.40 80.80
C2 46.70 51.90
C3 70.00 85.00
C4 57.80 76.70
C5 52.10 39.60
C6 66.50 62.50
C7 74.10 65.60
C8 71.90 75.20
C9 63.30 76.00
C10 59.90 79.90
C11 56.50 59.70
C12 68.90 78.00
C13 68.30 69.10
C14 22.22 25.40
C15 53.30 66.00
C16 54.80 68.80
C17 69.40 75.40
C18 78.90 89.40
C19 52.10 37.50
C20 53.20 53.70
C21 71.90 68.80
C22 70.00 81.40
C23 77.80 87.50

145



Table 20

Standard Statistical Measures for C and JITSC

Study Statistical instrument C JITSC
Pretest Mean: 61.91% 64.93%

Standard deviation: 12.52 15.17
Posttest Mean: 66.25% 80.73%

Standard deviation: 16.79 6.75

146



Table 21

Two-way ANOVA with Repeated Measures: Between-Subjects Effects for C and JITSC

147

Source Type IV sum of squares df Mean square I F Sig.
Intercept 326268.963 1 326268.963 1020.396 .000

Group 1330.710 1 1330.710 4.162 .049

Error 11191.161 35 319.747



148

There was a significant level of differentiation between C and llTSC in

performance scores for the last 7 weeks of the course investigated. Additionally, a two­

way ANOVA with repeated measures was conducted confirming these results, F(l,35)

= 4.162,p = .049, indicating there was a significant difference between the two groups

(i.e., C and llTSC).

To account for the increased performance, it is conceivable that due to increased

exposure to JITS and working through many programming problems, students'

cognitive and skill development in core Java curriculum topics increased. Another

perspective is that llTS may have been sufficiently sophisticated by this point in time

that it was becoming an effective programming tutor. It is also reasonable to conclude,

based on the performance scores, that even though there were technical problems and

JITS may not have performed correctly (from a pedagogical perspective) at all times,

the increased exposure to programming problems for students and the cognitive efforts

to overcome these technical problems resulted in the students in the llTSC developing

better skills than the students in the traditional classroom environment. As one

instructor stated, "Any additional programming practice is good practice" (Karolyi,

2004). This concept is also reinforced by the Carnegie-Mellon ITS researchers

philosophy: "practice make perfect" (Anderson et aI., 1995; Anderson & Pelletier,

1991). Figure 35 presents the performance ofC and llTSC students using mean grades

as data in the form of a graph.

Recommendations

At the completion of the second Program Development Session, there were no

major suggestions that either students or instructors offered. The students seemed



JITSC versus C Performance Score Comparison Using Pretest
and Posttest Means as Data

149

80.00

75.00

~o-Q)

-g 70.00...
C>

65.00

60.00

Group

----- C

-JITSC

Pretest Posttest

Figure 35. Performance of C and JITSC students using mean grades as data.



150

content with the performance and manner in which JITS tutored. Instructors were still

patiently waiting for the JITS Authoring Tool to be completed.

Third Program Development Session: Section #1: JITS Developmental Research

TIle third Program Developmellt Session was the last research session conducted

for the dissertation. During this session, TITS underwent a number of refinements to

both the User Interface and the infrastructure. The information gathered during this

session was based primarily on the suggestions by students and partly from the

researcher's notes during the First and Second Program Development Sessions that

would be beneficial to implement.

This section presents the findings of experiments that were conducted during the

fall term of2004 (i.e., September to December, 2004). There were three different

control groups and two experimental groups.

Session #3, Section #1, Part #1: September 10 to September 28, 2004

The first issue raised during this third Program Development Session was

associated with the "Solutions" button. When the student pressed this button, duplicate

solutions were presented. The researcher's solution to this problem was a modification to

the way in which JITS extracts information from the database. Now only unique

solutions for a specific problem are displayed.

Another issue that was suggested by some students was that additional problems

be created that are more difficult alld involve instantiation of objects and invoke

functions. Unfortunately, a subproblem needed to be solved before the researcher could

accommodate the students' request. The researcher integrated new strategies for the

name of the classes for the problems. In Java, the classname must match the filename.



151

With some infrastructure changes, the researcher resolved the problem. The classname

for a problem is now used in the structure of the filename to be compiled (i.e.,

the full unique name used). JITS now works with more advanced problems, for example:

public class Power {
public double powergen(int num)

return num * num;

public static void main (String args [J )
Power p ~ new Power();
double result ~ 0;

result ~ p.powergen(lO);

TIle last issue tllat was raised during this study was associated with logic errors.

The researcher observed a scenario where a student's submission did not have any syntax

errors, but it had logic errors. In this type of situation, students stated that they would

like assistallce when these types of errors occur.

The solution to support students' that are encountering logic errors is a very

difficult problem. The researcher worked on developillg a sopllisticated component of

JITS AI_Module tllat extracts information from the "Student" object, the "Problem"

object. The Problem's keywords are used to provide assistallce to students that are

ellcolllltering logic errors. (Problem keywords are also included in the Problenl

Specification section for all problems.) TIle goal was to develop a logic-error feedback

mechanism so that the student would feel more supported. Two examples are presented

that illustrated the development of JITS ill the area of responding to student's

submissions containing logic errors.



152

Example #1: Logic error but submission has correct constructs

Problem: (1 of 5) in Problem Set # 2 (Topic: Java Statements)
Write a program called Together which concatenates (i.e., combine) several Strings
togetller.

Program Specifications:
This program requires you to write a simple expression that stores a concatenated String
into a variable. Fill in the code to complete this program.

Required Output:
Combil1ed == Hello There Bub !! :)

public class Together {
public static void main (String [] args) {

String combined = "";
String first = "Hello";
String second = "There";
String third = "Bub!! :)";

« ======================== »
« student enters code here »
« ======================== »

System. out .println ("Combined = " + combined);

Suppose the student enters code that produces the following output:

Combined == Hello ThereBub !! :)

JITS previously would respol1d: "Sorry. No hints available."

Now, JITS responds as follows:

Good attempt. Now let's examine your code.
Good news... You are using the correct constructs.
However, it looks like there is a logic error in your program.
When working with aritllmetic operators (e.g., *, / ) logic errors may occur. They
usually happen because of a mistake in your formula.
Look carefully at this section in your code.

View the Tutorial for additional help.



153

Example #2: Logic error but submission has incorrect constructs

The following example presents another situation where a student's submission

does not have any syntax errors; however, there is one or more logic errors present. If the

student submits a soilltion that does not use the correct constructs (as defined in the

Problem Specification and the Problems' keywords), then JITS can guide the student to

use tIle appropriate constructs for the problem.

Problem: (1 of 4) in Problem Set # 4 (Topic: for loops)
Write a program called Summer which adds all the integer numbers from 1 to a specified
number (N). For example, ifN were assigned the value 10, then the sum of the numbers
from 1 to 10 is 55.

Program Specifications:
This program requires the use ofa for-loop structure. A skeleton structure of the solution
is given. Fill in the code to complete tllis program.

Required Output:
Sum == 55

public class Summer {
public static void main(String [] args) {

int sum = 0;

« ================================================ »
« student enters code here »
« ================================================ »

System.out.println("Sum = " + sum);

}



154

Suppose the student enters code that is syntactically correct yet has logic errors

and does not use the correct constructs as specified in the "Program Specifications"

section of this problem. Previously, TITS would respond: "Sorry. No hints available."

Now TITS responds more appropriately:

Nice Try!
It looks like there is a logic error in your program.
Please re-read the Problem Specification.
You need to use specific constructs in your solution.
In this problem you need to use: for
Make corrections to your program and submit it again.

Session #3, Section #1, Part #2: October 3 to October 8, 2004

In this session, students suggested that the "My Performance" button should

provide more substantial information regarding individual performance in TITS. During

this study, the researcher spent 40 hours in redesigning and refining the "My

Performance" infrastructure. Part of this restructuring required the alteration of the

Student Problems table in the JITS ORACLE schema. Another field entitled

"viewed_solution" was added to this table, which was used to record whether or not the

student pressed the "View Solutions" button while working on a problem. This in turn

proved to be helpful in the redevelopment of the "My Performance" button to more

effectively evaluate the student's work. The researcher wanted to provide clear,

meaningful results of how the student is performing and include relative information to

the "average student" (other Students in TITS). A sample output of a student pressing the

"My Performance" button is presented in Figure 36. Notice the organization of the

output.



155

M P ~Ly er ormance:
I

II

Problem Problem Solution
Set #

Solved
Viewed

Average Student

1_____ I I[ _I_______JI No.4 attempts so far. 'I Yes. ] 12 attempts to solve.l,

I I JL 2 II No.2 attempts so far:j I Yes. I[~,~ttempts to soIVe:j

I [~_}~~4 attempts sof~Im_Ye~~ lii!!~mpts to solve. I
C3~C~1 No. I attempt so far. IL_~_o. III attempt to solve. I

3 I 2
1

No. I attempt so far. II No. I[ I attempt to solve. I
4 I I I Yes. It took 5 attempts. I No. iI__~ attempts to solve. I
4 II 2 _JI No.3 attempts so far. II No. 113 attempts to sOlveJ

I 4 II 3 I No.2 attempts so far. II No. I 6 attempts to solve. I
6 I I I No. I attempt so far. I No. I I attempt to solve. I

!

I 6 I 3 I No. I attempt so far. II No. I I attempt to solve. I
I[ 7 _JI ~ I Yes. It took 2 attempts. I[ No. ] I attempt to solve. I
I

I Il_ No. I attempt so far. II I I attempt to solve. I7 2 No.

Figure 36. "My Performance" button displays performance information for each student.



156

During the on-site visits, the researcher asked each student in the JITCS for their

opinion on the "My Performance" button and asked if there was any other information

they would like to have included in the report. All of the students said they were

content with the performance report.

Session #3, Section #1, Part #3: October 8 to October 18, 2004

During this part of the session, there were mostly technical problems that needed

attention. Two students identified technical problems with Problem Set #2 Problem #2.

These were corrected within 1 hour of my being notified. There was a mistake with the

Average Student section of "My Performance" button. In the "Average Student" section,

it was displaying "0 attempts to solve" in the case where a problem had never been

solved (i.e., no solution available). It should have said "Problem not yet solved." The

researcher corrected this section of the "My Performance" infrastructure within 2 days

from the problem being demonstrated to the researcher.

During this week, many students attempted a lot of problems in JITS. Some

students found a few typographical errors in the problem descriptions. Some students

found some minor technical problems. As a result, the researcher clarified the problem

statements in the problem database. The researcher also corrected the naming of the Java

class files which were causing the minor technical problems.

There was one additional issue that was very upsetting for me as the designer and

developer. The network connection from Milton (the researcher's development location)

and Sheridan College was proving to be very temperamental. Sometimes connections

would be unbearably slow, while other times the connections would simply fail. The

problem was Sheridan's hardware device called a "PacketShaper," which was



157

misbehaving. The PacketShaper is responsible for classifying network traffic that travels

into Sheridan and out of the college. In other words, access from outside the college into

the Sheridan network connection is not working properly. The researcher discussed the

situation with the ChiefIT Director, who explained that it was a very complicated

problem and would probably not get resolved until the end of December. Fortunately, it

did not affect students trying out JITS located within Sheridan or students trying JITS

outside of typical business hours. It also did not appear to cause any loss of service for

students located close to either of Sheridan's main campuses (i.e., Oakville and Brampton

regions).

Session #3, Section #1, Part #4: October 22 to November 2,2004

Several students stated that the "tutorial" could be more useful. For instance, they

suggested that one of the problems in problem set #2 (i.e., Java Statements programming

topic) uses public static final for the constant 1t. The tutorial for this section

should include information about public static final. In other words, there

should be a closer match between the problems in the problem sets and the tutorial topics

section. This was a very good point, and the researcher spent the remainder of the week

carefully going over the tutorial information and made sure that the programming

problems related to the information in the tutorials.

A number of students found that the JITS User Interface required a bit of getting

used to. For instance, many students took a few tries to discover that they needed to

scroll down in the window to see the program output, hints, solutions, etc. These

students suggested that a "Help" button be included that would display basic features of

JITS and how to get around in the Java Intelligent Tutoring System. During these few



158

weeks, the researcher added a "Help Me" button (located beside the student's 1lame in

JITS) and completed the i1lfrastruchlre and the Java ServerPage to SllppOrt it. Figure 37

and Figure 38 depict the "Help Me" blltton location on JITS' User Interface and JITS'

Help screen respectively.

Session #3, Section #1, Part #5: November 3 to November 5, 2004

Some students stated they would like more information from the "hints." In some

situations, TITS would respond: "Sorry. No llints available." The researcher observed

that these types of situations arose because JECA could not determine the i1ltent of tIle

student's submission to a program. The researcher modified JECA to filter the compiler

output (i.e., output from n11lning "javac" (Sun's Java compiler) and made it more

"friendly" for students to read. Two examples are presented as follows. In both of the

examples, the student did not create a variable as required for the solutio1l. This results in

a compilation error. Consequently, JECA 1l0W formats the output from the compiler in a

friendly fashion for JITS to present to the student. Figure 39 and Figure 40 depict tllese

scenarIos.

DuriIlg this study, outside of visits with students, the researcher continued to work

with Sheridan IT staff on the 1letwork problem. The PacketShaper device was still not

working correctly. Tllis hardware device is used to packet shape traffic in and out of the

college. Over the last month, the researcher had mallY problems working fronl honle to

connect to various servers in order to work on JITS. The programs just take extremely

long to process, or they simply fail. Unforhlnately, the problem was beyond my control

to solve. Fortunately, students did not have any difficulties working with TITS. Within

the college, access to JITS remained fast and stable.



Ihgent Tutoring Sy.tem - Mlcro.ort Internet Ellplorer ~_~~.~

Search 'tI Favorttes

lttp:l!loyalty.s~~rid~~c:on:ca/j~s.jsp

Java Intelligent Tutoring System Welcome syk8s! I Help Me

Yoo h~ trim1 thi'Probl_m only ,m,. Yoo h'm wI)M' wived this probl,m. Yo.,"~ I

159

Figure 37. Top right section of JITS' User Interface displaying the "Help Me" button.



160

Help with the Java Intelligent Tutoring System (JITS)

The Java Intelligent Tutoring System is intended to be used by beginner Java programming students. The User Interface is divided into a number
of sections as seen- below.

Close the Help WlIldow.

To change 10 a different
Problem Sel. selecl i~ ft
cUck oIITake methers"

ains the
pies Bnd
amples
in solving

You can see your ~dJvidual

performance by clicking'
"My Performance"

I-lavigete through the problem set by ·Previo~.·end
"N~ Problem buttons:. Malta su re to Click 'Vlew
Hlnts" wilen you encounter problems. If you get
reaily stuck you COln click the "VIew Solution" bulton.

PrOblem Sets
contain Probf(l'ms.
Here the sludenl is
worklng 0" problem
1 in 1he whUa-loops
problem se~

Keep in mind lhe
required oulpu~

This i. whal your
program needs 10
produce.

Click the 'SubmU" button
When )'OU a,re ready to
submit your solution to
JlTS.

This OUlput Area (lisplays me·
output of your program, hints.
aodoth~r messages.

Read each question carefully. Your program must use the correct constructs and produce exactly what the required program output states.
Remember to use the "View Hint" buttons for guidance from JITS. Ifyou get really stuck use the "View Solution" button

Important Notes:

Figure 38. JITS Help screen is used to assist new users to get oriented with this ITS.



. ~'I

JIIYa Intellieent TlItorine System

NOTE: You have attempted thisprobkm 4 times. You have not yet solved thisprobl€m. Your last attempt ispresentedjor you in the code area.
Plea&! try again.

161

Problem: (3 of 4) in Problem Set # 2 (Topic: Java StoU11181tJs)
Write a program called Power Generator which calculates the result of a nwnber multiplied by itse[

Program Specifications:
1his program requires the use ofa function. A skeleton structure of the solution is given

Required Output:
Result = 10000

public class Power {
public int powergen (in~ Dum) {

return Dum * num;
}
public static void main(String [] args) {

Power p = new Power();

PrOVamminll Topics

Java Basics
Java Statements
If statement
for loops
do while loops
while loops
Arrays

Te.ke ma there

View the Tutorial

System.out.println("Result - " + result);

OUTPUT:

Your program did not compile. Below are some hints:

cannot resolve symbol

symbol : variable result

Figure 39. Improved JECA demonstrating filtered output from the compiler and JITS

presenting the results in a friendly way for the student to make corrections.



162

Java Intellisent Tutoring System

NOTE: You have attempted thisproblem 5 times. you have notyet solwd this problem. Your last attemptispresentedjoryou in the code area.
Please try again.

Problem:' (3 of 4) in Problem Set #2 (Topic: Java StoiemenJs)
Write a program called Power Generator which calculates the result of a number muJt1plied by itself

Program Specifications:
This program requires the use of a function. A skeleton structure ofthe solution is ~en.

Required Output:
Result; 10000

public class Power {
public int powergen(int num) {

return num * n.um;
}
public s.tatic void main (String [1 args) {

Power p B new Power ();.

double re5ule,;
p .'powergen:(lO) ;

SySj;tem.out.printlnC'Result a " +. result);

OUTPUT:

YOW'" program did not compile. Below are some hints:

variable result-mi~htnot have been initialized

System.out.println("Result B + result);

JElva"Basics
Java Statements
If statement
for loops
do while loops
while loops
Arrays

I Tekema1Jl..,e

iI= VI_lhe TUlorial

Figure 40. A variation of a compiler error due to a student's submission. Previous

versions of JECA would simply return a hint: "Sorry. No hints available." The improved

JECA is intended to be more helpful and presents compiler errors in a more friendly way.



163

Session #3, Section #1, Part #6: November 5 to November 8, 2004

Some students suggested that actual equations be presented in problems that refer

to mathematical expressions. For example, in one of the problems, the information was

presented only as text: "the volume of a cone is 1/3 times PI times the radius squared

times the height." Students suggested it would be clearer to present this information as:

!lfr 2 h. For this problem, the researcher fIrst added another column to the Problems
3

table of the nTS database schema. The revised schema is presented in Table 22. The

researcher then developed a Windows Popup which streams a binary image from the

ORACLE database. The researcher updated the main nTS webpage (i.e., jits.jsp

JavaServer Page) to include a link "View the image for this problem." Figure 41 depicts

the revised JITS User Interface. If the student clicks on the link, a popup is created and

the image for the problem is streamed to the popup. For example, the image for the

volume of a cone problem is depicted in Figure 42. Some students suggested that some

of the problems should be altered or new ones created to more closely reflect real-world

scenarios. While programming, there are certain situations where it is more desirable to

use one construct over another. As a result, the researcher created a number ofnew

problems that more closely reflect real-world situations. These new problems employ the

use of specifIc programming constructs.

The researcher then developed a Windows Popup which streams a binary image

from the ORACLE database. The researcher updated the main nTS webpage (i.e.,

jits.jsp JavaServer Page) to include a link "View the image for this problem." Figure 41

depicts the revised nTS User Interface.



Table 22

Redesigned JITS ORACLE Schema Tables to Accommodate Pictures

164

CREATE TABLE PROBLEM SETS
problem_set_id
problem_set_title
problem_set_desc

) ;

CREATE TABLE PROBLEMS
problem_set id
problem_id
problem_desc
problem_spec
problem_output
template_top_section
template_bottom_section
problem_difficulty
problem_keywords
picture

) ;

CREATE TABLE STUDENTS (
student name
student_password
problem_set id
problem_id
skill level
performance rating
performance_history
times connected
date last connection
picture

) ;

CREATE TABLE STUDENT PROBLEMS
student name
problem_set id
problem_id
number_of_attempts
solved
students solution
solution date

) ;

NUMBER (3) ,
VARCHAR2 (30) ,
VARCHAR2(400) ,

NUMBER (3) ,
NUMBER (3),
VARCHAR2(400) NOT NULL,
VARCHAR2(400) NOT NULL,
VARCHAR2 (S 0) ,
VARCHAR2(400),
VARCHAR2(400) ,
VARCHAR2 (20) ,
VARCHAR2(200) ,
LONG RAW,

VARCHAR2 (30) ,
VARCHAR2 ( lS) ,
NUMBER (3) ,
NUMBER (3) ,
NUMBER (3),
NUMBER (3),
VARCHAR2(2000) ,
NUMBER(S),
VARCHAR2 (30) ,
LONG RAW,

(

VARCHAR2 (30) ,
NUMBER (3) ,
NUMBER (3) ,
NUMBER (3) ,
CHAR(l) ,
VARCHAR2(SOO),
VARCHAR2 (30) ,



Java Inlellie8llt TUlorine Syst-6111

NOTE: You have tried this problem only once. You have successfully solved this problem.!

Problem: (4 of 4) in Problem Set # 2 (Topic: Java Statements)
Write a program called ConeVolume which calculates the volume· of a cone with a radius of 17. 23m and a
height of 5m.

Program Specifications:
This program requires the use of a function. The volume of a cone is 1/3 times PI times the radius square4
multiplied by the height ofthe cone. View the image for this problem

Required Output:
Volume = 1553.63

public class ConeVolume {
public static final double PI = 3.14;
public double volume(double ht. double rd) {

return 4/3.0 ~ PI w rd * rd * ht;

Programming Topics

Java Basics
Java Statements
If statement
for loops
do while loops
while loops
Arrays

Take me there

View the TutOrial

3"

165

}
public static void main(String [] args)

ConeVolume obj = new ConeVolume();
double cone_vol;
cone_vol = obj .volume(S, 17.23);
System.ouLprintln("Volume = " + cone_vol);

Previous Problem

OUTPUT:

Figure 41. Revised JITS User Interface accommodating a link to the image for the

current problem.



Volume:
1 2
-7trh
3

r
hEright

166

Close the Image Viewer.

Internet

Figure 42. nTS Image Viewer depicting the image for the current problem.



167

A number of students discovered that if they simply click "Submit" and do not

enter any code, JITS responds with some unreasonable comment like:

Almost!

It looks like there is a logic error in your program.
Please re-read the Problem Specification.
You need to use specific constructs in your solution.

In this problem you need to use: for, if
Make corrections to your program and submit it again.

The researcher solved this problem by making a small change to the infrastructure

of JITS. JITS now correctly identifies when a student genuinely tries to attempt to solve

a problem. When the student does not type anything or any whitespace character (i.e.,

tab, newline, etc.) and clicks "Submit," JITS simply ignores the inappropriate submission

to the problem and prompts the student to try to solve the problem.

One student found a technical problem with Problem 3 of 4, Problem Set #5. The

student's solution was correct, yet JITS did not allow it as a valid solution. The

researcher corrected the problem keyword requirements for this problem. Now the

student's solution is accepted by JITS.

One student found that Problem 3, Problem Set #2 was worded a bit confusingly.

The student did not realize that the solution required a variable to be declared. In all

other problems the variables are part of the actual problem template. As a result, the

researcher corrected the wording of the problem to include in the Problem Specification

section: "You need to declare a variable called 'result' in your solution."



168

Session #3, Section #1, Part #7: November 9 to November 10,2004

Two students mentioned to the researcher on November 5 that it would be nice to

have the "My Performance" button contain hyperlinks to specific problems that the

student has previously attempted. These students suggested that a link to the specific

problem would be beneficial, especially when the student has not yet solved the problem.

The link would provide a fast way to bring the student back to that problem. The

researcher solved this problem by creating a button in the corresponding row for the

problem set # and problem #. The researcher added colour, italics, and bold text to make

a distinction between problems that have been solved by the student from those that have

been attempted but not solved. Correctly answered problems appear on the screen in

green (e.g., "Yes! It took 5 attempts). Attempted, yet unsolved problems appear in red.

Additionally, buttons are provided for quick access to each problem for the student.

Figure 43 depicts the revised output of the "My Performance" button.

Session #3, Section #1, Part #8: November 16 to December 1,2004

Some students suggested that the white-space in the nTS User Interface be

reduced. This way more information could be presented on the screen. The researcher

solved this problem by readjusting the components on the screen to fit more information

and modified the "Note" section (located at the top of the nTS User Interface) to draw

reference to the "Output" section:

You have attempted this problem 9 times. You have not yet solved this problem. Your
last attempt is presentedfor you in the code area. See the "Output" section belowfor
more information.

Due to all the concurrent interactions between dozens of students and JITS and

the intense database interactivity between JITS and the ORACLE database in order to



169

,
Problem I IProblem

Solved?
Solution I Average Student Review this Problem?

# I Set Viewed?
~

I I No -- 13 attempts so far. Yes. 2 attempts to solve. Review A'oblem: 1 of ~et: 1

08 No -- I attempt so far.~ 2 attempts to solve. Review A'oblem: 2 of ~et: 3

I 4 Yes! It took 5 attempts.~ 2 attempts to solve. Review A'~b;;m: 1 of ~el: 4 r

08 No -- 3 attempts so far.~ 2 attempts to solve. Review ~o~lem: 1 of ~el: 61

D 6 No -- I attempt so far. No. I attempt to solve. Review ~oblem: 3 of ~et: 6-'

0 7 Yes! It took 2 attempts.~ I attempt to solve. Review A'oblem: 1 of !el: 7 ~

0 7 No -- I attempt so far.~ I attempt to solve.

-"
Review A'oblem: 2 of ~et: 71

Figure 43. Revised "My Performance" button output showing links to previously

attempted problems, font, and colour distinctions between solved and unsolved

problems.



170

track all the students in the system, the researcher decided to try to speed up the database

connections. As a solution, the researcher developed a Connection Pool of JDBC

established connections to the ORACLE JITS schema. This resulted in significantly

faster web site performance for students using TITS.

One student suggested that the "tab" key should be implemented; since typing in

programming is a very common activity it should be implemented in TITS.

The researcher researched the problem. In HTML all elements in the form have a "tab

index." This means that a user can navigate from one form element to another by

pressing the tab key (e.g., from one button to another). So, in order to override the

default browser behaviour, the researcher wrote a small set of JavaScript programs that

intercepts when the student presses the "tab" key. The scripts then treat the "tab" key as

a proper tab as opposed to a form element navigation keystroke. The researcher tested

this extended functionality in TITS in browsers such as Microsoft Internet Explorer 6,

Mozilla, Netscape 7, and Firebird.

Third Program Development Session: Section #2: JITS Performance Score

Analysis

There were two instructors involved in the third Program Development Session.

Instructor "A" taught two introductory programming courses; one was TITSC and the

other C. The second instructor (i.e., Instructor "B") taught three courses. One was the

experimental group (i.e., TITCS) and the others were Cl and C2, representing control

groups. Figure 44 illustrates this structure.



171

Figure 44. Classifying control groups and experimental groups based on instructors.



172

Instructor "A" Performance Score Analysis

Table 23 and Table 24 display the performance scores of students taught by

Instructor "A". Table 25 presents a summary of the descriptive statistical findings on

the performance scores. In order to determine the relationship between the performance

scores in C and JITSC, a two-way ANOVA with repeated measures was conducted.

Table 26 shows these results.

The students in the JITSC class outperformed students in the C class. There

was, however, no significant level of differentiation between C and nTSC taught by

Instructor "A" in performance scores. A two-way ANOVA with repeated measures was

conducted that confirmed these results: F(1,37) == 0.083,p == .775, indicates there was

no significant difference between the two groups (i.e., C and JITSC). Table 26 shows

the results from the ANOVA.

Instructor "B" Performance Score Analysis

For this session there were two control groups (i.e., Cl and C2) and one

experimental group (i.e., JITSC). Table 27 and Table 28 display the performance

scores of students taught by Instructor "B." Table 29 presents a sllmmary of the

descriptive statistical findings on tIle performance scores. In order to determille the

relationship between the performance scores in Cl, C2, and nTSC, a two-way ANOVA

with repeated measures was conducted. Table 30 presents this ANOVA.

Additional statistical measures were conducted to determine the level of

significance between specific groups (i.e., Cl vs. JITSC and C2 vs. nTSC). Table 31

presents the results from the ANOVA for between-subjects effects for Cl and JITSC.

There was no statistically significant level of difference between eland JITSC.



Table 23

Performance ofStudents in JITSC Class Taught by Instructor "A"

Class llTSC

JITSC Class

Student Pretest (0/0) Pasttest (0/0)
8 1 57.60 50.00
82 68.40 86.29
83 68.00 71.14
84 74.00 88.00
85 71.20 91.14
86 45.20 55.14
87 74.40 81.14
88 48.00 53.14
89 57.20 82.57.
8 10 47.20 76.29
8 11 68.40 83.14
8 12 58.80 89.43
8 13 72.80 92.00
8 14 66.80 80.00

173



Table 24

Performance ofStudents in C Class Taught by Instructor "A"

Class C

Student Pretest (%) Posttest (%)

C1 62.40 60.57
C2 68.00 80.57
C3 31.20 54.29
C4 57.20 88.57
C5 60.00 79.43
C6 53.20 54.29
C7 66.80 90.00
C8 63.20 70.00
C9 77.20 87.43
C10 51.60 74.29
C11 75.60 95.14
C12 72.80 98.86
C13 71.20 81.14
C14 72.00 90.00
C15 73.40 92.57
C16 58.80 74.29
C17 73.60 87.43
C18 70.00 90.00
C19 74.00 57.43
C20 61.20 76.29
C21 71.20 73.14
C22 60.00 65.14
C23 79.60 48.86
C24 45.20 38.86
C25 52.40 78.00

174



Table 25

Standard Statistical Measures for C and JITSC Taught by Instructor "A"

Group Pretest Posttest
mean and (standard deviation) mean and (standard deviation)

C 65.272 (9.082) 76.663 (15.570)

JITSC 62.714 (10.313) 77.101 (14.391)

175



Table 26

Two-way ANOVA with Repeated Measures: Between-Subjects Effects/or C and JITSC

Taught by Instructor "A"

176

Source Tvpe IV sum of squares df Mean square F Sia.
Intercept 356209.373 1 356209.373 1463.495 .000

Group 20.165 1 20.165 .083 .775

Error 9005.667 37 243.396



Table 27

Performance ofStudents in JITSC Class Taught by Instructor HB"

Class JITSC

JITSC Class

Student Pretest (%) Posttest (%)
81 .75.00 95.00
82 95.00 97.14
83 70.00 77.14
84 85.00 90.00
85 70.00 80.00
86 70.00 100.00
87 95.00 100.00
88 55.00 93.57
89 80.00 81.43
8 10 25.00 69.29
8 11 35.00 78.57
8 12 95.00 92.86
8 13 82.50 95.71
8 14 30.00 85.00

177



Table 28

Performance ofStudents in Cl and C2 Classes Taught by Instructor "B"

178

Class CI

Student Pretest (%) Posttest (%)

C1 1 75.00 92.86
C1 2 100.00 95.71
C1 3 60.00 70.00
C1 4 75.00 83.57

C1 5 70.00 92.86
C1 6 85.00 95.71

C1 7 55.00 77.14
C1 8 65.00 88.57

C1 9 95.00 100.00

C1 10 80.00 82.57
C1 11 25.00 65.71
C1 12 97.50 78.57
C1 13 70.00 89.29
C1 14 55.00 82.86

C1 15 70.00 92.86

C1 16 60.00 95.71

C1 17 82.50 77.86

C1 18 95.00 97.14

Class C2

Student Pretest (%) Posttest (%)
C21 65.00 70.71
C22 65.00 69.29
C23 60.00 71.43
C24 52.50 80.00
C25 75.00 62.86
C26 70.00 72.14
C27 80.00 64.29
C28 67.50 52.00
C29 77.50 81.43
C210 40.00 80.71
C211 80.00 71.43
C212 75.00 80.00
C213 35.00 34.29
C214 85.00 78.57
C215 57.50 67.14
C216 75.00 62.86
C217 55.00 83.57
C218 70.00 82.86
C219 77.50 81.43
C220 67.50 68.57
C221 70.00 68.57
C222 75.00 78.57
C223 80.00 70.71



Table 29

Standard Statistical Measures for Cl, C2, and JITSC Taught by Instructor "B"

Study Statistical Instrument C1 C2 JITSC
Pre-Test Mean: 73.055 67.608 68.750

Standard Deviation: 18.738 12.758 23.913
Post-Test Mean: 86.626 71.018 88.265

Standard Deviation: 9.845 11.291 9.650

179



Table 30

Two-way ANOVA with Repeated Measures: Between-Subjects Effectsfor Cl, C2, and

JITSC Taught by Instructor "B"

180

Source Type IV sum of squares df Mean Sauare F Sig.
Intercept 608112.166 1 618112.166 1963.680 .000

Group 2674.463 2 1337.231 4.318 .018

Error 16103.353 52 309.680



181

Table 31

Two-way ANOVA with Repeated Measures: Between-Subjects Effects/or Cl and JITSC

Taught by Instructor "B"

Source Type IV sum of squares df Mean Square F Sig.
Intercept 394919.952 1 394919.952 991.540 .000

Group 28.012 1 28.012 .070 .793

Error 30 398.289



182

Table 32 presents the results from the ANOVA for between-subjects effects for C2 and

JITSC. There was a statistically significallt difference between C2 and JITSC at the

0.05 level, F(l,35) == 4.934,p == .033.

Third Program Development Session: Section #3: JITS Summary and

Recommendations for Further JITS Development

This section presents a summary and recommendations for the refinement of

JITS for the third program development session. The summary presents the results of

the performance score analysis, and student and professor perspectives. The

recommendations section discusses areas for improvement in the Java Intelligent

Tutoring System.

Summary

A tremendous amount of redesign and redevelopment occurred during this

session. The major reason for these changes was due to student involvement and

student interest in this project.

Figure 45 shows a pictorial summary ofperformance scores between C1, C2,

and JITCS using the mean grades as the data. There was a significant statistical

difference between C2 and JITSC at the 0.05 level. See Table 30, Table 31, and Table

32 for specific results. Figure 46 presents a plot of the performance scores between C1

and JITSC. Figure 47 presents a plot of the performance scores between C2 and JITSC.

From a qualitative perspective, the results show a difference between

experimental groups and control groups for both Instructors "A" and "B" classes.

Overall, students enjoyed and benefited from working with the Java Intelligent Tutoring

System. Table 33 depicts tIle summary statistics fronl the qualitative survey. (See



183

Table 32

Two-way ANOVA with Repeated Measures: Between-Subjects Effectsfor C2 and JITSC

Taught by Instructor HB"

Source Type IV sum of squares df Mean Square F Sig.
Intercept 380327.356 1 380327.356 1275.534 .000

Group 1471.210 1 1471.210 4.934 .033

Error 10435.991 35 298.171



184

Performance Comparison between JITSC, C1, and C2 using
Pretest and Posttest Means as Data

Group

----. C1

- - • C2

--JITSC

..."..................

#.,,,,,,,,,,,,,,,,,,,
I,j'

90.00

85.00

70.00

Q)
'0
E
C) 75.00

--;;- 80.00
~-

3''''

65.00

Pretest Posttest

Figure 45. JITSC versus C1 and C2 performance comparison using pretest and posttest

means as data.



185

Performance Comparison between JITSC and C1 using
Pretest and Posttest means as data

90.00

85.00

"";' 80.00
~-Q)
"C
~
C) 75.00

70.00

65.00

Group

- - - C1

--JITSC

1

Pretest
2

Posttest

Figure 46. nTSC versus C1 performance comparison using pretest and posttest means as

data.



186

Performance Comparison between JITSC and C2 using
Pretest and Posttest means as data

90.00

85.00

'0' 80.00
C>'-Q)
'0
E
C) 75.00

70.00

65.00

Group

•••• - C2

-JITSC

Pretest Posttest

Figure 47. JITSC versus C2 perfonnance comparison using pretest and posttest means as

data.



Table 33

JITS Qualitative Summary Results for JITSC Students

1. Usefulness 93%
2. Bel1eficial 86%
3. JITS is better than a traditional classroom. . . . .. 0%
4. Ease of JITS Tutoring Style 86%
5. Enjoyable 79%
6. Learn better using JITS than in a classroom 43%

187



188

Table 7 for the interview sheet.) Based on the students' comments, JITS performed

extremely well. III most of the categories, there were significant improvements over tIle

First Program Developme11t Session findings (see Table 17).

The Students' Perspective. Most of the students enjoyed working with JITS.

The following section presents the main comments as printed on the student's survey.

1. "It is easy to learn using tllis systenl instead ofusing a textbook."

2. "It 11elps me 'understand material by specifically emphasizing certain

[programming] parts."

3. "It was nice to see my k110wledge and application of Java works."

4. "Very beneficial because it actually allowed me time to practice that I could

not have had time for otherwise."

5. "Really helped go over importa11t concepts and progranlming expense

especially for someone who has trouble working alone from home."

6. "Overall, [JITS] is an excellent piece of software for serious Java learners."

Students felt that the hints were extrenlely good when either syntax errors or

logic errors occurred. The Java Error Correction Algorithm (JECA) provided JITS with

the necessary information to provide an appropriate 11int to the student for the syntax

errors. Similarly, the AI_Module provided the rationale behind logic errors to JITS

when they occllrred. During this last Program Development Session, it is clear that

JITS supported students in their development of fundamental Java concepts.

Recommendations

At the end of the third Program Development Session, there were no further

major suggestions offered by students or instructors. However, there were some minor



189

suggestions. Some students stated, "JITS should include some gaming elements to

make it more exciting." This is not an unreasonable request. In fact, there are a number

of Conferences and Joumals that revolve aroulld the topic of video streaming and

interactively rich media ill the field of Intelligent Tutoring Systems. The researcher is

currently exploring the technical issues with embeddillg the Java Intelligent Tutoring

System with QuickTime movies using specialized Java modules.

Most of the students seemed content with the performance and manner in which

JITS tutored. However, there were two minor suggestions that could not be met. First,

one student suggested adding colour to the source code area where the student enters

his/her solution to a problem. The user interface technologies used to implement JITS

(i.e., HTML, Javascript, and Java ServerPages) unfortunately can not accommodate this

request. One student suggested that the error pointer (i.e., the A symbol used to identify

the exact spot where an error is located in the student's submission) be shown in the

actual source code area. Again, unfortunately, due to the technologies selected for the

implementation of JITS, this is impossible to do.



190

CHAPTER SEVEN: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This chapter presents the summary, conclusion, and recommendations of the

research work conducted in this dissertation. TIle sunlmary section provides a review of

the final version of Java Intelligent Tutoring System with specific emphasis on the user

interface. The second section of this chapter is the conclusioll, whicll illcludes possible

confounds regarding the perfoffilance score results and analysis. Following the

Conclusion section is the Implications section that discusses the educational implications

of this work. The last section of this chapter presents recomnlendations for future work

in the area of Intelligent Tutoring Systenls, paying particular attention to programming

tutors and the Java Intelligent Tutoring System.

Summary

The Java Intelligent Tutoring System was designed, developed, and assessed in

this dissertation. Recall the generally accepted definition for an ITS is a system that

employs artificial intelligence methods to assist trainees to improve their problem solving

skills by monitoring their reasoning, tracking errors to their source, and, based on the

diagnosis, providing advice and assistance to strengthen problem solving skills (Tracey,

2003). ITS allows for more open-ended programs (Tracey, 2003). JITS satisfies all of

the criteria specified above. Accordingly, JITS is thus a fully qualified Intelligent

Tutoring System. The following section elaborates this point by presenting the

completed Java Intelligent Tutoring System including the user interface and user

modeling components as they relate to this ITS criteria. The section also provides a

Sllmnlary of the performallce score results from tIle quantitative experinlent that



191

determilled tIle effectiveness of tIle Java Intelligent Tutoring System at the Sheridan

Institute of Technology and Advanced Learning.

JITS User Interface

The user interface for the Java Intelligellt Tutoring System underwent a number of

significant changes throughollt the dllration of the research study. During some of the

experinlents, major changes were conducted within very short timelilles to ensure the

studellts' suggestions were taken seriously and that significallt changes were made to the

user interface. Figure 48 depicts the completed JITS user interface.

The first section (i.e., label 1) presents a personalized welcome to the studellt

logged in. Label 2 presents a note relative to the current state of solving the problem at

hand. In this sectioll, notes are dynamically created by JITS that are personalized to each

student. Label 3 presents the problem tenlplate structure illcluding the problem

statement, the problem specifications, and the required output. This section also draws

reference to the problem number out of the total number ofproblems available in this

programming topic. At the end of Section 3, a link (i.e., label 4) is provided to a picture

if the problem has a visual component (i.e., an equation or relevant drawing) to assist the

student in more clearly understanding the problem. If the student clicks the link, the

picture is shown in a separate window to allow the student to refer to the picture while at

the same time working with the main JITS user interface. Label 5 shows the template

provided by JITS for eacll problem ill the system. Label 6 presents the editing region

where tIle studellt types his/her sollltion. Label 7 depicts tIle various bllttons wllich the

students use to interact with JITS. ButtOllS include "Submit" to submit a solution to a

problem and to receive feedback. "View Top Hint" and "View All Hints" bllttons are



192

View the TUlane!
10 )---==::-1

CD

Java Inlelliesnt Tatorin!: System

NOTE: You 1-.ave attempud this problem 4 times. You have not yet solved this problem.
the code area. Please try again.

Problem: (3 of 5) in Problem Set # 2 (Topic: Java StaJements)
Write a program called Power Generator which calculates the result of a number multiplied by itself

Program Specifications:
This program requires the use of a function. A skeleton structure of the solution is given. You need to declare the
variable: result View the image for this problem.rA\

Required Output: ~
Result = 10000

public class Power {
public int powergen(int num) {

return num * num;
}
public static void main(String [] args) {

Power p - new Power()~

®
double re~ult

6 p. powergen (19) ;

owammin& Topics

9
~ JEl.va Basics

Java Statements
If statement
forloops
do while loops
while loops
Arrays

Take me there

}

Submit I View Top Hint (:;":;\

_...;..Pra;.:.;VI;..:·o;..:u.:.s.:.P;..:,o;,;b;..le:;,.:.n_.J __N.:.ext.:..:.Pr.....:o.:.b;..:le.:.m...;..~_...;..My-<..;..Pe.:..:.rlo;,;r.:.m;.:,,";,;cs':':;--11~CD

System. out .println ("Rasul t " + result);

OUTPUT: ® :::J
""Iil".---\ 8 J----------------''------rrccr'''I.O-:Int-.emet-...-:-.--~4'

Figure 48. Final version of the nTS User Interface.



193

the means by which studellts can see the hints the JITS provides. The "View Solution"

button provides potentially various solutions to the current problem.. The "Previous

Problem" and "Next Problem" buttons are used for navigating within a problem set. The

"My Performance" button yields detailed information abollt the student's performance

including problems solved, problems attempted, the number of attempts for each

problem, and conlparison information to tIle "average" JITS student. Links are provided

in the "My Performance" output for rapid access to any problem the students wishes to

retry. Label 8 shows where the majority of the responses from JITS are presented.

Information such as hints, solutions, performallce scores, and errors are all shown in this

area of JITS.

Label 9 presents the choices of the various programming topics that the student

may choose. The "Take Me There" button is used to bring the student to tIle selected

programming topic. Label 10 presents the "View the Tutorial" button, whicll launclles

the TITS Tutorial window. The tutorial window may be viewed at the same time as the

student is working with the main JITS user interface (i.e., the tutorial may be referenced

while working on a problem in JITS). Label 11 Sl10WS the "Help Me" button, which

opens a separate window displaying the screenshot of JITS with labels to all of tIle

components in JITS. The purpose of this window is to orient new users of JITS so that

tlley feel supported and can nl0re quickly become productive in this Intelligent Tutoring

System. The last label (i.e., 12) is the "Exit" blltton. This blltton brings up a screen

which thanks the student for trying Ollt the systenl and performs some system-wide

cleanup procedures behind the scene. Figure 49 presents the screen once a student exits

the system.



194

User Modeling

The latest version of JITS tracks a great deal of information about the student as

s/he works on programming problems in the system. The ultimate goal of gathering this

information is to more closely model the student and to more effectively assist the student

during the tutoring process.

1:f Favorites

Java Intelligent Tutoring System

Thank. you for taking the time to try out the Java Intelligent Tutoring System.

Please send me any comments you have:

Sincerely,

Ed Sykes

ed. svkes@sheridaninstitute.ca

Done

Figure 49. JITS Exit Screen thanking the participant.



195

The following list describes the information tracked by JITS:

1. time and date when a student logs onto JITS;

2. the number of times the student has connected to JITS;

3. every code submission the student makes on a problem;

4. tIle number of times the student llas tried each problem for each problem the

student has tried;

5. the student's solution to a problem;

6. the number and type ofmisconceptions involving keywords, extended

keywords, and identifiers are recorded (e.g., "For," "fro" instead of "for,"

etc.);

7. whether or not the student pressed the "View Solution" button for a problem;

8. student movement through each Problem Set;

9. student movement to a different topic (i.e., the types and difficulty of

problems the student attempts is recorded).

Collectively, this information allows JITS to model the student and effectively

engage the student in the tutoring process. When a student exits the system, the next time

the student starts JITS, the system brings the student back to the exact state as when s/he

left. That is, the problem and code the student was working on are presented to the

student, including a detailed message serving to assist in placing the student back in the

same mental state when s/he was previously engaged in solving the problem.



196

Conclusions

A total of three Program Developmellt Sessions were conducted during this

dissertation involving four distinct JITSC groups and five control groups. In all of the

experimellts, the JITSC students outperformed the corresponding control groups. There

were two situations in which the JITSC group perfornled better than the control group at

a statistical significance at the 0.05 level.

During the first term (i.e., May to September 2004) a tllree-way ANOVA revealed

that a larger gap between pretest and posttest occurred early in the semester as compared

to the difference late in the semester. This seemed to indicate a more dramatic learning

curve took place near the beginning of the semester. The Test by Group interaction

showed the superior performance by tIle JITS group.

Perfornlance score analysis during the second term (i.e., September to December

2004) involving the computation of a 2 x 2, two-way ANOVA revealed the main effect

for ~est, F(l, 92) == 6l.l2,p < .001, which was qualified by a Test by Group interaction,

F(l, 92) == 5.36,p < .025. The Test by Group interaction result is due to the superior

performance of the TITS group at posttest.

These results, coupled with the strong positive qualitative feedback from studellts

and instructors, indicate that JITS is beneficial for students learning Java at the begillner

level. Due to student involvement and suggestions, .JITS includes nlallY features tllat

appeal to many different types of learners. JITS supports multiple intelligences through

its effective tutoring approacll, interactively rich user interface, and precise user­

nlodeling mechallisms.



197

Contributions to the Fields of Computer Science and Education

JITS is implemented using advanced e-Iearning technologies. Its multithreaded

distributed architecture makes JITS scalable, robust, and easy to maintain. Tllrougll the

use of Java ServerPages™, and JavaBeans™, all processing is done at the middle-tier

leveL The Model-View-Controller design pattern was used to implement JITS. All

content is dynamically extracted from all ORACLE database via JDBC alld placed into

the appropriate Java ServerPage™. From a pedagogical perspective, JITS supports

personalized student development by modeling every student in the system. JITS also

enhances the leanling experience by providing an interactively rich ellvironment where

every studellt receives personalized tutoring-each student receives unique personalized

feedback for every situation in the illteractive problem solving sessioll. JITS is an

online website always available for students and requires only a browser and an internet

connection. JITS was designed to be accessible from remote locations and can be

effectively used for e-Ieaming for on-site locations as well as remote sites. JITS does

not require high-band width internet connectivity; a simple dial-up connection will

work equally as fast as a high-band width connection because all of the processing is

done on the middle-tier server.

During the desigll and development of JITS many of these features were unique

in the field of ITS research. In otller words, no other ITS offers tIle sanle degree of

"illtent" recognition, scalable multithreaded distributed architectural design, extellsive

personalized instruction, and effective student modeling (Alevell & Ashley, 1997;

Graesser et aI., 2001; Koedinger, 2001). The performance gain achieved by students

who used JITS, it is on par with other ITS (Sykes & Franek, 2004a). The results from



198

the performance scores indicate a 1.6 standard deviatioll inlprovement over traditional

classroom environments (Sykes & Franek, 2004a). Most ITS still use traditional system

architectural designs which limits the degree of customization to meet student's needs

(Graesser et aI., 2001; Weber & Brusilovsky, 2001; B. P. Woolf et aI., 2001).

Fllrtllermore, most ITS do not offer the same level ofuser tracking, modeling,

and rigor of "illtent" recognition that JITS accomplishes with its sophisticated AI JECA

module (Albus & Meystel, 2002; Heffemall & Koedinger, 2001; Woolfet aI., 2001;

Sykes & Franek, 2004b). The Java Error Correction Algorithm is perhaps the most

significant contriblltion of this research because no otller ITS is as flexible in being able

to guide students towards a potentially unique solution to a programming problem when

a solution is not available. This is due to the AI JECA module which rigorously

analyzes the student's submission and offers "intelligellt" suggestions even though there

is no solution for the problem. The term "intelligence" is in reference to the fact that

the researcher is working fronl the perspective of Weak AI not Strong AI. Nonetheless,

JITS takes the advice from JECA, combines it with the individual student model, the

collective student model, and respollds appropriately with personalized feedback for

each and every student in the system.

Possible Confounds

A possible confound associated witll the performance score results determined in

tllis study may be attributed to JITS group students having had more "time on task" than

the corresponding Control groups. Additionally, due to the on-line accessibility and

continuous availability of JITS, it is possible that the JITSC students spent more "time on

task." However, it is equally reasonable to assume that students in the Control group



199

spent the same amount of time on coursework activities due to the independent nature of

postsecondary education.

Another possible confound is the fact that the JITS groups were receiving more or

different attention than Control groups. The Hawthorne effect is a factor that needs to be

taken into consideration. The researcher recognizes these possible confounds in the

assessment of performance scores in this research project.

On the other hand, it is equally likely that students who identified themselves as

being "weak" at programming may have elected to become involved in the research

project to gain additional assistance in order to improve their performance in the course.

Implications

Students and instructors alike enjoyed and benefited from working with me in

the development of JITS. As is evident in the findings chapter, their involvement in this

research was very important in shaping TITS and improving it to meet their needs.

Overall, students liked learning in the environment that the Java Intelligent Tlltoring

System provided. This research has a nllmber ofpositive in1plications. Due to the huge

amount of student tracking information that JITS collects, there are n1any different

types of reports that may be generated for a variety of reasons. First, personalized

student performance reports on individual studel1ts using JITS may be created so that

each student can reflect on his/her performance and identify areas of improvement. A

second implication of the research conducted is from the perspective of the instructor.

For instance, instructors may want detailed information on student performance on

specific programming topics in JITS. This information could be used to modify



200

curricula, perform additional classroom instructioll, tIle setting of new tests, etc. This in

tum could increase the students' performance in the course.

This research has contribllted to the scientific community. For example, the Java

Error Correction Algorithm (JECA) is the first of its kind to determine the "intent" of the

student's subnlission by rigorously analyzing the student's code. Behind the scenes,

JECA nlakes cllanges to the student's submission in order to facilitate this analysis.

However, once JECA determines the most reasonable intent of the student, these changes

are made known to the student. The results from JECA are passed to the Java Intelligent

Tutoring System (llTS) in the form of hints and suggestions, which are then used for

instructional pllrposes. The Java Error Correction Algorithm has appeared in

international peer-reviewed journals and international conference proceeding

publicatiolls. While JECA has contributed to the field of Compllter Science, JITS has

contributed to the field of Education. The following is a list ofpublications this

dissertation has had in the fields of Computer Science and Education:

Book Publications

Franek, F., Sykes, E. R. (2007). Compiler Design: Implementation Using C++ and Java,
Jones and Bartlett Publishers. (in progress)

International Journal Publications

Sykes, E. R. (2006). Developmental Process Model for the Java Intelligent Tutoring System,
Journal of Interactive Learning Research. (accepted for publication: issue to be
determined)

Sykes, E. R., & Franek, F. (2004). A Prototype for an Intelligent Tutoring System for
Students Learning to Program in Java, International Journal of Computers and
Applications. Vol 1, pp. 35-44, ACTA Press.

International Conference Proceedings Publications

Sykes, E. R. (2006). Human Computer Interaction in the Java Intelligent Tutoring System,
Fifth lASTED International Conference on Web-Based Education, Puerto Vallarta,
Mexico. (accepted)



201

Sykes, E. R., & Mirkovic, A. (2005). A Fully Parallel Implementation of a Scalable Hopfield
Neural Network on the SHARC-NET Supercomputer, The 19th International Symposium
on High Performance Computing Systems and Applications, University of Guelph,
Ontario, Canada.

Sykes, E. R., & Franek, F. (2004). Presenting JECA: A Java Error Correcting Algorithm for
the Java Intelligent Tutoring System, Proceedings of the lASTED International
Conference on Advances in Computer Science and Technology, St. Thomas, Virgin
Islands, USA (pp. 151-156).

Sykes, E. R., & Franek, F. (2004). Field-Report of the Java Intelligent Tutoring System,
Learning Technology Newsletter, Publication of IEEE Computer Society Technical
Committee on Learning Technology (ISSN 1438-0625) (pp. 32-35).

Sykes, E. R., & Franek, F. (2004). Preliminary Assessment of the Java Intelligent Tutoring
System, International Conference on Education and Information Systems, Technologies
and Applications, Orlando, Florida. (pp. 22-27).

Sykes, E. R., & Franek, F. (2004). Pedagogical Design of the Java Intelligent Tutoring
System, International Conference on Education and Information Systems, Technologies
and Applications, Orlando, Florida. (pp. 213-218).

Sykes, E. R., & Franek, F. (2004). Inside the Java Intelligent Tutoring System Prototype:
Parsing Student Code Submissions with Intent Recognition, Proceedings of the lASTED
International Conference on Computers and Advanced Technology in Education.
Innsbruck, Austria. (pp. 613-618).

Sykes, E. R., & Franek, F. (2003). An Intelligent Tutoring System Prototype for Learning to
Program Java. Proceedings of the 3 d IEEE International Conference on Advanced
Learning Technologies, Athens, Greece, (pp. 485-486).

Sykes, E. R., & Franek, F. (2003). A Prototype for an Intelligent Tutoring System for
Students Learning to Program in Java. Proceedings of the lASTED International
Conference on Computers and Advanced Technology in Education. Rhodes, Greece.
(pp. 78-83).

Sykes, E. R. (2003). Java Intelligent Tutoring System Model and Architecture. AAAI Spring
Symposium: Human Interaction with Autonomous Systems in Complex Environments,
SS-03-04, (pp. 187-193). AAAI Press.

Sykes, E. R. (2002). A Unified Model of Intelligence. Canadian Society for the Study of
Education Press (pp. 537-545). Toronto, Canada: CSSE Press.

Sykes, E. R. (2002). An Intelligent Academic Advising System Model Using Soft Computing
Constructs. Paper presented at the meeting of Computer Science Faculty, St.
Catharines, Ontario, Canada.

Recommendations

Throughout this dissertation, a number of innovative ideas and breakthroughs

were accomplished. This is demonstrated by the number of international publications the



202

researcher has to date on the Java Intelligent Tutoring System. It would be advantageous

to conduct more educational research by field-testing JITS in environments where the

students would use JITS as a core component of their course. For example, integrating

course assignments, exercises, and projects by using JITS may reveal interesting results.

Other areas of recommendation include research relating to relevant education

and scientific research communities such as gaming elements, video-streaming, more

sophisticated user modeling, and more intelligent feedback mechanisms. The researcher

intends on continuing researching and publishing to further promote the Java Intelligent

Tlltoring System.



203

References

Albus, S. J., & Meystel, M. A. (2002). Intelligent Systems: Wiley.

Aleven, V., & Ashley, D. K. (1997). Case-Based Argumentation Through a Model and

Examples: Empirical Evaluation of an Intelligent Learning Environment. In B. Du

Boulay & R. Mizoguchi (Eds.), International Journal ofArtificial Intelligence in

Education (pp. 87-94). Amsterdam: lOS Press.

Anderson, J. R. (1998). Production Systems and the ACT-R Theory. In P. Thagard (Ed.),

Mind readings: Introductory selections on cognitive science (pp. 59-76).

Cambridge, MA: MIT Press.

Anderson, J. R., Boyle, C. F., Corbett, A. T., & Lewis, M. W. (1990). Cognitive

Modelling and Intelligent Tutoring. Artificial Intelligence, 42, 7-49.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill Acquisition and the Lisp

Tutor. Cognitive Science, 13(4),467-505.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive

Tutors: Lessons learned. The Journal ofthe Learning Sciences, 4, 167-207.

Anderson, J. R., & Pelletier, R. (1991). A Development Systemfor Model-Tracing Tutors.

Paper presented at the The International Conference on the Learning Sciences,

Northwester University, Evanson, Illinois, USA.

Anderson, J. R., & Reiser, B. J. (1985). The LISP tutor. Byte, 10, 159-175.

Beal, R. C., Beck, E. J., Woolf, B. P., & Rae-Ramirez, A. M. (1998). Whale Watch: An

Intelligent Model-Based Mathematics Tutoring System. Paper presented at the

Proceedings of the Fifteenth IFIP World Computer Congress, Austria.



204

Bloom, S. B. (1984). The 2-sigma problem: The search for methods of group instruction

as effective as one-to 011e- tutoring. Educational Researcher, 13, 4-16.

Boyd, M. (2003). Center for instructional technologies. Retrieved February 10,2003,

from http://www.utexas.edu/cc/webct/about/atut/coursetool/prodrevs.html

Burke, M. G., & Fisher, G. A. (1987). A practical method for LR and LI syntactic error

diagnosis and recovery. ACM Transactions on Programming Languages and

Systems, 9(2), 164-197.

Chen, E. (2004). Java: A False Sense ofSecurity? Retrieved Nov 10,2004, from

http://www.trendmicro.com!en!about/news/coverage/eva-chen.htm

Conati, C., & Van Lehn, K. (1999, 19-22 July). Teaching Meta-Cognitive Skills:

Implementation and Evaluation ofa Tutoring System to Guide Self-Explanation

while Learningfrom Examples. Paper presented at the Ninth World Conference of

Artificial Intelligence and Education, Le Mans, France.

Cottingham, J., Stoothoff, S., Murdoch, A., & Kenny, A. (1991). The philosophical

writings ofDescartes: Cambridge.

de Koning, K., & Bredeweg, B. (2001). Exploiting Model-Based Reasoning in

Educational Systems: Illuminating the Leamer Modeling Problem. In K. D.

Forbus & P. J. Feltovich (Eds.), Smart Machines in Education. Cambridge, MA.:

MIT Press.

Fischer, C., & LeBlanc, R. J. (1991). Crafting a compiler with C. Redwood City, CA:

Benjamin Cummil1gs Publishing.

Fletcher, J. D. (1995). What Have We Learned about Computer-Based Instruction in

Military Training? Brussels, Belgium: North Atlantic Treaty Organization.



205

Gilbert, F. (2003). Lakehead University and the Double Cohort, from

http://www.lakeI1eadu.calcohort/main.html

Graesser, A. C., & Person, N. K. (1994). Question asking during tutoring. American

Educational Research Journal, 31,103-137.

Graesser, A. C., Person, N. K., & Harter, D. (2001). Teaching tactics and dialog in

autotutor. International Journal ofArtificial Intelligence in Education, 12, 12-23.

Heffernan, N. T., & Koedinger, K. R. (2001). The Design and Formative Analysis ofa

Dialog-Based Tutor. Paper presented at the AI in Education 2000 Workshop on

Building Dialogue Systems.

Karolyi, J. (2004). Practice makes perfect. In E. R. Sykes (Ed.) (pp. Personal

communication with instructor, John Karolyi at the Sheridan Institute of

Technology and Advanced Learning.). Oakville.

Koedinger, K. R. (2001). Cognitive tutors. In K. D. Forbus & P. J. Feltovich (Eds.),

Smart machines in education (pp. 145-167). Cambridge, MA: MIT Press.

Martinez, A. (2002). Information Technology - Computer And Data Programming

Services: Computer Programmers. Retrieved January 4,2003, from

http://www.cteresource.org/ipg/certifications/sun jpj2.html

O'Reilly, R. C., & Munakata, Y. (2000). Computational Explorations in Cognitive

Neuroscience. London, England: MIT Press.

Pawlan, M. (2004). J2EE Tutorial. Retrieved October 15,2004, from

http://java.sun.com/j2ee/l.3/docs/

Regian, F. D. (1997). Increased performance gains in individualized human tutoring.

IEEE: Intelligent Systems, 4, 14-29.



206

Rowe, C. N., & Galvin, P. T. (1998). An authoring system for intelligent procedural-skill

tutors. IEEE: Intelligent Systems, 14, 61-69.

Schofield, J. W., Evans-Rhodes, D., & Huber, B. R. (1990). Artificial Intelligence in the

Classroom: The Impact ofa Computer-Based Tutor on Teachers and Students.

Social Science Computer Review, 8(1), 24-41.

Searle, J. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3, 417­

424.

Seidel, R. L., & Perez, R. S. (1994). An evaluation model for investigating the impact of

innovative educational technology. In H. F. O'Neil, Jr. & E. L. Baker (Eds.),

Technology Assessment in Software Applications (Vol. 4, pp. 235-256). Los

Angeles, California: Graduate School of Education and Hllman Behaviors.

Sykes, E. R. (2003). Java Intelligent Tutoring System Model and Architecture.

Proceedings ofAmerican Association ofArtificial Intelligence Spring Symposium

on Human Interaction with Autonomous Systems in Complex Environments, 187-

193.

Sykes, E. R., & Franek, F. (2003). A Prototype for an Intelligel1t Tutoring System for

Students Learnil1g to Program in Java. Proceedings ofthe lASTED International

Conference on Computers and Advanced Technology in Education, 78-83.

Sykes, E. R., & Franek, F. (2004a). Preliminary Assessment ofthe Java Intelligent

Tutoring System. Paper presented at the International Conference on Education

and Il1fonnation Systems, Technologies and Applications, Orlando, Florida, USA.

Sykes, E. R., & Franek, F. (2004b). Presenting JECA: A Java Error Correcting

Algorithm for the Java Intelligent Tutoring System. Paper presented at the



207

lASTED International Conference on Advances in Compllter Science and

Technology, St. Thomas, Virgin Islands, USA.

Sykes, E. R., & Franek, F. (2004c). A Prototype for an Intelligent Tutoring System for

Students Learning to Program in Java. International Journal ofComputers and

Applications, 1, 35-44.

Tracey, W., R. (2003). The Human Resources Glossary: The Complete Desk Reference

for HR Executives, Managers and Practitioners (Third ed.): CRC Press.

Vasilevsky, K. E. (2003). Personal Consumption as the Driving Force ofAmerican and

Canadian Economy. Retrieved February 10,2003, from

http://iskran.iip.net/engl/mag/june.html

Weber, G., & Brusilovsky, P. (2001). ELM-ART: An adaptive versatile system for web­

based instruction. International Journal ofArtificial Intelligence in Education, 12,

129-145.

Wertheimer, B. P. (1990). The Geometry Proof Tutor: An Intelligent Computer-Based

Tutor in the Classroom. Mathematics Teacher, 83(4), 303-317.

Woolf. (1992). AI in education. In S. Shapiro (Ed.), Encyclopedia ofArtificial

Intelligence (pp. 434-444). New York: Wiley.

Woolf, & Hall. (1995). Multimedia Pedagogues: Interactive Systems for Teaching and

Learning:. IEEE: Computer, 28(5), 74-80.

Woolf, B. P., Beck, J., Eliot, C., & Stem, M. (2001). Growth and maturity of intelligent

tutoring systems: A status report. In K. D. Forbus & P. J. Feltovich (Eds.), Smart

machines in education (pp. 100-144). Cambridge, MA: MIT Press.



Appendix Brock Ethics Approval

The following section contains Brock University Ethics Approval form for this

research.

208



209

Brock University
Senate Research Ethics Board
Extensions 3943/3035, Room AS 302

DATE:

FROM:

January 26, 2004

Joe Engeman11, Cllair

Senate Research Ethics Board (REB)

TO: Rosemary Young, Education

Edward R. Sykes

_F_IL_E_: 03-262 Sykes

TITLE: Java Intelligent Tutoring System Project

The Brock University Research Ethics Board has reviewed the above research proposal.

DECISION: Accepted as Clarified

This project has been approved for the period of January 26, 2004 to December 18,
2004 subject to full REB ratification at the Research Ethics Board's next schedllied
meeting. The approval may be extended upon request. The study may now proceed.



210

Please note that the Research Ethics Board (REB) reqllires that you adhere to the protocol
as last reviewed and approved by the REB. The Board must approve any modifications
before they can be implemented. Ifyou wish to modify YOllr research project, please
refer to www.BrockU.CA/researchservices/forms.html to complete the appropriate form
REB-03 (2001) Request for Clearance ofa Revision or Modification to an Ongoing
Application.

Adverse or unexpected events must be reported to the REB as soon as possible with an
indication ofhow these events affect, in the view of the Principal Investigator, the safety
of the participants and the continuation of the protocol.

If research participants are in the care of a healtll facility, at a school, or other institution
or commllnity organization, it is the responsibility of the Principal Investigator to ensure
that the ethical guidelines and approvals of those facilities or institutions are obtained and
filed with the REB prior to the il1itiation of any research protocols.

The Tri-Council. Policy Statemellt requires that ongoing research be monitored. A Final
Report is required for all projects, with the exception ofundergraduate projects, upon
completion of tIle project. Researchers with projects lasting more than one year are
required to submit a Continuing Review Report annually. The Office of Research
Services will contact you when this form REB-02 (2001) Continuing ReviewlFinal
Report is required.

Please quote your REB file number on all future correspondence.

Deborah Vall00sten, Research Ethics Officer
Brock University
Office ofResearch Services
500 Glenridge Avenue
St. Catharines, Ontario, Canada L2S 3Al
phone: (905)688-5550, ext. 3035 fax: (905)688-0748
email: deborah.vanoosten@brocku.ca
http://www.brocku.ca/researchservices/humanethics.html



211

FROM: Linda Rose-Krasnor, Chair
Research Ethics Board (REB)

TO: Rosemary Young, Education
Sykes, Edward

RE: Continuing Review/Final Report
File #: 03-262 - Sykes, Edward
Originally Accepted: January 26, 2004
Date of Completion: December 18, 2004

DATE: 1/14/2005

Thank you for completing the Continuing ReviewlFinal Report form. The Brock
University Research Ethics Board has reviewed this report for:

Java Intelligent Tutoring System Project

The Conlmittee finds that research participants are no longer being studied or followed
on the above protocol and therefore, this protocol is officially terminated by the Research
Ethics Board.

* Final Report Accepted.

LRK/hb

Heather Becker, Office of Research Ethics
Brock University
Office of Research Services
500 Glenridge Avellue
St. Catharines, Ontario, Canada L2S 3Al
phone: (905)688-5550, ext. 3035 fax: (905)688-0748
email: hbecker@brocku.ca
http://www.brocku.ca/researchservices/Celiification&Polices/Certification&Polices Hu
man Ethics.html


