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Abstract

Gene therapy is predicated upon efficient gene transfer. While viral vectors are the

method of choice for transformation efficiency, the immunogenicity and safety concerns remain

problematic. Non-viral vectors, on the other hand, have shown high degrees of safety and are

mostly non-immunogenic in nature. However, non-viral vectors usually suffer from low levels

of transformation efficiency and transgene expression. Thus, increasing transformation

efficiency ofnon-viral vectors, in particular by calcium phosphate co-precipitation technique, is

a way of generating a suitable vector for gene therapy and is the aim of this study.

It is a long known fact that different cell lines have different transfection efficiencies

regardless oftransfection methodology (Lin et a!., 1994). Using commonly available cell lines

Madine-Darby Bovine Kidney (MDBK), HeLa and Human Embryonic Kidney (HEK-293), we

have shown a decreasing trend ofDNase activity based on a plasmid digestion assay. From

densitometry studies, as much as a 40% reduction in DNase activity was observed when

comparing HEK-293 (least active) to MDBK (most active). Using various biochemical assays, it

was determined that DNase y, in particular, was expressed more highly in MDBK cells than both

HeLa and HEK-293. Upon cloning of the bovine DNase y gene, we utilized the sequence

information to construct antisense expressing plasmids via both traditional antisense RNA

(pASDGneoM) and siRNA (psiRNA-S4, psiRNA-S11 and psiRNA-S16). For the construction

ofpASDGneoM, the 3' end of the DNase y was inserted in opposite orientation under a

cytomegalovirus (CMV) promoter such that the expression ofRNA complementary to the DNase
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y mRNA occurred. For siRNA plasmids, the sequence was screened to yield optimal short

sequences for siRNA inhibition. The silencing ofbovine DNase y led to an increase in

transfection efficiency based on traditional calcium phosphate co-precipitation technique; stable

clones of siRNA-producing MDBK cell lines (psiRNA-S4 Bland psiRNA-S4 B4) both

demol).strated 4-fold increases in transfection efficiency. Furthermore, serial transfection of

antisense DNase y plasmid pASDGneoM and reporter pCMV-~ showed a maximum of 8-fold

increase in transfection efficiency when the two separate transfections were carried out 4 hours

apart (i.e. transfection of pASDGneoM, separated by four hours, then transfection ofpCMV-~).

Together, these results demonstrate the involvement ofDNase y in reducing transfection

efficiency, at least by traditional calcium phosphate technique.
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Chapter I

Introduction and Literature Review

Gene Therapy

Gene therapy can simply be defined as the use of genetic material to treat disease.

Unlike pharmacological therapy, gene therapy seeks to correct the phenotypic defect on a

genotypic scale, to permanently address the malfunction. More specifically, gene therapy

comprises strategies employed to 1) repair the function of a mutated gene, 2) add new

cellular functions to cells and 3) with the recent discovery ofRNA interference (RNAi),

silence an aberrant gene. Gene therapy can be further sub-divided by the cells which the

therapy targets: germ line gene therapy and somatic gene therapy. For the ease of discussion

and to avoid the controversial ethical considerations of germ line gene therapy, the

approaches dealt within this document would strictly limit its scope to discussions of areas

pertaining to somatic gene therapy. Somatic gene therapy differs from germ line gene

therapy in the sense that the manipulated genetic constitution is not inherited by subsequent

generations.

Conceptually, gene therapy has been most attractive for the treatment of inherited

single-gene disorders, particularly those for which current therapies are unsatisfactory or

nonexistent. The notion of correcting a genetic defect by replacing the missing gene function

was especially attractive because of its conceptual simplicity, at least in theory. These

diseases, as a result of single-gene defects, are known collectively as monogenic diseases.
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Examples ofmonogenic diseases include cystic fibrosis, familial hypercholestremia and

amyotrophic lateral sclerosis. With recent advances, however, gene therapy has expanded its

horizon to potentially treat multigenic diseases and acquired multi-factorial diseases such as

various heart diseases and cancers.

Initially, the notion of employing gene therapy to treat disease was extremely

promising, especially due to the fact that most diseases contain some genetic component.

Thus, early expectations ofusing genes as a possible treatment modality had been

extraordinarily high. Aside from the multitude of diseases that gene therapy can apply to, it

also represented a completely novel solution to many diseases that have no satisfactory

treatments. This was particularly book-marked by the 4-year old Ashanthi DeSilva. In

September of 1990, she became the first patient undergoing federally approved gene therapy

(Blalese et al., 1995). Ashanthi was born with homozygous deficiency for adenosine

deaminase (ADA), which is responsible for the catabolism of toxic deoxynucleotides

(Morgan et al., 1987). The defect, in tum, leads to a shut down in the immune system known

as severe combined immunodeficiency (SCID). Principally, SCID results in the selective

accumulation of dATP in the thymocytes and peripheral blood B cells, leading to the

inhibition ofribonuleotide reductase and DNA synthesis. A person stricken with this ailment

suffers from chronic viral, fungal, protozoal and bacterial infections throughout his/her life.

While the therapy did not yield a complete cure, it did help correct the deficiency so that

Ashanti only takes small, weekly doses of the traditional Pegademase (PEG-ADA) drug

(Blalese et al., 1995).

The initial promise and expectations, however, did not come without sobering

moments. Safety reassessment of gene therapy followed with the public death of an 18-year

old volunteer, Jesse Gelsinger, with ornithine transcarbamylase deficiency during a phase I

clinical trial at the University ofPennsylvania (Teicehler, 2000). It is believed that the
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Jesse's death resulted from an overwhelming systemic inflammatory response to the high

concentration of adenovirus that was injected directly into his hepatic veins (Dzau et al.,

2003). More recently in France, two patients were reported as having developed leukemia

after receiving ex-vivo gene-corrected autologous bone marrow cells treating X-linked SCID

(X-SCID), presumably by insertional mutagenesis. These incidents halted similar clinical

trials scheduled to be performed in the United States. Consequently, these cases deterred the

momentum that gene therapy has been gaining throughout the years and grounded the field

nearly to a complete halt. Reassessment of the safety and feasibility of gene therapy soon

followed alongside a very negative public image.

Today, the all-encompassing term "gene therapy" has been subdivided into "gene

replacement therapy", "gene augmentation therapy", and "gene inhibition therapy". Whether

the change in definition reflected the need for researchers to dissociate themselves from gene

therapy's disappointing past, or whether it served to clarify the nuances of this growing field

remain a topic of debate. One undeniable fact is that despite the various setbacks, the field

continues to grow, with almost endless possibilities to the diseases to which it can potentially

be applied. Below are a few examples.

Applications of Gene Therapy

The potential for applying gene therapy can be limitless. As long as the phenotypic

defect stems from a dysfunction of genes, the corrective addition, replacement or inhibition

of a gene function can, in theory, be applied to almost all instances. While the use of gene

therapy has demonstrated varying levels of success in the pre-clinical/animal model studies,

the transition to human clinical trials has been slow following the above public setbacks.

Despite the small numbers ofhuman clinical trials that have been largely confined to phases

17



IIII, the scope of gene therapy application has been very widespread. The applicable diseases

are now known to include arthritis, cancer, autoimmune disorders, pulmonary diseases,

kidney, cardiovascular and gastrointestinal ailments. As of July of 2004, there are 17 phase

III clinical trials of gene-based therapies occurring throughout the world. Below are a few

examples ,,~~.!...:!.!....!.!...!.~~~~~~~~~~~)

Suicide Gene as an Adjuvant to Surgical Resection and Radiation in

Glioblastoma Multiforme

Gliomas are neoplasia of glial origins. They are the most common primary neoplasia

of the brain in adults. Glioblastoma multiforme (GBM), the most malignant type of glioma,

is inevitably and rapidly fatal despite aggressive therapy that typically includes surgical

resection of the tumor and high-dose radiation, in conjunction with chemotherapy (Shapiro

and Shapiro, 1998). The strategy to use gene therapy to augment surgical and radiation

treatment was tested in a phase III clinical trial setting in 1996 by a group of scientists known

as the GL1328 International Study Group.

Herpes Simplex Virus Type 1 Thymidine Kinase (HSV-tk) was produced by a

replication-incompetent retroviral vector in vector-producing cells (VPCs) derived from

murine fibroblasts. The pro-drug, ganciclovir, was also introduced along with the VPCs

intratumorally. Since VPCs is a renewable resource for the retroviral vector, it represented a

more preferable approach than multiple introduction of the vector itself due to

immunological concerns. Intratumoral injection of the VPCs allows for the retroviral vector

expression and integration of the HSV-tk gene into the tumor genome. HSV-tk then

phosphorylates ganciclovir to form nucleotide-like precursors that block-replication ofDNA
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and thereby kill cells by apoptosis. Cells surrounding the transduced cells are also rendered

apoptotic in a process called the by-stander effect, which presumably is due to cell-to-cell

passage of toxic ganciclovir metabolites and other apoptotic factors (Freeman et al., 1996).

Although the approach was both effective and selective in the destruction of tumor

cells in earlier experimental studies, the clinical trial data published in the journal Human

Gene Therapy in 2000 showed neither significant increase in progression-free period nor

survival percentage over control groups, which represented conventional therapeutic

modalities (Rainov, 2000).

Use of Vascular Endothelial Growth Factor to Treat Refractory

Angina Pectoris

Refractory angina pectoris refers to the treatment-exhausted form of angina pectoris,

which is a clinical collection of symptoms that includes chest pressure and chest pains. The

primary cause of angina pectoris is myocardial ischemia, especially the lack of oxygen to the

heart, which can potentially lead to myocardial infarction. In response to myocardial

ischemia, collateral blood vessels usually develop to compensate for anoxia, but in patients

that remain symptomatic, the collateral vessels fail to meet the need for enhanced blood flow

during stress.

Christer Sylven in Sweden is currently testing the use of gene therapy to treat

refractory angina pectoris in a phase II/III clinical trial (GEMCRIS clinical trial number

0309-604). Vascular endothelial growth·factor (VEGF) is introduced intramyocardially in

plasmid DNA form. VEGF has been shown to stimulate neovascularization in various

animal models. Furthermore, in a recent publication in Circulation (Henry et al., 2003),
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intracoronary infusions of recombinant human VEGF protein was shown to improve angina

condition, exercise treadmill test and angina frequency by day 120. While the study

examining the long-term efficacy ofusing VEGF in angina treatment continues, as the

clinical trial began in January of2002, the use ofVEGF gene therapy seems to be promising.

Another phase II/III clinical trial exploring the use ofhuman fibroblast growth factor

(FGF) to stimulate neovascularization is also underway, conducted by Cindy Grines in the

US. As an ongoing study, intracoronary administration of an adenoviral vector expressing

FGF is being tested for the treatment of stable angina (Grines et al., 2002 and Grines et al.,

2003).

Use ofp53 to Treat Various Forms of Cancer

In the past 20 years, investigation into the etiology ofvarious human cancers

attributed various genetic events to the formation and progression of cancers.

Fundamentally, the loss of tumor suppressor genes and the activation of tumor promoter

genes are both contributing factors to the tumor initiation event. As cancers developed, the

accumulation of further genetic mutations results in a collection of genetic abnormalities that

is unique for each cancer type. However, the loss of tumor suppressor genes has been

unequivocally shown to lead to the formation of cancers. This was supported by the fact that

germline mutations ofp53, a known tumor suppressor gene, were associated with the rare

inherited cancers classified under the Li-Fraumeni syndrome (Malkin et al., 1990).

The phosphoproteinp53 is a transcription factor that is involved in numerous cellular

events associated with cell cycle control and apoptosis. It has the ability to suppress

progression through the Gl/S transition, thereby allowing time for DNA repair to occur.

Moreover, when DNA damage reaches a "threshold" amount,p53 also has the ability to
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induce apoptosis, which is a cascade of cellular events leading to the programmed suicide of

the affected cell. These two functions ofp53 combine to playa paramount role in the

prevention of tumors from forming and progressing (White, 1996). Armed with this

information, the restoration of aberrant p53 function by introducingp53 through gene

therapy remains the most prevalent gene therapy approach in the phase II/III clinical trials.

Currently, John T. Hamm of the University of Louisville and John Nemunaitis of

PRN Research Incorporated are independently investigating the efficacy of gene therapy on

squamous cell carcinoma of the head and neck (SCCHN) with an adenoviral vector

expressing wildtype p53 by intratumoral administration (vector name: RPR/INGN 201). The

phase III clinical trial involves patients with recurrent/refractory SCCHN, which is usually

fatal within a year. Initial results have been promising as early phase II clinical trials saw 26

percent ofpatients experiencing tumor growth control and/or regression withp53 gene

therapy. The use of the adenoviral vector RPR/INGN 201 demonstrated usefulness outside

of SCCHN as Stephen Swisher of the University of Texas is also testing the efficacy of the

vector on advanced unresectable non-small cell lung cancer (NSCLC). While the global

phase III clinical trials of these studies are still underway, the results seem to be encouraging

(GEMCRIS clinical trial numbers 9709-214, 9912-366 and 0009-412).

In March of2004, Peng Zhaohui, of SiBiono Gene Technology Company Limited,

received approval for the first gene therapy medicine in the world from China's State Food

and Drug Administration (SFDA). The recombinant adenoviral vector expressingp53 will

be later registered as Gendicine, as a therapeutic agent against SSCHN.
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ImlDunomodulation as a Cancer Gene Therapy Approach

The restoration of tumor suppressor genes is not the only approach currently being

tested for cancer treatment. Through the use of immuno-stimulatory agents, a biotechnology

firm, Vical Incorporated, is examining the combination of a traditional chemotherapeutic

agent, dac~rbazine (DTIC), with a gene therapy immuno-therapeutic, Allovectin-7, on

patients with metastatic or recurrent melanoma (GEMCRIS clinical trials protocol number

9802-234).

Cutaneous melanoma is one of the most prevalent forms of cancer in the U.S. While

early detection and surgical excision ofmelanoma give a favorable prognosis, once tumor

spreads beyond the skin, it is one of the most deadly forms of cancer. There are currently no

effective therapies for advanced disease, and 10-year survival rates are very low.

Allovectin-7 is a gene therapeutic agent encoding the gene for the highly

immunogenic major histocompatibility complex (MHC) class I transplantation antigen HLA

B7. The approach materialized when patients treated with DTIC combined with

immunostimulants interferon a (IFN-a) and interleukin 2 (IL-2) resulted in clinical response

as high as 60-70% of test subjects, whereas chemotherapy alone yielded responses in only

15-25% of test subjects (GEMCRIS clinical trials protocol numberVCL-1005-301 Version

1.00). The plasmid, VCL-1005, encodes the HLA-B7 heavy chain and ~2 microglobulin

proteins. The ~2 microglobulin allows for the synthesis and expression of the complete

MHC complex on the cell surface to occur. The plasmid is complexed with the cationic lipid

mixture DMRIE/DOPE (Figure 4) and is administered intratumorally. This study is

markedly different from previous examples since it involves the use of a non-viral vector

DMRIE/DOPE. As of January of2004, the phase III clinical trial is still in progress.
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The realization of the potential for economic gains has prompted a multitude of

biotechnology and pharmaceutical firms to engage in active research in gene-based

medicines. These pharmaceutical giants-supported companies include Vical Inc., Genetic

Therapy Inc., Genovo Inc., Somatix Therapy Corp., Chiron Corp., and Sequana Therapeutics.

Gene Therapy Approaches

As discussed above, genetic methods are being developed to treat angina, vascular

diseases, and cancer. The latter include methods that cause cancer cell suicide through the

induction of apoptosis or necrosis, or the induction of an immune attack upon the tumor cells.

While the potential of using gene-based medicine to treat diseases is widely recognized, the

most optimal route for gene delivery remains a contentious topic for researchers. Aside from

access to the site of administration, numerous difficulties are associated with the gene

delivery process.

The delivery of a transgene to remediate a phenotypic defect can occur in at least one

of two ways: 1) direct vector-mediated gene transfer or 2) indirect gene replacement with

allogenic cells modified ex-vivo to express new genes. While each approach has its own

advantages and shortcomings, all approaches nonetheless aim to correct a disease by

mediating the expression of a missing protein. Direct vector mediated gene transfer

approaches are generally preferable over ex-vivo approaches mainly because ex-vivo

therapies are notoriously laborious (see below). However, direct vector mediated gene

transfer suffers from immunological safety concerns (in the case ofviral vectors) or

inefficient transgene delivery and expression (for non-viral vectors).

Yet, the corrective addition of gene function(s) does not represent the sole approach

viable for gene therapy. In some cases, silencing aberrant genes that are upregulated in a

23



disease state, such as tumor promoters, or foreign genes that are expressed to propagate

bacterial, viral or fungal infections constitute alternative applications for gene based

remedies. Historically, gene silencing consisted ofhomologous recombination aimed at

permanently disrupting the gene of interest, broadly named as "gene targeting". While

conceptually elegant, homologous recombination was never made its way out of the in-vitro

setting as a means to silence disease-causing genes due to several major technical difficulties.

In the early 1990s, antisense RNA was discovered as a suppression mechanism in petunias

and nematodes. For a better part often years, antisense RNA became a hotbed ofresearch as

it had the potential to produce gene silencing in ways that were not possible with traditional

gene targeting. However, antisense RNA never made a significant impact in terms of gene

based medicines primarily due to problems such as ineffective gene inactivation, non-specific

gene suppression and most surprisingly, the ability of the sense RNA to mediate gene

suppression. While research on antisense RNA ultimately did not translate into the clinical

setting, it made several important contributions to the fundamental understanding of the

underlying RNA interference (RNAi) mechanism, paving the way for the discovery of

siRNA in 2001. Using variations of siRNA to mediate gene silencing, gene targeting is once

again one of the hottest fields of research in gene therapy. RNAi has been linked to the

experimental treatment ofhuman immunodeficiency virus (HN) infection, respiratory

syncytial virus infection and some cancers in several pre-clinical studies with varying levels

of success (http://www.wiley.co.uk/genetherapy/clinical/). Looking forward, the promise of

RNAi technology is surely to become more prevalent in the clinical setting.
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In-Vivo Gene Therapy

In-vivo gene therapy involves the direct vector-mediated introduction of gene

functions into experimental subjects. Introduction of genetic material can be via systemic

circulation, such as DNA vaccination and immunomodulation; or it may be tissue specific, as

in the case of cystic fibrosis, whereby a localized gene delivery is required. Moreover, it

may also be site-specific, as in the intratumoral injection of suicide genes for the treatment of

some forms of cancer.

One of the difficulties involved with in-vivo gene therapy is the choice ofvector; the

considerations needed for the vector choice are often predicated upon the conditions of gene

delivery. For example, adenoviral vectors are preferred for the delivery of Cystic Fibrosis

Transmembrane Conductance Regulator (CFTR) gene to treat cystic fibrosis because of the

innate tissue specificity of adenoviruses and their high transduction efficiency. However, no

single gene transfer vector currently exists that encompasses all of the required

characteristics needed to be a "universal" vector. For instance, while adenoviral vectors are

highly efficient in the delivery of the transgene, they are also very immunoreactive, resulting

in their rapid elimination from systemic circulation over subsequent re-administration. This

makes recurring treatments impossible. Moreover, large doses of adenoviral vectors can lead

to a large-scale inflammatory response that can endanger a patient's health.

On the other hand, the relatively non-immunogenic nature ofmost non-viral vectors

makes them an attractive alternative. However, the notoriously low transduction efficiency

and toxicity associated with some formulations hamper their development as a treatment

modality. Thus, choosing an appropriate vector based on its application remains a major

shortcoming associated with the in-vivo gene therapy approach.
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Ex-Vivo Gene Therapy

Ex-vivo gene therapy, in contrast to in-vivo approaches, is the indirect genetic

modification with autologous cells, performed outside of the patient, to express the desired

transgene. The first step involves the removal ofa patient's own cells. Through genetic

modification, clonal expansion and selection of desired cell lines, these transgenic cells are

re-introduced into the patient, via a variety ofmeans. Ex-vivo gene therapy, while much

more laborious and time consuming, exerts fewer criteria on the vector choice. Since

transfected cells are selected for transgene expression by selectable markers, a wider range of

gene transfer methods, including less efficient means such as calcium phosphate or

Lipofectamine, can be employed. Moreover, the requisite genetic modifIcations occur

outside of a patient's body. Thus, provided that the necessary purification processes occur

prior to re-introduction, pro-inflammatory responses elicited by viral vectors can be

sidestepped. An example of ex-vivo gene therapy is the expression of recombinant adenosine

deaminase in lymphoid progenitor cells to treat severe combined immunodeficiency (Morgan

et al., 1987).

However, ex-vivo gene therapy is not without its own set of difficulties. Firstly, ex

vivo genetic modification is a multi-stage, time-consuming process, which in essence

requires every treatment to be tailor-made to each patient. Aside from the labor intensive

nature, ex-vivo gene therapy requires a patient's cells to be accessible and robust enough to

survive the various stages ofmanipulation such as transfection/transduction, selection, clonal

expansion, purification and re-introduction into the patient. Thus, large-scale development of

ex-vivo gene therapies to treat prevalent diseases can be extremely cost-prohibitive.
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siRNA Gene Silencing

In 2001, Elbashir et ale (2001) demonstrated the use of small interfering RNA

(siRNA) in inhibiting luciferase activity in mammalian cells. However, the news did not

come as a surprise to many as researchers have been using this technology in Caenorhabditis

elegans and Drosophila melanogaster for many years. What was surprising was the fact that

Elbashir discovered the criteria to bypass the double stranded RNA-mediated interferon

response by limiting the length of the double stranded region of the interfering RNA to 21

nucleotides (Elbashir et al., 2001). The potent inhibition that resulted, led to a new direction

of research on RNA interference. The inhibition elicited by siRNA was not only potent but

also specific, and it gave new light to years of antisense RNA research that often gave

dubious results (Branch, 1998).

The ability to silence genes not only gave researchers a new avenue to study gene

functions, but it also gave clinicians a new way to treat disease. Aberrant genes can cause

many genetic diseases. For many infectious diseases requiring viral/fungal early gene

expression, RNAi was the answer. Currently, RNA interference is being investigated to treat .

leukemia, neuroblastoma, carcinoma, malaria, HIV, rotavirus, hepatitis, influenza, human

papilloma virus and fragile X syndrome (Cheng et al., 2003).

The mechanism for RNA interference (RNAi) is conceptually simple. RNA strand

containing sequence that is complementary to the target RNA forms Watson and Crick base

pair interactions with the target mRNA, leading to the formation of double-stranded RNA

(dsRNA). In the cell, long dsRNAs are cleaved into short 21-25 nucleotide siRNA, by a

ribonuclease known as Dicer. The siRNAs subsequently assemble with protein components

into an RNA-induced silencing complex (RISC), unwinding in the process. Activated RISC

then binds to complementary transcript by base pairing interactions between the siRNA
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antisense strand and the mRNA. The bound mRNA is cleaved and sequence specific

degradation ofmRNA results in gene silencing (McManus and Sharp, 2002).

Targeting Gene Therapy

Successful gene therapy requires the targeted delivery of the therapeutic, as localized

gene delivery remains one of the difficulties plaguing gene therapy today. While some

vectors can deliver the transgene with high efficiency, controlling tissue specificity is still

problematic. Delivery vectors, especially viral vectors, require a specific cell surface

receptor for attachment to occur. For example, adenoviral vectors bind specifically to an

adhesional membrane receptor, the coxsackievirus and adenovirus receptor (CAR), which

mayor may not be expressed on the cells of interest. To remedy this problem, Dutch

researchers C. H. Bangma and J. Trapman are investigating transductional targeting where

bispecific conjugates between the monoclonal antibody against the adenoviral knob on the

one side, and a molecule targeting a surface antigen on the other side are employed (Bangma,

2000). In essence, they have constructed a molecular adaptor for the adenoviral vector to

bind tissue types foreign to the native adenovirus.

An alternative approach to enhance the specificity of the delivery vector is to control

transgene expression with the help of a tissue specific promoter. Transcriptional targeting

exploits the promoter regions of genes that are switched on only in certain tissues. While the

vector may not be specific during the delivery process, transgene expression will not occur,

theoretically, in the absence of the tissue specific transcriptional factor. Some of these tissue

specific promoters include the prostate-specific antigen, ovarian-specific promoter and

trypsinase (Robson and Hirst, 2003).
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Challenges of Gene Therapy

Today, there remain numerous challenges for gene therapy before it becomes an

applicable treatment modality in the US. Aside from potential treatments to transition from

current phase III clinical trials to FDA approval, other technical difficulties with gene therapy

vectors such as extracellular/intracellular barriers, control of transgene expression, vector

choice and safety concerns remain to be resolved.

Extracellular barriers include both physical and immunological barriers. For

example, epithelial and endothelial cells have the potential to block DNA transfer. Delivery

methods, to this date, remain far from perfect. While systemic administration is the delivery

method of choice, some cells are inaccessible by this route, such as cells of the central

nervous system protected by the blood-brain barrier (Misra et al., 2003). Injection in the site

of action requires precise administration and usually user intervention.

Immunological barriers to gene transfer comprise both the humoral and cell-mediated

immune responses. Viral vectors are especially susceptible to immune response due to the

presence ofviral proteins. This makes repeated dosing ofviral vector-based gene therapy

nearly impossible as the secondary immune response quickly eliminates additional viral

vector from systemic circulation (Schagen et al., 2004). Moreover, cytotoxic T-lymphocytes

(CTL) can mount an immune response against the transgene, destroying cells that have been

transduced and thus negating previous efforts (Muruve et al., 2004). The need for a non

immunogenic and efficient vector remains a crucial aspect to the success of gene therapy in

the future.

To complicate matters further, the successful delivery of the therapeutic transgene

does not necessarily translate to the expression of such transgene. When exogenous DNA is

transfected into a cell, it must first contend with the plasma membrane. Depending on the
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vector used, receptor mediated endocytosis occurs and internalization ofDNA takes place.

Once internalized, DNA must escape endosomal/lysosomal degradation, which presents a

major limiting step to efficient gene transfer (Ciftci and Levy, 2001). Of the small fraction of

DNA that escapes into the cytosol, cytosolic endonucleases are present to digest the

remaining DNA. The final barrier is the nuclear membrane, which safeguards the cell from

transcribing exogenous DNA. The extremely small proportion that overcomes all of the

above barriers gains access to the nucleus, where transcription occurs. The multiple barriers

during transfection/transduction present numerous hurdles for gene transfer to elicit a

therapeutic effect, making this process extremely inefficient (Bally et al., 1999).

As stated previously, control of transgene expression presents another major limiting

step that requires attention. While transductional and transcriptional targeting is currently

being refined, tissue specificity during gene transfer remains an issue to be contended.

Tissue specific promoters have inherent specificity, but transgene expression levels usually

lag far behind those of constitutive promoters (Robson and Hirst, 2003). Thus, the need for

both efficiency and specificity in a single vector remain to be satisfied. Based on the current

state of gene-transfer technology, the overall effectiveness of gene therapy may rely on

matching the vector to the needs of a particular disease.

Safety concern is potentially the most significant hurdle that gene therapy faces,

especially with the use of viral vectors. With the publicized death of Jesse Gelsinger, the

Food and Drug Administration will place further scrutiny towards the safety of these

treatments. Aside from the pro-inflammatory reactions elicited by viral proteins from viral

vector mediated gene transfer, numerous viral vectors allow for the integration of transgenes

into the host genome. While this ensures stable and prolonged transgene expression,

insertional mutagenesis may lead to activation of oncogene expression, or inactivation of

tumor suppressor genes, leading to the development of cancer. This possibility was
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punctuated by two patients developing leukemia during their gene therapy for the treatment

ofX-linked SCID (Hacein-Bey-Abina et al., 2003).

While the direction of gene therapy to generate disease treatment modalities remains

hopeful, there are numerous hurdles that remain. With the completion of the human genome

project, the possible targets for gene modulation have grown exponentially, and the stake for

realizing this technology has never been higher. As the development of gene transfer tools

continues, the use of genes to treat diseases as a widespread treatment option remains to be

seen.

Future of Gene Therapy

Scores of companies are researching and developing gene therapeutics in the United

States and Europe. Additionally, many biotechnology and pharmaceutical companies are

developing gene therapy-related products. Many of these products are already in phase I or

II clinical trials (http://www.wiley.co.uk/genetherapy/clinical/). While more basic research is

still required in order to understand the biology and immunology ofviruses being engineered

as gene therapy vectors, as well as the development ofhighly efficient non-viral vectors,

there are vector systems that have demonstrated success in clinical trials. With the intense

efforts dedicated to this field, more vector systems are sure to be developed within the next

one to two years, and it appears that the clinical application of gene therapy can only expand

in the years to come.
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Tools of Gene Transfer

The success of gene therapy is predicated upon successful gene transfer. While other

factors such as tissue specificity and expression control also warrant consideration, the need

for high transduction/transfection efficiency is, by far, the most important criterion. After all,

target cells that do not receive the transgene warrant little concern about expression control.

In essence, gene transfer involves the delivery of the therapeutic transgene into the

target cell(s) and/or organ(s). The transgene not only carries sequences encoding the

therapeutic protein, but also sequences controlling their expression. While naked DNA has

demonstrated successful gene transfer when introduced into target tissue via intramuscular

injection (Wahren, 1996), most clinical applications require the use of the DNA combined

with a transportation vehicle known as a vector. The vector packages the genetic material

and delivers it, with a degree of specificity depending on the vector, to the target cell via

interaction with the target cell membrane. Once internalization takes place, the genetic

material traverses numerous barriers, eventually arriving at the nucleus, where expression of

the transgene occurs. Depending on the type ofvector used, integration of transgene into the

host genome may occur.

Vectors can be broadly separated into two categories: viral vectors and non-viral

vectors. Viral vectors are recombinant viruses with portions of the viral genome replaced

with the therapeutic transgene. Non-viral vectors, on the other hand, include almost all forms

ofDNA-packaging techniques that facilitate cellular uptake and expression of exogenous

DNA. These vectors are discussed in greater detail below.
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Viral Vectors

Viruses are natural gene delivery systems. Perfected by millions ofyears of

evolution, viruses have evolved ways to efficiently deliver its genetic material, cause viral

gene expression, and "hijack" host cell machinery for viral propagation (Whittaker et aI.,

1998). It therefore seemed logical to exploit viruses to engineer gene delivery systems for

therapeutic purposes.

The viral envelope and coat proteins interact with specific cellular receptors, allowing

for viral attachment, fusion and internalization (Knipe et al., 1995). Since these interactions

are specific, viruses show preference, or viral tropism, to certain tissues. For example, HIV

selectively attaches and infects CD4+ T-Iymphocytes primarily. Viruses, once attached, will

deliver its genetic cargo into the host cell. Together with other viral proteins, transcription of

viral genes occurs with the utmost efficiency. Viral transcription, under the right

circumstances, can begin as early as 7.5 minutes post transfection (Groner et al., 1983).

Recombinant viral vectors exploit certain sequences known as packaging signal

sequences. A packaging signal sequence adopts a certain conformation once it is recognized

specifically by one of the structural proteins during the assembly of the viral core. By

appending packaging sequences to the therapeutic transgene, fully infectious viral vectors are

generated instead ofviral progeny, resulting in an efficient delivery vector.

Although virtually all viruses can be exploited as viral vectors, the most widely used

viral vectors derive from the following viruses: (1) retroviruses and other lentiviruses, (2)

adenovirus, (3) adeno-associated virus and (4) Herpes simplex virus (Ratko et al., 2003).

Since each viral vector has distinct characteristics, such as viral tropism, ability for

integration and duration of expression, no universal vector currently exists, and the vector is

usually chosen based on its application (Baum et al., 2003).
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Table 1: Characteristics ofthe most commonly used gene transfer vectors

Vector Capacity Duration of Inflammatory In-vivo
for DNA- expression response gene
carrying/kb delivery

efficiency
Retrovirus <7.5 Stable Low Low
Adenovirus <8 Transient High Moderate/

E:ffective
Adeno- <5 Stable Low Low
associated
virus
Liposome Unlimited Transient Low Low
Molecular <10 Transient Low Low
conjugate

For a comprehensive list of gene transfer vectors, refer to Ratko et al., 2003.

Retrovirus

Retroviral and lentiviral vectors are derived from type C retroviruses. These vectors

can include murine leukemia virus, human immunodeficiency virus and feline immuno-

deficiency virus. The viral particles are spherical, 80 to 100nm in diameter, comprising an

icosahedral protein core that contains 2 copies of the 7- to 11-kb single-stranded RNA viral

genome plus 3 essential enzymes: reverse transcriptase, protease and integrase (White and

Fenner, 1994). The core is surrounded by a lipid envelope that carries the viral envelope

glycoproteins responsible for virus attachment and entry. After attachment, the virus

envelope fuses with the cell membrane, and the core moves toward the nucleus. The viral

RNA is reverse transcribed to double-stranded DNA and transported into the nucleus where

the viral enzyme integrase directs its insertion into the host chromosomal DNA at a semi-

random site. Viral genes are transcribed from the pro-viral DNA (White and Fenner, 1994).
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These recombinant retroviral vectors have been engineered with portions of the gag,

pol and env viral sequences deleted, which render the viruses replication-defective and

decrease their immunogenicity (Kim et al., 1998). Because viral genes that are necessary for

viral replication, encapsulation, infection, and reverse transcription are removed from the

virus, a "packaging cell line" and helper plasmids are required to provide these critical

functions in trans in order to produce the recombinant vector (Anson, 2004). The packaging

cell line chums out recombinant virus carrying a therapeutic gene in place of the deleted viral

genes. The therapeutic gene is carried in a viral particle that remains replication-deficient,

but is still able to infect its target cell. While vector particles are immunogenic, vector

transduced cells express no viral gene products and are therefore non-immunogenic. The

expression of transgene usually peaks within 72 hours and then gradually declines over

weeks, months, or years because ofmethylation, acetylation, provirus deletion, or death of

the target cell (Pannell and Ellis, 2001).

Retroviral vectors can accommodate up to 7.5kb of transgene for delivery (Verma

and Somia, 1997). In their natural life cycle, retroviruses are non-lytic, which allows the

stable expression of transgene occurs through the life of the transduced cell. Theoretically,

the target cell genome is permanently modified, which would be an advantage when treating

hereditary and chronic diseases.

One of the prerequisites for a successful transfection procedure using retroviral

vectors is that the target cell must proliferate (Miller et al., 1990), and the retrovirus is,

therefore, not a suitable vector for in-vivo transduction into cells that have silent cell

turnover, such as pulmonary and renal cells. Whereas murine leukemia virus derived

retroviral vectors require cell division for integration to occur, lentiviral vectors may present

a solution as they have the ability to integrate DNA into quiescent cells (Ratko et al., 2003).

Another disadvantage of retroviral vectors is that the integration of transgene occurs in a
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random fashion, which is a cause of concern as insertional mutagenesis may cause the

activation ofoncogenes or disruption of tumor suppressor genes (Baum et al., 2003).

Furthermore, it is difficult to prepare high titers ofviral stocks, and the expression of the

transgene is difficult to control.

Retroviruses have been used mostly in ex-vivo gene transfer trials (Crystal, 1995).

Thus far, ex-vivo retrovirus-mediated gene transfer in humans have demonstrated success in

T cells, tumor infiltrating lymphocytes (TIL), stem cells from blood and bone marrow, tumor

cell lines derived from solid tumors (Rosenberg et al., 1993), hematopoietic cell lines (Medin

et al., 1996) and synovial cells (Jorgensen et al., 1997). Moreover, therapeutic genes have

been transduced employing this approach into fibroblasts (Moullier et al., 1993), T cells in

ADA deficiency and HIV infection, cord blood cells, placental cells, tumor cells (Oldfield et

al., 1993) and hepatocytes in familial hyper-cholesterolemia. The marker gene or mRNA

expression after retroviral gene transfer has been observed for variable lengths of time, with

the expression of transgene detected at 36 months post-transduction (Lutzko et al., 1999).

Adenovirus

Adenoviral vectors are non-enveloped viruses with an 80- to 110-nm-diameter

icosahedral protein shell that encases a single copy of its linear, double-stranded DNA

genome of 36-38kbp in size (White and Fenner, 1994). The fiber proteins that are primarily

responsible for attachment appear on 12 vertices of the icosahedron, interacting with the

coxsackievirus and adenovirus receptor (CAR) (St George, 2003). Secondary attachment

occurs through the penton base of the viral capsid with cell surface integrin receptors. After

endocytosis, partially uncoated virus travels to the nuclear pore complex and delivers viral

DNA into the nucleus, following a pH-dependent disruption of the endosome. Upon entering
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the nucleus, Early gene products (E1) drive the expression of other viral genes, including E2,

E3, E4 and Late genes. The E2 region encodes proteins involved in viral replication such as

DNA binding protein, DNA polymerase, and terminal protein precursor. E3 proteins are

responsible for reducing the antiviral immune response and block tumor necrosis factor

(TNF) induced lysis or apoptosis of infected cells. E4 gene products serve a variety of

functions including control of viral transcription, DNA replication and shut-off ofhost

macromolecular synthesis and correct synthesis of unit length viral chromosome. Late genes

encode viral structural proteins including capsid, hexon, penton and fiber proteins (Fields et

al., 1995 and White and Fenner, 1994).

There are approximately 50 serotypes ofadenoviridae with the group C viruses

(serotype 2 and 5) most extensively studied and developed for gene therapy applications.

Initially, adenoviruses were evaluated as vectors for CFTR gene transfer to treat cystic

fibrosis because of their natural tropism for pulmonary epithelial cells (Wilson, 1996). The

advantages ofusing adenoviruses, as gene transfer vectors are that adenoviral vectors are

highly efficient in transduction and can infect a broad range of differentiated non-dividing

cells in-vivo (Curiel et al., 1996). Moreover, adenoviral vectors can be grown to high titers

(up to 1014 infectious particles per ml versus 106 for retroviruses) of the purified recombinant

virus, making for easy large-scale production (Russell and Peng, 2003).

The first-generation recombinant adenovirus is deleted in the early E1 regulatory

region, rendering the virus unable to replicate. In addition, the E3 region is usually also

deleted, to obtain room for the transgene. Thus, viral E1A proteins are provided in trans by a

packaging cell line, usually Human Embryonic Kidney (HEK) 293 cells (Amalfitano and

Parks, 2002).

A disadvantage of adenoviral vector-mediated gene transfer is that the transgene does

not integrate into host genome but remains as an episome in the nucleus. As such, expression
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is transient, lasting only days or weeks. However, the biggest disadvantage of adenoviral

vectors, although somewhat remedied in subsequent generations, is their immunogenicity.

The resultant toxicity associated with adenoviral vectors involves both the innate and

adaptive immune response (Liu and Muruve, 2003). It has been observed that adenoviral

gene transfer elicits a cytotoxic T cell response that destroys the transfected cells and induces

humoral immunity due to elevated IgG and IgA antibodies (Van Ginkel et al., 1995). These

antiviral antibodies may neutralize the vector when administered a second time, and this may

preclude repetitive dosage. In human trials, an acute local and systemic inflammatory

response has been observed in vascular endothelium and lung tissue after adenoviral

administration (Channon & George, 1997). To overcome these inflammatory and toxic

problems, second- and third-generation adenoviruses have been created. In these vectors,

more viral proteins encoding the sequence's E4 region (and possibly E2) are deleted to

reduce the expression of viral proteins. On the other hand, this yields lower titers of the

vector and makes it more vulnerable to contamination (Channon & George, 1997).

Human first-generation adenoviruses have been most widely used as in-vivo gene

transfer vectors (Wilson 1996). They have been used for in-vivo human gene transfer into

nasal and pulmonary cells (CFTR cDNA), vascular endothelial cells, kidney (Heikkila et aI.,

1996, Sukhatme et al., 1997), heart, liver (Jaffe et al., 1992), lung (Engelhardt et al., 1993),

central nervous system (Chen et al., 1994, Simons et al., 1999), renal cells (Chang et al.,

1995), muscle and hematopoietic cells and cancer cells (Cusack et al., 1996).

Merrick et al., (1996) compared the infectivity of a replication-defective type 5

recombinant adenovirus in various vascular endothelial cells in in-vitro culture, organ culture

and in-vivo. They observed that, in culture, infectivity was good in both porcine and human

vascular endothelial cells (up to 90% of the cells were infected at an adenovirus

concentration of 1x1010 pfu/mL), but the in situ gene delivery into uninjured vascular
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endothelium was markedly poorer, suggesting that some mechanisms other than vectors or

target cells underlie the poorer in-vivo transduction efficiency. In a trial of gene transfer into

malignant glioma cells via a catheter inserted into the tumor, Puumalainen et al., (1998)

compared the gene transfer efficiencies of retro- and adenoviruses. They found adenoviruses

to be more efficient vectors for gene transfer into glioma cells than retroviruses, with

transfection efficiencies of <0.01-11 % and <0.01-4%, respectively (Puumalainen et al.,

1998).

Adeno-Associated Virus

Adeno-associated virus (AAV) is a small, non-enveloped, icosahedral, single

stranded DNA virus that can infect a wide range of tissues, including both dividing and non

dividing cells. Classified in the Parvoviridae family, AAV uses the heparan sulfate

proteoglycan (HSPG) as the primary attachment receptor, with fibroblast growth factor

receptor 1 (FGFRl) and integrin as co-receptors during viral attachment and endocytosis

(Fields et al., 1995 and White and Fenner, 1994). The normallifecycle involves the infection

and integration of viral genome into the host, where it stays latent. Unlike retroviral vectors,

integration of the AAV genome is site-specific, to a locus AAVSl on the qI3.3-qter of

human chromosome 19. Upon super-infection with other viruses such as adenovirus or

herpes virus, AAV becomes active and replication occurs, facilitated by helper viral proteins

(Lai et al., 2002).

The AAV genome exists as a single-stranded DNA molecule of 4680 nucleotides

with invert terminal repeats (ITRs) of 145 nucleotides flanking both ends. The ITRs are the

only cis-acting elements required for replication, packaging and integration ofAAV,

provided that non-structural proteins Rep and capsid proteins Cap are provided in trans (Lai
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et al., 2002). This allows for the replacement of the entire viral genome between the ITRs,

pushing the packaging capacity to 4.9kb (Dong et al., 1996). Since the default life cycle for

AAVs is lysogenic, the production ofrAAV vectors is technically more complicated than

adenoviral vectors. First, co-transfection of two plasmids (rAAV transgene plasmid and

AAV helper plasmid containing both Rep and Cap genes) results in the generation of

lysogenic AAV. Upon transfection of a third plasmid encoding adenoviral helper proteins

(such as E2A, E4orf6 and VA RNA transcription unit), generation of fully infectious rAAV

vectors takes place. Purification by cesium chloride density centrifugation or heparin affinity

chromatography enhances the viral titer up to 1014 particles per mL (Lai et al., 2002).

The advantages ofAAVs are that they are relatively non-toxic and non-immunogenic.

The persistence of rAAV in-vivo can also be attributed by the lack of cellular immune

responses elicited by this vector, which is devoid of all viral genes leaving the transgene

product and the virus capsid as the only two sources of antigen (Lai et al., 2002). This is

particularly exemplified by the fact that the delivery ofrAAV into a range of tissues has been

followed by a general absence of inflammation (Conrad et al., 1996, Xiao et al., 1996, Dudus

et al., 1999). However, a humoral response to the AAV virion capsid generates neutralizing

antibodies, which has been shown to prevent or greatly reduce the success of vector re

administration (Xiao et al., 1999, Chirmule et al., 2000.). Another advantage ofusing rAAV

vectors is that transgene expression obtained is usually much longer than that of

adenoviruses, due to the site-specific integration of transgene into the host genome. Murphy

et al., (1997) obtained 6-month normalization ofhyperglycemia, insulin resistance and

correction of the serum leptin level by recombinant AAV-Ieptin cDNA gene transfer in

transgenic obese, type II-diabetic mice. Successful in-vivo reporter gene transfer into brain

cells has been attained using AAV vectors, and transgene expression control was possible by

simultaneous doxycycline administration (Haberman et al., 1999). In addition, there are
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reports of long-term expression following the delivery ofAAV vectors into muscle (Fisher et

al., 1997), heart, brain (Haberman et al., 1998), liver (Koeberl et al., 1997) and lung (Flotte

et al., 1993).

Despite the long-term transgene expression and low immunogenicity, the main

disadvantage of rAAV vectors are their small sizes «5kb), which severely limits their

application for larger gene products, such as the CFTR gene. Furthermore, the complicated

process of generating rAAV vector makes large-scale production difficult and cost

prohibitive.

Herpes Simplex Virus

Relative to the previous examples ofvectors, Herpes Simplex virus (HSV) is much

larger in size. The herpes virus virion comprises four concentric layers: an inner core,

surrounded by an icosahedral capsid, then an amorphous tegument, and finally an envelope.

Within the Herpesviridae genus, the linear, double-stranded DNA genome can range from

125-229 kpb (White and Fenner, 1994). The virus is transmitted via direct contact with

mucosal membranes. Subsequent to initial infection, the virus continually infiltrates and

progresses to the nervous system. Herpes simplex virus has both lytic and latent phases of

infection. During the lytic phase, herpes simplex virus infection is cytopathic, killing the

cells it infects. During the latent phase, however, the virus can by maintained

asymptomatically for a significant period of time (Fields et al., 1995 and White and Fenner,

1994). Current development ofherpes simplex as a gene therapy vector involves removing

the replicative and cytotoxic genes. All genes essential for maintaining the virus in culture

can be engineered into a packaging cell line called the amplicon system (Thomas et al.,

2003).
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There are several advantages to developing HSV as a gene therapy vector. Its large

genome can carry multiple, diverse therapeutic genes and can express them for an extended

period of time. The virus can infect a wide variety of tissues including muscle, tumor, liver,

pancreas, nerve, and lung cells. It has been used for gene transfer into neurons, brain tumors

(Kennedy, 1997), various tumor cells and B cells (Levatte et al., 1998). Carew et al., (1998)

reported effective IL-2 and lacZ reporter gene transfer by HSV amplicon vectors in murine

squamous cell carcinomas after intra-arterial vector delivery. Nevertheless, the system's

complexity mandates much more study of its biology before it can be contemplated as a

viable vector in clinical studies.

Other Viral Vectors

Cytomegalovirus, baculovirus and poxvirus have also been investigated as gene

transfer vectors. Vaccinia virus, a double-stranded DNA poxvirus, has been used for gene

transfer into the lungs (Hogan et ai., 1998) and urinary bladder. Vaccinia virus recombinants

were employed in intravesical instillation for gene transfer into normal bladder urothelium

and transitional cell carcinoma cells in-vivo (Lee et al., 1994). The authors suggested that

this method could be used to introduce genes of immunogenic antigens and cytokines to elicit

a host immunological response against superficial bladder cancer. A new lentiviral vector

derived from equine infectious anemia virus (EIAV) has also been reported (Olsen, 1998).

As these vectors are still in their infancy in terms of development, further characterization of

their virology is needed to asses their suitability as gene therapy vectors. Furthermore, these

new vectors must demonstrate clear advantages over existing viral vectors, especially in

immunogenicity, length of transgene expression, potential for insertional mutagenesis and

ease ofvector generation.
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Non..Viral Vectors

Eukaryotic cells can, under suitable conditions, take up exogenous DNA and relay it,

at least in part, to the nucleus. This process, however, is usually insufficient for gene

therapy, and a wide variety of gene-transfer-facilitating methods other than immunogenic

viral vectors have therefore been developed. These methods involve: 1) liposomes, 2)

calcium phosphate, 3) microinjection, 4) electroporation, 5) polycations, and 6) particle

bombardment (Unger, 1997). The synthetic methods designed for gene transfer are

extremely varied. To put it simply, these vectors generally use natural mechanisms of

mammalian cells for the uptake and intracellular transport ofmacromolecules. Molecular

aggregates are generally formed with plasmid DNA, which subsequently bind to cell surfaces

and trigger endocytosis of the vector for the transgene to be transported into the cell nucleus.

The major advantage of these methods is that they are relatively non-immunogenic, except

for the possible immune response which the transgene itself may elicit in the recipient

(Schagen et al., 2004).

Non-viral vectors make use ofphysical methods of gene transfer. These methods can

largely avoid the problems of immunogenicity and inflammation that plague viral vectors,

but suffer from poor and transient expression of the therapeutic gene. It is also more difficult

to target expression to specific cells and tissues. As a possible solution, the application of

non-viral vectors for use in ex-vivo gene delivery is a promising approach, as evidenced by

the recent success expressing recombinant Factor VIII for the treatment ofhemophilia in

mice (Lin et ai, 2002).
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Naked DNA

Gene expression has been demonstrated using naked synthetic or plasmid DNA after

injection of the DNA into cardiac muscle, parenchymal, thymus and skin cells (Budker et al.,

1996b). The most effective delivery route for naked DNA, however, is injection into skeletal

muscle. Multiple injections ofnaked DNA can improve therapeutic gene expression, but

since integration occurs rarely with plasmid DNA, long-term expression of the transgene

rarely occurs (Hengge et al., 2001). Naked DNA has been employed as a gene therapy for

both preventative and therapeutic purposes in terms ofvaccination, termed "DNA vaccines".

Instead of site injection ofprotein antigens, DNA is injected intramuscularly, where the

expression of the transgene coding for the antigen effectively elicits the requisite immune

response (Wahren, 1996). The main advantages ofnaked DNA are unlimited therapeutic

gene length and ability to inject directly into a patient. However, aside from intramuscular

injection, the use ofnaked DNA is extremely inefficient, and thus, its scope is limited to a

narrow range of applications. Furthermore, there is no established mechanism ofnaked

DNA transfer into the nucleus, nor is it known why injection into striated primate muscle is

more successful than other sites of delivery. Nevertheless, intramuscular DNA vaccines are

currently being investigated to prevent cancer and infectious diseases (Gene Therapy Clinical

Trials Worldwide Trial IDs: EG-001 for Hepatocellular Carcinomas, US-254 for Metastatic

Melanoma, US-392 for Non-Hodgkin's B-Cell Lymphoma, US-555 for Hormone-Refractory

Prostate Cancer, US-573 for Melanoma).

Calcium Phosphate Precipitation

Calcium phosphate precipitation has been used as a method of transfection ofplasmid

DNA into cultured cells, such as hepatocyte cell lines, since the 1970s. But in in-vivo
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applications, the efficiency has not been very high, with transfection frequencies being less

than 1% (Chang & Wu 1994). This method was primarily reported in the first gene transfer

trial by Graham and Van Der Eb (1973). Calcium phosphate forms insoluble precipitates

with plasmid DNA and aggregates on the surface of the target cell, resulting in their

endocytosis. The insoluble precipitates demonstrated certain limited resistance to cytosolic

nucleases, which can present a major barrier for non-viral gene transfer. Unlike naked

DNA, calcium phosphate DNA co-precipitates gain access to the nucleus via endosomal

lysosomal pathways. Entry into the nucleus has been hypothesized to occur after the

dissolution of the nuclear membrane during mitosis, but conflicting data have also reported

the irrelevance ofmitosis to transfection success (Dean, 1997). Due to the limited

transfection efficiency via this method, most in-vivo gene transfer investigations have

abandoned the calcium phosphate method in favor of other non-viral means. Recently,

however, it has been used together with the adenoviral vector to enhance transfection

efficiency in the airway epithelial cells (Lee et al., 1999 and Walters and Welsh, 1999).

Lipoplexes

Alternatively, DNA can be attached to positively charged lipids to accommodate gene

transfer into the patient's cells. Liposomes are fatty acid vesicles that have the ability to

encapsulate DNA. Cationic lipids are positively charged fatty acids that interact with

negatively charged phosphate backbone DNA, forming a stable complex. The term, lipoplex,

has gained popularity to describe liposome-DNA complexes and has been used to encompass

all variants of liposome-based transfection techniques. The first commercially available

cationic lipid was used as an in-vitro transfection tool (FeIgner et al., 1987), but all three

types of lipids (pH sensitive, anionic and cationic liposomes) are also capable of in-vivo gene
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delivery. Cationic liposomes complexed with plasmid DNA have transfected cells when

injected intravenously, subcutaneously, and by aerosol delivery. Although all three types of

liposomes have been described in successful gene transfer, pH-sensitive and anionic

complexes are less efficient than their cationic counterparts (Zhdanov et al., 2002).

Currently, the primary liposome-based transfection methods are based on either

monocationic or polycationic lipids.

The entry of the synthetic cationic lipid bilayers complexed to the negatively charged

plasmid to be transferred into the target cell occurs by a cell-membrane fusion event or

endocytosis (FeIgner et al., 1987). Positively charged liposome DNA complexes are capable

of significant changes when injected into the blood stream. Liposomes can protect the

therapeutic DNA from degradation in the blood stream. Expressions ofhormones, cytokines,

or coagulation factors have also been successful with intravenous delivery of liposome DNA

complexes.

Plasmid-liposome complexes have many advantages as gene transfer vectors. They

are relatively non-immunogenic, which makes them suitable for safe repeatable dosing.

They also possess a low risk of integration into patient DNA, and successful transient

expression ofplasmid DNA vectors ofvirtually unlimited size has been demonstrated.

Moreover, liposomes are inexpensive to manufacture in large quantities, which makes them

ideal as a broad-based vector for gene based therapeutics. Lipoplex mediated gene transfer

has been successfully used for gene transfer into the pancreas (Schmid et al., 1998), lung

(Alton et al., 1993, Wheeler et ale 1996), arterial (Laitinen et al., 1997) and liver cells (Bam

et al., 1995). Depending on the application, the immune response induced by foreign DNA

can have a therapeutic action aside from any immune response to the protein produced from

the inserted gene (Freeman et al., 1996).

46



The disadvantages of employing lipid-based gene transfer vectors for in-vivo

applications can include toxicity for certain lipids and the serum instability of cationic

lipoplexes. However, their main disadvantage remains to be their relatively low transfection

efficiency compared to viral vectors. Currently, their transfection efficiency has been

improved by simultaneous delivery of agents that prevent DNA degradation within

endosomes (Budker et al., 1996a). Also, the liposome-mediated gene transfer efficiency has

been improved by complexing viral particles with liposomes, such as the Sendai (HVJ) virus

(Tomita et al., 1992, Yonemitsu et al., 1997). Using this method, Tomita et al., (1992)

reported renal gene transfer into 15% of glomerular cells after intra-arterial infusion of

vectors four days after treatment. By conjugating liposomes with antibodies or ligands,

better targeted lipofection can also be achieved.

Polyplexes

One of the earliest agents used for non-viral gene transfer, DEAE-dextran (Vaheri

and Pagano, 1965) is a polycationic polymer-based DNA complexing agent. Structurally,

positively charged DEAE-dextran binds to the negatively charged phosphate backbone of the

DNA, causing aggregation. Polyplexes, once endocytosed, are purportedly released from

endosomal-Iysosomal degradation via the "proton-sponge mechanism" into the cytosol. Due

to cytotoxicity and low transfection efficiency initially associated with DEAE-dextran, DNA

polyplexes did not become widely used until the introduction of another polycationic

polymer - polyethyleneimine (PEl). Currently, the term "polyplex" has evolved to

encompass a variety ofpolycationic species, including numerous naturally occurring proteins

such as histones (Balicki et al., 2000) and cationized human serum albumin (Fischer, 2001),

as well as aminopolysaccharides such as chitosan (Leong et al., 1998 and Borchard, 2001).
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Polyplexes also include a variety of synthetic peptides such as poly-L-Iysine, poly-L

ornithine (Pouton et al., 1998) and poly (4-hydroxy-L-proline ester) (Lin et al., 1999), as

well as polyamines such PEl, polypropyleneimine and polyamidoamine dendrimers (Qin et

al., 1998). Finally, both linear and dendritic poly (B-aminoesters) have also been employed

for DNA-polyplex gene transfer. Recently, PEl has been used for gene transfer into lung

cells (Ferrari et al., 1997, Goula et al., 1998).

The main advantage of using polyplexes as gene delivery vectors is the structural

flexibility and ease ofmodification. A variety of receptor targeting ligands can be

chemically attached to a current polyplex to enhance specificity. Moreover, various

structural/activity relationships are being studied to yield the modifications needed for the

development of the next generation ofpolypIexes to enhance transfection efficiency while

reducing toxicity (Wagner, 2004).

Electroporation

When cells are incubated in a DNA solution, the application of a pulse of electrical

current can potentially create transient holes in the cell membrane, through which DNA can

be transferred (Weaver, 1993). The technique was adapted from in-vitro approaches

designed to transfect cells with DNA plasmids, and been extensively exploited to transfer

genes directly to muscle to deliver therapeutic genes and as a strategy for genetic

immunization. The use of electroporation has demonstrated success in mammary tumor cells

(Wells et al., 2000), lung cells (Dean et al., 2003) and in-vivo melanoma (Kishida et al.,

2001) gene transfer. The advantage of electroporation is its relative transfection efficiency

over other non-viral means. However, the use of electroporation for in-vivo treatment is
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extremely limited due to equipment constraints, coupled with the massive cell death that

occurs post-treatment.

Ballistic Methods

"Particle Bombardment" was first developed to transfer genes into plants cells, but

has been adapted for use in mammalian cells and living tissues. The plasmid DNA is first

coated with a metal such as tungsten or gold (Biewenga et al., 1997). These particles are

then accelerated by a particular driving force, such as a high-voltage discharge between two

electrodes or helium discharge, which propel the coated DNA particles into the cell. DNA

particles are literally driven across the plasma membrane, which is why this technique is

often referred to as the "Gene Gun".

Ultimately, transfection efficiency depends on the combination of the ballistic

parameters and the characteristics of the target tissue. This technique has been successful in

delivering genes to brain tissue (Jiao et al., 1993), skin, muscle (Zelenin et al., 1997), liver

(Yang et al., 1990) and numerous other organs. Moreover, it has also been shown to be an

efficient means of gene transfer into cancer cells (Zhang et al., 2002).

The main advantage for employing this technique is that it is a mechanical way to

transfer a gene across the plasma membrane, which presumably makes transfection

efficiency less dependent on the characteristics of the target cell. Particle acceleration

mediated transfection is generally less effective than viral methods, but more effective than

lipofection or calcium phosphate precipitation. However, when Guo et al., (1996) compared

particle bombardment, lipofection, calcium phosphate precipitation and retroviral gene

transfer in-vitro for the reporters lacZ and luciferase into rat oligodendrocytes, they found
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that the most effective of these four methods was particle bombardment-mediated

transfection with gene gun accelerated DNA, coated in 0.95 /lm gold particles.

The main disadvantage ofparticle bombardment is the harsh nature of the process.

Its initial applications in plants were particularly suitable because it overcame a major

structural barrier - the plant cell wall. However, mammalian cells lack this structural feature

that, in certain ways, protects the plant cell from extensive damage resulting from the

bombarding particles. Thus, due to the nature of the delivery, a considerable amount of

cellular damage is inflicted upon the transfected mammalian tissue(s). Various cellular

components, including cellular DNA, are damaged mechanically when accelerated particles

are showered indiscriminately onto the cells. Not all cells can withstand this type of gene

transfer; thus, it is mainly used for genetic immunization into skeletal muscles.

Mammalian Transfection thru Non-Viral Means

Factors Affecting Transfection Efficiency

Almost as far back as the classic experiments performed by Cohen et al., in the

1970's, there have been efforts to enhance the uptake of exogenous DNA. Transfection

efficiency, as observed by numerous researchers, was largely dependent on various general,

cellular (Reston et al., 1995) and mechanistic factors (Kamiya et a!., 2001). In the hopes of

developing a highly efficient, non-immunogenic and universal vector for DNA delivery,

researchers are investigating the cellular and mechanistic factors affecting transfection

efficiency. However, results have been far from being straightforward. As the numerous

optimization variables are investigated, more factors revealed themselves to be critical for the

success of each transfection experiment. Worse yet, optimization protocols and transfection
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enhancing agents are largely cell-type or transfection-method dependent, making the process

much more complicated than was once envisioned. Through the years, these investigations,

while failing to produce a truly universal vector, have contributed to the fundamental

understanding of the transfection mechanism.

Factors affecting transfection can be segregated into three groups: general, cellular

and mechanistic factors. General factors include various guidelines that are common to all

transfection protocols, such as the quality of transfected DNA. Cellular factors constitute the

physiological variables that affect transfection efficiency. These factors can be further sub

categorized into physiological barriers (such plasma membrane, endosomal-Iysosomal

compartments and nuclear membrane) and cellular conditions (such as rate of cell

proliferation, cell type dependence and apoptotic propensity). Mechanistic factors, on the

other hand, are transfection method-dependent factors, often directed at enhancing a certain

choke point in the transfection process. These are further segregated into optimization

conditions (such as size ofDNA-polycationic aggregates, zeta potential and serum stability)

and transfection enhancing agents (such as glycerol, cortisol and sodium glycolate). These

factors are extensively reviewed below.

General Factors Affecting Transfection Efficiency

Quality of DNA

As is generally recommended by a variety ofprotocols, the quality ofDNA has been

deemed to be one of the most important factors determining transfection efficiency (Promega

transfection guide and Schenborn and Goiffon, 2000). Aside from the usual ethanol

precipitation, DNA is recommended to be purified by the cesium chloride equilibrium

centrifugation method, with the final A26o:A28o ratio of 1.8 or greater being acceptable for
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transfection. Aside from being able to accurately measure DNA concentration and

subsequently optimize transfection efficiency based on an accurate DNA concentration, the

purity ofDNA is deemed important because any bacterial contaminants are considered to

inhibit transfection efficiency (Weber et al., 1995). However, a recent report by Wright et

al., (2003) demonstrated the use ofpartially purified DNA in transfecting HEK293-EBNA

cells, with transfection efficiency as judged by levels of recombinant protein expression to be

equivalent to that ofpure DNA. In other reports, partially purified DNA actually resulted in

an enhancement of transfeetion efficiency via electroporation in BALB/c 3T3 cells (Tatsuka

et al., 1995). On the other hand, based on observations in our own laboratory, transfection of

impure DNA resulted in high levels of toxicity to HeLa and MDBK cells.

Cellular Factors Affecting Transfection Efficiency

Physiological Barriers

There are numerous intra- and extracellular barriers to the introduction of therapeutic

genes via non-viral means. In-vivo transfection must be able to survive systemic circulation

to reach its intended target. Numerous cells of the immune system have the ability to

sequester the transfection agent, elicit an immune response to the transgene product and

destroy transformed cells. Assuming the DNA reaches its intended target, there are more

hurdles to cross. To simplify our discussion, in-vitro transfection also encounters some of

these hurdles. For successful transfection to occur, the transfer ofDNA into a cell requires

for it to pass through various cellular compartments and enter the nucleus for transcription.

Through the numerous intermediary stages, a portion of the transfected DNA is eliminated.

By the time the DNA traverses all of the cellular compartments, including the plasma

membrane, endosomes, lysosomes, the cytosol and the nuclear membrane, only a small
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amount of the initially transfected DNA survives to make its way into the nucleus. It has

been estimated that up to 100,000 copies ofplasmid can be taken up per cell (Batard et al.,

2001). However, 3000 plasmids must survive in the cytosol for transgene expression to

occur (Batard et al., 2001), which explains why transfection suffers from such low

efficiency.
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Figure 1: The path ofexogenous DNA to the nucleus and the various chokepoints during

transfection. 1. Complex formation requires the exogenous DNA to be compacted with the

DNA complex formation. 2. Accumulation ofDNA must occur onto the surface ofthe cell.

3. DNA-complex must be efficiently endocytosed. 4. Endo-lysosomal compartments contain

various DNases that degrade exogenous DNA. 5. Release ofthe DNA from the

complexation agent as well as escape from lysosomal compartments must occur efficiently.

6. A host ofDNases in the cytosol can degrade exogenous DNA effectively. 7. Nuclear

membrane presents the last major barrier to transgene transcription in the nucleus 8.
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Internalization of Exogenous DNA

Before DNA is internalized, whether it is coupled to a viral or non-viral carrier, it

must accumulate near the surface of the plasma membrane. Since DNA is a polyanion,

naked DNA does not readily bind to the cellular membrane, whose net charge is also

negative. Thus, the pre-endocytic accumulation ofDNA represents a significant barrier for

naked DNA transfection. This notion is supported by the observation that naked DNA

transfection is an extremely inefficient process without the help of vectors.

Internalization ofplasmid DNA can be achieved by either fluid phase-, adsorptive-, or

receptor-mediated endocytosis (Wattiaux et al., 2000). It is thought that transfected DNA

enters the cell through an adsorptive endocytic process. Although a large amount ofDNA is

generally transfected, only 5% of the DNA is ever endocytosed (Batard et al., 2001). While

there are attempts to enhance other means of endocytosis, such as including transferrin with

lipofectin during transfection to enhance receptor-mediated endocytosis, evidence suggests

that endocytosis is most likely not the rate-limiting factor in determining the overall outcome

in transfection (Tseng et al., 1997). Furthermore, Coonrod et ale (1997) concluded that

endocytosis could not account for the two magnitudes of difference in transfection efficiency

between the human immortalized cell line, HeLa, and fibroblasts after observing nearly

similar rates of endocytosis between the two cell lines. However, there are other studies

correlating endocytic rate and transfection efficiency in Chinese hamster ovary (CHO) cells

(Batard et a!., 2001). Moreover, transfection efficiency was enhanced in CHO cells when

DNA silica nanoparticles were physically concentrated by centrifugation, suggesting the

importance of the association ofDNA with the plasma membrane during transfection (Luo

and Saltzman, 2000a). Therefore, it seems that internalization can potentially represent a
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significant barrier to transfection in a cell-type specific manner and may also vary according

to delivery methods.

Endosomal and Lysosomal Compartments

Regardless of the route of entry across the plasma membrane (endocytosis, lipid

fusion or electroporation), transfected DNA follows a common route to the nucleus through

vesicular trafficking in the endosome/lysosome system (Coonrod et al., 1997). For

successful transfection to occur, a prerequisite is that a viable proportion of intact DNA

molecules should escape endosomal or lysosomal destruction en route to the cytosol and

eventually the nucleus. Therefore, factors and/or agents affecting the endosomal and

lysosomal compartments could potentially either facilitate the release ofplasma DNA into

the cytosol, or protect these molecules from degradation by lysosomal nucleases (Neves et

al., 1999), thereby influence transfection efficiency.

At 30 minutes after DNA is transfected, plasmid DNA is internalized and finds its

way into endosomal compartments. Vesicle transport is evident by the visualization of a

faint granular centripetal cytoplasmic pattern that is largely distinct from the lysosome and

nucleus (Coonrod et al., 1997). During endosomal transport, DNA remains relatively

unscathed, as little nuclease activity has been found in the endosomal compartments.

Peptidases, on the other hand, are found in abundance. While the roles of the peptidases are

unknown, they have been postulated to play an essential role in the activation of lysosomal

nucleases after the fusion of endosomes with lysosomes (Wattiaux et aI., 2000). During the

fusion and endosome processing events, endo-Iysosomal compartments undergo internal

acidification, during which pH-sensitive nucleases are activated to destroy the transfected

DNA. What adds to confusion is that there is evidence suggesting that vector hydrolysis in

the endosome is a prerequisite for the endocytosed DNA to quickly reach the lysosome
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(Wattiaux et al., 2000). Therefore, greater vector resistance to hydrolysis by peptidases such

as cathepsin -B and -C may extend transfected DNA longevity by delaying endosome

lysosome fusion and facilitating the release ofplasmid DNA from endosomal compartments

into the cytosol.

Various non-viral vectors act to enhance transfection efficiency by mediating early

escape from the endosomal compartments. A common practice during calcium phosphate

co-precipitation transfection is to add certain reagents, such as glycerol or dimethylsulfoxide

(DMSO), in a post-transfection "shock" treatment. These reagents are found to destabilize

membrane integrity which may allow for plasmid DNA to escape lysosomal destruction

(Frost and Williams, 1978). Other popular non-viral vectors, such as polyethyleneimine, can

potentially cause the swelling and rupture of the organelles by sequestering surrounding

protons and their counter-ions, creating an osmotic imbalance.

Another possible mechanism for enhancing plasmid DNA longevity in the

endosomal/lysosomal compartments is to prevent the internal acidification and processing of

the lysosomal nucleases. In fact, viral capsid proteins offer protection against nucleases by

shielding the transgene from the endosomal/lysosomal environment. While non-viral vectors

usually form extensive complexes with the DNA, offering some protection against nucleases

by changing DNA conformation, the level ofprotection may not always be sufficient

(Batard, 2001). Chloroquine is sometimes used as a means of enhancing transfection

efficiency during calcium phosphate transfection. It has been shown to neutralize lysosomal

pH, inhibit proteases and presumably aids in transfection by disrupting nuclease maturation.

However, chloroquine does not always enhance transfection efficiency, and the effects seem

to be cell-type specific (Coonrod et al., 1997).

Yet another approach to enhance transfection is by inhibiting nuclease activity.

DNase II is an endonuclease with an acidic pH optimum that was identified in the lysosomal
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fraction ofporcine spleen (Liao et al., 1989). Since its discovery, DNase II was deemed to

be ofparamount importance in transfection. This was demonstrated by the 10-fold

enhancement of reporter expression in H441 cells when transfection occurred in the presence

ofDMI-2, a fungal metabolite known to inhibit DNase II (Ross et al., 1998). Moreover,

peptidal inhibitor ID2, discovered based on library screening, significantly enhanced

transfection efficiency by polycationic compounds DOTAP and PEl (Sperinde et al., 2001).

However, the story does not end there. As reported by Ross et ale (1998), the inclusion of

DMI-2 during calcium phosphate transfection in the same cell line did not enhance

transfection efficiency. These results seem to indicate that the extent of lysosomal nuclease

to transfection efficiency may depend on delivery methods.

DNase II

DNase II, also known as acid DNase, derives its name from the acidic pH optimum

for nuclease activity (pH 4.5-5.0). Its activity was found to have a ubiquitous tissue

distribution (Cordonnier and Bernardi, 1968). Unlike other DNases, DNase II does not

require the presence of divalent cations for nuclease activity to occur. Furthermore, certain

divalent cations, such as Zn2
+ and Cu2

+ strongly inhibit DNase II activity (Bernardi, 1971;

Hevelone and Hartman, 1988; Lyon and Aguilera, 1997). Due to the pH optimum ofDNase

II, it was first proposed and later confirmed to be most active in lysosomal compartments

(Liao et al., 1989). Presumably, the internal acidification that occurs during the fusion of the

endosome with the lysosome activates the enzyme, which can present a potential barrier to

transfection (Howell et al., 2003).

While the physiological role ofDNase II has not been fully elucidated, there is

evidence that DNase II is associated with nuclear fragmentation during apoptosis. Recently,

Krieser et ale (2002) has shown the importance ofDNase II during the phagocytic phase of
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apoptosis. Homozygous knockout mice resulted in perinatal lethality, presumably due to the

improper accumulation of apoptotic nuclei during fetal development. In the same

publication, the authors suggested that DNase II activity loss might contribute to the

development of systemic lupus erythematosus.

Cytosolic Degradation

After endocytosis, it was generally assumed that the lysosomal compartment was the

major site ofplasmid degradation after the discovery ofDNase II, and the release ofplasmid

DNA into the cytosol represented a "safe zone" before traversing to the nucleus, with little

consideration for the rate of cytosolic transportation. However, evidence now suggests that

plasmid DNA is susceptible to degradation by cytosolic nucleases (Lechardeur et al., 1999).

Furthermore, this nuclease is constitutively present in the cytosol, rather than by nuclease

either liberated from organelles or activated upon the introduction ofDNA. Further

characterization indicated the pH optimum of these nucleases to be 7-8, which would group

them into the DNase I family ofneutral DNases. Members ofDNase I family ofDNases

include DNase I, DNase X, DNase 'Y and DNase lL2, of which DNase I and DNase 'Yare the

most extensively characterized.

DNase I

DNase I is one of the most characterized mammalian endonucleases. It was

originally identified as a pancreatic enzyme that catalyzed DNA hydrolysis in the presence of

appropriate divalent cations (Lakowski, 1971). DNase I has been purified from various

mammalian tissues and body fluids, and its characterization has revealed that DNase I is an

endonuclease that exerts its full activity in the presence ofboth Ca2
+ and Mg2

+ under neutral

conditions (Price, 1975 and Campbell and Jackson, 1980). Among other endonucleases
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discovered with the similar primary structures, numerous members of endonucleases are now

classed into the DNase I family ofDNases. These members include DNase I, DNAS1L2,

DNase y/DNAS1L3/LS-DNase/DNase Y, and DNase XlXib, with both DNase I and DNase y

being the most extensively characterized (Shiokawa et al., 2000). Biochemically speaking,

DN I · 0 • h f ° I b O I ° h C 2+ M 2+ Z 2+ N o2+ase IS actIve In t e presence 0 a sIng e Iva ent catIon, suc as a, g, n ' 1 or

Co2
+ (Liu et al., 1999). Aurintricarboxylic acid (ATA) and monomeric actin (G-actin) are

known inhibitors ofDNase I (Lacks, 1981).

While much is known about the biochemical characteristics, the physiological

function ofDNase I has never been addressed fully. DNase I have been associated with a

wide range of functions in recombination, maintenance of genetic stability and

transformation (Baranovskii et al., 2004). Recently, Napirei et al., (2000) and Walport

(2000) reported a putative scavenger role for DNase I. DNase I-deficient mice demonstrated

classical symptoms of developing systemic lupus erythematosus such as the presence of anti-

nuclear antibodies, the deposition of immune complexes in glomeruli and full-blown

glomerulonephritis in a DNase I dose-dependent manner. The authors suggested that these

symptoms are the result of inadequate elimination ofDNA from circulating dead cells,

resulting in the development of anti-nuclear antibodies directed against naked DNA and

entire nucleosomes.

DNase'Y

DNase y was originally identified as an endonuclease present in the nuclei ofrat

thymocytes, and its physiological role has been suggested to be the catalysis ofnucleosomal

DNA fragmentation during apoptosis (Tanuma and Shiokawa, 1994 and Shiokawa et al.,

1994 and 2002). Recently, DNase y has also been suggested to constitute a potential barrier
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to liposomal transfection, stemming from the observation that non-viral vectors offer some

protection against DNase I (Wilber et al., 2002). DNase y is a Ca2
+ and Mg2

+ dependent

neutral endonuclease that exists specifically in lymphoid organs such as thymus, spleen, and

lymph node. In terms ofbiochemical characteristics, DNase y is strongly inhibited by Zn2
+

(Shiokawa et al., 1997) and ATA, while retaining activity in the presence of G-actin at

100Jlg/mL (Shiokawa et al., 1997).

Nuclear Membrane and Nuclear Purging

Approximately one hour post-transfection, plasmid DNA accumulates in the

perinuclear region (Coonrod et al., 1997). Before gaining entry into the nucleus, the final

physical barrier that must be traversed is the nuclear membrane. It has been postulated,

based on observations that cell cycle synchronized cells often demonstrated enhanced

transfection efficiency around the time ofmitosis, that plasmid DNA can gain access to the

nucleus during the dissolution of the nuclear membrane. More recently, however, it has been

found that DNA enters the nucleus through specialized structures known as the nuclear pore

complex (Dean, 1997). There are several factors affecting the rate ofnuclear import ofDNA.

First, the size of the transfected DNA has a detrimental effect on the transport kinetics. DNA

Fragments less than 1kb can enter the nucleus readily (Hagstrom et al., 1997). However, for

plasmids bigger than 1kb, active uptake ofDNA through the nuclear pore is a slow and

energy dependent process (Neves et al., 1999). Secondly, the presence ofnuclear

localization signals (NLS) may facilitate nuclear import. NLS sequences bind to importin a

in the cytoplasm. The resulting complex binds to the nuclear port and is translocated through

the pore in a mechanism involving energy, the small GTPase Ran and other proteins (Neves

et al., 1999).
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In nonviral gene transfer into non-dividing cells, the entry ofplasmid DNA from the

cytoplasm into the nucleus is a major limiting step (Wolff, 1997 and Escriou et al., 1998).

This was further supported by the fact that it takes approximately an additional hour before

exogenous DNA enters the nucleus where it continues to accumulate before peaking at 8

hours post-transfection (Coonrod et al., 1997).

Gaining entry into the nucleus, however, does not guarantee transgene expression.

Non-integrated exogenous DNA is quickly purged in the nucleus. Coonrod et ale (1997)

observed that while internalization kinetics and plasmid stability were comparable between

HeLa cells and fibroblasts, the authors attributed the large difference in transfection

efficiency to the active removal ofDNA from the nucleus. They have, in tum, termed this

process as "nuclear purging". Furthermore, without a mammalian origin of replication,

plasmid DNA is slowly diluted out with each cell division. Moreover, integration of

exogenous DNA into a transcriptionally inactive region by histone modification,

ubiquitination, acetylation, methylation and repeat-induced gene silencing mechanisms can

result in lack of observable long-term expression.

The grim truth is that only a fraction of transfected DNA ever makes its way to the

nucleus. It has been suggested that only 5% of transfeeted plasmid is ever internalized

(Batard et al., 2001). Of that, a large fraction is degraded in the endosomal/lysosomal

compartments. Moreover, only 0.1% of the cytosolic plasmid makes its way into the

nucleus. On top of these problems, nuclear purging of exogenous DNA seems to be an

effective mechanism, at least for primary cultures of fibroblasts, in eliminating transfected

plasmids (Coonrod et al., 1997). Using intracellular injection ofDNA, as high as 1*106

copies are required to reach the cytoplasm for transgene expression to eventually occur

makes it obvious why non-viral methods suffer from such low efficiency (Utvik et al., 1999).
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Cellular Conditions

As observed in numerous laboratories, including our own, transfection efficiency

often depends on the cellular conditions ofwhich the cell cultures are kept. The degree of

transfection variability can simply be affected by trivial matter such as the rate at which cells

are sub-cultured and the amount of serum present in the culture media. Although these

variables are generally determined empirically, the fundamental reasons for doing so remain

far from being fully understood. Generally, cellular conditions can have large effects on the

outcome of transfeetion experiments. These include: cell type dependence (Lin et al., 1994),

cell proliferation (Fasbender et al., 1997), and apoptotic propensity (Kim et al., 2002).

Cell Type Dependence

Numerous reports have documented the cell-type dependence of transfeetion

efficiency (Lin et al., 1994). Regardless of transfeetion methods, certain cell lines refuse to

be transfected. Generally, primary cultures, such as fibroblasts and HUVEC cells, are

notoriously difficult to transfect, whereas immortalized cell lines, such as HEK 293 and

HeLa are more prone to taking up and expressing transgenic DNA. Whether the

transformation process affects the cell line's propensity to be transfected is a matter of

contention. Pampinella et ale (2002) reported that primary myoblasts and established

myoblasts exhibit a difference in liposome-mediated transfection not by differential uptake of

lipopolyplexes, nor by differential stability of the plasmid DNA in the endo-Iysosomal or

cytoplasmic compartments. Instead, the slower delivery of lipopolyplexes to the lysosomal

compartment is one of the factors responsible for the pronounced transfectability of

established myoblasts (Pampinella et al., 2002).
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Cell Proliferation/Cell Density

As a general guideline, cultured mammalian cells are usually plated at a low density

the day prior to transfection by non-viral means. Establishing a population ofrapidly

dividing cells was deemed important, as it was a widely held belief that transfection

efficiency correlated to the number of cells actively undergoing mitotic cell division. This

was particularly demonstrated for retroviral gene transfer (Springett et al., 1989), liposome

based techniques (Mortimer et al., 1999) and peptide-based gene delivery systems (Wilke et

al., 1996). The argument was that once successful internalization occurs, nuclear entry of

exogenous DNA is facilitated by the dissolution of the nuclear membrane during mitosis,

allowing for the observed increase in transgene expression of rapidly proliferating cells

(Fasbender et al., 1997). Numerous attempts at verifying this conclusion by using cell-cycle

synchronizing agents, such as hydroxyurea and thymidine, have generated dubious results

(personal observation), and the approach of using these agents to associate cell cycle effects

and transfection has come under increasing criticism due to the pleotrophic effects of these

agents (Rodriguez and Flemington, 1999). However, other attempts to enhance transfection

by stimulating cell proliferation, such as the use ofmitogens, have also generated varying

levels of success in enhancing transfection efficiency (Somasundaram et al., 1992 and

Ohmiya et al., 2002). Recently, however, the correlation between cell cycle effects and

transfection efficiency, especially the condition that mitosis and dissolution ofnuclear

membrane is a prerequisite for successful transfection, has been steadfastly challenged based

on observations that adenoviral or lentiviral gene-transfers do not require cell division for

efficient gene transfer (Greber et al., 1993 and Bukrinsky et al., 1993). The increasing

consensus is that exogenous DNA has the potential to gain access to the nucleus by active

transport processes through the nuclear pore complex, provided that the delivery method

takes advantage of the nuclear localizing signals.
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Presence of Serum

One of the problematic areas, especially when lipoplexes are employed during

transfection, is that the presence of serum proteins significantly reduces transgene expression

(FeIgner et al., 1987). It is thought that serum proteins interact with the membrane bilayers

of Iiposomes, destabilizing them (Bonte and Juliano, 1986 and Li et al., 1999). Furthermore,

serum proteins can potentially block lipoplex association with cell membranes (Yang and

Huang, 1997), reducing their ability to aggregate at the membrane (Hui et al., 1996) and may

also lessen uptake into endosomal vesicles (Lewis et al., 1996). As was demonstrated by

FeIgner et al., (1987), transfection ofmouse L cells with DOTMA is inhibited by serum

containing growth medium, reducing the CAT activity to 5% of control. However, this

serum-inhibition seemed to be cell-type dependent as well, as Brunette et al., (1992) reported

no inhibition in transfection efficiency in the presence of serum for CV-1 and murine

erythroleukemia (MEL) cells. As a precautionary step, however, most commercially

available protocols suggest the use of serum-free media to achieve maximal transfection

efficiency.

The use of serum-free media during transfection, as a solution to serum-mediated

inhibition, bears two notable difficulties. First, in the pursuit of developing an in-vivo gene

delivery tool, serum inhibition presents a significant hurdle towards achieving that goal.

Secondly, certain cell lines, such as C2C12 cells, respond adversely to the lack of serum

exposure to prolong periods of incubation in serum-free media often demonstrated notable

levels of toxicity (Dodds et al., 1998).

To remedy the problem, ever-newer formulations of IipopIexes have been designed to

minimize the inhibitory effects of serum. By comparison, commercially available cationic

lipids DOSPER retained the ability to transfect C2C12 cells in the presence of serum over
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Lipofectamine (Dodds et al., 1998). Yang and Huang (1997) have reported that increasing

the charge ratio of cationic liposome-DNA complexes can alleviate serum inhibition of

lipoplex transfection efficiency. Additions of other additives to enhance serum stability of

lipoplexes have also shown to enhance transfection efficiency. The use ofpolycation

polybrene (Abe et al., 1998), vesicular stomatitis virus G glycoprotein (VSV-G) (Abe et al.,

1998b), cholesterol (Crook et al., 1998) and transferrin (Tros de Ilarduya and Diizgiine~,

2000) as additives during lipoplex-mediated transfection was observed to abrogate serum

mediated inhibition.

Apoptotic Propensity

Another possible scenario resulting in poor transfection efficiency is not the sole

result of inefficient gene delivery. Rather, successful gene delivery occurs but most

transfected cells subsequently die as a result of the toxicity of the transfection procedure.

Thus, only the cells that survive are tabulated as transfection positive. While certain cell

lines, such as HEK-293, are less prone to the toxicity involved during transfection, numerous

reports have noted cell death as one of the main choke points in achieving efficient

transfection (Kim et al., 2002 and Rodriguez and Flemington, 1999). The toxicity can stem

from a variety of sources, including exogenous DNA, transfection method and bacterial

contaminants during plasmid DNA preparation. The resulting toxicity can trigger apoptosis,

resulting in the death of transfected cells. As such, targeting apoptosis as a means of

enhancing transfection efficiency seems to be a viable option, provided that the cell line

involved presents toxicity as a chokepoint. Recently, Kim et ale (2002) reported that the co

transfection of anti-apoptotic genes, bcl-2 and bel-xL, with the reporter plasmid resulted in a

significantly enhanced transfection efficiency in neural stem cells. Furthermore, the authors
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supplemented the cells with B27 supplement, which has been shown to have a pro-survival

effect on neural stem cells (Svendsen et al., 1995).

Mechanistic Factors Affecting Transfection efficiency

Other factors that affect transfection efficiency are transfection-method specific.

Often, based on the understanding of the transfection mechanism, transfection efficiency can

be enhanced by targeting the method specific chokepoint. For example, the incorporation of

DNA compacting peptides (short peptidal sequence KTPKKAKKP) during lipofection has

been shown to enhance the serum stability ofDNA lipoplexes, which is a major problem

associated with liposome-mediated transfection (Schwartz et al., 1999). Furthermore, the

addition of a "glycerol shock" step during calcium phosphate mediated transfection has been

shown to destabilize endosomal compartments, leading to the early release of transfected

DNA from the endosomal-Iysosomal compartments and enhancing transfection efficiency in

certain cell lines (Lopata et aI., 1984). However, most of these transfection enhancers are

based on a clear understanding of the mechanism, which may not always be available.

Moreover, enhancement effects are generally associated with the specific transfection

method, which makes them less than readily translatable to other techniques (Haberland et

aI., 1999). Worse yet, certain transfection enhancers seem to only be able to enhance

transfection efficiency in certain cell lines, making the general use of these enhancers

ineffective (Ohmiya et al., 2002).

Transfection by Chemical Means

As briefly described in previous sections, transfection can be achieved by a variety of

chemical means such as calcium phosphate, lipoplexes, and polyplexes.
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Optimizable Parameters of Calcium Phosphate Precipitation

As stated earlier, calcium phosphate precipitation (CaPi) is based upon the formation

of insoluble calcium phosphate aggregates complexed with plasmid DNA. The basic

features of this procedure include mixture ofDNA with CaCl2 and sodium phosphate in

buffered saline in a controlled manner, incubation at room temperature during which

formation ofcalcium phosphate-DNA complexes occurs, and dispersion ofprecipitates onto

cultured cells. This CaPi-DNA complex is allowed to settle (mostly by gravity but some

protocols include a centrifugation step) upon the surface of the cells, and either phagocytosis

or endocytosis occurs. After removal of the DNA-containing medium, a brief incubation

with dimethylsulfoxide or glycerol is occasionally employed to enhance DNA uptake

(Wilson et al., 1995). The transfected DNA is processed through endosomal/lysosomal

compartments and eventually arrives at the nucleus, where transcription occurs. Unlike

DEAE-dextran, which was developed by Vaheri and Pagano (1965) near the same time

frame, the CaPi technique can be employed to generate both transient and stable

transfectants. In recent years, several factors have been shown to be critical to form the

optimal hydroxyapatite for maximal transfection efficiency.

pH of Buffered Sodium Phosphate Solution

DNA-calcium phosphate co-precipitates arise spontaneously in supersaturated

solutions. However, the quality of the precipitates can have severe implications on the

outcome of transfeetion, with small precipitate particles between 1-31lm being optimal for

maximal transfection efficiency (Jiang et al., 2004). Particles that are too large are

presumably not efficiently endocytosed, while particles too small may not be sufficient in

triggering an endocytic response (Jiang et al., 2004).
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In order to generate particles of the optimal size, the pH of the phosphate buffered

saline solution with which the DNA-CaCI2 solution is mixed is optimized as it can determine

the kinetics of the precipitate formation, a critical aspect of forming precipitates of the

optimal size (Wilson et al., 1995 and Jordan et al., 1996). Furthermore, transmission

electron microscopy data revealed that crystallites formed in pH less than 7.01 were more

particulate in shape, a clear distinction from the crystallites formed in pH above 7.12, where

the clusters appeared more irregular in appearance (Yang and Yang, 1997). According to

Wilson (1995), the pH of the solutions that yield maximal transfection efficiency for bovine

chromaffin cells is·6.95. The formation ofprecipitate was observed to correspond to an

increase in turbidity of the mixed solution at Ati60 during the incubation period at room

temperature. Although spectrophotometric data can be ofuse to guide an inexperienced user,

the increase in turbidity does not account for the quality of the precipitate, which is a far

more critical element than the mere formation of the precipitate accounted for by the increase

in turbidity. Moreover, the pH of the solution is incrementally lower that the accepted value

of 7.1, as suggested by Promega Corporation (Promega transfection guide). It is more than

likely that during Wilson's protocol (1995), the longer reported incubation at room

temperature (30-40 minutes vs. 20 minutes) compensated for the slightly lowered pH used in

his solutions.

Concentration of DNA

Even as far back as the original publication by Graham and van der Eb (1973), the

concentration of transfected DNA was deemed to be one of the factors affecting transfection

efficiency via the calcium phosphate method. Chen and Okayama (1987) observed that the

number of stable transformants varied with the amount of transfected DNA. In certain

reports, increasing amounts of exogenous DNA resulted in enhancing transfection efficiency
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(Reeves et al., 1985). However, Chen and Okayama reported that the optimal concentration

ofDNA resulted in the transition of coarse to fine precipitates when complexed with calcium

phosphate that coincided with maximum transfection efficiency. To that end, Jordan et al.,

(1996) verified the observation and attributed the DNA concentration effect on transfection

efficiency by altering precipitate formation kinetics. At extremely high concentrations of

DNA (>50Jl,g/mL DNA), precipitate formation was inhibited and less than 20% of the

transfected DNA was associated with a precipitate after a 20-minute incubation period.

Aside from precipitate kinetics, optimal concentrations of transfected DNA also varied

between cell lines as was observed by Ding and Tan (1989). Thus, optimizing DNA

concentration during transfection remains one of the empirical parameters to be determined

experimentally.

Length of Precipitate Formation

After the addition ofCaCI2-DNA solution to the buffered phosphate solution, the

mixture is incubated at room temperature for a period of time ranging from 5 to 30 minutes

(O'Mahoney and Adams, 1994 and Seelos, 1997). The duration of incubation was

determined to be one of the critical parameters, in addition to pH of the buffered phosphate

solution and DNA concentration. In 1996, a shocking report by Jordan et ale reported in

Nucleic Acids Research that the standard incubation period and the slow mixture of the

DNA-CaCI2 with the buffered sodium phosphate solution yielded precipitates that were far

from optimal in terms oftransfection efficiency. In terms of incubation, Jordan found that by

mixing the solutions quickly, soluble DNA in the reaction mix is bound to an insoluble

complex with calcium phosphate in less than 1 minute. Furthermore, the authors went on to

further explain that by extending the reaction time to 20 minutes, aggregation and/or growth

ofparticles result in a reduction in the level of transgene expression, presumably by the
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inadequate endocytosis of the larger DNA-CaPi particles (Jordan et al., 1996). This was the

first time that the kinetics of CaPi precipitation were linked to transfection efficiency. As

explained by the authors, after the initial addition ofDNA-CaCI2 solution to the buffered

sodium phosphate, precipitates consisted of a large number ofvery small particles covering

the surface of individual cells almost completely. After 40 minutes of incubation, the

precipitates have aggregated to form fewer but larger particles, some even as big as the cells

themselves (Jordan et al., 1996). Thus, the new protocol, along with the detection assay also

described in the report, has gained favor due to the comprehensive nature of the study.

However, the report by Jordan et ale (1996) was rebuffed by several sources,

indicating that the quick mixing had a severe impact on the formation ofprecipitates.

Christian Seelos (1997) compared the standard mixing method (dropwise addition ofDNA

CaCl2 to buffered sodium phosphate) and incubation period (10-30 minutes) with the Jordan

protocol and discovered that while transfection efficiency was reduced during longer periods

of incubation with the Jordan protocol, the standard method actually yielded higher transgene

expression after a 30-minute incubation. While Seelos carefully qualified his statement to

pertain only to rat embryo cells (RECs), this nonetheless pointed out that the method of

addition could potentially affect the kinetics of the precipitate formation, resulting in

enhancement or suppression oftransfection efficiency. Recently, Chowdhury et ale (2004)

reported the inclusion ofmagnesium to affect the kinetics ofprecipitate formation, resulting

in the transition ofparticle diameter from 2.5 f..lm to 500nm, enhancing transgene expression

at least 40 times.

Length of Transfection

Another of the variables originally examined by Graham and van der Eb (1973) was

the length of time on which DNA precipitates were left incubating with the cells. Since then,
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the optimal length of transfection to yield the highest transfection efficiency has been highly

variable (Table 2). As is recommended by the Promega Transfection Guide, the usual length

oftransfection falls between 4-16 hours. However, as little as one hour (Jiang et al., 2004) or

as long as 20 hours (Hilliard et al., 1996) have been reported as optimal durations for

transfection. The length of time is primarily dependent on cellular tolerance ofDNA-CaP0 4

precipitates. While a longer duration of transfection will likely lead to higher transfection

efficiency (Hilliard et al., 1996), it will also lead to higher toxicity in a cell-type dependent

manner (Jiang et al., 2004). Thus, duration oftransfection is also a variable that requires

empirical determination, on a cell-type to cell-type basis.

Table 2: Range ofConditions for Calcium Phosphate Transfection

Reference
DNA concentration* 10 - 20J-lg DNA/mL Schenborn and Goiffon, 2000

<25J-lg DNA/mL transfection mixture Jordan et al., 1996

Calcium concentration 2.5M stock / 12.5mM final
pH of Buffered BESpH 6.95 Chen and Okayama, 1987
phosphate solution HBSpH7.05 Jordan et al., 1996
Length ofprecipitate 1 minute to Chen and Okayama, 1987
formation 30 minutes Jordan et al., 1996

O'Mahoney and Adams, 1994
Seelos, 1997

Length of transfection* 1-3 hours Jiang et al., 2004
4-16 hours Promega transfection guide
4 hour Batard et al., 2001
4-5 hours Segura et al., 2001
6 hours Urabe et al., 2000
8 hours Gaunitz et al., 1996

* to be determined empirically for each cell line

Lipoplexes

Liposome-mediated gene transfer, collectively termed "lipoplexes", has been

extensively studied to become the prominent gene transfer vector for non-viral gene transfer.

While exhibiting higher transfection efficiency than most other non-viral vectors, the lack of

specialized equipment makes this technique especially attractive. Recently, the elucidation
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of several mechanistic aspects during lipoplex-mediated transfection has added crucial pieces

to the understanding of the underlying mechanism.

Formation of liposome

Generally, the polycationic charges from the structural elements of IipopIexes provide

a means for electrostatic interaction with the DNA phosphate, resulting in compaction of the

nucleic acid by and complexation with the amphiphile, thereby causing its shielding from

attack by exogenous and endogenous DNase (Oberle et al., 2000). The morphological

appearance of these lipoplexes has been described as multilamellar aggregates (Gustafsson et

al., 1995), rod-shaped structures (Gershon et al., 1993), DNA coating on the surface of

cationic liposomes (Eastman et al., 1997), or bead-on-string-like complexes (Sternberg et al.,

1994), with each of the different structures potentially affecting transfection efficiency.

Recently, Oberle has proposed a three-step mechanism during the formation of

lipoplexes. In the first step, supercoiled plasmid DNA interacts electrostatically with a

monolayer of the cationic amphiphiles. In a second step, bean-like structures arise. Given

the relatively smooth surface of the lipoplexes and their dimensions, their appearance is

interpreted to result from the coating of single supercoiled plasmids with a bilayer of cationic

lipids, the charged amphiphile head groups facing the hydrophilic environment in which the

complex is formed. Then, the unilamellar lipoplex increases in size from 30 to 50-70nm in

width. Oberle concluded that the plasmid is surrounded by 3-5 bilayers of the amphiphile,

based on atomic force microscopy. The eventual size of the transfecting complex is

governed by fusion events between individually wrapped amphiphile/DNA complexes.

Cationic lipoplexes, with their positively charged outer surfaces, are electrostatically

attracted to the membrane surface of the cell. DNA complexes then gain access across the

cell membrane by endocytosis, and are processed through the endosome-lysosomal
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pathways. Lipoplexes have the ability to aid early release from the endosome-lysosomal

compartments, but the DNA must be released from the liposomes before it can gain access to

the nucleus.

Release of DNA

Zabner et ale (1995) showed that DNA-lipoplexes that are microinjected directly into

the nucleus do not induce high expression levels. This demonstrated the requirement for

plasmid DNA to escape its association with liposomes before entering the nucleus, thereby

leading transgene expression. In 1996, Xu and Szoka proposed the following mechanism for

the release ofDNA during transfection. First, the cell surface associated complex is

internalized into an endosome. The complex initiates a destabilization of the endosome

membrane that results in flip-flop of anionic lipids that are predominately located on the

cytoplasmic face of the membrane. The anionic lipids laterally diffuse into the complex and

form charge-neutralized ion pairs with the cationic lipids. This displaces the plasmid DNA

from the complex and permits DNA entry into the cytoplasm (Xu and Szoka, 1996). The

DNA then gains access to the nucleus either during post-mitotic nuclear membrane

dissolution or through active transport via the nuclear pore complex, much akin to that of

calcium phosphate transfection.
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Figure 2: Mechanism ofrelease ofplasmid DNAfromlipoplexes. Step 1. After electrostatic

interaction with the cell membrane, cationic liposome/DNA complexes are endocytosed.

Step 2. In the early endosome, membrane destabilization results in anionic phospholipid

flip-flop. Step 3. The anionic lipids diffuse into the complex andform a charge neutral ion

pair with cationic lipids. Step 4. The DNA dissociates from the complex and is released into

the cytoplasm (Reproduced from Xu and Szoka, 1996).

Optimizable parameters

Because of the diverse structure of amphiphiles that form lipoplexes with DNA,

variables that are optimizable have been greatly simplified, as compared to that of calcium

phosphate. While the general parameters such as DNA concentration and duration of
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transfection remain to be determined empirically, there are certain parameters that are

lipoplex specific. These include structure of lipids, charge ratio and lipoplex size.

Structure of lipids

Unlike calcium phosphate mediated transfection, methods for increasing transfection

efficiency using liposomes have generally gone the way of synthesizing new amphiphiles.

Structurally, cationic lipids consist of a cationic moiety, a linker region and a fatty acid

derivative or hydrophobic region (see Figure 3). The cationic moiety is primarily responsible

for interaction with DNA, as well as forming electrostatic interactions with the plasma

membrane.

Cationic moiely

Figure 3: Structure ofa cationic lipid, with a cationic moiety, linker and a

hydrophobic tail. Figure adaptedfrom Fichert et al., 2000.

The cationic moiety has numerous possibilities for modifications in terms ofboth

numbers ofpositive charges and chemical structure. These can include quaternary

ammonium (i.e. DOTAP), primary, secondary and tertiary amines, guanidinium,

heterocyclics, amino acids and peptides. Insertion of cationic entities ofmoderate pKa such

as imidazole is also ofparticular interest for complex liberation into the endosome. Cationic

global charge increase at lower pH is believed to create a proton-pumping effect by counter

ion accumulation, inducing endosome lysis.
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There is also considerable variability in the hydrophobic aspects of cationic lipid.

Generally speaking, the choice of lipids is predominantly between a two-hydrocarbon chain

(i.e. DOTAP) and a cholesterol moiety (i.e. DC-chol).
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Figure 4. Structures ofcommonly utilized lipoplexes. Structures adaptedfrom

Zabner, 1997

Furthermore, chain lengths from C8:0 to CI8:I (C<Chain length>:<degrees of

saturation» and degrees of saturation are also highly variable between cationic lipids

(Tranchant et al., 2004). As there is considerable information on the structural/activity

relationship between the variable lipid structures and transfection efficiency, various

synthetic lipids are continually being developed (Ferrari et al., 2002). In terms of chain
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length, shorter hydrocarbon chains seem to be better for in-vitro transfection efficiency while

longer chains allow for better transfection in-vivo (Floch et al., 2000). Furthermore, mono

unsaturated fatty acid chains yield better transfection results, possibly through modulation of

membrane fluidity, but long-term storage is more problematic since double-bonds are more

prone to oxidation than their alkyl counterparts.

Lipid/DNA Ratio

Another important parameter that is usually empirically determined is the ratio of

DNA to lipid. In essence, the ratio ofDNA to lipid can significantly affect two

physiochemical characteristics of lipoplexes: zeta potential and lipoplex size.

Zeta potential refers to the bulk charge of the resulting lipoplex. In the case of

cationic lipids, a higher ratio of lipid to DNA will generally result in a more positive zeta

potential (Sakurai et al., 2000). A bulk positive charge is critical for electrostatic interaction

of the DNA-lipoplex with the negatively charged cellular membrane. However, merely

increasing the lipid/DNA ratio is not necessarily the path towards enhanced transfection

efficiency as higher concentrations of lipids have been associated with elevated toxicity. To

address this problem, newer polycationic formulations such as droctadecyl

amidoglycylspermine (DOGS) have incorporated multicationic head groups such as spermine

so that lower amounts of lipid are needed to yield a positive zeta potential.

Aside from zeta potential, lipoplex size is largely affected by lipid structure and

lipid/DNA ratio. While some reports have argued that size is not associated with transfection

efficiency (Stegmann and Legendre, 1997), recent reports have concluded that larger

lipoplexes are more efficient, at least in in-vitro studies (Almofti et al., 2003). Furthermore,

Ross and Hui (1999) determined that lipoplex size affects whether serum-induced inhibition

of transfection becomes a factor in determining the outcome of transfection.
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Helper Lipids/Other Enhancing Agents

Generally speaking, most cationic lipid mediated transfection involves the use of an

anionic, helper lipid to enhance transfection efficiency. The commonly used helper lipids

include cholesterol, dioleoyl phosphatidylcholine (DOPC) and dioleoyl phosphatidyl

ethanolamine (DOPE). These lipids presumably have some endosomal destabilizing activity,

which allows for the early release ofDNA into the cytosol from endosomal compartments

(Farhood et al., 1995). Aside from endosomal destabilizing agents, numerous enhancing

agents have been investigated to enhance liposome-mediate transfection (see Table 3). These

agents include nuclease inhibitors (Ni et al., 1999), mitogens (Rippe et al., 1990, Yanagihara

et al., 2000 and Ohmiya et al., 2002), DNA complexation agents (Kariko et al., 1998 and

Schwartz et al., 1999), membrane permeants (Lawrie et al., 1999, Fong et al., 2004, Freeman

and Niven, 1996), lysosomotropics (Ciftci and Levy, 2001 and Hasan et al., 1991),

sedimentation enhancers (Krotz et al., 2003 and Huth et al., 2004), membrane fusion

enhancers (Okimoto et al., 2001 and Haberland et al., 1999), nuclear translocation enhancers

(Chan et al., 2000) and receptor targeting molecules (Yanagihara and Chang, 1999).

Polyplexes

One of the earliest agents used for non-viral gene transfer, DEAE-dextran (Vaheri

and Pagano, 1965) is a polycationic polymer based DNA-complexing agent. Structurally,

polyamines carrying a positive charge bind the negatively charged phosphate backbone,

condensing it into compact, ordered particles of20-200 nm in diameter (Liu et al., 2001). At

a critical ratio ofpolycation to DNA, the aggregation leads to a localized bending or

distortion, which facilitates the formation ofrods, toroids (Golan et al., 1999) and spheroids

(Liu et al., 2001). The size of the aggregates is an important element in determining
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transfection efficiency, as PEl that condense DNA into compact particles (80-100nm vs.

2Jlm) have been shown to be much more efficient in terms oftransfection efficiency

(Petersen et al., 2002). Aside from DNA compaction, binding of the polycations to DNA

also leads to charge neutralization or even slightly positive aggregates, which have been

shown to interact with the negatively charged proteoglycans of the cell membrane (Erbacher

et al., 1999). These aggregates, in tum, trigger endocytosis and internalization of the DNA

polyplex aggregates.

Before DNA can be expressed, it must efficiently escape endosomal/lysosomal

destruction. The most common hypothesis is the mechanism by which polyplexes aid in the

early release of transfected DNA from the endosome/lysosome into the cytosol. The "proton

sponge" mechanism refers to the ability for the polycationic polyplex to buffer the pH change

in the endosomal/lysosomal compartments. The buffering ofpH leads to a wide variety of

consequences. In the endosomal compartment, a slew of acidic proteases are activated by a

pH change. The increase in protease activity has a putative role in the processing and

maturation of lysosomal nucleases (Coonrod et al., 1997). Upon endosome-lysosome fusion,

the proton sponge mechanism inhibits acidic nucleases, namely DNase II, by buffering a pH

change, and thus, enhancing the stability of exogenous DNA (Akinc and Langer, 2002).

Although this mechanism has been widely accepted, it has recently been called into question

from studies ofPEl (Gebhart and Kabanov, 2001). It was reported that the buffering

capacity ofPEls is negligibly low between pH 4.5 to 7.4, which represents the range ofpHs

within the vesicular compartments during the transition from early to late endosomal

compartments and then to the lysosomal compartments. Alfernatively, another mechanism

suggested that the polycations attract counter-ions once internalized into an endosome. As

charge neutralization occurs, the increase in solute concentration leads to an influx ofwater,

leading to the rupture of the endosome. Consequently, DNA is released into the cytosol.
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Cytosolic DNA-polyplexes afford some protection against cytosolic DNases. As the

complex traverses the nuclear membrane, disassociation of the vector from the DNA has also

been shown to be a barrier to transfection (Schaffer et al., 2000).

Polymer Structure

Much like lipoplexes, the structural diversity ofpolymeric transfection agents makes

polyplexes especially attractive for systematic studies. Although grouped into a singular

category, polycationic polyplexes can differ both in chemical structure and the number of

repeating units, as well as the architecture of the polymer backbone. For instance, the

polymer backbone can be linear, randomly branched, dendrimeric, block-or-graft copolymer.

As a result, different polyplexes are systematically synthesized and evaluated in terms of

efficiency, toxicity and bioavailability (Ledley, 1995).

Figure 5. Structures ofcommonly used polyplex agents. Generally, polymers are

activatedfrom their monomeric counterpart to induce polymerization. Their

macroscopic structures are commonly extremely complex. Structures adaptedfrom

Thomas and Klibanov, 2003.
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N to P Ratio

Similar to zeta potential, N to P ratio refers to molar ratio of the nitrogen-containing

groups to the phosphate containing backbone. The NIP ratio reflects the overall positive to

negative charge balance of the DNA-polyplex complex. Polyplexes formed at high NIP

ratios are more positively charged; therefore, they are likely to interact more effectively with

the negatively charged ce~l surface via nonspecific charge interaction. Generally,

transfection efficiency increases with an increase in NIP ratio owing to the fact that an

increase in the positive charge of the corresponding polyplex and increase in polyplex

content would lead to elevated cellular uptake and more efficient endosome release of the

internalized polyplexes (Guo and Lee, 1999). Again, this is one of the variables that are

empirically determined and optimized based on each polyplex transfection reagent.

Transfection Enhancing Agents

Aside from developing newer and more efficient DNA delivery vectors, there has

also been the development ofvarious transfection-enhancing agents. These agents are

diverse in their nature and can include peptides, fatty acid derivatives, DNA-binding dyes,

hormones, various chemicals, nucleic acids and ultrasound (see Table 3 for a complete list).

Mechanistically, they act upon various chokepoints during the transfection process, namely

to overcome the three major hurdles: (1) the cell membrane, (2) nucleases and (3) nuclear

membrane.

Membrane Fusion Enhancers

As one would expect, an enhancement in membrane fusion should also increase

transfection efficiency. Haberland et ale (1999) demonstrated that the use of calcium ions
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during histone HI mediated transfection enhanced transfection efficiency in ECV 304 cells.

The authors concluded that the free calcium ions resulted in the formation of CaPi

microprecipitates, which are known to have fusogenic and membranolytic activity.

Presumably, the additional precipitates not only aid in traversing the cellular membrane but

also aid to destabilize endosomes, resulting in the early release ofDNA into the cytosol.

However, such enhancement was not observed with liposome-mediated transfection.

Receptor Targeting Molecule

As a method of enhancing endocytosis, additional receptor targeting ligands have

been added to lipoplex-mediated transfection. Transferrin has been used to supplement

cationic liposomes and has been shown to enhance transfection efficiency in HeLa and

human tracheal epithelial cells (Cheng, 1996). Yanagihara and Cheng (1999) show that

lectins can also enhance transfection efficiency in lung carcinoma cells lines A549, Calu3

and H292 by associating with receptor-associated glycans. Aside from enhancing

endocytosis via a receptor-mediated pathway, the use of specific ligands can also be utilized

for tissue specific targeting.

Sedimentation Enhancers

During the transfection process, liquid phase diffusion is often a major limiting factor.

As DNA complexes remain suspended in the media, they will remain unavailable for

endocytosis and internalization. Several reports have indicated an enhancement in

transfection efficiency by physically concentrating the DNA-complex onto the surface of the

adherent cells. Luo and Saltzman (2000a) demonstrated an 8.5 fold increase in transfection

efficiency using silica nanoparticles-polyplex as a DNA delivery vector to CHO cells by
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incorporating a centrifugation step to enhance the "effective" concentration ofDNA onto the

cell surface. Moreover, the incorporation ofmagnetofectin and use of a magnetic field to

"drive" DNA-nanoparticles onto adherent cells have been recently termed "magnetofection"

(Krotz et al., 2003 and Krotz et al., 2003b). The enhancement of transfection efficiency was

reported to be up to 360-fold relative to their non-magnetofectin counterpart. The

enhancement was demonstrated for both lipofection (using FuGENE, Lipofectamine and

DMRIE) and polyplexes (PEl).

DNA-Complexing Agent

As stated earlier, one of the difficulties of employing liposomes as a gene delivery

vector is mainly their instability in the presence of serum. By employing short cationic

peptides derived from histone sequences, Schwartz et ale (1999) were able to reduce the

serum inhibition oftransfection efficiency using lipospermine DOGS. In the presence of

peptide H9-2, transfection efficiency was approximately two orders ofmagnitude higher in

20% FCS using lipofection reagent RPR 120535. Furthermore, employing these peptidal

sequences allowed for a reduction in the amount of lipofection reagent used and thus,

reduced its toxicity. The authors went on to conclude that the primary role for these peptides

served to compact DNA, leading to a modification of the intracellular fate of the DNA

particles when performed in the presence of serum

Membrane Permeant

A number of cationic, membrane-permeant small molecules can rapidly partition

through all membranes of living cells to enter the nucleus. They then bind with high affinity

to nuclear DNA (Fong et al., 2004). Fong et ale (2004) used DNA-binding dye Hoechst
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33258 and saw an increase in transfection efficiency for both liposome and PEl mediated

transfection. Hoechst 33258 acted as a membrane permeant, leading to rapid transition

between all membrane barriers including plasma membrane, endosome and nuclear

membrane. Thus, the ability for these membrane-permeant dyes to transfect non-dividing

cells came as no surprise. This was particularly attractive as it has been a long known

problem that lipofection required rapidly dividing cells for transfection to occur. When

Hoechst 33258 was used in conjunction with liposomes, transfection efficiency was as high

as 80% for B16-F10 cells (Fong et al., 2004).

Lysosomotropics

Endosomal and lysosomal compartments bear special significance to efficient

transfection. Aside from the hostile pH environment during the acidification transitioning

from early to late endosome and then to the lysosome, a slew of acidic nucleases is present to

degrade exogenous DNA. Chloroquine, glycerol and DMSO are known lysosomotropics that

induce the influx ofwater into endosomal/lysosomal compartments, causing their rupture and

release oftransfected DNA into the cytosol. More recently, Ciftci and Levy (2001) reported

the use of sucrose as a lysosomotropic agent in conjunction with Lipofectamine. The

presumptive mechanism is related to the inability of cells to degrade sucrose, due to the

absence of disaccharide enzymes (Kato et al., 1984). The resulting increase in osmotic

pressure within the endosomal/lysosomal compartments led to the disruption of the

endosome. Sucrose was found to be a more effective and less toxic transfection enhancer

than chloroquine and polyvinylpyrolidone on COS, 293 and CHO cells.
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Nuclease Inhibitor

A variety of agents can complex DNA and protect it from nuclease degradation.

These peptidal transfection-enhancing agents bind DNA and change its conformation so that

it becomes less accessible to nuclease digestion. Reagents that demonstrate a known

inhibitory role to nucleases include: chitosan (Bozkir and Saka, 2004), protamine (Ni et al.,

1999), DMI-2 (Ross et al., 1998), ATA (Walther et al., 2004), poly (D, L-Iactide-co

glycolide) microspheres (Gebrekidan et al., 2000), Chol-Q (Kisoon et al., 2002) and

pTMAEM (Su et al., 2002).

Mitogens

One of the criteria for successful transfection via non-viral means is cell proliferation

(see Section Cell Proliferation/Cell Density). To enhance cell proliferation, mitogens such as

insulin were used to enhance transfection efficiency. Ohmiya et ale (2002) demonstrated that

insulin enhanced the proportion of cells in the Sand G2M phase of the cell cycle, resulting in

an increase in transfection efficiency via the nuclear membrane dissolution hypothesis.

Ohmiya et ale showed an enhancement of transfection efficiency by insulin in MKN1 and

HT29 cells. However, BxPC3 cells did not yield a significant difference, indicating the cell

type dependence that is often observed with protocols/enhancement agents that are designed

to increase transfection efficiency.

For a full list oftransfection enhancing agents, refer to Table 3.
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Table 3: Agents used to Enhance Transfection Efficiency

Transfection Mech. Method of Cells Reference
Enhancer of Transfection involved

Action
Albumin D 293 Frenkeleta~,2002

microbubbles +
USE
Bcl-2, Bel-xL H Lipofection PGC Watanabe et al., 1997
and B27 Kim et al., 2002
Calcium I Peptide ECV-304 Haberland et al., 1999

mediated HepG2
CalPhos U/K Calcium CHO-K1 Zhang and Kain, 1996
Maximizer Phosphate BHK-21

293
HeLa

Carrier DNA E Calcium CV-1 Strain and Wyllie, 1984
Phosphate NIH3T3 Strain et al., 1985

CHO Shore and Reddy,
1989
Nickoloff and
Reynolds, 1992

Chloroquine E Calcium 3T6 Luthman and
Phosphate Fischer Rat- Magnusson, 1983

1 Hasan et al., 1991
Cortisol J Calcium 3Y1 Bernasconieta~, 1997

Phosphate, HeLa
Polymer

DMSO shock D Calcium L cells Lopata et al., 1984
Phosphate

Gelatin + USE C,D RGM-1 Hosseinkhani et al.,
2002

Glycerol shock D Calcium L-cells Lopata et al., 1984
Phosphate MCF-10 Basolo et al., 1990

Hoechst 33258 D Lipofection, B16-F10 Fong et al., 2004
Polymer

Insulin B Lipofection MKN1, HT29 Rippe et al., 1990
Yanagihara et al., 2000
Ohmiya et al., 2002

KTPKKAKKP C Lipofection 3T3,3LL, Schwartz et al., 1999
H460,
H1299

Lectin (GSI, K Lipofection A549, Calu3, Yanagihara and
MAA) H292 Cheng, 1999
Magnesium H Calcium HeLa,3T3 Chowdhury et al., 2004

Phosphate
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Transfection Mech. Method of Cells Reference
Enhancer of Transfection involved

Action
Magnetofectin F Lipofection HeLa, Krotz et al., 2003

BEAS-2B, Krotz et al., 2003b
HEP-G2, Huth et al., 2004
HUVEC,
endothelials

NH4CI, FCCP E Calcium HeLa Ege et al., 1984
and 3-MA Phosphate
NLS J HTC Chan et al., 2000
PAMAM I Lipofection numerous Kukowska-Latallo et

al., 1996
Roessler et al., 2001

Phosphate C,H Lipofection HOS Kariko et al., 1998
PLGA-PEG- ** 293 Jeong et al., 2004
PLGA
Polybrene C Lipofection BHK,208F Abe et al., 1998
Protamine A Lipofection Huh7 Ni et al., 1999
SAINT-2 D Lipofection COS-7 Van derWonde et al.,

CV-1 1997
Sodium CV-1 Gorman et al., 1983
Butyrate 3T3
Sodium D Lipofection COS-7 Freeman and Niven,
Glycolate 1996
Sucrose E Lipofection COS, 293, Ciftci and Levy, 2001

CHO
TPA * Calcium 3T3 Reston et al., 1991

Phosphate Reston et al., 1993
Transferrin K Lipofection HeLa, A546, Cheng, 1996

Calu3, H292 Yanagihara et al., 2000
Ultrasound D Lipofection VSMC, EC Lawrie et al., 1999
VSV G-protein I Calcium BHK,208F Okimoto et al., 2001

Phosphate,
Lipofection

The mechanism oftransfection enhancement is extractedfrom the original publication. As some

are proposed mechanisms, as suggested by the authors ofthe publication, new mechanistic

insights may change these categories. A-Nuclease inhibitor. B-Mitogens. C-DNA complexing

agents. D-Membrane permeants. E-Lysosomotropics. F-Sedimentation enhancers. H

Miscellaneous. I-Membrane fusion enhancers. J-Nuclear translocation enhancer. K-Receptor

targeting molecule. U/K-Mechanism unknown.
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Aim of Current Study

Calcium phosphate-DNA co-precipitation technique, despite its low transfection

efficiency, has been one of the most utilized methods of transfection because of the lack of

specialized equipment, low cost and ease of finding the requisite components. Using this

common transfection method, we examined the cellular and/or mechanistic factors that affect

transfection efficiency in a cell-type dependent manner. This stemmed from the observation

that optimized protocols have been shown to be efficient in certain cell lines, and not others.

Worse yet, transfection-enhancing agents such as glycerol and DMSO seem to also affect

transfection efficiency in a cell-type dependent manner. Thus, using various commonly used

cell lines (HEK-293, HeLa and MDBK), an examination of these factors was undertaken, in

the hopes of identifying factors that will enhance transfection efficiency.
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Chapter II

Materials and Methods

Bacteria, Media, Growth and Storage

Several strains ofEscherichia coli K12 were used as hosts in various cloning

experiments described in this report. These include DH5aF' (F'/endAl hsdRl7(rK-mK+)

glnV44 thi-l recAl gyrA(Nalf
) relAl ~(lacIZYA-argF)Ul69deoR(~80dlacLJ(lacZ)Ml5);

(NEB Catalogue 2002-2003) and HBIOl (F' LJ(gpt-proA)62IeuB6 glnV44 ara-l4 galK2

lacYl LJ(mcrC-mrr) rpsL20(Strr
) xyl-5 mtl-l recAl3). These cells were typically grown in

LB broth (per liter: 109 bacto-tryptone, 5g yeast extract, 109 NaCI, pH 7.0 -7.2) at 37°C

with vigorous shaking.

Bacterial cells in liquid medium were kept at 4°C for temporary storage, or in 20%

glycerol at -70°C for extended storage as stocks. To recover bacterial cultures from frozen

stocks, a small volume of a growth medium was inoculated with a loopful of frozen cells.

Plasmids

All plasmids that were used in assays and as sources ofrestriction fragments for

cloning purposes were obtained from laboratory stocks. In instances where laboratory stock

did not contain the required plasmid, it was obtained from commercial sources. Regardless,
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all plasmids used in this thesis have been saved in the laboratory stocks and can be made

available upon request. Plasmid restriction maps are available from manufacturer's web

sites; other plasmids that were constructed are described in detail in the RESULTS section

and APPENDIX.

Enzymes

Restriction EnzyDles

The restriction enzymes used in this study were obtained from commercial suppliers,

namely New England Biolabs (NEB) and MBI Fermentas. All enzymes were received in

solutions ofvarious storage buffers containing 50% glycerol. The reaction mixture was

usually in a 20JlL volume when the digest was used for analysis in gel electrophoresis or in

larger volumes for preparative purposes. Digestions using crude DNA extract, as opposed to

CsCI/ethidium bromide-banded preparations, required the use of a two-fold excess of enzyme

and/or longer incubation time. Thus, in the digestion ofDNA prepared by the alkaline-SDS

method from a 1.5mL bacterial culture, about 1/50th of total DNA yield was digested with 1

unit (usually defined as the amount needed to digest IJlg ofDNA at 37°C in 1 hour) and

incubated at 37°C for 2 or more hours, or as determined by gel electrophoresis.

Multiple-Enzyme Digests

On occasion, construction of some plasmids required fragments generated from

simultaneous digestion with two or more different enzymes. Where appropriate, the use of a

single enzyme buffer was particularly convenient in such cases even if the activity of the
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enzymes being used was less than optimal in the universal buffer. Again, the variation in the

activities of the enzymes was often not critical in carrying out many simultaneous digests, so

that an equal amount of enzymes was usually sufficient to obtain complete digests.

However, when the problem occasionally arose, similar adjustments in amount of enzyme

and incubation time were made. Gel electrophoresis was used to determine the extent of the

digestion (Refer to section Gel Electrophoresis - Agarose Gels). In instances where

multiple enzymes were not compatible (as indicated in NEB catalog), sequential digests were

performed to avoid problems such as star activity.

Inactivation of Enzyme

In some instances where, for example, a cloning experiment required multiple steps,

it was necessary to inactivate the enzymes used in previous steps prior to proceeding to the

next. Most enzymes used in this project were labile when subjected to heat-treatment at 65°C

for 15 minutes. Others required higher temperatures such as 80°C to effectively destroy the

activity (NEB catalogue, 2002-2003), while still others required phenol/chloroform

extraction followed by ethanol-precipitation. The phenol/chloroform reagent was prepared

by mixing 1 volume of redistilled phenol, 1 volume of chloroform, and 0.1 % 8

hydroxyquinoline (w/v). This was fully saturated in TE buffer (pH 8.0) and stored in the

dark at 4°C indefinitely.

Phenol chloroform extraction was performed by adding equal volumes ofphenol

chloroform solution to the enzyme digestion. The aqueous layer was removed and twice the

volume of95% ethanol stored at -20°C was added. The resulting precipitate was centrifuged

and dried either by vacuum or short incubation at 37°C. The fragments were resuspended in

the appropriate volume of TE buffer (pH 7.5).
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Partial Digestion with Multi-Cut Enzymes

On occasions, partial digestion ofplasmid DNA with restriction enzymes that

recognize multiple sites on the same plasmid had to be used where unique restriction sites

were not available.

Using such enzymes to linearize a supercoiled plasmid was accomplished using the

method ofParker et al., (1977), which is based on the differential binding of ethidium

bromide to supercoiled and linear plasmid DNA. In a typical reaction volume of 100JlL,

20flg of supercoiled DNA, the normal concentration of the universal buffer, ethidium

bromide at a final concentration of 2.6Jlg/mL, and 1 unit of enzyme were added together.

The incubation time, in which approximately 10% linear DNA was generated, was

empirically determined for each enzyme. For example, 10JlL aliquots were removed from

the incubation reaction every minute and the enzymatic reaction was stopped by adding 5JlL

of 6X gel loading buffer. Using gel electrophoresis, the extent of reaction was estimated by

the concentration of the different forms ofplasmid DNA. Keeping the fraction of linear

form to low levels (at about 10%) was desirable since it reduced the levels of linear DNA

that contained more than one cut.

Klenow Fragment of DNA Polymerase I

The large scale peptide ofDNA polymerase I due to cleavage by subtilisin (Jacobson

et al." 1974), commonly called the Klenow Fragment, was used to remove protruding single

stranded regions at the termini ofDNA fragments produced by some restriction enzymes. In

the presence of deoxynucleotide triphosphates (collectively termed dNTPs which include

dGTP, dATP, dTTP, dCTP; purchased from MBI Fermentas), termini with recessed 3' ends
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were filled by the polymerase activity of the fragment. However, the enzyme also possesses

a 3'-to-5' exonuclease activity which can be utilized to remove a 3'-overhang. This

procedure was used primarily to prepare DNA fragments that have incompatible termini for

ligation by T4 DNA ligase.

Treatments with Klenow DNA polymerase were typically carried out using the

supplied buffer. A lOX concentrate of this buffer (500mM Tris-HCI (pH 8.0 at 25°C, 50mM

MgCI2, 10mM DTT) was used to dilute to the operating concentrations. The reaction

mixture (20flL) also contained up to 4flg ofDNA and 0.05mM each of the dNTPs. The

reaction mixture was incubated at 37°C for 10 minutes and was subsequently heat inactivated

by incubating at 70°C for 10 minutes. The unincorporated dNTPs were removed by using

DNA select columns (Norgen Biotek Ltd). The solution was then used in subsequent steps of

molecular cloning.

Alkaline Phosphatase

In some applications either for cloning, enzymatic removal of the free 5'-phosphate

was necessary. In cloning, the procedure was used to prevent the self-ligation ofvector

DNA, thus promoting the ligation between the vector and the fragment, which was usually

left with the 5'-phosphate attached. Occasionally, the DNA fragment was in a restriction

enzyme reaction mixture whose buffer system was compatible with alkaline phosphatase, so

that changing the buffer was not necessary.

Between 1 and 2 units of enzyme per 1flg DNA were used. Incubation was at 37°C

for 30 minutes. The enzyme was destroyed by either a) heating the reaction to 65°C for 15

minutes (for shrimp alkaline phosphatase) or b) a single phenol/chloroform extraction

followed by ethanol precipitation (for calf intestinal alkaline phosphatase).
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T4 DNA Ligase

For cloning purposes DNA fragments were ligated together using T4 DNA ligase.

The buffer used consisted of40mM Tris-HCI (pH 7.8), 10mM MgCI2, 10mM DTT, and

0.5mM ATP. This was obtained as a lOX concentrate and stored in small aliquots at -20°C.

Each aliquot was thawed once and was used within a period of 2-3 weeks, after which the

solution was discarded. As a rule, this enzyme was used in all ligation experiments since it

catalyses the covalent linkage between DNA fragments with blunt or recessed ends.

Reaction mixtures were incubated at 15°C for a period ranging from 4 hours to incubation

overnight.

Restriction fragments used in molecular cloning were usually gel-purified to enhance

the efficiency of isolation of the desired clone (Refer to Batch Preparation of Plasmid

DNA - Purification of DNA from Agarose Gels). In a typical reaction of20JlL, two

fragments were added in a 10:1 molar ratio of insert to vector ensuring successful ligation.

Synthetic Oligonucleotides

Synthetic oligonucleotides were obtained by one of two ways. They were either

purchased from Sigma Genosys or synthesized at Norgen using Beckman Oligo 1000 DNA

synthesizer. Depending on the scale of the oligonucleotides, they were all diluted to 15JlM in

DEPC treated water. The diluted stock solutions were aliquoted to avoid repeated freezing

and thawing, and were stored at -70°C for long term storage, or at -20°C for short term uses.
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Table 4: List ofoligonucleotides used in this work

Sequence

5' RACE outer
primer

5' RACE inner
primer

5' GSOP
5' GSIP
5' GSOP II
5' GSIP II
GSP primer for

RT
Anchor primer
3' RACE outer

primer
3' RACE inner

primer
3' GSOP
3' GSIP
Primer 1014-1033
psiRNA S4 sense
oligo
psiRNA S4
antisense oligo
psiRNA SII
sense oligo
psiRNA SII
antisense oligo
psiRNA S16
sense oligo
psiRNA S16
antisense oligo

5' GCT GAT GGC GAT GAA TGA AGA CTG 3'

5' CGC GGA TCC GAA CAC TGC GTT TGC TGG CTT TGA TG 3'

5' ACC ACA AAG GGC TCC CTG GAA AAC AC 3'
5' CGGGAT TCGTCT CCA TCCTGA TAGTCA TGGTA3'
5' TTC CAG GCC TTC TTG GGG ACG TA 3'
5' CGG AAT TCG CCA GCA TTG AAG TCA CCC ATG AAA ATG 3'
5' CTC TTC TTG ACC GTG GT 3'

5' GCG AGC ACA GAA TTA ATA CGA CTC ACT ATA GGT TIlT 3'
5' GCG AGC ACA GAA TTA ATA CGA CT 3'

5' CGC GGA TCC GAA TTA ATA CGA CTC ACT ATA GG 3'

5' CTA CCA TGA CTA TCA GGA TGG AGA C 3'
5' GGA ATT CGT GTT TTC CAG GGA GCC CTT TGT GGT 3'
5' CTG ACA TCC AGG GCC TCC TC 3'
5'-GAT CCG TTT CAT TTT CAT GGG TGA C TT CAA GAG AGT CAC
CCA TGA AAA TGA AAT TTT TTG GAA A-3'
5'-AGC TTT TCC AAA AAA TTT CAT TTT CAT GGG TGA CTC TCT TGA
AGT CAC CCA TGA AAA TGA AAC G-3'
5'-GAT CCG CTT ACA GGT TGT CTG AAT TTC AAG AGA ATT CAG
ACA ACC TGT AAG CTT TTT TGG AAA-3'
5'-AGC TTT TCC AAA AAA GCT TAC AGG TTG TCT GAA TTC TCT TGA
AAT TCA GAC AAC CTG TAA GCG-3'
5'-GAT CCG ACC AGT CAT GCC TAG ATA TTC AAG AGA TAT CTA
GGC ATG ACT GGT CTT TTT TGG AAA-3'
5'-AGC TTT TCC AAA AAA GAC CAG TCA TGC CTA GAT ATC TCT
TGA ATA TCT AGG CAT GAC TGG TCG-3'

Recombinant DNA Techniques

In-vitro Ligation of DNA Fragments

Ligation ofDNA fragments was conducted as described in section T4 DNA ligase.

Aside from the usual ligation procedure, if a particular cloning reaction proved to be

exceedingly difficult, the use of alkaline phosphatase was employed on the vector generated

by restriction enzymes to increase probability ofvector-insert ligation. Where appropriate, a
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restriction enzyme reaction was conducted post-ligation if vector religation yielded· a unique

restriction site to increase the likelihood of success.

TransforlDation ofE. coli

The method ofMandel and Higa (1970) for transforming E. coli cells using CaCl2 as

modified by Goodman and MacDonald (1979) was used to introduce recombinant plasmids

into bacterial cells.

Preparation of Competent Cells

An overnight inoculum of the appropriate bacterial cell line was grown in LB broth at

37°C. This was diluted 50-fold using fresh broth and grown with vigorous shaking until the

OD6oo was between 0.4-0.5. The culture was transferred into 50mL plastic centrifuge tubes,

cooled on ice for 15 minutes, and cells were sedimented by centrifugation using an lEC

centrifuge (3000 rpm, 4°C). The cell pellet was resuspended in 20mL of cold transformation

buffer containing 75mM CaCl2 and 5mM Tris-CI, pH 7.5 and incubated on ice for 1 to 16

hours to make competent cells. The cells were collected again by centrifugation and

resuspended in 2mL of transformation buffer. At this stage, competent cells were either used

directly for transformation or sometimes frozen in 10% glycerol at -70°C and stored in

150JlL aliquots in Eppendorf tubes. However, reduction in transformation efficiency by as

much as 70% was observed when frozen cells were used, so that when DNA was limiting,

freshly prepared competent cells were preferred.
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Transformation of Competent Cells

0.2mL of a competent bacterial suspension was used for transformation with ligation

reactions not exceeding 40J.lL volume. When frozen cells were used, the cells were thawed

at 37°C and placed on ice immediately. The transformation mixture was added to the

Eppendorf tube of competent cells and incubated on ice for 30 minutes to allow the cells to

take up DNA. Tubes were gently mixed every 10 minutes to ensure the DNA and the

competent cells were well mixed. To facilitate uptake ofDNA, the bacterial cells were heat-

shocked at 42°C for 45 seconds and placed back on ice for a further 2 minutes. 750J.lL ofLB

broth was added and the cells were incubated at 37°C with shaking for 45 minutes to allow

for recovery and expression of antibiotic resistance gene(s) before plating on selection media.

Selection

Selection plates contained the required medium with 2% agar (Bioshop) and the

appropriate antibiotics. The molten agar was allowed to cool to a temperature between 45°C

to 55°C before the addition of the antibiotics. The plates were then poured and allowed to

solidify. The agar plates were stored at 4°C and pre-warmed at 37°C just prior to use. When

Xgal (5-bromo-4-chloro-3-indoyl-~-D-galactopyranoside)was required, 40J.lL of2%

solution in dimethylformamide (DMF) was spread onto each plate prior to use.

Suspensions containing transformed bacteria were plated either directly (after pre

incubation at 37°C) or from appropriate dilutions. Dilutions were made so that transformed

colonies on selector plates were well separated; that is, the colony count did not exceed about

150 colonies per plate. The plates were incubated at 37°C.
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Analysis of Transformants

Individual colonies were picked with a sterile wooden stick and were used to

inoculate 2.0mL fresh LB broth in a sterile test-tube. These were incubated at 37°C with

vigorous shaking for 4-16 hours. About 1.5mL of the culture was transferred to a fresh

Eppendorftube and the rest was maintained at 4°C for temporary storage. The complete

analysis of the transformants was carried out as quickly as possible to ensure that the

bacterial culture stored at 4°C remained viable. After analysis and verification, which in

many cases was done through restriction enzyme digestion and gel electrophoresis, on some

occasions, sequencing, the desired transformant was recloned on agar to ensure the

homogeneity of the bacterial stock and the plasmid that was to be used in further studies.

Extraction of Plasmid DNA

The procedure used for extracting plasmid DNA was the alkaline SDS lysis technique

ofBirnboim and Doly (1978). The protocol, with a number ofminor modifications, was

used to obtain relatively pure plasmid DNA preparations from small-scale cultures for

sequencing as well as molecular cloning.

A 1.5mL culture transferred into a plastic Eppendorftube was pelleted using a bench

top microcentrifuge at 14,000g for 30 seconds. The supernatant was discarded and the pellet

was inverted to allow drying for 2 minutes. The pellet was resuspended by vortexing with

100JlL ofbuffered lysozyme solution (10mM Tris-CI pH 8.0, 50mM glucose, 50mM EDTA,

stored at 4°C as pre-mixed solution with the lysozyme added just prior to use at a

concentration of 10mg/mL w/v) and the resuspended pellet was incubated on ice for 15

minutes. Alternatively, 100uL ofResuspension solution (50mM Tris-CI pH 7.5, 10mM
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EDTA, 30mg/mL RNase A) was added in place of the buffered lysozyme solution, and the

bacterial suspension was incubated at 37°C for 15 minutes.

200JlL of alkaline SDS (1 % SDS and 0.2N NaOH) were added and mixed gently by

inverting the tube several times. When properly mixed, the reaction mixture would tum

relatively clear almost immediately or within 5 minutes during incubation on ice. The

mixture was neutralized by adding 150JlL of 3M sodium acetate (pH 4.8, pre-mixed and

stored at 4°C) and mixed by quickly vortexing which resulted in the precipitation of cellular

components and denatured macromolecules within a few seconds. Vortexing the mixture

aided in breaking the precipitate into finer particles which were easier to separate from the

supernatant during centrifugation. To ensure complete precipitation of cellular protein and

nucleic acid, the suspension was left on ice for at least 1 hour, and at times overnight if the

DNA preparation was intended for use in sequencing. Prolonged incubation at this stage

reproducibly reduced the amount of contaminating RNA in the crude preparation.

The pellicle was separated by centrifugation in a microcentrifuge for 5 minutes and

the clear liquid phase was transferred to another tube. To precipitate the DNA, ImL of95%

EtOH (-20°C) was added and mixed by inverting the tube. This was immediately centrifuged

for 5 minutes. The ethanol was removed by aspiration and the nucleic acid pellet at the

bottom of the tube was dissolved in 100JlL of autoclaved doubly-distilled water. This was

precipitated a second time by adding 200JlL of cold ethanol and again immediately

centrifuged. The pellet was dried for 5-10 minutes at 37°C and dissolved in 100J.!L of

autoclaved TE buffer (pH 8.0) and stored at 4°C for short-term storage to avoid repeated

cycles of freeze-thaw. For long term storage, the DNA was stored at -20°C.
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Screening with Restriction EnzylDes and Gel Electrophoresis

Restriction Digests

Plasmid DNA extracted from a 1.5mL inoculum was analyzed by restriction enzymes

and agarose gel electrophoresis. The method for digesting crude plasmid DNA extract is

described in section Enzymes - Restriction Enzymes. The digestion (in 25JlL) was stopped

by either heating to 65°C for 20 minutes for heat labile enzymes or adding 5JlL of 6X

stopper-gel loading buffer containing 10mM Tris-CI pH 8.0, 1mM EDTA, 20% sucrose,

0.1 % bromophenol blue and 1% SDS (prepared by boiling for 15 minutes and stored at room

temperature).

Gel Electrophoresis

Tris-acetate EDTA (TAE) containing 40mM Tris-acetate (pH 7.9), 5mM sodium

acetate and 1mM EDTA was the gel electrophoresis buffer of choice employed in this study.

A 50X stock was prepared and the appropriate dilutions made prior to use.

Agarose Gels

Appropriate amounts of agarose (Bioshop Biotechnology Grade) were mixed with IX

electrophoresis buffer containing ethidium bromide (0.1 Jlg/mL wfv) and boiled until

completely dissolved. (For example, 1.0g of agarose is dissolved in 100mL of IX TAE

buffer to yield a 1% agarose gel). The solution was allowed to cool to 44°C before pouring.

The gel was run submerged in IX TAE buffer in an apparatus so that the buffer recirculated.

Generally, the voltage applied across the electrodes ranged from 1OVfcm to 20Vfcm,
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depending on the application. Upon completion, as indicated by the position of the loading

dye, the gel was viewed under UV (ultraviolet) illumination and captured using a Kodak

Electrophoresis Documentation and Analysis System 120.

Denaturing Agarose Gels

Denaturing agarose gel electrophoresis is a technique associated with either RNA- or

single stranded DNA isolation. In this case, the integrity ofRNA was verified by visualizing

18S and 28S ribosomal RNA on a denaturing agarose gel. Aside from component

differences, samples were generally boiled to denature any secondary structures associated

with single stranded regions. To prepare the RNA samples for electrophoresis, 20JlL of

formamide, 7JlL of formaldehyde, 4JlL of lOX MOPS buffer (200mM MOPS, pH 7.0, 80mM

Sodium Acetate and 10mM EDTA, pH 8.0 in DEPC treated distilled water) and 5JlL ofRNA

loading buffer were added to 15JlL of each RNA sample. The sample was then heated to

65°C for 5 minutes and immediately chilled on ice until electrophoresis. A 1.5% agarose gel

was prepared by dissolving 1.5g of agarose in 72.5mL DEPC treated distilled water. 10mL

of lOX MOPS buffer was also added. The mixture was then heated until the agarose was

dissolved and cooled to approximately 45°C. 17.5mL of formaldehyde and 5JlL of20mg/mL

ethidium bromide were added to the cooled gel solution and poured into casting tray. Chilled

RNA samples were loaded onto the solidified gel and run in IX MOPS buffer usually at

10V/cm. Post electrophoresis, the RNA denaturing gel was destained by placing the gel in a

container ofTE buffer made with DEPC treated water. Destaining occurred until the 18S

and 28S RNA bands were clearly visible with minimal amount ofbackground. The picture

was captured by the Kodak gel documentation system.
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Polyacrylamide Gels

SDS-Polyacrylamide gel electrophoresis (PAGE) for protein analysis was prepared at

appropriate acrylamide concentration (5%-15% w/v) using a 30:1 ratio ofacrylamide to BIS

(Sambrook et al., 1989). Appropriate amounts ofacrylamide and BIS were dissolved in the

buffer of choice and filtered using a 0.45Jlm Nalgene filter. Immediately before pouring,

ammonium persulfate (prepared as a 10% concentrate and stored at 4°C) was added to a final

concentration of 0.1% (w/v), and 200JlI ofN', N', N', N' - tetramethylethylenediamine

(TEMED) to initiate polymerization. After pouring, the gel was allowed to polymerize

completely for a period of 1 hour and covered with isobutanol. After the polymerization, a

stacking gel (usually 2.5%) was prepared on top of the running gel. After the polymerization

of the stacking gel, the PAGE gels were used immediately thereafter without pre-running.

For samples that are used solely for SDS-PAGE, the protein samples are prepared by boiling

in protein loading dye (125mM Tris-HCI pH 6.8, 10% 2-mercaptoethanol, 10% SDS, 10%

glycerol and bromophenol blue) for 10 minutes. The samples are cooled in an ice bath

before loading onto the SDS gel.

The electrophoretic buffer used is Tris-glycine electrophoresis buffer (25mM Tris,

25mM glycine (pH 8.3) and 0.1 %SDS) SDS-PAGE gels are generally run at 15V/cm until

the migration front is one quarter of the gel length from the end by visual inspection.

The gel was generally stained with Coomassie brilliant blue solution (Coomassie

Brilliant Blue R250 0.25g in 45:45:10 v/v/v methanol: water: glacial acetic acid) for 4 hours.

The gel was destained with the wash solution (45:45:10 v/v/v methanol: water: glacial acetic

acid) overnight with changes every 3 hours.
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Batch Preparation of Plasmid DNA

Plasmid Extraction

Plasmid DNA, when needed in large quantities, was extracted using a scaled-up

alkali-SDS procedure (Bimboim and Doly, 1979). 2mL ofbacterial stock was added to

500mL of LB broth supplemented with the appropriate antibiotic and incubated overnight at

37°C with vigorous shaking. On occasion, chloramphenicol was added when the optical

density (OD6oo) was between 0.5 and 0.6 resulting in increase in plasmid yield. After

incubation overnight, the bacterial culture was transferred into a 250mL plastic tube and

centrifuged at 5000 rpm in a Beckman JA-14 rotor (4°C). After decanting the supernatant,

the cell pellet was resuspended in 10mL ofResuspension solution using a pipet. After

incubation at 37°C for 20 minutes, 10mL ofAlkali SDS was added and mixed by gently

swirling. The mixture usually turned relatively clear and viscous indicating complete lysis of

the cells. After 5 minutes incubation on ice, 10mL of acidic sodium acetate was added and

mixed by shaking the tube 1-2 times so the pellicle that formed broke into fine pieces. This

was incubated for at least 1 hour on ice. The relative purity of crude DNA extract appeared

to be correlated with incubation time. The insoluble pellicle was removed by filtration

through sterilized coffee filters with no prior centrifugation of the suspension. The liquid

portion was transferred to a fresh tube and 100mL of cold 95% EtOH was added. After

mixing thoroughly, the nucleic acids were pelleted by centrifugation at 13800 rpm for 15

minutes in the JA-14 rotor (Beckman J2-MI). The pellet was resuspended in 10mL of sterile

TE buffer (50mM Tris-CI pH 8.0 and 10mM EDTA) and at least 2 volumes of cold EtOH (

20°C) was added for the second precipitation. The tube was once again centrifuged as above

and the pellet resuspended in the appropriate amount ofTE buffer (approximately 8.5mL).
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CsCl-Ethidium BrolDide Isopycnic Centrifugation

The crude DNA preparation was further purified by cesium chloride and ethidium

bromide centrifugation. To the resuspended DNA pellet, approximately 10g of cesium

chloride (Bioshop) were added and mixed thoroughly until completely dissolved. The

density was adjusted by adding more cesium chloride until it reached 1.58-1.60g/mL

(checked by weighing ImL of solution). The solution was transferred into a Beckman

ultracentrifuge tube and 0.5mL of 5% (w/v) ethidium bromide was layered on top. The tube

was sealed by the appropriate stopper and care was employed to avoid any air bubbles. The

resulting tubes were centrifuged in a Beckman L-series Ultracentrifuge for 22 hours at

60,000 rpm at 20°C in an NVT65 rotor.

The DNA band that migrated at a higher density was extracted by puncturing the side

of the tube with an 18G needle and collected with a disposable syringe. The band, when

intense, could be seen in ordinary light. The ethidium bromide was extracted repeatedly with

2 or more volumes of CsCI-saturated TE-isoamyl alcohol until the no traces ofpink were left

in the aqueous phase (bottom layer). Finally, the DNA solution was extensively dialyzed

against O.IX SSC buffer (prepared as a 20X stock containing 3M NaCI and 0.3M sodium

citrate). The buffer was changed after 1 hour, and then again every 24 hours for 2 days.

After dialysis, the DNA preparation was stored at -20°C for extended storage or at 4°C if to

be used frequently.

DNA Sequence Analysis

The sequencing of the appropriate clones was done using Visible Genetics Inc.'s

CyTM5.5 Dye Primer kit along with the Opengene™ automated DNA sequencing system.

The sequencing was performed as per manufacturer's protocol, using primers 291F and

552R, with the following cycling conditions:
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Table 5: Cycling conditions for DNA sequencing reaction

Cycle(s) Temperature Time
1 95°C 3 minutes
30 95°C 1 minute

54°C 1 minute
72°C 1 minute

1 72°C 7 minutes

Purification of DNA from Agarose Gels

Restriction fragments greater than 300bp were fractionated by agarose gel

electrophoresis and purified using a) commercially supplied GeneClean® kit from Bio101 or

b) in-house gel purification kit GelSelect from Norgen. Detailed procedure followed as per

manufacturer supplied protoco1. Desired fragments were manually excised from the agarose

gel and the volume was determined by weight. Three to five volumes of 6M sodium iodide

were added to.the gel slice and heated to 55°C for 5 minutes to melt the gel slice. Visual

confirmation is performed to ensure that gel slice has completely melted. The melted gel

solution was loaded onto the binding columns and centrifuged at 14,000 rpm for 1 minute,

and flow-thru was discarded. 400J.lL of the wash solution were added to the column and

centrifuged at 14,000 rpm for 1 minute. Flow-thru was once again discarded. Finally,50J.lL

to 100J.lL of elution buffer were added to elute the DNA from the binding matrix.

Determination of DNA concentration

For many applications, the precise concentration ofDNA stocks was not absolutely

required. For example, standard cloning techniques allow a wide range ofnear-optimal
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conditions that quite often guarantee the success of obtaining the proper clones without the

need to know the precise DNA concentrations of reactant fragments. However, in cases such

as transfection assays, knowledge of the concentration ofplasmid DNA used was necessary

for quantitative calculations. The following combination ofvarious methods to determine

DNA concentration was applied for various uses.

Optical Density determination of DNA concentration

First, the concentrations ofDNA stocks purified by cesium chloride and ethidium

bromide isopycnic centrifugation technique were approximated by obtaining the optical

density of a diluted solution at 260nm. In the second step, the determined OD26o was used to

prepare a diluted DNA stock at 1OOngiJ.!L. In cases where purity had to be assessed, the

OD28o was also determined and its relative purity determined by the ratio of OD26o to OD28o

as according to Sambrook et ale (1989).

Diphenylamine Method

In cases where purification was performed using Norgen's DNA binding resin, the

concentration ofDNA could not be obtained by optical density due to contaminating micro

particles. As such, the absolute concentration in these preparations was then determined by

the diphenylamine method using a standard DNA solution of salmon sperm DNA whose

concentration was determined from its optical density at 260nm wavelength.

The modified diphenylamine assay was adapted from Giles and Myers (1965). Since

this was a colorimetric reaction assay, the concentration was expressed as an interpolated

value from a standard curve established by a simultaneous assay with known amounts of
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salmon sperm DNA. Thus, the DNA sample was diluted in doubly distilled water to a final

volume of 250J..lL in a glass disposable test tube. Using a Pipetman®, 250J..lL of20%

perchloric acid was added and mixed by shaking the tube slightly. Immediately after, 500J..lL

of 4% diphenylamine (w/v in glacial acetic acid) was added and mixed. To this 50J..lL of

0.15% acetaldehyde was added. The samples were incubated overnight at room temperature

to allow a complete reaction to occur. The absorbance of the samples was determined at

wavelength 595nm using a Beckman® DU7 Spectrophotometer. Although a single

wavelength reading at 595nm was normally sufficient, the results were invariably improved

if a second reading at 700nm was subtracted from the first value.

The standard curve which was used to determine the unknown values was established

using Microsoft Excel. Thus, the paired data (amount ofDNA vs. OD595-0D700) were

entered and the regression line was calculated. The reliability of the assay was assessed by

the correlation coefficient (R2
), in which case 0.95 was considered acceptable; otherwise, the

assay was repeated.

Mammalian Cell System

Three mammalian cell lines were used in transient expression assays: HeLa, HEK

293 and MDBK cells. HeLa cells were grown in a-minimal essential medium (a-MEM)

from Gibco BRL® supplemented with 10% donor horse serum (obtained commercially

through Cansera) and 1% Glutamax™, which was a commercially available dipeptide of 1

ala-l-glu. For prophylactic purposes, 100X antibiotic/antimycotic solution was obtained from

Gibco BRL®, which, at working concentration, contained penicillin G sodium (100 U/mL),

streptomycin sulphate (100 J..lg/mL), and amphotericin B (2.5 J..lg/mL). HEK 293 cells were

obtained from the American Type Culture Collection and were grown in a-MEM
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supplemented with 10% fetal bovine serum and the above supplements. MDBK cells were

also grown in a-MEM with similar supplements. The only difference was that 10% bovine

serum was used instead of fetal bovine serum.

Growth in Tissue Culture Dishes

All cells were propagated as monolayers in Sarstedt 150mm culture dishes and

maintained in 37°Cincubators with 96% humidity and 5% CO2• HeLa and MDBK cells

were passaged as follows. Cells were checked until they reached approximately 70%

confluence. The spent medium was removed by vacuum aspiration and the cells were

washed with 5mL ofversene (per Litre: 1.0g glucose, 0.4g KCI, 8.0g NaCI, 0.58g NaHC03

and 0.2g EDTA) once. 0.025% Trypsin (Gibco) in versene was added at 3mL/dish and

incubated at 37°C for 2 minutes. After the cells in culture had partially detached (as

indicated by rounding of the cells) from the bottom of the dish, the cells were completely

dislodged by slightly tapping the side of the dish. Fresh medium was added, as proteins in

serum inhibit trypsin activity, and cells were evenly distributed in a 1:2 fashion to fresh

culture dishes. To avoid possible damage to delicate HEK 293 cells, the following

modification was made. The HEK 293 cells were washed and incubated in IX saline-citrate

(150mM NaCI, 15mM sodium citrate, pH 7.0) without the addition of trypsin.

Maintenance of Cells Used in Transfection Assays

The maintenance of cells used in transfection assays required more care to minimize

variability that is often associated with this type of assay. First, cells were never allowed to

reach full confluence, which greatly affected the rate at which the cells would take up DNA.
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Secondly, trypsinized cells were counted in a haematocytometer to determine the

concentration of cells to be seeded to reach approximately 50% confluence in the following

day. However, the seeding concentration varied between cell lines and was determined

empirically since the doubling rate of each cell line differs greatly. Third, cells were

typically trypsinized for a shorter duration so as to avoid the possibility of cell damage

during incubation. Finally, a-MEM supplemented with 10% fetal bovine serum was used for

all cells the passage before the transfection assays.

Transfection Assays

Preparation of Carrier DNA

High molecular weight DNA (genomic) used in transfection studies was extracted

from cell monolayers. Cells close to confluence were washed with sterile distilled water or

PBS-, and to each 150cm dish, 5mL ofSDS-pronase solution (0.5mg/mL pronase in a buffer

containing 10mM Tris-CI (pH 7.5), 5mM EDTA and 0.1% SDS) was added. The solution

was spread evenly by tilting the dish several times, and then the dish was placed in a cell

culture incubator for 15 minutes. The mixture from the dishes was scraped using a sterile

silicon-rubber policeman and transferred into a 50mL plastic centrifuge tube for further

incubation (3-16 hours) at 37°C. Alternatively, incubation was done at 52°C for a shorter

duration (1-3 hours). The mixture was extracted twice with one volume ofbuffered-saturated

redistilled phenol (with 0.1 % 8-hydroxyquinoline) and once with one volume ofwater

saturated chloroform to remove residual phenol. The aqueous phase was recovered and

placed in a beaker to which sodium acetate (pH 8.0) was added to a final concentration of

0.2M. To precipitate the DNA, greater than 2 volumes of ethanol (-20°C) was poured slowly
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into the isolated aqueous phase. The solution was mixed gently and a glass pipette was used

to assist in the spooling of the DNA. The spooled DNA was then dried briefly and dissolved

in TE buffer (pH 8.0). Short term storage of carrier DNA occurred at 4°C, while long term

storage was at -70°C.

Prior to transfection, the genomic carrier DNA was sheared by passing it through a

fine needle (20G) and syringe.

Transfection Using the Calcium Phosphate Technique

Transfection assays using the calcium technique (Graham and van der Eb, 1973) were

carried out using HeLa, 293 and MDBK cells. The transfection cocktail was prepared as

follows. Into one 15mL centrifuge tube 2mL of 2X HEPES-buffered saline (2X HEBS,

prepared by dissolving 8.0g NaCI, 0.37g KCI, O.lg Na2HP04, 5.0g HEPES and 1.0g glucose

in 500mL distilled water; adjusted to pH 7.1; autoclaved, stored at 4°C), was dispensed at

room temperature. In a separate tube, the plasmid and carrier DNA were mixed together and

the final volume was adjusted to 1.5mL with TE (pH 8.0) buffer. The amount of carrier

DNA used was empirically determined according to the method of Graham and van der Eb

(1973). To this tube, 0.5mL of 1M CaCl2 was added, mixing the solution well. After a brief

low-speed centrifugation to collect the solution at the bottom of the tube, the solution was

added dropwise to the other tube containing 2X HEBS with constant swirling. A fine

precipitate was formed and the size ofprecipitate correlated to the success of the assay, with

finer precipitate resulting in better transfection efficiency; the cocktail was allowed to stand

at room temperature for 10 minutes prior to addition to the cells. Three to four hours after

the addition ofDNA, the medium was replaced with fresh a-MEM supplemented with 10%
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fetal bovine serum. Approximately 24-72 hours after the initial addition ofDNA, the cells

were analyzed by a variety of assays (see below).

Preparation of soluble protein extract

Freeze-and-thaw technique

Cells were washed once with 5mL of ice-cold PBS- and aspirated. To collect all the

cells from the culture dish, 1mL ofPBS- was added and the culture dish surface was scraped

with a silicon rubber policeman. The resultant cell suspension was transferred into a 1.5mL

Eppendorftube. Cells were collected to the bottom by a 10 second centrifugation at 12,000g

and the cell pellets were either immediately used or kept at -70°C until needed.

To prepare soluble protein extracts, the cell pellet from one dish was resuspended in

200JlL of freeze/thaw buffer (FT; 10mM Tris-CI pH 7.4, 10mM EDTA, 25mM sucrose) by

vortexing for several seconds. Cells were broken by four cycles of freezing in liquid nitrogen

(30 seconds) and thawing in a 37°C water bath (5 minutes). Cellular debris was separated

from the cytoplasmic extract by centrifugation for 5 minutes at 4°C using a bench-top

microcentrifuge. The clear supernatant was transferred into a fresh tube and was used

immediately or kept at -70°C until needed.

Single Detergent Lysis

The method of extracting soluble proteins from cells was performed essentially as

described by Sambrook et al., 1989. Cultured mammalian cells were grown to near

confluence. The medium was aspirated, and cells were washed three times with ice-cold IX
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PBS-. To the cells, 2ml of the single-detergent buffer (50mM Tris-CI pH 8.0, 150mM NaCI,

0.02% sodium azide, 100Jlg/mL PMSF, 1Jlg/mL aprotinin and 1% Nonidet P-40) was added

and incubated on ice for 20 minutes. After the incubation, cells were scraped with a rubber

policeman. Using a pipette, the cell debris and lysis buffer were transferred to a chilled

Eppendorftube. The lysate was centrifuged at 12,000g for 2 minutes at 4°C. The

supernatant was transferred to a fresh Eppendorf and stored on ice before proceeding to the

next step. Long-term storage of the soluble protein extract occurred at -70°C.

Quantitation of Protein Concentration

The BioRad protein assay, which was based on the Bradford assay (Bradford, 1976),

was used to determine the concentration ofproteins in the various soluble protein extracts. In

this assay, the standard curve was established using known amounts ofbovine serum albumin

(BSA) that were commercially obtained from NEB (10mg/mL BSA as supplied with

Restriction Enzymes) to construct a standard curve. The concentrations ofprotein samples

were determined based the standard curve ofknown protein concentration. While this

method sufficed in the determination ofprotein concentration isolated via the freeze-thaw

method, the well-documented interference of detergents causing overestimation ofprotein

concentration prompted the use of an alternative means of quantification.

BioRad Assay

The BioRad assay is a dye-binding assay in which a differential color change of a dye

occurs in response to various concentrations ofprotein. The absorbance maximum for an

acidic solution of Coomassie Brilliant Blue G-250 due shifts from 465nm to 595nm when

binding to protein occurs (BioRad Assay manual).
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The dye reagent was prepared by diluting the Dye Reagent Concentrate 5-fold with

distilled water. The solution was filtered to remove particulates, and 200JlL of the Dye

Reagent is added to 800JlL of unknown protein samples and vortex briefly. The solution was

incubated at room temperature for 5 minutes and absorbance reading was taken at 595nm.

As stated above, the concentration of the protein is determined by comparing to the standard

curve constructed using known amounts of a protein standard (i.e. BSA).

Bicinchoninic Acid (BCA) assay

The principle of the bicinchoninic acid (BCA) assay is similar to the Lowry

procedure, in that both rely on the formation of a CU2+-protein complex under alkaline

conditions, followed by reduction of the Cu2+to Cu+. The amount of reduction is proportional

to the protein present. BCA forms a purple-blue complex with Cu+ in alkaline environments,

thus providing a basis to monitor the reduction of alkaline Cu2+ by proteins at absorbance

maximum of 562 nm (Sigma BCA protein assay manual). An advantage of the BCA method

ofprotein determination is its tolerance to a host of common laboratory detergents such as

Triton X-lOO, Tween 20 and Nonidet P-40.

To prepare the BCA protein dye solution, one volume of copper sulfate solution was

diluted with 50 volumes ofBCA solution. 2mL of the BCA protein dye solution were added

100JlL ofprotein samples and incubated at room temperature for 30 minutes. The resulting

absorbance was taken at 562nm. As stated above, the concentration of the protein was

determined by comparing to the standard curve constructed using known amounts of a

protein standard (i.e. BSA).
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Enzymatic Assays

A popular and inexpensive method for assaying ~-galactosidase activity in cell

extracts is a colorimetric method based on the hydrolysis of o-nitrophenyl-~-D-

galactopyranoside (colorless) into a yellow product o-nitrophenolate (Miller, 1972).

To assay for ~-galactosidase activity, 50JlL of the total extract was added to a

reaction mixture containing 150JlL ofZ buffer (60mM Na2HP04, 40mM NaH2P04, 10mM

KCI, 1mM MgS04 and 50mM ~-mercaptoethanol,adjusted to pH 7.0) and 40JlL of 4mg/mL

o-nitrophenyl-~-galactopyranoside(ONPG from Sigma, in 60mM Na2HP04, 40mM

NaH2P04in distilled water; stored in small aliquots at -20°C), and incubated at 37°C. The

reaction was stopped by adding 100JlL of 1M Na2C03 normally after 30-60 minutes

incubation. The extent of the reaction was quantified by determining the spectroscopic

absorbance at 420nm and the specific activity was calculated using the following formula:

Specific Activity

(Units/mg)
At2o/0.0045

Incubation time (mins) * Amount ofprotein (mg)

Plasmid digestion assay

To assess the amount ofDNase activity in the various soluble protein extract from

various cell lines, a plasmid digest assay was devised. Plasmid DNA, pCMV-~, was

incubated with various soluble protein extract obtained in section Single Detergent Lysis.

The plasmid vector pCMV-~ was first cut with the restriction enzyme HindIII to allow for a

more accurate densitometry reading. The concentration of each of the soluble protein extract

was determined by either the Bradford assay or the BCA assay, and subsequently normalized
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to the same concentration by preparing dilutions with the triple detergent lysis buffer. After

inactivating HindIII as per manufacturer's protocol, approximately 0.5J.lg ofHindIII-

linearized pCMV-~ was added to the normalized soluble protein extracts and incubated at

37°C for 30 minutes. The reaction was terminated by phenol-chloroform extraction, and the

aqueous layer was assessed by agarose gel electrophoresis. Staining of the agarose gel with

ethidium bromide occurred after gel electrophoresis was completed. Densitometry readings

were obtained by either BioRad densitometry software or Alphaimager AlphaEaseFC.

Inhibitors of plasDlid digestion assay

Various inhibitors, as described in chapter III, were added to examine the effects of

inhibitors to differentiate the various DNases based on biochemical characteristics.

Essentially, the assays were the same as above except for the addition of the inhibitors.

However, additional controls were performed to ensure that the effects of the plasmid

digestion assay were solely caused by DNases and not instability of the plasmid in the

presence of the inhibitors. The same amount ofplasmid was left to incubate under identical

conditions except the soluble protein extracts were not included. Similar densitometry

analysis was performed for the inhibitor incubation control. Where the inhibitors were found

to affect the stability of the plasmid, the disappearance of the plasmid was calculated to give

a mathematical normalization curve to use to subtract the effects of the degradation by

DNase activity from the effects of the incubation with the inhibitor alone.
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Rapid Cloning of eDNA ends (RACE)

RNA isolation

Total RNA was extracted from MDBK cells using Norgen RNA binding kit (beta).

Culture dishes ofMDBK cells grown to 75% confluence were washed three times with 5mL

of ice cold PBS. After the PBS was aspirated, cells were lysed by adding 2mL ofNorgen

RNA Lysis buffer (4M guanidine HCI, 0.025M sodium citrate, 0.25% NP-40) and were

incubated, on ice, for 10 minutes. The Norgen RNA binding columns were activated by

adding 400JlL ofActivation buffer (4M guanidine HCI) and collected via centrifugation

(14,000g for one minute). The totallysates were added to the column and collected. The

bound total RNA was washed twice with the Wash solution (70% EtOH, ImM EDTA and

10mM Tris-CI). Total RNA was eluted with 100JlL of the Elution buffer (5mM Tris-CI,

ImM EDTA, pH 9.0). The integrity of the extracted RNA was verified by the denaturing

agarose gel electrophoresis. When the 18S and 28S RNAs were clearly visible without

smearing, the RNA was deemed to be fit to carry onto the cDNA synthesis (Refer to the

section under Denaturing Agarose Gels).

Cloning of DNase y using 5' RACE

The RACE procedure was carried out as described by the Ambion RLM-RACE kit.

The procedure contained numerous modifications to the PCR-based amplification as

described by Frohman et al., 1988. To enhance the likelihood of success of 5' RACE, a few

enzymatic reactions were performed. Total RNA was treated with Calf Intestine Alkaline

phosphatase (CIP) to remove free 5'-phosphates from molecules such as ribosomal RNA,

fragmented mRNA, tRNA and contaminating genomic DNA. The pyrophosphate cap that

116



typically accompanies that ofmRNA is unaffected by CIP. The RNA was then treated with

Tobacco Acid Pyrophosphatase (TAP) to remove the cap structure from full-length mRNA,

leaving a 5'-monophosphate. Since other contaminating species have been altered by CIP,

the only 5' -monophosphate that is needed for ligation with a 45 bp RNA Adapter

oligonucleotide should have stemmed from only non-degraded, full length mRNA. After

RNA ligation using T4 RNA ligase, first strand cDNA was obtained by reverse transcription

reaction using random hexamers. The cDNA was then subjected to nested PCR using a 5'

RACE primer complementary to the RNA adapter and a gene specific primer in each PCR

amplification.

Cloning of DNase y using 3' RACE

First strand cDNA was synthesized from total RNA, using a 3' RACE adapter. The

cDNA was then subjected to PCR using one of the 3' RACE primers which were

complementary to the anchored adapter, and a gene specific primer.

Reverse Transcription and cDNA synthesis

Reverse transcription ofRNA was performed using Superscript II reverse

transcription kit from Invitrogen. Up to 5Jlg ofRNA (in 5uL) were mixed with IJlL of

random decamers (or 3' RACE adapter for 3'RACE applications) and heated to 70°C for 10

minutes. The RNA-primer solution was then immediately put on ice. To the solution, the

following were assembled: 2JlL of5X first-strand buffer (250mM Tris-HCI, pH 8.3 at RT,

375mM KCI, 15mM MgCI2), IJlL ofO.lM DTT and IJlL ofdNTP mix (10mM each of

dATP, dCTP, dGTP, dTTP). The mixture was vortexed briefly and incubated at 42°C for 2

minutes. 0.5JlL of Superscript II was added and incubated at 42°C for 50 minutes.
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Polymerase Chain Reaction (PCR) amplification

PCR amplification was performed using a MJ MiniCycler. Generally, the conditions

varied slightly depending on the primer pair melting temperature and expected size ofPCR

product. For detailed examination of the cycling conditions, please refer to

http://info.med.yale.edu/genetics/ward/tavi/Guide.html.Toincrease likelihood of success, a

technique known as Hot Start PCR was performed. In a PCR tube, the following reagents

were assembled: 1-2J.lL ofDNA sample, 5J.lL* of lOX PCR buffer (750mM Tris-HCI (pH 8.8

at 25°), 200mM (NH4)2S04, 0.1 % Tween 20), 5J.lL*of 25mM MgCI2, 1J.lL of 10mM dNTP

mix, 2J.lL*of each PCR primer (15mM stock) and MilliQ water to 45 J.lL total volume. 5J.lL

of sterile glycerol was pippetted on top of the reagents and placed in the thermocycler, where

the thermocycling program began (see below). In another Eppendorftube, IJ.lL of Taq

polymerase was added to 4J.lL ofMilliQ water and placed on ice. After the first denaturation

step (3 minutes), the thermocycler was paused, and the Taq polymerase solution was added

quickly to each reaction. The typical thermocycling conditions were shown in Table 6:

* Amount to be optimized for each peR reaction
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Table 6: Cycling conditions for a typical PCR reaction

Cycle(s) Temperature Time
1 95°C 3 minutes
30 95°C 1 minute

54°C 1 minute
72°C 1 minute

1 72°C 7 minutes
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Chapter III

Factors affecting transfection efficiency in mammalian cells

The cell cycle dependence of transfection efficiency

Evidence in the literature had suggested that transfection efficiency in mammalian

cells varies greatly depending on the stage of cell cycle (Strain et al., 1985, Yorifuji et al.,

1989, Goldstein et al., 1989). Most transfection methods, including some viral vectors,

require cells to be dividing to ensure success, which implies the need for cell cycle

progression for transfection to occur (Miller et al., 1990). Evidence suggested that

transfection efficiency was facilitated during mitosis due to the dissolution of the nuclear

membrane, which allowed transfected plasmid access to the nucleus without having to

traverse the nuclear pore (Wilke et al., 1996 and Mortimer et al., 1999). Nuclear import of

plasmid DNA is an energy dependent process whose efficiency decreases with increasing

plasmid size (Hagstrom et al., 1997). It is reported that plasmids greater than 1kb cannot

gain access to the nucleus through the nuclear pore complex without the presence ofnuclear

localization signal, which presents a major barrier as most plasmids require components that

are greater than 1kb (i.e. AmpR gene is approximately 1kb with promoter elements).

However, there is also evidence suggesting that the dissolution ofnuclear membrane is not

necessary for successful transfection to occur, and that nuclear pores allow for the passage of

120



plasmid molecules of4.3kb efficiently (Dean, 1997). The issue is one that remains to be

resolved.

Initially, examining the correlation between transfection efficiency and cell cycle

allowed for the elucidation of gene products that are differentially expressed during the

various cell cycles. By correlating genes expressed during the cell cycle that demonstrates

maximum transfection efficiency with genes expressed during the cell cycle that

demonstrates minimum transfection efficiency, elucidation of genes associated with

transfection is possible by subtractive hybridization. However, before subtractive

hybridization can be performed, there must be a demonstration of cell cycle dependence of

transfection efficiency. Literature report conflicting results in terms of the specific phase of

the cell cycle at which maximal transfection efficiency occurs (S-phase: Grosjean et al., 2002

and Giulotto and Israel, 1984 and G2/M phase: Goldstein et al., 1989). Thus, the cell cycle

effects were examinded by synchronizing HEK-293 cells and performing transfection at

various time points after the synchronization agent is removed. Cell synchronization is

achieved by a variety of chemical means, which would lead to the cell cycle arrest of the

entire population of cells. Upon the removal of the arresting agent, cell cycle presumably

continues as a population and thus the term "cell synchronization", signifying the

homogeneity of the cell cycle progression as a population. Subsequently, transfection assays

would be performed, thus, establishing the cell cycle that exhibits maximal transfection

efficiency. Using a widely accepted method of cell synchronization, HEK-293 cells were

treated with the double thymidine block protocol. Thymidine causes G liS arrest and cell

population would enter S phase synchronously after the block is removed (Harper, 2004).

However, double thymidine block cannot ,achieve a high state of cell-cycle synchrony in the

cell population (Cao et al., 1991). This effect, coupled with the usual noise associated with

the ~-galactosidasebased transfection assay, complicated the analysis ofnormal transfection
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data. To remedy this problem, a newer protocol was adopted in which greater than 90% of

cell synchrony was reported by a double thymidine block, followed by a mitotic shake off.

Cells that are obtained by mitotic shake offwould be treated further with the DNA

replication inhibitor, hydroxyurea (Knehr et al., 1995). Aside from the laborious nature of

this synchronization technique, transfection studies revealed that the additional hydroxyurea,

which was intended to improve cell synchronization, completely inhibited transfection, to a

point where no B-galactosidase activity was detected within a 6-well plate.

With evidence suggesting the numerous pleotrophic effects of cell synchronization

chemicals (Cohen and Studzinski, 1967 and Cooper, 2004), coupled with the difficulty of

reconciling the data noise based on the traditional double thymidine approach, the approach

ofutilizing cell synchronization agents to correlate transfection efficiency with a specific

phase of the cell cycle became unattractive. Without establishing a specific phase of the cell

cycle exhibiting highest transfection efficiency, elucidation of transfection associated gene

became impossible. Thus the approach had to be changed to study these transfection

associated genes.

The cell line dependence of transfection efficiency

Lin et al., (1994) demonstrated that cell lines differ in their propensity to be

transfected. An approach was devised to elucidate cell line specific genes that are associated

with transfection.

With an increase in understanding and development ofnewer transfection

methodologies, transfection efficiency has been significantly enhanced in certain cell lines.

However, when compared to viral vectors, non-viral means of gene transfer remain generally

low in transformation efficiency. Generally, for the molecular biologist, cell lines are chosen
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based on their transfection efficiency and their relevance to the topic of investigation. Then,

a vector of gene transfer is chosen depending on the utilization, safety and feasibility. For

example, HEK-293 cells are a popular cell line for transfection studies because of their innate

propensity to be transfected, even with the traditional calcium phosphate technique. In fact,

transfection efficiency has been reported to be as high as 90% of total cell population when

transfected with Lipofectamine 2000 (Technical resources from www.invitrogen.com).

However, cell lines that are generally refractory to transfection, such as fibroblasts,

yield consistently low transfection efficiency regardless oftransfection method (Segura et al.,

2001). Due to the technical difficulties encountered examining the cell cycle dependent

factors affecting transfection efficiency, it was reasoned that studying the factors that

attribute high transfection efficiency in one cell line and low transfection efficiency in

another could also reveal insights into general factors that affect transfection efficiency, and

perhaps isolate genes that affect transfection. Using commonly available cell lines with

established transfection efficiency (with HEK-293 cells transfecting the most efficiently, and

MDBK cells transfecting the least efficiently), the differences between cell lines were

examined in order to generate a model ofhow cell line dependent factors affect transfection

efficiency. Manipulation of the cell line dependent factors could serve to enhance

transfection efficiency of cell lines that are generally refractory to transfection. Thus, an

investigation of cell line specific factors that affect transfection efficiency was undertaken.

DNase activity of various cell lines

It was reasoned that transfection efficiency could differ between cell lines in 3

general areas: (1) plasmid DNA degradation, (2) plasmid DNA uptake and (3) expression of

transgene. In terms of differential plasmid DNA uptake, the plasma membrane presented a
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unique challenge to study plasmid DNA uptake. Furthermore, advancement in DNA delivery

methods has overcome the plasma membrane as the determining factor for successful

transfection. Examining differential expression of transgene would be exceedingly difficult

as it would involve direct introduction ofplasmid DNA into the nuclei of cells and evaluate

differences in transfection efficiency ofvarious cell lines. Of the three areas, differential

plasmid DNA degradation was the easiest to examine. The central assumption that passive

diffusion en route to the nucleus after internalization is adequate for expression of transgene

is not straightforward. There are numerous choke points that allow DNases access to

transfected plasmids. Thus, an approach was devised to examine whether there is a

correlation between transfection efficiency and plasmid degradation.

While there is a lot of information about nucleases present in the cell, their exact

physiological roles remain somewhat obscure. Other than their use as molecular biology

tools, few have examined why cells need such a diverse array ofnucleases. Until recently,

with the discovery of the role that caspase-activated DNase (CAD) plays in apoptosis (Enari

et al., 1997), DNases have been mainly associated with functions in recombination,

maintenance of genetic stability and transformation (Baranovskii et al., 2004).

The presence ofDNases became a possible explanation to account for differences in

transfection levels in a cell-specific manner. Potentially, cell lines that are refractory to

transfection may innately express a high amount ofDNases, and vice-versa. After all, the

conceptual linkage between the stability ofplasmid DNA within the cell after endocytosis

and transfection efficiency was one of simple logical progression. Ifnuclease activity was

extraordinarily high in a particular cell line, degradation of transfected plasmid would not

allow for intact plasmids to find their way into the nucleus. Once internalized, one can

envision that the majority of intact plasmids do not survive under the onslaught of the slew of
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DNases. As a result, the degradation ofplasmid DNA in transition to the nucleus may

present a major obstacle in transfection.

To test the validity of the above hypothesis, a traditional technique of obtaining a

soluble protein extract, using a single detergent lysis method, was used to assess DNase

activity (Sambrook, Fritsch and Maniatus, 1989). Using the reporter plasmid pCMV-~, the

disappearance ofplasmid DNA due to DNase degradation, upon the incubation in different

soluble protein extracts, was measured. Commonly available cell lines were chosen based on

their established levels oftransfection efficiency, with the HEK-293 cell line generally

exhibiting the highest levels of transfectability and MDBK being the most refractory to

transfection. The HeLa cell line served to show an intermediate'range oftransfection

efficiency. Cell lines were grown to approximately 50% confluence, which would

correspond to the general population density during transfection, and soluble protein extracts

were normalized in terms of amount ofprotein present. It was reasoned that a cell line

exhibiting a high level ofDNases would so reflect not only on a per cell number basis but

also on a per protein concentration basis. Due to the presence of detergents, the BioRad

protein assay was replaced by the BCA assay for protein quantification due to observable

detergent interference (see Appendix B). The BCA assay is reported to tolerate up to 1.0%

ofNonidet-P40 in the protein sample without causing interference with quantitation accuracy

(http://www.sigmaaldrich.com/Area_0 f_Interest/Life_Science/Proteomics_and_Protein_Expr

.JProtein_Analysis/Protein_Quantitation/Bicinchoninic_Acid_Kit.html).

Generally, plasmid integrity is rigorously tested before transfection studies are

conducted. Thus, to examine differential plasmid DNA degradation by soluble protein

extracts as a means of inferring information about behavior of transfected plasmids,

incubation of supercoiled plasmids would be an appropriate choice since it represented more

closely the state of transfected plasmids (over linearized plasmids, per se). However, using
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the densitometry software, it was discovered that the quantification of intact plasmids and

summing their integral areas (two bands representing two conformations ofplasmid DNA:

nicked and supercoiled) was less accurate than quantification of a singular band stemming

from linearized plasmids, possibly due to differential binding of ethidium bromide by

conformational effects. Thus, in order to increase our accuracy ofplasmid quantification

using densitometry, the plasmid, pCMV-B, was linearized with the restriction enzyme

HindIII. The enzyme was heat inactivated for 20 minutes at 65°C instead of

phenol/chloroform extraction as it was feared that phenol/chloroform contamination may

inhibit nuclease activities of the soluble protein extracts.
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Figure 6: The effects of linearized pCMV-P incubated with the soluble protein extracts obtained

from HEK-293, HeLa and MDBK cells (representative gel electrophoresis photo). Temperature

of incubation was at 37°C. (C - no soluble protein extract control; 1 - time point at 0 minutes;

2 - time point at 30 minutes; 3 - time point at 60 minutes; 4 - time point at 90 minutes; Marker

lane - Norgen Biotek FullRanger)
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Figure 7: The effects of linearized pCMV-P incubated with the soluble protein extracts obtained

from HEK-293, HeLa and MDBK cells using AlphaEaseFC densitometry software. The percent

ofplasmid remaining is obtained by the expressing the densitometry readings at the various time

points as percentages of the control (time point at 0 minute). These are resulting means of three

trials conducted simultaneously.
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From literature, HEK 293 cells generally exhibit transfection efficiency of 35%

(Jordan et al., 1996) with HeLa generally exhibiting around 17% (Chen and Okayama, 1987)

and MDBK known for its low transfection efficiency. Using this plasmid digestion assay,

we observed that the literature values of transfection efficiency ofvarious cell lines

correlated negatively with the cell-line specific DNase activity, which agreed with our

hypothesis. While it is uncertain whether the presence ofDNases alone can account for all of

the difference in their respective ability to undergo transfection, it is reasonable that, ceteris

paribus, a cell line exhibiting a high amount ofDNases would result in the lowering of

exogenous plasmid half-life, resulting in lower transfection efficiency.

Following the DNase digestion assay, the intensities of the remaining bands, stained

by ethidium bromide, were captured by the BioRad GelDoc system, and the resultant picture

analyzed using the densitometry software AlphaEaseFC. Visual inspection ofFigure 6

revealed that plasmid stability is lower in the presence ofMDBK soluble protein extract.

From Figure 7, there was only 20% of the initial amount ofplasmid left intact after 30

minutes of incubation with the soluble protein extract from the MDBK cell line. This was

sharply contrasted by the results obtained from HEK-293 cells, which showed approximately

60% of the initial plasmid intact, with HeLa achieving an intermediate value of 50%. After

90 minutes of incubation, virtually none of the plasmid remained for MDBK. Thus, it was

concluded that the level ofDNase activity of the MDBK cell line far exceeded that of the

HEK-293 cell line, with HeLa demonstrating an intermediate level ofDNase activity. As a

preliminary step, these results were consistent with the notion that DNases are involved in

reducing transfection efficiency in a cell-line specific manner.
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Isolation of the DNase target for further evaluation

Because of the presence ofnumerous DNases within a cell, the observation that the

MDBK cell line contained the highest amount ofDNase activity most likely stemmed from

the combined effects ofvarious individual DNases (i.e. DNase I, DNase IL2, DNase ¥,

DNase X, DNase II and DLAD, to name a few). With the eventual knockdown studies in

mind, isolation of fewer potential target DNases for further evaluation was to be performed

by segregating the possible members based on a variety of characteristics. These

characteristics include various chemical inhibitors and biochemical characteristics.

Evaluation of the pH profile of MDBK soluble protein extract

Based on the fact that the MDBK cell line, whose transfection efficiency is the lowest

of the group, possesses the highest amount ofDNase activity in its soluble protein extract,

gene knockdown ofa the predominant DNase may enhance transfection efficiency. If that

proved to be true, it would provide evidence that DNase activity and transfection efficiency

share a causal relationship. However, with a wide range ofDNases available in the cells and

limited biochemical and sequence information available for some DNases, cloning and gene

knockdown of all possible DNases were not possible. Differentiating between the DNases in

the soluble protein extracts became a key to determine which DNase is the likely culprit.

From the literature, members ofboth DNase 1- and DNase II family ofDNases can be

segregated based on certain biochemical characteristics (Shiokawa and Tanuma, 2001 and

Evans and Aguilera, 2003). For example, members of the DNase I family ofDNases have

neutral pH optima while DNase II family members share an acidic pH optimum. Based on

the same soluble protein extracts obtained in the previous section, their pH profiles were
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examined using a modified version of the plasmid digestion assay, in a cell-line specific

manner. During the isolation of soluble protein extracts, the single detergent lysis solution

was buffered at pH 8.0. Additional buffers were added to yield a variety ofpH values

required from pH 4.0 to pH 9.0 during the plasmid digestion reaction. Essentially, pH values

outside of the ranges examined were physiologically rare and were thus omitted.

Furthermore, plasmid DNA stability is also impacted at extremely high or extremely low pH

values, which may skew the results.
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Figure 8: The effects ofpH on the DNase activity ofvarious soluble protein extracts.

Temperature of incubation was 37°C for 30 minutes (representative gel electrophoresis photo).

The lanes are as follows: C - Control; 1 - pH 4.0; 2 - pH 4.5; 3 - pH 5.0; 4 - pH 5.5;

5 - pH 6.0; 6 - pH 6.5; 7 - pH 7.0; 8 - pH 7.5; 9 - pH 8.0; 10 - pH 8.5; 11 - pH 9.0; Marker

lane - Norgen Biotek FullRanger
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Figure 9: The effects ofpH on the DNase activity of various soluble protein extracts using

AlphaEaseFC densitometry software. Representative DNase activity (RDA) is obtained by the

following formula:

RDA == 100% - (Amount ofplasmid in test lane)/(Amount ofplasmid in control lane)

The quantification ofplasmid DNA is obtained from AlphaEaseFC software using relative

densitometry techniques by integral areas. Incubation was performed at 37°C for 30 minutes.

Reaction was terminated with a phenol/chloroform extraction. Data is calculated from gel

electrophoresis photos ofFigure 8.
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Visual inspection ofFigure 8 yielded the observation that the DNase activity of

MDBK cells was extraordinarily high across all pH values from pH 4.0 to 9.0. Because of

the faint bands present in the MDBK gel electrophoresis photograph, auto-exposure of the

BioRad GelDoc system corrected for the bands by increased exposure time. This resulted in

the slight darkening of the entire photo (Figure 8, MDBK), including that of control and

marker lanes. Although the gel photograph may appear otherwise, the amount ofplasmid

DNA used in each experiment during the pH studies were constant. Since all bands were

calculated based on internal controls, the calculated values of representative DNase activity

and the amount ofplasmid remaining were unaffected by the exposure adjustment.

Consistent with the observations obtained from the previous experiment (see section

under DNase activity of various cell lines), soluble protein extracts ofHeLa and HEK-293

demonstrated lower DNase activity than MDBK between the pH values of 5.5 to 9.0.

However, all extracts demonstrated the ability to degrade plasmid DNA extensively in the

acidic pH values (Figure 9), indicating that a large amount ofDNase activity was attributable

to the DNase II family ofDNases. Based on the observation that DNase II family ofDNases

was abundant in the protein extracts of all cell lines, including HEK-293 and HeLa, it was

reasoned that the likelihood of a member of the DNase II family being responsible for

plasmid DNA degradation in relation to transfection efficiency was low, due to the fact that

all cell lines had a common denominator, high DNase activity at low pH values. Moreover,

Ross et al. (1998) reported that DMI-2, a DNase II inhibitor, did not influence transfections

using calcium phosphate co-precipitation. Thus, the focus of the knockdown studies was

placed on members of the DNase I family ofDNases. The argument was that with a more

pronounced difference between the DNase activities of the cell lines, the evaluation of the

enhancement oftransfection efficiency can be assigned to a more measurable difference.

However, it cannot unequivocally be determined that DNase II family ofDNases did not
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contribute to the reduction of transfection efficiency, even in these cell lines. In fact, it has

recently been demonstrated that ID2-3, a DNase II inhibitor, resulted in the enhancement of

transfection efficiency using PEl and cationic lipoplexes (Sperinde et al., 2001).

Effects of zinc on DNase activity

The inhibitory effects of zinc on DNases have been thoroughly demonstrated in the

literature, and its effects encompass both DNase 1- and DNase II family ofDNases

(Laskowski, 1971 and Torriglia et al., 1997). While it was observed that plasmid DNA

disappeared over time when incubated in the presence of the soluble protein extracts,

contributed presumably by the DNase activity within the soluble protein extract,

demonstration of the inhibitory effects of zinc would allow us to attribute the disappearance

of the plasmid DNA to DNase activity, rather than DNA binding proteins. Although the

phenol-chloroform extraction step, which acted as the termination step of the incubation,

made it unlikely that DNA binding protein could have affected the disappearance, a

measurable inhibitory effect by zinc would solidify the fact. Using the plasmid digestion

assay, zinc chloride was supplemented at concentrations from 0.1 JlM to 3mM to examine

whether zinc could inhibit the disappearance of the plasmid DNA, when incubated with the

soluble protein extracts.
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Figure 10: The effects of zinc ions on the DNase activity of various soluble protein extracts.

Temperature of incubation was 37°C for 30 minutes (representative gel electrophoresis photo).

The lanes are as follows: C - Control (no zinc, no soluble protein extracts); 1 - Control 2 (no

zinc); 2 - O.IJ.lM (concentrations of zinc); 3 - 0.5J.lM; 4 - 1.0J.lM; 5 - 2.0J.lM; 6 - 5.0J.lM;

7 - 10.0J.lM; 8 - O.lmM; 9 - 1.0mM; 10 - 2.0mM; 11 - 3.0mM; Marker lane - Norgen Biotek

FullRanger
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Figure 11: The inhibitory effects of zinc ions on the DNase activity ofvarious soluble protein

extracts using AlphaEaseFC densitometry software. Representative DNase activity (RDA) is

obtained by the following formula:

RDA == 100% - (Amount ofplasmid in test lane)/(Amount ofplasmid in control lane)

The quantification ofplasmid DNA is obtained from AlphaEaseFC software using relative

densitometry techniques by integral areas. Incubation was performed at 37°C for 30 minutes.

Reaction was terminated with a phenol/chloroform extraction. Data is generated by averaging

the results of 3 trials.
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Figure 10 shows that zinc was able to inhibit the DNase activity within the soluble

protein extracts across all cell lines in a concentration dependent manner, confirming that the

disappearance ofDNA during the incubation was due to DNase activity, not DNA-binding

proteins. Figure 11 shows that zinc began to show inhibitory effects on DNase activity at

concentrations greater than 10J.lM (0.1 J.lM for HEK-293 extracts, 10J.lM for HeLa extracts

and 10J.lM for MDBK extracts). At a concentration of 1mM, zinc inhibited nearly all DNase

activity, even for the highly active MDBK soluble protein extracts (Figure 9, lanes 9 for all

cell extracts).

Since zinc has been documented as an inhibitor ofboth DNase 1- and DNase II

families ofDNases (Laskowski, 1971 and Torriglia et a!., 1997) and has the potential to form

complexes with DNA (Kejnovsky and Kypr, 1998), the above results prompted the strategy

of using zinc during transfection as a broad-base inhibitor ofDNases (see section The use of

zinc in CaP04 transfection as a means of enhancement).

An anomaly was observed in both Figures 9 and 10. At zinc concentrations above

1mM, zinc alone caused the degradation ofplasmid DNA during incubation, which is a well

documented phenomenon in literature (Torriglia et aI, 1997).

Effects of aurintricarboxylic acid (ATA) on DNase activity

One of the first reports of the use of ATA, as an inhibitor ofnucleases, was published

by Hallick et ale (1977). As a potent inhibitor ofDNase I family ofDNases, ATA has not

been shown to be an inhibitor ofDNase II. If ATA was observed to be an inhibitor of the

DNase activity in the soluble protein extracts, it would further strengthen the argument that

members of the DNase I family ofDNases are primarily responsible for the nuclease activity.

While ATA has shown to be discriminatory between the members of DNase I family of
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DNases based on inhibitory concentration at 50% (ICso), the use ofATA to distinguish

between the various members ofDNase I family was not possible because the soluble protein

extracts contained all of the members of DNase I family in various proportions. The

anticipated effect would be that the overall ICso of the soluble protein extract would lean

toward the ICso of its most predominant member, but may lead to erroneous conclusions.

Thus, using the same plasmid digestion assay, ATA was supplemented at concentrations of

1J.!M to 300J.!M to examine for inhibitory effects on the DNase activity of the various soluble

protein extracts.
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Figure 12: The inhibitory effects of aurintricarboxylic acid (ATA) on the DNase activity of

various soluble protein extracts using AlphaEaseFC densitometry software. Representative

DNase activity (RDA) is obtained by the following formula:

RDA = 100% - (Amount ofplasmid in test lane)/(Amount ofplasmid in control lane)

The quantification ofplasmid DNA is obtained from AlphaEaseFC software using relative

densitometry techniques by integral areas. Incubation was performed at 37°C for 30 minutes.

Reaction was terminated with a phenol/chloroform extraction. Data is generated by averaging

the results of 3 trials.
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As can be seen in Figure 12, the DNase activity ofMDBK soluble protein extract was

beginning to show signs of inhibition at ATA concentrations above 50J.lM, which would

translate into an ICso value higher than the reported value of 50J.lM for recombinant DNase I.

Similarly, inhibition ofDNase activity was also observed for HeLa, albeit at a lower

concentration of 5J.lM ATA. HEK-293 extracts, on the other hand, did not seem to show any

significant inhibition. A possible explanation for the lack of inhibition was that HEK-293

extracts exhibited low DNase activity in the first place, and thus, the sensitivity of

densitometry studies resulted in differences that were not quantifiable, indicative of the

detection limit of this method of analysis. A more likely scenario, however, was that the

presence of the DNase I family ofDNases was lacking in the soluble protein extracts of

HEK-293, which was also consistent with the results based on pH profiles of the DNase

activity performed earlier. Thus, the lack of observable inhibiting trend by ATA on HEK

293 soluble protein extract agreed with the previous suggestion that the DNase I family of

DNases is responsible for the nuclease activity present in high quantities in MDBK cells but

absent in HEK-293 cells.

Overall, the use ofATA in the plasmid digestion assay indicated that the presence of

ATA resulted in an observable inhibition ofDNase activity in the soluble protein extracts of

both MDBK and HeLa cell lines. Thus, further examination between members of the DNase

I family ofDNases was performed.

On a side note, due to the fact that ATA showed inhibitory effects on the DNase

activity ofMDBK extracts, the use ofATA as a means of enhancing transfection efficiency

was examined. However, the addition ofATA in culture media resulted in the death of

MDBK cells, even at concentrations as low as 1J.lM. Thus, the approach was abandoned.
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Effects of G-actin on DNase activity

While evidence seemed to suggest that members of the DNase I family ofDNases are

active in the soluble protein extracts ofHeLa and MDBK cell lines, an attempt to further

differentiate which DNase seemed to be most active was conducted. While there are

numerous members that belong to the DNase I family ofDNases, the only members that have

been thoroughly characterized are DNase I and DNase y (DN1L3). Through literature

search, monomeric actin, otherwise known as G-actin, was found to be a specific inhibitor of

DNase I and not DNase y (Blikstad et al., 1978 and Shiokawa and Tanuma, 2001). This

allowed for the investigation ofwhether the ubiquitous DNase I was the active DNase highly

expressed in MDBK cells. Again, using the plasmid digestion assay, the inhibitory effects of

G-actin on the DNase activity were examined on the soluble protein extracts of all three cell

lines.
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Figure 13: The inhibitory effects ofmonomeric actin (G-actin) on the DNase activity ofvarious

soluble protein extracts using AlphaEaseFC densitometry software. Representative DNase

activity (RDA) is obtained by the following formula:

RDA == 100% - (Amount ofplasmid in test lane)/(Amount ofplasmid in control lane)

The quantification ofplasmid DNA is obtained from AlphaEaseFC software using relative

densitometry techniques by integral areas. Incubation was performed at 37°C for 30 minutes.

Reaction was terminated with a phenol/chloroform extraction. Data is generated by averaging

the results of 3 trials.
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Figure 13 illustrates that G-actin, at concentrations up to 300Jlg/mL, did not result in

an observable reduction in the DNase activity in the soluble protein extracts from the MDBK

cell line. Based on other published reports, the ICso of G-actin on purified recombinant

DNase I was estimated at 2Jlg/mL (Shiokawa and Tanuma, 2001). Thus, the lack of

inhibition at 300Jlg/mL of G-actin suggested that DNase I alone could not account for the

nuclease activity observed in MDBK. In fact, it seemed that DNase I activity was

conspicuously absent. While it cannot be ruled out that the overlapping activities ofDNase I

and DNase y could have skewed the results, such that the total inhibition ofDNase I alone

was not sufficient to elicit an observable decline in DNase activity because of the presence of

high amount ofDNase y. Nonetheless, the inability of G-actin to inhibit DNase activity from

the soluble protein extracts from MDBK cells allowed for the assertion that high amounts of

DNase y activity are at least present in MDBK cells. While a participatory role ofDNase I

in the nuclease activity cannot be excluded, based on the evidence from the inhibition

studies, it is concluded that the likely candidate whose inhibition may cause an observable

increase in transfection efficiency is DNase y.

The use of zinc in CaP04 transfection as a means of

enhancement

Since zinc was shown to be a potent inhibitor ofDNase activity in the soluble protein

extracts (see section Effects of zinc on DNase activity) and has been reported to complex

with DNA (Kejnovsky and Kpyr, 1998), an approach of utilizing zinc during CaP04

transfection was devised. It was reasoned that any inhibition of cellular DNases would allow

for greater transfected plasmid stability, resulting in the enhancement of transfection. The
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approach consisted of: (1) adding zinc during the normal calcium phosphate technique, (2)

culturing MDBK cells with supplemental zinc, and (3) using zinc as a substitute for calcium

during the transfection procedure.

Using data obtained from Figure 11, DNase activity was shown to be inhibited at

concentrations of zinc at 10JlM or above. Zinc has been shown to be toxic to cultured

MDBK cells and thus the concentration of zinc that can be tolerated was empirically

determined. Based on previous optimization studies, the shortest amount of time during

which calcium phosphate-DNA co-precipitate was in contact with the cells was 4 hours.

Thus, various amounts of zinc (in the form of zinc chloride) from 1JlM to 10mM were

incubated for 4 hours on MDBK cells to test for toxicity. Medium was replaced after four

hours, and cells were visually inspected the next day. At 100JlM or above, the toxicity of

zinc was apparent as cells began to show more rounded morphology followed by detachment

from the culture dish. Further refinement of concentration indicated that at 500JlM, all of the

MDBK cells detached from the culture dish, and thus, zinc supplement was not practical for

use during transfection studies. Additional toxicity of zinc was observed when DNA co

precipitate was added to the culture dishes. Concentrations of zinc below 100JlM began

showing toxicity, as characterized by the detachment of cells, when DNA-calcium phosphate

coprecipitate was added in conjunction with zinc to the cells. Only extremely low

concentrations such as 1JlM and 10JlM did not result in significant cell death (Refer to Table

7).
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Table 7: The effects ofzinc on MDBK cells.

Cone. If.1M lOf.1M lOOf.1M 200f.1M 300f.1M 500f.1M 800f.1M ImM lOmM
of

zinc
No - - + ++ ++ +++ +++ +++ +++

DNA
CaP04 - + ++ +++ +++ +++ +++ +++ +++
DNA
ppt

- denotes no lifting of cells
+ denotes 0-15% lifting of cells
++ denotes 15%-30% lifting of cells
+++ denotes 90%-100% lifting of cells

The evaluation oftransfection efficiency ofMDBK cells treated with zinc became

difficult mainly because the addition of zinc resulted in cell populations that were far more

likely to become detached during the fixing and staining procedure. Thus, the overall

survivability of these zinc treated cells was far lower than that of control cultures. Moreover,

the small proportion of cells that remained attached did not demonstrate any significant

increase in transfection efficiency over control (without zinc), presumably because the

amount of zinc (i.e. 1JlM and 10JlM) was far too low to effectively inhibit DNase activity in-

vivo.

Because of the high toxicity of zinc, especially in the presence of calcium phosphate

co-precipitate, an attempt was made to bypass the difficulty by using zinc in place of calcium

for precipitation. By replacing the calcium phosphate with zinc phosphate, higher

concentrations of zinc can presumably be used before toxicity becomes an issue because of

the synergistic toxicity of calcium and zinc. However, whether zinc demonstrated the same

ability to complex with DNA remained to be seen.

Studies by Kejnovsky and Kypr (1998) had suggested that zinc and other metal

cations have the ability to cause DNA sedimentation in the presence ofphosphate anions.

Moreover, zinc chloride was found to be effective in forming insoluble precipitate with DNA
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at lower concentrations than that of calcium, which became an encouraging avenue for

further exploration. Adapting the centrifugation assay from Kejnovsky and Kypr (1998),

zinc chloride was examined as a calcium chloride substitute under transfection conditions.

While zinc chloride was found to be an effective agent in DNA complex formation under

transfection conditions, the concentration that was needed to cause DNA precipitation had to

be optimized to avoid similar toxicity problems. Under normal circumstances, 12.5mM

calcium is used in the transfection reagent, which clearly was far too high if zinc was to be

used. Further efforts to reduce zinc concentrations while retaining DNA complex formation

were undertaken. It was found that at concentrations of 1mM or higher, zinc retained the

ability to complex with DNA efficiently (Appendix B7).

While zinc was able to effectively cause DNA to form insoluble precipitate, the

concentration needed for complex formation remained far too high to avoid toxicity

problems. Using zinc phosphate at 1mM, transfection resulted in significant cell death as

attested to by morphology change and detachment from culture dish (Table 7). Thus, there

was not an overlapping concentration of zinc that "vas both non-toxic while retaining the

ability to form precipitate with DNA, and the approach was abandoned.
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Chapter IV

Cloning of bovine DNase 'Y and antisense construct

Antisense Inhibition of DNase 'Y

The use of antisense technology to knockdown or knockout a specific gene has been

extensively investigated in Caenorhabditis elegans, Drosophila melanogaster and various

plant species (Kumar and Carmichael, 1998). While conceptually simple, numerous

difficulties during its adaptation to mammalian studies have been well documented. These

difficulties include the lack of observable antisense effects, the presence of non-antisense

effects and the inability to distinguish antisense effects from non-antisense effects (Branch,

1998). Principally, the sequence information of the targeted gene is used to generate a

segment of RNA or DNA oligonucleotide, which can contain a variety of modifications to

enhance stability, that is complementary to the targeted mRNA. Upon the binding of the

antisense oligonucleotide to the sense RNA, double stranded segment ofDNA/RNA hybrid

is either targeted for degradation by RNase H (in the case of antisense

oligodeoxynucleotides) or translation is simply blocked by the occupation of the start codon

(Baker and Monia, 1999). Other mechanisms of antisense inhibition include prevention of

mRNA transport, splicing and translational arrest (Jansen and Zangemeister-Wittke, 2002).

However, antisense RNA is often not an effective means of gene targeting in mammalian

cells for a variety of reasons. Transfection of long dsRNA molecules (>30 nt) into most
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mammalian cells has been documented to cause nonspecific suppression of gene expression,

as opposed to the gene-specific suppression seen in organisms such as plants, protozoa,

insects and nematodes. This suppression has been attributed to an antiviral response, which

takes place through one of two pathways. In one pathway, long dsRNAs activate a protein

kinase, PKR. Activated PKR, in tum phosphorylates and inactivates the translation initiation

factor, eIF2a, leading to repression of translation (Manche et al., 1992). In another pathway,

long dsRNAs activate RNase L, which leads to nonspecific RNA degradation (Minks et al.,

1979). Yet, various groups have experienced success in using long dsRNA for targeted

suppression in mammalian cells, indicating that at least some mammalian cell lines have a

reduced propensity to elicit this antiviral response (Yang et al., 2001 and Paddison et al.,

2002).

Nonetheless, all gene-targeting methods begin with the sequence information of the

intended target. Since bovine DNase y has not been sequenced, the first step of investigation

would be cloning of the gene. Using sequence information available from NCBI, homologs

of other mammalian species were analyzed using clustal X software freely available from the

web site. (ftp://ftp-igbmc.u-strasbg.fr/pub/ClustaIX/) (Thompson et al., 1997) The species

included were Homo sapiens, Rattus norvegicus and Mus musculus.

148



* 460 * 480 * 500 *
Mus museul
Rattus nor
Homo sapie
Consensus AAAtTCAeGaAGAaGCAeaACaTACAACTAtGTGATTAGeTCTCGgCTTGGAAGAAAeACaTAt

315
511
386

520 * 540 * 560 *
Mus museul
Rattus nor
Homo sapie
Consensus AAAGAaCAgTATGCCTTeeTCTACAAGGAgAAGCTGGTGTCTGTGAAGaeaAaaTAeCaCTACC

379
575
450

580 * 600 * 620 * 640
Mus museul
Rattus nor
Homo sapie
Consensus

~~ :~:~:~:~~:~ :~~:~:~~~:~:~~::~~::~I:~:~::~~t:~~:~~~ ~ ~ :~::~~:~:~:~~~:~:~:~:~~ ~ :~~ ~:~~I~:~:~~~:~ :~:~ ":~
'u'.TGAI=,'TATCAI::;GATI::;GAG.'u'.I=,' CAG.'u' GTGTTTTI=,'I=,'AGGG.'u'.GCI=,"=,'TTTGTGI::;T TGGTTI=,'CA' ml="

ATGACTATCAGGATGGAGACaCAGAeGTGTTTTCCAGGGAGCCCTTTGTGGTtTGGTTCCA tC

443
639
514

Figure 14: The nucleotide sequence alignment of known DNase y (Mus musculus, Rattus

norvegicus and Homo sapiens) using sequence alignment software Clustal X. Perfect sequence

homology between nucleotides 572-597 and 604-628 allow for the generation ofPCR primers

used in the cloning ofbovine DNase y both in 5' and 3' RACE.
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5' RACE

To properly yield primers for PCR, the alignment was analyzed to yield regions of

homology that were 25 bases or longer. From the above alignment, there were only two

regions of sufficient length, which are presumably the catalytic domains of DNase y. The

homology sequence 5' -CTACCATGACTATCAGGATGGAGAC-3' and 5'

GTGTTTTCCAGGGAGCCCTTTGTGGT-3' which corresponded to nt 572-596 and 604

628, respectively according to the numbering system from the Clustal X alignment, were

selected to use as PCR primers for both 5' and 3' RACE.

RNA-ligation mediated Rapid Amplification of cDNA ends (RLM-RACE) was used

to clone the DNase y gene. RNA was isolated using the Norgen RNA-isolation method,

which was a silicon carbide based RNA-binding resin, to yield high quality total RNA. For

5' RACE, a RNA-ligase reaction was performed to attach a short segment ofRNA ofknown

sequence onto the DNase y mRNA. Synthesis of the cDNA was done by the reverse

transcriptase, Superscript II, as a part of the Reverse Transcription kit (from Invitrogen).

Random hexamers were used as primers. The 5' end of the gene was amplified using gene

specific primers: 5' GSOP: 5'-GCTGATGGCGATGAATGAACACTG-3' and 5' GSIP: 5'

CGCGGATCCGAACACTGCGTTTGCTGGCTTTGATG-3' by nested PCR. The typical

conditions were as described in Material and Methods, with various optimizations. The

resulting PCR products were cloned into plasmid vector pUC19 and sequenced based on

primers 291F and 552R. The resulting sequence was verified by a BLAST search on the

NCBI web site. The sequence of the 5' end ofbovine DNase y is given in Appendix B.
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3' RACE

The cloning of the 3' end ofbovine DNase y is similar in approach to the cloning of

the 5'end, with a few modifications. After isolation of total RNA, cDNA synthesis was

achieved using a modified oligo-nucleotide dT as a primer (additional known sequence is

attached to the 5'end of oligo dT). This modification allows for PCR amplification based on

the sequences tagged onto the primer. Nested PCR was also performed using 3' GSOP: 5'-3'

and 3' GSIP:5' -3' as primers, which were also directed against the nucleotides 572-596 and

604-628 regions, respectively. The resultant PCR fragment was also cloned into plasmid

vector pUC19 and sequenced using Amersham's Thermo Sequenase Cy5.5 DNA sequencing

kit. The sequencing data was verified by a BLAST search on the NCBI website. Figure 15

shows the homology of the translated 3' EST of DNase y. The sequence data aligned very

well with the homologs of the other mammalian species.
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Figure 15: The amino acid sequence alignment of cloned 3' EST ofbovine DNase y with Mus

musculus, Rattus norvegicus and Homo sapiens using sequence alignment software Clustal X.

For nucleotide sequence alignment, please refer to the appendix.
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Construction of antisense expressing vector

To yield a plasmid that constitutively expressed antisense RNA, the 3' EST ofDNase

y was subcloned in the opposite orientation under the control of the strong cytomegalovirus

(CMV) promoter. Thus, expression of the antisense transcript would yield RNA that is

reverse complementary to DNase y mRNA. Through RNA interference, DNase y activity

should theoretically be reduced by the destruction ofDNase y. For long term selection of the

plasmid, the neomycin resistance gene from Tn5, which encodes an aminoglycoside 3'

phosphotransferase, 3' APR II, that confers resistance to the antibiotic G418, was also added

to yield antibiotic resistance. Since quantification of DNase y activity distinguished from

other DNases was not possible, selection ofneomycin expression is used to infer information

about antisense expression. The resultant antisense plasmid, which contains both the

antisense cassette and neoR gene, was named pASDGneoM. Details of the construction and

the plasmid map ofpASDGneoM are provided in Appendix A.
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Chapter V

Antisense disruption of DNase y and transfection efficiency

The approach to the antisense disruption ofDNase y was three fold: (1) Selection of

stable antisense expressing cell lines (2) Co-transfection of antisense construct pASDGneoM

and reporter pCMV-B as a transient tool to enhance transfection efficiency and (3) Serial

transfection ofpASDGneoM followed by pCMV-B, an another means of temporarily

disrupting DNase y. Since it was observed that DNase y is over expressed in the MDBK cell

line and that high DNase activity coincided with low transfection efficiency, any significant

amounts ofDNase y disruption should allow for an enhancement of the cytosolic stability of

transfected plasmid. Thus, this procedure should translate to an enhancement in transfection

efficiency for the MDBK cell line.

Selection of antisense expressing cell lines

The antibiotic, G418, was used as the selective agent for cell lines that have had the

plasmid pASDGneoM integrated into the genome. Initially, the stable integration of

pASDGneoM was thought to allow cell lines to express continually both neoR and antisense

RNA, which would confer G418 resistance to these cell lines. The evaluation of the

effectiveness of antisense RNA by the levels of transfection efficiency enhancement would

then follow. Characterization ofmodified MDBK cell lines that showed enhanced
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transfection efficiency would follow to examine the extent of the antisense RNA knockdown.

After two weeks of selection at 400f.lg/mL, 124 G418 resistant MDBK cell lines were

isolated. However, upon the transfection of the reporter plasmid pCMV-~, none of the 124

G418 resistant cell lines showed enhanced transfection efficiency. While some of the cell

lines transfected at similar levels as that of the control (native MDBK cells), most cell lines

became refractory to transfection, not yielding a single transformant per culture dish.

A possible explanation for the lack of observable transfection efficiency enhancement

was due to the length of the antisense expressed by pASDGneoM. It has been documented

that long dsRNA can cause a non-specific inhibition in translation via either the PKR or 2'

5'-0IigoA polymerase pathway (Elbashir et al., 2001). The assumption that a cell line with

conferred resistance to G418 would also express the antisense RNA on a long-term basis was

erroneous. It is likely that cell lines with both the neoR gene and the antisense construct

integrated would not survive due to the non-specific inhibition of all translation. Thus, it is

hypothesized that all 124 G418 resistant cell lines had incorporated only the intact neoR gene

and not the antisense expressing construct, as long dsRNA expression may lead to cell death

and thus not viable during the transfection studies. Alternatively, DNase y served yet

another, unknown housekeeping function which is essential to the survival of the cell, whose

inhibition would lead to cell death. Yet a third possibility is that the inhibition ofDNase y

has little to no effect on transfection efficiency. In any case, based on the current

experimental design, elucidation ofwhat led to a lack of observable increase in transfection

efficiency was not possible. Since the criterion for characterization was an enhancement in

transfection efficiency with pCMV-~, whether antisense RNA was expressed or at what

levels were also never fully explored.
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An interesting note ofneoR cell lines is that certain cell lines became refractory to

transfection. While expression ofneoR may contribute to this effect by affecting central

metabolism (Yallop et al., 2003), many commercial cell lines that are G418 resistant (such as

HEK293-IQ) transfect in a normal manner. There is a possibility that the site of integration

may have caused a non-specific effect in reducing transfection efficiency. However, since

the objective was to examine whether the disruption of DNase y can lead to transfection

efficiency enhancement, an alternative approach was devised.

Co-transfection of antisense construct pASDGneoM and reporter

pCMV-f3

Since it has been reported that long dsRNA causes non-specific inhibition of

translation, the use of the antisense construct was combined simultaneously with the reporter

plasmid in an attempt to avoid prolonged exposure of long dsRNA. Various combinations of

varying amounts ofboth the antisense construct and reporter were transfected into MDBK

cells.
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Table 8: Combinations ofvarying conditions for co-transfection ofpASDGneoM and

reporter pCMV-P

Amount of transfected Amount of transfected
pCMV-p(in Jlg) pASDGneoM (in Jlg)

0.2 1.0

pASDGneoM
0.5 1.0
1.0 1.0

dose response
2.0 1.0
5.0 1.0
0.2 2.0

pCMV-~ dose
0.5 2.0
1.0 2.0

response
2.0 2.0
5.0 2.0

Ultimately, there was no increase in transfection efficiency based on the co-

transfection studies (Appendix B5). There are a few reasons as to why co-transfection was

less than optimal in terms of transfection enhancement. In the CaP04 co-precipitation

transfection method, there are several key variables that can drastically affect the success of

the outcome. One key variable crucial to the formation of fine particles is the concentration

ofDNA. The concentration ofDNA can affect the rate of co-precipitate formation and thus

the size ofDNA-CaP04 particles. Ideally, smaller particles are more readily absorbed

through the plasma membrane. But with prolonged incubation or high concentration of

DNA, larger, less efficient particles are formed (Batard et al., 2001). Based on transfection

studies, the optimal amount ofDNA to be transfected is 5Jlg/well, which translates to a

concentration of 25 Jlg/mL per transfection volume (Batard et al., 2001 and Figure 16, general

trend). From Figure 16, it was observed that deviation from the optimal concentration would

adversely affect transfection efficiency (see also Appendix B6). Therefore, it was not

surprising that during the co-transfection experiment, additional DNA in the form of

pASDGneoM will severely reduce the transfection efficiency because of the formation of
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less than optimal particles. Theoretically, a transfection m.ethod that is not as concentration

sensitive may be more suitable for this study.

Serial transfection of pASDGneoM and pCMV-P

To sidestep the technical difficulties involved in the formation ofparticles, a series of

experiments were designed to examine whether there was another way that the use of the

antisense construct would yield enhanced transfection efficiency of reporter pCMV-~. Serial

transfections ofpASDGneoM were performed. Since the need to use both plasmids at the

same time was bypassed, each transfection used the optimal amount ofDNA indicated

above. As a negative control, plasmid vector pUC19 was used since it does not contain the

antisense-expressing construct. First, transfection of the antisense construct pASDGneoM

was performed on all MDBK cells. At various time points subsequent to the initial

transfection, pCMV-~ was then transfected to assess the transfection efficiency, and any

enhancement in transfection efficiency would be assessed.
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Figure 16: The effects of serial transfection ofpASDGneoM and pCMV-~ on transfection

efficiency in MDBK cells. The cluster ofhistogram on the left denotes serial transfection results

of control plasmid pUC19 and pCMV-~. The cluster ofhistogram on the right denotes serial

transfection results ofpASDGneoM and pCMV-~. The amount of time separating the serial

transfections is indicated by colors. Increasing amounts ofpCMV-~ (up to 5.0J.lg) are used to

generate a dose-response curve. The amount ofpASDGneoM and pUC19 are fixed at 5.0J.lg.
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In Figure 16, a dose-response relationship is observed between transfection efficiency

and amount of reporter plasmid transfected. As the amount of transfected reporter plasmid is

increased (up to 5.0f.lg), an increase in the number of transformed colonies is observed

(Appendix B6). The maximum amount oftransfected DNA is as outlined by Jordan et ale

(1996). The cluster histograms on the left shows the data obtained from serial transfection

experiments using pUC19 in place ofpASDGneoM. Surprisingly, there is also a statistically

significant enhancement in transfection efficiency of reporter pCMV-~ at 4 hours post-initial

transfection as attested by the Dunnette statistical test (at P<0.05). The enhanced

transfection efficiency eventually decreased back to basal levels after 8 hours.

The cluster histogram on the right is the result of serial transfection experiments using

pASDGneoM and reporter pCMV-~. Aside from the general trend of 5f.lg of reporter

yielding the highest number of transformants, there is a significant enhancement of

transfection efficiency in the first three time points of serial transfection (2 hours, 4 hours and

8 hours) using pASDGneoM, which was not observed to the same extent in their pUC19

counterpart. Eventually, transfection efficiency decreased back to basal levels (at 15 hours)

and the means of the treatment group were no longer significantly different than that of

control (single reporter transfection at P<0.05).
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Figure 17: A side by side comparison of the effects of serial transfection ofpASDGneoM (or

pUC 19) with 5.0Jlg of reporter pCMV-B on transfection efficiency in MDBK cells. Con

indicates the transfection efficiency of a single reporter transfection with 5.0Jlg of reporter

pCMV-B. Data is generated from an average of3 trials.
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Figure 17 provides a side by side comparison of the effects ofpUC19 and

pASDGneoM in enhancing transfection efficiency. Compared to pUC19, pASDGneoM

yielded higher transfection efficiency in all time points. After performing both one-way

ANOVA analysis and Dunnette's test, pUC19 yielded a significant variation of the mean at 4

hours while pASDGneoM yield significant variation of the mean at 2 hours, 4 hours and 8

hours.

It was surprising that pUC19 yielded some enhancement in the transfection of the

reporter. The most likely mechanism through which pUC19 contributed to the enhancement

probably involved the saturation of various nucleases along the delivery pathway, rather than

through a "carrier effect". Traditionally, a method of enhancing the calcium phosphate

method oftransfection involves the addition ofhigh molecular weight DNA known as carrier

DNA. While the effects of addition of carrier DNA are highly variable and cell line

dependent, it is generally believed that the high molecular weight DNA acted as a carrier to

deliver plasmid DNA to the nucleus. Based on this work, it is likely that any extra DNA (in

the forms ofplasmid DNA) acted as substrates for the DNases present in the cell. Thus, the

protective effect of carrier DNA allows for a greater proportion of intact plasmids to escape

unscathed through the various stages of degradation. However, in the present studies, the

additional carrier DNA had an inhibitory effect on transfection efficiency in the MDBK cell

line. In fact, as little as 1J.lg of additional carrier DNA resulted in over 95% reduction in

transfection efficiency of the reporter gene (see Appendix B1). While this effect may have

been caused by the suboptimal formation ofprecipitate due to additional DNA, there is also

documented evidence that partially degraded DNA can be cytotoxic, leading to apoptosis

(Schiavone et al., 2000).

Since pUC19 theoretically does not contribute to the expression of antisense, the

enhancement of transfection efficiency is suspected to be caused primarily by this nuclease
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saturation effect. However, sheared genomic DNA should also be able to saturate the

DNases but demonstrated an inhibitory effect on transfection efficiency. Since sheared

genomic DNA contains more free DNA ends than intact plasmids, this provided a possible

explanation why intact plasmid DNA (pUC19) was able to enhance transfection efficiency

whereas sheared genomic DNA did not. While both sheared genomic DNA and plasmid

DNA can saturate nuclease, sheared genomic DNA also acted as cytotoxic drugs, possibly

killing the transfected cell.

Fortuitously, serial transfection ofpASDGneoM and reporter resulted in a prolonged

enhancement of transfection efficiency. While pASDGneoM can also act to saturate

nucleases and thus protect the subsequent reporter plasmid, the nuclease saturation effect

alone cannot account for the extra four-fold increase in transfection efficiency over pUCI9.

A possible explanation is that the plasmid pASDGneoM, once transfected, served to disrupt

DNase ¥ by expressing antisense RNA. Due to the nature of the experimentation,

quantification of actual DNase ¥ activity was not possible.

The disruption of DNase ¥, coupled with the nuclease saturation effect, maximally

enhanced transfection efficiency at 4 hours up to 8 fold over the single reporter transfection

control. Since co-transfection did not yield an enhancement in transfection efficiency (which

is akin to serial transfection with no time between transfections), it is suspected that the

expression of antisense DNase ¥ RNA may take a period of time before the DNase

environment is altered to the extent where an observable increase in transfection efficiency

can occur. Furthermore, it is possible that the short amount of time during which antisense

RNA is expressed during serial transfections may have been less prone to triggering the long

dsRNA effect seen in the G418 selection experiments.
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Based on Figure 17, transfection efficiency slowly declined to control levels after 8

hours. It is likely that the slow decline in transfection efficiency is the result of the

intracellular nuclease environment slowly reverting back to the default state. One prediction

of this hypothesisi would be a faster reversion to basal transfection efficiency levels for the

control pUC19 serial transfection than the antisense expression pASDGneoM, which was

observed in Figure 16 (15 hours for pASDGneoM vs. 8 hours for pUCI9). The reason for

the shorter anticipated period of reversion is that the nuclease saturation effect requires

continual supply of extra DNA to produce an increase in transfection efficiency, whereas the

antisense plasmid would bring about a relatively prolonged change in the nuclease

environment.

Additionally, since the density of cells during transfection also plays a role in

determining its success, the serial transfection experiments also introduced an extra variable

that cannot be controlled. Cells were seeded at a consistent confluence during the first

transfection. Upon completing the first transfection, cells continue to grow and divide as

expected. If the two serial transfections were spaced over a long period (i.e. more than 8

hours), cells would have grown to suboptimal density for the subsequent reporter plasmid

transfection. It seems that at time points of 15 hours and beyond, the density of the MDBK

cells may have played a role accounting for a portion of the decline oftransfection efficiency

over time.
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Figure 18: The effects of serial transfection ofpASDGneoM and reporter pCMV-~ on

transfection efficiency in MDBK cells. This figure is compiled by mathematically subtracting

the number of transformed colonies generated by serial transfections ofpASDGneoM and

pCMV-~ against that of serial transfection ofpUC19 and pCMV-~. The data is plotted against

the hours between serial transfection. Raw data was obtained from experiments conducted in

Figure 16.
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Figure 18 serves to illustrate the time dependence of the success of transfection by

subtracting the transfection efficiencies ofpASDGneoM by pDC19. While the antisense

disruption of DNase y played a major role in the increase of transfeetion efficiency, the

.confines of the experiment led to the observation that cell density could also be a factor,

albeit minor, in the success of serial transfection. Together, the enhancement by antisense

disruption and the reduction by cell density combined to give a window of opportunity for

enhancement of transfection efficiency based on serial transfection ofpASDGneoM and

pCMV-~. If serial transfections were performed between 4 to 8 hours apart, transfection

efficiency can yield up to an 8-fold enhancement over basal levels in transfection efficiency.

At 15 hours post-antisense transfection, transfection efficiency reverted back to control

levels.
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Chapter VI

Construction of an enhanced reporter plasmid, pASDGlacZ

Encouraged by the results of serial transfection, an attempt was made to build the

antisense construct and incorporate the reporter into one plasmid to examine whether the

presence of the antisense construct will result in enhanced transfection efficiency of the

reporter. Using the fragment of the antisense construct pASDGneoM, we inserted the

cassette encoding antisense DNase y under strong CMV promoter into pCMV-p, yielding

pASDGlacZ. Both the lacZ gene and DNase y antisense cassette were cloned in the same

orientation (refer to Appendix A for construction details). To generate a negative control, a

700 bp non-sense fragment from plasmid vector pNB100 was cloned under the same CMV

promoter, yielding pASDGlacZ NC. The plasmid vector pASDGlacZ NC is identical to the

plasmid vector pASDGlacZ except for the DNase y antisense cassette present in pASDGlacZ.

The resultant size of the plasmid pASDGlacZ was 8955bp, compared to 7164bp of the parent

plasmid pCMV-p.

Transfection ofpASDGlacZ, however, did not yield enhanced transfection efficiency

over controls (neither the plasmid vector pCMV-p, nor the plasmid vector pASDGlacZ NC).

While it was anticipated that the approximately extra 2kb would adversely affect the

propensity of the plasmid vector to enter the nucleus, resulting in lowering transfection

efficiency, it was surprising to find that the transfection efficiency ofpASDGlacZ was not
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statistically different than that of the non-sense control plasmid pASDGlacZ NC. One

plausible scenario is that the plasmid vector pASDGlacZ does not allow for the requisite

amount of time for the expression of antisense DNase y, at least not enough to change the

internal DNase environment to enhance plasmid stability. As a result, the transfection

efficiency ofplasmid pASDGlacZ would not be enhanced over plasmid pASDGlacZ NC,

which was observed in Figure 18. If incorporating the antisense expression cassette does not

cause a change in the internal nuclease environment, then the transfection efficiency of

plasmid pASDGlacZ would be expected to be lower than that ofpCMV-P due to the increase

in size, which was observed in Figure 19.

Since there is a requirement to perform the transfection of the antisense construct 4-8

hours prior to transfection of the reporter plasmid, another approach was devised whereby

stable cell lines containing antisense expressing constructs integrated into the genome were

established. By employing siRNA, certain difficulties encountered using traditional

antisense methodology were bypassed (see section Antisense disruption of DNase y and

transfection efficiency - Selection of antisense expressing cell lines).
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pC~tI1V~BK pASDGlacZ

Figure 19: The comparison oftransfection efficiency ofpASDGlacZ with control plasmid

pCMV-~. Transfection is performed using traditional calcium phosphate technique at 25J.lg/J.lL

per unit volume (5J.lg/200J.lL) of cesium chloride banded plasmid DNA. Precipitate formation

was left for 10 minutes at room temperature. Transfection occurred for 11 hours and cells were

stained 24 hours post transfection. Data presented is obtained by averaging results from 3 trials.
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Chapter VII

Use of siRNA to disrupt DNase y

It was suspected, from the G418 selection experiments performed in chapter IV, that

the cell lines that were G418 resistant and refractory to transfection of reporter had somehow

integrated only the neoR gene from pASDGneoM. Since long dsRNA may lead to non

specific inhibition of translation, cells that were expressing the antisense RNA on a continual

basis were mostly selected against survival. Shortly after the start of this project, Elbashir et

a!., (2001) had reported the use of small segments ofRNA that can achieve gene disruption

by a process known as RNA interference (RNAi), which is a well established technique in

plants and Drosophila melanogaster. Segments ofRNA less than 30 nucleotides that are

complementary to the mRNA target can result in a substantial knockdown of gene function.

After observing an enhancement in transfection efficiency by serial transfection, attempts to

disrupt DNase y were modified by using the mammalian version ofRNAi, known as small

interfering RNA (siRNA).

Small interfering RNA refers to gene disruption by short segments of double stranded

RNA that are 21 to 25 nucleotides in length. After internalization, these small segments of

RNA assemble into endonuclease containing complexes known as RNA-inducing silencing

complex (RISC). The RNA segments then guide the RISCs to the target mRNAs, during

which the innate ribonuclease activity destroys them. Meanwhile, the potent antiviral
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response elicited by long double stranded RNA is completely bypassed (Elbashir et al.,

2001).

Using sequencing information obtained from the cloning of the bovine DNase y gene,

the sequence was scanned to match the following criteria:

1. The siRNA sequence must first begin with the dinucleotide AA.

2. The resulting 25 polynucleotide must have a GC content of 30-50%.

3. The target must not contain extensive secondary structure.

Using the sequence information obtained in Chapter N, 17 sites were obtained to fit

criterion 1. Only 3 out of the 17 possible sites had a GC content of30-50%, termed site 4,

site 11 and site 16 (Figure 20 and Appendix B3). Since not all suitable siRNA will lead to

gene knockdown, all three sites were modified to express hairpin siRNA and cloned into

Ambion's pSilencer to enhance the likelihood of success. The plasmid vector pSilencer

expresses siRNA by way of a short hairpin, with a segment ofpalidromic sequences

separated by a loop region. It also contains the neoR gene for selection purposes. The

resulting siRNA expressing construct not only allows for selection, but also bypasses the

technical difficulties encountered in Chapter V. The sequences from each of the sites were

manipulated and the resulting secondary structures were submitted to Mfold for analysis.

Moreover, the sequences were submitted to a BLAST search to ensure that the gene

knockdown was specific (appendix B4). No significant matches other that the intended

DNase y was found.
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Figure 20: The sequencing results of the hairpin siRNA-expressing regions ofplasmids

psiRNA 84, psiRNA 811 and psiRNA 816 (coding strand shown). The Mfold predicted

structures ofhairpin siRNA expression constructs from plasmids psiRNA 84, psiRNA

811 and psiRNA 814. The sequences in red denote the complementary regions of the

hairpin siRNA. The sequences in green denote the loop regions.
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After two weeks of G418 selection, 24 established cell lines from each site were

screened for enhanced transfection efficiency. Neither site 11 nor site 16 yielded cell lines

that reported an enhancement of transfection efficiency that were statistically significant.

However, 10 of the 24 G418 resistant cell lines from site 4 yielded enhanced transfection

efficiency (Figure 21). Using similar statistical analyses in Chapter V, the transfection

efficiencies of only two of the ten cell lines, which were subsequently names B1 and B4,

were found to be statistically significant (P<0.05).
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Figure 21: The transfection efficiency of stable psiRNA 84 hairpin expressing MDBK cell lines.

Cell lines were transfected with cesium chloride banded plasmid psiRNA 84 and selected with

400f.lg/mL G418 selection for 2 weeks. Foci that developed during the 2 weeks were isolated

with cloning rings and seeded onto a six well plate. Each well is deemed to stem from a

homogenous population of one transfected cell and labeled as a cell line. 24 foci were isolated in

total and the transfection efficiency using pCMV-p was examined. Transfection is performed as

per Materials and Methods. Data presented is an average of 3 trials.
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Figure 22: The DNase activity and its corresponding effects on transfection efficiency of

psiRNA 84 MDBK cell lines B1 and B4. DNase activity is obtained by isolating soluble protein

extract using single detergent solubilization method and performing plasmid digestion assay as

per Materials and Methods. Transfection efficiency is obtained by extracting information from

Figure 20. Data presented is an average of 3 trials.
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The cell lines named B1 and B4 (see Figure 21, cell lines labeled 7 and 10,

respectively) were maintained in low levels ofG418 for the stability of the siRNA expressing

construct. The transfection efficiency enhancements ofboth cell lines were approximately 4

fold, coinciding with the results of the serial transfection experiments (B1 - 83.7 and B4 

88.8 over controls of 20.5 transformants per well). To confirm that the enhancement of

transfection efficiency was due to a reduction in DNase activity, DNase activities of the two

cell lines were evaluated based on the plasmid digestion assay. Ideally, the inclusion of G

actin into the plasmid digestion assay would yield the most conclusive quantification of

DNase y. However, due to the availability of G-actin, the plasmid digestion assay could only

be performed under the most general conditions (pH 7.5 buffer) without the addition of

inhibitors. From Figure 22, the soluble protein extracts of cell lines Bland B4 showed

approximately a 10% decrease in overall DNase activity, mainly attributed by the reduction

ofDNase y activity. Although the reduction in DNase activity was slight, it led to an

effective increase in transfection efficiency, which agrees with the initial hypothesis.
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Chapter VIII

Discussion

Since the advent ofmolecular biology, the need for efficient gene transfer, both in

laboratory settings and clinical applications, has driven the development of ever newer DNA

complex technology. Historically, non-viral vectors have generally been less efficient in

delivering DNA than their virus-derived counterparts. However, safety concerns and

immunological difficulties have again refocused effort in the development of non-viral gene

transfer.

Ever since the development of calcium phosphate transfection techniques, research

efforts have been directed at improving on current DNA complexing agents. The

neutralization of the negatively charged DNA backbone and enhanced rate of internalization

have both been optimized in a variety of newly developed non-viral transfection agents.

However, intrinsic factors of cultured cells can also exert a potent effect on the outcome of

transfection studies. For example, certain cell lines, such as MDBK cells, are refractory to

transfection regardless of methodology. New DNA complex formation agents have focused

on traversing the plasma membrane, which is one of the major barriers of gene transfer. But

once internalized, ever-newer generations of transfection agents do not extend the DNA

stability against a variety ofnucleases present within the cell. Efficient removal of

exogenous DNA is a byproduct ofDNases that serve several housekeeping functions in
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recombination, maintenance of genetic stability and transformation (Baranovskii et al.,

2004). In this thesis, the results from soluble protein extract assays revealed a negative

correlation between the amount ofDNases present and the cell line's transfection efficiency.

MDBK cells, notoriously known to be inefficient in gene transfer, also demonstrated a high

level ofDNase activity. While the amount ofnuclease activity present within a cell line is

highly variable, whether DNase expression is intrinsic or inducible based on other factors

remains a topic of contention. From our laboratory, it was observed that culture conditions

of cell lines had a large effect on transfection efficiency. For example, during cell

synchronization studies, hydroxyurea and thymidine both resulted in the total inhibition of

transfectability in HEK-293 cells. Moreover, cells that were previously overgrown before

transfection studies demonstrate a reduction in transfection efficiency against their normal

counterparts. Also, as cell lines are passaged, there is a loss of transfeetability ofHEK-293

cells. It is not known, however, whether age is a contributing factor in the loss of

transfectability or whether the lack of selection of adenoviral E1 during cell culture resulted

in the inability to transfect. It has been documented, however, that aging animals expressed

DNase y in relation to the apoptotic process; and in the present studies, elevated DNase y

levels correlate negatively with transfection efficiency. Principally, elevated DNase activity

in any compartment of the cell can reduce the half-life of exogenous DNA within the cell and

thus reduce the amount of successful penetration into the cell nucleus, which is the final

barrier for successful transfection.

DNase and transfection efficiency

The association ofDNase activity and reduced transfectability in this thesis agreed

with the results ofRoss et ale (1998), who were able to enhance transfection efficiency of the
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lung adenocarcinoma cell line H441 by incorporating the DNase II inhibitor, DMI-2. Further

studies using peptidal inhibitors ofDNase II have also implicated DNase II as a major barrier

to transfection. However, according to our studies, the DNase activity that contributes to the

inhibition of successful transfection is DNase y. But it is conceivable that DNase y may be a

major barrier for transfection only in some cell lines. Another interesting observation is that

while HEK-293 cells demonstrated an approximate 2 log difference in transfection efficiency

over MDBK cells, MDBK cells only demonstrated an approximately 60% greater in overall

DNase activity (Figure 7).

Antisense inhibition of DNase y

Once the bovine DNase y gene was cloned, the utilization of antisense RNA to inhibit

the gene was favored over that ofhomologous recombination due to the presence of2 copies

of the gene in the cell. To yield homozygous knockouts, 2 separate rounds of selection had

to be performed. Traditionally, generation ofhomozygous knockout mice stemmed from the

crossing of two heterozygous knockout mice. Since the exact physiological role of DNase y

was not known, generating homozygous knockouts presented too many difficulties.

Antisense RNA technology has generally been problematic with mammalian cells

because of the known potent antiviral response elicited by long dsRNA. However, there has

also been documented success with antisense RNA in cultured mammalian cells. Since

MDBK has not been documented to be ineffective with antisense RNA, the antisense

approach was pursued to examine whether RNA knockdown would yield enhanced

transfection efficiency. Since isolation ofDNase activity was too laborious to screen in large

numbers, bacterial neomycin resistance gene was incorporated into pASDGneoM for
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selection. Of the 124 G418 resistant cell lines, none showed elevated transfection efficiency,

which was unexpected.

The lack of elevated transfection efficiency in the 124 G418 resistant cell lines may

be attributed to dsRNA and internal recombination events. Long-term selection of the

selectable marker neomycin resistance required the random integration of the entire

pASDGneoM construct. Since it has been documented that long dsRNA results in a general

inhibition of translation resulting in cell death, it is likely that either internal rearrangement

events excised the antisense expression construct, or during integration, breakage within the

antisense construct effectively abolished the expression of antisense RNA. Therefore, cell

lines that survived the G418 selection may not have actually carried the antisense expression

cassette, and thus no elevation of transfeetion efficiency was observed. To further make use

of the antisense construct pASDGneoM, co-transfection and serial transfection studies were

attempted.

Co-transfection was originally the more appealing option because of the ease of

performing a single transfection over two serial transfections. However, after the first

attempt, a serious pitfall with the co-transfection approach became apparent. Since co

transfection ofboth the antisense construct and reporter plasmids occurred at the same time,

there was not sufficient time for the expression of the antisense construct to significantly alter

the internal environment of the cell. Thus, the reporter plasmid experienced similar nuclease

activity as that of its native counterpart. Furthermore, the concentration effects ofDNA on

DNA-calcium phosphate co-precipitate formation yielded additional difficulties to the

approach. Therefore, further modification of the co-transfection technique was replaced by

the serial transfection method.

Serial transfection, although more laborious, avoided the shortcomings of co

transfection. First of all, since the transfection of the antisense construct and reporter
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plasmids occurred in two different phases, each transfection was optimized in terms ofDNA

concentration. Moreover, transfection of the antisense construct prior to the transfection of

the reporter allowed time for the expression of the antisense RNA and gene suppression.

When subsequently transfected, the reporter plasmid presumably traveled through a much

less hostile environment, leading to more copies of the plasmid surviving their journey to the

nucleus. In fact, relative to the single reporter transfection control, the serial transfection of

the antisense construct followed by the reporter showed approximately a four to eight fold

increase in transfection efficiency under optimal conditions. This enhancement was

attributed, as discussed in Chapter V, to the antisense suppression of DNase y in conjunction

with the "nuclease saturation" effect. Unlike the traditional "carrier effect", stemming from

the practice of incorporating sheared genomic DNA to enhance the transfection ofplasmid

DNA, it was concluded that any additional DNA probably acted as a substrate for the various

nucleases present within the cell. Also, there was no observable increase in transfection

efficiency using sheared genomic DNA as carrier DNA. Worse yet, carrier genomic DNA

seemed to only reduce transfection efficiency in MDBK cells, possibly by triggering

apoptosis. Using the non-antisense expressing control pUC19 in serial transfection, there

was also an unexpected but statistically significant enhancement of transfection efficiency,

adding credence to the contribution of the nuclease saturation in enhancing transfection. The

antisense construct led not only to an increase in transfection efficiency but also lengthened

the amount of time before transfection efficiency reverted back to the basal levels, indicating

that a more permanent change in the nuclease environment was brought about via antisense

construct pASDGneoM.

Encouraged by the success of serial transfection, an attempt was made to incorporate

the antisense expression cassette with the lacZ reporter into a single plasmid, pASDGlacZ.

This approach was designed to reduce the amount ofwork needed compared to serial
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transfection. Moreover, this approach was advantageous over co-transfection as the

concentration ofDNA was optimized for a single plasmid carrying both fragments over the

simultaneous transfection of2 plasmids. However, one implicit shortfall of this approach

was the requirement of the antisense construct being expressed prior to the introduction of

the reporter. As little as 4 hours are needed to sufficiently alter the internal environment for

transfection enhancement to occur. Also, as evidenced by soluble protein extract studies,

plasmid DNA does not survive more than 90 minutes in native MDBK extract. Thus, it was

anticipated that this approach might be problematic because by the time the antisense was

sufficiently expressed, the intrinsic nuclease might have degraded the remaining plasmids.

This was confirmed by the experimental data, where pASDGlacZ did not show transfection

enhancement over its parent plasmid, pCMV-B. While the above reason was most likely

attributed to the lack of success ofpASDGlacZ, it was also noted that pASDGlacZ was

considerably larger than the parent plasmid. Since it has been well documented that

transfection efficiency is correlated negatively to the size of the transfection plasmid, this

additional hurdle may have exacerbated the issue.

siRNA inhibition of DNase y

The use of siRNA as a gene knockdown technology presented a unique opportunity,

as long-term selection remained the most attractive avenue for studying the involvement of

DNase y in transfection. While bypassing the technical difficulties associated with the

traditional antisense approach, an additional advantage of siRNA was that it utilized only

small segments of sequence information, meaning that multiple targets could be selected

within the gene to find the most effective siRNA sequences. The pSilencer plasmid that was

used for siRNA studies was similar in approach to that of the earlier antisense approach. A
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neomycin resistance gene for long-term selection was used to identify cell lines with the

siRNA expressing cassette randomly integrated into the genome. Of the stable cell lines

selected from the three siRNA expressing constructs, site 4 yielded the most promising

result. The two G418 resistant cell lines B1 & B4, demonstrated a modest reduction in

overall DNase activity while showing a 4-fold increase in transfection efficiency. While it

was unexpected to see only a modest reduction in overall DNase activity for both cell lines,

the overall improvement in transfection efficiency clearly showed that DNase y is involved in

reducing the stability of transfeeted DNA in MDBK cells, thereby reducing its propensity for

successful transfection to occur.

Enhancement of Transfection efficiency

Generally, transient or stable transfection is a useful tool to study the functions of a

particular gene. Transfection methods and cell lines are chosen based on their efficiency and

applicability to the problem (for example, MCF-7, a breast cancer cell line, is used to study

novel breast cancer therapeutics). The goal in this thesis, on the other hand, was to examine

whether a cell line that is generally refractory to transfection, such as MDBK, can be

transformed into an efficiently transfectable cell line by manipulating certain genes. In fact,

the present thesis demonstrates that by inhibiting DNase y, transfection efficiency is

enhanced by more than 4-fold in MDBK cells.

Apoptosis and Transfection efficiency

But the question remains: Why DNase y? What is an apoptotic DNase doing

inhibiting transfection? As it turns out, many aspects of transfeetion can have significant
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effects on cellular metabolism, resulting in the reduction of transfection efficiency. Plasmid

DNA, sheared genomic DNA and calcium phosphate particles can all act as pro-apoptotic

triggers (Shiavone et al., 2000), leading to the accumulation ofp53 followed by either cell

cycle arrest or apoptosis. In a variety of ways, the accumulation ofp53 around the nucleus

leads to the activation of a cascade of signaling events. Based on the state of cellular damage

of the cell, these events determine whether p53 mediates cell cycle arrest, which allows for

DNA repair to occur, or apoptosis, via the caspase cascade. In both p53-dependent and p53

independent pathways, these pro-apoptotic triggers lead to a modulation of DNase y activity

(Higami et al., 2004).

One consequence of this modulation is the degradation oftransfected plasmid DNA,

reducing the number ofplasmids successfully gaining access to the nucleus. Another

possibility, under appropriate conditions, is the broad-spectrum activation of apoptosis,

leading to the suicide of the transfected cell. Both events pointed to a marked reduction in

the probability of successful transfection. As for HEK-293 and HeLa cells, these two cell

lines were transformed by viral genomic sequences that seemed to interfere with the function

ofp53. For example, the HEK-293 cell line contains adenovirus type-5 viral genome of the

El region, and it has been documented that Ad 5 EIB proteins interfere with p-53 mediated

cell cycle arrest and apoptosis (Hutton et al., 2000). Moreover, the HeLa cell line, which

was transformed by human papilloma virus, conceivably also suffers from certain p53

defects as it has been shown that HPV E6 viral proteins are potent inhibitors ofp53 (Kessis

et al., 1993). The resulting inhibition ofp53 by viral proteins may cause the two cell lines to

be less sensitive to DNase y activation or apoptosis triggered by calcium phosphate, sheared

genomic DNA and plasmid DNA. Thus, MDBK may be refractory to transfection not simply

because it demonstrates high DNase y activity. The lack of inhibitors of the apoptotic
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machinery presumably leads to enhanced sensitivity of the cell line to pro-apoptotic triggers,

which can lead to either the activation ofDNase y or apoptosis, resulting in a cell line that

demonstrates low transfection efficiency.

Carrier DNA Ulodulating DNase y activity

The use of carrier genomic DNA (usually sheared) as a means of enhancing

transfection efficiency has been a topic of contention. While some reports have indicated

positive results with the use of carrier DNA, some groups have omitted carrier DNA from

their transfection protocol citing its inhibitory effects in transfection. In our laboratory, the

use of genomic DNA decreased transfection efficiency ofMDBK cells with the reporter

pCMV-~. Recently, Lepik et ale (2003) reported the propensity of sheared genomic DNA to

trigger the nuclear accumulation ofp53, which can lead to cell cycle arrest or apoptosis. It

was also shown that exogenous DNA could increase a cell's likelihood to respond to Fas

ligands and thus trigger apoptosis via the Fas apoptotic pathway (de Caravallo Bittencourt et

al., 2002). Moreover, strand nicks from a variety of sources led to the activation ofpoly

(ADP-ribose) polymerase-l (PARP-l), a cellular DNA damage sensor. Together, these

observations demonstrated the potential for a cell to recognize transfected sheared genomic

(carrier) DNA as cellular DNA damage, possibly activating the apoptosis machinery.

Consequently, p53 accumulation, under the right cellular conditions, could lead to the

activation of the caspase cascade, notably the activation of caspase-3. Caspase-3 activation

has been shown to modulate DNasel-like 3 (DNIL3), the human DNase y homolog, via two

different mechanisms (Boulares et al., 2002). Caspase-3 has been shown to degrade PARP

1, which has an inhibitory effect on DNase y activity. Moreover, activation ofpoly (ADP-
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ribose) glycohydrolase further enhances DNase y activity by removing the poly (ADP-ribose)

polymers (Yakovlev et al., 2000). Thus, apoptotic activation of caspase 3 leads to the

activation of DNase y in ap53 dependent manner.

PlasDlid DNA Dlodulating DNase y activity

Plasmid DNA has also been shown to trigger certain cell cycle signaling pathways

when transfected with calcium phosphate. This cellular signaling results in cell cycle arrest,

which can be reversed if no other pro-apoptotic stimuli are present. Coincidentally, it has

been documented that the intracellular concentration of calcium increases during transfection

in CHO cells. Regardless of the source of calcium (whether released from intracellular stores

or from the transfection reagent), transfection efficiency seems to be negatively correlated

with the intracellular calcium concentration increase. Moreover, it was suggested by

Boulares et al., (2002) that the intracellular calcium concentration increase may be a

signaling pathway, which eventually results in the activation ofDNase y. Together, the

simple act of transfeetion may be enough to trigger the activation of DNase y, possibly as a

result of the activation of apoptotic machinery. However, the activation of DNase y can be

accomplished in a p53-independent manner, as attested by similar results with a p53-1
- cell

line (Boulares et al., 2002). Furthermore, upon X-ray irradiation, Zhao et ale (1999) have

also suggested that DNase y can be triggered in a p53-independent manner, as a result of the

cell's commitment to die. Thus, the modulation ofDNase y, as a result of exogenous plasmid

DNA, can conceivably occur thru a calcium triggered, p53 independent pathway.
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Other factors Dlodulating DNase y

With several groups recently investigating DNase y and its role during apoptosis, they

have further contributed to the activation mechanism ofDNase y. Tanaka et al. (2004)

recently demonstrated that aging rats express high levels of DNase y in their nuclei over their

younger counterparts. It is unclear, however, whether the similar age-related phenomenon

occurs in immortalized cell lines. Saito et al. (2004) also demonstrated the ability ofIFN-~

to trigger DNase y in glioblastoma cell lines. However, whether IFN-~ results parallel the

interferon response triggered by long dsRNA, resulting in the inhibition of transfection of

antisense constructs as observed in Chapter V, remains to be seen. Recently, Liu et al.

(2004) have isolated a protein, Actinin a4, which activates DNase y in teniposide VM26

induced apoptosis. It is unknown whether Actinin a4 is also an activating signal peptide

responsible for DNase y activity in MDBK cells.

Consequence of DNase y activation

As a result ofDNase y activation in MDBK cells by transfection, three possible

consequences may occur, both leading to the inhibition of transfeetion. Upon transfection,

DNase y is activated by plasmid DNA, carrier DNA, calcium phosphate or any combination

thereof. Upon activation, DNase y efficiently degrades transfected plasmid DNA, which

results in the reduction of successful entry into the nucleus. Furthermore, the ability of

DNase y to translocate to the nucleus also allows for plasmid degradation in nuclear

compartments. Together, the end result is the degradation of transfeeted plasmids and

abolishment of observable transgene expression.
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If the cell line has accumulated some cellular damage, a more severe response results

from transfection. The apoptotic machinery, already partially activated from cellular injury,

becomes fully activated upon transfection. Although DNase y seems to be playa role in the

execution phase of apoptosis, the resulting commitment to cell death upon transfection

ultimately results in the lack of observable transgene expression due to detachment,

regardless ofDNase y activity.

Yet, a third possibility can be the result of apoptosis attributed to DNase y activity.

The innate DNase activity partially degrades transfected plasmid DNA, which is recognized

as cellular DNA damage. As the cell cycle arrest machinery is activated, the intracellular

calcium concentration increases, caused by the addition of calcium phosphate during

transfection, triggers the activation of DNase y activity. DNase y then degrades host genomic

DNA, which further triggers the DNA damage response and results in the accumulation of

more pro-apoptotic triggers. Together, this pushes the cell to commit to apoptosis, resulting

in the lack of observable transgene expression.
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Summary

Using commonly available cell lines Madine-Darby Bovine Kidney (MDBK), HeLa

and Human Embryonic Kidney (HEK-293), a decreasing trend ofDNase y activity was

observed based on a plasmid digestion assay. From densitometry studies, as much as a 40%

reduction in DNase activity was observed when comparing HEK-293 (least active) to MDBK

(most active). Using various biochemical assays, it was determined that DNase y was

expressed more highly in MDBK cell than both HeLa and HEK-293. Upon cloning of

bovine DNase y, antisense constructs via both traditional antisense RNA and siRNA were

built. The silencing ofbovine DNase y leads to an increase in transfection efficiency based

on traditional calcium phosphate co-precipitation technique; stable clones of siRNA

producing MDBK cell lines (psiRNA-S4) demonstrate a 4-fold increase in transfection

efficiency. Furthermore, serial transfection of antisense DNase y plasmid pASDGneoM and

reporter pCMV-~ showed a maximum of 8-fold increase in transfection efficiency when

spaced 4 hours apart. Together, these results demonstrate that by inhibiting DNase y,

transfection efficiency can be increased by traditional calcium phosphate technique in

MDBKcells.

189



Future Direction
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Appendix A. Construction of Plasmids

The constructions of the following plasmids are shown below:

1. pASDGneoM

2. pASDGlacZ

3. psiRNA S4/psiRNA SII/psiRNA S16

The assembled sequences of these and other plasmid whose constructions have been described

here in the thesis can be obtained from the author or from the supervisor, Dr. Y. Raj-Ahmad.

191



AI. Construction of pASDGneoM

The plasmid vector pCMV-~ was cut with restriction enzymes NotI and ClaI, which

allowed for the isolation of the fragment containing the pCMV promoter along with the

origin of replication and ampicillin resistance gene. The 3' EST ofbovine DNase y was

cloned in the opposite orientation to the pCMV promoter to generate the construct pASDG.

To add long term selectable marker neoR, pSV2-neo was cut with NdeI and EcoRI, which

yielded the neomycin resistance gene under the SV40 promoter/enhancer regions, allowing

for expression in mammalian cells. This marker was ligated into the SaIl restriction enzyme

site after rendering the ends ofboth pieces compatible with E. coli polymerase I klenow

fragment. The resultant plasmid, named pASDGneoM, contains the antisense bovine DNase

y expressing construct, along with ampR for selection in E. coli and neoRfor selection in

mammalian cells.

192



pASDGneoM

Norgen M13 Forward CMVpromotor/enhanoer

PUC1929~,

APr ~

pCMVbeta

PMB~

~
PUC195s2R Promer/

- Cut with NotI
- Ligate with 3'
end of DNase y

00_ gamma ~ end antisense

CMVpromotor/enhancer

NorgenM13Forwa~
pUC19291F

501(220)

(jpUC19562Rprimer

PMB1
",,-

pASDG
4394 bp

-cut with SaIl

PvuII(7084)

RPTII \
SV400RI ""-

PvulI(6514~~\
Pm.<I(6'~

NEOIRlfj

----PvulI (5392)----'

E19S

LPOLY~

EPOLYY

EPOLYA

DNase gal'TV1l3 3' end antisense

-cut with NdeI and EcoRI
-ligate

pUC19 552R primer

rf--F=-PvuII (202)

/-PMB1

~..._~.!._._.' AprI~

~PUC19291F

~PvuII(2566)
Norgen M13 Forward

EcoRI (2654)

CW promotor/enhancer
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A2. Construction of pASDGlacZ

The plasmid vector pCMV-~ was cut with restriction enzymes EcoRI and SaIl, which

allowed for the isolation of the fragment containing the lacZ gene under the constitutive

promoter pCMV-~. The fragment was verified by electrophoresis and purified by gene

clean. A klenow reaction was performed to fill in the overhangs generated by restriction

enzymes EcoRI and SaIl. The plasmid vector pASDG was linearized by restriction enzyme

SaIl. The overhangs were made blunt by using the klenow fragment. The two blunt ended

fragments were ligated together via T4 DNA ligase. The selection for the direction of the

inserts was screened by the use of restriction enzyme analysis. The resultant plasmid, in

which both the constructs are in the same direction, is named pASDGlacZ-For. It was later

renamed pASDGlacZ. The plasmid vector pASDGlacZ has both the antisense DNase y

expressing fragment along with the lacZ gene, both under separate CMV promoters. Also,

the plasmid pASDGlacZ has ampR for selection in E. coli.
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Norgen M13 Forward EeaRl (2)

pUC19291r------ll CMV promotor/enhCllCe DN...gamm'~and"'r

SaI1(220)

( jrAJC19557R prl..

PMB1,-

pCMVbeta
7164 bp

PMBL---'"

pUC19 552Rpri~
Sall(4513)

LACZ

Norgen M13F~
pUC19291 F

pASDG
4394 bp

.... §~

-cut with EcoRI and SaIl
-gene clean
-ligate

-cut with SaIl
-klenow
-ligate

CMV promotor/enhancer

A~

~PUC19291F

~PIJWJ (2,566)

."" \NOrgen M13 Forwarel

EcoRI (2654)

\~ CMV promotor/enhanci

~ ~DNase gamma 3' end antisense

EcoRI (4198)

pUC19 552R primer

fr~PMB1

pASDGlacZ-For
8955bp

PvuII (5488)

PvuII (8045

LACZ
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A3. Construction of psiRNA 84, psiRNA 811 and psiRNA 816

The plasmid vector pSilencer 2.1-U6 neo was obtained from Ambion Incorporated. It

contains a neoRselectable marker under a simian virus 40 (SV40) promoter along with a

SV40 polyadenylation signal. The AmpR selectable marker is used for selection in E. coli.

The siRNA expression cassette is cloned between the BamHI and EcoRI restriction sites,

placing it under a mammalian U6 promoter. To generate the various siRNA expressing

constructs (psiRNA S4, psiRNA S11 and psiRNA S16), the appropriate sense and antisense

oligonucleotides were synthesized. The incorporation ofBamHI and EcoRI restriction sites

to the sense and antisense oligonucleotides, respectively, ensure directionality when cloned

into the pSilencer plasmid vector. For example, to generate psiRNA S4, the psiRNA S4

sense oligonucleotides was mixed with the psiRNA S4 antisense oligonucleotides. The two

oligonucleotides were heated for denaturation and cooled for annealing. The resultant

restriction fragment is cloned into pSilencer cut with BamHI and EcoRI. The siRNA hairpin

construct also incorporates a Pollll termination signal, with allows for the expression of the

siRNA hairpin. Sequencing reactions were performed to verify the accuracy of the three

plasmids (psiRNA S4, psiRNA SII and psiRNA S16) using sequencing protocol outlined in

the Materials and Methods section.
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Oligonucleotide Oligonucleotide Sequence
Name
psiRNA 84 sense 5'-GATCC GTTTCATTTTCATGGGTGAC TTCAAGAGA
oligo GTCACCCATGAAAATGAAA TTTTTTGGAAA-3'

psiRNA 84 antisense 5'-AGCTTTTCCAAAAAA TTTCATTTTCATGGGTGAC
oligo TCTCTTGAA GTCACCCATGAAAATGAAA CG-3'

psiRNA 811 sense 5'-GATCC GCTTACAGGTTGTCTGAAT TTCAAGAGA
oligo ATTCAGACAACCTGTAAGC TTTTTTGGAAA-3'

psiRNA 811 5'-AGCTTTTCCAAAA AAGCTTACAGGTTGTCTGAAT
antisense oligo TCTCTTGAA ATTCAGACAACCTGTAAGC G-3'

psiRNA 816 sense 5'-GATCC GACCAGTCATGCCTAGATA TTCAAGAGA
oligo TATCTAGGCATGACTGGTC TTTTTTGGAAA-3'

psiRNA 816 5'-AGCTTTTCCAAAA AAGACCAGTCATGCCTAGATA
antisense oligo TCTCTTGAA TATCTAGGCATGACTGGTC G-3'

Sense oligo

+

Antisense oligo

- heat to 90°C
- anneal

AmpicitUn

-cut with HindIII and BamHI
-ligate and transform

Neomycin

SV40 Promoter

Ampicillin
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Appendix B. Additional Background Data

Additional preliminary data is included here instead of the text of the thesis since these
background experiments form the basis of the data included in the thesis. These include
optimization ofparameters and other information used in the thesis.

1. Effects of Carrier DNA on Transfection Efficiency for MDBK cells

2. Selection ofMDBK cells using G418

3. Evaluation ofpossible siRNA sequences

4. BLAST results of siRNA sequences

5. Co-transfection of antisense construct pASDGneoM and reporter pCMV-~

6. Optimization of transfeetion parameters: Concentration of transfeeted DNA on
transfection efficiency

7. Use of Zinc as a Means of Condensing Plasmid DNA for Transfection Purposes
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Dl. Effects of Carrier DNA on Transfection Efficiency

II

•
• • - -""I'" ""I'"
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E
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z

40.0
35.0
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20.0
15.0
10.0
5.0
0.0

o 2 3 4 5 6

Amount of carrier DNA added to transfection mixture (ug)

5J.lg ofpCMV-~ was transfected along with varying amounts of carrier DNA (sheared

salmon-sperm DNA). Transfection is performed as per Materials and Methods. Staining for

lacZ activity occurred at 48 hours post-transfection.
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B2. Selection ofMDBK cells using G418

Control - no G418 100Jlg/rnL G418 - Day 5 of selection

800Jlg/rnL G418 - Day 5 of selection 1000Jlg/rnL G418 - Day 5 of selection
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Various amounts ofG418 were added to the growth media ofMDBK cells. Photographs

were taken 5 days after selection. For the generation of stable clones (i.e. cell lines

conferring resistance to G418 by the expression ofneoR gene), the cells were selected for 2

weeks.
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B3. Evaluation of Possible siRNA sequences

Sequence Construct GC
content

Site 1 AAGGACTTCGTGATTGTCCCC AAGGACTTCGTGATTGTCCCCTTCAAGAGA 52.38%
GGGGACAATCACGAAGTCCTT

Site 2 AACGTCGCTGGAATGCAGAGA AACGTCGCTGGAATGCAGAGATTCAAGAGA 52.38%
TCTCTGCATTCCAGCGACGTT

Site 3 AATGCAGAGAATTTCATTTTC AATGCAGAGAATTTCATTTTCTTCAAGAGA 28.57%
GAAAATGAAATTCTCTGCATT

Site 4 AATTTCATTTTCATGGGTGAC AATTTCATTTTCATGGGTGACTTCAAGAGA 33.33%
GTCACCCATGAAAATGAAATT

Site 5 AATGCTGGCTGCAGCTACGTC
Site 6 AAGGACATCCGCCTGAGGACG AAGGACATCCGCCTGAGGACGTTCAAGAGA 61.9%

CGTCCTCAGGCGGATGTCCTT
Site 7 AAGTTCGTTTGGCTGATCGGG AAGTTCGTTTGGCTGATCGGGTTCAAGAGA 52.38%

CCCGATCAGCCAAACGAACTT
Site 8 AAGAGGACACCACGGTCAAGA AAGAGGACACCACGGTCAAGATTCAAGAGA 52.38%

TCTTGACCGTGGTGTCCTCTT
Site 9 AACTGCGCCTATGACAGGATC
Site 10 AATATTGTCACTCTGTGGTCCT

CCATC(BAD)
Site 11 AAGCTTACAGGTTGTCTGAAT AAGCTTACAGGTTGTCTGAATTTCAAGAGA 38.1%

ATTCAGACAACCTGTAAGCTT
Site 12 AAGGCCCTGGATGTCAGTGAC AAGGCCCTGGATGTCAGTGACTTCAAGAGA 57.14%

GTCACTGACATCCAGGGCCTT
Site 13 AACTTCAGTCTTCGAGGGCCT AACTTCAGTCTTCGAGGGCCTTTCAAGAGA 52.38%

AGGCCCTCGAAGACTGAAGTT
Site 14 AACAGCAAAAAATCTGTTTCT AACAGCAAAAAATCTGTTTCTTTCAAGAGA 28.57%

AGAAACAGATTTTTTGCTGTT
Site 15 AATCTGTTTCTTCAAAGAAGA AATCTGTTTCTTCAAAGAAGATTCAAGAGA 28.57%

TCTTCTTTGAAGAAACAGATT
Site 16 AAGACCAGTCATGCCTAGATA AAGACCAGTCATGCCTAGATATTCAAGAGA 42.86%

TATCTAGGCATGACTGGTCTT
Site 17 AACTATTTCTTGCCTCTAAAT AACTATTTCTTGCCTCTAAATTTCAAGAGA 28.57%

ATTTAGAGGCAAGAAATAGTT

Following the criteria stated in Chapter VII, the nucleotide sequence obtain in Chapter IV

was screened. 17 possible sites were found beginning with the dinucleotide AA. The

sequence is utilized and possible constructs were made by creating a palidromic sequence

and inserting a loop region ofTTCAAGAGA (green). Of the 17 possible sequences, only 3

sites contained GC content of 30-50%. After cloning the siRNA hairpin into the pSilencer

plasmid, sequence verification, Mfold secondary structure analysis and BLAST search were

performed (Figure 20 and Appendix B4).

202



Score E
(bits) Value II11-

B4. BLAST results of siRNA sequences

Site 4 (refer to B3 for sequence information)

IMouse-over to show defline and scores. Click to show alignments

Color Key for Rlignnent Scores

1_102651,.. ------....----------....1
o

Sequences producing significant alignments:

gi 16198370!gb!BC015831.1! Hortlo sapiens deoxyribonuclease I ...

g1 48266971refiNM 004944.11 Hortlo sapiens deoxyribonuclease
gi 28Q14555Igb!AC137936.31 Homo sapiens chrortlosortle 3 clone
gi 197450621gb1AC098479.21 Hortlo sapiens chrortlosortle 3 clone

gi 2905785IgbIAF047354.1! Hortlo sapiens liver and spleen DNa .

9i 32363191gb1U75744.11HSU75744 Hortlo sapiens DNase gamma rtlR .

gi 13997181gb1U56814.11HSU56814 HUrtlan DNase1-Like III prote .
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Site 11 (refer to B3 for sequence information)

IMouse-over to show defline and scores. Click to show alignments

1_27908~i----------.----------....1o

Sequences producing significant alignments:

gi1376936831gb1AC104914.91
gi199716321dbj1AP002527.11
gil 165011411emb1AL445287.161
gi1201523401embJAL390122.161

Mus musculus chromosome 9, clone .
Escherichia coli plasmid R721 ge .

Human DNA sequence from clone
Human DNA sequence from clone ...

Score E

(bits) Value

-l.& 0.37

-l.& 0.37

--1.1 1.4

2.1 1.4

Site 16 (refer to B3 for sequence information)

IMouse-overto showdefline and scores. Click to show alignments

1_30446_1 ~-----------..... I
o

Sequences producing significant alignments:
Score E

(bits) Value

gi 20068630 embl AL645783. 13 I Mouse DNA sequence from clone .
gi 19774306 gb1AC112918.31 Homo sapiens X BAC RP11-370L12 ( .
gi 17223145 gb1AC097263.61 Homo sapiens X BAC RP11-29aC3 (R .
gi 34221791 emb1AL670024.71 Mouse DNA sequence from clone R .
gi 10047940 gb1AC011290.31 Homo sapiens BAC clone RPll-6412 .
gi 34581725 gb1AC116406.121 Mus musculus chromosome 3, cIon .
gi 29788800 gb1AC090950.31 Homo sapiens chromosome 3 clone .
gi 20340433 gb1AC117430.31 Homo sapiens 3 BAC RP11-119D18 ( .
gi 12001757 embIAL390a94.2,ICNS06C7tJ Human chromosome 14 DNA .
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B5. Co-transfection of antisense construct pASDGneoM and

reporter pCMV-~

~ 1ug pASDGneoM

--- 2ug pASDGneoM

1ug Control

~ 2ug Control

654321

'0 70.00/0 ----r-w.,--.-~--_ ...~--~~~- ...-----~~
~(I)

(,) C) 60.00/0 --t-----------F----~--------_____Ic: eu
.~ C
(,) (I) 50.00/0 -I------------F~-----~--~tc-------~

!E~---
W (I) (5 40.00/0 --t----Jr-\-------~~----_____I
c: Q. =o eu c:
;; fn 0 30.0% -t-----~--~---~---~...___--____Ji

(,) eu (,)
~ "C 20.00/0 -+----1-----------------_____1
fn (I)
c: fn
eu fn 10.00/0 -+----~------ -------------{1

~ !
~ 0.00/0
(I)
~ 0

Amount of Transfected reporter pCMV-beta
(ug)

Various amounts ofpCMV-B were co-transfected with varying amounts ofpASDGneoM

(antisense construct) or pDC19 (control). Transfection is performed as per Materials and

Methods. Staining for lacZ activity occurred at 48 hours post-transfection. None of the

methods resulted in a significant increase over standards (no co-transfected plasmid) as

attested by the less than 100% transfection efficiency.
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B6. Optimization of transfection parameters: Concentration of

transfected DNA on transfection efficiency

10

•

•

• • •
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~ 35...
(l)

Q. 30
l!
; 25
E...
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.c 5
E
::s
z 0

0.1

Amount of Transfected pCMV-betaK

Various amounts ofpCMV-~ were transfected using traditional calcium phosphate

technique. Transfection is performed as per Materials and Methods. Staining for lacZ

activity occurred at 48 hours post-transfection.
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B7. Use of Zinc as a Means of Condensing Plasmid DNA for

Transfection Purposes

30.0
<t -+-2 ug/rrl
Z 25.0
~c

---- 4 ug/ni."'C 20.0 •c •~ .. 10 ug/ni.
0 15.0.a ~20ug/ni.c
~ 10.0
'I- --.- 40 ug/ni.
0

5.0 )I(
C) )I( )Ie -+- 100 ug/mL~

0.0

0 5 10 15 20 25 30 35

Time of incubation (mins)

Various amounts ofplasmid DNA was complexed with 3mM ZnP04 • Amount of unbound

DNA was determined by incubating the DNA-ZnP04 mixture at room temperature and

centrifuged at 14,000g for 1 minute. The OD26o of the supernatant is used to quantify

unbound DNA in solution. At 3mM zinc, concentrations of DNA up to 20Jlg/mL can be

efficiently complexed. Longer incubation period leads to the sequestering ofmore DNA

from solution. However, the nature of the precipitate (i.e. coarse vs. fine) is not quantifiable

by this method.
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Time of Incubation (mins)

Due to the cytotoxic effects of zinc on MDBK cells, lesser amounts of zinc was tested for

efficient complex formation with DNA. 5J.lg ofplasmid DNA was incubated at room

temperature with various amounts ofZnP04. Unlike 3mM ZnP04, DNA is not efficiently

complexed at concentrations less than ImM. According to Table 7, concentrations of zinc

greater than 10J.lM results in cellular toxicity. Thus, the toxicity of zinc made it impossible

as a transfection reagent despite the fact that it complexes DNA efficient than CaP04•

Control denotes 12.5mM CaCI2.
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