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Abstract

In this work, the magnetic field penetration depth for high-Tc cuprate superconduc-

tors is calculated using a recent Interlayer Pair Tunneling (ILPT) model proposed by

Chakravarty, Sudb0, Anderson, and Strong [1] to explain high temperature supercon-

ductivity. This model involves a "hopping" of Cooper pairs between layers of the unit

cell which acts to amplify the pairing mechanism within the planes themselves. Recent

work has shown that this model can account reasonably well for the isotope effect and

the dependence of Tc on nonmagnetic in-plane impurities [2] , as well as the Knight shift

curves [3] and the presence of a magnetic peak in the neutron scattering intensity [4]. In

the latter case, Yin et al. emphasize that the pair tunneling must be the dominant pairing

mechanism in the high-Tc cuprates in order to capture the features found in experiments.

The goal of this work is to determine whether or not the ILPT model can account for

the experimental observations of the magnetic field penetration depth in YBa2Cu307_a7.

Calculations are performed in the weak and strong coupling limits, and the efi"ects of both

small and large strengths of interlayer pair tunneling are investigated. Furthermore, as a

follow up to the penetration depth calculations, both the neutron scattering intensity and

the Knight shift are calculated within the ILPT formalism. The aim is to determine if the

ILPT model can yield results consistent with experiments performed for these properties.

The results for all three thermodynamic properties considered are not consistent with

the notion that the interlayer pair tunneling must be the dominate pairing mechanism

in these high-Tc cuprate superconductors. Instead, it is found that reasonable agreement

with experiments is obtained for small strengths of pair tunneling, and that large pair

tunneling yields results which do not resemble those of the experiments.
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Chapter 1

INTRODUCTION

The field of high temperature superconductivity has had many exciting moments since

the discovery of the first superconductor with a transition tenciperature greater than SOK.

This event occurred in 1986, and physicists Bednorz and Miiller were awarded a Nobel

Prize for their work on La2_xBaa;Cu04 shortly thereafter. Since that time, many new high

temperature superconducting materials have been discovered, some with superconducting

transition temperatures as high as 130K. Much of the subsequent work by experimental-

ists and theoreticians has increased the knowledge and understanding of these materials,

and led to the development of new and precise techniques for performing measurements.

Yet despite all of the advancements in the field of high temperature superconductivity,

there still exists no one theory which can account for all of the experimentally observed

properties.

This work investigates one particular model which was proposed by Chakravarty,

Sudb0, Anderson, and Strong [1] in 1993. They suggest that their Interlayer Pair Tun-

neling (ILPT) model may provide the mechanism responsible for producing such high

transition temperatures in these new materials. Their calculations of the Knight shift

and the neutron scattering intensity [3, 4] using the ILPT model have shown results in

agreement with experiments. Further support for the model was also found in a recent

work by Mitrovic and Castle [2] which involved refining the ILPT model to include the

strong coupling effects resulting from in-plane interactions. In this case it was found that

within this strong coupling formalism there was good agreement with experiments for
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Chapter 1. INTRODUCTION 2

calculations of both the isotope effect and the dependence of the critical temperature on

in-plane impurities.

The main goal of the present research is to determine whether the ILPT model can

describe the dependence of the in-plane magnetic field penetration depth on temperature.

The penetration depth is an important property of a superconductor and it can reveal

clues about the symmetry of the order parameter. Clearly then, the question of whether

or not the ILPT model can reproduce the results of penetration depth experiments is an

important one when considering the validity of the model.

The focus in this research is on the high temperature superconductor YBa2Cu307_a;

(YBCO). This compound is widely studied because of its relatively simple structure

and the high degree of quality to which YBCO samples are made. Understanding the

structure of high temperature superconductors (HTSC) is essential for interpreting ex-

periments and developing new theories to try to explain the behaviour of these materials.

In the following sections, the structure of YBCO is described briefly, and previous pene-

tration depth experiments conducted on YBCO samples are summarized.

1.1 Structure of YBCO

The new class of HTSC's are layered compounds which are variations on the perovskite

crystal having the chemical formula ABO3. Typically, these materials have more than

one A atom, which is true in the case of YBCO.

A unit cell of YBCO is shown in Figure 1.1 and the layered structure is clearly

evident. The unit cell consists of two Cu02 planes, separated by an yttrium atom, two

BaO planes, and finally copper oxide chains at the top and bottom of the cell. The Cu02

planes are widely thought to be the most important structural element of the material

and the location in which superconductivity takes place. The "missing" oxygens in the
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CuO chains cause the cell to be slightly orthorhombic {a ^ b). When YBa2Cu307_a; is

doped such that further oxygen vacancies appear in the chains (i.e. a; > 0), the lattice

parameters a and b are slightly distorted. The optimal doping for YBCO is at a: ~ 0.05,

and the critical temperature is 93/l . For x = 0.5, the vacancy can occur along either

the a or 6 direction with equal probability and the crystal adopts a tetragonal symmetry

(a = 6). For x > 0.5, there is no superconductivity in YBa2Cu307_x. Typical unit cell

dimensions for YBCO are a = 3.8227A, b = 3.8872A, and c = 11.6802A [5].

Figure 1.1: YBa2Cu307 unit cell

1.2 Experimental Penetration Depth Data

Experiments designed to measure the magnetic field penetration depth are difficult to

perform accurately. Typically, experimentalists measure the deviation of the penetration
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Figure 1.2: Experimental results for the penetration depth in YBa2Cu306.95

depth at a temperature T from its zero temperature value;

AA(T) = A(T) - A(0). (1.1)

From this data experimentalists can then calculate the quantity (A(0)/A(T))^ which is

useful since it is proportional to the normalized superfluid density ns{T)/no.

Hardy, Bonn, Morgan, Liang, and Zhang [6] recently presented their results for pen-

etration depth measurements on high quahty single crystal samples of YBa2Cu306.95-

A plot of their experimental results is shown in Figure 1.2. They also show the tradi-

tional s-wave curve obtained within the Bardeen, Cooper, and Schrieffer (BCS) theory
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for comparison's sake. Such a well defined linear behaviour at low temperatures had not

been observed prior to their work, and their precision microwave measurements provided

strong evidence that the gap has dj^2_y2 symmetry. The observed linear temperature

dependence of (A(0)/A(T))^ at low temperatures is qualitatively very different from the

s-wave BCS result. A constant value of (A(0)/A(T))^ at low temperatures reflects the

presence of a gap in the excitation spectrum of a conventional BCS superconductor, while

a linear change in (A(0)/A(T))^ with temperature is consistent with d-wave symmetry

for which there are nodes in the gap function.

1.3 Overview

The preceding discussion has focused on the rationale for this work, as well as the ex-

perimental penetration depth results on YBCO samples. The remainder of the paper

moves to the bulk of the present research. The following chapter details the theoretical

framework of the ILPT model, as well as the equations for the magnetic field penetra-

tion depth. As well, the chapter briefly considers calculations of the magnetic neutron

scattering intensity and the Knight shift within the ILPT model. Chapter 3 discusses

computational details and addresses some of the numerical difficulties which arise due to

the structure of the formulae. The results are presented in Chapter 4 together with a

general discussion of the data. Finally, Chapter 5 summarizes the results and presents the

conclusions arising from this study of the ILPT model and the magnetic field penetration

depth.





Chapter 2

THEORY

This chapter presents the theoretical framework within which the calculations of this

research were performed. The Interlayer Pair Tunneling (ILPT) Model is described first,

and is then generalized to include the strong coupling effects associated with in-plane

interactions. The equations in the BCS limit are also presented, followed by derivations

of the magnetic field penetration depth, Knight shift, and magnetic neutron scattering

intensity.

2.1 The Interlayer Pair Tunneling Model

The essential feature of the Interlayer Pair Tunneling (ILPT) model of Chakravarty

et al. [1] is a hopping of electron Cooper pairs between adjacent Cu02 layers of the

unit cell. The hopping of Cooper pairs from layer to layer acts to enhance the amount

of pairing that occurs within the individual planes. In the superconducting state, the

quasiparticle picture is taken to be approximately valid for motion within a layer, but here

the coherent single particle tunneling in the c-direction is prohibited due to strong ab-

plane electronic correlation effects. Consequently, single electrons suffer what is known as

the "orthogonality catastrophe", whereas Josephson tunneling of Cooper pairs between

adjacent layers is permissible. The ab-plane electron motion for chemical potential /i and

lattice constant a is approximated by the tight binding electronic dispersion relation

£k = —2t[cos[kxa) + cosikyo)] — At' cos(/c^a) cos(kya) —
fj,. (2.1)
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Here, t and t' represent the amount of hopping between the nearest and next nearest

neighbour lattice sites, respectively, and the two dimensional wave vector k = (kj^^ky)

spans the first Brillouin zone. Note that throughout this work the dispersion is calculated

relative to the chemical potential //.

An important feature of the model is that it is independent of the particular in-plane

pairing mechanism. The research in this paper considers two scenarios for the in-plane

interaction. First, the case of antiferromagnetic spin fluctuation mediated interaction

is considered, for which the strong coupling form of the ILPT model is used. Second,

the usual BCS weak coupling interaction is applied for both s-wave and da;2_y2-wave

symmetry of the order parameter.

To describe the coupling of two Cu02 planes in a unit cell by the interlayer pair

tunneling, Chakravarty et al. [1] introduce the Josephson pair tunneling term Hj^ given

as

Hj = -Y. r.(k)[c<VV'^lc%4;' + H.C.\ (2.2)

k

where c^l is an electron creation operator for the state having wave vector k and spin t

in layer (1), and H.C. refers to the Hermitian conjugate. Thus the term c^^ ^-L\y-li],^\<ii

can be interpreted to mean the destruction of a pair of electrons with equal and opposite

momenta and spin in layer (2) and their subsequent transfer to layer (1), in other words,

the tunneling of a Cooper pair from layer (2) to layer (1) with conservation of momentum.

The amount of interlayer hopping is determined by the quantity

rj(k) = ^[cos(fc,a) - cos(fc,a)]^ (2.3)

where ^i is a measure of the high-energy single-electron coherent hopping between layers.

The form of T'j(k) is based upon the electronic band structure calculations of Andersen

et al. [7]. Figure 2.1 shows the structure of the function, where a, ^, and tj. have been
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set to one for simplicity. Clearly Tj(k) vanishes when k^ = :tky, and is maximum when

kx and ky are such that (kx^ky) = (±7r,0) or (0,±7r).

Figure 2.1: The structure of Tj(k).
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2.2 Strong Coupling Form of the ILPT Model

The ILPT model of Chakravarty [1] was generalized by Mitrovic and Castle [2] to in-

clude the strong coupling effects resulting from in-plane interactions. By including these

retardation effects it is believed that properties of the superconducting state will exhibit

a more accurate dependence on the interaction parameters. Specifically, the dependence

of the transition temperature Tc on the interlayer tunneling and in-plane impurities was

calculated, as was the oxygen isotope exponent a within the strong coupling formalism

[2] with electron-phonon interaction taken for the in-plane pairing mechanism. Results in

all cases considered were in good agreement with experiments. There was a dramatic in-

crease in Tc with increasing interlayer pair tunneling and small positive values of a were

obtained for high transition temperatures. Furthermore, the critical temperature was

strongly suppressed by the presence of in-plane impurity scattering in both the Born and

^-matrix approximations. In fact, the convenient manner in which the effects of in-plane

disorder can be included in the strong coupling calculations is another advantage of ex-

tending the ILPT model to include retardation effects. The Tc dependence on impurities

can offer insight into both the order parameter symmetry and pairing mechanism.

According to this strong coupling form of the model, the contribution of the interlayer

pair tunneling to the electron self-energy is

E!,"(k) = Tj(k)TY,[<t>^'\k,iu:„,)h + ^^'KKioJmjhjS^'HKm). (2.4)

m

The function S^^^k^m) is given by

S^^Uk m) — =

(2.5)

Here Z^-^^ is the renormalization function, x^"^^ is the part of the diagonal self-energy

which is even in ia;^, and (/j^-'^ and (^^-^^ are the real and imaginary parts of the pairing





Chapter 2. THEORY 10

self-energy. T is the temperature expressed in energy units and Um = 7rT(2m — 1) is the

mth Matsubara frequency. Note that the self-energy resulting from the interlayer pair

tunneling is frequency independent and is purely local in k, contributing only to the off

diagonal pairing self-energy </>.

Equation (2.4) was derived assuming the usual form for the total irreducible electron

Nambu self-energy in layer (j), namely

E(^')(k,iu;^) = iUn{l-Z^^\k,iun))To+<t>^'\k,ii^n)h^4>^'KKiu;^)r^^^ (2.6)

and with the Dyson equation

G«-'(k,ia,„) = G«"(k,ia;„) - t<'\k,iuj„), (2.7)

where the non-interacting Green's functions are

/ 1

JU

\

\

; J = 1,2 (2.8)

and fo, fi, f2, T3 are the Pauli matrices.

In order to check that the strong coupling form of the ILPT model reduces to the

result of the original model in the BCS limit, one need only consider the weak coupling

limit for in-plane interactions and set Z(k, iu;^) = 1, x(k,ia;rn) = 0, and (/)(k, zu;^) =

</>(k) accordingly in Equation (2.4). These substitutions reduce the electron self-energy

equation to the following form:

1

t^j\k) = Tj{k)T[^^'\k)n + 4>^'\k)T,] y: (2.9)
ilLOmY + El

where Ey. = (e^ )^ + |0^^^(k) -|- i^^^^(k)p. The sum over m in the above equation can

be performed using contour integration, using the fact that any function F{z) that is

analytic within the contour Cm in the complex z plane may by expressed as

F{iu;m) =
27Ti Jci dz-

F(z)_

;«' + !
(2.10)
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Then, according to Poisson's summation rule, the sum over m of the function F(z) is

Y^F{rco^) = -^ldz-g^, (2.11)
r—^ ZTTl Jc e^^ + 1
ILJrn

where C is a contour enclosing all of the individual contours Cm- Finally, if lim zF{z) = 0,
\z\—^oo

as is the case here for F{z) = l/(— z'^-\-E^), then the sum reduces to

y^ F[iuJm) — — 27ri x sum of residues of ^^z\ at the poles of F{z)
,

(2.12)

where the residue for a simple pole z^) of Fi^z^ is found according to the general formula

{p{z) and q{z) are analytic functions). After using the fact that, in this case, the simple

poles of F{z) are zq = i-Ek, it can be shown with some algebraic manipulation that

Equation (2.9) can be written as

i;<"(k) = Tj{k)[4>^'\k)h + ^<^>(k)f2]^tanh (^) . (2.14)

This is the same result as that which was obtained by Chakravarty et al. in their original

work [1], and the strong coupling formalism does in fact recover the BCS-like form in the

weak coupling limit.

Having derived the expression for the electron self-energy due to the interlayer pair

tunneling process, Equation (2.4), the contribution to the self-energy arising from the in-

plane spin fluctuation interaction can now be considered. The total self-energy S(^)(k, itOn)

is simply a sum of the contributions from these pair tunneling and one boson exchange

(i.e. spin fluctuation) processes:

E(i)(k,ia;0 = Siy(k,zu;,) -h S^'^(k,z-u;0. (2.15)

As in [8], the spin fluctuation contribution can be expressed as

Siy(k,zu;,) =TY.Y.Ps{\^- k'.^'^n - za;^)foG'(k',zu;^)fo, (2.16)

m k'
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where Ps(q, zo^n — i(^m) is the spin fluctuation propagator defined as

3
Ps{c{, iiOn - iu;m) = -W^Xsi^i, iuJn - i^m)' (2-17)

Here, U is the Hubbard interaction constant and the spin susceptibility Xsi^i'^^n — i<^m)

has the form

Xs(q, i^n - iiOm) = Xr dnP{n)- VTTr^ Y.
Jo (U^n -^m)^ + ii^ O

2n ^ r r

(2.18)

where -P(n) represents the frequency distribution function and xr is found from the

normahzation of P(n) to 1. As in the work of Kostur and Mitrovic [8], the spectral

function P(ri) represents the density of spin fluctuation excitations at an energy i7 and

is taken to be a continuous distribution of spin fluctuation modes;

P(U) = —Q{uo - n) + ^0(n - wo)0(u>„„^ - Q.)
I ^max ,

-L

In 1

—

LUo 2J
(2.19)

where ©(cjq — ^) is the usual step function.

Note that this spin susceptibility contains a key feature of four sharp peaks at the

corners of a square Brillouin zone, as represented by the sum over Q = (±7r,±7r). The

presence of these sharp peaks has been well established by magnetic neutron scattering

measurements and through calculations of Xs for a 2D Hubbard model. Kostur and

Mitrovic [8] exploited this feature of Xsi^^'i^n — i'^m) by assuming that the peaks are

sharp enough so that they may be replaced with a delta function at the four corners

of the Brillouin zone, and this assumption will be made in this work as well. This

approximation means that the width F of the peaks approaches zero. The advantage of

making such an approximation is that when considering an integral involving a product

of Xs{<^i i^n — i^m) and any smooth function of momentum, the only contribution to the

integral is from the value of the function at the four corners. With this simplification.
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Equation (2,18) reduces to

X.(q, iLOr. - iiOm) = TTV / ^nP(O)- -——^ S{q - Q), (2.20)

and using

3/72 Yr /-oo Q
A,(n-m) =—^/ <inP(n)- -—

-

(2.21)

one finds that the electron self-energy can be expressed as

Y^sjiy^.i^n) = 'KTY^\s{n - m)-^fbG(k4- Q,ia;^)fo. (2.22)
m ^ Q

As in the case of the self-energy due to pair tunneling, the Nambu Green's function

(^(k, ZLJn) is found using the non-interacting Green's functions (Equation (2.8)) and the

Dyson's equation (Equation (2.7)). After some algebra the form of Ss/(k,2a;„) looks like

E5/(k,za;n) = -nT^Xsin - m)-x
m ^

Y^[iu^Z{\<i + Q, iuJm)TQ -f (sk+Q + x(k + Q, iuJm))^ +
Q

(^(k -h Q, iuo^)n + ^(k + Q, iuJm)r2]S{\<. + Q, m). (2.23)

At this stage, the total self-energy E^-^^ — Ej + E^y is known and it is possible to extract

the equations for Z^Xi ^^^ 4' by equating the two representations for the total self-energy,

namely Equations (2.6) and (2.15). These relations are

rp -I

Z(k,zu;„) = 1 +— VA,(n-m)-VKZ(k + Q,zu;^)]6'(k + Q,m) (2.24)

X(k,2a;„) = -7rT;^A,(n-m)ix^[£k+Q + x(k + Q,zu;^)]5(k-FQ,m) (2.25)
m "^ Q

m 4 Q

Tj{k)T J2 </>(k, iiOm)S{k, m). (2.26)
m

The equation for 4> is identical to the equation for ^, and one can choose the phase of the

pairing self-energy such that it is purely real, i.e.
(f)
= 0. Note that in the above equation
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for </)(k, z'cjn) it is assumed that for a given k and m, the functions Z(k, zu;„), xO^i '^'^n) ,

and 4>(k,iujn) are the same in layers (1) and (2).

2.2.1 Equations at the Critical Temperature

To determine the transition temperature Tc, note that the pairing self-energy ^(k, iujn)

(Equation (2.26)) approaches zero as the temperature T approaches Tc from below. At

T = Tc, the form of the equation for (/)(k, icJn) represents an eigenvalue problem, and

defining

u(k,n) = (f>{k,iu;n), (2.27)

Tc can be found from solving the eigenvalue equation

w(k, n) = J2 t<(^^ ". m)u(k, m). (2.28)

m

Here, the kernel K(k,n,m) is a temperature dependent real symmetric matrix and is

equal to the sum of the contributions from the spin fluctuation interaction,

Ksf(k, n, m) = -irTXsin - m)- Y] —-———

—

.
—

-j
——^— ttt,

(2.29)

and from the interlayer pair tunneling

Kj(K n, m) = Tj{k)T . \ . (2.30)

At Tc, the functions Z, Xi ^-^d the chemical potential fi are determined self-consistently

by iterating Equations (2.24) and (2.25) (with (j) set equal to accordingly) together with

the equation for the band filling factor,

4T °° 1

" = ' - iV^? 5/^" + ^(''' ""^^ KZ(k, r.^W + [^. + X(k, «c.„)l^

'

(''^)

which corresponds to the number of electrons of spin up and spin down per unit cell.
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By definition, Tc is the highest temperature at which the largest eigenvalue of the

matrix K(k,n,m) is equal to one. At a given temperature T, the largest eigenvalue of

K can be determined using the power method described briefly below.

2.2.2 The Power Method

Because K is a Hermitian matrix, the set of all possible eigenvectors {\i)} form a complete

set, such that

k\i) = \i\i)- z' = l,...,m. (2.32)

The eigenvalues A^ of K are ordered such that Ai > A2 > ... > A^, and thus the

eigenvector |1) corresponds to the eigenvalue Ai with the largest modulus. Taking an

arbitrary vector \Y) = /?i|l) + /?2|2) + . . . + /^m|^) and operating n times with K yields

k''\Y) = A»/?,|l) + A;/?2|2> + ,.. + A;^/?„|m) (2.33)

= ^^(a|1)+/'2(Q m + --- + Pm(j^] \m)\ (2.34)

If n is large enough (n = 50 is sufficient in this work), then all but the leading term can

be ignored, so that

k^'lY) ^ A;^/?i|1>. (2.35)

Operating one final time with K and dividing by the norm of the vector ||/l"|y)|| ^ Aj/^i

k(S^^] ^Ai|l), (2.36)
\\\K-\Y)\\J

'' ^'

and the largest eigenvalue Ai is obtained. The convenience of the power method lies

in the fact that only the largest eigenvalue Ai is obtained, and no time is wasted in

computing the many other eigenvalues of the kernel K.
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2.3 ILPT Model in the BCS Limit

In addition to the strong-coupling formalism discussed above, the traditional BCS in-

plane interaction was also examined in the present research. In this weak coupling picture,

Z(k,iLJn) is set equal to 1, x(^->^'^n) is set to 0, and the order parameter is frequency-

independent (i.e. </)(k, za;^) = ^(k)). The usual BCS mean field treatment is applied to

the total Hamiltonian

^ = E eA,.c>... + E Mc.K.cl*fc«V*-L44\ + Hj (2.37)

k,a k,k'

where T4,k' is the in-plane pairing interaction kernel. The first term in (2.37) is the usual

kinetic energy term, while the second term describes the scattering of pairs with opposite

momenta between states. Hj is defined in Equation (2.2) and represents the momentum

conserving pair tunneling between Cu02 layers. H can be diagonalized by a Bogoliubov

transformation, and after lengthy algebra the gap equation at a finite temperature T

looks like

,(.) = ^,(.)tanh (I) +^E V..flunh {^) (2.3S)

where £^k = \l4>{}^y + ^k ^^ ^^e quasiparticle energy.

This present work considers two models for the in-plane attractive kernel. The first

is an isotropic s-wave interaction, for which Vk,k' = VQ{^d — |£k|)G)(^£) — kk'D- The

step function ©(H^ —
|£:k|) cuts off the in-plane interaction so that Vk,k' is nonzero only

within a shell of width 2h^D centered around the Fermi surface. Both of the terms in

the gap equation are strictly positive, and the structure of Vk,k' is such that for a given

temperature the second term is independent of k (with the exception of the step function

0) and consequently any anisotropy in the gap is a direct result of the pair tunneling

term Tj{k).
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The second model assumes that the symmetry of the component of the order param-

eter resulting from in-plane interactions has d^2_y2 symmetry, so that the magnitude of

this term depends on the direction in momentum space. For this d-wave anisotropic case

the interaction is given as Vl^k' = Vgkgk', where gy^ = ^[cos(kxa) — cos(kya)]Q{QD — kk|)-

Clearly both g]^ and Tj(k) vanish along the lines k^ = ±ky, so that the gap is exactly

zero here.

As in the strong coupling case, the critical temperature is found by solving an eigen-

value problem at Tc using the power method described earlier. At Tc^ the eigenvalue

problem looks like

v(k) = J2^<{K^'H^')- (2.39)

k'

K is a real symmetric matrix equal to the sum of the contributions from the weak coupling

in-plane interaction,

/fBC.(k,k') = ^l4,.^tanh(|;), (2.40)

and from the interlayer Josephson pair tunneling,

/^j(k,k') = 4.k.^tanh(^), (2.41)

where here .Ek = y^ki since ^(k) = at T = Tc.

2.4 The Magnetic Field Penetration Depth

One of the defining properties of a superconducting material is that it expels all magnetic

field from its interior so that the magnetic flux density B is always zero inside the material.

Screening currents flow on the surface of the superconductor which in turn generate a

magnetic field equal and opposite to the applied field, expelling the field from the bulk of

the material. However, these surface currents cannot reside solely on the surface of the
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material, since this would imply that the current density would by infinite - a physically

impossible scenario. Instead, there is a shallow surface region in which the diamagnetic

currents flow, and it is within this region that the opposing magnetic field is generated

to cancel out the applied field. It will be shown below that the applied field decays

exponentially in this surface layer, and the London magnetic field penetration depth is on

the order of the thickness of this layer.

To see how the magnetic field decays within the superconductor, one can examine

Maxwell's equations in the static limit, so that ^(. . .) = 0. Taking the curl of both sides

of

V X B = —

J

(2.42)
c

and using the relation

for the total current density J, derived assuming the applied magnetic field is described

by the vector potential A(r, t) within the traditional BCS formalism, the expression in

Equation (2.42) reduces to the differential equation

V^B = ^B. (2.44)

Here, Al(0) is the value of the London magnetic field penetration depth at zero temper-

ature, and c is the speed of light. The solution of this equation is

B,(z) = B,(0)e-^/^^(°) (2.45)

such that the field applied parallel to the surface of a superconductor decays exponentially

within the material, as shown in Figure 2.2 (adapted from [9]). The flux density at a

distance Xl inside the material would therefore be 1/e of its value at the surface.

Another way to view the penetration depth is as the distance Xl into the supercon-

ducting material which would result in the same amount of flux density inside if the
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KiT)

Figure 2.2: The magnetic field penetration depth Xl(T).

external field remained at the constant value of B{0) over this distance. In mathematical

terminology,

/•CO

/ dzB,{z) = XlB,(0). (2.46)

2.4.1 Strong Coupling Limit

The derivation of the expression for the penetration depth in the strong coupling limit

involves lengthy and complicated algebra. This section outlines only the main steps in

the procedure and refers the interested reader to any thorough text on many-body theory

(see for example, [10]).

To determine the electromagnetic response of a superconductor to an externally ap-

plied magnetic field, consider the polarization propagator

n^ =
keT

(Nay
J2TT(ev,(k)y[G(k,^uJr^)]''

]i,iu>n

Here, Vx(k) is the x-component of the Fermi velocity,

Vx(k.) = 2ta sm{kj;a) -{- At'a sm{kxa) cos{kya)

(2.47)

(2.48)
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and Tr(- • •) signifies the trace. In the strong coupHng limit, the Green's function is given

as

This is the same Nambu Green's function which was mentioned earlier in the derivation

of the self-energy arising from spin fluctuations, and it is found by combining Equations

(2.7) and (2.8). To simplify the calculation of the square of the Green's function, note

that only the terms proportional to fo will survive under the trace operation.

After performing this operation. Equation (2.47) looks like

UP = o.^2
^bT y. ^ -{iOnZ(k, ZCJn))' + (£k + XJK l^n)y + </>^(k, lUn) . .

(^«)'^kir„
'^ ^^ [(u;„Z(k,^u;0)2 + (£, + x(k,^c^.))^^-<^2(k,^c^Jp•

^""^^^

The above expression represents only the paramagnetic contribution to the penetra-

tion depth. To determine the contribution arising from the diamagnetic currents, consider

the expression in Equation (2.47), but with (/>(k, zcj^) set equal to zero. Performing the

same manipulations as above, one finds that

Note that here the functions Z^(k, ia;^) and x^(k, zcj^) are the renormalization and

diagonal self-energy functions, respectively, evaluated self consistently in the normal state

for which ^(k, icj^) = 0.

In the usual Green's function derivation of the penetration depth [10], the above

diamagnetic and paramagnetic contributions are summed and are related to A(T) by

^ ^^(W-U^), (2.52)
A2(T) c2

Thus, the expression for the penetration depth in the strong coupling limit is given as

1 47re2 2kBT ^, ,, ,,2 f
(^'(k,n) + (sk + x(k,n))2 - (cc;^Z(k,n))2

A2(T)
"

c2 (Nayc S^"""^^^^' I ['^^(k, n) + (^k + x(k, n)y ^ (u;.Z(k, n))^]^

-I .(2.53)

.,._...._ ._ _ ..,.„ 12

k,n

(£k + x''(k,n))2-(u;„Z^(k,n))2

[(£k + X^(k,n))2-f-(c.„Z^(k,n))2]^
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2.4.2 BCS Limit

In the weak coupling limit, the penetration depth formula is simplified by setting Z(k, n) =

1, x(k, n) = 0, and (/)(k, n) = (f)(k) in the strong couphng result of Equation (2.53). After

making these substitutions the relation looks like

' - ^-^ ''^^ uM^)f ( ,fT, + f r^L - 4^PL] (2.54)
A^(r) c^ (NaYc^^'^' " {mk) + el + {co„n [4 + K)^P

Poisson's summation rule (Equation (2.11)) can be applied to the above sum and the

same procedure is followed as was outlined earlier in Equations (2.10) through (2.13).

The general relation

—r— = kBT2_^———:-rT (2.55)
dy niy^^^lf

results from performing the contour integration and is used to derive the equation for

the penetration depth in the BCS limit, namely,

Here, Ek = -v/^k + ^f^^W ^^id £k is the dispersion given in Equation (2.1). The first term

in Equation (2.56) depends on temperature through the presence of 0(k), and results

from the paramagnetic part of the current density. Note that the second term, however,

is temperature independent and therefore, strictly speaking, it has a constant value.

This term results from the diamagnetic part of the current density. It is also important

to realize that the term ^^§^ is always negative (or zero) and thus the effect of the

paramagnetic contribution is to diminish the diamagnetic contribution.

In the limit of zero temperature, the factor ^g^^' goes to zero and the penetration

depth approaches a constant. To determine the value of this constant, consider a special

case of spherical symmetry in a free electron model when evaluating the diamagnetic

contribution to the current density. Converting the sum over k to an integral and using
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spherical polar coordinates in momentum space, it can be shown that the following

relation holds:

(^i:K(.)f(-^) = ^, (-7)

where n is the electron density and m is the mass of an electron. After making these

substitutions into Equation (2.56), the resulting expression is

1 4:7Tne

Ai(0)
= '^^- (^-^^^

Al(0) is the London magnetic field penetration depth at zero temperature. Note that

this above manipulation is straightforward for this special case of spherical symmetry,

but that for the complicated dispersion considered in the present research, it is not trivial

to perform this derivation for the diamagnetic contribution 1/A|(0). Calculations in the

present work do show, however, that this diamagnetic contribution is constant with the

forna for the tight binding electronic dispersion in Equation (2.1).

The finite temperature penetration depth can also be cast in the same form as the

zero temperature result in Equation (2.58). If the superfluid density

n.m^nS^EKwHafl-^fi) ,»»,

at temperatures above OK is introduced, then the London penetration depth at a finite

temperature T can be expressed as

1 47Tns{T)e^

Xl{T) mc^

2.5 Knight Shift

(2.60)

The Knight shift is a measure of the shift in nuclear magnetic resonance frequency due

to the interaction between the nucleus and the electron polarization [10]. Here, only the
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shift due to electron spin polarization is considered, and so the Knight shift is really a

direct measurement of the electronic spin susceptibility x(0, 0).

The procedure for deriving the Knight shift relation in the weak coupling limit is

very similar to the derivation of the penetration depth formula. Consider a polarization

propagator given as

n(0) = -^^ E Tr[G(k,^a;„)l^ (2.61)

where fiB is the Bohr magneton, and G(k, iujn) is Equation (2.49) with the weak coupling

simplifications Z(k, za;„) = 1, x(k, iu;^) = 0, and (/)(k, icu^i) = </>(!<:), such that

A/i •
N ^^nTo + £kT3 + <^^(k)fi

After performing the trace in Equation (2.61), the sum over icOn can be done analyti-

cally using Poisson's summation rule, which has already been discussed previously. The

resulting spin susceptibility is

Finally, to include the repeated scattering between particles and holes, consider the sum

of the interactions Xo, Xo^^Xo, XoUxoUxo, • • •, such that the total susceptibility is

X(0, 0) - xo(0, 0)[1 + Uxo + (UxoY + (UxoT + ...], (2.64)

where U is the strength of the Fermi liquid corrections.

Notice that the term in square brackets above is a simple geometric series, and thus

the Knight shift can be expressed compactly as

^^'(^)=^(°'«) = 1^1:0)' ^'-''^

with Xo(0,0) given in Equation (2.63).
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2.6 Magnetic Neutron Scattering Intensity

In addition to the magnetic field penetration depth and Knight shift calculations, the

magnetic neutron scattering intensity in the BCS limit was also calculated in the present

research. Following the derivation of SchriefFer [10], one finds that the magnetic neutron

scattering intensity is the imaginary part of the spin susceptibility in the superconducting

state,

^(^'"^ ^ WaFc^
1 1

where

u + {Ei^+d + £^k) + ^<^ ^ - (£^k+q + ^k) + iS^

(£k - ^)(£k+q - /") + </>(k)(^(k + q)1±

(2.66)

(2.67)
^k^k+q

constitute the usual coherence factors and f(x) is the Fermi function. At zero tem-

perature, for which the quantity Imx(q, <^) is calculated in the present research, only

the term proportional to Aj^q will contribute. Making this simplification, and using the

delta representation of a Lorentzian function to condense the equation, the expression

for Imx(q,^) looks like [4, 10]

^-^(->- -)- (i4;? K^ - ""X^.tf

"

)
'^'^ ^ ^--- - -> ''68)

The scattering intensity is calculated at the wave vector Q = (7r/a,7r/a,7r/c;,), where

a is the lattice spacing and cj, is the distance between the two CuO layers in a unit cell.
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COMPUTING PROCEDURE

In this chapter, the procedure for calculating the magnetic field penetration depth is

outlined in detail for both the strong and weak coupling limits. The computational

details are discussed extensively, including the approach to performing the calculations

in both momentum and frequency spaces, as well as the difficulties encountered during

the computational work due to the structure of the formulae presented in Chapter 2.

3.1 Summations in Momentum and Frequency Space

All of the calculations in this work were performed in momentum space where k = (kx^ky)

spans the first Brillouin zone (FBZ) with zone boundaries k^ — ^'KJa^ ky = ±7r/a. The

FBZ is divided into di^n N x N lattice whose size is given as input to the program. Often

in computational work, the size of the lattice can have a dramatic effect on the numerical

results. It is important to have a large enough lattice size to ensure that the bulk

properties of the superconductor will be accurately reflected in the calculations. Lattice

sizes of 16 X 16 and 32 x 32 are too small for the calculations in this work, because there

are not enough k points over which the momentum dependent quantities are summed

to yield reliable results. Theorists typically use at least a 64 x 64 lattice in numerical

calculations but this size was still found to be insufficient to yield a satisfactory degree

of accuracy in the present research. For calculations in the BCS limit, a minimum lattice

size of 256 x 256 was used, which the results suggest is large enough to yield values that

are trustworthy. A 64 x 64 lattice in k space was used for the strong couphng limit, and

25
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it is believed that the small size presents many problems in the results in this limit, as

will be discussed in Chapter 4.

There is always an upper limit on the lattice size due to both the memory restrictions

of the computing system and to the run time of the programs. The total number of k

points for a,n N x N lattice is A''^, and clearly the memory requirements of the system

will increase rapidly as the lattice size grows. Because larger lattices correspond to an

increased number of k points over which the quantities are summed, the total run time

of a program can also be unrealistically long and impractical.

Consider for example the strong coupling calculations outlined in Chapter 2, where

the calculations involve not only sums over momenta k, but also sums over Matsubara

frequencies. Strictly speaking, the sums over n run from -co —) co. However, it is not

possible numerically to perform a sum over all values of n, and thus the sum is truncated

and runs from —Nc-\-l ^ Nc, where Nc = [uJc/C^^T) + 0.5]. In these high-Tc materials,

the excitations extend to high energies and therefore an energy cutoff of cjc on the order

of a few times the bandwidth is essential in order to realistically represent the materials

on a microscopic level. At the same time, Nc is directly proportional to cUc-, and thus

a substantial energy cutoff corresponds to a very large value of Nc. This can present

enormous size problems, especially at low temperatures, since Nc is also proportional to

T~^. There is a delicate balance between choosing a large enough lattice size and cutoff

energy cOc to produce reliable results, and keeping the run time and memory requirements

of the program within a reasonable realm.

Fortunately, it is possible to maximize the symmetry of the FBZ region in order

to reduce the size and run time of the computer programs. The sums over k can be

transformed to run over the irreducible wedge (IW) only, rather than span the entire

FBZ. To illustrate how this is accomplished, consider the symmetry of the FBZ, as

shown in Figure 3.1. Any k point in the FBZ can be reflected or rotated back to the IW
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using the C4y point group symmetry of a square lattice, such that

keFBZ k£lW ReCi^

(3.1)

is true for an arbitrary function /(k). More specifically, sums over the dispersion Sk can

be performed over the IW and the results multiplied by a factor of 8. For the lattice sizes

considered in this work (typically 64 x 64 for strong coupling calculations and 256 x 256

or larger for BCS calculations), the above simplifications can dramatically reduce the

memory requirements and run time of a computer program. Consider for example a

64 X 64 lattice in the spin fluctuation interaction scenario. The total number of k points

TV
in the FBZ is N^ = 4096, while the number of points in the IW is (f + l)(f + 2)/2 =

561, a notable difference. The advantage of this reduction becomes even more apparent

when noting that for each k point considered, the strong coupling calculations must be

ky/
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performed for Nc Matsubara frequencies, where Nc can be as high as 300. All of the

sums over momenta in both the BCS and strong coupling limits are performed over the

irreducible wedge according to the relation in Equation (3.1).

Another means that can be used to reduce the size and run time of the strong coupling

programs is to manipulate slightly the sums over Matsubara frequencies such that they

run only over positive values of n. As mentioned earlier, the sums over n run from — oo —>

oo, but they must be truncated due to numerical restrictions so that —Nc-{-l<n< Nc.

It is then possible to convert this sum so that n runs from 1 —> A^c only. In general, the

relation

E /M = E[/(-'' + i) + /Wl (3-2)

n=-Nc+l n=l

is true for any function of n. Furthermore, the structures of the renormalization function

Z(k, icjn), the diagonal self-energy x(k,iu;n), and the pairing self-energy (/)(k, zc^n) are

such that these functions are even in itOn'-

Z(k, -icj„) = Z(k,icJn)

X(k, -icjn) = xiKi^n)

<t){k,-iujn) = (f)(k,iu;n). (3.3)

This property is important when considering that tu-n+i = 7rT(2(—n -^ 1) — 1) =: —a;„,

so that Z{k,iiO-n+i) = Z{k,—iuJn) = Z{k,iuJn) (the same relation holds for x and
(f)

as

well) and the sums over n of functions involving Z, x? and
(f)

can be performed from

I -^ Nc and the results multiplied by a factor of 2.

3.2 Strong Coupling Calculations

The first step in approaching the problem of calculating the penetration depth within the

strong coupling formalism is to calculate the superconducting transition temperature Tc.
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To perform this calculation, standard iterative techniques are used to determine Tc and

the band filling factor n, and the quantities Z, x^ ^nd /u are determined self consistently

as part of the process. Each iterative loop calculates new, more accurate values for Z,

X, and /i, which are then used to calculate n. The value of n is fixed and is input to

the program, and the iterative procedure is carried out until the calculated band filling

factor is converged to within a desired accuracy. At this stage the converged values of

Z, x-> ^^^ /^ ^re used to generate the large kernel /i(k,n,m), whose eigenvalue problem

is then solved according to the power method outlined in Chapter 2. Tc is defined as

the temperature at which the largest eigenvalue of the matrix K is equal to 1, and a

linear interpolation method is used to solve for a more accurate temperature. The entire

iterative process is repeated as many times as is necessary to converge the temperature

to a sufficient accuracy. This converged temperature is the value of Tc.

Once the value of Tc is obtained, the strong coupling equations are extended to

temperatures below Tc. The superconducting gap is finite below Tc., and thus the full

forms of Equations (2.24), (2.25) and (2.26) are used with a non-zero (j) component. An

iterative procedure similar to the one used in determining Tc is employed here, and Z,

X, </>, and fi are again converged self consistently. Once these solutions are found for

both the normal and superconducting states at a temperature T < T^ they can be used

to calculate any number of thermodynamic properties. In the present work, the strong

coupling solutions are used to calculate the magnetic field penetration depth according

to Equation (2.53).

It is instructive at this point to address the issue of performing the sum over Q =

(i:7r,±7r) in Equations (2.24), (2.25) and (2.26). Because the calculations are performed

over the IW rather than the entire FBZ, it is necessary to reduce the sum over Q such

that all points lie in the IW. For any given k point in the IW, the location of k + Q will

fall outside of the IW, so it is necessary to develop a systematic method for transferring
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all k + Q points back into the IW. Recall that in k space a translation of ±27r does not

affect the calculations, so each k + Q vector can be translated to the point kH- (— tt, — tt).

Then, according to Figure 3.1, this point can be reflected back into the irreducible wedge

using the C4V symmetry transformation {k^, ky) —) (— /cy, —kx). If this new reflected point

is labelled, say, k, then it is clear that the sums over Q in Equations (2.24), (2.25), and

(2.26) can be eliminated by using instead the relation

\ E /(k + Q) = /(k). (3.4)

Q=(±7r,±7r)

This way, all quantities are consistent in that they are all calculated over the IW only,

which is advantageous from a computing perspective because of the reasons discussed

earlier in this chapter.

3.2.1 Penetration Depth Calculation

Consider the calculation of the penetration depth for the strong coupling case (Equation

(2.53)). The formula contains a sum in k space, where k spans the FBZ. Once again,

it is advantageous from a computing perspective to reduce the k sum to run over the

irreducible wedge only, rather than over the entire FBZ. In this case, however, it is

incorrect to simply introduce a factor of 8 when reducing the sum to run over the IW

because of the presence of the Fermi velocity ^^(k) — |(Vk£k)x- This was illustrated

by considering a simple test case using £\^ = (/ik)^/2m (i.e. spherical symmetry) and

the sum Y. M^)f^{E - £k). Using the relation -^^ ^ /(k) = ^8 J^ /(k)

that was discussed earlier in this chapter, it was found that the plot of (^^(k))^ versus

£k did not have a slope of l/27r as it should. The difficulty arises from the function

(?;a^(k))^ = /^i^^j
^ which alone is not invariant under the C^y point group symmetry.

This problem was corrected by introducing the symmetric form [(yx{\<i)y + [vy{\^)Y]l2
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instead of (i;a;(k))^, so that

E Mk)rf{k) = 8 E MS))l+K«)!/(k). (3.5)

keFBZ keiw ^

The computation of the penetration depth given in Equation (2.53) was performed

in two ways. First, the sum over k was performed directly for a 64 x 64 lattice, using

the solutions found below Tc according to Equations (2.24), (2.25), and (2.26) and the

relation in Equation (3.5). In order to verify the calculations and test whether the limited

number of k points significantly afi"ected the results, the penetration depth was also

calculated using a different approach entirely. This second method involves converting

the sums to integrals over energy and a weighted density of states function. After inserting

/oo
dES{E — E\f_) = 1 into both terms of (2.53) and manipulating slightly, the formula

-oo

looks like

1 _ 47Te^2kBT ^ j-o-

^^ 1

^£^^fAb..?.>(^»^^

[ 4>{K nf + (gk + x(k, n)f - (a;.Z(k, n)f

\ [^(k, ny + (£k + X(k, n)y + {uJnZ(K n))']'

(g, + X^(k,n))^-(c..Z^(k,n))^ ]

[(.k + X^(k,n))^ + (c..Z^(k,n))^p/
^(^ - ^'^^ ^'-'^

where the superscript N refers to the solutions calculated in the normal state (i.e. when

(/)(k, n) is set equal to zero). The above sum over k is performed separately for each value

of n using the tetrahedron method of Lehmann and Taut [11], which is described next.

3.2.2 The Tetrahedron Method

The general form of the k sum in Equation (3.6) is

ME) = ^ E A{k)5{E-E^) (3.7)
^' keFBZ

where H = (Na)^ is the system volume. Using the fact that Ak^ = Aky = 27r/(A^a),

transforming the sum to an integral, and using a Taylor's series expansion for -Ek+5k, the





r
Chapter 3. COMPUTING PROCEDURE 32

dl
-A(k), (3.8)

function A(E) can be represented as

^^^^"
(2^i£;=£;, |V£;k|

The IW is broken up into (N/2Y triangles, as illustrated in Figure 3.2, and the contri-

bution of each triangle to the integral above is calculated. To calculate the contribution

of a single triangle, consider Figure 3.3 and take A(k) to vary linearly between any 2

points of the triangle. Assuming that Ei < E2 < E3, there are four possibihties which

may arise. The two simplest cases are when E < Ei or E > E3, such that the energy con-

tour does not cross through the single triangle being considered. For these two scenarios

there is no contribution to A(E).

Figure 3.2: The Tetrahedron Method: Division of triangles in the irreducible wedge.

The third possibility is that Ei < E < E2, so that the contour crosses the triangle

as shown by the line through points 2' and 3' in Figure 3.3. In this instance the integral
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has a finite contribution of

where i labels the triangle being considered and A is the value of the function A(k) at

the midpoint between 2' and 3';

A = l(A{2') + A{3'))

{^^^'^ + E^^^^'^^ " ^f^^O + (^(^' + fc%f^^^^ " ^(1)))^^°^

Next, simple geometry can be used to show that the length of the line segment 1(E) is

,/r.x ^12^W A
,

E-Ei
, ,

Here, A is the total area of the single triangle.

Finally, assuming that j^k and A(k) are linear along each side of the triangle such

that 12' = E — El, 12 = E2 — El, etc., the contribution of triangle i for the case where

El < E < E2 IS given as

with A given by Equation (3.10).

The fourth and final possibility is that the energy contour cuts the triangle like the

line through the points 2" and 3" in Figure 3.3. For this case, E2 < E < E3, and the

same procedure for calculating Ai{E) is followed as in the previous case. The resulting

contribution is written as

1 E3- E —
{Ai{E))E,<E<Es = J^2\e, - Ei)(E, - E^)^^'

^^'^^^

where now the value of A(k) at the midpoint between 2" and 3" is

E E^ . . ^ A /r,\\\ ( A. I ^\ ^ -^3

^-\ (•^(3) + £^(^(2) - ^(3))) + (/1(1) + £7^(^(1) - Am) . (3.14)
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AREA A'

AREA A

AREA A

Figure 3.3: The Tetrahedron Method: Energy contour crossing a single triangle i.

The steps performed above are repeated for each triangle shown in Figure 3.2, and

the contribution from all (A^/2)^ triangles is summed to give A(E) in Equation (3.7).

The method can be used repeatedly for each energy value E over which the integral in

Equation (3.6) is calculated, and then Simpson's rule of integration is used to perform the

integral over energy E. To obtain a value for the penetration depth, the entire procedure

must be repeated for each Matsubara frequency. The value obtained after performing

the sum over n and multiplying by the necessary prefactors in Equation (3.6) is the value

of 1/A^(T) in the strong coupling Hmit at a temperature T.

This adaptation of the 3D tetrahedron method of Lehmann and Taut to the 2D

problem here provides a straightforward and systematic approach to performing the sum

in Equation (3.6). The method relies heavily on the assumption that the functions E]^

and A(k) vary linearly between any two k points, which in this case is a reasonable

assumption because both functions are smooth and the k mesh is quite fine. The main

motivation for using this method was the limitation of the direct summation over k points
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involving the derivative of the Fermi function f{E\^). The term —qe) ^^ sharply peaked

near the Fermi line, and so it is possible that the number of k points is not sufficient to

pick up all of the contribution to the penetration depth from this narrow region. Also,

the pair tunneling term Tj(k) is purely local in k and thus one expects the size of the

k mesh to be important in the calculations, especially at low temperatures for which

the energy interval /c^T is small. By converting the summation to involve the weighted

density of states, there is effectively an interpolation between points based on the values

calculated at the discrete k points, and the function is somewhat "smoothed".

3.3 BCS Calculations

While the approach to calculating the penetration depth in the weak coupling limit is

much the same as for the strong coupling case, the calculations are simplified somewhat

because Z(k, n) = 1, x(k,7^) = 0, and <;z^(k, n) = </>(k) in this limit. Because there

are no sums over Matsubara frequencies in the BCS limit, is is possible to increase the

lattice size in momentum space to 256 x 256, or in some instances, to 512 x 512 or even

1024 X 1024. The importance of using as large a lattice as possible was discussed earlier in

this chapter, and the nature of the BCS calculations allows us to maximize the lattice size

while still maintaining programs with a reasonable run time and memory requirement.

Nevertheless, there is always some inherent error due to the fact that there is an upper

limit on the number of k points on any computing system. One can never achieve an

infinitely fine k mesh, so it is important to use as large a size as possible.

The critical temperature is calculated using the power method to solve the eigenvalue

problem in Equation (2.39), where the kernel A^(k, k') is the sum of Equations (2.40) and

(2.41). Again, the linear interpolation method is used to converge Tc to within a desired

accuracy. The gap is found at temperatures below Tc by iterating Equation (2.38) self
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consistently for (/>(k).

As in the strong coupling case, the penetration depth in the BCS in-plane interaction

is calculated in two ways. The first way is to perform the sum over k in Equation

(2.56) directly, where the momentum vector k runs only over the IW and the relation

in (3.5) is used. The derivative of the Fermi function is calculated using the relation

^1^ = l{f{E^)y - f{Ei,)]/kBT where the Fermi function is /(E^,) = l/(e^'</^^^ + 1).

The second method makes use of the tetrahedron method which was outlined in detail

above, and Simpson's rule of integration is again used to perform the integral over energy

E. Without the strong coupling effects included, the tetrahedron method is even easier

to work with, since there are no sums over Matsubara frequencies and the function A(k)

in Equation (3.7) is much simpler. The formula for the penetration depth to which the

tetrahedron method is applied looks like

(3.15)

In effect, what is being calculated by the tetrahedron method in this BCS limit is a

"weighted" density of states. If A(k) = 1, then Equation (3.7) reduces to the relation

for the density of states N{E). However, because of the presence of the term (vx(k)y

under the summation over k, the density of states is skewed somewhat from its pure

value. These new weighted densities of states, which represent the paramagnetic and

diamagnetic portions of the sum in Equation (3.15), respectively, are labelled as

Nl(E) = -i-j E Mk)f5{E-E^), (3.16)

<(^) = 7^2 E (v.m?^(E - ev). (3.17)

kGFBZ
""^^

' {Nay

After the integration over E and multiplication by the prefactors of (3.15), the value

of the inverse of the penetration depth squared with BCS in-plane interaction is obtained.





Chapter 4

NUMERICAL RESULTS AND DISCUSSION

The previous two chapters have examined in detail the theoretical framework of the

magnetic field penetration depth, the Knight shift, and the neutron scattering intensity

within the ILPT formalism, as well as the computational procedures used in calculating

these quantities. This current chapter presents the results of the calculations of this

research, accompanied by a general discussion and analysis of the data. The results for

the penetration depth. Knight shift, and the neutron scattering intensity in the weak

coupling limit are discussed first, followed by the results for the penetration depth in the

strong coupling limit.

4.1 BCS Limit

In the BCS in-plane interaction scenario, the input parameters were chosen to comply

with the literature values [1] so that meaningful comparisons could be made among the

various works. The band parameters are t = 250meV and t'/t = —0.45, which are

the same values as those in several earlier works [1-4]. The Debye cutoff" for in-plane

interaction is ^d = 20meV, as in [3], although the value of fl^ is not stated in [4]. The

chemical potential ^ = —315meV corresponds to a band filling factor of 0.86 electrons

of spin up and down per unit cell, and is also the value taken in [3, 4]. The value of

the band filling factor is equal to twice the area under the density of states curve up to

the Fermi energy Ef. Figure 4.1 shows a plot of the density of states generated for a

400 X 400 lattice using the tetrahedron method outlined in Chapter 3. The value of the

37
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0.006

Figure 4.1: Electronic density of states for the tight binding dispersion Ck-

in-plane pairing interaction V is chosen so as to keep the critical temperature constant

and close to the Tc for optimally doped YBCO. The size of the lattice for the momentum

space calculations is 256 x 256, unless specifically stated otherwise.

4.1.1 Penetration Depth (s-wave Symmetry)

As discussed in Chapter 2, two cases of in-plane interaction were considered in the BCS

limit. First, it was the simplest model, which is an isotropic s-wave interaction, that

was examined. The penetration depth was calculated using both direct summation over

the N X N lattice in momentum space and the tetrahedron method, as outlined in





Chapter 4. NUMERICAL RESULTS AND DISCUSSION 39

Chapter 3. Figure 4.2 shows a plot of 1/A^(T) as a function of reduced temperature

T/Tc for several values of interplanar coupling. The values were obtained using the

tetrahedron method for a 256 x 256 lattice. The critical temperature was kept con-

stant at Tc = 93.66A^ by varying the in-plane pairing interaction V. For interlayer

tunneling strengths of Tj = 0, 10, 20,30, 40mey, the value of the in-plane pairing is

V = 999.9, 922.0, 826.4, 699.0, 476.TmeV, respectively. Recalling that Tj is related to

the high energy single electron coherent hopping as Tj = t]_/t, it is easily shown that

these same strengths of Tj correspond to values of ti = 0, 35.4, 50.0, 70.7, 86.6, lOO.OmeV,

respectively.

As T approaches Tc from below, the value of 1/A^(T) approaches zero, as expected,

such that the penetration depth is infinite at the critical temperature where the material

reverts back to its normal state. As the temperature is decreased from T^ the size of

1/A^(T) grows until approximately 20% of Tc, at which point the curves level off to

a constant value. While all curves shown display these general trends, note that the

strength of the interlayer pair tunneling significantly affects the overall shape of the

curves. For Tj = the curve smoothly turns over to its zero temperature value and is

constant at this value below approximately 25% of Tc. The inclusion of pair tunneling

results in a "lowering" of the curves and the shape changes from being concave (with

respect to the origin) to convex in the mid-temperature range as Tj increases.

The traditional s-wave BCS curve [12] is also included in the plot of Figure 4.2 as a

point of reference. It lies close to the 1/A^(T) curves for lower strengths of pair tunneling,

such that < Tj < 20mey. Note that the usual BCS curve does not fall exactly over

the s-wave result calculated with no pair tunneling. The two curves were not expected

to coincide because of the differences in the electronic dispersions and Fermi surfaces for

the two cases. The original BCS model assumes a spherical Fermi surface and a simple

model for the dispersion, where ej = {hk)^/2m, and consequently v{k) = Hk/m. In
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BCS curve gives a point of reference for comparison to the calculated values in this study,

and lends support for the accuracy of the results.

It is interesting to examine the disparity between the two methods by which the

penetration depth was calculated. Figure 4.3 illustrates how the k summation method

compares to the tetrahedron method for the two extreme values of interplanar coupling,

again for a 256 x 256 lattice. At high temperatures, there is only a slight discrepancy

between the two methods, and the k summation method yields slightly lower values than

the tetrahedron method. This difference is less pronounced when the pair tunneling is
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turned off. However, for both Tj = OmeV and Tj = 40meV in the k summation scenario,

1/A^(T) continues to increase as the temperature decreases. When Tj = AOmeV, the

momentum space calculations start deviating from the tetrahedron method results at

about 30% of the critical temperature. For Tj = OmeV, this separation occurs at even

higher temperatures, around T/Tc = 0.4. It appears that the behaviour of 1/X^{T) at

low temperatures in the k summation method is strictly due to numerics, and does not

have any physical significance.

These numerical problems associated with the k summation method at low tempera-

tures limit the extent to which this approach can be used when calculating the penetration

depth. The results from the direct summation below T/Tc ~ 0.3 were not trusted, but

regardless of the reason for the steep increase in 1/A^(T) at low temperatures, the point

of the above comparison between the two methods used is that they both give consistent

results in the mid to high temperature range. This is gratifying in that either method

can be used with confidence to calculate the penetration depth within this range. Fur-

thermore, the tetrahedron method yields expected results for this s-wave BCS limit at all

temperatures, lending support to the validity of this method as a means of calculating

the penetration depth.

Examine next the plot of Figure 4.4 showing the structure of the weighted density of

states A^^ (E) which was generated by the tetrahedron method. The function is plotted

for both T = IK and T = 93.5/\ with an interlayer pair tunneling strength of Tj =

40mey (recall that Tc = 93.66/^ here). The axes labels on the small inset graph are the

same as those on the main graph.

The most important structural element to notice in this plot of Figure 4.4 is the gap

in energy from 0-6meV for T = IK. The flattening of the penetration depth curve

which was pointed out in Figure 4.2 is directly related to the presence of this gap in the

weighted density of states. If N^^{E) is zero then there can be no contribution from the





Chapter 4. NUMERICAL RESULTS AND DISCUSSION 43
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T=1K
T=93.5K
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Figure 4.4: The weighted density of states assuming s-wave BCS in-plane interaction

with an interlayer tunneling strength of Tj = 40meV.

paramagnetic part of the current density (i.e. the term related to £^k = y^i + ^^(k)) and

the penetration depth will result from the constant temperature independent term only.

Consequently, at low temperatures for which the gap in the weighted density of states is

large, the shape of 1/A^(T) is flat and its value is equal to the value of the term resulting

from the diamagnetic part of the current density.

The energy range over which the gap extends is important when considering the struc-

ture of the penetration depth relation in the tetrahedron method (Equation (3.15)). The

function A^^ (E) is multiplied by the derivative of the Fermi function and integrated over
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all E. As mentioned in the discussion of the penetration depth in the BCS limit in Chap-

ter 2, the Fermi function derivative tends to zero as the temperature T approaches zero.

As the temperature is increased, the size of the gap becomes smaller, and the magnitude

of the paramagnetic contribution to 1/A^(T) grows. Note that the contribution from

this term is negative and thus the paramagnetic part of the penetration depth dimin-

ishes the diamagnetic contribution. At T very close to Tc, the paramagnetic contribution

completely cancels the diamagnetic contribution such that 1/A^(T = Tc) = 0.

Note also that the two curves in Figure 4.4 each display a sharp peak which is due

to the onset of superconductivity, since this feature was not found in the graph of the

quantity A^^(£'), where E\^ = £k in the normal state.

4.1.2 Penetration Depth (d-vv^ave Symmetry)

The second case considered in the BCS limit was the d-wave anisotropic in-plane inter-

action, where Vk,k' = Vgkgk' ^ind gy^ = ^[cos(kxa) — cos(kya)]Q(QD — kk|)- The results

for the penetration depth calculations performed using the tetrahedron method are pre-

sented in Figure 4.5, again for five different strengths of pair tunneling. As before, the

critical temperature is kept constant by varying the magnitude of V. In this d-wave case,

V = 2458.9,2136.3,1779.7, 1364.7, 783.2mey corresponding to pair tunneling strengths

of Tj = 0, 10, 20, 30, 40mey , respectively.

As in the s-wave BCS Hmit, the d-wave curve for 1/A^(T) vanishes at T = Tc as

expected, and increases in magnitude as the temperature is decreased from Tc. The

behaviour at high temperatures looks much the same as in the s-wave case for all Tj

values, except that the slope of the curves is less steep in the d-wave case. The interlayer

tunneling again acts to suppress the value of 1/A^(r), and for Tj = 30meV and Tj =

40mey the slopes have a convex curvature in the mid-temperature range. Note that

this convex curvature is not consistent with the experimental results (see Figure 1.2).
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The concave nature of the curves for smaller strengths of pair tunneling is in far better

agreement with the experimental curves.

The main structural difference between the s-wave and d-wave BCS limits occurs

at low temperatures. Note that the d-wave penetration depth curves do not level off

as quickly as the s-wave curves do, and that the d-wave curves are nearly linear in

the low temperature region (but above the 0-0.15T/Tc range for which the flattening

occurs). The flattening of the curves below 15% of Tc is a result of the tetrahedron

method itself, and the numbers within this range cannot be considered to be reliable

— Tj = OmeV
oTj = 10meV
- Tj = 20meV
A Tj = 30meV
-n Tj = 40meV

0.2 0.4 0.6 0.8 1

Figure 4.5: The dependence of 1/A^(T) on temperature for several strengths of interlayer

tunneling assuming d-wave BCS in-plane interaction.
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in this d-wave case. To see why this leveUing of 1/A^(T) occurs, examine the plots of

N^^{E) shown in Figures 4.6 and 4.7. The weighted density of states is plotted for two

temperature values and for the two extreme values of interlayer coupling. For dx2-y2

symmetry, one expects to find the absence of a gap in the density of states curve. In

other words, the density of states should be linear and finite at low energies, and go to

zero only at the origin. However, as evidenced by the plots of N^^{E)^ there is in fact

a small gap present in these d-wave calculations for both values of Tj. Following the

same reasoning presented in the discussion of the s-wave BCS limit, it is clear that this

20 30

E(meV)

Figure 4.6: The weighted density of states assuming d-wave BCS in-plane interaction

with no interlayer pair tunneling.
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fit curves to match those of the experiments.

To further explore the notion that numerics are responsible for the levelling off of

the penetration depth curve in the d-wave BCS limit, consider the plot showing the

structure of </>(k) in Figure 4.8. The amount of interlayer tunneling here is Tj = AOmeV,

and the temperature is OK. Note the anisotropy of the gap along the Fermi line, which

is expected because of the structure of Vic,k' for d-wave symmetry. The gap goes to zero

along the lines k^ = :tky, and this is consistent with a linear behaviour in the density

of states at low energies. Consequently, because this linear behaviour in the (weighted)

A(k)0

Figure 4.8: The structure of (f)(k) in the BCS limit assuming d-wave symmetry of the

in-plane interaction. Here, T = OK and Tj = 40meV.
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20

E(meV)

Figure 4.9: The weighted density of states calculated assuming d-wave BCS in-plane

interaction for two different lattice sizes with Tj = AOmeV.

density of states is not observed, it appears definite that the tetrahedron method itself is

responsible for the flattening of 1/A^(T) at low temperatures, and that the calculations

of the gap in this research are accurate.

Note also in Figures 4.6 and 4.7 the series of sharp peaks in the energy range of

10-20mey at a temperature of T = IK. The peaks are likely due to the numerical

method itself and to the hmited number of k points with which the functions (f){k) and

£k are calculated. Figure 4.9 shows a plot of the same function N^^(E) calculated with

a 512 X 512 lattice for Tj = AOmeV. The peaks for the larger lattice size are slightly
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smaller in size and number, suggesting that the limited size of A'^ is at least partly

responsible for their presence. However, these peaks are unimportant in this work and

do not influence the results. The reason for this is because they occur at high energies

and A^^ (E) is multiplied by the Fermi function derivative which is sharply peaked around

E = OmeV. The width of this peak is on the order of fee T, which is quite narrow for the

low temperatures at which the series of peaks are evident. These sharp features occur at

much higher energies than the width of this peak. Because the Fermi function derivative

is zero over the energy range of the peaks, any contribution from N^^{E) in this vicinity

will be cancelled out.

Note also that the size of the d-wave "gap" in the weighted density of states is smaller

for a larger lattice. This behaviour confirms the suspicion that the limited number of k

points is responsible for the gap in N^^(E) and consequently the flattening of 1/A^(T) in

the d-wave case.

To address the issue of the convex curvature for large Tj in the d-wave in-plane inter-

action case, consider first the temperature dependence of the maximum gap. Amax(T) is

plotted as a function of reduced temperature in Figure 4.10. The results for six different

strengths of interlayer tunneling are shown, as well as the traditional BCS curve [12],

which is scaled in this plot by multiplying with the zero temperature value of Amax{T)

when Tj = 43.78mey. In all cases considered, AmaxiT) is flat at low temperatures and

turns over smoothly such that Amax(T = Tc) = 0, as expected. Note that as Tj is in-

creased from Tj = OmeV, the value of Amax{T) increases slightly at all temperatures,

until Tj = 19.6mey, after which point it begins to drop in magnitude. It is also interest-

ing that for the highest value of interlayer tunneling [Tj = 43.78mey) and no in-plane

pairing, the gap maximum falls exactly on top of the BCS s-wave curve. Generally, the

behaviour of the maximum gap for all strengths of pair tunneling is much the same as

the traditional BCS maximum gap, and as such cannot be responsible for the change in
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Figure 4.10: The maximum of the gap assuming d-wave BCS in-plane interaction for

several strengths of interlayer tunneling.

curvature as Tj is increased.

In the original BCS theory, the maximum value of the gap at zero temperature is

related to the critical temperature as

ksTc
= 3.53. (4.1)

This is a universal number which does not depend on any interaction parameters, and

can easily be used for comparison with experimental results. It is interesting to discover

that the maximum value of the gap for no in-plane pairing is related to Tc in a similar

manner as above. Consider first the gap given in Equation (2.38) for V = OmeV and
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T = OK;
'

'~

(Tj{k)
Aw-

\ (^) -40 ^^-Nl, (4.2)

where the step function is included to ensure that the argument underneath the square

root is not negative. Assuming that the maximum of the gap occurs on the Fermi line,

such that £k = 0, then

(4.3)Ak,max(0) =
2

At the critical temperature Tc, the structure of the gap equation represents an eigenvalue

problem;

For small x, the function tanh(a:) -^ a:, therefore as ek —> as it approaches the Fermi

line, the above equation simplifies to

2ksT.= r-f-) . (4.5)

\ / max

Finally, combining Equations (4.3) and (4.5), one finds that

2^na^
== 4, (4.6)

so that the same ratio in the ILPT model with V = is also a universal number inde-

pendent of the interlayer tunneling strength! Furthermore, the zero temperature result

obtained in the present research for the maximum gap with Tj — OmeV confirms this

result, yielding a ratio of 3.99. The consistency in the analytical and computational re-

sults of Amaa;(0) suggests that iu the present research, the calculations of the maximum

gap are accurate.

To investigate further the cause of the change in curvature of 1/A^(T) as Tj increases,

consider again the momentum dependence of (/>(k). Figures 4.8 and 4.11 show the gap

for a large interlayer tunneling strength of Tj — \OmeV and for temperatures of T = OA'
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and T = 93K. Clearly at zero temperature, the gap is finite along much of the Fermi line.

However, at T = 93A', the gap is nearly zero everywhere and contains only rather sharp

peaks at points on the Fermi line near the edge of the FBZ. Consequently, as temperature

is increased, fewer and fewer k points pick up finite contribution from (f>{\<i). Recalling that

E(k) = £k when ^(k) = 0, clearly the paramagnetic term in 1/A^(T) quickly approaches

the value of the diamagnetic term, diminishing the diamagnetic contribution over much

of the momentum space. Because 1/A^(T) decreases quickly at low temperatures and

must go to zero at T = Tc, the curve begins to "pull up", giving rise to a convex shape

Figure 4.11: The structure of (/)(k) in the DCS limit assuming d-wave symmetry of the

in-plane interaction. Here, T = 93K and Tj = 40meV.
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Figure 4.12: The structure of (f>{\<L) in the BCS limit assuming d-wave symmetry of the

in-plane interaction. Here, T = OK and Tj = QmeV.

of the penetration depth curve.

The situation is altered, however, when Tj is decreased and V is increased accordingly

such that Tc is constant. Consider the gaps for Tj = OmeV and V = 2458.OmeV at

temperatures of T = OK and T = 93A^ (Figures 4.12 and 4.13). The zero temperature

gap is not much different in appearance from the gap at Tj = 40meV in Figure 4.8.

However, there is a striking difference in appearance of the gap at T = 93/1^. Here,

<^(k) is still finite at many k points along the Fermi line, and the sharp peaks which were

observed in the case of Tj = AOmeV and V = 783.2meV are not present here. As a result.





/^

Chapter 4. NUMERICAL RESULTS AND DISCUSSION 55

the gap more strongly influences the paramagnetic part of 1/A^(T) and the diminishing

efl"ect is not as great as temperature increases. This is why the shape of 1/A^(T) does

not drop off quickly at low temperatures and is concave for smaller strengths of pair

tunneling and finite in-plane interaction.

A(k;)

Figure 4.13: The structure of (f)(k) in the BCS limit assuming d-wave symmetry of the

in-plane interaction. Here, T = 93K and Tj = OmeV.

As in the s-wave BCS limit, the difference between the two methods by which the

penetration depth is calculated is considered in the d-wave case. Figure 4.14 illustrates

this difference for interlayer tunneling strengths of Tj = OmeV and Tj = AOmeV. The

direct k summation method yields slightly lower values than the tetrahedron method
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in the mid to high temperature range for both Tj values. The discrepancy is more

pronounced when the interlayer tunneling is turned on. At low temperatures, 1/A^(T)

continues to increase for direct k summation, as was observed in the s-wave BCS limit.

Again, the results below approximately 30% of Tc in the direct k summation method are

not trusted. Nevertheless, the two methods validate each other above this temperature

and increase the confidence in the results of this work, since two completely different

approaches give nearly identical results.

If an even larger lattice size is used for the calculations, it is found that the difference

140

3
120 -

100 -

Tj = 40meV, tetrahedron method
• Tj = 40meV, direct k-summation
Tj = OmeV, tetrahedron method

o T, = OmeV, direct Ic-summation

Figure 4.14: Comparison of 1/A^(T) calculated using the tetrahedron method and direct

k space summation assuming d-wave BCS in-plane interaction.
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120

100

O direct k-summation, 512x512 lattice

— tetrahedron method, 512x512 lattice

T/T.

Figure 4.15: Comparison of 1/A^(T) calculated using the tetrahedron method and direct

k space summation for a512x512 lattice assuming d-wave BCS in-plane interaction and

no interlayer pair tunneling.

between the two methods is less obvious. This point is illustrated in Figure 4.15, where

1/A^(T) is plotted for a 512 x 512 lattice and the interlayer pair tunneling is turned off.

The two curves are nearly identical and the k summation values do not deviate from the

results of the tetrahedron method until below ^ 15% of the critical temperature. The

effect of the lattice size is clearly important in the computations here.

To investigate the role of lattice size in the calculations for the tetrahedron method,

consider Figure 4.16 which presents the penetration depth calculations in the d-wave limit

for the two extreme Tj values and for two different values of N. Note that the curves
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are plotted down to 20% of Tc only, since the low temperature values have been ignored

due to the numerical difficulties discussed earlier. Clearly for both Tj = OmeV and

Tj = AOmeV, the effect of increasing the lattice size is to suppress the value of 1/A^(T).

This seems reasonable considering that the paramagnetic contribution to the penetration

depth diminishes the constant temperature independent contribution of the diamagnetic

part of the current density. A larger lattice would mean that the paramagnetic term

(which depends on <?^(k)) would have finite contributions from more k points, making its

magnitude larger in absolute value and more accurate than that calculated for a smaller

lattice. Consequently, the diminishing effect of the paramagnetic contribution is greater

for a larger lattice and the penetration depth curve is suppressed,

4.1.3 Knight Shift

The temperature dependence of the Knight shift was also investigated in this work, in

light of the results for the penetration depth, which proved contradictory to the claim

in [4] that the interlayer pair tunneling must be the dominant pairing mechanism in

these materials. The Knight shift is calculated by Sudb0 et al. [3] using a pair tunneling

strength of Tj = ASmeV and an in-plane pairing cutoff of ujd = 20meV, assuming

s-wave symmetry of the gap. They plot K{T)/K(Tc) for two different values of in-

plane interaction, V = 244.2meV and V = ASSAmeV, and for both a zero and finite

Fermi liquid correction factor, U = OmeV and U = 2t = SOOmeV. Sudb0 et al. also

include a calculation with d-wave symmetry of the gap, but they do not calculate the

gap self consistently, and use instead the form A^(T) — AQ{T)[cos{kxa) — cos{kya)]/2,

with 2Aq/Tc = 8. This estimate of the ratio is very large compared to the usual mean field

value of 2Aq/Tc = 3.53, and Sudb0 et al. claim that the high value is justified because

of small scattering and fluctuation effects in these materials, as was also discussed by

Scalapino [14]. The results of Sudb0 et al. for the Knight shift assuming this d-wave
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The results in Figure 4.17 are in good agreement with those presented by Sudb0 et al.

The open and filled diamonds represent the experimental results [15, 16] for an applied

field parallel and perpendicular, respectively, to the sample. The best agreement with

the experimental points is found for higher in-plane interaction, V = 488.4mey, and

stronger Fermi liquid corrections, U = 500meV.

Figure 4.18 shows the Knight shift results for d-wave symmetry, where V varies such

that Tc is constant at 94.b5K. The calculations are performed using the direct k sum-

mation approach on a 512 x 512 lattice with the strength of the Fermi liquid corrections

-0.2

• • V=244, U=0
O O V=244, U=2t

V=488, U=0
D D V=488, U=2t

O Expts. (par)

Expts. (perp)

0.2 0.4 0.6 0.8

Figure 4.17: The Knight shift calculated for Tj = ASmeV assuming s-wave BCS in-plane

interaction.
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-0.2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T/T,

Figure 4.18: The Knight shift calculated for several different strengths of pair tunneling

assuming d-wave BCS in-plane interaction.

set to U = SOOmeV, as in [3]. Note that the results of the calculations for temperatures

less than 10%Tc have not been included. At these lowest temperatures, the results were

again hindered by limitations in the numerical method, and thus only the results which

are reliable are presented.

As in the case of the penetration depth calculations, it is clear that an increase in

Tj causes a substantial change in the curvature of K(T)/K{Tc). For small strengths

of pair tunneling, as well as for Tj = OmeV, K(T)/K(Tc) is in reasonable agreement

with the experimental points, and shows the same overall curvature. However, when
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Tj is increased to strengths greater than ^ 20meV, such that Tj dominates over the

in-plane pairing, the curvature of K{T)/K{Tc) looks nothing like experiments. Once

again, the findings reveal no evidence that the interlayer tunneling mechanism must be

the dominant pairing mechanism in order to obtain results in good qualitative agreement

with experiments.

4.1.4 Neutron Scattering Intensity

Neutron scattering experiments on optimally doped YBCO [17, 18] show a distinct mag-

netic feature in the superconducting state near the wave vector Q = (tt/g, tt/g, tt/q) and

at an energy of 41meV. Yin et al. [4] recently calculated the neutron scattering intensity,

and they claim that the ILPT model can explain the appearance of this sharp feature.

They emphasize that the gap must have da;2_y2 symmetry, and that the interlayer pair

tunneling must be the dominant pairing mechanism in these high Tc materials in order

to explain the the magnetic neutron peak which is observed in experiments.

In light of the present research results for the penetration depth, which give curves

nothing like experiments when the pair tunneling dominates, this research can be ex-

tended further by calculating the neutron scattering intensity within the ILPT formalism

in the BCS limit. The calculations of Imx(q, ^) were performed using the tetrahedron

method applied to Equation (2.68), where q = Q as in [4]. Imx(Q,a;) is calculated at

zero temperature for a 1024 x 1024 lattice, assuming d-wave symmetry of the gap. Several

strengths of interlayer tunneling are considered, and the in-plane interaction is cutoff at

Q,D = 20mey. As in the case of the penetration depth, the magnitude of the in-plane

pairing interaction V is varied such that the critical temperature is kept constant. Here,

the critical temperature is Tc = 94.55/^.

The results for the neutron scattering intensity are shown in Figure 4.19. All of the

results show a strong magnetic feature in Imx(Q,w), and as Tj is increased this feature
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shifts to lower energies. For small strengths of interlayer pair tunneling, the neutron peak

occurs at approximately 35-43mey , which lies in the neighborhood of the peak at 4lmeV

seen in the experiments. The peaks for small Tj are considerably broader than those

found for large Tj. Also included in the plot are the results of the calculation of Imx(Q, ^)

in the pure BCS limit with a d-wave gap given by Ak = (A^a^/2)[cos(/ua;a) — cos(kya)]

for all k in the FBZ, where Amax = 25mey [4] (see the dot-dashed line in Figure 4.19).

This case was also considered by Yin et al. [4], and in the present work this calculation

was performed as a check to ensure that in fact this result could be reproduced. In this

case there is a step discontinuity at approximately AlmeV, and no peak is observed.

It is interesting that this calculation with Tj = OmeV and the above form of the gap

gives no peak, while the present research result for Tj = OmeV calculated with the self

consistent d-wave gap solutions and Qd = 20meV shows a distinct peak in the vicinity

of the experimental peak. Clearly the form of the gap is important here and one cannot

simply assume an arbitrary model for Ak without solving self consistently for the gap

below the critical temperature.

The reason for the discrepancy between the plots for nonzero Tj in the present study

and those of Yin et ai [4] is not entirely clear. Their curves are very smooth and show

none of the noise observed in the present work, and they make no mention of the size of

the lattice used in their calculations. Furthermore, all curves here (with the exception of

the pure BCS limit given by the dot-dashed line) exhibit a "shoulder" at the onset of the

magnetic peak, a feature which is not found in the plots presented by Yin et ai They

argue that a large value of interlayer tunneling (Tj = 75meV) is required in order for

Imx(Q,w) to exhibit the magnetic feature found in experiments. It seems that, based

on the present study's results for Imx(Q,<^), a high strength of interlayer tunneling (i.e.

Tj > 40meV) is not necessary to capture the feature observed in experiments, but rather

that a small strength of Tj, or even Tj = OmeV, leads to a neutron peak in the vicinity
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Figure 4.19: The magnetic neutron scattering intensity at T = O/l for several strengths

of interlayer pair tunnehng and Qd = 20meV.

of the experimentally observed peak. Furthermore, when Tj dominates, the calculations

show a peak that is very sharp in energy, while the experiments [17, 18] indicate that

the peak is broader, on the order of l5-20meV in width. Again, the present research

results for moderate to small Tj values are in better agreement in this respect with the

experiments than the results where the pair tunneling is the dominate pairing mechanism.

To be thorough, the calculation of Imx(Q,<^) was also performed in this work with an

increased in-plane interaction cutoff, such that Qd is increased from 2QmeV to 200meV.

As noted at the beginning of this Chapter, Yin et al. [4] do not mention the value of
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OjD in their work, so it is therefore important to investigate the effect of a large cutoff

in addition to the original cutoff of Qd = 20meV. An increase in CId effectively means

that the gap will be finite over a larger width 2hftD around the Fermi line.

The results are shown in Figure 4.20, where again, V is varied such that Tc = 94.55/1^.

For Tj = 43.78meV, there is no change in Imx(Q,<^) for increased Qd, since this largest

Tj value corresponds to zero in-plane pairing. For the next smaller strength of pair tun-

neling, Tj = AOmeV, the peak is slightly larger in this high ft]j limit, and the "shoulder"

at the onset of the peak is nearly disappeared. In fact, this feature is not found in any of

the finite in-plane pairing curves for fto — 200mey . The most notable effect of increasing

the in-plane pairing cutoff, however, is a smearing of the neutron peak for smaller pair

tunneling strengths. Both the height and width of the peaks are suppressed for large Vlr,.

Clearly the peaks in this limit are not as well defined as for Q^d = 20meV. These results

seem to suggest that in order to capture the features of the experiments, the interaction

must be cutoff at a fairly narrow region around the Fermi line, and that the gap cannot

be finite over too large a width as it is with a large cutoff Ho,

It must be noted also at this stage that both the penetration depth and the Knight

shift were recalculated using this increased in-plane interaction cutoff, Q,d = 2007726^,

for Tj = OmeV, Tj = 19SmeV, and Tj = AOmeV. In all cases the results were nearly

identical to those obtained for the original cutoff of Q^d = 20meV. To understand this

behaviour, consider that both the expressions for 1/A^(T) and K(T) depend on the factor

—9^5 which is a sharply peaked function around the Fermi line. Because this factor

effectively disregards any finite contribution of the gap (f)(k) outside a width of /c^T

around the Fermi line, the increase in ft^ does not affect the results. Furthermore, the

structure of the gap in the region which does contribute is largely determined by the

form of the pair tunneling term T'j(k), as well as the in-plane pairing kernel 14,k'-





r
Chapter 4. NUMERICAL RESULTS AND DISCUSSION 66

12

>
0)

E

o

X

3

E

' r

I





Chapter 4. NUMERICAL RESULTS AND DISCUSSION 67

4.2 Strong Coupling Limit

For the case of in-plane pairing due to spin fluctuations there are a number of parameters

that are required by the program. As in the BCS limit, the band parameters are t =

2b0meV and t'/t = —0.45. The band filling factor n was set to 0.75 electrons of spin up

and spin down per cell, and the chemical potential /j, varied so that n remained constant

during the iterative procedure discussed in Chapter 2. The cutoff frequency was set at

ujc = GOOOmeV, which is three times the bandwidth, and the parameters of the spectral

function P{0,) were tOmax = 400meV and luq = SmeV. The critical temperature in the

strong coupling calculations was kept constant at Tc = 91.57/1'.

As discussed in Section 3.2.1, the penetration depth in the strong coupling limit was

calculated using both the direct k summation and tetrahedron methods. Recall that in

addition to the self consistent solutions in the superconducting state, the normal state so-

lutions below Tc are also required to calculate 1/A^(T) in this limit (see Equation(2.53)).

However, great difficulties were encountered when attempting to iterate self consistently

for these normal state solutions (Equations (2.24) and (2.25) with (/)(k, iujn) = 0). The so-

lutions for -^^(k, iun) and X^i^i ^^n) did not converge to a sufficient accuracy regardless

of the number of iterations performed.

Fortunately, is was possible to take advantage of the fact that the diamagnetic con-

tribution to the penetration depth is a constant, as discussed in Section 2.4.2. Using

this idea, one need only iterate for the solutions Z(k, za;^), xO^i'^^n)-, and (f)(k,iLJn) in

the superconducting state, all of which converged with relative ease. Once these solu-

tions are obtained, it is straightforward to calculate the paramagnetic contribution to the

penetration depth by considering the first term only in Equation (2.53). Recalling that

the contribution from this term is negative, it then follows that the value of the diamag-

netic contribution has exactly the same magnitude as the paramagnetic contribution at
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Tc, but with opposite sign, such that 1/A^(T = Tc) = 0. Thus, once the paramagnetic

contribution had been determined, the value of the diamagnetic contribution was deter-

mined by the condition that the penetration depth be infinite as the material reverts

back into the normal state at Tc was satisfied. The validity of this was confirmed in

the BCS limit, where the diamagnetic contribution was easily calculated separately from

the paramagnetic contribution, and the two were found to contribute exactly equal and

opposite amounts at the critical temperature. The diamagnetic contribution was also

calculated separately for all temperatures below T^ and was found to be independent

of temperature as expected. This simplification was made in the calculation of 1/A^(T)

for both the k summation and tetrahedron methods. A quadratic fit was used with the

calculated paramagnetic contribution at the three highest temperatures considered to

determine the constant diamagnetic contribution, with the requirement that the fitted

value of 1/A^(T) vanish at T = Tc. The coefficient of the quadratic term in the fit was

two to three orders of magnitude smaller than the coefficient of the linear term.

Consider first the penetration depth calculated using the tetrahedron method with a

64 X 64 lattice. 1/A^(T) was calculated for three different strengths of pair tunneling,

and the curves are given in Figure 4.21. For all three Tj values, the shape of 1/A^(T)

is completely inconsistent with experiments (see Figure 1.2). While small strengths of

pair tunneling in the BCS limit yielded results with the correct overall curvature, it is

found here that the convex nature is present for all strengths of Tj. Not only is the

curvature incorrect, but the results for 1/A^(T) are significantly smaller in magnitude

than those obtained in the weak coupling limit (see Figure 4.5). Note also that the

results are shown only down to a temperature of ^ 44% of the critical temperature.

The quantities Z(k,iiOn)-, xO^i'^^n)-, and (f)(\<L,iLOn) could not be determined below T =

40K because of the computer memory limitations. Recall that for the strong coupling

calculations, the number Nc of Matsubara frequencies is a function of temperature, where
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magnitude of 1/A^(T) increases slightly, but the curvature remains essentially unchanged.

Figure 4.22 shows the results of the calculations using the direct k summation ap-

proach. There is little difference between these results and those in Figure 4.21. Direct k

summation yields results for 1/\^{T) which are slightly less in magnitude than the tetra-

hedron method values, with the exception of the Tj = 40meV case, where it is found that

the k summation values are slightly higher. Despite these small differences, the overall

agreement between the two methods confirms the results of this work for 1/X^{T) in

the strong coupling limit. Clearly the temperature dependence of the penetration depth

cannot be reproduced in this limit for any strength of pair tunneling.
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In this strong coupling limit, it is believed that the limitations on the lattice size and

the energy cutoff Uc affect the accuracy of the results. Because the maximum lattice size

which can be considered is 64 x 64, 1/\^{T) does not pick up contributions from enough

k points, and consequently is drastically undervalued. More importantly, the limited

number of Matsubara frequencies over which the sums are performed also contributes to

the problem. Note that the relation given in Equation (2.55) is strictly speaking only

valid if the sum over n runs from — oo -> n ^ oo, so it is expected that the truncation

of the sum will introduce an error in the results. Throughout the course of this strong

coupling research, it was necessary to continually alter the parameters Nc, N, and lJc

with temperature such that the memory requirements did not exceed the capacity of

the system. Because the calculations could not be performed with a lattice larger than

64 X 64, or for greater than a few hundred Matsubara frequencies, no comment can be

made on the minimum lattice size needed to yield reasonable values of l/X^{T), nor on

whether the curvatures would be improved if either A'^ or Nc were increased.

As in the BCS limit, it is instructive to examine the structure of the gap to try to

further understand the behaviour of 1/A^(T) in the strong coupling limit. In this case,

the gap is given as A(k, icj^) = </>(k, zc<;„)/Z(k, zcj^i), such that the quantity (^(k^iiOn) is

renormalized. Note that in the BCS limit, the retardation effects associated with spin

fluctuation mediated pairing are absent, and thus the gap in the BCS case is simply <;/>(k),

which is synonomous with A(k).

Figures 4.23 and 4.24 show the gap at the first Matsubara frequency for Tj = AQmeV

and temperatures of T = 40K and T = 90K, respectively. Note the striking difference

between these gaps compared to those presented in the BCS limit. It is clear in the

strong coupling limit that the small lattice size causes the gap to be very jagged in

nature, and none of the smoothness which was evident in the BCS limit is present. At

T = 90K^ the gap is finite only over a limited region of the FBZ, and its maximum value is
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A(k)

Figure 4.23: The structure of the gap at the first Matsubara frequency. Here,

Tj = AOmeV and T = 40K.

approximately a third of the maximum value at T = 40 /\, the lowest temperature which

could be considered. At T = 40 /\, the gap is somewhat smoother in appearance and

is finite at more k points than at higher temperature. This same general temperature

dependence is also observed for Tj = OmeV, for which the gap at both T = 40/l

and T = 90/\ is plotted in Figures 4.25 and 4.26, respectively. Again, a decrease in

temperature increases the overall size of the gap, and A(k, zcj^ = 1) is finite for more k

points in the FBZ at lower temperatures. Note also that in this strong coupling limit,
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A(k)

Figure 4.24: The structure of the gap at the first Matsubara frequency. Here,

Tj = 40meV and T = 90K.

the dependence of the gap on the strength of interlayer tunneling is not as great as in the

BCS limit, and consequently there is not a considerable amount of difference between the

penetration depth curves for different Tj values. All of the curves obtained in the present

strong coupling research have a convex shape because there is not enough contribution to

1/A^(T) from the gap due to the limited size of the lattice, as well as the limited number

of Matsubara frequencies.

For completeness, plots showing the structure of the functions Z(k, itOn) and x(k, iiOn)
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A(k)

Figure 4.25: The structure of the gap at the first Matsubara frequency. Here, Tj = OmeV
and T = 40K.

at the first Matsubara frequency are also included in this work. Figures 4.27 and 4.28

show Z(k, iiOn = 1) for temperatures of T = 40A' and T = 90A", where Tj = 40mey, and

Figures 4.29 and 4.30 show x(k, i<^n = 1) for the same parameters, respectively. As in the

case of the gap, the effect of the limited lattice size is clearly evident in the jagged nature

of both Z(k,iujn = 1) and x(k, ic^n = 1). The structure of these functions, together

with the structure of A(k, iujn) and a small number of Matsubara frequencies, cause the

results for 1/A^(T) in this work to be both underestimated and incorrectly shaped.
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A(k)

3^3

Figure 4.26: The structure of the gap at the first Matsubara frequency. Here, Tj — OmeV
and T - 90A'.
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Figure 4.27: The structure of Z(k) at the first Matsubara frequency. Here, Tj = 40meV
and T = 40K.

Figure 4.28: The structure of -^(k) at the first Matsubara frequency. Here, Tj = 40meV
and T = 90K.
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Figure 4.29: The structure of x(k) at the first Matsubara frequency. Here, Tj = AOmeV
and T = 40A^

Figure 4.30: The structure of x(M) ^^ ^^^ first Matsubara frequency. Here, Tj = AOmeV
and T = 90K.





Chapter 5

CONCLUSIONS

This thesis has focused on the calculation of the magnetic field penetration depth within

the formalism of the Interlayer Pair Tunneling Model of Chakravarty et al. [1]. The

main goal of the research was to investigate the extent to which the ILPT model could

reproduce the experimental results for the penetration depth in the high temperature

cuprate superconductor YBa2Cu307_a;. To make the study as comprehensive as possible,

several different models of in-plane pairing interaction were considered. These were BCS

s-wave pairing, BCS d-wave pairing, and spin fluctuation interactions.

In the weak coupling BCS limit, it was found that the interlayer pair tunneling sup-

pressed the penetration depth curves for both the s-wave and d-wave scenarios. For

s-wave in-plane pairing interaction, the 1/A^(T) curves for small strengths of pair tun-

neling looked like the usual BCS result, and increasing Tj resulted in a gradual lowering

of this curve. The highest Tj value considered was Tj = 40meV, and here the shape of

the penetration depth curve was convex with respect to the origin, with no resemblance

to that found in experiments (Figure 1.2).

The same general trends were true in the d-wave BCS limit, shown in Figure 4.5,

but 1/A^(T) was nearly linear at low temperatures down to approximately T/Tc = 0.15,

at which point the curves flattened due to the numerical procedures involved with the

tetrahedron method. If the values in this 0-0.15T/Tc range are ignored, the behaviour

of 1/A^(r) for small interlayer tunnehng (0 < Tj < 20meV) looks quaHtatively like

the experimental results. Again, when Tj dominates, the curves have a shape which is

78





Chapter 5. CONCLUSIONS 79

nothing like those of the experiments.

Furthermore, a comparison was made between the two methods by which the pen-

etration depth was calculated in the s-wave and d-wave BCS limits. The tetrahedron

and k summation methods produced consistent results in the mid to high temperature

ranges, but deviated at low temperatures. The k summation results were not trustwor-

thy below about 30% of Tc, at which point they began to deviate from the tetrahedron

method results. The flattening of 1/A^(T) observed for d-wave in-plane interaction using

the tetrahedron method suggests that the values below 15% of Tc should be disregarded

for this case. For both methods used, these uncharacteristic results at very low temper-

atures are not physically relevant, but rather it appears that they are strictly due to the

numerical methods themselves.

The maximum value of the gap was also determined and the usual BCS curve was

found to lie exactly on top of the Ajnax(T) curve when Tj = 43.787716^ and V = OmeV.

AmaxiT) for all values of Tj was flat at low temperatures and closely resembled the

usual temperature dependence of the BCS maximum gap, suggesting that the convex

curvature of 1/X^{T) for large Tj is not a consequence of some peculiar behaviour in

Amax{T). Furthermore, it was shown that the ILPT model predicts a universal number

for the ratio

^^-'-C^) - 4 (51)
ken ~ ^^ '

when there is no in-plane interaction present.

The present research also considered briefly the calculation of the Knight shift in the

weak coupling limit. In the s-wave scenario, the results were in agreement with those

in [3] for Tj = 43meV, and the closest agreement to experiments was found for high

in-plane interaction, V = 488.4mey, and large Fermi liquid corrections U = bOOmeV.

However, for the d-wave case, the results suggested that small strengths of interlayer
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pair tunneling yield results closer to the experiments, as was clear in Figure 4.18. The

results, which were obtained using the self consistent solutions for the gap, were in good

qualitative agreement with the experimental points using small to moderate strengths

of pair tunneling (0 < Tj < 20meV). K(T)/K(Tc) plotted as a function of reduced

temperature for large strengths of pair tunneling showed an incorrect curvature.

Finally, this research looked at the neutron scattering intensity in the weak coupling

limit with d-wave in-plane interaction. Peaks in the intensity were found for all strengths

of Tj and coincided most closely to the experimental peak at AlmeV when Tj was small.

When Tj dominated, the peak was very sharp and occurred at a lower energy than the

peak for modest Tj. There was no evidence in the calculations to suggest that a large

strength of pair tunneling is necessary to obtain a peak in Imx(Q,i^). The importance

of using the self consistent gap solutions was especially evident in this case, since the

simple form for Ak assumed by Yin et al. did not produce a peak in Imx(Q,cj) when

Tj = OmeV. After performing the same calculations with an increased cutoff Qd and the

self consistent d-wave gap solutions, it was found that the peaks for smaller strengths

of pair tunneling were not as pronounced, which led to the conclusion that the in-plane

interaction must be finite only over a narrow width off the Fermi line.

Throughout the course of this work, it became increasingly apparent that the size of

the lattice in momentum space plays a crucial role in the accuracy of the calculations.

It was found that for all quantities calculated in this work, it was essential to always

use as large a lattice as possible so that contributions from many k points are taken into

account in the sums over momenta. In the BCS limit, a minimum lattice size of 256 x 256

was necessary to yield reliable results, and the results for all quantities considered were

improved even further for 512 x 512 and 1024 x 1024 lattices.

The effect of a finite lattice size was especially limiting in the strong coupling case,
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for which the largest size considered was a 64 x 64 lattice because of the sums over Mat-

subara frequencies. The results for 1/A^(T) were undervalued for both the k summation

and tetrahedron methods in comparison to the BCS results, and displayed a curvature

which was completely inconsistent with the experimental results for both large and small

strengths of pair tunneling. It is believed that the reason for this behaviour is due to both

the limited number of Matsubara frequencies and to the jagged nature of the functions

Z{k^iiOn)i x(^5^^n), and (;6(k, ia;„), which is a consequence of the limited number of k

points.

In summary, it is stressed that the results found in this research for the penetration

depth, Knight shift, and neutron scattering intensity are inconsistent with the notion

that the interlayer pair tunneling must be the dominant pairing mechanism in order to

obtain results in agreement with experiments. It is found that for small strengths of

pair tunneling, such that < Tj < 20meV, the overall features of the experiments are

captured reasonably well. The calculations in this work do not discount the Interlayer

Pair Tunneling model completely, but rather show that this tunneling mechanism cannot

be the dominant pairing mechanism in YBa2Cu307_x, and that the in-plane interaction

also plays an important role in these high-Tc materials.
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