Design, Development and Assessment of the

Java Intelligent Tutoring System

Edward R. Sykes, M.Ed., B.Ed., B.Sc.

Department of Graduate and Undergraduate

Studies in Education

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Faculty of Education, Brock University

St. Catharines, Ontario

© September 2005

JAMES A GIBSON LIBRARY
BROCK UNIVERSITY
ST. CATHARINTS nnr

Abstract

The “Java Intelligent Tutoring System” (JITS) research project focused on
designing, constructing, and determining the effectiveness of an Intelligent Tutoring
System for beginner Java programming students at the postsecondary level. The
participants in this research were students in the School of Applied Computing and
Engineering Sciences at Sheridan College. This research involved consistently
gathering input from students and instructors using JITS as it developed. The cyclic
process involving designing, developing, testing, and refinement was used for the
construction of JITS to ensure that it adequately meets the needs of students and
insfructors. The second objective in this dissertation determined the effectiveness of
learning within this environment.

The main findings indicate that JITS is a richly interactive ITS that engages
students on Java programming problems. JITS is equipped with a sophisticated
personalized feedback mechanism that models and supports each student in his/her
learning style. The assessment component involved 2 main quantitative experiments
to determine the effectiveness of JITS in terms of student performance. In both
experiments it was determined that a statistically significant difference was achieved
between the control group and the experimental group (i.e., JITS group). The main
effect for Test (i.e., pre- and posttest), F(1, 35) =119.43, p <.001, was qualified by a
Test by Group interaction, F(1, 35) =4.98, p <.05, and a Test by Time interaction,
F(1,35)=43.82, p <.001. Similar findings were found for the second experiment;
Test by Group interaction revealed F(1, 92) = 5.36, p < .025. In both experiments the

JITS groups outperformed the corresponding control groups at posttest.

il

Table of Contents

Page
ADSITACT ..ttt il
LASt OF TADIES ..ottt sttt ettt be bbbt v
LSt OF FIGUIES ..ttt st st viii
CHAPTER ONE: THE PROBLEMcccocoiiiiiininieieiiiccicccieicc s 1
Problem Statementccocvveeiiiriiieieeserere s 2
RAtIONALE ... s 4
Definition Of TeIMIS.c.ovuiiiiiriieieieeee et 7
Assumption and Limitationsccecereevierieienininincnesiciescse e 7
FeaSTDILILY ..c.veuiieiiiiieteee e e e 8
Outline of Remainder of the Document...........ccccoeeevieniininieninececiceiececeee 10
CHAPTER TWO: LITERATURE REVIEWcccoviimiiiiniiniinienieneneeeeie e 12
The Psychological Framework of ITSccccoviiiiiniiniiiiiicecc e 12
Student-Teacher PerSpectivescccuevveiiieeiienienierieeree sttt sae e 21
Current State of Development for Intelligent Tutoring Systems..........cccceevueeuenee. 24
ACT-R Cognitive Theory for Developing TULOTScccecverreriereenieeniienieneeieene, 30
CHAPTER THREE: DESIGN........cceiiiiirinininienteteieeeiete et sttt 35
Initial Designs for the Java Intelligent Tutoring Systemcceceeveeveeviverieennnne. 35
Motivation for the Design of the Java Error Correction Algorithm 37
Java Error Correction Algorithm Design..........cccceveiievieninieniieiienie e 38
Java Intelligent Tutoring System Design and Architecture...........ccevcvevvenueennenne. 43
CHAPTER FOUR: IMPLEMENTATION.......ccceitrtiiniinenienientcteee st 51
Initial Java Error Correction Algorithm (JECA) Implementation..........c...cc........ 51
Initial Java Intelligent Tutoring System Implementationccccceeveenueerienenne. 64
Human-Computer INteractionc.coeoieverirenieieneninincineeceeene sttt 65
Hint GeNeTation........cc.eoeeviiriiiiiiieiieiciieeie ettt ettt st 69
Initial User Modeling DeSign........cc.coereriiieiiiieieieiieeeecee et 79
CHAPTER FIVE: METHODOLOGY AND PROCEDURES..........cccocivviininiiieieien, 80
SUDJECES .ttt bbbt e sb et eaas 80
Statement Of PrOCEAUIEScccurviriiiiiiriiiieiee et 82
Methodology and Procedures: A SUMMATYcceveeeeieiieiienieeeiesesieeeeeeens 88
CHAPTER SIX: FINDINGS (ANALYSIS AND EVALUATION)....cccocceevieieiereien, 92
Summary of JITS Development Research...........cccoueeeevininininieniieeeeeeeee, 93
Summary of Student Performance Score Analysis........c.cocvvevveerererieineennnenenn, 96

First Program Development Session: Section #1: JITS Developmental
RESCATCH.....iiieti et et 100

il

First Program Development Session: Section #2: JITS Performance Score

ANALYSIS. ¢ttt ettt et e ee et e ne e 127
First Program Development Session: Section #3: Summary and
Recommendations for Further JITS Developmentcccceevevviiinenieniieniennns 127
Second Program Development Session: Section #1: JITS Developmental
RESEATCH ...ttt st 140
Second Program Development Session: Section #2: JITS Performance Score
ADALYSIS. ...ttt e st eae s 143
Second Program Development Session: Section #3: Summary and
Recommendations for Further JITS Developmentccccvceeinenerieenenenennnn 143
Third Program Development Session: Section #1: JITS Developmental

RESCATCH ...ttt ettt 150
Third Program Development Session: Section #2: JITS Performance Score
ADALYSIS.. .ottt st 170
Third Program Development Session: Section #3: JITS Summary and
Recommendations for Further JITS Developmentcccoeceevieviinicnecncnniennen. 182

CHAPTER SEVEN: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 190

SUMMATY ..o s 190
CONCIUSIONS ...ttt ettt ettt sttt ettt sb bbbt e ebe et sinesreesbeeteans 196
Contributions to the Fields of Computer Science and Education........................ 197
IMPLCALIONS. ...uiviiiiiiiiiicicictceee et 199
RecomMMENAAtiONS.........cocuiiiiiriiirieeeeie ettt sttt ae e s 201
RETEIEIICES ...ttt ettt ettt et e b s et et esaeenees 203
Appendix Brock Ethics Approval...........ccccoeiiiiiininieieieeee ettt 208

iv

List of Tables

Table Page

1

10

11

12

13

14

Student Modeling: Assessment and Instructional Adaptation. Excerpt

from ANDES PhySics TULOTcccceruiririeieininiciiiciec e 17
Java Reserved Words and Keywords...........coevevveirininicieniennincciinncccsennees 40
Extended Java Reserved Words and Keywords.........ccceeceeviiiiiiiinniiiiiiciicinn, 41

Internal JECA Parse Tree Permutations and Competition for the Selection

OF the BeSt TTEES ...cueeiiiiiiiiiiieeee et 63
Initial JITS ORACLE Schema Tablescccceveevierienimniiinieiiniicecicececee 70
Hint Objects Utilization and Typical Dialogue Between JITS and the Student....... 78
INtEIVIEW SHECT ..c..eeiiiiiiieee e 84

Performance of Students in JITSC and Control Prior Exposure to JITS

and After EXposure to JITS......co.oo oottt 90
Sample Database Student Tracking Information Indicating Number of

Attempts, Solved (true/false), and Student’s SOlUtiONScceecveveveererericciennene 107
Sample Database Student Tracking Information Indicating Current Problem

Set, Problem_id, Performance Rating, Skill level, Number of Times Connected

to JITS, and the Date of Last Connectionccccevveevveeiveveeeieireecnreccereeecree e 109
Redesigned JITS ORACLE Schema Tables.........cccoverieierievienieniiieeeeieieicieen 118

Redesigned JITS ORACLE Schema Showing the Newly Created

Programming Topics and Corresponding Descriptions...........cocevereeeereniereeeniensn. 119
Performance of Students in Class JITSCcoooviiiiiiiiiiiie e 128
Performance of Students in Class C.........cccvvvvvviiiiiiiviiiieceeeeertee et e 129

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Standard Statistical Measures for C and JITSC.........cccccevveciiiiininiiiciciinicieins
Two-way ANOVA with Repeated Measure: Between-Subjects Effects for

Cand JITSC ...ttt bbb
JITS Qualitative Summary Results for JITSC Studentscccceevevieneenienieninne.
Performance of Students in Class JITSC........cccceoeeverenenmnieiiiciireceeeeeieans

Performance of Students in CIaSS C...ooeeveeeeeeeeeeeeeeieeeeeeeeeeeeeeeareeeesseaaeeeeeseaeaees

Two-way ANOVA with Repeated Measures: Between-Subjects Effects for
Cand JITSC ..ottt ettt b e nnen
Redesigned JITS ORACLE Schema Tables to Accommodate Pictures................
Performance of Students in JITSC Class Taught by Instructor “A”......................
Performance of Students in C Class Taught by Instructor “A”cccceveverrenee
Standard Statistical Measures for C and JITSC Taught by Instructor “A”............
Two-way ANOVA with Repeated Measures: Between-Subjects Effects for C
and JITSC Taught by INStructor “A”c.ooiivieiieieeeeie et
Performance of Students in JITSC Class Taught by Instructor “B™......................
Performance of Students in C1 and C2 Classes Taught by Instructor “B™............
Standard Statistical Measures for C1, C2, and JITSC Taught by Instructor “B” ..
Two-way ANOVA with Repeated Measures: Between-Subjects Effects for

C1, C2, and JITSC Taught by Instructor “B”ccccvevievieviinenineseeieeeieniennn
Two-way ANOVA with Repeated Measures: Between-Subjects Effects for

C1 and JITSC Taught by Instructor “B”.........cc.ccivvirviiirieeeseerie e

Vi

179

32 Two-way ANOVA with Repeated Measures: Between-Subjects Effects for

33

C2 and JITSC Taught by Instructor “B”.........ccccvvevennen.

JITS Qualitative Summary Results for JITSC Students

vii

List of Figures

Figure Page
1. Architecture of an Intelligent Tutoring System.ccccevvvemvinieiiiiniiciicce, 15
2. First Component of JECA — Scanner Correction ACiVIties.cccoeeuevirciiiecnennene 44
3. Second Component of JECA — Parser Correction ACtiVities..........cccevvevverereenenne. 45
4. Initial design for the JITS User Interface...........cccovevuevuemnieiicniieiiiiinicieieeeenns 48
5. Model View Controller (MVC) design pattern implemented in JITS. 50
6. Keyword object and _keyword data StrucCture.coceveeeevievenienenieeiecsieneeee, 54
7. BestMatch object—used for the refinement process in determining an

identifier Or @ KEYWOTd.ovuiriiiiiriiieieieetece ettt 57
8. BestMatch member contains the Transformation string from Edit Distance

ALZOTTERIN. ..ttt sttt s 58
9. Burke-Fisher error correction algorithm with a 4-token queue in the

middle of processing a statement production............ccceeuevererereneninienieneseeeean, 60
10. Burke-Fisher error correction algorithm with a 4-token queue completing the

processing of a statement production and commencing a new production. 61
11. JITS multithreaded distributed web-based infrastructure.cccoceeveeievirsrrenennnne. 66
12, JITS 10N SCTEEM.evieiiieiieieiieieiteite ettt ettt ettt ettt et 67
13. Initial JITS User INterface.ccocviiiinininininecceeee e, 68
14, Hint CATEZOTIES. ..eovereriiiiiiieiiie sttt ettt sttt et ettt beebn et e sbasnaas 71
15. A JECA Hint object representing a grammatical eITor.ccccevveereeeereeeeesneennenn. 74
16. Arithmetic sum Java program with grammatical errors and syntax errors.............. 75
17. Internally corrected JECA source program for the arithmetic sum problem........... 76

viii

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Sample performance test for quantitative investigation...........c.cceceeeeveereenreneneenen. 86
Completed version of the JITS User Interface.........cccceceeveceruerieieirinincienienieienns 94
Showing (a) the two-way Semester by Test interaction due to the smaller gap
between pretest and posttest later in the semester, and (b) the two-way Group

by test interaction due to the superior performance of the JITS group at posttest... 97
Showing the two-way Group by Test interaction for responses indicating

superior performance for the JITS group at post-test.ccccevvevuvreeneiirnncciennene. 99
“View Top Hint” results. JITS selects the most significant hint to offer

the STUAENL. ..c.eeiiiiiie ettt et ettt 103
“View All Hints” results. JITS displays all of the hints relating to all of the
problems JITS has encountered with the student’s submission...........cccceeveeeueenne 104

JITS analysis and response to a submission that is identical to the required

output. JITS responds in the same manner as a human tutor would...................... 106
JITS Authoring Tool User Interface.cceoeeereneeieiniireescieeeeeee e 113
“View Solution” presenting solutions for the current problem.c........ 115

Redesigned JITS User Interface incorporating Programming Topic

SELECHION PANEL......ciiieiiniiiiicieie ettt sttt e 117
JITS abstract internal object representation showing relationships and

dependencies between JECA, AI Module, student, and other components.......... 120
Redesigned JITS User Interface depicting the list of Programming topics in

a drop-down combo LiSt.ccceeviiiiiiiiiiiecee s 121
Resigned JITS User Interface depicting the “Previous Problem” and “Next

PrOBLEmm”” DULLOMIS. ..o e e e e e 122

ix

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

JITS Tutorial window and main JITS User Interface. The tutorial window

is launched from the main JITS User Interface by clicking the

“View Tutorial” button as indicated by the arrow.cccceceiiiiiiiniiicciene 125
JITS Tutorial window displaying a sample tutorial from the list of

Programming TOPICS.ccvriiviiiiieieite ettt bttt et e 126

JITSC versus C performance comparison using pretest and posttest means

AS A ...t e s 133
Initial design of the output from the “My Performance” button.............cccevenne. 139
Performance of C and JITSC students using mean grades as data.c..cc....... 149

“My Performance” button displays performance information for each student. ... 155
Top right section of JITS’ User Interface displaying the “Help Me” button......... 159
JITS Help screen is used to assist new users to get oriented with this ITS. 160
Improved JECA demonstrating filtered output from the compiler and JITS
presenting the results in a friendly way for the student to make corrections......... 161
A variation of a compiler error due to a student’s submission. Previous

versions of JECA would simply return a hint: “Sorry. No hints available.”

The improved JECA is intended to be more helpful and presents compiler

errors in 8 MOore frendly WaY.......ococieeiiiiiccece e 162
Revised JITS User Interface accommodating a link to the image for the

CUITENTE PIODIBIIL. c..e.eiiiieiciii ettt sr e eae s 165

JITS Image Viewer depicting the image for the current problem.c.eccne. 166

43,

44.

45.

46.

47.

48.

49.

Revised “My Performance” button output showing links to previously

attempted problems, font, and colour distinctions between solved and unsolved
PIOBIEIMS. ... 169
Classifying control groups and experimental groups based on instructors............ 171
JITSC versus C1 and C2 performance comparison using pretest and

POSttest MEANS @S AALA.oveeeeieicciieeee et 184
JTSC versus C1 performance comparison using pretest and posttest

MEANS @S AALA. ..o.eiiiiiiiiiiiicie e s e 185

JITSC versus C2 performance comparison using pretest and posttest

MEANS AS AALA. Levreriiiiee it e e e st e et et nee 186
Final version of the JITS USer INtEITaACE. ...uuumeeeeeeeeeeeeeeee et 192
JITS Exit Screen thanking the partiCipant.cc.ccoveueeverieeeiesieeeieieeeeeee e 194

X1

CHAPTER ONE: THE PROBLEM

Accessibility to computers and computer resources is increasing in our society at
a staggering rate. Not only is computer technology changing more rapidly now than at
any other time in history, but the price of computers is continually decreasing inversely
proportional to the power they deliver. Over 50% of households in Canada and the
United States have computers (Vasilevsky, 2003). Internet connections and capabilities
are growing at amazing rates due to the number of people who want to be connected to
the world of information (Vasilevsky, 2003). Internet Service Providers (ISP) are rapidly
upgrading their infrastructure to support real-time video and audio to their clients.
Personal Digital Assistants (PDA) such as cellular telephones and palm-pilots, are
Internet ready and becoming commonplace in our society. In spite of the advances in
computer technology and accessibility, educators have been relatively slow in seizing
technology to enhance student learning. There are significant problems in the context of
personalized student instruction in current educational systems that can be remedied
through the use of appropriate technologies.

Online teaching tools such as WebCT and Blackboard are becoming extremely
popular for distance education and mainstream in-class education. In fact, entire colleges
and universities have implemented online teaching tools as the central mechanism for
delivering all of their courses (Boyd, 2003). The strength of these tools is their ability to
provide the teacher and student with a great deal of versatility within the learning
environment. Unfortunately, they do not provide any means by which a student may
receive ongoing personalized instruction. Teaching students on a one-on-one basis

significantly influences the degree of knowledge and skill retained by the student; Bloom

suggests that one-to-one tutoring is the most effective strategy known, generally yielding
two standard deviations better performance than traditional instruction. He suggests
further that mastery learning approaches one-to-one instruction in terms of measured
learner gains (Bloom, 1984).

This raises the following crisis in the educational community. In order for
students to reach their potential, they need individual tutoring. However, due to a
plethora of factors such as the limitations of online teaching tools, financial
considerations, and sheer logistics, each student cannot be granted access to a
personalized human tutor for a consistent duration of time. After all, traditionally there is
only one teacher in a classroom of students. So, what can be done to solve this problem?
One solution is to design and implement Intelligent Tutoring Systems (ITS). A generally
accepted definition for an ITS is a system that employs artificial intelligence methods to
assist trainees to improve their problem solving skills by monitoring their reasoning,
tracking errors to their source, and, based on the diagnosis, providing advice and
assistance to strengthen problem solving skills (Tracey, 2003). ITS allows for more

open-ended programs (Tracey, 2003).

Problem Statement
The nature of learning and teaching has not changed significantly since the days
of Socrates. Experienced teachers understand the value of Socratic dialogue to lead
students to deeper levels of understanding and higher levels of performance. Effective
instruction involves establishing the right level of difficulty coupled with engaging and

realistic coached-practice simulations (de Koning & Bredeweg, 2001). A significant goal

for developers of Intelligent Tutoring Systems is to embed the Socratic dialogue method
within a media-rich environment. Developers of ITS attempt to establish an interactive
environment that leads to the suspension of disbelief by students, uses a spiral
instructional pattern, and accounts for how humans process information and learn.

Intelligent Tutoring Systems represent advanced forms of cognitive technologies
that use computational intelligence. Like human tutors, ITS are useful in reducing the
time required by students to acquire knowledge and expert skills. For example,
Koedinger (2001) found that in traditional approaches, student tasks take two to three
times longer than in ITS environments.

The core of all ITS is an Artificial Intelligence (AI) module that is responsible for
many tasks including capturing the student’s knowledge state, delivering an appropriate
lesson, assessing and evaluating student performance, and providing valuable feedback to
the student. Thus, ITS are explicitly designed to assist in resolving the crisis in education
regarding personalized student education by providing a means through which students
may reach their potential.

The “Java Intelligent Tutoring System” (JITS) research project focused on
designing, constructing, and determining the effectiveness of an Intelligent Tutoring
System for beginner Java programming students at the postsecondary level. First and
foremost, this research involved consistently gathering input from students and
instructors using JITS as it developed. The cyclic process involving designing,
developing, and testing, and back to redesigning was used for the construction of JITS to
ensure that it adequately met the needs of students and instructors. The second objective

in this dissertation determined the effectiveness of learning within this environment by

comparing students exposed to JITS with those taught Java in a traditional classroom
environment.
Rationale

Currently, Java is one of the most popular programming languages for Internet
programming (Chen, 2004). Due to the rapid growth of Java, virtually every university
and college in North America now offers a Java course (Martinez, 2002). This study is
in tune with the current trend and demands of the science and technology and education
sectors of our society. A third justification for this study is the fact that there is no
Intelligent Tutoring System for the Java programming language at this time. A fourth
reason supporting this study is based on the international support and interest the
scientific community has had during the development of JITS (Sykes & Franek, 2003,
2004a, 2004c).

Additional justification for this study is drawn from a provincial level. The
double-cohort students of Ontario secondary schools may cause significant problems
when they enter postsecondary institutions. For instance, Lakehead University expected
a 35% increase of students entering first-year programs in 2003 compared to the previous
year (Gilbert, 2003). Despite the accommodations that were performed, class sizes rose
significantly. Intelligent Tutoring Systems may be an answer to provide individualized
attention for students who would otherwise be disadvantaged. In light of these and other
recent statistics, the Intelligent Tutoring Systems like the one proposed in this dissertation

may prove to be extremely beneficial to the current set of crisis in education.

Context

Recent advancements in multimedia, high-speed Internet connections, and
computer-mediated communication and communities for individual and distance learning
all have the potential for revolutionary improvements in education. Numerous countries
are striving to support this revolution and are learning how best to adopt these new
technologies (Aleven & Ashley, 1997).

An even larger revolution is approaching. This revolution will be based on the
widespread use of Artificial Intelligence in educational technology (Koedinger, 2001).
The two fundamental bodies of research that support this paradigm shift come from
cognitive science and Artificial Intelligence (Aleven & Ashley, 1997). One reason for
the increase in Artificial Intelligence in education is due to the fact that powerful
computers are becoming very affordable.

Another reason for this revolution has been scientific progress which comes from
two sources. First, progress in Artificial Intelligence has led to a deeper understanding of
how to represent knowledge, how to reason, and how to describe procedural knowledge
(i.e., “how to” knowledge). Second, research in cognitive science has led to a deeper
understanding of how people think, solve problems, and learn. There is a powerful
synergy here. Cognitive scientists often use Artificial Intelligence techniques to build
simulation models of cognitive processes, dependencies, and represent behaviours
(Conati & Van Lehn, 1999). Artificial Intelligence scientists use results from cognitive
science to guide their explorations and to design software with more human-like
characteristics. When applied to education, this synergy leads to combinations of

software and activities that can help more students achieve better learning.

Intelligent Tutoring Systems are being used in numerous areas of education
including mathematics, physics, cognitive skill development, and workplace simulations
(Koedinger, 2001). For instance, an ITS called the Pump Algebra Tutor (PAT), was
developed by Kenneth Koedinger of Carnegie Mellon University which had extremely
positive results (Anderson, Corbett, Koedinger, & Pelletier, 1995). PAT is currently used
in several hundred high schools, middle schools, and colleges around the United States
and in Europe. PAT is designed to help students to learn to model real-life problem
situations using algebraic representations including tables, graphs, equations, and words.
Modern mathematics is less about computing single answers and more about creating
models that can provide answers to multiple questions. Thus, PAT’s curriculum
emphasizes the use of activities that draw on students' common sense and prior informal
strategies to help them acquire and make sense of formal mathematical strategies and
representations. The goal is to help all students be successful in algebra and see its
relevance in both academics and the workplace. Both teachers and students have been
enthusiastic about PAT's use as part of the Algebra I curriculum. Field studies have
shown dramatic student achievement gains relative to control classes: 15-25% better on
standardized tests of basic skills and 50-100% on assessments of problem solving and
representation use.

In summary, the purpose of this study is to design and construct an ITS for entry-
level college and university students learning Java and to conduct a performance score
quantitative study to ascertain the effectiveness of the system. The proposed research
will be pioneering and will impact the fields of cognitive science, Artificial Intelligence

and education. However, to design and construct an Intelligent Tutoring System can take

several years of work for a team of people such as, Educational Psychologists, Computer
Programmers, Knowledge Engineers, and Al experts. Since this is a dissertation, [am
responsible for all components of this study. As a result, this project proposes to
construct an ITS designed to tutor students in a very specific fashion using a subset of the
Java programming language. In this way, a prototype may be constructed which will be
sufficient to prove the concept is sound and provide a means by which a quantitative
study may be performed. There is little doubt that e-learning and related technologies are
becoming important tools in education, and it is imperative that research be conducted in
the area of intelligent tutoring systems. By doing so, educators will be enabling students
to gain personalized instruction which will help them achieve better learning.

Definition of Terms

General Definitions

Al Artificial Intelligence

ITS Intelligent Tutoring System
JITS Java Intelligent Tutoring System

Assumption and Limitations
Instructors selected for this study were drawn from the School of Applied
Computing and Engineering Sciences (ACES), Sheridan College, Institute of Technology
and Advanced Learning, Ontario, Canada. Students were drawn from the population of
computer studies courses in their first year. An overriding assumption is that usual

classroom characteristics were in play in the JITS.

Feasibility

The Timeliness Factor

Currently, Javais one of the most popular programming languages for
development of multiplatform applications and enterprise level business solutions (Chen,
2004). Many colleges and universities in North America are offering Java programming
courses at various levels in various certificate, diploma, and degree programs (Martinez,
2002). These two factors, among others, signify that the Java Intelligent Tutoring System
research project is of merit and an important study at this time.
The Cost Factor

The cost associated with this study was quite minimal. As expected, there were
incidental fees such as travelling between Sheridan’s two main campuses and printing
questionnaires, forms, and letters throughout the duration of the study.
The Time Factor

To design and construct an Intelligent Tutoring System takes years of work for a
team consisting of researchers and programmers. Clearly, such resources were not
available. The researcher was responsible for all aspects of the research project. The
initial design and development for the Java Intelligent Tutoring System took nearly 1,000
hours of research and programming work. Over the last 2 years, the researcher worked
on JITS approximately 20 to 30 hours per week. During the third year, a quantitative
investigation study involving control groups and experimental groups was conducted.
The purpose of this component of the study was to determine performance score

differences between control and experimental groups.

The Accessibility of Data

Within the School of Applied Computing and Engineering Sciences at the
Sheridan Institute of Technology and Advanced Learning there were many students who
were interested in trying out JITS. There were many introductory Java classes offered
every semester (i.e., May, September, and January). As a result, there were many
opportunities to conduct studies and elicit feedback to improve the Java Intelligent
Tutoring System. The motivation for selecting ACES at the Sheridan Institute of
Technology and Advanced Learning was due to circumstance and convenience. I have
been a professor in the School of ACES for 10 years, am very comfortable with the
faculty and staff, and have developed over 20 courses within the curriculum for the
school. An additional benefit is that ACES has just recently changed all of the first-year
programming courses to Java. These factors contribute to the fact that data in various
forms were easily accessible for this study.
Inconvenience to Participants

The degree of inconvenience for instructors and students was very low. Students
in the experimental group were exposed to JITS during classroom break periods or at the
end of a classroom period. The amount of time allocated for the students to try out JITS
was between 30 minutes and one hour per week. When some students were participating
in the research study, nonparticipants were encouraged to work on course-related
exercises and other activities as set out by the professor of the class as per usual class
activities. At Sheridan, classes are typically 3 hours in duration in a mobile environment
where each student has their own laptop computer. A typical instructional period consists

of a sequence of a 15-30 minute lecture followed by a 15-30 minute hands-on activity.

10

This sequence is repeated until the end of class. However, there are usually several 10- to
15-minute breaks during a 3-hour class. I conducted the JITS experiments to coincide
with the break periods and at the end of class periods.

The time spent on the research project by participants did not detract from course
objectives due to the nature of exposure to the instruments in this research project. One
of the goals of this research was to determine if the research project can be of benefit to
students to more quickly and effectively reach course objectives. The overall time spent
by students in the research study did not detract participants in their academic objectives.

Outline of Remainder of the Document

Chapter Two contains a literature review analysis of Intelligent Tutoring Systems.
Within this chapter, a discussion of the psychological framework of I'TS is presented.
This chapter gives background information to the reader as to what has previously been
accomplished in the field of Intelligent Tutoring Systems. In this chapter, the popularly
accepted ACT-R theory of cognition for ITS development is discussed.

Chapter Three contains the design framework for JITS. Within this chapter, a
discussion involving the initial design for JITS is presented. Design considerations such
as user interface considerations, online persistency, number of concurrent users, student
tracking, student modeling, and other considerations are reviewed and presented in this
chapter.

Chapter Four presents the implementation details of the Java Intelligent Tutoring
System. Following from the previous chapter, which specified the design approach, this

chapter focuses on details involving the Java Error Correction Algorithm and the initial

construction of JITS. The initial designs for JITS” Human-Computer interaction, Hint
Generation, and User Modeling issues are also included in the chapter.

Chapter Five describes the methodology and procedures by which this research
was conducted. Included in this chapter is the design and development methodology for
JITS. This chapter also includes the manner in which data were gathered regarding
student performance in JITS.

Chapter Six discusses the findings of the research in the form of three case studies
coupled with the statistical analysis of the data. The case studies summarize the students’
comments about JITS and how these suggestions were used in the redesign and
redevelopment of JITS. Tables in this chapter contain statistical information including
performance data, descriptive statistics, two-way ANOV As, and charts.

The last chapter of this document summarizes the results and discusses the
implications of the analysis. The recommendation section of this chapter offers
suggestions for future work on JITS and in the area of online e-learning tutors.

Following the chapters are the references and appendix.

CHAPTER TWO: LITERATURE REVIEW
This chapter presents the main foundational areas which support the study by
demarking the boundaries of investigation, reviewing existing Intelligent Tutoring
Systems, and providing motivation for the proposed direction of investigation. The areas
reviewed include:
1. The psychological framework of ITS;
2. Student-Teacher perspectives;
3. Current State of Development for Intelligent Tutoring Systems; and
4. ACT-R Cognitive Theory for Developing Tutors.
The Psychological Framework of ITS
The psychological underpinnings within Intelligent Tutoring Systems are not new.
The principles that form the foundation of ITS are thousands of years old. Throughout
the years, researchers have probed into the complexity of the human mind to understand
and explain its functionality. The psychological framework supporting ITS is based on
this corpus of knowledge about human cognition and learning. In this section, the
psychological framework and pedagogical strategies involved with Intelligent Tutoring
Systems are presented. The infrastructure supporting the development of Intelligent
Tutoring System relies on cognitive activities.
Cognitive Activities
Cognitive activities include such things as perceiving, thinking, learning,
remembering, and problem solving. In order for Intelligent Tutoring Systems to be
effective for the student, the learning process must support two distinct purposes. First,

the ITS must exhibit cognitive-type activities so that the learner will interact and respond

13

appropriately to the tutoring process. Second, the ITS must be able to identify these
types of activities in the learner and plan the next set of steps in the student’s learning
process.
The details behind cognitive activities include a range of information processing
activities that take sensory data and engage in processes to create meaningful information
for some specific purpose. For example, some of these activities involve the following:
e Attention: acquiring information by paying attention to what is happening and
perceiving the relevant;

o Encoding: transforming sensory data into mental propositions and constructs for
processing;

e Associating: relating new mental propositions and constructs to existing knowledge;

e Storing: keeping information and knowledge for future use. This involves short-
term, intermediary, and long-term memory stores;

e Retrieving: timely access to stored information and knowledge;

e Communicating: producing results and desired outcomes; sharing knowledge with
others.

The psychological and pedagogical framework of the proposed Java Intelligent
Tutoring System is based on the developments of cognitive science and artificial
intelligence. The framework is based on the foundational cognitive and information
processing activities. ITS are typically comprised of four modules including: Expert,
Student, Instructional Agent, and Interface. These modules collectively represent the
following modeling activities required to effectively tutor a student in a specific domain.

The modeling activities are: Curriculum Knowledge Modeling, Student Modeling,

14

Expert Modeling, Mixed-Initiative, and Self-Learning. Figure 1 depicts an architecture
of an Intelligent Tutoring System.

The following is an example illustrating the abstract operations of an Intelligent
Tutoring System. Suppose the goal is to tutor the student to spell the word “cat.” The
Student Model represents the characteristics of similar students and, in particular, specific
characteristics of the student being tutored. The Instructional Agent is one part of the
Intelligent Tutoring System that takes this goal and, aided with the Curriculum
Knowledge, commences the tutoring process. While there are many different types of
Intelligent Tutoring Systems, rich interaction is a key component to all current tutoring
systems. The interaction between the Student and the ITS is depicted in Figure 1 by the
arrows “Tutoring” and “Student Response.” The action of “Tutoring” is based on
information retrieved from the Student Model by the Instructional Agent, the Expert
Model, the goal, and the Curriculum Knowledge module. When the student responds to
the system, the Instructional Agent updates the Student Model appropriately to ensure
that the ITS always knows the current state of the learner. This cycle continues until the
goal has been achieved.

Instructional agent. As illustrated in the example, the Instructional Agent is
designed to guide the student towards a solution during the tutoring process. The
Instructional Agent is adaptable in that it makes changes to the instructional strategies
based on changes in state in the student model. Depending on the domain, various
strategies may be used, such as explanation, guided discovery learning, coaching, and
probing. Human teachers and tutors do this regularly within the delivery of a lesson

(Bloom, 1984).

Data from users of
‘ the tutor

Teaching goals and
sub-goals

15

Update Model

Retrieve Information

Student
Response

Figure 1. Architecture of an Intelligent Tutoring System.

Student

16

How and why human teachers alter their teaching style is an interesting question and is
currently being researched (Koedinger, 2001; B. P. Woolf, Beck, Eliot, & Stern, 2001).
Research in cognitive science will lead to more effective modules that will better adapt to
the needs of the student (B. P. Woolf et al., 2001).

Curriculum Knowledge Modeling. The Curriculum Knowledge (CK) module
generates appropriate instructional material based on the context of the student’s
performance. Components in this module include problems, solutions, exercises, hints,
and help. The CK module presents the student with the appropriate instructional
information to stimulate student learning while minimizing discourse and frustration.
The ITS needs to be able to distinguish from predefined responses and genuine responses
that would most help the student.

Student Modeling (SM). This component models each student in the system.
There are two main components of the Student Model. The first is a collective student
model representing common characteristics that all students in the system share. The
second component is the unique model for the student being tutored. The Student Model
is used in the assessment of the student’s knowledge and in the instructional process by
the Instructional Agent. In some Intelligent Tutoring Systems, the assessment need not
be formalized as a quiz or test but may include informal approaches such as coaxing or
subtle probing questions. For example, Table 1 describes a typical dialogue between a

student (S) and the ANDES Physics Tutor (T).

17

Table 1
Student Modeling: Assessment and Instructional Adaptation. Excerpt from ANDES

Physics Tutor

Problem: An elevator slows to stop from an initial downward velocity of 10.0 m/s in
2 seconds. A passenger in the elevator is holding a 3 kg package by a vertical string.

T: Whatis the definition of acceleration?
S: T don’t know.

T: Let’s look at it a different way. If I am driving north and you want to stop me
which direction do you have to push?
S: north

T: Butif the acceleration went the same direction as the velocity, then the elevator
would be speeding up. Try again, if I am driving north and you want to stop me
which direction do you have to push?

S: south

T: Right! What does that tell you about my acceleration?

18

Expert Modeling (EM). This component of an Intelligent Tutoring System
models an expert’s knowledge for a particular domain. The Expert Model is used by the
Instructional Agent in determining appropriate feedback for the student. Current systems
vary in the type of knowledge they teach. This is because each ITS is extremely domain
specific; that is, each ITS provides a means by which each student may construct their
knowledge in a very specific domain. Some Intelligent Tutoring Systems teach formal
logic and formal knowledge while others teach overall processes in the context of the
domain. For example, MathTutor and Algebra Tutor, both associated with mathematics,
teach formal logic and knowledge (Anderson & Reiser, 1985; Beal, Beck, Woblf, & Rae-
Ramirez, 1998). On the other hand, Intelligent Tutoring Systems such as MeTutor focus
on processes involved in firefighting which are more process-oriented in terms of the
curriculum tutored (Rowe & Galvin, 1998).

Constructing the expert model requires specifying the relative difficulty of the
topics, knowledge of the strategies that can be used by the tutor, a large amount of
analogies, examples, and error diagnosis abilities to effectively tutor the student (B. P.
Woolf et al., 2001).

Mixed-Initiative (MI). This component of the ITS is based on the development
of human-computer interaction (B. P. Woolf et al., 2001). The dynamics involved are
based on human-human interaction that have been studied and analyzed from a
communication perspective (Graesser & Person, 1994; Graesser, Person, & Harter,
2001). As a result, the mixed-initiative module determines the most effective way for the
ITS to communicate with the student while ensuring rich interactivity and productivity.

Natural language dialogue is used more frequently in the design of recent Intelligent

19

Tutoring Systems (Graesser et al., 2001). Another responsibility of the Mixed-Initiative
module is its ability to recognize mistakes. Error diagnosis will help the ITS to diagnose
mistakes, plausible misconceptions, and recognize missing information. The goal is to
establish a balance between the student controlling the conversation and the ITS.

Self-Learning. The ITS needs to have the capacity to monitor, evaluate, and
improve its own teaching performance as a function of experience. In other words, based
on the information in the Student Model and student responses, the Instructional Agent
reflects upon what was successful, what was not, and refines the process for the current
student and future students (see Figure 1).

In their most sophisticated form, Intelligent Tutoring Systems might reason based
on knowledge about how students solve problems and make inferences in the domain.
The theoretical focus has shifted from exclusive diagnosis and remediation to recognizing
and supporting students in managing their own cognitive processes. In other words, ITS
may provide a way for students to develop their metacognitive abilities. A tangential, yet
related element to Intelligent Tutoring Systems is a philosophical debate regarding Strong
versus Weak Artificial Intelligence. Strong Al is defined as a hypothetical form of Al
that can truly reason and solve problems; Strong Al is said to be sapient, or self-aware,
but may or may not exhibit human-like thought processes. The term Strong Al was
originally proposed by John Searle and was applied to digital computers and other
information processing machines (Searle, 1980). Searle defined Strong Al as, “according
to Strong Al, the computer is not merely a tool in the study of the mind; rather, the

appropriately programmed computer really is a mind" (Searle, 1980, p. 417).

20

Weak Al, on the other hand, refers to the use of software to study the
behavioristic and pragmatic view of intelligence. In Weak Al, there is not the claim for
software actually being intelligent, but simply being a tool that can be used to assess
hypotheses regarding the nature of intelligence. Formality 1s a necessity if a mechanistic
approach is required. Weak Al also covers probabilistic systems where results are not
deterministic (Searle, 1980). If results are based not on "real" cognitive mechanisms with
a deep enough complexity as to accommodate intentionality, though the input/output
interface layer would appear to the user as hiding an intelligent "mind". This is clearly an
illusion; like watching an animation which, to the observer, appears perfectly “real”.
Since the perspective impression is perfect from the observers point of view, the observer
ignores common sense and accepts as fact that the images are real (Searle, 1980). The
definition of "Weak AI" accepts this reality and is opposed to Strong Al

In summary, the framework of an ITS is supported by progress in the fields of
philosophy, cognitive science, and Artificial Intelligence—specifically Weak Al
Intelligent Tutoring Systems are constructed based on interdisciplinary studies, a wealth
of human tutoring knowledge, and have been met with notable success (Graesser et al.,
2001; Koedinger, 2001). At this time however, Intelligent Tutoring Systems do not
display the appearance of “true” intelligence from an external perspective. In other
words, ITS do not inherently imply that there is a "real" mind hidden in the machine with
the same cognitive capabilities as those, or equivalent to, human ones. As a result, ITS,
are currently being designed and constructed as Weak Al systems, as the one developed
in this disseration. However, the future looks promising for more sophisticated ITS due

to advancements in cognitive science, human-neural modelling, and the rapid progress of

21

compuier technology. The philosopher René Descartes identified thinking as proof of
one’s existence. I think, therefore I am.” From such simple intuitions, we can
generalize in order to say “thinking things exist” (Cottingham, Stoothoff, Murdoch, &
Kenny, 1991). Perhaps one day Intelligent Tutoring Systems will be considered thus.
Student-Teacher Perspectives

The Student’s Perspective

Cognitive studies of instruction have shown that students need to remain active
and motivated to succeed (Fletcher, 1995; Regian, 1997; Seidel & Perez, 1994). Students
must want to learn and to be involved, active, and challenged to understand and
manipulate the material presented. The experience must be authentic and relevant to the
learner’s world (Woolf, 1992; Woolf & Hall, 1995). Simple presentations of text,
images, or multimedia usually result in systems that encourage passiveness. As a result,
the learning can be less effective than intended. Interactive exercises are required that
involve students in the material (B. P. Woolf et al., 2001). Not surprising, human tutors
actively engage students. This often leads to significant improvements in the learner’s
achievement (Bloom, 1984). In fact, one-on-one tutoring by human tutors can increase
the average student’s performance by 2.0 standard deviations. That is a two-letter grade
improvement (Bloom). Intelligent Tutoring Systems emulate the behaviour of human
tutors and have been met with significant success (Koedinger, 2001; B. P. Woolf et al.,
2001).

Another benefit ITS have is the speed of knowledge acquisition. For example, an
ITS was designed for the LISP programming language with the goal to improve students’

programming abilities at the postsecondary level (Anderson, Conrad, & Corbett, 1989).

22

In this study, comparisons were conducted between a control group in which students
solved the same programming problems without the aid of the ITS and an experimental
group which used the ITS. Students in the experimental group completed the problems in
one third of the time with better posttest performance than students in the control group
(Anderson et al., 1989).

Intelligent Tutoring Systems have many benefits for education. By adapting
curriculum to each student, learning could be customized for normal students, gifted
students, learning-disabled students, and minority groups'. This allows self-directed or
asynchronous learning to occur. Many current ITS are being constructed to support e-
learning techniques and pedagogies. Thus, the goal for Intelligént Tutoring System
designs is to provide worldwide access to an electronic personalized tutor for students in
domain-specific areas. These concepts were important in the design of the Java
Intelligent Tutoring System. |
The Teacher’s Perspective

Traditional classrooms in Ontario typically range from 20 to 32 students.
Postsecondary institutions in this province may have hundreds of students per class.
Clearly, a teacher will struggle to be effective under these circumstances. One-on-one
tutoring is by far the preferred and most successful instructional model (Bloom, 1984;
Koedinger, 2001). The use of Intelligent Tutoring Systems would be extremely
beneficial for teachers trying to help each student in a classroom. The individual teacher
needs to be empowered to deliver the curriculum as effectively as possible for each

individual student. Schofield, Evans-Rhodes, and Huber (1990) found that teachers take

' The terms “normal,” “gifted,” “learning-disabled,” and “minority group” students used in this context are
defined by the Ministry of Education and Training. Please see:
http://mettowas21.edu.gov.on.ca/eng/general/postsec/taskbgl.html for more information about these terms.

23

a greater facilitator role in student-centred leamiﬁg environments. This in turn would
result in higher achievement for most students (Bloom, 1984; Schofield, Evans-Rhodes,
& Huber, 1990). Since Intelligent Tutoring Systems effectively engage students, teachers
are more able to provide a personalized assistance tool to students who most need it
(Wertheimer, 1990).

Intelligent Tutoring Systems provide many benefits for teachers. First, ITS help
teachers with day-to-day responsibilities such as tracking student performance on
quizzes, tests, assignments, exercises, and readings. This in turn assists teachers by
providing more time for them to focus on curriculum development and delivery. In this
way, teachers are in a better position to more effectively meet the needs of their students.
Consequently, the students’ interests can be more easily incorporated and formalized by
the teacher through the use of authoring tools available for Intelligent Tutoring Systems.
This is essentially the same as specialized learning plans quite common in the school
setting.

Another benefit of ITS is that they minimize the disruptions in class, since
students are focused and engaged in working through the course material. An extreme
example provided by Anderson et al., 1995,

a student in a school in another state had the LISP tutor. The student, frustrated

by restrictive access to the LISP tutor, deliberately induced a 2-day suspension by

swearing at a teacher. He used those 2 days to dial into the school computer from

his home and complete the lesson material on the LISP tutor. (p. 22)

Intelligent Tutoring System research is currently focused on three main areas:

cognitive modeling, communication modeling, and implementation (B. P. Woolf et al.,

24

2001). A clear direction ITS researchers have is to fully include teachers and students as
equal partners in the research (Heffernan & Koedinger, 2001). There is little doubt that
this combined effort will improve the quality of Intelligent Tutoring Systems of the
future.

Current State of Development for Intelligent Tutoring Systems

This section presents a review of the current research in Intelligent Tutoring
Systems. The review was important as it guided the design and development of the Java
Intelligent Tutoring System. The framework for the construction of JITS was based on
the widely accepted ACT-R theory of skill acquisition which was developed by a group
of computer and cognitive scientists at University of Pittsburgh and Carnegie-Mellon
University (Anderson, 1998; Anderson et al., 1995 2). This theory identifies a set of
cognitive principles for the development of tutors described below (Anderson, Boyle,
Corbett, & Lewis, 1990; Anderson et al., 1995).

Intelligent Tutoring Systems have undergone significant changes over the years
and can be classified into three main categories. The first generation of ITS were basic
Computer Aided Instruction (CAI) systems. They presented text or graphics and
depending on the student’s response, different pages would be shown. Model-tracing ITS
were second generation tutors that allow the tutor to follow the student’s actions as they
work through a problem. The current level of research and development for Intelligent
Tutoring Systems is the third generation. These tutors engage in dialog with the student
to allow students to construct their own knowledge of the domain. For third generation
tutors, interaction with the student is the key element in the design since it is essential to

keep the student’s attention on task and as close as possible to the solution path. This has

25

the benefit of minimizing student frustration and reducing off-task activities that do not
yield in increased learning (Anderson & Pelletier, 1991).

Heffernan and Koedinger, 2001, state:

We think that if you want to build a good [third generation] ITS for a domain you

need to:

1) study what makes that domain difficult, including discovering any hidden

skills, as well as determining what types of errors students make;

ii) construct a theory of how students solve these problems (We instantiated that

theory in a cognitive model); and

iii) observe experienced human tutors to find out what pedagogical and content

knowledge they have and then build a tutor model that, with the help of the
theory of domain skills, can capture and reproduce some of that knowledge.
(p. 24)

The following section elaborates on Heffernan and Koedinger’s (2001)
recommendations for the construction of an Intelligent Tutoring System. With reference
to item 1), there is a need to discover what makes the domain difficult. Understanding the
conceptual challenges beginners have when learning to program was an important issue
for the researcher to formalize before designing the Java Intelligent Tutoring System. In
order for a student to program effectively, s/he needs to (a) understand the syntax and
semantics of the language; (b) have the ability to work abstractly on a programming
problem; and (c¢) know how to test and validate the proposed solution.

Item (a) involves the knowledge and skill set to enter code into the computer in a

manner that the syntax of the language is satisfied and the semantics of the expressions in

26

the solution match the grammar of the language. Item (b) involves the knowledge and
skills to develop algorithms to solve specific problems. Sometimes small algorithms are
used collectively to solve large problems. This ability to decompose a large problem into
discrete modules is an additional ability a programmer must have to solve programming
problems. In this context, one can envision this characteristic of a programmer by the
programmer’s ability to effectively “zoom-in” and “zoom-out” on details in the program
at various levels. Item (c) involves the ability to objectively critique one’s work from a
functional perspective. Programmers need to be able to test their programs to determine
the validity of their solution. When unexpected results are produced as output of a
program (known as a logic error), the programmer needs to be able to “zoom-in” on the
related area of the program and ascertain how to correct the problem. Typically, this
involves a misunderstanding on the student’s part in the manner in which his/her program
is executing. In order to solve logic errors, it usually involves a change to the algorithmic
design of the program in order to generate the desired output.

Additionally, there is a distinction between overt skills and hidden skills. In the
domain of programming, overt skills may include the ability to type and use the mouse
effectively to enter code and manipulate text in the computer. An even more difficuit
issue is the proper identification of hidden skills which needs to take place in the
development of an ITS. Hidden skills in the area of beginner Java programmers may
include the ability to recognize a syntax error, understand why the error is generated, and
know how to remedy the error. This is a hidden skill because there are potentially an

infinite number of different scenarios that give rise to a specific syntax error, and the

27

student needs to have the ability to associate from previous knowledge and experiences
with the current unique situation.

The following is another example of a hidden skill. Consider a programming
problem to calculate the factorial of a nonnegative integer number provided by the user of
the program. There are a number of elements that need to be addressed in the solution for
this problem. The solution may be divided into three distinct abstract sections:

(S1) prompt the user for a nonnegative integer number;
(S2) use recursion or a loop to calculate the factorial of this user-entered number;
(S3) display the factorial to the user.

Within each section in this modelled solution exist many hidden skills. The
student needs to have the knowledge and skills to program a prompt for the user to enter
a number. There are many different datatypes in Java, so the student needs also to
understand these differences in order to select the appropriate type for this particular
programming problem. For instance, a student may select a “double,” ”short,” or
“Integer” instead of the desired “int” type. The selection of “double,” “short,” or
“Integer” may lead to difficulties in future steps in the solution being constructed.
Another hidden skill in (S1) is the proper validation that the user-entered number is an
integer and is not negative. The student needs to be able to recognize this requirement
and have the knowledge and skills to be able to translate this requirement into appropriate
programming code. In this case, it would be to use an “IF—ELSE” construct, such as:

IF user_entered number <0

THEN issue invalid input to_user

ELSE proceed with computation_of factorial.

28

Within section (S2) the student needs to have knowledge of the various loop
constructs in the Java programming language and have the skills to implement a solution
using them. The hidden skills involved in this step are numerous. They involve
preconditions, identifier declaration and initialization, temporary variables, the
specification of the test condition, loop body syntax and semantics (i.e., the test condition
must change in the body of the loop, syntactical knowledge including when to use
opening and closing braces, etc.), and other such low-level details of implementation in
Java.

Last, in section (S3), the student needs to have the knowledge of how to display
information within a Java program, the types of problems that may be encountered in
outputting information, and the knowledge of how to correct these errors.

The last section of Heffernan and Koedinger’s (2001) statement in 1) states:
“determining what types of errors students make.” In programming, this involves
recognizing that the student may perform many different variations of the two classes of
erTors: synta); errors and logic errors. In the factorial example provided above, there are
many different errors that the beginner programmer may encounter. In each of the
sections (S1, S2, and S3), numerous syntax and logic errors may be generated and, in
each unique case, the student needs to be able to understand why the error is occurring
and be able to correct it.

As presented above in the example of the factorial problem, programming is a
difficult domain to model because of the vast and detailed knowledge and skills required
for a student to have, the ability to “zoom-in” and “zoom-out” at various levels of detail

in a program, the ability to deal with and manage various levels of abstraction, and the

29

ability to “troubleshoot” program errors and to remedy them in a reasonable amount of
time.

Furthermore, items 1) and iii) are well covered by the researcher’s experience in
programming for over 20 years and being a Professor of Computer Science for 10 years
at the Sheridan Institute of Technology and Advanced Learning. The researcher was the
co-ordinator of the Computer Science Technology program for several years and has
extensive firsthand knowledge of the curriculum implemented. The researcher has
learned and taught over 10 different programming languages at the postsecondary level.
The researcher understands Java very well and knows the fundamental skills required by
students to solve programming problems. Regarding Heffernan and Koedinger’s (2001)
statement 1), the researcher has gained years of experience in the types of errors students
make. The researcher has determined that when a student encounters a syntax problem
and cannot overcome it, it is largely due to a conceptual gap (i.e., lack of knowledge) or
misunderstandings in the grammar of the particular programming language. As a
comparison to the English language, a student who does not use the period character
properly may lack the understanding that the period character is a special symbol that
denotes the end of a sentence. This is a direct analogy to the Java programming language
except instead of a period, it is the semicolon character and instead of sentences, the
collection of grammatically correct symbols is called a statement. To remedy these types
of cognitive issues (i.e., conceptual gaps or misunderstandings), usually all that is
required is a minilesson on a few similar examples to the problem at hand and the student
fills in the conceptual gap or corrects the knowledge associations. However, if the

student has encountered a logic error and cannot overcome it, then this typically reveals a

30

difficulty in the student’s ability of abstraction. The student does not have the ability to
carefully step through his/her solution with a critical eye while examining the developed
algorithm. The researcher has discovered that the main reason, particularly for beginner
programmers, is their inability to remain patient and focused while analyzing their
solution slowly and carefully. This very significant ability is often the one that separates
a student from being successful in programming or not. This is a reflection of the
student’s inability to “zoom-in.” In other words, the student fails to be able to “zoom-in”
enough to gather all the related attributes of the algorithm and troubleshoot the precise
problem.

Referring to item ii), Heffernan and Koedinger (2001) state: “construct a theory of
how students solve these problems (We instantiated that theory in a cognitive model).”
The theory used in this dissertation is based on the ACT-R theory, which can be
summarized by four principles. The ACT-R theory is described in the following section.

ACT-R Cognitive Theory for Developing Tutors

The first principle derived from ACT-R (Architecture of Cognitive Tutors) is that
it is essential to define the target cognitive model as a set of production rules (Anderson,
1998; Anderson & Pelletier, 1991). Production rules are a set of IFF-THEN-ELSE
constructs which outline discrete knowledge components which collectively represent the
steps required for a student to reach a solution for a problem. A typical ITS may have
several hundred production rules to effectively cover the domain and the various states a
student may be in within a realm of feasibility and predictability. Heffernan and
Koedinger (2001) reinforce this principle: “Without this [principle] one does not have a

well-defined educational goal” (Koedinger, 2001). In other words, in the context of

31

ACT-R, tutoring is assuring students (a) construct the production rules, (b) practice the
production rules, and (c) remediate the errors in the production rules. Additionally, it is a
goal of the Intelligent Tutoring System to guide the student towards a solution. However,
it is not mandatory that the solution be achieved by the student. In other words, the ITS
recognizes that the student may become frustrated and not wish to continue. The ITS
records the current state of the student’s progress, noting the degree of learning that has
taken place even though a solution may not have been achieved.

The second principle concerns how these production rules are to be
communicated to the student (Anderson, 1998). According to ACT-R theory, one cannot
directly tell students the underlying rules (Anderson, 1998; Graesser et al., 2001). The
goal for ITS is to provide a vehicle by which students construct knowledge for
themselves as opposed to having the information told to them (B. P. Woolf et al., 2001).
ITS need to communicate the production rules to students by providing them with
examples that illustrate the rules. As a result, the most effective way for students to
construct knowledge is to acquire these rules as a by-product of problem-solving. This
form of experiential learning is an effective way for students to construct knowledge and
increase their cognitive abilities (O'Reilly & Munakata, 2000).

The third principle of ACT-R theory is that one wants to maximize the rate at
which students have opportunities to form and practice these production rules (Anderson,
1998). Based on other research by ITS researchers, it was shown that what predicts
students’ final achievement is how much practice they have had of these rules and not
how that practice occurs (Anderson et al., 1995; Anderson & Pelletier, 1991). Associated

with the concept that “practice makes perfect” is the corollary to minimize floundering

32

which is incorporated into many leading-edge Intelligent Tutoring Systems. The basic
idea is to reduce student frustration during the problem-solving session and select
problems that offer practice on those production rules where students most need practice
(Anderson et al., 1995). A production rule in the ACT-R theory is a statement of a
particular contingency that controls behaviour in the Intelligent Tutoring System. The

following are two examples of production rules:

IF the goal is to classify a person
AND he is unmarried
THEN classify him as a bachelor

IF the goal is to add two digits dl and d2 in a column
AND dl + d2 = d3
THEN write d3 in the column

A production rule is a condition-action pair. The condition specifies a pattern of
input symbols that must be present for the production rule to execute. The action section
specifies the action that is to take place. A typical ITS may have hundreds of production
rules to encapsulate the knowledge of the domain of instruction. For the design of the
Java Intelligent Tutoring System, the set of production rules is represented by the
grammar of the Java language coupled with custom production rules augmented to the
language. Chapters 3, 4, and 5 discuss the JITS production rules in greater depth.

The fourth principle of ACT-R cognitive theory for tutoring deals with how to
treat errors in student problem solving (Anderson, 1998). Anderson et al. base this
principle on an earlier work in 1990, which states, “people learn best when they generate
the answer for themselves rather than are told” (Anderson et al., 1990). However, the
consequence of letting people generate their own knowledge is that errors are inevitable.
Fortunately, there are four considerations outlined in ACT-R theory that deal with error

remediation (Anderson, 1998). First, many errors do not reflect misunderstandings or

33

lack of knowledge; rather the errors are simply unintentional slips. The second
consideration is that people learn best when they construct the knowledge themselves.
This is analogous to hands-on training as opposed to lecture-based teaching. The third
consideration is that a lot of time can be wasted when the student is floundering while
trying to solve a problem. This state is called an error state and is not beneficial for
learning. The fourth consideration is that when students have problems with their
knowledge, it is more effective to provide another opportunity to learn the correct
production. Since the student does not need a deep appreciation of their error, it is not
effective for the ITS to expound on it (Heffernan & Koedinger, 2001).

The ACT-R Theory for the development of tutors has led to a standard framework
for the design and construction of Intelligent Tutoring Systems. The goal of this
framework is to ensure that Intelligent Tutoring Systems will provide rich learning
environments for students that will support their cognitive development in the specific
domain of study in as effective means as possible. Many researchers in the area of ITS
support the following steps to design and construct an Intelligent Tutoring System.

1. construct the interface;

2. define the production rules;

3. create the declarative instruction; and

4. set up the Instructional Agent to manage the curriculum and engage the

student through rich-interaction (Anderson, 1998; Anderson et al., 1990,
Heffernan & Koedinger, 2001).
During the design of the Java Intelligent Tutoring System, these steps were

performed but not in the order presented. Due to the complexities involved with the way

34

in which JITS is designed, a massive amount of effort was spent on step 2, that is,
defining the production rules. This is because JITS was designed to recognize any small
Java program and offer “intelligent” feedback when there is no authored solution
available. In other words, unlike other Intelligent Tutoring Systems, there is no
predetermined solution for each problem. As a result, the focus of this step in the project
was on compiler error correction strategies which used extensive production rules in the
form of Backus-Naur Form (BNF) for the grammar of the Java language. Once this was
completed, the next step the researcher pursued was step 3.

Once the production rules were in place and validated, the declarative instruction
became the focus of the researcher. Declarative instruction was designed and
implemented by a series of tutorial web pages with ease of navigation and quick
reference of paramount design consideration. For more information regarding this step in
the design of JITS please refer to Chapters 3, 4, and 5.

In step 4 of the ACT-R theory recommendation, a prototype for the Instructional
Agent including a hint generation module was designed and developed. Small
curriculum modules were also created to test the interaction between user and the ITS
prototype. After extensive testing of the prototype system, the last step for design and
development was the construction of the User Interface (step 1). Please see Chapters 3,
4, and 5 for a detailed description of the design and implementation of the Java Intelligent

Tutoring System User Interface.

CHAPTER THREE: DESIGN

This chapter presents the design framework for the Java Intelligent Tutoring
System. The design incorporates leading-edge techniques that are used by current
developers of Intelligent Tutoring Systems. Design considerations such as website
persistency, concurrency, student tracking, student modeling and other considerations are
reviewed and presented in this chapter.

The design for the construction of JITS is based on the popularly accepted ACT-R
theory of skill acquisition. The ACT-R theory was developed by a group of cognitive
scientists at University of Pittsburgh, and Carnegie-Mellon University (Anderson, 1998;
Anderson et al., 1995; Anderson & Pelletier, 1991). This theory identifies a set of
cognitive principles for the development of tutors. The proposed Java Intelligent
Tutoring System is based on this accepted theory of tutor construction. Four main
sections are included in this chapter: “Initial Designs of the Java Intelligent Tutoring
System”; “Motivation for the design of the Java Error Correction Algorithm”; “Java Error
Correction Algorithm Design”; and “Java Intelligent Tutoring System Design and
Architecture”.

Initial Designs for the Java Intelligent Tutoring System

During the design of JITS, the four ACT-R cognitive theory principles for
developing tutors were carefully considered. According to the ACT-R theory, the
following steps are recommended:

1. construct the interface;
2. define the production rules;

3. create the declarative instruction;

36

4. set up the pedagogical agent to knowledge trace, manage the curriculum,
and engage the student through rich-interaction (Anderson, 1998; Anderson et
al., 1990; Heffernan & Koedinger, 2001)

The first step is to define the target cognitive model as a set of production rules
(Anderson, 1998; Anderson & Pelletier, 1991). These production rules, although not
written in traditional IFTHEN—ELSE constructs are embedded in the Java language
specification grammar which is used by the Java Error Correction Algorithm (discussed
in the following section). This grammar definition contains hundreds of grammatical
production rules that support the Java programming language. As a result, JITS
upholds the first principle of this cognitive theory.

The second principle of the ACT-R theory states that these productions need to
be communicated to the student. A subcomponent of this principle is that one cannot
tell students the underlying rules (Anderson, 1998; Graesser et al., 2001). JITS is
designed with rich-interaction throughout the entire tutoring session. Rules are never
directly told to students. Rather, JITS communicates with the student in the form of
well-defined hints that are customized to each student in the system. JITS is designed to
provide various opportunities for students to engage in problem-solving activities for
the beginner programmer, which is an effective way for students to construct their skills
and cognitive abilities.

The third principle of ACT-R theory is the old adage “practice makes perfect.”
JITS maximizes the rate at which students have opportunities to form and practice the
production rules. JITS does this by engaging the student continually in problem-solving

questions. As aresult, JITS is designed to support this principle.

37

The last principle of ACT-R cognitive theory describes how the tutor should
deal with errors in student problem solving. JITS is designed with a Java Error
Correction Algorithm which intelligently determines the intent of the student even when
s/he makes mistakes. JITS quickly recognizes students in an error state and
immediately encourages the student to make appropriate changes. This has the benefit
of minimizing students getting “stuck” and at the same time minimizes their frustration.

The initial designs for JITS include the Java Error Correction Algorithm, the User
Interface, and web-based infrastructure. These components are described in the
following sections.

Motivation for the Design of the Java Error Correction Algorithm

JITS is designed to provide extensive hands-on practice for students learning Java
in the form of attempting to solve programming problems. All entry-level programming
students make syntax mistakes and logic errors. Thus, a module that sophisticatedly
determines the intent of the student and can identify various types of errors that students
make is a necessary component for an ITS for the Java programming language.

While text correction is commonplace in word processors, mobile phones, etc., it
is not commonplace in the area of compiling a computer program. When a person writes
a program in any language, it must precisely follow the syntax and grammar rules of that
language. Any mistake, even so minute as forgetting a “;” will cause the program to fail
compilation. This dissertation research proposes an intriguing new use in teaching
programming by autocorrecting typical mistakes that beginner programming students
make. From a pedagogic/didactic perspective, support for the beginner programmer

when these types of errors occur can be very helpful. Thus an error correction algorithm

38

would be very helpful for students. Reviews from the learning and teaching sciences
yields this to be true (O'Reilly & Munakata, 2000). As a result, the Java Error Correction
Algorithm fits in this chosen theory. Furthermore, based on the principles of the ACT-R
cognitive theory for developing tutors, the Java Error Correction Algorithm also
coincides with this philosophy.

Java Error Correction Algorithm Design

This section describes the design of the Java Error Correction Algorithm (JECA).
The design arose from research involving decision trees, expert systems, and compiler
tools. It became clear after preliminary research that JavaCC provided the best features
for the development of an error correction algorithm. JECA is designed to consider three
distinct cases:

CASE 1: student enters perfect code and it compiles and runs;

CASE 2: student enters code that needs modification but with JECA changes will
compile and run; and

CASE 3: student enters code that needs modification but will not compile regardless of
all corrections employed by JECA; however, suggestions are presented to the
student to bring the code to a closer state for compilation.

The Java Intelligent Tutoring System’s intelligence is accomplished by this
embedded logic module (i.e., the Java Error Correction Algorithrﬁ). This module
performs a number of operations behind the scenes. It implements a sophisticated
scanner and parser that autocorrects the student’s code when appropriate as well as
generates a number of parse trees that have small permutations. This module then

attempts to compile the best trees to ascertain the most likely path the student

39

“intended” to follow. With this knowledge, JITS can efficiently and effectively tutor

the student. The goals JECA are to:

1.

2.

analyze the student’s code submission;

intelligently recognize the “intent” of the student;

“auto-correct” where appropriate (e.g., converting “While” into the keyword
“while,” “forr” into “for,” etc.);

learn individual student’s misconceptions, and categorize the types of errors
s/he makes;

produce a “modified code” that will compile (or bring the code closer to a
state of successful compilation); and

prompt the student programmer for information when necessary via well-

defined hint support structures.

JECA, combined with a well-defined student modeling mechanism and dynamic

hint generation capabilities, enables JITS to significantly improve the performance of

beginner Java programmers. Over the last 2 years, JECA took over 1,500 hours of the

researcher’s work.

The algorithm used by JECA is presented below.

1.

2.

Create a copy of the student’s submission (i.e., “modified_source”).

The scanner examines the student’s code and attempts to extract a token. Let
S be the stream of characters to be validated as a token.

A validation process ensues in which comparisons are done using the reserved
words and keywords of Java (Table 2), extended keywords (Table 3), and

previously declared identifiers.

Table 2

Java Reserved Words and Keywords

40

abstract | else interface | super
boolean |extends long switch
break false ° native synchronized
byte final new this

case finally null 2 throw
catch float package throws
char for private transient
class goto ° protected | true @
const P if public try
continue | implements | return void
default | import short volatile
do instanceof | static while
double int strictfp ©

Note. ®true, false, and null are reserved words. Pindicates a keyword that is

not currently used. “indicates a keyword that was added for Java 2.

Table 3

Extended Java Reserved Words and Keywords

Boolean
Character
Number

Byte

Double

Float
Integer

Long

Short

String
StringBuffer
Note. This list is a subset of the objects defined in java.lang.*

10.

42

For a given identifier, if the scanner discovers, within a certain threshold, that
S can undergo transformations to convert S into a valid token (i.e., a reserved
word or keyword, an extended keyword, or as a previously defined identifier),
then it will do so. However, if the scanner determines that S is sufficiently
different from all of the items previously compared to, then it will be left
unchanged (i.e., it will remain as a new identifier).

Update the modified source code to reflect these changes and the newly
constructed token is submitted to the parser.

Repeat 1 through 4 until all input from the student’s source code has been
processed and the parser has completed the construction of the parse tree
representing the modified source code.

Try to parse and compile the modified source code. If the compilation
succeeds, then relay the modifications performed to the student in order for
them to correct their code and stop processing.

If the previous step fails, then extract information regarding why it failed and
set up a competition of permutated parse trees containing insertions, deletions,
and replacements at the problem area.

Run these permutated trees through the parser. The goal of this stage is to
determine if the specific problem where the parse failed has been corrected.
Select the “best tree(s)” and compile these. The “best tree” is defined as the
tree that allowed the parser to successfully consume the largest number of

tokens compared to the other trees in the competition.

43

11. If one or more of these trees successfully compiles, then present this
information to the user, indicating the changes made to the student’s source
code.

12. If none of the trees successfully compile then present the information to the
student regarding the selection of the best tree.

13. Let the student respond/make corrections to the source code.

14. Repeat the process from 1 to 13.

The algorithm employed by JECA is presented in flowchart form in Figure 2 and

Figure 3.
Java Intelligent Tutoring System Design and Architecture

The design of the Java Intelligent Tutoring System heavily relied on JECA to

provide the necessary information in order to offer suitable feedback to the student
programmer. However, there were a number of factors that were considered in the design
of JITS beyond what JECA offered. The two main perspectives that were considered in
the design of JITS were both the student’s and the instructor’s perspectives. In order for
an ITS to be successful in today’s e-learning society, JITS was designed with the
following qualities.

Student Perspective

The following qualities were deemed important in the design to satisfy students

and were part of the desired list of criteria in the design of JITS:

1. provide an easily understood, student-friendly user interface that provides all

the necessary features for effective ITS tutoring;

Student's source
code

Create a copy
(modified_source)

Scanner
(java grammar)

| identifier token
is found

Perform check against |
java keywords

Update
Pass to parser .
no% “keyword” token modlfigazource —»@

y

look like an
identifier?

yes

Perform check against
extended keywords
Update
no»l Pass to parser modifed_source
the correct token code [

Perform check against
previously declared identifiers

Pass to parser | Update |
no» .; dentifier” token —» modifed_source - @

| code

y

look like an
identifier?

yes

Poes it 100
like a unique
identifier?

v

yes

h J
Pass to parser the identifier
token

Update

modified_source
code

Figure 2. First Component of JECA — Scanner Correction Activities.

7

Modified source
code

Try to compile
modified code

Relay appropriate |
yes» message to student (i.e., —»@
identifier correction(s))

no
Run it through parser

Relay appropriate
yes» message to student (i.e.,
identifier correction(s))
no
A 4

Setup a competition of
permutated parse trees
containing insertions/
deletions/replacements

'

‘ Run them through parser ‘

|

‘ Select the “best trees” ‘

.

Compile the

“pest trees”
Relay appropriate ‘
no-p Message to student (i.e., |
all corrections made to the
“best trees”) ’

yes
v
Relay appropriate

message to student (i.e.,
grammar correction)

Figure 3. Second Component of JECA — Parser Correction Activities.

45

7.

8.

46

provide access via an ordinary browser;

will not need a high-speed internet connection (i.e., dial-up connection will
work fine; thus, students in remote locations have full access to this resource);
process student’s code submission and respond quickly to the student;
support many students concurrently working with the ITS;

engage the student by communicating in a clear and concise personalized
fashion (e.g., unique hints and error messages for each student);

track student performance in a database (e.g., ORACLE); and

model the user as s/he works through a problem.

Instructor Perspective

The design of JITS also considered the instructor perspective. The following

factors were important in meeting the needs of teachers using this ITS.

1.

requires the author of the problem to provide minimal information (e.g.,
problem statement, program requirements, and required output);

the author of the problem does *not* specify any solutions (this is based on
the premise that for a given programming problem there may in fact be
numerous solutions);

JITS must be able to recognize a very large number of possible solutions for a
particular programming problem,;

student performance information should be easily accessible;

an instructor-friendly, web-based user interface to author problems (i.e.,

Authoring Tool).

47

This section includes the initial JITS User Interface anci a description of the initial
web-based infrastructure architecture.
Initial JITS User Interface
The initial design of the JITS user interface was representative of fundamental
features of a professional programming Integrated Development Environment (IDE).
Students are presented with a problem, the problem specification, the skeletqn code, the
code editor, and a number of buttons with which to interact with the tutor. For example,
once the student is ready to submit the code to JITS, the “Submit” button may be
pressed. The user interface was designed so that students could view the hints by
pressing “View Hint” button, see solutions by pressing the “View Solution” button.
Hints were initially designed as “canned responses” to specific states the students would
be in based on their code submission. At any time, the student would be able to see a
record of their activities by pressing the “View Log” button. This would simply show
the student the history of what had transpired in the current session. Over the last two
years, the initial interface and supporting infrastructure for JITS has taken
approximately 500 hours of the researcher’s work. Figure 4 depicts the initial design of
the user interface for JITS.
Infrastructure Design
The infrastructure design for JITS draws from the area of leading-edge
techniques and technologies for multithreaded distributed concurrent e-learning
application designs. The Model-View Controller (MVC) design pattern was used to
ensure that concurrency and robustness would be provided by JITS. The MVC

contains three main tiers: the client’s browser, the middle-tier, and the database-tier.

Problem: A problem of
the appropriate level and
difficulty is presented to

48

the student.

»

Problem Statement

Parse

| Problem Specifications

Compile

Source Editor

Code Area
~

S

Output

Ly~
/

Results of parsing,

compilation, and

Run

i

New Problem
View Hint

View Log

Exit

L

While the student works

T on a solution it must

successfully “Parse,”
“Compile,” and “Run.”

The student may select
a different question
from a bank of suitable
skill-level questions.

L Based on the current
problem, the student
may ask for a hint or for
clarification.

N A record of student
activities including
problems attempted
and JITS’ responses.

execution. This area is
also used for displaying
hints, solutions, and
current student statistics.

Figure 4. Initial design for the JITS User Interface.

49

By design, there were no restrictions placed on the browser. In other words, JITS was

designed to work with any browser, and no custom installed client software of any sort
was required. The middle-tier is a server running a TomCat web server, currently
equipped with 4GB RAM and 2 Pentium-IV processors. The database-tier is a separate
server running ORACLE. The initial JITS database schema was designed to support the
core functionality of JITS consisting of 3 tables: student, problems, and
student_problems. The student table contains information regarding each student in the
system such as student name, password, current problem, etc. The problems table
contains details regarding programming problems used by JITS such as problem
description, specifications, templates, etc. The student problems table is an intersection
relation representing details regarding each student’s attempt at a problem.

The Model-View-Controller design pattern was a core component to the design
of JITS. Figure 5 depicts the MVC design pattern. First the student makes a request
(via HTTP 1in the browser). The Controller module receives the request and performs
operations that include instantiating JavaBeans. These beans are used to model the
student as s/he works with JITS. The collection of these beans represent the modeling
of each student in JITS. During specific operations, beans may need to retrieve
information from the JITS database schema (e.g., to select a new problem or retrieve
solutions to a problem, etc.). These data are stored in the ORACLE JITS database
schema represented in the figure as the Enterprise Information System (EIS). The
information is gathered up and processed by the bean, which then forwards it to the
View component (i.e., the Java ServerPage [JSP]), which then formats it appropriately

for the student in the JITS user interface and returns it to the student’s browser.

MV C Design Pattern

1
— | {(Controller)
- Request Servlet
5
Frg %{;-\(Model)
5 ; JavgBean
— (View) HﬂB*i——h
Response! | JSP 4 O

Servlet Container EIS

Figure 5. Model View Controller (MVC) design pattern implemented in JITS.

CHAPTER FOUR: IMPLEMENTATION

This chapter presents the implementation details of the first version of the Java
Intelligent Tutoring System. Following the previous chapter, which specified the initial
design of JITS, this chapter focuses on details involving the Java Error Correction
Algorithm and the initial construction of JITS. The initial designs for JITS” Human-
Computer interaction, Hint Generation, and User Modeling issues are also included in the
chapter.

Initial Java Error Correction Algorithm (JECA) Implementation

The core module of the Java Intelligent Tutoring System is the Java Error
Correction Algorithm (JECA). The first component of JECA involves scrutinizing the
identifiers that the scanner has tokenized by comparing them to keywords, reserved
words, extended keywords, and to currently validated identifiers. The second component
has the parser perform a rigorous deep level error recovery technique implemented by a
variation on the Burke-Fisher Error Recovery algorithm (Burke & Fisher, 1987). This
algorithm is explained in greater depth in the following sections.
First Component of JECA: Error Recovery in the Scanner (Lexical Analyzer)

It is sometimes desirable to change what the scanner has interpreted to a single
Java keyword. The reserved words and keywords in the Java programming language are
presented in Table 2. As an example, suppose the beginner programmer submitted the

following code:

public class Test
public static void main() {
Int sum = 0;
For (iint i=0; i<=10; i++)
sum = sum + i;
System.out.println(“*Sum is:” + sum);
}
}

52

There are 3 distinct syntax errors. The “Int sum = 0;” statement, the “For,” and
the “iint.” It is desirable to present the appropriate information to the student
programmer in a way that is both supportive and direct. In this example, the student
mistakes the “Int” and “For” for the keywords “int” and “for” respectively. A

typical compiler will produce the following:

Test.java:5: ')' expected
For (iint i=0; 1 <=10; i++)

A

Test.java:5: not a statement

For (iint i=0; 1 <=10; i++)
Test.java:5: ';' expected

For (iint i=0; i <=10; i++)
3 errors

2

The proposed error recovery algorithm, JECA, attempts to understand the “intent
behind the student’s program and, by prompting the student, and behind-the-scenes
modifies the submitted program as follows:

public class Test {
public static void main(String args [1) {

int sum = G;
for (int i=0; i <=10; i++)

sum = sum + 1i;
System.out.println("Sum is: " + sum);

}
}
generating the anticipated result:
Sum is:55

The student will receive prompts for each “assumption” the JECA intent
recognition module is performing. For example, on encountering the “Int” in line 3, a
message such as “I found an ‘Int’. Would you like to replace it with ‘int’? (y/n).” In
this fashion, the student of the system is fully aware of all changes that are taking place

on the submitted code. In other words, all changes are made explicitly known to the user.

53

This philosophy is different from other compiler designs that make changes to the source
program without notifying the user (Fischer & LeBlanc, 1991). For example, an analogy
is found in the C programming language. Given a simple program like:

main () {
return 0;
}

may be interpreted by a compiler as:

int main() {
return 0O;
}

The compiler implicitly puts in the default type ‘int’ during compilation. Such
implicit changes can be misleading to the user (Fischer & LeBlanc, 1991). JECA, on the
other hand, does not do any implicit changes to the code. All code changes are overt. A
supporting mechanism used to do this is depicted in Figure 6.

A Keyword object houses all attributes and functionality associated with a
keyword in the language. It contains the name of the keyword (i.e., String name),
the symbol table ID for the keyword (i.e., int _ id), dynamically learned variations on
the keyword (i.e., String variation []), the number of times these
corresponding variations have occurred (i.e.,, int _count []),\and the total number
of variations learned at this time (i.e., int _variation count). The Keyword
object contains useful information that can be used for statistical analysis and capturing a
representative model of the student of the system. By keeping track of the types of errors
the student makes and the number of times these types of errors occur, the system is in a

good state to offer meaningful feedback to assist the student to program better.

54

“name
_id
_variation[]
_count[]
_variation_coun

_keyword

“For’ | *FOR’ | “fro” | |

_variation

_count

_variation_count

“volatile”
98

Figure 6. Keyword object and _keyword data structure.

55

Similar data structures are implemented for Extended Keywords, and Identifiers in order
to record information regarding these types of data. This information is gathered during
the lexical analysis phase by JECA.

Given a lexeme that has currently been classified as an identifier token, the
objective is to analyze this lexeme and determine if it should remain as an identifier or be
classified as a different type of token. The algorithm includes a reference to the
Edit Distance object that has a method to determine the edit distance between two
strings. For example, given the strings, “while” and “wiles,” the edit distance is 2 (i.e., a
count of 1 for the missing character “h” and 1 for the additional character “s””). The

algorithm for this identifier-classification process is presented below:

loop
i=20
go through the keyword array
extract the keyword name at position i
d = Edit Distance (lexeme to keyword)
if {(d <= THRESHOLD)

add it to a refinement collection

i++

end loop

perform refinement on the refinement collection and determine if it
should be considered a keyword, extended keyword, or as a new
identifier

JECA uses an additional object called “BestMatch” to assist in refining the search
for appropriate potential keyword matches. The refinement collection is a Java
Collection of BestMatch objects which represents the best matches of all the keywords
that are similar to the identifier in question. The refinement process proceeds and applies
additional rules and constraints to narrow the number of BestMatches until it is
determined that the identifier is indeed a valid identifier or should be converted into a

keyword. Once this is determined, the lexical analyzer (i.e., TokenManager in JavaCC)

56

returns the appropriate Token to the parsér. A figure of the BestMatch object is presented
in Figure 7.

A member of the BestMatch object is _transformation_string. This member
receives this value from the Edit Distance algorithm. The Edit Distance algorithm
accepts two strings for comparison and determines the closeness of these strings by
performing insertions, deletions, and character replacements (Sykes & Franek, 2003).
The cost for an insertion, deletion, transposition, or character change is 1. Figure 8
depicts a transformation string given two strings “Forr” and “for.” The algorithm is
quite flexible and can be easily modified to accommodate various scenarios. For
example, the edit distance in Figure 8 could be 2 (i.e., case-mismatch “F” and an
additional “r”). It could also be configured to produce an edit distance of 1.5 (i.e., case-
mismatch = 0.5 and 1 for the additional “1r””) or any other cost depending on setting some
switches. The rationale behind this is based on the premise that the algorithm should
draw close relationships between strings that have the correct sequence of characters but
may not have the correct case. Researchers in the area of education and psychology
believe this concept is pedagogically sound (O'Reilly & Munakata, 2000). A student who
uses “For” instead of “for” has a clearer conceptual understanding of the “for loop”
construct than a student who uses “Fore” for instance. These different cognitive models

are reflected in the algorithm.

“For”

“FOR”

“fro"J

BestMatch _variation

_count

_variation_count

lexeme
_edit_distance
_transformation_string

Figure 7. BestMatch object—used for the refinement process in determining an identifier

or a keyword.

Forr
~
fo-r

Figure 8. BestMatch member contains the Transformation string from Edit Distance

algorithm.

58

59

Second Component of JECA: Error Recovery in the Parser

JECA’s parser component algorithm implementation is loosely based on the
Burke-Fisher Error Recovery algorithm (Burke & Fisher, 1987; Fischer & LeBlanc,
1991). This algorithm exhaustively tries single token insertion, deletion, or replacement
at every point within & tokens before where the error occurs. In other words, & represents
a window of tokens where the problem resides. Given N, representing the total number
of tokens in the language, there are k+AN+kN possible deletions, insertions, and
substitutions within the 4 token window (Burke & Fisher, 1987). The & token window is
kept on a queue. In this algorithm, all semantic actions must be delayed to prevent
unwanted side effects until parse is validated (Burke & Fisher, 1987).

The Burke-Fisher Error Recovery algorithm uses 2 stacks, current and old, and a
queue of k tokens (Burke & Fisher, 1987). old stack contains all successfully parsed
tokens so far. current stack contains potential tokens covering a window of the next £
tokens. old stack and queue are used together to reparse string after replacement, deletion
or insertion of single token into queue. Figure 9 and Figure 10 depict an example using
the Burke-Fisher error recovery algorithm.

The proposed parser error recovery algorithm for JECA is similar in nature to the
Burke-Fisher algorithm. However, there are some significant differences. First, since
JECA is aimed at the beginner Java programmer, the size of the source program will
always be very small (i.e., 50 lines of code or less). As a result, a Vector (i.e.,
java.lang.Vector) Abstract Data Type (ADT) is used to store the entire source program in
memory. In this fashion, the tokens can be easily traversed and manipulated, thus

providing opportunities for greater analysis on the input program.

60

old stack new stack
INT_LTR Top of stack Top of stack—» INT_LTR
ID ID

4 token queue

[

Input stream i =22 ;) =-2*5 .. EOF

D

Figure 9. Burke-Fisher error correction algorithm with a 4-token queue in the middle of

processing a statement production.

61

old stack new stack

; Top of stack Top of stack—» *
STMNT INT_LTR

ID

4 token queue

Input stream i =22 ;j =-2*5 ... EOF

I i

Figure 10. Burke-Fisher error correction algorithm with a 4-token queue completing the

processing of a statement production and commencing a new production.

62

Second, the Burke-Fisher algorithm delays semantic actions to prevent unwanted side
effects. In JECA there are no semantic actions as would be expected in a typical
compiler. In other words, unlike other compilers that generally produce assembler code
or intermediate code, the proposed algorithm’s goal is to correct errors so that the parse
will be as valid as possible. It does not have extensive semantic actions like other
compilers. The output of the proposed algorithm is a modified source code that is
intended to successfully parse by the standard “javac” executable (i.e., Java compiler).
The standard Java compiler will be invoked next to perform the translation from the
modified source program to byte code. The third main difference between Burke-
Fisher’s algorithm and JECA’s is that the student programmer will be asked for
clarification during the error recovery session. Instead of using Burke-Fisher’s approach
to exhaustively insert, replace, or delete tokens in a A-window token list, only the most
plrobable tokens will be presented to the student programmer. As a result, the student has
a significant degree of control over the error correction process. This is supported by an
inner module which generates parse tree variations which are then tested against the
parser and Java compiler. These variations are based on a number of considerations
involving token replacements, deletions, insertions, and transpositions. A competition is
arranged such that the parse tree(s) that succeed in recognizing the most tokens in the
source code are selected for further scrutiny. It then becomes a competition among the
best trees to determine the appropriate course of action in terms of determining the
specific hints issued for the student. Table 4 depicts this internal JECA functionality.

Please note the student does not see any of these computations.

63

Table 4

Internal JECA Parse Tree Permutations and Competition for the Selection of the Best

Trees

Given the following program:

1 public class Test {

2 public static void main(String args [1){

3 iint sum = 0 ;

4 FOR (Int i=0; i<10 i++) // missing ‘;’
5 sum = smu + 1i;

7 }

8 }
and submitting it to JECA will yield a ParserException stating:

Line 4 Column 30
Offending token: kind=>identifier, image=> “i”
Previous to Offending token: kind=>integer literal, image ==> %10~

The ParserException contains a list of expected tokens:
Expected ...

AV I~

A

\

etc.

JECA takes this “expected” list, creates permutations on the base parse tree involving
insertions, deletions, replacements, and transpositions, and then sets up the competition

to determine the best tree...
Nothing compiled successfully...but here is the best tree...

public class Test ({
public static void main(String args []) {
int sum = 0 ;
for (int i = 0; 1 < 10; i++)
sum = smu + i;

64

The fourth difference between the Burke-Fisher algorithm and JECA is that the
parsing stops when it encounters a situation that it cannot satisfy the current production.
The justification for this stems from the philosophy behind teaching beginning
programmers (Anderson et al., 1995; Sykes, 2003). It is important that the student
programmer does not become overwhelmed by the number of error messages produced
by compilers when errors occur (Graesser et al., 2001; Koedinger, 2001). Rather, it is
more helpful to:

1. extract detailed information regarding the single error message and stop

parsing;

2. provide one clear and meaningful error message to the student; and

3. encourage the student to make the correction (O'Reilly & Munakata, 2000).

Initial Java Intelligent Tutoring System Implementation

The JITS infrastructure supports the student via a browser accessing information
from the tutor via an HTTP request/response process model. The processing is
accomplished by JavaBeans™ within a servlet engine web server. The presentation layer
uses JavaServer Pages™™ technology which communicates to the bean representing the
student and creates an XHTML page for the student’s browser. During processing, the
bean gathers all the information about the student’s code and submits it to JECA for
processing. The infrastructure architecture uses a JOBC connection from the
JavaBeans™ to an external database which stores and retrieves specific information

about the student including student history and performance statistics.

65

The implemented architecture has numerous benefits (Pawlan, 2004). It is
scalable, platform independent, and lightweight (Pawlan, 2004). The student will never
need to install software on his/her machine and will not need a high-speed network
connection to use JITS. Other benefits include fast execution, as all processing is done
on the middle-tier web server, currently equipped with 4GB RAM and 2 Pentium-1V
processors. The net result is a product that increases the accessibility for JITS to many
students—a vital requirement for an equitable and successful educational product in
today’s Internet-ready community. Figure 11 presents a pictorial view of the JITS
multithreaded distributed Web-based Infrastructure.

Human-Computer Interaction

The interface for computer-based programming tutors was given careful
consideration during the design of the Java Intelligent Tutoring System (JITS). The user
interface is based on a presentation format implemented in many popular Integrated
Development Environments used by professional programmers (e.g., Visual Caf¢,
JDeveloper, JBuilder, etc.). The JITS login screen and user interface are shown in
Figure 12 and Figure 13 respectively.

Students are presented with a problem, the problem specification, the skeleton
code, the code editor, and a number of buttons with which to interact with the tutor. The
student types in his/her solution in the Source Code Area (see Figure 13) and presses

“Submit.” This invokes a call to the corresponding JavaBean™ representing the student.

66

Client 1

JTS Application Server Enterprise Information System (database)

JDBC SQL query/statement EEFF
» =

A

JDBC ResultSet

ClientN i
1) Individual Student Information

browser i
e (S;:‘:szm’:ie::l logic) (i.e., student history, statistics,
+ 9 problems solved, learning style, etc.)
JavaBeans 2) Problem sets (statement,
specification, solution, etc.)

(business logic)

Al module: .
= selects the most appropriate response
for tutoring the student using information from

intent Recognition madula

Java Error
Carrection
Algorithm (JECA)

Intent
Recognition

module 1
. Collective .
Student Model

Figure 11. JITS multithreaded distributed web-based infrastructure.

/g Java Intelligent Tutoring System - Microsoft Internet Explorer

File Edit View Favorites Tools Help

GBecl{ - O D @ lfh ’),d Search *Favorltes a‘Media @' B ‘_\

Agldress' http:flocalhost:8080fjits_login.jsp

0«

Links **

username: |sykes

password: [nnn.u;

l@ Done

Java Intelligent Tutoring System

Welcome to the Java Intellient Tutoring System. Please enter your login'id and password,

rH [_, l—_- (o Internet

a

Figure 12. JITS login screen.

67

a Java Intelligent Tutoring System - Microsoft Internet Explorer

Fle Edt view Favorites Tools Help

68

Ot - © - [x] (&) Q| Pt s¢romtes @rets &) | (3w F[] &

Java Intelligent Tutoring System Welcome sykes!

Problem: (1 of 4)
Write a program called Summer which adds all the mteger numbers from 1to a spec1ﬁed number (). For
example, f IV were assigned the value 10, then the sum of the numbers from 1 to 10 is 55.
Program specifications:
This program requires the use of a for-loop structure. A skeleton structure of the solution is given. Fill in the
code to complete this program.
Required Cutput:
Sum =55
public class Summer {

public static void main(String [] args) {

int sum = 0;

System'.out.print"in("Sum =" + surﬁ);

Address I@ http:/floyalty.sheridanc.on.ca:8080{jts.jsp . _I =Y Go ‘ Links » J @ -

¥
}
Suhmitl “iew Top Hint | Wiew All Hinte I iy Performance New Problem Exit
OUTPUT:

S

@ Done I_ [|4 tntemet

AL

Figure 13. Initial JITS User Interface.

69

The code is then disi)atched to JECA, which processes the submission and generates a set
of appropriate hint objects. The student, at any time, may explicitly request a hint from
JITS by pressing “View Top Hint” or “View All Hints.” The hints are dynamically
generated based on the problem details and the student’s submission.

The initial design of JITS used both static content and dynamic content. In other
words, some of the information was loaded into the student’s browser from the database
while other information was hard coded. The dynamic content was extracted via JDBC
from an ORACLE database schema and embedded into the JITS web page. The initial
schema is presented in Table 5.

Hint Generation

An additional design consideration is the categories of hints that are generated by
JECA for JITS. There are a number of different categories of hints that may be created as
a result of the student’s code submission. They are presented in Figure 14,

A KEYWORD REPLACEMENT HINT arises from a situation where the student
typed in a suitably close representation to a Java keyword. For instance, if the student
typed in “Whiles,” this would be interpreted as the keyword “while.” An
EXTENDED TYPE REPLACEMENT HINT is when the student wrote “Sting” which
will interpreted as “String”-the java.lang.String class. An
IDENTIFIER REPLACEMENT HINT is used in the situation where a suitably close

match to an existing identifier has been found.

Table 5

Initial JITS ORACLE Schema Tables

CREATE TABLE PROBLEMS (

problem id NUMBER (3),

problem desc VARCHAR?2 (400) NOT NULL,
problem spec VARCHARZ2 (400) NOT NULL,
problem output VARCHAR?2 (50),

template top section VARCHARZ2 (400),

template bottom section VARCHAR2 (400),

problem difficulty VARCHAR?2 (20)

)7

CREATE TABLE STUDENTS (

student name VARCHARZ2 (30),
student password VARCHARZ (15),
problem set id NUMBER (3) ,
problem id NUMBER (3) ,
skill level NUMBER (3),
performance rating NUMBER (3),
performance history VARCHARZ2 (2000),
times connected NUMBER (5) ,

date last connection VARCHAR?Z2 (30),
picture LONG RAW,

);

CREATE TABLE STUDENT PROBLEMS (

student name VARCHARZ2 (30),
problem set id NUMBER (3) ,
problem id NUMBER (3),
number of attempts NUMBER (3) ,
solved CHAR(1),
students_solution VARCHARZ2 (500),

solution date VARCHAR2 (30),

KEYWORD REPLACEMENT HINT = 1;
EXTENDED TYPE REPLACEMENT HINT =
IDENTIFIER REPLACEMENT HINT = 3;
GRAMMATICAL HINT = 4;
CLOSE_BUT_LOGIC ERROR = 5;
SUCCESSFULLY SOLVED PROBLEM = 6;
GENERAL HINT = 7;
OTHER _TYPE OF HINT = 8;

Figure 14. Hint categories.

2;

71

72

For example, consider the following snippet of code:

int my int = 0; // declaration
my it = my intt + 1; // and use

There would be two IDENTIFIER REPLACEMENT HINTSs generated for this piece of

code:

Identifier Replacement Hint: Would you like me to replace "my_it" with "my_int"?
Identifier Replacement Hint: Would you like me to replace "my_intt" with "my_int"?

A GRAMMATICAL_ HINT is generated when the parser fails on a particular
production in the Java grammar. Specific information regarding the error is recorded in
the Hint object depicted. The last two types of hints are GENERAL HINT and
OTHER TYPE OF HINT. GENERAL HINT is used in the situation when the student is
far from the solution path and needs to be realigned with the program statement and
program specifications for the posed problem. If the student’s code compiles but
produces output that is not the same as the required output, as specified in the problem
statement, the CLOSE BUT LOGIC ERRORIis used. When the student solves the
problem the SUCCESSFULLY SOLVED PROBLEM hintis used. Last,
OTHER_TYPE OF HINT is reserved for future research.

There are a number of important pieces of information represented in a Hint
object. The Hint object is depicted in Figure 15. The type member corresponds with
one of the six types of categories of Hints currently supported in JECA. The _col and
_ line members specify where the error occurred. The line of code and
error pointer represent the source code and the exact location of where the error
occurred. There are two tokens to assist in identifying where the error occurred in terms

of the tokens. offending token represents the precise token the parser failed on,

73

and previous to offending token represents the last successfully parsed
token during parsing. The _hint member is a String summarizing the actual hint relying
on the values of other data members in this object. It is intended to be used during the
feedback process during student tutoring. The last member of the Hint class is the
_confidence, which will be assigned an integer from 1 to 10. A confidence value of
1 indicates a high level of certainty, indicating the suggested hint is correct and will bring
the student closer to a compiled program. On the other hand, a confidence value of 10,
indicates uncertainty on behalf of the hint generated. In these situations, the student will
have to use their own judgment based on the detailed information provided to them by
the Hint objects, namely the data members, type, col, line, line of code,
_error pointer, offending Token, and
_previous to offending Token.

An example follows to illustrate these design aspects of the proposed error
correction algorithm. Given the source program depicted in Figure 16, JECA would
modify the program to the program depicted in Figure 17. As a result, the following Hint
objects would be created by JECA:

1) Keyword replacement hint: Would you like me to replace "Int" with "int"?

2) Keyword replacement hint: Would you like me to replace "FOR" with "for"?

3) Keyword replacement hint: Would you like me to replace "iint" with "int"?

4) Grammatical hint: Look near line: 8 column: 10. Look between the "++" and
the "sum"

The following section depicts how the Hint objects are used in a typical dialog

between JITS (via the supporting JECA module) and the student programmer.

74

_type | GRAMMATICAL_HINT

_col
_line

_line_of_code | for (inti=0;i<=10; i++ |

_error_pointer | Al

_offending_Token | sum

_previous_to_offending_Token
_corrected_line_of_code | for (int i=0; i <=10; i++) |

hint Grammatical hint: Look near line: 8 column:
- 10. Look between the "++" and the "sum"

_confidence

Figure 15. A JECA Hint object representing a grammatical error.

public class Test {
public static void main() {
Int sum = 0;
For (iint i=0; i<=10; i++
sum = sum + 1i;
System.out.println(™Sum is:” + sum);
}
}

Figure 16. Arithmetic sum Java program with grammatical errors and syntax errors.

75

public class Test {

public static void main(String args []) |
int sum = 0;
for (int i=0; i <=10; i++)

sum = sum + i ;
System.out.println("Sum is:™ + sum);
}
}

Figure 17. Internally corrected JECA source program for the arithmetic sum problem.

76

77

Using the example presented in Figure 16, focusing only on the area where the si:udent
enters code in the “source code area” (see Figure 13), a dialogue occurs between JITS
and the student. Table 6 presents a typical dialogue that would occur between JITS and
the student for this example.

The tutoring process is dynamic. At any time, the student is able to interject,
disagree with JITS’ suggestions, or modify the source code. JECA is designed to be
invoked many times to support the JITS tutoring process.

JECA is significantly different from other standard Java compilers. Given the

source program in Figure 16, an ordinary java compiler would produce the following:

Test.java:5: ')' expected
Forr (Int 1i=0; 1 <=10; i++

A

Test.java:5: not a statement

Forr (Int i1=0; i <=10; i++
Test.java:5: ';' expected

Forr (Int 1=0; 1 <=10; i++
3 errors

The embedded JECA system in JITS is much clearer and more helpful than
standard Java error systems. JECA has been designed for the beginner Java programmer

and intelligently recognizes the intent behind the student’s code submissions.

Table 6

Hint Objects Utilization and Typical Dialogue Between JITS and the Student

78

Student’s submission:
For (intt i = 1; 1 <= 10; i++ {
sum = smu + i;
}
JITS: Would you like to replace "For' with "for"? (Keyword replacement hint)
Student: Clicks Yes, or changes the code manually.
Resulting code:
for (dntt 1 = 1; 1 <= 10; i++ {
sum = smu + 1i;
}
JITS: Would you like to replace "Int" with "int"? (Keyword replacement hint)
Student: Clicks Yes, or changes the code manually.
Resulting code:
for (int i = 1; i <= 10; 1i++ {
sum = smu + 1i;

}

JITS: Look near line: 4 column: 37.
Look between the "++" and the "{" (Grammatical hint)

JITS elaborates:
HINT STRING : ‘
for (int i=0; i<10; i++ { H@
CORRECTED CODE:
for (int i=0; i<10; i++) {

Confidence... : 1 (high certainty)
Student: Makes the appropriate changes to the code.
Resulting code:
for (int i = 1; 1 <= 10; 1i++) {

sum = smu + i;
}
JITS: Would you like to replace '"'smu'" with "sum"? (Identifier replacement hint)
Student: Clicks Yes, or changes the code manually.
Resulting code:
for (int 1 = 1; i <= 10; 1i++) {

sum = sum + 1i;

}

79

Initial User Modeling Design
The initial JITS user modeling component tracked some information, but once the
students finished a session this information was lost. For instance, the information that
was capturing included: the number of attempts for each problem the student has tried;
the number and type of misconceptions involving keywords, extended keywords, and
identifiers are recorded (e.g., “For,” “fro” instead of “for,” etc.); whether the student has

solved the problem or not; and the difficulty level of the problems that have been solved

by the student.

CHAPTER FIVE: METHODOLOGY AND PROCEDURES

The methodology employed in this dissertation is supported by two distinct
research components. The first component is related to the manner in which JITS was
designed and constructed. In this research section, students and professors using the
prototype JITS offered suggestions and comments for the improvement of JITS. The new
knowledge was fed back into the redesign and construction of JITS. Beyond the initial
development of JITS, a cyclic process was used: design, develop, test, modify, redesign,
redevelop, retest, etc. This research methodology involved qualitative instrumentation
including observation, surveys, and personal interviews. The goal of this methodology
was to improve JITS.

The second component of the methodology is related to the manner in which JITS
was evaluated. In order to determine the degree and quality of learning that took place by
students using the Java Intelligent Tutoring System, a quantitative investigation on
performance scores was conducted. The research methodology for this section involved
an experimental design with repeated measures. As a result, the researcher was able to
compare pretest and posttest performance differences as well group differences (i.e.,
Control versus JITSC). One advantage of this type of analysis is that interaction effects
were able to be calculated and analyzed.

Subjects

The population of this study were students across the province taking a
comparable course in programming. The sample in this study were the students in their
first year of college taking a beginner Java programming course at the Sheridan Institute

of Technology and Advanced Learning. During the summer of June to August 2004,

81

there were two such classes taking this course. One class was located at the Davis
campus. This class was the experimental group (i.e., JITSC). The other class was
located at the Trafalgar Road campus. This class was the control group, which consisted
of 23 students. One professor taught both classes for the first 7 weeks. After a midterm
break for week 8 in the term, another professor took over and taught both classes for the
remainder of the term (i.e., for the last 7 weeks). Fourteen students consented to try the
Java Intelligent Tutoring System (i.e., JITSC). Approximately every week, %2 to 1 hour
long sessions were conducted by the researcher to elicit specific information about their
experience with the Java Intelligent Tutoring System.

A similar study was conducted during the fall of September to December 2004.
During this period there were two instructors teaching a first year Java programming
course. Instructor “A” had two classes; the JITSC group consisted of fourteen students,
and the C group consisted of 25 students. Instructor “B” had three classes; the JITSC
group consisted of fourteen students, the C1 group consisted of eighteen students, and the
C2 group consisted of 23 students. Both instructors taught for the entire semester (i.e., 14
consecutive weeks). Every week, %2 to 1 hour long sessions were conducted by the
researcher to elicit specific information about their experience with the JITS.

During both time periods (Summer and Fall 2004) the JITSC group were talked to
and observed during the % to 1 hour long sessions. Additionally, many JITSC students
emailed the researcher with comments and suggestions for improvement. The manner in
which students were interviewed was primarily individually based; however, there were
some occasions when an issue was raised that were a shared concern among several

students. The total number of students involved in this entire research project (i.e., all

82

JITSC students) was 14*3 = 42, The kind of note taking procedures were observations
recorded in a researcher’s log book. Such observations included information regarding
individual student’s progress through a specific programming problem in JITS. For
example, the programming topic, the problem number, types of mistakes and errors, and
JITS’ response to the student were all recorded in the researcher’s log book.

Professors were also selected to participate in this study. The selection of
professors was based on a number of factors including their knowledge of the Java
programming language, level of course offerings, and interest in offering critical
opinions on the Java Intelligent Tutoring System. A total of 4 professors were selected
for this study.

Statement of Procedures

Two global procedures were required:

PART A Design and develop the Java Intelligent Tutoring System; and
PART B Data gathering for the quantitative investigation.
PART A: Design and Development Procedure for the JITS

Although the initial JITS was already designed and developed, the system had
never been tested by students. Once students and instructors started working with JITS,
there were many features to be included. The cyclic process involving designing,
developing, and testing, and back to redesigning was used for the ongoing refinement of
JITS to ensure that it adequately met the needs of students and instructors.

An interview-style survey sheet was constructed to aid in gathering input from
students in the JITCS groups and professors. The survey included six open-ended

questions to facilitate a great number of perspectives and opinions. One of the

measurement iﬁstruments for this component of the study was this survey, depicted in
Table 7. By presenting the survey to students and teachers who have used JITS,
feedback representative of these two perspectives was gathered. Additionally, the
researcher often visited the classroom to informally assess JITS. Between 2 hour and 1
hour per week was spent with students and professors, who offered important
suggestions for improving JITS. This information was recorded in the researcher’s
logbook. This form of data gathering proved to be the most effective way of receiving
feedback from students and instructors for the refinement and improvement of JITS.
PART B: Quantitative Investigation Procedures

A series of programming problems were developed for both the Java Intelligent
Tutoring System Class (JITSC) and the Control group. Students in the control group
were taught in a traditional format such as instructor-led instruction, group-work,

demonstration, etc. The JITSC group received this same instruction as well. This

83

investigation involved both intragroup and intergroup comparison of student achievement

by using pre- and posttest performance tests. Performance tests are small quizzes
containing two to four programming problems and space for the student to write their

solutions.

84

Table 7

Interview Sheet

Project Interview

I am conducting a survey of those participants who were taught using the Java Intelligent Tutoring System at
Sheridan. The information gathered from our interview will be used for my research. This involves determining
the effectiveness of learning in this environment. For each question, select the most appropriate response based
on the following scale:

1 = strongly favourable to the concept, 2 = somewhat favourable to the concept, 3 = undecided, 4 = somewhat
unfavourable to the concept, 5 = strongly unfavourable to the concept. The following questions will be asked
during the interview.

1. How do you rate the Java Intelligent Tutoring System’s usefulness?

Very Useful Not Useful
1 2 3 4 5
Comments:

2. Do you feel the Java Intelligent Tutoring System is beneficial to your studies? List and explain the
advantages/disadvantages of this learning environment.

Very Beneficial No Benefits
1 2 3 4 5
Comments:

3. Compare JITS with a traditional classroom. Do you feel JITS is better or worse than an ordinary classroom
teaching environment? Identify any similarities and differences between a traditional classroom experience and
the JITS learning experience.

JITS is much JITS is much
better than worse than
traditional traditional
classroom classroom

1 2 3 4 5
Comments:

4. How do you rate the ease with which you use and understand the tutoring style of the JITS?

Very easy Very difficult

to use & understand to use & understand
1 2 3 4 5

Comments:

5. Have you enjoyed JITS? Explain why or why not.
Very Enjoyable Not enjoyable
1 2 3 4 5
Comments:

6. Do you feel you learn more detailed information or about the same as a regular classroom when using JITS?

Explain why or why not.
Learn Better Learn the same
1 2 3 4 5

Comments:

85

The performance tests were administered at the beginning of the term and at midterm
(i.e., week 7 in the term). As a result, there were statistical analysis opportunities. Figure
18 presents a sample performance test.

These nonsubjective measurements quantify the performance level of students
prior to exposure to JITS and allow comparison to the level after exposure to JITS. In
addition, comparisons were made between the JITSC and the Control group. Regardless
of the measurement category, there were three possible outcomes: (a) there was no
difference in performance between the JITS group and the Control group; (b) students in
the JITS group performed higher than the Control group; and (c) students in the JITS

group performed lower than the Control group. This is summarized as follows:

| ITSC |=|C| (no difference), or
| ITSC | > | C| (Java ITS resulted in higher performance than C), or
| JITSC | <|C| (Java ITS resulted in lower performance than C).

The following section describes the details of the way in which this quantitative
investigation procedure was performed. Prepare a series of programming problems for
the Control group:

1. Select a series of topics that are routinely taught to students when learning the

Java programming language in one semester, for example, datatypes,
identifiers, scope, methods, looping constructs, and arrays;

2. develop a series of programming problems that are based on those selected

topics; and

86

For-loop quiz

Q1. Write a program that computes the sum of all the odd numbers from 1 to 5000. Use a for-loop in
your solution. Complete the following program in the space provided.

Q2. The Fibonacci sequence is described by u(n+2) = u(n+1) + u(n); where u(0)=1, u(1)=1. In other
words is looks like: 1,1,2,3,5,8,13, ... etc. So,u(2)=u(1)+u(0)=1+1=2, u(3)=u(2)+u(l)
=2+1=3, etc.

Complete the following program using a for-loop that computes the Fibonacci number for u(20).
Use the space provided below.

Figure 18. Sample performance test for quantitative investigation.

87

3. ensure that they meet the requirements of the unit or subunit of study by
encouraging several teachers with expertise in this area to review the series of
lessons developed.

Prepare a series of programming problems for the Java Intelligent Tutoring

System:

1. Select the same topical area corresponding to the Control group’s lessons;

2. develop a seriés of problems for the Java Intelligent Tutoring System; and

3. ensure that they meet the requirements of the unit or subunit of study of the
Java programming language by encouraging several teachers with expertise in
this area to test the series of lessons developed in the JITS.

Collect data to determine the effectiveness of the learning experience by using JITS by:

1. conducting the pretest for baseline data on students in the JITSC and Control groups
prior to exposure to the experiment.

2. determining the mean and standard deviation for the JITSC and Control groups.

3. conducting tutoring sessions using the Java Intelligent Tutoring System to the
experimental group.

4. conducting traditional-form lessons for the Control group.

5. conducting the posttest given to both JITSC and Control group. >

6. computing standard statistical measures between pre- and postexposure to JITS lesson

and traditional-form lesson for the two groups respectively (i.e., JITSC and Control

groups).

% All tests for this study were knowledge-based and skill-set-based programming
problems corresponding to the material covered in the classes.

88

7. Computing additional statistical information such as two-way ANOVA with repeated
measures. The template of the organizational layout of the results is presented in the
form of tables as shown in Table 8.

8. A cyclic process involving designing, developing, testing, and back to redesigning
was used for the development and refinement of JITS to ensure student and instructor
satisfaction. For the quantitative component, the methodologies for data-gathering of
student performance were presented. This involved conducting pre- and posttests to
the Control and JITSC groups. The posttests were administered after the JITSC
group used the Java Intelligent Tutoring System for a period of time.

Methodology and Procedures: A Summary

This chapter described the methodology by which this study was conducted. It
contains the specifications of the procedures used for which data were gathered for the
refinement of JITS and the qualitative aspects of this study.

A cyclic process involving designing, developing, and testing, and back to
redesigning was used for the development and refinement of JITS to ensure student and
instructor satisfaction. For the quantitative component, the methodologies for data-
gathering of student performance were presented. This involved conducting pre- and
posttests to the Control and JITSC groups. The posttests were administered after the
JITSC group used the Java Intelligent Tutoring System for a period of time. The last
component of the methodology was to compute standard descriptive statistical measures
and to compute ANOVAs to determine degree of difference between JITSC and the
Control groups. In the first study a three-way analysis of variance (ANOVA) was

computed with Group (C, JITS), Semester-Point (first half, second half) and Test —Time

89

(pretest, posttest) as the independent variables, and test score as the dependent variable.
In this analysis, Semester-Point and Test-Time were treated as repeated measures.” For
the second study a two-way ANOVA was computed with Group (C, JITS) and Test —
Time (pretest, posttest) as the independent variables, and test score as the dependent

variable.

Table 8

Performance of Students in JITSC and Control Prior Exposure to JITS and After

Exposure to JITS
JITSC Control
Student Pre-Test | Post-Test Student Pre-Test Post-Test
Sq Cy
Sz C2
mean mean
standard standard
deviation deviation

91

It should be noted that this experiment grew in the real world—no preassigned
classes were formed specifically for this study. Rather, the formation of classes under
study resulted in the natural selection process of the course offerings in the institute. As a
result, the data have a high degree of natural validity. On the other hand, it is a
limitation, since the researcher did not have random assignment to groups. Thus, it is a

quasi-experimental study.

CHAPTER SIX: FINDINGS (ANALYSIS AND EVALUATION)

Due to the nature of this dissertation involving the extensive details relating to the
design and construction of JITS and the formal evaluation of the tutor, this chapter first
presents a summary of the JITS developmental research, which includes the final version
of JITS as of completion of this research project. The second summary presents the
results of the student performance assessment, which includes a discussion regarding the
effectiveness of the JITS.

The process employed in the design and refinement of JITS was a student-centred
approach which elicited students’ comments for the improvement of JITS. Additionally,
instructors using JITS offered comments which helped shape JITS. The methodology
used was a cyclic process reflecting the students’ comments: design, develop, test,
modify, design, develop, test, etc. The second objective set out in this research was to
determine the effectiveness of learning within this environment by comparing students
exposed to JITS with those taught Java in a traditional classroom environment.

Beyond the summary sections, this chapter provides many details about both
components of this research, namely, the design and refinement of JITS (including
qualitative analysis) and the quantitative analysis of students using the system as it was
being developed. The results are presented by way of a collection of three Program
Development Sessions, with qualitative and quantitative findings for each. Each Program
Development Session presents a number of sections entitled: “JITS Developmental
Research,” “JITS Performance Score Analysis,” and “Summary and Recommendations
for further JITS Development.” Each section is further divided into parts typically

representing research work conducted between 1 and 3 weeks in duration. Each part is

93

identified by a start date and an end date representing the scope during which the research
was performed.
Summary of JITS Development Research

The following section describes the completed Java Intelligent Tutoring System in
terms of the user interface only. The final version of JITS includes many other features
beyond the user interface; however, for brevity of this summary, these details may be
found after the summary sections in this chapter.
JITS User Interface

The user interface for the Java Intelligent Tutoring System underwent a number of
significant changes throughout the duration of the research study. During some of the
experiments, major changes were conducted within very short timelines to ensure the
student’s suggestions were taken seriously and that significant changes were done to the
user interface. Figure 19 depicts the completed JITS user interface. The first section (i.e.,
label 1) presents a personalized welcome to the student logged in. Label 2 presents a
note relative to the current state of solving the problem at hand. In this section, notes are
dynamically created by JITS that are personalized to each student. Label 3 presents the
problem template structure including the problem statement, the problem specifications,
and the required output. This section also draws reference to the problem number out of
the total number of problems available in this programming topic. At the end of Section
3, alink (i.e., label 4) is provided to a picture if the problem has a visual component (i.e.,
an equation or relevant drawing) to assist the student in more clearly understanding the
problem. If the student clicks the link, the picture is shown in a separate window to allow

the student to refer to the picture while at the same time work

a Java Intelligent Tutoring System - Microsaft Internet Explorer
fle Edt Mew Fgvortes Joos Help

N R e Gy s 3. T
O - Q- 1] 3 Q| Do sreons B (34

Address | 8] http:/floyay. sheridanc.on.cajits 50

Java Intelligent Tutoring System

2 NOTE: You have attempted this problem 4 times. You have not yst solved this prodlem. Your last attempt is presented for you in
the code area. Please try again.

Problem: (3 of 5) in Problem Set # 2 (Topic: Juva Statements)
‘Write a program called Power Generator which calculates the result of a number multiplied by itself.

ogramming Topics

Javea Basics
Java Statements
If statement

for loops

do while loops
while loops
Anrays

Program Specifications:
This program requires the use of a function A skeleton structure of the solution is given. You need to declare the

variable: result View the image for this problem.
Reguired Output: ‘
|_Result = 10000

public class Power {

publie int powergen(int num) { -
5) return num * num; Taks me there I

}
public static void main(String [] args) { Viewthe Tutarial
Power p = new Power(): @
double resulc A
@ p.powergen(19)

~ o

System.out.println("Result = " + result);

}

Submill Wisw Top Hinr | Wige All Hinta | 'vrewSolmionJ
Prendous Problem | Nexd Problem | My Perdormence l Exit

<8 }

94

T ourrut: CB
i T T T s

sl

Figure 19. Completed version of the JITS User Interface.

95

with the main JITS user interface. Label 5 shows the template provided by JITS for each
problem in the system. Label 6 presents the editing region where the student types
his/her solution. Label 7 depicts the various buttons which the students use to interact
with JITS. Buttons include “Submit” to submit a solution to a problem and to receive
feedback. The two buttons, “View Top Hint” and “View All Hints” provide the means
by which students can see the hints that JITS provides. The “View Solution” button
provides potentially various solutions to the current problem based on the

Collective Student_ Model. The “Previous Problem” and “Next Problem” buttons are
used for navigating within a problem set. The “My Performance” button yields detailed
information about the student’s performance including problems solved, problems
attempted, the number of attempts for each problem, and comparison information to the
“average” JITS student. Links are provided in the “My Performance” output for rapid
access to any problem the student wishes to retry. Label 8 shows where the majority of
the responses from JITS are presented. Information such as hints, solutions, performance
scores, and errors are all shown in this area of JITS. Label 9 presents the choices of the
various programming topics that the student may choose. The “Take Me There” button is
used to bring the student to the selected programming topic. Label 10 presents the ”View
the Tutorial” button which launches the JITS Tutorial window. The tutorial window may
be viewed at the same time as the student is working with the main JITS user interface
(i.e., the tutorial may be referenced while working on a problem in JITS). Label 11 shows
the “Help Me” button which opens a separate window displaying the screenshot of JITS

with labels to all of the components in JITS.

96

The purpose of this window is to orient new users of JITS so that they feel supported and
can more quickly become productive in this ITS. The last label (i.e., 12) is the “Exit”
button. This button brings up a screen which thanks the student for trying out the system
and performs some system-wide cleanup procedures behind the scene.
Summary of Student Performance Score Analysis

This summary presents the main findings regarding student performance scores
involving students that were exposed to JITS (experimental groups) and those taught in a
traditional classroom environment (control groups). Two main testing periods are
presented in this section consisting of equal periods of time (i.e., one semester). The first
semester was from May 2004 to September 2004 which entailed the First Program
Development Session (7 weeks: May to July) and the Second Program Development
Session (7 weeks: July to August). The second term was from Sepfember 2004 to
December 2004 (14 weeks in total). This term entailed the Third Program Development
Session.
First and Second Program Development Sessions (May 2004 to September 2004)

A 2 x 2 x 2, three-way Analysis of Variance (ANOVA) was computed with
Group (i.e., JITS, Control), Time (i.e., Early Semester [May to July], Late Semester [July
to August]), and Test (i.e., pretest, posttest) as the independent variables, with the last
two variables treated as repeated measures. The dependent variable was performance on
the competency tests. The main effect for Test, F(1, 35) = 119.43, p <.001, was qualified
by a Test by Group interaction, F(1, 35) =4.98, p < .05, and a Test by Time interaction,
F(1,35)=43.82, p <.001. As may be seen in Figure 20, the Test by Time interaction is

due to a larger gap between pretest and posttest early in the semester as compared to the

97

JITS Performance Score Comparison during
the First and Second Program Development
Session (May to September, 2004)

Group

100 mJITS
EControl

80 —m . kil [

60 [--------- | ------- o

40

Percentage

20 ' Pk ol

Pretest1 Posttest1 Pretest2 Posttest2
Early Semester Late Semester

Figure 20. Showing (a) the two-way Semester by Test interaction due to the smaller gap
between pretest and posttest later in the semester, and (b) the two-way Group by test

interaction due to the superior performance of the JITS group at posttest.

98

difference late in the semester. This would .seem to indicate, and logically so, a more
dramatic learning curve early in the semester. More interesting, and more to the point of
this study, was the Test by Group interaction, which showed the superior performance by
the JITS group. Since there was no three-way interaction we can infer that the JITS group
was performing better than the comparison group at posttest for both points of time (i.e.,
early semester, and late semester). (Means and standard deviations are reported later in
this chapter, in Table 15).
Third Program Development Session (September 2004 to December 2004)

A 2x 2, two-way ANOVA was computed with Group (i.e., JITS, Control) and
Test (pretest, posttest) as the independent variables, with the second variable treated as a
repeated measure. The dependent variable was performance on the competency tests. The
main effect for Test, F(1, 92) = 61.12, p <.001, was qualified by a Test by Group
interaction, F(1, 92) = 5.36, p <.025. As may be seen in Figure 21, the Test by Group
interaction is due to the superior performance of the JITS group at posttest. (Means and
standard deviations are reported in Table 20 which is found later in this chapter).

The remainder of this chapter presents various details associated with the two
components of this dissertation, namely, the refinement of JITS (including the
qualitative analysis) and the quantitative analysis of students using the system as it was
being refined. The findings are presented as a collection of Program Development

Sessions, with qualitative and quantitative findings for each.

JITS Performance Score Comparison during
the Third Program Development Session

(September to December, 2004) B Group

100 &2 JITS
@1@ Control
S

Percentage

60

| Pretest1 . Posttest1 |

Figure 21. Showing the two-way Group by Test interaction for responses indicating

superior performance for the JITS group at post-test.

99

100

Within each Program Development Session there are a three numbered sections
entitled: “JITS Developmental Research,” “JITS Performance Score Analysis,” and
“Summary and Recommendations for further JITS Development.” Each section is
further divided into parts which represent work conducted between 1 and 3 weeks in
length.

The process employed in the design and refinement of JITS was a student-
centred approach which elicited students’ comments for the improvement of JITS.
Additionally, instructors using JITS offered comments which helped shape JITS. The
methodology used was a cyclic process reflecting the students’ comments: design,
develop, test, modify, design, develop, test, etc.

The second objective set out in this dissertation was to determine the
effectiveness of learning within this environment by comparing students taught Java in
a traditional classroom environment with those exposed to JITS. The results from this
quantitative component of the study are presented below. Each of the three Program
Development Sessions contains three sections entitled: “JITS Developmental
Research,” “JITS Performance Score Analysis,” and “Summary and Recommendations
for further JITS Development.” Each section consists of one or more parts representing
work conducted over several weeks.

First Program Development Session: Section #1: JITS Developmental Research

This session presents the findings from the first “live” test of JITS with students.
It includes student and teacher comments and the researcher’s observations as students
tried JITS. A significant amount of redesign and program refinement took place during

this session which spanned from May through June, 2004.

101

Ses.;ion #1, Section #1, Part #1: May 3 to May 17, 2004

This study was the first field test of JITS for students and instructors. During
this study, a number of issues were raised. A number of students found that the hints
generated by JITS were confusing. The researcher addressed this issue by introducing a
number of new features to JITS.

The first feature added was a pointer (i.e., the caret character: “*”). This
“pointer” was introduced to indicate the exact location of where an error has occurred in
the student’s submission. For example, suppose the student submitted the following

snippet as part of a solution:
for (int i=0; 1i<10 i++)
After the student clicks “Submit” button to send the code to JITS for analysis, JITS
replies to the student with the following response:
Suggestion:
Look near line: 4 column: 37. Look between the "10" and the "i"
Change:
for (int i=0; i<10Ai++)

to:
for (int i=0; 1i<10; 14+)

The use of this pointer makes it easier for students to see exactly where the error is
occurring. The researcher also added a “Suggestion” section to the reply that describes
the exact location of where the errof is taking place, the symbols. used, and the corrected
code.

Another issue raised during this part of the research was associated with the hints
JITS generates. One teacher suggested more information should be provided in the hints

that JITS offers. The researcher addressed this suggestion by creating and designing the

102

infrastructure for two buttons: “View Top ﬁint” and “View All Hints.” These two
buttons provide different detail of information regarding the student’s submission.
Depending on the student’s comfort level, s/he may select one over the other. The “View
All Hints” is significant in the context of professional programmer’s Integrated
Development Environments (IDE) in which such features are common. This is because
in a professional environment, the compiler purposely flushes out all errors in the
programmer’s code. It is not unreasonable for dozens of errors to be listed during
compilation while a programmer is working on developing a solution to a problem.
However, working with dozens of errors would be overwhelming for a beginner
programmer. As discussed in Chapter 3 and 4, the philosophy behind JECA supports
beginner programmers by focusing students on one specific error in the solution being
developed. The “View Top Hint” is a human-computer interaction design feature aimed
to support the student. Behind the scenes, JECA is performing the support for the “View
Top Hint.”

The “View All Hints” is designed to act as an intermediary step to a more
advanced level of competence as would be instilled in professional programmers. Figure
22 and Figure 23 depict examples of the functionality of these two buttons.

Another interesting issue was raised during this part of the research. One
student discovered that they could simply type in the text stated in the “Required
Output” section into the code section, submit it, and JITS would happily say,
“Congratulations—you have solved the problem.” It was not long before all of the

students learned this trick to outsmart JITS!

103

J.i_ra Inlr:llion:l_l_l 'l'ut_r.»nm] Sys(em - Microsolt Inte_rn(:t EJ-:_pfon:r T s - e £
e &8 yen Frote Do i | & |
Qe - O - [¥]]] Psn ygranes Pt @[(-5 47 XS

Address Im http:/{24.141.104.219:8%68/JITS-Project1 {cr(axl-(oot}jyfs_.jsp

Java .Imelligml Tutoring System e ,&d:::nng

NOTE: You hava tried this problam only once. You have not yet solved this problem. Your last attempt is presented for you in the

cade area. Please try again.

Problem: (1 of 4) in Problem Set # 4
Write a program called Summer which adds all the integer numbers from 1 to a specified number (N). For example, if N were assigned the value
10, then the sum of the numbers from 1 to 101s 55.
Program Specifications:
This program requires the use of a for-loop structure. A skeleton structure of the solution is given. Fill in the code to complete this program.
Regquired Output:
Sum =55
public class Summer {

public static void main(String [] args) {

int sum = O;

For (Int i=0: i<10 1i++) 2]
sum = smu + 1;|
=l

System.out.println("Sum = " + sum);
}
Submit | ViewTopHint | ViewAllHinls | \ViewSaiion | MyPerormence | NewProblem | i J
QUTPUT:
Suggestion: Replace *For" with "for”

=

Figure 22. “View Top Hint” results. JITS selects the most significant hint to offer the

student.

104

_ =loix|

ll 2 1ava Intelligent Tutoring System - Microsoft Internet Explorer

(Els EGt Wi Favortes Twoks e S | & |
Fal SR A = ML . |
@M @ _'Ia /b|)_1§mh ;{me @ redn @|@E~. ;
Asdrnss [) hitp://24.141.104.219:6980/ JITS-Project1 -contextroot/jis. jsp g & |'-‘“'“ | & -
Java Intelligent Tutoring System el St -

NOTE: You have attempted this prodblem 2 :xmas. You have not yet solved this problem Your last attempl is presented for you in the
code area. Please try again.

Problem: (1 of 4) in Problem Set #4
Write & program called Summer which adds all the integer numbers from 1 to a spemﬁed number (N). For example, if N were assigned the
value 10, then the sum of the numbers from 1to 1015 55,
Program Specifications:

. This program requires the use of a for-loop structure. A skeleton structure of the solution is given. Fill in the code to complehe this program.
Required Output: ' ﬁ
Sum=1355 -

public class Summer {
public static void main(String [] args) {
int sum = 0;

For (Int i=0; 1<10 i+4) i 2l
sum = smu + i; ’

System.out.println("Sum = " + sum);

}

Submit | | ViewTopkint || ViewAllHints || ViewSoliion | | MyPerarmance NewProblem | Eat]

QUTEUT:

1. Keyword mplacam hint: |
Suggestion: Replace "For" with "for”

2. Keyword replacement hint:
Suggestion: Replace "Int" with "nt"

3. Grammatical hint: i
Look near line: 4 column: 36. Look between the "10" and the 1" i
Suggestion:
Change:

for (int i=0; i<10 i++)

to:
for (int i=0; i<10: i++)

Figure 23. “View All Hints” results. JITS displays all of the hints relating to all of the

problems JITS has encountered with the student’s submission.

105

The problem with this is that a student could simply type in the final answer to a
programming problem without using the required structures as specified in the outline of
the problem description and specification. In order to address this problem, the
researcher designed and implemented a solution that prohibits this from being admissible
as a suitable solution. JITS recognizes that the student has entered the correct solution
but has not solved the problem using the constructs as requested. A separate Artificial
Intelligence (AI) module was introduced to solve this problem. Please see Figure 24 for a
pictorial explanation of how JITS responds to such requests.
Session #1, Section #1, Part #2: May 17 to May 31, 2004

One teacher stated that he wanted a tracking system that would show various
statistics about student performance and student activity. The teacher suggested that the
information could be used for assessment purposes and later for instructional purposes.
As aresult, the researcher developed a solution entailing a redesign of the JITS ORACLE
database schema in order to address the teacher’s request. A report generation script was
written in Structured Query Language (SQL) that tracks the students’ activities in JITS
and records them into the ORACLE database. The student tracking information currently
includes the number of questions attempted, the number of times an attempt was made to
answer a specific question, the current state of all student submissions for all of the
questions, and many other facts about the current student and all other students using .

JITS. Table 9 and Table 10 depict some of the student tracking information.

a Java Intelligent Tutoring System - Microsolt Internek Explorer
o BRSNS Rpites T P

(O~ @ - [@ G| Pwwsr Fgromns Wrete @[(3 5 |

106

| adess [B) gy /e, 141,104 2198560 TS Profect Lcortextrocts.jsp == =l Bs k| E -

Java Intelligent Tutoring System Welcome sykes!

NOTE: You have attempted this problem 3 times. You have not yet solved this problem. Your last attempt is presented for you in the
code area. Please try again.

Problem: (1 of 4) in Problem Set#4
Write a program’ called Summer which adds all the integer numbers from 1 to a specified number (). For example, if N were assigned the value
10, then the sum of the numbers from 1to 10 1s 55.
Program Specifications:
This program requires the use of a for-loop structure. A skeleton structure of the solution is given. Fill in the code to complete this program.
Required Cutput:
Sum = 55
public class Swumer {
public static void main(String [] args) {
int sum = 0;

sSum = 55; _;I
. =
System.out.println("Sum = " + sum);
}
Submit | ViewTopHint || ViewAliHine || ViewSolion | MyParfamance | NewProblem | Bt
OUTPUT:
Sum = 55
Good Try.

You have the correct output.
However, your solution does not use the constructs required.
Please re-read the Problem Specification

Figure 24. JITS analysis and response to a submission that is identical to the required

output. JITS responds in the same manner as a human tutor would.

107

Table 9

Sample Database Student Tracking Information Indicating Number of Attempts, Solved (true/false), and Student’s Solutions

STUDENT_NAME PROBLEM_SET _ID PROBLEM_ID NUMBER_OF_ATTEMPTS SOLVED STUDENTS_ SOLUTION

dav_sem3_studentl0 4 1 6 F

dav_sem3_studentlé 4 1 8 T for (int i = 1;1i <= 10;i++)

sum = sum + 1i;

dav_sem3_studentl6 4 2 0F

dav_sem3_student20 4 1 2 F fdsf

dav_sem3_student3 4 1 3T for (int i = 0; 1 <= 10; i++)
sum = sum + i;

dav_sem3_student3 4 2 1T for (int i = 4; i > 1; i--)

fact = fact * i;

dav_sem3_student3 4 3 16 F for (int i = 1; 1 = 500; i =1 + 2)
total = total + i;

dav_sem3_student5 4 1 0F

dav_sem3_student6 4 1 1T for (int i=1; 1i<=10; i++)
sum += 1i;

dav_sem3_studenté6 4 2 1T for (int i=1; i<=4; i++)
fact *=i;

dav_sem3_student6 4 3 10 ¥ for (int i=0; 1i<=500; i=i+1)
total +=i-1;

dav_sem3_student? 4 1 1T for (int i=1; i<=10; i++)
sum +=i;

dav_sem3_student? 4 2 1T for{int i=1; i<=4; i++)
fact *=i;

e 4 1 47T for (int i=0; i<=10; i++)

sum = sum +i;

(table continues)

to§

STUDENT NAME PROBLEM SET_ID PROBLEM ID NUMBER OF ATTEMPTS SOLVED STUDENTS_SOLUTION

e 4 2 ST for (int i=1; i<5; i++)
fact = fact * i;

e 4 3 12 F for (int i=0; 1<10; i++)
total = total + 0

e 4 4 6 F for (int i=0; i<=1l; i++) {
total = total + start + end +
last_ fib_number;

}

dav_sem3_student? 4 3 16 F for (int i=1; i<=500; i +=2)
total +=1i;
dav_sem3_student? 4 4 12 F for (int i = 1; i<=82; i++)
total +=i + (i-1)+;
dav_sem3_student8 4 1 1T for (int i = 1; 1 <= 10; i++)
sum = sum + 1i;
dav_sem3_student8 4 2 14T for (int i= 1; 1 <= 4; i++)

fact = fact * i;

dav_sem3_student?9 4 1 6 F for (int i =1, i1 < 11, i++)
{
sum = sum + i;
}

dav_sem3_student9 4 2 57T for (int i = 4; i > 0; i--)

{
fact = fact * i;

}

dav_sem3_student9 4 3 4 F for (int 1 = 1; 1 < 500; i =1 + 2)
{
total = total + i;
}

109

Table 10

Sample Database Student Tracking Information Indicating Current Problem Set, Problem_id, Performance Rating, Skill level,

Number of Times Connected to JITS, and the Date of Last Connection

STUDENT NAME PROBLEM_SET_ID PROBLEM_ID SKILL_LEVEL PERFORMANCE_RATING PERFORMANCE TIMES_CONNECTED DATE_LAST_CONNECTION

e 4 1 1 81 null 12 Fri Jun 04 15:56:56
EDT 2004
dav_sem3_studentl
dav_sem3_studentl0 4 1 1
EDT 2004
dav_sem3_studentll
dav_sem3_studentl2
dav_sem3_studentl3
dav_sem3_studentl4
dav_sem3_studentl5
dav_sem3_studentlé
EDT 2004
dav_sem3_studentl?
dav_sem3_studentl8
dav_sem3_studentl9
dav_sem3_student2
dav_sem3_student20
EDT 2004
dav_sem3_student2l
dav_sem3_student22
dav_sem3_student23
dav_sem3_student24
dav_sem3_student25
dav_sem3_student26
dav_sem3_student27
dav_sem3_student28
dav_sem3_student29
dav_sem3_student3
EDT 2004
dav_sem3_student30
dav_sem3_student3l
dav_sem3_student32
dav_sem3_student33

S
=
-

= o

o

null 2 Wed Jun 02 12:54:26

P N N N Y
=
e
[e

0
0
0
0
0

null 1 Wed Jun 02 13:03:1

PR N NS
[i el =
N
N e

0
0
0
0
0

null 2 Fri Jun 04 15:54:4

=

[E N N N SN O N Y SO N
[= I = T I ey

0
0
0
0
0
0
0
0
0
4

e e e e e
WHE PR PRSP e

[ee]

null 1 Wed Jun 02 12:56:4

PRI NN
e e e
o= e
e =]

(table continues)

tio

STUDENT_NAME PROBLEM SET_ID PROBLEM_ID SKILL_LEVEL PERFORMANCE_RATING PERFORMANCE TIMES_CONNECTED DATE_LAST_CONNECTION

dav_sem3_student34

4 1 1 1 0
dav_sem3_student35 4 1 1 1 0
dav_sem3_student36 4 1 1 1 0
dav_sem3_student37 4 1 1 1 0
dav_sem3_student38 4 1 1 1 0
dav_sem3_student39 4 1 1 1 0
dav_sem3_studentd 4 1 1 1 0
dav_sem3_student40 4 1 1 1 0
dav_sem3_student5 4 1 1 1 null 1 Wed Jun 02 12:53:27
EDT 2004
dav_sem3 student6 4 1 1 81 null 2 Wed Jun 02 12:52:45
EDT 2004
dav_sem3_student? 4 1 1 81 null 3 Wed Jun 02 12:52:31
EDT 2004
dav_sem3_student8 4 1 1 81 null 2 Wed Jun 02 13:02:53
EDT 2004
dav_sem3_student9 4 1 1 81 null 1 Wed Jun 02 12:51:58

EDT 2004

111

Some of the teachers involved in the JITS research project waﬁted a web-based
means to create problems for JITS to use for students. An authoring system is a tool that
allows authorized people (i.e., a teacher) to be able to create, modify, and delete problems
that are used in an Intelligent Tutoring System. The authoring tool the researcher is
currently developing will enable teachers to work with problems easily and quickly
within JITS. Teachers want these problems to be immediately available for JITS to use
for students. Most of the teachers stated that they wanted access to JITS from anywhere
and everywhere. Some teachers stated that they wanted to enter only the minimum
amount of information required for JITS to do its job. In other words, they did not want
to spend too much time in the development and typing of new problems in JITS.

The design and development of the JITS Authoring Tool was initiated during this
period of time in the project. Approximately 150 hours of programming has already been
done on the authoring tool, and work is still in progress. The goal of this tool is to
provide the teacher a convenient means to add problems to the database for JITS to use.
This will enable teachers to easily manipulate JITS programming problems because the
teacher needs to provide only the following information:

1. the problem statement;

2. the problem description;

3. the required output; and

4. the skeleton structure of the program.

As a result, the JITS Authoring Tool is intended to be extremely user friendly in

order to add many problems of various levels of difficulty. Once the teacher has

112

submitted the problems, they are immediately available to JITS and thus to sfudents of
the system. The JITS Authoring Tool User Interface is shown in Figure 25.

The JITS Authoring Tool provides a means for the instructor to view all the
problems in the lesson set and edit selected problems. In the Java Intelligent Tutoring
System, the author of problems does not provide a solution. JITS carefully scrutinizes
the student’s submission based on the problem description, specification, required output,
and template code and determines the appropriate feedback for the student. This ensures
the greatest degree of independent knowledge creation for each student.

Session #1, Section #1, Part #3: Week of May 31, 2004

In this part of the JITS Developmental Research section of the First Program
Development Session, a number of students stated that they wanted to be able to see the
solution after a certain number of attempts at a problem or if they got frustrated.
Essentially, they said, “It would be nice for solution button to be available.” As a result,
the researcher designed and developed a “View Solution” button with supporting
infrastructure. In the Java Intelligent Tutoring System, teachers are not required to
submit solutions during problem authoring. This is based on the premise that given
virtually all programming problems, there are potentially limitless solutions. Supplying
only one solution for a given programming problem is not an acceptable approach. As a
result, a Collective_Student Model representing the sum knowledge of all students was
designed and developed. This Collective Student Model analyzes all the students’

submissions and extracts those that are solutions to the particular problem the student is

currently working on.

7} Java Intelligent Tutoring System Authoring Tool - Micrasoft Internet Explorer

Gls ER Wew Favorkes Teok Heb

ZQBM-O-EJ Eﬂ f-ﬂPsm zi??mw t!'m @lﬁ Sy

113

Java Intelligent Tutoring System Authoring Taol Welconie Sykes |
. Problem#: 2 of 4
Problem Description:
. |Write a program ca.l._léd Fact which calculates the factorial Tor & specified ;I
nurdoer (N} . Fut.éxample, if N wvere assigned the wvalue 4, then 4! = 24.

:.Progr;;n Specifications:

This program requires the use of a for-loop structure.
the solution is given.

A skeleton structure of 3]
Fill in the code to complete this progrem.

Reqlured Output.

Fact = 24 ﬂ

Top Section of Code Template:

public class Fact { ;l
public static void main(String [) args)- {
int fact = 1;

Bottom Section of Cude Template:

} 2l

)|

|

[Tsubmit | Frevious Froblem Next Problem J Edit this Problem [Create New Problem

|_&a |

Eoee

=l
[ineemet Y

Figure 25. JITS Authoring Tool User Interface.

114

The AI_Module uses the information in Collective Student_Model to determine
appropriate feedback. The revised JITS user interface is shown in Figure 26, with a
small example illustrating this additional functionality due to student suggestions.
Session #1, Section #1, Part #4: June 7 to June 17, 2004

One student suggested a list of different programming topics should be listed on
the side of JITS User Interface page. The student suggested that it would make JITS
more useful for students with varying levels of Java expertise and/or interest and add a
significant degree of professional “look™ to JITS. The student suggested that “students
want to have a choice over their own learning—that is, students want to be able to select
the area of study they are interested in (e.g., Java arrays, loops, etc.).” Addressing this
problem required a great deal of work. In order to fulfill the request, a complete redesign
of the following JITS components was necessary: the ORACLE database schema, the
User Interface, and a number of JITS’ internal infrastructure components. In total, the
researcher spent several hundred hours on these tasks. The redesigned JITS now contains
the following programming topics:

1. Java Basics;

2. Java Statements;

3. The “if” statement;

4. The “for” loop;

5. The “do—while” loop;

6. The “while” loop; and

7. Arrays in Java.

3 Java Intelligent Tutoring System - Microsolt Internet Explorer

Fle Edt Vew Fyartes Jook Help

115

10 -0 - Ulﬂfh!'m,iﬁmemﬂﬁ =

tra_sam3_seudene20!

NOTE: You have tried this problens only once. You have not yet so]ved this problem Your last attempt is presented for you in the code
area. Please try again.

Problem: (1 of 4) in Problem Set #4

Write a program called Surmumer which adds all the mteger numbers from 1 to a specified nurmber (N). For example, if N were assigned the value
10, then the sum of the numbers from 1t6 105 55.

Program Specifications:

This program requires the use of a for-loop structure. A skeleton structure of the solution is given. Fill in the code to complete this program.
Regquired Output:

Sum = 55

public class Summer {

public static void main(String [] args) {
int sum.= G;

System out. println("Sum FHTE sum)

¥

Submit | ViewTopHint | ViewAllHints | ViewSeion || MyPeriamance | MewProblem || Esit |

OUTPUT:
Below are possible solutions to this problem.

Sohution 1:
for (int 1=0; i<=10; i++)
sum = sum +i;

Solution 2:
for (int i=1: i<=10: .i++)
sum +=i;

Solution 3:
for- (int i=1; i<=10; i++)
sum += i;

Solution 4:
for (int i = 1; i <= 10; i++)
sum = sum + i;

&

] I

([Rwkert

| [B pies 141, 10v 219ias00l s ot coant rotiks e ECERECE
Java Intelligent Tutaring System frakgog

Al

Figure 26. “View Solution” presenting solutions for the current problem.

116

Each Problem Set was at least 2 problems. The redesigned JITS User Interface is
presented in Figure 27. With the addition of programming topics, new fields were
needed in the tables for the JITS ORACLE schema to track student performance more
accurately. Two new tables were added to provide separate learning topics. Table 11
and Table 12 depict the schema structure of the tables that are currently used by JITS.
An extensive degree of redesigning and redeveloping was necessary to create a list of
“Programming Topics” within JITS. Additional objects were redesigned and rebuilt
including: the Student Model, the Problem, the JITS User Interface. Figure 28 depicts
JITS’ abstract internal object representation. Further modifications were necessary on
the User Interface due to technical problems. As a result, the screen shot depicted in
Figure 29 shows the revised User Interface developed during this time. Notice the
difference in the “Programming Topics™ list.
Session #1, Section #1, Part #5: Week of June 17, 2004

During this part of the JITS Developmental Research for the First Program
Development Session, a number of interesting issues were raised. One student suggested
that she would like to be able to navigate both forwards and backwards through the
problem sets. The current JITS system allowed only forward movement through the
problems to encourage incremental skill development by presenting increasingly more
difficult problems to the student. However, the researcher decided that allowing the
student full control over the movement through the problem sets has merits. The
researcher designed the infrastructure for the “Previous Problem” and tested it out.
Figure 30 depicts the newly designed JITS User Interface including the “Previous

Problem” and “Next Problem” buttons.

117

....... o —
Ho £ Ven Fgortes [oob b .

O - D - 1] @ (| s ygromrs gfmn @IE g Hl o

nﬁm I.] http:, //24 141, 104 219: B988]JITS—Pm}ectl -Cornkext- rooth:ts sp

=] B June | -] e -

Java Intelligent Tatoring System Welcome e!

NOTE: You have attempted this problem 4 times. You have succassfully solved this problem}

Problem: (1 of 4) in Problem:Set #4.() Programming Topics
Write a program called Summer which adds all the mteger numbers from 1 to a specified number (). For example, if N were Jave Basics
assigned the value 10, then the sumn of the numbers from 1to 10 is 55. Java REMLS

. Falatemns
Program Specifications: forloops
This program requires the use of a for-loop structure. A skeleton structure of the solution is given Fill in the code to complete this 2o wile lsove
program. Jhitls lpops
Required Qutput: : Arrays
Sum =155 .

public class Summer { -
public static void main(String [] args) {

int sum = 0:
for [int 1-0; 1<=107 14+) =]
Swm = Sum +1;
.. =
System.out.println("Sum = " + sum);
} =
sibmit | ViewToprint | VewAllHine | viewsSoldgn || MyPadamence | NewFroblem | Eat |
‘OUTPUT:
=
[Eoee . [T [meme 4

Figure 27. Redesigned JITS User Interface incorporating Programming Topic selection

panel.

Table 11

Redesigned JITS ORACLE Schema Tables

118

CREATE TABLE PROBLEM SETS (

problem set id NUMBER (3),
problem set title VARCHARZ2 (30),
problem set_desc VARCHARZ2 (400),

);

CREATE TABLE PROBLEMS (

problem set id NUMBER (3) ,

problem id NUMBER (3),

problem desc VARCHAR2 (400) NOT NULL,
problem_spec VARCHAR?2 (400) NOT NULL,
problem output VARCHARZ2 (50) ,

template top section VARCHAR?2 (400),

template bottom_section VARCHARZ (400),

problem difficulty VARCHARZ2 (20),

problem keywords VARCHARZ2 (200) ,

)

CREATE TABLE STUDENTS (

student name VARCHAR2 (30),
student password VARCHAR2 (15),
problem set id NUMBER (3),
problem id NUMBER (3),
skill level NUMBER (3) ,
performance rating NUMBER (3),
performance history VARCHARZ2 (2000),
times connected NUMBER (5) ,

date last connection VARCHAR?2 (30),
picture LONG RAW,

);

CREATE TABLE STUDENT PROBLEMS (

student name VARCHAR?2 (30),
problem set_ id NUMBER (3),
problem_id NUMBER {3),
number of attempts NUMBER {3),
solved CHAR (1),
students_solution VARCHAR?2 (500),

solution_date VARCHAR2 (30},

119

Table 12
Redesigned JITS ORACLE Schema Showing the Newly Created Programming Topics and

Corresponding Descriptions

PROB_ID PROBLEM SET TITLE PROBLEM SET_ DESC

1 Java Basics variables, variable names, numeric variable types,
String type, variabkle declarations

2 Java Statements simple and complex expressions, compound
statements, operators, precedence

3 If statement simple and complex if statement problems

4 for loops problems requiring the use of for loops

5 do while loops problems requiring the use of the do while loop

3 while loops problems requiring the use of while loops

7 Arrays single dimension array problems

120

Al Module
Edit_Distance

Test_Identifiers

sudent [| JavaParser
- 7 cat_distance]]
Joca /] _student_f—]

_lest_identifiers ‘

JECA " " .
Student T s Collection of Hint Objects
_student_namd | - @xamines _source | = . .
_chack_identfiers - creales _madified_source, Hint Hint Hint
and Hint objects

_problem_set_ld []
_problem_id []

_problem_desc [|

_problem_spec

_problem_gifficulty[|
_num_of_attempls. -

_student_entered_code

- On login JITS loads the student and
login() student_model objects and selects the appropriate
problem for the student

_student_name l:l
_SKill_level
crobioms. Foves 157
_problems._solved Problems: 1,4, 7,.
_next_problem
_performance_rating

Collection of Keyword Obijects (statistics for each keyword for this student)
Keyword R

_performance_history | *For | FOR"| o | ~ |
_times_connected []
_date_last_connection l:l 2 3 1 |

Vector of /', 7}, sic.

_typcial_ssrors
_keywords

Figure 28. JITS abstract internal object representation showing relationships and

dependencies between JECA, AI Module, student, and other components.

‘2§ Java Intelligent Tutoring System - Microsoft Internet Explorer

Bo (& Yew Fgutes Iook Hep

OO 1) B (| Swe Frrowno Wese (3153 47

121

Adedriss [@] ritp:/124.141,104.219:6588/ T S-Project 1 -cortaxt-rock . f5p &= |lﬂ-=!% '| ="
R — e

Java Intelligent Tutoring System
NOTE: You have attempted this problem 5 times. You have succassfully solved this problem!

Problem: (1 of 2) in Problem Set # 1 (Topic: Java Basics)

Program Specifications:

This program requires you to calculate the gross pay using the hours worked and the hourly rate of pay. A skeleton structure of the
solution is given. Fill in the code to complete this program

Required Qutput:
Gross Pay = 460.35

public class Grosspay {
public static void main(String (] args) {
double gross_pay = 0;
int hours_worked=33:
double hourly_pay=13.95;

Write a program called Grosspay which calculates the gross pay using variables. The vanables are provided for you in the template.

Welcome e!

Programming Topics

Java Basics
Java Stataments
If statement

for loops

do while loops

groas_pay = hours_worked * hourly pay: ﬂ
=
System.out .println("Gross Pay = " + gross_pay):
}
. . —
Subimil | | viewTeedn || ViewAlios || viekSdiign || Wy Peifarmanca NewProblem | &t |
OUTPUT:
[gioor= [T T [ioternst |

Figure 29. Redesigned JITS User Interface depicting the list of Programming topics in a

drop-down combo list.

122

<R Java Intedligent Tut

O - - M @ (D Jmwa Srems s @[3

fm—tmmp:muu.:r».219:mauavw,cmxm¢emo¢qgs.|w

w4 ;
I e [uw[® [

Java Intelligent Tutoring System Walcors a!

NOTE: Pleasa read over the problem carefully and submit your answer.

Problem: (3 of 4) in Problem Set # 4 (Topic: for loops)
‘Write 2 program called Odd which calculates the sum of the odd numbers from 0 to 500.

Program Specifications:
This program requires the use of a for-loop construct and an if construct. A skelston structure of the solution is given. Fill in the code to
complete this program.

Required Output:
Total = 62500

public class Odd {

public static véid main(String [] args) {
int totale0:
2l
. il
System.out.println("Total = " + total): .
} J
Suhml. Miew op Hint I View Al Hicte I View Solutan I
Frevious Prosiem | MedFroblem | MyPedormence | Ea
QUTPUT:
=
g e : IO I i

Figure 30. Resigned JITS User Interface depicting the “Previous Problem” and “Next

Problem” buttons.

123

An additional interesting issue was the fact that JITS did not retain information
about the exact state a student was in between login sessions. In other words, if a student
logged into JITS, attempted to solve a problem and then logoff, JITS would not retain the
partial solution. As a result, students had to retype the code that was lost and get back
into the same mental state again to attempt to solve the problem that they were last
working on. If a student changed from the “For loop” topic to the “While loop” topic,
attempted to solve problem 3 of the “While loop” topic, and then logoff, JITS should
bring the student back to the exact location where s/he left off.

The researcher designed and developed a solution to this problem. JITS now
maintains the exact student state between logins and between all transitions a student may
make in JITS. The researcher felt it was important to ensure that the student continues
developing skills and knowledge from the point where the student was last working to
minimize the loss of cognitive gap between JITS sessions and to reduce the amount of
frustration a student may experience when learning to program.

Another issue raised during this study was associated with the “View” buttons
(i.e., “View Top Hint,” “View All Hints,” and “View Solution”). There were some
problems with the user interface design. For instance, at certain times these buttons
should be disabled, for example, at the beginning of a new problem. When the student is
in a different state, JITS should enable some or all of these buttons. As a result, the
researcher investigated the various states that JITS offered and redesigned and developed
more suitable human-computer interface properties for these buttons.

The last issue raised during this part of the research showed how finicky JITS

could be in some situations. The researcher became aware of a problem in JITS

124

from a student who demonstrated the problem to the researcher. JITS encountered a
rounding error and did not correctly identify a student's correct response unless the
program output was accurate to an extreme level of decimal precision. For example, if a
student’s submission produced an answer such as, “Gross Pay = 460.349999999” and the
required output, as described in the problem statement section stated: “Gross Pay =
460.35,” then JITS would not accept it as a correct answer. The researcher identified that
JITS was being too particular in the degree of accuracy in the required butput ofa
student’s solution. The researcher designed and constructed a solution to the problem
that involved a number of renovations to the internal design of JITS. The researcher
worked on the AI_Module object and defined a “suitably_close” function which checks
these sorts of situations and returns “true” indicating that it is close enough to be
considered a correct solution to the problem.
Session #1, Section #1, Part #6: June 21 to June 29, 2004

During this study, students mentioned they would be interested in a small tutorial
section to be incorporated into JITS. This tutorial section would explain each of the
different programming topics designed and developed earlier in JITS. The purpose of the
JITS tutorial would be to remind students about basic problem-solving strategies, basic
syntax associated with specific Java constructs (e.g., if statements, for-loops, etc.). This
issue required approximately 100 hours of work by the researcher. The researcher
needed to do a significant amount of research on browser pop-ups and JavaScript.
However, after much labour, the embedded tutorial was completed. Figure 31 shows the
activation of the JITS Tutoring pop-up window from within the JITS User Interface.

Figure 32 depicts contents of the tutorial window for the “for” programming statement.

125

st e Dbl
The far Stalément

Tier Fov ueemncet peaviies & COmPAcT Wiy Yo devale ovey 8 rge of valees. The genrral fsm of By Orcttabrond can be exprosped st dur

fws | Jetrislizssier: tessigaiten; lacorment) b
£t at amagt

¥ e 1o compile et progren.

hw dak 1 aranatacn s s cxprrison hat moakees a lep B expoued sece 2t begumng ofthe boop. The tacmisarivn
eapiersor Aetrrraney whia to Jeommr B¢ ot Thos expacumon o cvalaated o i 1op of each deration of O Joop. Wien e exprestion
rvalzeint 1o £a des, tha l2op tomnpatey Frully, 1acremastn m cprtmmon thal gty imvelied sler sark poraon troogh the oop Al S
g wy cpronad For mpmgple mpposs we e mternced o doplayeg S masbers Gom | 2 10 wg a for kep

for (Lae 1els Le=1O1 Lesl |

Sravom.aus, prise ln(Webaxt © x 113
f -

inme wha_Tamitial.

Syatem.gut.priatis("Total = " = tatal):
: ;
e Tl O e il o T |
Prmncn Pt e |

Figure 31. JITS Tutorial window and main JITS User Interface. The tutorial window is
launched from the main JITS User Interface by clicking the “View Tutorial” button as

indicated by the arrow.

126

Java Intelligent Tutc -

Java Basics
Java Statements
If statement
for loops
|do while loops
while loops
Arrays

The for Statement

The for statement provides a compact way to iterate over a range of values. The general
form of the forstatement can be expressed like this:

for (initialization: termination:; increment) {
statement

}

The iritializationis an expression that initializes the loop. It is executed once at the
beginning of the loop. The terminatior ‘expression determines when to terminate the
loop. This expression is evaluated at the top of each iteration of the loop. When the
expression evaluates to false, the loop terminates. Finally, incrementis an expression that

[s N [ot At [T A4t

it o P

Figure 32. JITS Tutorial window displaying a sample tutorial from the list of

Programming Topics.

127

First Program Development Sessioﬁ: Section #2: JITS Performance Score Analysis

The following presents the First Program Development Session results of the
Performance Scores for students in the JITSC group and Control groups. The dates for
this section of the research started at the beginning of the term in May and ended 7
weeks later in July. Table 13 and Table 14 display the performance scores of students
in classes C and JITSC. Table 15 presents a summary of the descriptive statistical
findings on the performance scores in Table 13 and Table 14. In order to determine the
relationship between the performance scores in C and JITSC for the first 7 weeks of this
course, a two-way ANOVA with repeated measures was conducted. Table 16 show
these results.

A two-way ANOVA with repeated measures was conducted, producing the
following results, F(1,35) = 541.645, p = .459, indicating there was no significant
difference between the two groups (i.e., C and JITSC). Table 16 shows the results from
the ANOVA.

First Program Development Session: Section #3: Summary and Recommendations
for Further JITS Development

This section presents a summary and recommendations for the refinement of JITS
for the first program development session. The summary presents the results of the
performance score analysis, and student and professor perspectives. The
recommendations section discusses areas for improvement in the Java Intelligent

Tutoring System.

128

Table 13

Performance of Students in Class JITSC

JITSC Class

JITSC Class

Student | Pretest (%) Posttest (%)
S4 35.00 100.00
S, 35.00 92.86
Ss 55.00 61.43
S, 47.50 80.00
Ss 25.00 54.29
Se 80.00 100.00
S; 60.00 97.14
Ss 30.00 88.57
So 57.50 100.00
S1o 65.00 100.00
S11 85.00 100.00
Si2 25.00 54.29
Si3 55.00 100.00
S 62.50 100.00

129

Table 14

Performance of Students in Class C

Class C
Student | Pretest (%) | Posttest (%)
C, 50.00 97.14
C, 50.00 57.14
Cs 60.00 100.00
Cq4 50.00 95.71
Cs 55.00 4143
Cs 40.00 72.86
Cy 30.00 85.71
Cs 35.00 87.14
Co 67.50 88.57
Cio 45.00 68.57
Ciy 35.00 91.43
Cio 75.00 87.14
Ciaz 72.50 87.14
Cia 35.00 28.57
Cis 30.00 78.57
Cie 65.00 94.29
Ciz 30.00 98.57
Cis 77.50 100.00
Cig 25.00 37.14
Cxo 25.00 68.57
Cy4 75.00 94.29
Co 65.00 92.86
Co 62.50 97.14

Table 15

Standard Statistical Measures for C and JITSC

130

Group | Pretest Posttest

mean and (standard deviation) mean and (standard deviation)
C 50.217 (17.579) 80.433 (21.046)
JITSC | 51.250 (79.209) 87.756 (17.882)

Table 16

Two-way ANOVA with Repeated Measure: Between-Subjects Effects for C and JITSC

131

Type IV sum
Source of squares df Mean square F Sig.
Intercept 316408.112 1 316408.112 584.161 .000
Group 303.708 1 303.708 561 .459
Error 18957.576 35

541.645 |

132

Summary

Figure 33 shows a pictorial summary of performance scores between C and
JITCS using the means as the data. Although there appears to be a visual difference
between the two groups, the standard deviation was so large that there was no statistical
differentiation at any level of significance. (See Table 13, Table 14, and Table 15 for
specific results.)

However, from a qualitative perspective, the results from the survey
administered to the JITSC group show generally positive feelings towards the Java
Intelligent Tutoring System (Please see Table 7 for the interview survey). Overall,
students appeared to enjoy the Java Intelligent Tutoring System and found it beneficial
and friendly to use. The researcher took the raw data from the interview surveys and
computed basic statistics as shown in Table 17. Please see Table 7 for the interview
survey. The survey consisted of a Likert 5-point scale for each of the six questions. It
can be seen that JITS performed above “average” in all categories and scored the
highest in two categories: “Enjoyable” and “Ease of JITS Tutoring Style” (The term
“average” in this context refers to the third item on the 5-point scale on the survey).

The findings also revealed important issues regarding how to improve JITS.
The comments are discussed below and will be reviewed for potential inclusion in
subsequent versions of JITS. The comments presented were gathered from two

perspectives: student’s and professor’s.

133

JITSC versus C Performance Score Comparison Using Pretest
and Posttest Means as Data

90.00] Group
----- c
—— JITSC
80.00—
=
o _
2 70.00
[
}
(O]
60.00-]
50.00

Pretest Posttest

Figure 33. JITSC versus C performance comparison using pretest and posttest means as

data.

Table 17

JITS Qualitative Summary Results for JITSC Students

134

EAAE A S

Usefulness. ..o e 71%
Beneficialoooooviiiii 64%
JITS is better than a traditional classroom...... 36%
Ease of JITS Tutoring Style...................... 79%
Enjoyable.......c.oooiiiiiiiiiiiii 79%
Leamn Better........ SR 71%

135

The Students’ Perspective. Most of the students enjoyed working with JITS,

and a number of students identified the following features as definite strengths of JITS:

1. Feedback mechanism-It provides hints quickly and they are to the point.
The hints are also not overwhelmingly complicated, and this is quite unlike
traditional programming environments and compilers.

2. One student stated, “[JITS] tells me the exact spot in the code where I need
to make my correction—I like that. I wish other systems would do that.”

3. JITS helps students solve syntax and logic errors while developing a solution
to a problem. One student stated, “I like learning in this environment better
than having the instructor demonstrate how to do something.”

4. Several students stated that they like the User Interface of JITS. They said
that it is similar to other Integrated Development Environments which are
designed for professional programmers.

5. Many students stated that they felt JITS was very useful since it is available
at all times and students need only a browser to use JITS.

6. One student said, “Can we have this system in our course from now on?”

Regardless of the apparent success of JITS, this study showed that the

suggestions from students helped in making JITS more beneficial for their education.
Students felt that the hints were extremely good when the programming error was a
syntax error. The Java Error Correction Algorithm (JECA), for the most part, was able
to determine the intent of the student and offer meaningful and helpful corrective
feedback. However, some students suggested that it would be even more beneficial if

JITS could offer help in situations where there was logical mistake in a student’s

136

solution. For instance, given the following submission to calculate the sum of the

numbers from 1 to 10:

for (int 1=0; i<10; i++)
sum = sum + 1i;

The submission is syntactically correct; however, there is a logic error. JITS would
respond as follows:

Sum = 45

Nice Try.

However, there may be a logic error in your program.

Take a look at your formula. If you are using a loop

check the range of values for the beginning and ending of

your loop.

As a result, the student needs to reexamine the submission and try to determine

the logic error. In this example, the problem is that the loop is not incrementing far

enough. Two correct solutions are provided below:

Solution #1:

for (int 1=0; i<=10; 1i++)
sum = sum + 1i;

Solution #2:
for (int i=0; 1i<11; i++)
sum = sum + 1;
The researcher made note of the need to support students making logic errors,
and in later versions of JITS, more detailed hints are generated. Overall, however, the
students seemed quite happy with the prototype of JITS. They all seemed eager to see

and try out future versions of the Java Intelligent Tutoring System.

137

The Professors’ Perspective. The section summarizes the views of professors
involved in this study. Two of the professors said they were pleased with JITS in the
following ways:

1. One professor stated, “The embedded logic unit called JECA is a sound
tool—it picks out the most significant error the student needs to focus on. I
feel the student is developing core programming debugging skills with
JITS.”

2. One professor said the idea behind JITS’ User Interface is similar to popular
Integrated Development Environments, which should make the transition
from JITS to a professional programming environment a little easier.

3. Both of the professors said that they would like to use JITS to augment their
existing Java courses. They felt that JITS provided a means for students to
receive extra tutoring when the professor is not available.

4. One professor said, “The quality of tutoring that JITS performs is
comparable to a human tutor.”

5. Both of the professors said that they liked the fact that there was no client
installation required for them or their students (i.e., there is no software to
install on the client’s computer).

6. Many professors were happy that JITS was available at all times. This made
it easier for students to work on problems at their own time and at their own
pace.

7. One professor said, “JITS provides additional programming practice that can

only benefit students.”

138

Although there was no significant level of differentiation between the Control
group and JITSC group for performance scores, there are many explanations for this.
First, JITS was undergoing extensive redesign and redevelopment during the first 7
weeks of the course in which JITS was tested. Second, there may not have been a
suitable number of problems embedded in JITS at the time of testing. For instance,
initially, there were only 4 programming problems in JITS. Third, students may not
have used JITS enough to reach a higher level of performance. In other words, learning
a new software tool requires some initial loss in productivity from the way in which one
customarily does things. It will be interesting to note students’ results in future field
studies now that most of the “bugs” have been worked out of JITS. However, getting
over this small hurdle gives way to certain potentials. In this case it may give rise to the
student performing better by increasing their knowledge and skill set in programming.
Recommendations

This section presents recommendations for the refinement of JITS for the first
program development session. The recommendations include student and professor
comments for improvement in the Java Intelligent Tutoring System.

Student Perspective. A number of the students raised a concern about the “My
Performance” button’s output. A sample output after pressing the “My Performance”
button is shown in Figure 34. Students felt that a more detailed representation of their
performance could be helpful. Currently, JITS takes a number of factors into account
when computing the student’s performance. JITS correlates the student’s skill level
with the problem difficulty and ranks the points accordingly. JITS determines the

number of problems solved against the number of problems attempted in combination.

139

OUTPUT:
My Performance:

Problems Attempted: 4
Problems Solved: 2
Overall Performance: 72

Figure 34. Initial design of the output from the “My Performance” button.

140

Furthermore, JITS combines this information with other gathered facts about the student
as represented in the established student model. See Figure 28 for a depiction of the
student model and related modules. As can be seen from the diagram, there is a
tremendous amount of information available for analysis regarding the student’s
performance. Future versions of JITS will provide much more detail regarding student’s
performance.

Professor Perspective. One professor suggested that JITS could produce a
report representing the student’s performance over a period of time. This would also
be helpful in identifying students who need additional assistance. It could also be used
to identify those students who are doing extremely well and may be interested in more
challenging problems.

All of the professors enjoyed the prototype of the JITS Authoring tool.

Although still under development, the prototype made professors aware that they can
easily create, edit, and review problems. Once the problems have been added, they are
immediately available to the students. Currently, the researcher is busy working on
designing and developing the JITS Authoring Tool.

Second Program Development Session: Section #1: JITS Developmental Research

During this session, JITS underwent a number of design changes to both internal
infrastructure and the User Interface. The changes were based primarily on the
suggestions of students from the First Program Development Session. This section
presents the findings of experiments that were conducted during the last half of the
summer term (i.e., July 1 to Aug 20, 2004). The control group and the experimental

group consisted of the same students as the First Program Development Session.

141

Session #2, Section #1, Part #1: July 1 to July 14, 2004

Two students completed all of the programming problems in JITS and suggested
that more problems be created. As a result, the researcher spent this time reviewing
suitable material that would be fitting to the curriculum and the level of students in the
JITSC.

At the completion of this study JITS offered at least four problems for each of the
seven Problem Sets: Java Basics, Java Statements, If statement, for loops, do while loops,
while loops, and Arrays. During this period of time, the researcher also tested each of the
new problems as rigorously as possible by simulating various errors. The students
seemed to enjoy having more choice. With the full navigation in JITS fully functional,
students could navigate from problem set to problem set and problem to problem to find
areas that were of interest to them.

Session #2, Section #1, Part #2: July 14 to Aug 11, 2004

One student mentioned that the “Solutions” button did not display information

correctly. The problem was with the display of solutions in the student’s browser. For

example, solutions like:

for (int i=0; i<arr.length; i++)

sum = sum + arr[i];

were showing up as:

for (int i=0; i sum = sum + arr[i];

142

which is clearly incorrect. A number of important elements were not being displayed
(i.e., the “<arr.length; i++)” was being omitted)

This problem took approximately 4 hours for the researcher to determine the root
cause of problem. The researcher checked the database and confirmed that the correct
solution was being recorded in the tables of the database. The researcher then
investigated the “Student” class and its method: Store State to_database(), and the
“Collective Student_Model” class and its find_solutions() method. Apparently, the
problem is exclusive to the browser’s interpretation in HTML of the “<” sign. Browsers
were confusing it as a markup symbol as opposed to simply leaving it as an ordinary
character as desired. The researcher corrected the problem by using the appropriate
HTML tags instead of using “<”. A reference that assisted me was:
http://www.w3.org/MarkUp/html3/latin1.html

which provided the following information:

1t < Less than sign
gt > Greater than sign
amp & Ampersand

quot squot; Double quote sign

The researcher tested and confirmed the correct behaviour using various scenarios
and test accounts. The “Solution” was now producing correct results even when specific

symbols were used in the solution.

143

Second Program Development Session: Section #2: JITS Performance Score
Analysis

Table 18 and Table 19 display the performance scores of students in the control
group (C) and the experimental group (JITSC). Table 20 presents a summary of the
descriptive statistical findings on the performance scores in Table 18 and Table 19. In
order to determine the relationship between the performance scores in C and JITSC for
the last 7 weeks of this course, a two-way ANOVA with repeated measures were
conducted.

Second Program Development Session: Section #3: Summary and
Recommendations for Further JITS Development

This section presents a summary and recommendations for the refinement of
JITS for the second program development session. The summary presents the results of
the performance score analysis, and student and professor perspectives. The
recommendations section discusses areas for improvement in the Java Intelligent
Tutoring System.
Summary

In this Program Development Session, the students who used JITS outperformed
the students in the traditional classroom. A two-way ANOVA with repeated measures
was conducted and confirms these results, indicating there was a significant statistical
difference in performance scores between the two groups.

From a more personal perspective, students during the last 7 weeks of this
course appeared to have gained more and more interest in JITS and offered many

suggestions for the improvement of this ITS. Table 21 shows these results.

144

Table 18

Performance of Students in Class JITSC

JITSC Class
Student | Pretest (%) Posttest (%)
Sy 62.00 81.00
S, 73.30 83.10
S; 64.40 75.80
S, 58.90 69.40
Ss 22.20 78.30
S 78.90 89.40
S, 73.30 85.20
Ss 65.60 77.10
Se 72.20 86.10
S1g 80.00 90.00
S14 66.70 83.30
S 45.70 70.00
Si3 71.40 74.30
Si4 74.40 87.20

145

Table 19

Performance of Students in Class C

Control Class

Student [Pretest (%) | Posttest (%)
C, 64.40 80.80
C, 46.70 51.90
Cs 70.00 85.00
C4 57.80 76.70
Cs 52.10 39.60
Cs 66.50 62.50
C; 74.10 65.60
Cs 71.90 75.20
Cq 63.30 76.00
Cio 59.90 79.90
Ci1 56.50 59.70
Cio 68.90 78.00
Cis 68.30 69.10
Ciag 22.22 25.40
Cis 53.30 66.00
Cis 54.80 68.80
Cur 69.40 75.40
Cisg 78.90 89.40
Cig 52.10 37.50
Cyo 53.20 53.70
Cy 71.90 68.80
Ca 70.00 81.40
Cos 77.80 87.50

Table 20

Standard Statistical Measures for C and JITSC

146

Study Statistical instrument C JITSC

Pretest Mean: 61.91% 64.93%
Standard deviation: 12.52 15.17

Posttest Mean: 66.25% 80.73%
Standard deviation: 16.79 6.75

Table 21

147

Two-way ANOVA with Repeated Measures: Between-Subjects Effects for C and JITSC

Source Type IV sum of squares df Mean square F \ Sig.
Intercept 326268.963 1 326268.963 1020.396 .000
Group 1330.710 1 1330.710 4.162 .049
Error 11191.161 35 319.747 '

148

There was a significant level of differentiation between C and JITSC in
performance scores for the last 7 weeks of the course investigated. Additionally, a two-
way ANOVA with repeated measures was conducted confirming these results, F(1,35)
=4.162, p = .049, indicating there was a significant difference between the two groups
(i.e., C and JITSC).

To account for the increased performance, it is conceivable that due to increased
exposure to JITS and working through many programming problems, students’
cognitive and skill development in core Java curriculum topics increased. Another
perspective is that JITS may have been sufficiently sophisticated by this point in time
that it was becoming an effective programming tutor. It is also reasonable to conclude,
based on the performance scores, that even though there were technical problems and
JITS may not have performed correctly (from a pedagogical perspective) at all times,
the increased exposure to programming problems for students and the cognitive efforts
to overcome these technical problems resulted in the students in the JITSC developing
better skills than the students in the traditional classroom environment. As one
instructor stated, “Any additional programming practice is good practice” (Karolyi,
2004). This concept is also reinforced by the Carnegie-Mellon ITS researchers
philosophy: “practice make perfect” (Anderson et al., 1995; Anderson & Pelletier,
1991). Figure 35 presents the performance of C and JITSC students using mean grades
as data in the form of a graph.

Recommendations
At the completion of the second Program Development Session, there were no

major suggestions that either students or instructors offered. The students seemed

149

JITSC versus C Performance Score Comparison Using Pretest
and Posttest Means as Data

Group
gooo4 4| Tm== c
e JITSC
75.00—
<
3
b 70.00—
&
U]
65.00 —
60.00 —

Pretest Posttest

Figure 35. Performance of C and JITSC students using mean grades as data.

150

content with the performance and manner in which JITS tutored. Instructors were still
patiently waiting for the JITS Authoring Tool to be completed.
Third Program Development Session: Section #1: JITS Developmental Research

The third Program Development Session was the last research session conducted
for the dissertation. During this session, JITS underwent a number of refinements to
both the User Interface and the infrastructure. The information gathered during this
session was based primarily on the suggestions by students and partly from the
researcher’s notes during the First and Second Program Development Sessions that
would be beneficial to implement.

This section presents the findings of experiments that were conducted during the
fall term of 2004 (i.e., September to December, 2004). There were three different
control groups and two experimental groups.

Session #3, Section #1, Part #1: September 10 to September 28, 2004

The first issue raised during this third Program Development Session was
associated with the “Solutions” button. When the student pressed this button, duplicate
solutions were presented. The researcher’s solution to this problem was a modification to
the way in which JITS extracts information from the database. Now only unique
solutions for a specific problem are displayed.

Another issue that was suggested by some students was that additional problems
be created that are more difficult and involve instantiation of objects and invoke
functions. Unfortunately, a subproblem needed to be solved before the researcher could
accommodate the students’ request. The researcher integrated new strategies for the

name of the classes for the problems. In Java, the classname must match the filename.

151

With some infrastructure changes, the researcher resolved the problem. The classname
for a problem is now used in the structure of the filename to be compiled (i.e.,

Problem <problem set id> <problem id> <students name>.javais
the full unique name used). JITS now works with more advanced problems, for example:
public class Power {

public double powergen (int num) {
return num * num;

}

public static void main (String args []) {
Power p = new Power();
double result = 0;

result = p.powergen(10);

The last issue that was raised during this study was associated with logic errors.
The researcher observed a scenario where a student’s submission did not have any syntax
errors, but it had logic errors. In this type of situation, students stated that they would
like assistance when these types of errors occur.

The solution to support students’ that are encountering logic errors is a very
difficult problem. The researcher worked on developing a sophisticated component of
JITS AI_Module that extracts information from the “Student” object, the “Problem”
obj ect. The Problem’s keywords are used to provide assistance to students that are
encountering logic errors. (Problem keywords are also included in the Problem
Specification section for all problems.) The goal was to develop a logic-error feedback
mechanism so that the student would feel more supported. Two examples are presented
that illustrated the development of JITS in the area of responding to student’s

submissions containing logic errors.

152

Example #1: Logic error but submission has correct constructs

Problem: (1 of 5) in Problem Set # 2 (Topic: Java Statements)
Write a program called Together which concatenates (i.e., combine) several Strings
together.

Program Specifications:
This program requires you to write a simple expression that stores a concatenated String
into a variable. Fill in the code to complete this program.

Required Output:
Combined = Hello There Bub !! :)

public class Together {
public static void main(String [] args) {

String combined = "";
String first = "Hello";
String second = "There";
String third = "Bub !! :)";
<< == >>
<< student enters code here >>
<< >>
System.out.println ("Combined = " + combined) ;

}

Suppose the student enters code that produces the following output:
Combined = Hello ThereBub !! :)
JITS previously would respond: “Sorry. No hints available.”

Now, JITS responds as follows:

Good attempt. Now let's examine your code.

Good news... You are using the correct constructs.

However, it looks like there is a logic error in your program.

When working with arithmetic operators (e.g., *, /) logic errors may occur. They
usually happen because of a mistake in your formula.

Look carefully at this section in your code.

View the Tutorial for additional help.

153

Example #2: Logic error but submission has incorrect constructs

The following example presents another situation where a student’s submission
does not have any syntax errors; however, there is one or more logic errors present. If the
student submits a solution that does not use the correct constructs (as defined in the
Problem Specification and the Problems’ keywords), then JITS can guide the student to
use the appropriate constructs for the problem.
Problem: (1 of 4) in Problem Set # 4 (Topic: for loops)
Write a program called Summer which adds all the integer numbers from 1 to a specified
number (V). For example, if N were assigned the value 10, then the sum of the numbers
from 1 to 10 is 55.
Program Specifications:
This program requires the use of a for-loop structure. A skeleton structure of the solution

is given. Fill in the code to complete this program.

Required Output:
Sum = 55

public class Summer {
public static void main(String [] args) {

int sum = 0;

<< e - =+ L 3 >>

<< student enters code here >>

<< = ============= >>
System.out.println("Sum = " + sum);

}

154

Suppose the student enters code that is syntactically correct yet has logic errors
and does not use the correct constructs as specified in the “Program Specifications”
section of this problem. Previously, JITS would respond: “Sorry. No hints available.”

Now JITS responds more appropriately:

Nice Try!

It looks like there is a logie error in your program.
Please re-read the Problem Specification.

You need to use specific constructs in your solution.
In this problem you need to use: for

Make corrections to your program and submit it again.

Session #3, Section #1, Part #2: October 3 to October 8, 2004

In this session, students suggested that the “My Performance” button should
provide more substantial information regarding individual performance in JITS. During
this study, the researcher spent 40 hours in redesigning and refining the “My
Performance” infrastructure. Part of this restructuring required the alteration of the
Student Problems table in the JITS ORACLE schema. Another field entitled
“viewed solution” was added to this table, which was used to record whether or not the
student pressed the “View Solutions” button while working on a problem. This in turmn
proved to be helpful in the redevelopment of the “My Performance” button to more
effectively evaluate the student’s work. The researcher wanted to provide clear,
meaningful results of how the student is performing and include relative information to
the “average student” (other Students in JITS). A sample output of a student pressing the

“My Performance” button is presented in Figure 36. Notice the organization of the

output.

My Performance:

155

§ ;

| Pr(él;ltemg Pro:;lem Solved S‘?il:vtvi:g | Average Student

1 1 | No. 4 attempts so far. Yes. 5 | 2 attempts to solve.
1 2 - No. _2_&ttempts so far. i Yes. M2‘ attempts to solve. |

1___ 3 | No. 4‘ attempts so far. ___Yes._ ~_2 attempts to solve.
3 __ 1 _ No. 1 attempt so _fzilr. ‘ No e ,.1 attempt to sqlve. _
_ 3 2 _ _Nq._l _at_tanpt so far. 3 - No. 1 attemgt__to solve.
4 1 '| Yes. It took 5 attempts. No. 2 attempts to solve. |

_ 4 2 i _No. 3 attempts SO far._ %] No. 13 attempts to solve.
4 gl 3_ || Ne-2atwempissofar, j| No. J|Satismpistosolye |
; 67 f 1) 7N No. | attempt so ftai. l\i 0. 1 attempt to solve. |
[& [5 [Notamempsofse [No. [1atemptiosobve
| 7 1 Yes. It t_ook 2 attempts.j » No 1 attempt to solve. |
7 2 No 1 attempt so far. No. | 1 attempt to solve. |

Figure 36. “My Performance” button displays performance information for each student.

156

During the on-site visits, the researcher asked each student in the JITCS for their
opinion on the “My Performance” button and asked if there was any other information
they would like to have included in the report. All of the students said they were
content with the performance report.

Session #3, Section #1, Part #3: October 8 to October 18, 2004

During this part of the session, there were mostly technical problems that needed
attention. Two students identified technical problems with Problem Set #2 Problem #2.
These were corrected within 1 hour of my being notified. There was a mistake with the
Average Student section of “My Performance” button. In the “Average Student” section,
it was displaying “0 attempts to solve” in the case where a problem had never been
solved (i.e., no solution available). It should have said “Problem not yet solved.” The
researcher corrected this section of the “My Performance” infrastructure within 2 days
from the problem being demonstrated to the researcher.

During this week, many students attempted a lot of problems in JITS. Some
students found a few typographical errors in the problem descriptions. Some students
found some minor technical problems. As a result, the researcher clarified the problem
statements in the problem database. The researcher also corrected the naming of the Java
class files which were causing the minor technical problems.

There was one additional issue that was very upsetting for me as the designer and
developer. The network connection from Milton (the researcher’s development location)
and Sheridan College was proving to be very temperamental. Sometimes connections
would be unbearably slow, while other times the connections would simply fail. The

problem was Sheridan’s hardware device called a “PacketShaper,” which was

157

misbehaving. The PacketShaper is responsible for classifying network traffic that travels
into Sheridan and out of the college. In other words, access from outside the college into
the Sheridan network connection is not working properly. The researcher discussed the
situation with the Chief IT Director, who explained that it was a very complicated
problem and would probably not get resolved until the end of December. Fortunately, it
did not affect students trying out JITS located within Sheridan or students trying JITS
outside of typical business hours. It also did not appear to cause any loss of service for
students located close to either of Sheridan’s main campuses (i.e., Oakville and Brampton
regions).
Session #3, Section #1, Part #4: October 22 to November 2, 2004

Several students stated that the “tutorial” could be more useful. For instance, they

suggested that one of the problems in problem set #2 (i.e., Java Statements programming

topic) uses public static final for the constant . The tutorial for this section

should include information about public static final. In other words, there
should be a closer match between the problems in the problem sets and the tutorial topics
section. This was a very good point, and the researcher spent the remainder of the week
carefully going over the tutorial information and made sure that the programming
problems related to the information in the tutorials.

A number of students found that the JITS User Interface required a bit of getting
used to. For instance, many students took a few tries to discover that they needed to
scroll down in the window to see the program output, hints, solutions, etc. These
students suggested that a “Help” button be included that would display basic features of

JITS and how to get around in the Java Intelligent Tutoring System. During these few

158

weeks, the researcher added a “Help Me” button (located beside the student’s name in
JITS) and completed the infrastructure and the Java ServerPage to support it. Figure 37
and Figure 38 depict the “Help Me” button location on JITS’ User Interface and JITS’
Help screen respectively.

Session #3, Section #1, Part #5: November 3 to November 5, 2004

Some students stated they would like more information from the “hints.” In some
situations, JITS would respond: “Sorry. No hints available.” The researcher observed
that these types of situations arose because JECA could not determine the intent of the
student’s submission to a program. The researcher modified JECA to filter the compiler
output (i.e., output from running “javac” (Sun’s Java compiler) and made it more
“friendly” for students to read. Two examples are presented as follows. In both of the
examples, the student did not create a variable as required for the solution. This results in
a compilation error. Consequently, JECA now formats the output from the compiler in a
friendly fashion for JITS to present to the student. Figure 39 and Figure 40 depict these
scenarios.

During this study, outside of visits with students, the researcher continued to work
with Sheridan IT staff on the network problem. The PacketShaper device was still not
working correctly. This hardware device is used to packet shape traffic in and out of the
college. Over the last month, the researcher had many problems working from home to
connect to various servers in order to work on JITS. The programs just take extremely
long to process, or they simply fail. Unfortunately, the problem was beyond my control
to solve. Fortunately, students did not have any difficulties working with JITS. Within

the college, access to JITS remained fast and stable.

lligent Tutoring System - M_icrosol't Internet E_»gp!orer

fie Help ; C . 1= | __zu [

Yiew Favarites Tools

O' l_ﬂ [E] ‘_/'l‘]'pSeavch *Favmtes @' B":—!\’ & -[_ j A?- 3
attp: ffloyalty. sheridanc.on.cafjits. jsp j = e ‘Llnks]% v‘ Hﬁg -I L' »

Java Intelligent Tutoring System Welcome sykes! |_Help Me

You have tried this problem only once. You have nct yet salved this problem. Your last

Figure 37. Top right section of JITS” User Interface displaying the “Help Me” button.

159

160

‘A http://loyalty.sheridanc.on.ca - Juva Intelligent Yutoring System -- Help - Microsolt Internet Explorer

Help with the Java Intelligent Tutoring System (JITS)

The Java Intelligent Tutoring System is intended to be used by beginner Java programming students. The User Interface is divided into a number
of sections as seen below.

T 1y o polclagrnt (g vyidesi e} batove ! M phwan
8 pie el S N I
nforms youofyour (e = &) - =] & i s (e)] (3 - J‘73

status in solving the O e iy re tweermryesry=eyen e e H" |

cudrent problem ’ —
Tiova Tntaligesn Tosuring Syveess

NOTE: You Aave trind tis prodlem ol caca. Yors fsava xoe jer sobved tix problers. Your i attepe is proceatad for o (v

This message area

Prablem Sets Ohe cod ares: Plaase vy again.
contain Problems.
Here the student is .
working on proble?" Probless: (1 of) in Paoblam Set 6 (Topic: whide Loogs) Progrmming Tnghcs
N p Write & prcgranm calic) Swommr which adds o the mieger smsberd o 1 10 a spocdsd vembar (0. For
1 in the whife-loops ey, € N were acagoed e valus 10, Sien the sum of e musrbery from | 10 101 55, o Gasicy
problem set. Specifenians: e Fticnacts To change to a different
Thia praguaes reqires 0 3w of 2 whik Torp srmchure. A skeietan stnwchare of e sodton i gves. Filia oxionms Problem Sel, select it,
Keep in mind lhe thr peds o complent s program ,,::" click *Take me there®
required output. Required Outpot e
This is what youremadje! Sa=45 Tonmnes |
program neeads to Nbll:lclut Summar 1
produce. public static void amarstring () angs) ¢ =
. |
Tzl(:; in ﬁ:u{ - '
solubon here. J The tutorial explains the
1 _H nglr:mncy(i)f;g plcsmand
A provides codajpxamples
Sywtem.out,.println(*Gum + sum); that will help in so“mg
} the problems.
Cick the "Submif" bution g Sabei | e T | e St | eS|
when you are ready 1o Pl Yoo ' ! P !
submit your solution to
JITS. OUTPYT: \. /
/d- =T P i [T T
“This Output Area displays the / \
output of your program, hints, . . .
and other messages. Navigate ihrough the problem set by "Previous® and
: 9e “Next” Problem buttons. Make sure to Click *View ;e":o‘:“:a?; {;}’;‘c’,mg‘_’“'
Hints™ when you encounter problems. I you get “My Performance"

really stuck you can click the "View Solution” button.

Important Notes:

Read each quiestion carefully. Your program must use the correct constructs and produce exactly what the required program output states.
Remember to use the "View Hint" buttons for guidance from JITS. If you get really stuck use the “View Solution” button

Close the Help Window.
J e =] »ff
[&ioene : L R A ™ X &

Figure 38. JITS Help screen is used to assist new users to get oriented with this ITS.

161

wa Inteligent Tutoring System - Microsolt Internet Explorer - £y .
Be Edt Vew Fovotes [ods bigp ar
J e b g A i < ‘_.\ 1
e~ © - [[@ (3] P Syrooem @[3 3 B - B
Agiddress 3]mD:l/kyya'.y.sl’)aidan:.on,cel)ls,isp ;j Gn l,ﬁs'ﬁ T —— -I .| »
Java Intelligent Tutaring System trve_sam)_studantd0!
NOTE: You have attempted this problem 4 times. You have not yet solved this problem. Your last attempt is presented for you in the code area.
Please try again.
Problem: (3 of 4) in Problem Set # 2 (Topic: Java Statements)
Write a program called Power Generator which calculates the result of a number multiplied by itself
Program Specifications:
This program requires the use of a function. A skeleton structure of the solution is given
Required Output:
Result = 10000
public class Powsr { X
public int powergen(int num) {
revurn nim = hum,
}
public static void main(String [] args) { Vigw the Tulatal l
Power p = new Power():
p.posargen(1d) ; ;'
: o
Syétem.out.println(“Rssult = " + result):
}
Subrmit | View Top Hint | Wiew All Hints | View Solulan |
Prasvious Pratilem | Hext Problam I My Pardormance J Eait |
OUTFPUT:
Your program did not compile. Below are some hints:
cannat resolve symbol
symboi : variable result
; =l
oo [T TTT [mweme]

Figure 39. Improved JECA demonstrating filtered output from the compiler and JITS

presenting the results in a friendly way for the student to make corrections.

162

; Java Intelligent Tutoring System - Microsolt Internet Explorer

He B gew Fremss Lok b ks §E00 Sl A

Ou - - W @ (Lo Sroots @G- W -y B

Aekvess |(@) nttp:ffoyakty sheridénc on caffts.jsp 1@ [- - j
Java Intelligent Tutoriug System i £ scdsmis)|

NOTE: You have attemptad this problem 5 times. You have not yet solved this problem Your last auempl is presented for you in the code area.
Please try again.

Problem: (3 of 4) in Problem Set #2 (Topic: Java Statements)] Programming Topics
Write a program called Power Generator which calculates the result of a number multiplied by itself

1Java Basics

Program Specifications: Java Statements
This program requires the use of a function. A skeleton structure of the solution is given. If statement
X ’ far loops
Regquired Outpat: do while loops
Result = 10000 whila loops
Arrays

public class Power {

ublic int powergen(int num

F return ngm * ?lumg I .

}

public static void main(String [] args) { - \Aew Ha Taiahal]
Power p = new Power():;

double result; . ;I
p.povergen(10)

: o

System.out.println("Résult = " + result):

}
) -
Subrr&"" View Top Hint | View All Hinls | View Salutinn I
Piavious Problem || NeaFroblem || MyPedomance || Ext
OUTPUT:

Your program did not compile. Below are some hints:
variable result might not have been initialized

System.out.println("Result = " + result).

e

[&5ere [T mere

Figure 40. A variation of a compiler error due to a student’s submission. Previous
versions of JECA would simply return a hint: “Sorry. No hints available.” The improved

JECA is intended to be more helpful and presents compiler errors in a more friendly way.

163

Session #3, Section. #1, Part #6: November 5 to November 8, 2004

Some students suggested that actual equations be presented in problems that refer
to mathematical expressions. For example, in one of the problems, the information was
presented only as text: “the volume of a cone is 1/3 times PI times the radius squared

times the height.” Students suggested it would be clearer to present this information as:

%7? r’h . For this problem, the researcher first added another column to the Problems

table of the JITS database schema. The revised schema is presented in Table 22. The
researcher then developed a Windows Popup which streams a binary image from the
ORACLE database. The researcher updated the main JITS webpage (i.e., jits.jsp
JavaServer Page) to include a link “View the image for this problem.” Figure 41 depicts
the revised JITS User Interface. If the student clicks on the link, a popup is created and
the image for the problem is streamed to the popup. For example, the image for the
volume of a cone problem is depicted in Figure 42. Some students suggested that some
of the problems should be altered or new ones created to more closely reflect real-world
scenarios. While programming, there are certain situations where it is more desirable to
use one construct over another. As a result, the researcher created a number of new
problems that more closely reflect real-world situations. These new problems employ the
use of specific programming constructs.

The researcher then developed a Windows Popup which streams a binary image
from the ORACLE database. The researcher updated the main JITS webpage (i.e.,
jits.jsp JavaServer Page) to include a link “View the image for this problem.” Figure 41

depicts the revised JITS User Interface.

164

Table 22

Redesigned JITS ORACLE Schema Tables to Accommodate Pictures

CREATE TABLE PROBLEM SETS (

problem set id NUMBER (3),
problem set title VARCHARZ2 (30),
problem set desc VARCHAR?2 (400),

) ;

CREATE TABLE PROBLEMS (

problem set id NUMBER (3) ,

problem id NUMBER (3),

problem desc VARCHAR2 (400) NOT NULL,
problem spec VARCHAR? (400) NOT NULL,
problem output VARCHARZ (50) ,

template top section VARCHARZ (400),

template bottom section VARCHAR2 (400),

problem difficulty VARCHAR?2 (20),

problem keywords VARCHARZ2 (200),

picture LONG RAW,

)i

CREATE TABLE STUDENTS (

student name VARCHAR?2 (30},
student password VARCHAR?2 (15),
problem set id NUMBER (3},
problem id NUMBER (3),
skill level NUMBER (3) ,
performance rating NUMBER (3),
performance history VARCHAR2 (2000),
times connected NUMBER (5},

date last connection VARCHAR?Z2 (30),
picture LONG RAW,

):

CREATE TABLE STUDENT PROBLEMS (

student name VARCHAR?2 (30),
problem set id NUMBER (3),
problem id NUMBER (3),
number of attempts NUMBER (3) ,
solved CHAR (1),
students_solution VARCHARZ2 (500),

solution date VARCHAR2 (30),

A Java Intelligent Tutoring System - Microsolt Internet Explorer ! T .-_LG_L)H

NOTE: You have tried this problem only once. You have successfully solved this problem!

Problem: (4 of 4) in Problem Set # 2 (Topic: Java Statements)) FProgramming Topics
Write a program called ConeVolume which calculates the volumie of a cone with a radius of 17.23m and a
height of 5m. :

Java Basics
Java Statements
It statement

for loops

do while loops
while loops

Program Specifications:
This program requires the use of a function. The volume of a cone is 1/3 times PI times the radius squared
multiplied by the height of the cone. View the image for this problem.

Required Output: \ Arrays
Volume = 1553.63
public class ConeVolume {
public static final double PI = 3.14;
public double volume(double ht, double rd) { View the Tulonel |

return 4/3.0 * PI * rd * rd * ht; ;I

: A4
4 v »

public static void main(String [] args) {
ConeVolume obj = new ConeVolume();
double cone_val;
cone_vol = obj.volume(5, 17.23);

Fle Edt Vew Favees Toos Help | &

Qe - Q- 4] [F] (] P oo @ (- L B -9 B g

Address [@) hetp://24.57.187.107: 1024/ IT5-Project 1-context-root/fs. sp > Bl !unksiﬁ B i e -]
Java Intelligent Tutoring System W:’:;:KT:!I

System.out.println("Volume = " + cone_vol):
} _
}
Eubrr-ill Yiew Top Hint I \-"iew.ﬁili‘lmfer WiEw Salulion I
Previous Probiem | MNext Probilem | My Performance] Exat J
OUTPUT:
=
[T [temet 4

165

Figure 41. Revised JITS User Interface accommodating a link to the image for the

current problem.

3 http://loyalty.sheridanc.on.ca/image.jsp =

height

e tadIIS

1
Volume: —i7 rzh

Close the Image Viewer.

[}

T O W

Z

Figure 42. JITS Image Viewer depicting the image for the current problem.

166

167

A number of students discovered that if they simply click “Submit” and do not

enter any code, JITS responds with some unreasonable comment like:

Almost!

It looks like there is a logic error in your program.
Please re-read the Problem Specification.
You need to use specific constructs in your solution.

In this problem you need to use: for, if
Make corrections to your program and submit it again.

The researcher solved this problem by making a small change to the infrastructure
of JITS. JITS now correctly identifies when a student genuinely tries to attempt to solve
a problem. When the student does not type anything or any whitespace character (i.e.,
tab, newline, etc.) and clicks ”Submit,” JITS simply ignores the inappropriate submission
to the problem and prompts the student to try to solve the problem.

One student found a technical problem with Problem 3 of 4, Problem Set #5. The
student’s solution was correct, yet JITS did not allow it as a valid solution. The
researcher corrected the problem keyword requirements for this problem. Now the
student’s solution is accepted by JITS.

One student found that Problem 3, Problem Set #2 was worded a bit confusingly.
The student did not realize that the solution required a variable to be declared. In all
other problems the variables are part of the actual problem template. As a result, the
researcher corrected the wording of the problem to include in the Problem Specification

section: “You need to declare a variable called ’result’ in your solution.”

168

Session #3, Section #1, Part #7: November 9 to November 10, 2004

Two students mentioned to the researcher on November 5 that it would be nice to
have the “My Performance” button contain hyperlinks to specific problems that the
student has previously attempted. These students suggested that a link to the specific
problem would be beneficial, especially when the student has not yet solved the problem.
The link would provide a fast way to bring the student back to that problem. The
researcher solved this problem by creating a button in the corresponding row for the
problem set # and problem #. The researcher added colour, italics, and bold text to make
a distinction between problems that have been solved by the student from those that have
been attempted but not solved. Correctly answered problems appear on the screen in
green (e.g., “Yes ! It took 5 attempts). Attempted, yet unsolved problems appear in red.
Additionally, buttons are provided for quick access to each problem for the student.
Figure 43 depicts the revised output of the “My Performance” button.
Session #3, Section #1, Part #8: November 16 to December 1, 2004

Some students suggested that the white-space in the JITS User Interface be
reduced. This way more information could be presented on the screen. The researcher
solved this problem by readjusting the components on the screen to fit more information
and modified the “Note” section (located at the top of the JITS User Interface) to draw

reference to the “Output” section:

You have attempted this problem 9 times. You have not yet solved this problem. Your
last attempt is presented for you in the code area. See the "Output” section below for
more information.

Due to all the concurrent interactions between dozens of students and JITS and

the intense database interactivity between JITS and the ORACLE database in order to

169

Problem? Problem 5 Solution l . . 0
| 8 | set ‘ S(il:e_d. | Viewed? Average Studfnt L wRevnew ilus Efgblem.) gl
i ¥ 1
i 1o t No -- 13 attempts so far.| Yes. 2 attempts to solve. | Review Problem: 1 of set: 1 |
! — - . eee—]
- ! | 7'
2 ! 3 No -- | attempt so far. No. 2 attempts to solve. ||| Review Froblent 2 of set: 3 L
A :) — S S |
1 4 Yes ! 1t took 5 attempts. | No. 2 attempts to solve. || Review Froblem: 1 of set: 4
1 6 |[No-3 attermpts so far. No. 2 attempts to solve. | . Review Problent 1 of set: 6
| | E— > - T — =7
3 6 No - | attempt so far. No. 1 attempt to solve. ||* Review Problem: 3 of set: 6
= P | S —a] e e S — =
} -
1 ‘ 7 Yes ! It took 2 attempts. No. 1 attempt to solve. | Review Froblem: 1 of set: 7
; —— — s I _ - o — ' — =
M 2 7 No -- | atterpt so far. | No. 1 attempt to solve. || Review Problem: 2 of set: 7
i | w — =S

Figure 43. Revised “My Performance” button output showing links to previously

attempted problems, font, and colour distinctions between solved and unsolved

problems.

170

track all the studen’;s in the system, the researcher decided to try to speed up the database
connections. As a solution, the researcher developed a Connection Pool of JDBC
established connections to the ORACLE JITS schema. This resulted in significantly
faster web site performance for students using JITS.

One student suggested that the “tab” key should be implemented; since typing in
programming is a very common activity it should be implemented in JITS.
The researcher researched the problem. In HTML all elements in the form have a “tab
index.” This means that a user can navigate from one form element to another by
pressing the tab key (e.g., from one button to another). So, in order to override the
default browser behaviour, the researcher wrote a small set of JavaScript programs that
intercepts when the student presses the “tab” key. The scripts then treat the “tab” key as
a proper tab as opposed to a form element navigation keystroke. The researcher tested
this extended functionality in JITS in browsers such as Microsoft Internet Explorer 6,

Mozilla, Netscape 7, and Firebird.

Third Program Development Session: Section #2: JITS Performance Score
Analysis
There were two instructors involved in the third Program Development Session.
Instructor “A” taught two introductory programming courses; one was JITSC and the
other C. The second instructor (i.e., Instructor "B”’) taught three courses. One was the
experimental group (i.e., JITCS) and the others were C1 and C2, representing control

groups. Figure 44 illustrates this structure.

JITCS

JITCS

o

C2

Figure 44. Classifying control groups and experimental groups based on instructors.

171

172

Instructor “A” Performance Score Analysis

Table 23 and Table 24 display the performance scores of students taught by
Instructor “A”. Table 25 presents a summary of the descriptive statistical findings on
the performance scores. In order to determine the relationship between the performance
scores in C and JITSC, a two-way ANOVA with repeated measures was conducted.
Table 26 shows these results.

The students in the JITSC class outperformed students in the C class. There |
was, however, no significant level of differentiation between C and JITSC taught by
Instructor “A” in performance scores. A two-way ANOVA with repeated measures was
conducted that confirmed these results: F(1,37) = 0.083, p =.775, indicates there was
no significant difference between the two groups (i.e., C and JITSC). Table 26 shows
the results from the ANOVA.

Instructor “B” Performance Score Analysis

For this session there were two control groups (i.e., C1 and C2) and one
experimental group (i.e., JITSC). Table 27 and Table 28 display the performance
scores of students taught by Instructor “B.” Table 29 presents a summary of the
descriptive statistical findings on the performance scores. In order to determine the
relationship between the performance scores in C1, C2, and JITSC, a two-way ANOVA
with repeated measures was conducted. Table 30 presents this ANOVA.

Additional statistical measures were conducted to determine the level of
significance between specific groups (i.e., C1 vs. JITSC and C2 vs. JITSC). Table 31
presents the results from the ANOVA for between-subjects effects for C1 and JITSC.

There was no statistically significant level of difference between C1 and JITSC.

173

Table 23

Performance of Students in JITSC Class Taught by Instructor “A”

Class JITSC

JITSC Class

Student | Pretest (%) Posttest (%
S, 57.60 50.00
S, 68.40 86.29
S 68.00 71.14
S, 74.00 88.00
Ss 71.20 91.14
Se 45.20 55.14
S; 74.40 81.14
Ss 48.00 53.14
So 57.20 82.57 .
S1o 47.20 76.29
S11 68.40 83.14
Sy, 58.80 89.43
Si3 72.80 92.00
S 66.80 80.00

174

Table 24

“ 42

Performance of Students in C Class Taught by Instructor

Class C
Student | Pretest (%) | Posttest (%)
C,4 62.40 60.57
C, 68.00 80.57
Cs 31.20 54.29
C, 57.20 88.57
Cs 60.00 79.43
Ce 53.20 54.29
Cy 66.80 90.00
Cs 63.20 70.00
Cy 77.20 87.43
Cqo 51.60 74.29
Cqy 75.60 95.14
Cyo 72.80 98.86
Cis 71.20 81.14
Ciq 72.00 90.00
Cis 73.40 92.57
Cie 58.80 74.29
Cyz 73.60 87.43
Cis 70.00 90.00
Cig 74.00 57.43
Cao 61.20 76.29
Co 71.20 73.14
Ca 60.00 65.14
Cas 79.60 48.86
Cu4 45.20 38.86
Cos 52.40 78.00

Table 25

Standard Statistical Measures for C and JITSC Taught by Instructor “4”

175

Group | Pretest Posttest

mean and (standard deviation) mean and (standard deviation)
Cc 65.272 (9.082) 76.663 (15.570)
JITSC 62.714 (10.313) 77.101 (14.391)

Table 26

176

Two-way ANOVA with Repeated Measures: Between-Subjects Effects for C and JITSC

Taught by Instructor “A”

Source Type IV sum of squares df Mean square F Sig.
Intercept 356209.373 1 356209.373 1463.495 .000
Group 20.165 1 20.165 083 775
Error 9005.667 37 243.396

177

Table 27

Performance of Students in JITSC Class Taught by Instructor “B”

Class JITSC

JITSC Class

Student | Pretest (%) Posttest (%)
Sy 75.00 95.00
S, 95.00 97.14
S 70.00 77.14
S,y 85.00 90.00
Ss 70.00 80.00
Se 70.00 100.00
Sy 95.00 100.00
Ss 55.00 93.57
S 80.00 81.43
S1o 25.00 69.29
Sy 35.00 78.57
S12 95.00 92.86
S 82.50 95.71
Sia 30.00 85.00

Table 28

Performance of Students in Cl and C2 Classes Taught by Instructor “B”

178

Class C1 Class C2
Student | Pretest (%) | Posttest (%) Student | Pretest (%) [Posttest (%)

C1, 75.00 92.86 C2; 65.00 70.71
C1, 100.00 95.71 C2, 65.00 69.29
C1, 60.00 70.00 C2, 60.00 71.43
C1, 75.00 83.57 C2,4 52.50 80.00
Cls 70.00 92.86 C2s 75.00 62.86
C1e 85.00 95.71 C2 70.00 72.14
C1; 55.00 77.14 C2; 80.00 64.29
C1g 65.00 88.57 C2g 67.50 52.00
Clg 95.00 100.00 C2y 77.50 81.43
C14o 80.00 82.57 C24p 40.00 80.71
Cilyy 25.00 65.71 C24, 80.00 71.43
C14y 97.50 78.57 C24, 75.00 80.00
C145 70.00 89.29 C243 35.00 34.29
Clis 55.00 82.86 C2;4 85.00 78.57
Clys 70.00 92.86 C2;5 57.50 67.14
Clis 60.00 95.71 C245 75.00 62.86
Clyy 82.50 77.86 C2y7 55.00 83.57
C1ig 95.00 97.14 C248 70.00 82.86

C249 77.50 81.43

C2y 67.50 68.57

C2y4 70.00 68.57

C2y 75.00 78.57

C23 80.00 70.71

Table 29

Standard Statistical Measures for C1, C2, and JITSC Taught by Instructor “B”

179

Study Statistical Instrument c1 C2 JITSC
Pre-Test Mean: 73.055 67.608 68.750
Standard Deviation: 18.738 12.758 23.913

Post-Test Mean: 86.626 71.018 88.265
Standard Deviation: 9.845 11.291 9.650

Table 30

180

Two-way ANOVA with Repeated Measures: Between-Subjects Effects for C1, C2, and

JITSC Taught by Instructor “B”

Source Type IV sum of squares df Mean SquareA F Sig. |
Intercept 608112.166 1 618112166 | 1963.680 .000
Group 2674.463 2 1337.231 | 4.318 .018
Error 16103.353 52 309.680

Table 31

181

Two-way ANOVA with Repeated Measures: Between-Subjects Effects for C1 and JITSC

Taught by Instructor “B”

Source Type IV sum of squares df Mean Square F Sig. |
Intercept 394919.952 1 394919.952 991.540 .000
Group 28.012 1 28.012 .070 793
Error 30 | 398.289

182

Table 32 presents the results from the ANOVA for between-subjects effects for C2 and
JITSC. There was a statistically significant difference between C2 and JITSC at the
0.05 level, F(1,35) = 4.934, p = .033.
Third Program Development Session: Section #3: JITS Summary and
Recommendations for Further JITS Development

This section presents a summary and recommendations for the refinement of
JITS for the third program development session. The summary presents the results of
the performance score analysis, and student and professor perspectives. The
recommendations section discusses areas for improvement in the Java Intelligent
Tutoring System.

Summary

A tremendous amount of redesign and redevelopment occurred during this
session. The major reason for these changes was due to student involvement and
student interest in this project.

Figure 45 shows a pictorial summary of performance scores between C1, C2,
and JITCS using the mean grades as the data. There was a significant statistical
difference between C2 and JITSC at the 0.05 level. See Table 30, Table 31, and Table
32 for specific results. Figure 46 presents a plot of the performance scores between C1
and JITSC. Figure 47 presents a plot of the performance scores between C2 and JITSC.

From a qualitative perspective, the results show a difference between
experimental groups and control groups for both Instructors “A” and “B” classes.
Overall, students enjoyed and benefited from working with the Java Intelligent Tutoring

System. Table 33 depicts the summary statistics from the qualitative survey. (See

Table 32

183

Two-way ANOVA with Repeated Measures: Between-Subjects Effects for C2 and JITSC

Taught by Instructor “B”

Source Type IV sum of squares df Mean Square F Sig. |
Intercept 380327.356 1 380327.356 1275.534 .000
Group 1471.210 1 1471.210 4934 .033
Error 10435.991 35 298.171

184

Performance Comparison between JITSC, C1, and C2 using
Pretest and Posttest Means as Data

90.004 Group
----- C1
o - -2
— JITSC
85.00—
q 00
Q
©
]
;o
O 75.00
70.00+
65.00
T]

Pretest Posttest

Figure 45. JITSC versus C1 and C2 performance comparison using pretest and posttest

means as data.

185

Performance Comparison between JITSC and C1 using
Pretest and Posttest means as data

90.00 Group

- - -Cf
—— JITSC

85.00—

~=~80.00—

Grade (%

75.00

70.OO-J

65.00

I 1
1 2

Pretest Posttest

Figure 46. JITSC versus C1 performance comparison using pretest and posttest means as

data.

186

Performance Comparison between JITSC and C2 using
Pretest and Posttest means as data

90.00] Group
----- c2
e JITSC
85.00
~~80.00—
S
o
°
©
| 9
O 75.00
70.00—
65.00J

Pretest Posttest

Figure 47. JITSC versus C2 performance comparison using pretest and posttest means as

data.

Table 33

JITS Qualitative Summary Results for JITSC Students

187

QA Wb A~

Usefulness. ...oovvviiiii i 93%
Beneficialooooviiiiiiii e 86%
JITS is better than a traditional classroom...... 0%
Ease of JITS Tutoring Style...................... 86%
Enjoyable........coooeieiiiiii 79%

Learn better using JITS than in a classroom....43%

188

Table 7 for the interview sheet.) Based on the students’ comments, JITS performed
extremely well. In most of the categories, there were significant improvements over the
First Program Development Session findings (see Table 17).
The Students’ Perspective. Most of the students enjoyed working with JITS.
The following section presents the main comments as printed on the student’s survey.
1. “Itis easy to learn using this system instead of using a textbook.”
2. “It helps me understand material by specifically emphasizing certain
[programming] parts.”
3. “It was nice to see my knowledge and application of Java works.”
4. “Very beneficial because it actually allowed me time to practice that I could
not have had time for otherwise.”
5. “Really helped go over important concepts and programming expense
especially for someone who has trouble working alone from home.”
6. “Overall, [JITS] is an excellent piece of software for serious Java learners.”
Students felt that the hints were extremely good when either syntax errors or
logic errors occurred. The Java Error Correction Algorithm (JECA) provided JITS with
the necessary information to provide an appropriate hint to the student for the syntax
errors. Similarly, the Al _Module provided the rationale behind logic errors to JITS
when they occurred. During this last Program Development Session, it is clear that
JITS supported students in their development of fundamental Java concepts.
Recommendations
At the end of the third Program Development Session, there were no further

major suggestions offered by students or instructors. However, there were some minor

189

suggestions. Some students stated, “JITS should include some gaming elements to
make it more exciting.” This is not an unreasonable request. In fact, there are a number
of Conferences and Journals that revolve around the topic of video streaming and
interactively rich media in the field of Intelligent Tutoring Systems. The researcher is
currently exploring the technical issues with embedding the Java Intelligent Tutoring
System with QuickTime movies using specialized Java modules.

Most of the students seemed content with the performance and manner in which
JITS tutored. However, there were two minor suggestions that could not be met. First,
one student suggested adding colour to the source code area where the student enters
his/her solution to a problem. The user interface technologies used to implement JITS
(i.e., HTML, Javascript, and Java ServerPages) unfortunately can not accommodate this
request. One student suggested that the error pointer (i.e., the ~ symbol used to identify
the exact spot where an error is located in the student’s submission) be shown in the
actual source code area. Again, unfortunately, due to the technologies selected for the

implementation of JITS, this is impossible to do.

190

CHAPTER SEVEN: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This chapter presents the summary, conclusion, and recommendations of the
research work conducted in this dissertation. The summary section provides a review of
the final version of Java Intelligent Tutoring System with specific emphasis on the user
interface. The second section of this chapter is the conclusion, which includes possible
confounds regarding the performance score results and analysis. Following the
Conclusion section is the Implications section that discusses the educational implications
of this work. The last section of this chapter presents recommendations for future work
in the area of Intelligent Tutoring Systems, paying particular attention to programming
tutors and the Java Intelligent Tutoring System.

Summary

The Java Intelligent Tutoring System was designed, developed, and assessed in
this dissertation. Recall the generally accepted definition for an ITS is a system that
employs artificial intelligence methods to assist trainees to improve their problem solving
skills by monitoring their reasoning, tracking errors to their source, and, based on the
diagnosis, providing advice and assistance to strengthen problem solving skills (Tracey,
2003). ITS allows for more open-ended programs (Tracey, 2003). JITS satisfies all of
the criteria specified above. Accordingly, JITS is thus a fully qualified Intelligent
Tutoring System. The following section elaborates this point by presenting the
completed Java Intelligent Tutoring System including the user interface and user
modeling components as they relate to this ITS criteria. The section also provides a

summary of the performance score results from the quantitative experiment that

191

determined the effectiveness of the Java Intelligent Tutoring System at the Sheridan
Institute of Technology and Advanced Learning.
JITS User Interface

The user interface for the Java Intelligent Tutoring System underwent a number of
significant changes throughout the duration of the research study. During some of the
experiments, major changes were conducted within very short timelines to ensure the
students’ suggestions were taken seriously and that significant changes were made to the
user interface. Figure 48 depicts the completed JITS user interface.

The first section (i.e., label 1) presents a personalized welcome to the student
logged in. Label 2 presents a note relative to the current state of solving the problem at
hand. In this section, notes are dynamically created by JITS that are personalized to each
student. Label 3 presents the problem template structure including the problem
statement, the problem specifications, and the required output. This section also draws
reference to the problem number out of the total number of problems available in this
programming topic. At the end of Section 3, a link (i.e., label 4) is provided to a picture
if the problem has a visual component (i.e., an equation or relevant drawing) to assist the
student in more clearly understanding the problem. Ifthe student clicks the link, the
picture is shown in a separate window to allow the student to refer to the picture while at
the same time working with the main JITS user interface. Label 5 shows the template
provided by JITS for each problem in the system. Label 6 presents the editing region
where the student types his/her solution. Label 7 depicts the various buttons which the
students use to interact with JITS. Buttons include “Submit” to submit a solution to a

problem and to receive feedback. “View Top Hint” and ”View All Hints” buttons are

@

(2 NOTE: You have aticmpted tisis problem 4 times. You have not yet salved this problam. Your last attempt is presented for you in

public int powergen{int num) { =
(5 return num * num: Take mathere l

192

/) Java Intelligent Tutoring System - Micrasoft Internct Explorer
| Bl EdR Yew Fasodes [ools Pep

O - - 11 18]] Dsewn srmnn @3- B -1 4y B

Aﬂef,m http:ffloyalty. shandanc.on.cafits.jsp LI ao | Links l ﬁ}"‘.‘;‘e -
1

Java Intelligent Tutoring System Welcome svkes!

Help Me

the code area. Please try again.

Problem: (3 of 5) in Preblem Set # 2 (Topic: Java Statsments) ogramming Topics

Write a program called Power Generator which calculates the result of a number multiplied by itself

Program Specifications: Java Basics

This program requires the use of a function. A skeleton structure of the solution is given. You need to declare the i:as\";::e‘irems
vanable: result View the image for this problem. for laops
Required Output: @ do while loops
Result = 10000 while loops

P~ Arays

public class Power {

}
public static void main(String [] args) { View the Tutanal
Power p = new Power(): @
double result 4]
@ p.powergen(19) ;

] _'.I_l
System.out.println("Result = " + result):; J
submit || ViswTogbin | ViewAliFine | | ViewSoiian |
Previous Problem I Mext Problem | My Pedormance I Exat

|~ OUTPUT: @ B o
A _/ [T T T [meme

-3

ES

Figure 48. Final version of the JITS User Interface.

193

the means by which students can see the hints the JITS provides. The “View Solution”
button provides potentially various solutions to the current problem. The “Previous
Problem” and “Next Problem” buttons are used for navigating within a problem set. The
“My Performance” button yields detailed information about the student’s performance
including problems solved, problems attempted, the number of attempts for each
problem, and comparison information to the “average” JITS student. Links are provided
in the “My Performance” output for rapid access to.any problem the students wishes to
retry. Label 8 shows where the majority of the responses from JITS are presented.
Information such as hints, solutions, performance scores, and errors are all shown in this
area of JITS.

Label 9 presents the choices of the various programming topics that the student
may choose. The “Take Me There” button is used to bring the student to the selected
programming topic. Label 10 presents the “View the Tutorial” button, which launches
the JITS Tutorial window. The tutorial window may be viewed at the same time as the
student is working with the main JITS user interface (i.e., the tutorial may be referenced
while working on a problem in JITS). Label 11 shows the “Help Me” button, which
opens a separate window displaying the screenshot of JITS with labels to all of the
components in JITS. The purpose of this window is to orient new users of JITS so that
they feel supported and can more quickly become productive in this Intelligent Tutoring
System. The last label (i.e., 12) is the “Exit” button. This button brings up a screen
which thanks the student for trying out the system and performs some system-wide
cleanup procedures behind the scene. Figure 49 presents the screen once a student exits

the system.

194

User Modeling

The latest version of JITS tracks a great deal of information about the student as
s/he works on programming problems in the system. The ultimate goal of gathering this

information is to more closely model the student and to more effectively assist the student
during the tutoring process.

7} Thank You ! - Microsoft Internet Explorer

e

Figure 49. JITS Exit Screen thanking the participant.

195

The following list describes the information tracked by JITS:

1. time and date when a student logs onto JITS;

2. the number of times the student has connected to JITS;

3. every code submission the student makes on a problem;

4. the number of times the student has tried each problem for each problem the
student has tried;

5. the student’s solution to a problem;

6. the number and type of misconceptions involving keywords, extended
keywords, and identifiers are recorded (e.g., “For,” “fro” instead of “for,”
etc.);

7. whether or not the student pressed the “View Solution” button for a problem,;

8. student movement through each Problem Set;

9. student movement to a different topic (i.e., the types and difficulty of
problems the student attempts is recorded).

Collectively, this information allows JITS to model the student and effectively
engage the student in the tutoring process. When a student exits the system, the next time
the student starts JITS, the system brings the student back to the exact state as when s/he
left. That is, the problem and code the student was working on are presented to the
student, including a detailed message serving to assist in placing the student back in the

same mental state when s/he was previously engaged in solving the problem.

196

Conclusions

A total of three Program Development Sessions were conducted during this
dissertation involving four distinct JITSC groups and five control groups. In all of the
experiments, the JITSC students outperformed the corresponding control groups. There
were two situations in which the JITSC group performed better than the control group at
a statistical significance at the 0.05 level.

During the first term (i.e., May to September 2004) a three-way ANOVA revealed
that a larger gap between pretest and posttest occurred early in the semester as compared
to the difference late in the semester. This seemed to indicate a more dramatic learning
curve took place near the beginning of the semester. The Test by Group interaction
showed the superior performance by the JITS group.

Performance score analysis during the second term (i.e., September to December
2004) involving the computation of a 2 x 2, two-way ANOVA revealed the main effect
for Test, F(1, 92) = 61.12, p < .001, which was qualified by a Test by Group interaction,
F(1,92)=5.36, p <.025. The Test by Group interaction result is due to the superior
performance of the JITS group at posttest.

These results, coupled with the strong positive qualitative feedback from students
and instructors, indicate that JITS is beneficial for students learning Java at the beginner
level. Due to student involvement and suggestions, JITS includes many features that
appeal to many different types of learners. JITS supports multiple intelligences through
its effective tutoring approach, interactively rich user interface, and precise user-

modeling mechanisms.

197

Contributions to the Fields of Computer Science and Education

JITS is implemented using advanced e-learning technologies. Its multithreaded
distributed architecture makes JITS scalable, robust, and easy to maintain. Through the
use of Java ServerPages'™, and JavaBeans™, all processing is done at the middle-tier
level. The Model-View-Controller design pattern was used to implement JITS. All
content is dynamically extracted from an ORACLE database via JDBC and placed into
the appropriate Java ServerPage ™. From a pedagogical perspective, JITS supports
personalized student development by modeling every student in the system. JITS also
enhances the learning experience by providing an interactively rich environment where
every student receives personalized tutoring—each student receives unique personalized
feedback for every situation in the interactive problem solving session. JITS is an
online website always available for students and requires only a browser and an internet
connection. JITS was designed to be accessible from remote locations and can be
effectively used for e-learning for on-site locations as well as remote sites. JITS does
not require high-band width internet connectivity; a simple dial-up connection will
work equally as fast as a high-band width connection because all of the processing is
done on the middle-tier server.

During the design and development of JITS many of these features were unique
in the field of ITS research. In other words, no other ITS offers the same degree of
“intent” recognition, scalable multithreaded distributed architectural design, extensive
personalized instruction, and effective student modeling (Aleven & Ashley, 1997;
Graesser et al., 2001; Koedinger, 2001). The performance gain achieved by students

who used JITS, it is on par with other ITS (Sykes & Franek, 2004a). The results from

198

the performance scores indicate a 1.6 standard deviation improvement over traditional
classroom environments (Sykes & Franek, 2004a). Most ITS still use traditional system
architectural designs which limits the degree of customization to meet student’s needs
(Graesser et al., 2001; Weber & Brusilovsky, 2001; B. P. Woolf et al., 2001).

Furthermore, most ITS do not offer the same level of user tracking, modeling,
and rigor of “intent” recognition that JITS accomplishes with its sophisticated Al JECA
module (Albus & Meystel, 2002; Heffernan & Koedinger, 2001; Woolf et al., 2001,
Sykes & Franek, 2004b). The Java Error Correction Algorithm is perhaps the most
significant contribution of this research because no other ITS is as flexible in being able
to guide students towards a potentially unique solution to a programming problem when
a solution is not available. This is due to the Al JECA module which rigorously
analyzes the student’s submission and offers “intelligent” suggestions even though there
is no solution for the problem. The term “intelligence” is in reference to the fact that
the researcher is working from the perspective of Weak Al not Strong Al. Nonetheless,
JITS takes the advice from JECA, combines it with the individual student model, the
collective student model, and responds appropriately with personalized feedback for
each and every student in the system.
Possible Confounds

A possible confound associated with the performance score results determined in
this study may be attributed to JITS group students having had more “time on task” than
the corresponding Control groups. Additionally, due to the on-line accessibility and
continuous availability of JITS, it is possible that the JITSC students spent more “time on

task.” However, it is equally reasonable to assume that students in the Control group

199

spent the same amount of time on coursework activities due to the independent nature of
postsecondary education.

Another possible confound is the fact that the JITS groups were receiving more or
different attention than Control groups. The Hawthorne effect is a factor that needs to be
taken into consideration. The researcher recognizes these possible confounds in the
assessment of performance scores in this research project.

On the other hand, it is equally likely that students who identified themselves as
being “weak” at programming may have elected to become involved in the research
project to gain additional assistance in order to improve their performance in the course.

Implications

Students and instructors alike enjoyed and benefited from working with me in
the development of JITS. As is evident in the findings chapter, their involvement in this
research was very important in shaping JITS and improving it to meet their needs.
Overall, students liked learning in the environment that the Java Intelligent Tutoring
System provided. This research has a number of positive implications. Due to the huge
amount of student tracking information that JITS collects, there are many different
types of reports that may be generated for a variety of reasons. First, personalized
student performance reports on individual students using JITS may be created so that
each student can reflect on his/her performance and identify areas of improvement. A
second implication of the research conducted is from the perspective of the instructor.
For instance, instructors may want detailed information on student performance on

specific programming topics in JITS. This information could be used to modify

200

curricula, perform additional classroom instruction, the setting of new tests, etc. This in
turn could increase the students’ performance in the course.

This research has contributed to the scientific community. For example, the Java
Error Correction Algorithm (JECA) is the first of its kind to determine the “intent” of the
student’s submission by rigorously analyzing the student’s code. Behind the scenes,
JECA makes changes to the student’s submission in order to facilitate this analysis.
However, once JECA determines the most reasonable intent of the student, these changes
are made known to the student. The results from JECA are passed to the Java Intelligent
Tutoring System (JITS) in the form of hints and suggestions, which are then used for
instructional purposes. The Java Error Correction Algorithm has appeared in
international peer-reviewed journals and international conference proceeding
publications. While JECA has contributed to the field of Computer Science, JITS has
contributed to the field of Education. The following is a list of publications this
dissertation has had in the fields of Computer Science and Education:

Book Publications

Franek, F., Sykes, E. R. (2007). Compiler Design: Implementation Using C++ and Java,
Jones and Bartlett Publishers. (in progress)

International Journal Publications

Sykes, E. R. (2006). Developmental Process Model for the Java Intelligent Tutoring System,
Journal of Interactive Learning Research. (accepted for publication: issue to be
determined)

Sykes, E. R., & Franek, F. (2004). A Prototype for an Intelligent Tutoring System for
Students Learning to Program in Java, International Journal of Computers and
Applications. Vol 1, pp. 35-44, ACTA Press.

International Conference Proceedings Publications

Sykes, E. R. (2006). Human Computer Interaction in the Java Intelligent Tutoring System,
Fifth IASTED International Conference on Web-Based Education, Puerto Vallarta,
Mexico. (accepted)

201

Sykes, E. R., & Mirkovic, A. (2005). A Fully Parallel Implementation of a Scalable Hopfield
Neural Network on the SHARC-NET Supercomputer, The 19th International Symposium
on High Performance Computing Systems and Applications, University of Guelph,
Ontario, Canada.

Sykes, E. R,, & Franek, F. (2004). Presenting JECA: A Java Error Correcting Algorithm for
the Java Intelligent Tutoring System, Proceedings of the IASTED International
Conference on Advances in Computer Science and Technology, St. Thomas, Virgin
Islands, USA (pp. 151-156).

Sykes, E. R., & Franek, F. (2004). Field-Report of the Java Intelligent Tutoring System,
Learning Technology Newsletter, Publication of IEEE Computer Society Technical
Committee on Learning Technology (ISSN 1438-0625) (pp. 32-35).

Sykes, E. R., & Franek, F. (2004). Preliminary Assessment of the Java.Intelligent Tutoring
System, International Conference on Education and Information Systems, Technologies
and Applications, Orlando, Florida. (pp. 22-27).

Sykes, E. R., & Franek, F. (2004). Pedagogical Design of the Java Intelligent Tutoring
System, International Conference on Education and Information Systems, Technologies
and Applications, Orlando, Florida. (pp. 213-218).

Sykes, E. R., & Franek, F. (2004). Inside the Java Intelligent Tutoring System Prototype:
Parsing Student Code Submissions with Intent Recognition, Proceedings of the IASTED
International Conference on Computers and Advanced Technology in Education.
Innsbruck, Austria. (pp. 613-618).

Sykes, E. R., & Franek, F. (2003). An Intelligent Tutoring System Prototype for Learning to
Program Java. Proceedings of the 3 IEEE International Conference on Advanced
Learning Technologies, Athens, Greece, (pp. 485-486).

Sykes, E. R., & Franek, F. (2003). A Prototype for an Intelligent Tutoring System for
Students Learning to Program in Java. Proceedings of the IASTED International
Conference on Computers and Advanced Technology in Education. Rhodes, Greece.
(pp. 78-83).

Sykes, E. R. (2003). Java Intelligent Tutoring System Model and Architecture. AAAI Spring
Symposium: Human Interaction with Autonomous Systems in Complex Environments,
SS-03-04, (pp. 187-193). AAAI Press.

Sykes, E. R. (2002). A Unified Model of Intelligence. Canadian Society for the Study of
Education Press (pp. 537-545). Toronto, Canada: CSSE Press.

Sykes, E. R. (2002). An Intelligent Academic Advising System Model Using Soft Computing
Constructs. Paper presented at the meeting of Computer Science Faculty, St.
Catharines, Ontario, Canada.

Recommendations
Throughout this dissertation, a number of innovative ideas and breakthroughs

were accomplished. This is demonstrated by the number of international publications the

202

researcher has to date on the Java Intelligent Tutoring System. It would be advantageous
to conduct more educational research by field-testing JITS in environments where the
students would use JITS as a core component of their course. For example, integrating
course assignments, exercises, and projects by using JITS may reveal interesting results.
Other areas of recommendation include research relating to relevant education
and scientific research communities such as gaming elements, video-streaming, more
sophisticated user modeling, and more intelligent feedback mechanisms. The researcher
intends on continuing researching and publishing to further promote the Java Intelligent

Tutoring System.

203

References

Albus, S. J., & Meystel, M. A. (2002). Intelligent Systems: Wiley.

Aleven, V., & Ashley, D. K. (1997). Case-Based Argumentation Through a Model and
Examples: Empirical Evaluation of an Intelligent Learning Environment. In B. Du
Boulay & R. Mizoguchi (Eds.), International Journal of Artificial Intelligence in
Education (pp. 87-94). Amsterdam: 10S Press.

Anderson, J. R. (1998). Production Systems and the ACT-R Theory. In P. Thagard (Ed.),
Mind readings: Introductory selections on cognitive science (pp. 59-76).
Cambridge, MA: MIT Press.

Anderson, J. R., Boyle, C. F., Corbett, A. T., & Lewis, M. W. (1990). Cognitive
Modelling and Intelligent Tutoring. Artificial Intelligence, 42, 7-49.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill Acquisition and the Lisp
Tutor. Cognitive Science, 13(4), 467-505.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive
Tutors: Lessons learned. The Journal of the Learning Sciences, 4, 167-207.

Anderson, J. R., & Pelletier, R. (1991). 4 Development System for Model-Tracing Tutors.
Paper presented at the The International Conference on the Learning Sciences,
Northwester University, Evanson, Illinois, USA.

Anderson, J. R., & Reiser, B. J. (1985). The LISP tutor. Byte, 10, 159-175.

Beal, R. C., Beck, E. J., Woolf, B. P., & Rae-Ramirez, A. M. (1998). WhaleWatch: An
Intelligent Model-Based Mathematics Tutoring System. Paper presented at the

Proceedings of the Fifteenth IFIP World Computer Congress, Austria.

204

Bloom, S. B. (1984). The 2-sigma problem: The search for methods of group instruction
as effective as one-to one- tutoring. Educational Researcher, 13, 4-16.
Boyd, M. (2003). Center for instructional technologies. Retrieved February 10, 2003,

from http://www.utexas.edu/cc/webct/about/atut/coursetool/prodrevs.html

Burke, M. G., & Fisher, G. A. (1987). A practical method for LR and LI syntactic error
diagnosis and recovery. ACM Transactions on Programming Languages and
Systems, 9(2), 164-197.

Chen, E. (2004). Java: A False Sense of Security? Retrieved Nov 10, 2004, from

http://www.trendmicro.com/en/about/news/coverage/eva-chen.htm

Conati, C., & Van Lehn, K. (1999, 19-22 July). Teaching Meta-Cognitive Skills:
Implementation and Evaluation of a Tutoring System to Guide Self-Explanation
while Learning from Examples. Paper presented at the Ninth World Conference of
Artificial Intelligence and Education, Le Mans, France.

Cottingham, J., Stoothoff, S., Murdoch, A., & Kenny, A. (1991). The philosophical
writings of Descartes: Cambridge.

de Koning, K., & Bredeweg, B. (2001). Exploiting Model-Based Reasoning in
Educational Systems: Illuminating the Learner Modeling Problem. In K. D.
Forbus & P. J. Feltovich (Eds.), Smart Machines in Education. Cambridge, MA.:
MIT Press.

Fischer, C., & LeBlanc, R. J. (1991). Crafting a compiler with C. Redwood City, CA:
Benjamin Cummings Publishing.

Fletcher, J. D. (1995). What Have We Learned about Computer-Based Instruction in

Military Training? Brussels, Belgium: North Atlantic Treaty Organization.

205

Gilbert, F. (2003). Lakehead University and the Double Cohort, from

http://www .lakeheadu.ca/cohort/main.html

Graesser, A. C., & Person, N. K. (1994). Question asking during tutoring. American
Educational Research Journal, 31, 103-137.

Graesser, A. C., Person, N. K., & Harter, D. (2001). Teaching tactics and dialog in
autotutor. International Journal of Artificial Intelligence in Education, 12, 12-23.

Heffernan, N. T., & Koedinger, K. R. (2001). The Design and Formative Analysis of a
Dialog-Based Tutor. Paper presented at the Al in Education 2000 Workshop on
Building Dialogue Systems.

Karolyi, J. (2004). Practice makes perfect. In E. R. Sykes (Ed.) (pp. Personal
communication with instructor, John Karolyi at the Sheridan Institute of
Technology and Advanced Learning.). Oakville.

Koedinger, K. R. (2001). Cognitive tutors. In K. D. Forbus & P. J. Feltovich (Eds.),
Smart machines in education (pp. 145-167). Cambridge, MA: MIT Press.

Martinez, A. (2002). Information Technology — Computer And Data Programming
Services: Computer Programmers. Retrieved January 4, 2003, from

http://www.cteresource.org/ipg/certifications/sun jpj2.html

O'Reilly, R. C., & Munakata, Y. (2000). Computational Explorations in Cognitive
Neuroscience. London, England: MIT Press.
Pawlan, M. (2004). J2EE Tutorial. Retrieved October 15, 2004, from

http://java.sun.com/j2ee/1.3/docs/

Regian, F. D. (1997). Increased performance gains in individualized human tutoring.

IEEE: Intelligent Systems, 4, 14-29.

206

Rowe, C. N., & Galvin, P. T. (1998). An authoring system for intelligent procedural-skill
tutors. IEEE: Intelligent Systems, 14, 61-69.

Schofield, J. W., Evans-Rhodes, D., & Huber, B. R. (1990). Artificial Intelligence in the
Classroom: The Impact of a Computer-Based Tutor on Teachers and Students.
Social Science Computer Review, 8(1), 24-41.

Searle, J. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3,417-
424,

Seidel, R. L., & Perez, R. S. (1994). An evaluation model for investigating the impact of
innovative educational technology. In H. F. O'Neil, Jr. & E. L. Baker (Eds.),
Technology Assessment in Software Applications (Vol. 4, pp. 235-256). Los
Angeles, California: Graduate School of Education and Human Behaviors.

Sykes, E. R. (2003). Java Intelligent Tutoring System Model and Architecture.
Proceedings of American Association of Artificial Intelligence Spring Symposium
on Human Interaction with Autonomous Systems in Complex Environments, 187-
193.

Sykes, E. R., & Franek, F. (2003). A Prototype for an Intelligent Tutoring System for
Students Learning to Program in Java. Proceedings of the IASTED International
Conference on Computers and Advanced Technology in Education, 78-83.

Sykes, E. R., & Franek, F. (2004a). Preliminary Assessment of the Java Intelligent
Tutoring Systém. Paper presented at the International Conference on Education
and Information Systems, Technologies and Applications, Orlando, Florida, USA.

Sykes, E. R., & Franek, F. (2004b). Presenting JECA: A Java Error Correcting

Algorithm for the Java Intelligent Tutoring System. Paper presented at the

207

TASTED International Conference on Advances in Computer Science and
Technology, St. Thomas, Virgin Islands, USA.

Sykes, E. R., & Franek, F. (2004¢). A Prototype for an Intelligent Tutoring System for
Students Learning to Program in Java. International Journal of Computers and
Applications, 1, 35-44.

Tracey, W., R. (2003). The Human Resources Glossary: The Complete Desk Reference
for HR Executives, Managers and Practitioners (Third ed.): CRC Press.

Vasilevsky, K. E. (2003). Personal Consumption as the Driving Force of American and
Canadian Economy. Retrieved February 10, 2003, from

http://iskran.iip.net/engl/mag/june.html

Weber, G., & Brusilovsky, P. (2001). ELM-ART: An adaptive versatile system for web-
based instruction. International Journal of Artificial Intelligence in Education, 12,
129-145.

Wertheimer, B. P. (1990). The Geometry Proof Tutor: An Intelligent Computer-Based
Tutor in the Classroom. Mathematics Teacher, 83(4), 303-317.

Woolf. (1992). Al in education. In S. Shapiro (Ed.), Encyclopedia of Artificial
Intelligence (pp. 434-444). New York: Wiley.

Woolf, & Hall. (1995). Multimedia Pedagogues: Interactive Systems for Teaching and
Learning:. [EEE: Computer, 28(5), 74-80.

Woolf, B. P., Béck, J., Eliot, C., & Stern, M. (2001). Growth and maturity of intelligent
tutoring systems: A status report. In K. D. Forbus & P. J. Feltovich (Eds.), Smart

machines in education (pp. 100-144). Cambridge, MA: MIT Press.

208

Appendix Brock Ethics Approval
The following section contains Brock University Ethics Approval form for this

research.

209

Brock University
Senate Research Ethics Board
Extensions 3943/3035, Room AS 302

DATE: January 26, 2004

FROM: Joe Engemann, Chair

Senate Research Ethics Board (REB)

TO: Rosemary Young, Education

Edward R. Sykes

FILE: 03-262 Sykes
TITLE: Java Intelligent Tutoring System Project

The Brock University Research Ethics Board has reviewed the above research proposal.

DECISION: Accepted as Clarified

This project has been approved for the period of January 26, 2004 to December 18,
2004 subject to full REB ratification at the Research Ethics Board's next scheduled
meeting. The approval may be extended upon request. The study may now proceed.

210

Please note that the Research Ethics Board (REB) requires that you adhere to the protocol
as last reviewed and approved by the REB. The Board must approve any modifications
before they can be implemented. If you wish to modify your research project, please
refer to www.BrockU.CA/researchservices/forms.html to complete the appropriate form
REB-03 (2001) Request for Clearance of a Revision or Modification to an Ongoing
Application.

Adverse or unexpected events must be reported to the REB as soon as possible with an
indication of how these events affect, in the view of the Principal Investigator, the safety
of the participants and the continuation of the protocol.

If research participants are in the care of a health facility, at a school, or other institution
or community organization, it is the responsibility of the Principal Investigator to ensure
that the ethical guidelines and approvals of those facilities or institutions are obtained and
filed with the REB prior to the initiation of any research protocols.

The Tri-Council. Policy Statement requires that ongoing research be monitored. A Final
Report is required for all projects, with the exception of undergraduate projects, upon
completion of the project. Researchers with projects lasting more than one year are
required to submit a Continuing Review Report annually. The Office of Research
Services will contact you when this form REB-02 (2001) Continuing Review/Final
Report is required.

Please quote your REB file number on all future correspondence.

Deborah VanOosten, Research Ethics Officer

Brock University

Office of Research Services

500 Glenridge Avenue

St. Catharines, Ontario, Canada L2S 341

phone: (905)688-5550, ext. 3035 fax: (905)688-0748
email: deborah.vanoosten@brocku.ca
http://www.brocku.ca/researchservices/humanethics.html

211

FROM: Linda Rose-Krasnor, Chair
Research Ethics Board (REB)

TO: Rosemary Young, Education
Sykes, Edward

RE: Continuing Review/Final Report
File #: 03-262 - Sykes, Edward
Originally Accepted: January 26, 2004
Date of Completion: December 18, 2004

DATE: 1/14/2005

Thank you for completing the Continuing Review/Final Report form. The Brock
University Research Ethics Board has reviewed this report for:

Java Intelligent Tutoring System Project

The Committee finds that research participants are no longer being studied or followed
on the above protocol and therefore, this protocol is officially terminated by the Research
Ethics Board.

* Final Report Accepted.

LRK/hb

Heather Becker, Office of Research Ethics

Brock University

Office of Research Services

500 Glenridge Avenue

St. Catharines, Ontario, Canada L2S 3A1l

phone: (905)688-5550, ext. 3035 fax: (905)688-0748

email: hbecker@brocku.ca ,
http://www.brocku.ca/researchservices/Certification&Polices/Certification&Polices Hu
man_Ethics.html

