








Abstract

All-electron partitioning of wave functions into products ^core^vai of core and valence

parts in orbital space results in the loss of core-valence antisymmetry, uncorrelation of

motion of core and valence electrons, and core-valence overlap. These effects are studied

with the variational Monte Carlo method using appropriately designed wave functions

for the first-row atoms and positive ions.

It is shown that the loss of antisymmetry with respect to interchange of core and

valence electrons is a dominant effect which increases rapidly through the row, while the

effect of core-valence uncorrelation is generally smaller. Orthogonality of the core and

valence parts partially substitutes the exclusion principle and is absolutely necessary for

meaningful calculations with partitioned wave functions. Core-valence overlap may lead

to nonsensical values of the total energy.

It has been found that even relatively crude core-valence partitioned wave functions

generally can estimate ionization potentials with better accuracy than that of the tra-

ditional, non-partitioned ones, provided that they achieve maximum separation (inde-

pendence) of core and valence shells accompanied by high internal flexibility of ^core

and Wvai- Our best core-valence partitioned wave function of that kind estimates the

IP's with an accuracy comparable to the most accurate theoretical determinations in the

literature.
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Note on units

Atomic units are used throughout the thesis. Various trial wave functions are denoted

with the capital Greek letter \P and a numeral subscript: 9% t ^2, and so on.

The following repetitive symbols may appear in the text without explanation.

n the total number of electrons

nc the number of core electrons (in this study equal to 2)

ritf the number of valence electrons

nT (n^) the number of spin-up (spin-down) electrons

nj (n^) the number of core spin-up (spin-down) electrons

nl (
nv) the number of valence spin-up (spin-down) electrons

Tj three-dimensional position vector of electron i

Ti = |x*i| distance of electron i from the nucleus

Rj 3n-dimensional vector of the i-th electron configuration

<f>i, <pi spatial atomic orbitals

i>D (ipo) Slater determinant of spatial atomic orbitals

for spin-up (spin-down) electrons

tpD Slater determinant of spatial atomic orbitals without reference to spin

Nc the number of configurations in the ensemble

Nb the number of blocks of iterations

Nj the number of iterations per block
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Chapter 1

Introduction

1.1 Core-Valence Partitioning

Ever since the emergence of computational quantum chemistry, calculations on atoms

and molecules of heavy elements have been regarded as a distinct problem, deserving

special treatment. The reason is that conventional all-electron ab initio methods, which

perform very well for light atoms and molecules, become impractical if the number of

electrons treated explicitly is large. Primarily, this is due to a tremendous increase in

computation time. For example, in Hartree-Fock calculations, computational times are

approximately proportional to the fourth power of the number of basis functions, and the

problem of storage of immense number of integrals is no less severe. In quantum Monte

Carlo methods, the CPU time for a fixed statistical precision is estimated to increase

with atomic number Z as Z55-65 [1]. Given the large number of electrons together with

complications due to relativistic effects and the electron correlation problem, even the

fastest modern computers are still not adequate for highly accurate all-electron treatment

of heavy elements and their compounds. This urges one to identify and utilize the most

significant contributions from their electronic structure to the particular properties of

interest.

Much of what is understood on a qualitative level about chemical reactivity in terms

of atomic and molecular orbitals occupied by electrons ('hooks-and-arrows' in mecha-

nisms, for example) rests on the assumption that only the outermost (valence) electrons
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constituting the valence region determine reactivity and other properties of large systems,

while the innermost (core) electrons provide merely a setting for the valence ones.

A natural idea is then to treat the core and valence electrons separately or even to

treat the valence electrons only, thus reducing the all-electron problem to the valence-only

one. Design of such core-valence partitioning schemes is a complicated and extremely

relevant problem challenging theorists. As any other approximation, it is not perfect, and

the sources of error must be well understood. This thesis is an endeavor to provide such

understanding. It is necessary to point out that in the present work we limit our scope

to atomic systems so the magnitude of core-valence separation errors can be quantified

with good accuracy.

1.1.1 Partitioning in orbital space and physical space

The foremost incongruity of the idea of partitioning the electrons comprising a system into

core and valence is that in reality (and quantum mechanics demands that) the electrons

are indistinguishable. Not being found within formal theory, it can be introduced in one

or another manner suitable for the particular purposes.

An allusion to core-valence partitioning is already present in a widely used concept

of electronic shells. By definition, an electronic shell is a collection of all electrons with

the same principal quantum number. Usually the valence shell is defined as the last

occupied electronic shell, while the core as consisting of all the inner ones. This approach

is justified by the order of successive ionization potentials of the atoms.

Partitioning in orbital space implies that the orbitals can be divided in two groups,

so that instead of a complete wave function one deals with a product of the core and

valence functions, which is written in obvious notation as

*(1, 2, ..., n) = U*core(l, 2, ..., nc) tf^K+l, .., .n), (1.1)
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where A is the operator completing antisymmetrization of the product Vcore and ^voi,

each of which should be already antisymmetric.

In practice, antisymmetry with respect to interchange of core and valence electrons

is not rigorously built into the partitioned wave function, so that effectively one approx-

imates V with a non-antisymmetrized product

*(1, 2, ..., n) M »«.(1, 2, ..., nc) t^m+l, ..., n). (1.2)

Such a formulation gives rise to a concern about imminent collapse of valence electrons

into the core orbitals. This undesired effect can be prevented by using orthogonal orbitals

for constructing functions \fcore and ^/vai . Elaboration on this issue is a part of the present

work.

The objective of any partitioning is to allow one to work with the 'valence Schrodinger

equation'

Hval^val — Evafl?vai , (1.3)

where Hvai is the 'valence Hamiltonian', and Evai the 'valence energy'. There is no

universal definition of any of the quantities appearing in Eq. (1.3), so their interpretation

varies from one method to another.

An example of exact partitioning in orbital space is one in the framework of the

Hartree-Fock method, where electrons occupy 'distinct' Hartree-Fock orbitals, the com-

plete wave function is antisymmetrized, and the total energy includes the sum of orbital

energies, e* = ci,,C2„ etc. It is therefore always possible to find the total energy of a

many-electron subshell from the appropriate sum of the orbital energies, remembering,

however, that one must also correct for the interelectronic repulsions which are double

counted in any sum of Hartree-Fock eigenvalues.

There exist other conceptions of core-valence separation. A description of the system

based on the stationary ground-state electron density /?(r) can be used to introduce
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partitioning in physical space. Analyzing the radial density function

R(r) - 47rr
2
p(r), (1.4)

where p(r) is the total electron density 1
at a distance r from the nucleus with charge Z,

Politzer and Parr [2] showed that its outermost minimum defines a physically meaningful

boundary surface separating core and valence regions. Later Politzer [3] proposed that

this boundary surface can also be defined as the global minimum in the 'average local

electrostatic potential', V(r)/p(r), and found that any maximum in the local potential

corresponds to a minimum in the radial density function p(r).

The point rb at which the outermost minimum in the radial density function occurs

falls within the interval in which the linear In p(r) vs r plot of first row atoms changes

slope. On that account one can imagine that there exists an inner spherical core with

radius rb centered at the nucleus and an outer valence region extending from rb to infinity.

The number of core electrons, nc , is then given by [4]

nc = 47r / r
2
p(r) dr. (1.5)

Jo

The value of nc is now determined by the definition of rb .

When the core and valence regions are defined in the above manner, an estimate of

the valence region electronic energy can be obtained with the formula [2]

\2ir r°°
Eval = -—(Z- nc) / r p(r) dr. (1.6)

Using this expression Desmarais and Fliszar [4] showed with CI calculations that nc = 2

for the first row atoms and nc = 2 or nc = 10 for the larger atoms indeed define physically

meaningful cores.

1
p(r) = p(r) because of the spherical symmetry of the electron density.
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1.1.2 Treatment of core electrons

Whether in orbital or physical space, one can imagine two fashions of core-valence parti-

tioning based on the manner of treating the core electrons. In the first approach, which

can be termed as the core-retained method, core electrons are kept while their treatment

is substantially reduced. A representative example of this method — the damped-core

technique — is discussed below. Alternatively, one can use the so-called frozen-core ap-

proximation — the assumption that the core does not change with chemical (valence)

environment, — in order to treat explicitly the core mean potential, as well as some

of core-valence exchange, correlation, and relaxation effects on the valence electrons'

properties only once, and thereafter transfer the core orbitals to another system without

re-computation.

The second fashion, in which the core orbitals and electrons are removed altogether,

is also based on the frozen-core approximation. Here the effects of the core electrons

on the atom's properties are determined from an accurate calculation and incorporated

into a certain potential function, called an effective pseudopotential , which replaces the

full-atomic potential, and serves to bind the valence electrons to the nucleus and at the

same time prevents their collapse. Such strategy is less accurate, but more convenient.

Thus, in the valence-only approach, the end of core-valence partitioning is to quantify

the effects of core electrons incorporated in pseudopotential functions so that one can

perform subsequently only calculations on valence electrons. The objective of the core-

retained methods is to devise a scheme which would permit one to decrease the efforts of

treating the core and focus attention on the valence electrons. Qualitative justification

for either procedure — that the core electrons are so strongly bound to the nucleus

that they are relatively inert — has been supported by successful applications of these

approximations.
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1.2 Review of Methods Based on Core-Valence Separation

Several diverse methods have been proposed for calculations on heavier atoms, notably

the valence-electron-only techniques with pseudopotentials and pseudo-hamiltonians and

all-electron ones such as the damped core method and various accelerated sampling al-

gorithms (in Monte Carlo methods). Here we discuss those relevant to our work.

1.2.1 Pseudopotential methods

As mentioned above, the pseudopotential approach is an approximation based on the

idea that the core electrons can be replaced by a suitably chosen potential function.

Two types of pseudopotentials are distinguished. One is usually called effective core

potential (ECP), and the other is referred to as
l

ab initio model potential' (MP). The

term 'pseudopotential' is sometimes used as a more general name for the valence-electron-

only techniques. All pseudopotential methods have in common the replacement of the

core electrons by a linear combination of Gaussian functions which contain terms aris-

ing from core-valence repulsion and orthogonality condition. The most straightforward

application of pseudopotential calculations produces valence orbital energies, although

other properties can be computed as well.

Effective core potentials. Consider a wave function taken as a non-antisymmetrized

product (1.2). If core electrons are removed, the valence Schrodinger equation (1.3) can

be formulated as

HvalXv = Yl
»=1 2 U ** Tij

Xv = £vXv, (1-7)

where Z& — Z — nc is the 'effective charge', Xv is the so-called valence pseudo-orbital,

and the nonlocal potential function U, the pseudopotential, replaces the core-valence

repulsion and the core-valence orthogonality condition.
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The pseudo-orbital \v is given a smoothed nodeless shape under condition that it

match exactly the Hartree-Fock valence orbital outside the core region (shape-consistent

ECP's) or reproduce atomic excitation and ionization energies (energy-consistent ECP's).

The pseudopotential Ufa) is usually cast in the form

*max »

Ufa) = u^fa) +EE in-(nO> Ufa) QUfk)l (1.8)

J=0 m=-l

where f2j is the solid angle of electron i from the nucleus, Zmax is the largest angular

momentum quantum number among the core electrons, Ufa) is a radial pseudopotential

which depends only on the distance r< between electron i and the nucleus, and the

quantum number of angular momentum /. The role of spherical harmonics Y„a is to

ensure correct orthogonality between the missing core and the valence wave functions.

The functions Ufa) are commonly generated on a grid from all-electron atomic

Hartree-Fock calculations, and then fit to the analytical form

Ui(r) = -
2 Y, Ai*r

ni
'
k e~ Bl

'
kT
^ (l-»)

r
k

where Aije, Bije, and ny, are the fit parameters.

The most reliable formulation of effective core potentials (both relativistic and non-

relativistic) is based on the definition of pseudo-orbitals originally proposed by Chris-

tiansen et al. [6], who argued that the pseudo-orbital must accurately represent the

valence electron density in the valence region.

The first step in the derivation procedure is a highly accurate Hartree-Fock calculation

on a generator state of an atom or atomic ion. The corresponding Fock equation for a

valence atomic orbital is

F<t>v =
1_, Z

core "t" Vval-TV2 -- + vcore + vt <f>v = £v <t>v, (1.10)
2 r

where operators V^ and Vval are the sums of Coulomb and exchange potentials of the
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core and valence electrons, respectively, related to the l/r^ operators in H,

V^ = ]T(2^-^)'
»=1

v;-, = £ (24-^). (1.11)

»=nc+l

In order to eliminate the core electrons, the all-electron H.-F. valence orbitals
<f>v

are converted into pseudo-orbitals \v which contain no radial nodes in the core region,

while Vvcu and Vcore. are replaced by Wvai (where the Coulomb and exchange operators

are defined for \v rather than for <j)v ) and the pseudopotential UECP , respectively,

_iV 2-^ + Wval + UECP
2- T

Xv = ev\v (1-12)

The pseudo-orbital and its eigenvalue are now used to generate a numerical potential,

by 'inversion' of the modified Hartree-Fock equations (1.12). 'Inversion' means finding

a UECP which, when used in the Hartree-Fock Hamiltonian, reproduces a previously

determined wave function and energy of an atom to a satisfactory degree. Formally, the

result is given by

ecp = 6v+
Z*

+ [JV
2 -HUX„

(1 13)
r Xv

Using numerical ECP's and a large Gaussian basis set, one can generate analytical

functions for the pseudo-orbital and for the numerical potential (1.13). Most commonly

ECP's are fit to the form of Eq. (1.8). The functions Ui(r) appearing in UECP , fit to a

linear combination of Gaussians (1.9), determine the actual form of the potential.

Although there are no explicit orthogonality conditions imposed on the pseudo-

orbitals, one assumes that the orthogonality requirements are enforced by the shape

of the potential in the core region [6]

.

Within the variational Monte Carlo framework, the effective core potentials have been

applied to a range of systems up to solid diamond, graphite, and silicon [8].





Chapter 1. Introduction 9

The use of pseudopotentials leads to inaccuracies when the core significantly influences

the valence electrons. Contributions come from several sources [7, 9]:

(1) nonconstancy of the atomic core with the increasing number of valence electrons

and changes in the molecular environment — the break-up of the frozen-core ap-

proximation;

(2) core-valence overlap due to the absence of explicit core-valence orthogonality con-

ditions;

(3) core-polarization effects — distortion of the spherical symmetry of the atomic core

by the valence electrons which has repercussions on the motion of valence electrons

themselves;

(4) inability to take into account intra-core and core-valence correlation effects;

(5) errors originating in the fit procedure and those due to defects in the basis sets;

(6) possible overestimation of valence correlation effects due to the inner nodeless be-

havior of the valence orbitals.

Core polarization and core-valence correlation effects can be treated by introducing ad-

ditional terms to the pseudopotential, such as semiempirical polarization potentials [10].

Model potentials. The difference between the model potentials and the effective core

potentials is that the valence orbitals of the MP approximation retain the correct nodal

structure. This is achieved by using the so-called energy level shift operator

AruClra^AralFJWJ, (1.14)

which raises the energy of a core orbital |</»^) by the amount A„j. If the energy shift

is chosen properly, this operator places the core orbitals above the valence in energy, so

that the electrons first occupy the lowest valence orbital.
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For example, in the case of Li-Ne atoms (ls
2
-core) the explicit form of the valence

Hamiltonian is [11]

n„

Hval = ^Z
»=1

where

(JMP^ = yMP
{Ti) + Ai^u (1 16)

is the model potential, and

VMP (r

L
%<j

r
»i

(1.15)

'MP(„ \ _
Z&

l + 5>fc
exp(-B*r2

)

it=i

(1.17)• 1 +
n

with Ajj = —2eu and nc = 2.

Core and valence orbitals can be obtained from SCF calculations. This allows one

to construct ^core such that the core orbitals <^ are exactly orthogonal to Vvai- In this

case, the projection operators (1.14) yield zero, and only the VMP (r) terms in (1.16)

need to be evaluated. The disadvantage of MP's is that they require much larger basis

sets than those used for construction of nodeless pseudo-orbitals of the ECP method.

1.2.2 Damped-core quantum Monte Carlo method

The damped-core method was proposed by Hammond et al. [12] as an approach to heavy

atoms that avoids the use of pseudopotentials. The authors used a non-antisymmetrized

product wave function (1.2). In quantum Monte Carlo simulations, Were and Vvai can

be chosen as accurately as desired, including explicit interelectronic distance terms.

The distribution of the core electrons is simulated variationally with probability den-

sity
| \&core|

2 by the Metropolis algorithm (see below). The valence electrons, which are

distinguishable from the core as a result of the factorization of the wave function, are

sampled using quantum Monte Carlo (QMC) method which yields a more accurate elec-

tron distribution than the variational one. Moving the valence electrons in the potential

created by the core electrons, one finds the valence energy of the system.
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Core and valence trial functions are obtained from the all-electron SCF determinant

by partitioning it into core and valence orbital groups,

*COre = |Xl(l)"-Xnc
(nc)|, (1.18)

*vol = IXnc+lK+ 1) • • • Xn(n)\, (1.19)

and the product ^core^voi is multiplied by an electron-electron and electron-nuclear cor-

relation functions.

The two Hamiltonians are as follows

*=1 2 * ** t&'M

and
1 7 n* 1 nc 1

#uai = 2_j
t=l

(1.20)

(1.21)

The advantage of this scheme is that the valence electrons, unrestricted by the much

faster core time scale, can make significantly larger steps than possible with standard

QMC method, and thus rapidly reach equilibrium in the core potential. The core itself

also evolves, enabling one to sample a representative distribution of core electrons.

Although wave functions tyc^ and ^vai are orthogonal to each other by construction,

QMC sampling changes the valence electron distribution from l^ail
2 to |\P„aj$i,ai|, so

the simulated exact valence wave function $vai is no longer strictly orthogonal to the

core function ^core- In order to prevent the valence electrons from occupying the core

orbitals, the branching of configurations of valence electrons in the core region within a

certain cutoff radius is damped out by an r-dependent branching factor.

Since the core electrons appear explicitly, the damped-core method can incorporate

the core polarization and most of the correlation effect, without introducing semiempirical

polarization potentials. There remains, however, an open problem of inexact core-valence

orthogonality.
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Ionization potentials and electron affinities of carbon, silicon, and germanium calcu-

lated using this method with the cores consisting of 2, 10, and 28 electrons, respectively,

were found to be in excellent agreement with experiment.

1.2.3 Valence-electron-only calculations with core projection operators

Standing somewhat off the mainstream is another method, proposed by Leasure et <d. [13,

14], aiming at a direct calculation using the valence-electron-only wave function ^vai with

no explicit reference to the core electrons.

This technique is based on analysis of the energy expression arising from a Hartree-

Fock-type wave function for a closed-shell atom and assignment of the various contribu-

tions to the energy as originating from either core or valence electrons. The all-electron

closed-shell Hartree-Fock wave function has the form

* =
| 01 <t>\

• • • <Pnc/2 0^/2 <Pnc/2+l <f>nc/2+l ' ' ' <Pn/2 <t>n/2 \, (1.22)

where there are nc electrons occupying the core orbitals <pi to 0„c/2, and the remaining

nv = n — nc electrons are in the valence orbitals 4>nc/2+i to 4>n/2-

Provided that the orbitals in the wave function are mutually orthogonal, the total

energy corresponding to this wave function can be written as

E = (*|i/|#)

nc/2 nc/2 nc /2

2 £>** + £ E(2J**' - ***)
Jk=l *=1 k'-l

n„/2 nv /2nv/2

2£*«]£ £(*J*-Kf)

+
nv /2 nc/2

»=i *=i

(1.23)

»=i »=i i'=i

where hkk and fcg are matrix elements of the one-electron energy operators and Jkk> and

Ka> are the Coulomb and exchange integrals arising from the electron-electron repul-

sion. The energy expression (1.23) is partitioned into the following terms: intra-core
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energy, core-valence interaction energy, and intra-valence energy. The intra-core en-

ergy remains unchanged in different chemical environments and is totally absent from a

valence-electron-only calculation. The two other terms constitute the valence energy. The

theory aims to reproduce this energy in a valence-electron-only atomic SCF calculation.

The valence wave function is given the form

*«oi = | Xnc/2+l Xnc/2+l ' ' Xn/2 Xn/2 |- (1-24)

Since the core orbitals are entirely absent from the valence-electron-only wave function,

there is nothing to maintain the orthogonality of the pseudo-valence orbital x» to the

core orbitals. The method must therefore give the correct energy expression when used

with pseudo-valence orbitals contaminated with an arbitrary amount of core orbitals, i.e.

imagined as being of the form

>v/2

Xi = fa + £ **• (L25 )

i

The improper normalization of \i is necessary because it is only in this way that the

pseudo-orbital can become identical to the true valence orbital fa of the all-electron

calculations in the valence region.

For the pseudo-orbital \i to yield the correct valence energy, the core orbital contribu-

tions to the matrix elements in (1.23) must be explicitly projected out. This is achieved

by the use of effective Coulomb, exchange and Hamiltonian operators which contain the

core projection operators
nc/2

Pcor* m £ l&X&l- (1-26)

where the summation is over all core spin-orbitals.

The energy calculated with this method is guaranteed to converge, as the size of

orbital basis increases, to the limit of valence energy which would be obtained from all-

electron calculation using a frozen SCF description of the core electrons. It is suggested
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that the theory may be extended to make allowances for the core-valence correlation

effect and core polarization.

The technique differs from the pseudopotential methods in several respects. Firstly,

unlike the ECP's, based on the average field approximation, every term which occurs

in the all-electron frozen-core energy expression is exactly reproduced. Secondly, in

pseudopotential methods the collapse of the valence orbitals into the core subspace is

prevented by introduction of a repulsive potential, while in this method it is accomplished

by the explicit use of core projection operators.

1.3 Problems of Core-Valence Partitioning

From the preceding discussion it becomes clear that the benefits of core-valence par-

titioning are at the same time associated with a major problem — it is very difficult

to incorporate completely into a partitioning scheme rather complex interrelations be-

tween core and valence electrons. Principal effects contributing to this problem can be

summarized as follows.

The loss of antisymmetry. A many-electron wave function (1.2), which has 'core' and

'valence' parts, does not satisfy the Pauli exclusion principle with respect to interchange

of core and valence electrons. Some authors call this effect 'the Pauli exclusion holes' [15],

referring to the fact that in a system described with the incompletely antisymmetrized

wave function, the valence electrons can occupy core orbitals as if the core electrons did

not exist, 'falling through' onto the core. It is an open question of to what extent the

loss of core-valence antisymmetry of the product wave function (1.2) is recovered by the

orthogonality condition of the damped-core technique, by the repulsive potential of the

ECP approximation, or by the projection operators of the MP method.
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Core-valence orthogonality If the partitioned wave function is not an antisym-

metrized product, it is necessary that \tcore and ^vai be exactly orthogonal to each other.

Any non-zero core-valence overlap will result in a certain error. It is therefore desirable

to know the magnitude of this error as a function of the overlap.

Static core-relaxation effects. This refers to mean-field 'breathing' of core orbitals

which minimizes the potential energy during a change in the valence configuration or

chemical environment. It manifests itself in the Hartree-Fock formulations of core-valence

partitioning based on the frozen-core approximation.

Static core-polarization effects. In the Hartree-Fock treatment, which is a basis

for several valence-electron methods, the charge distribution of the atomic core is spher-

ically symmetric and not affected by the motion of valence electrons. In fact, the core

does deviate from the spherical symmetry ('polarizes') depending on the instantaneous

positions of the valence electrons, and the potential, in which the valence electrons move,

is different from the potential in the independent electron approximation. Peculiar to

the valence-electron-only techniques, this effect can be treated by introducing additional

terms in the expression for the potential experienced by valence electrons.

Dynamical core-valence correlation effects. If the core electrons do not appear

explicitly, correct treatment of electron correlation in the valence-electron-only meth-

ods presents a problem. Since the true correlation energy is non-linear with respect to

contributions from different electrons, separating contributions of the core and valence

electrons to the appropriate effective Hamiltonians cannot be clearly defined. The ques-

tion is how the failure to allow for the core-valence correlation in calculations with a

partitioned wave function affects the results.
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1.4 The Scope of the Present Study

The objective of this work is to study various model all-electron core-valence partitioning

schemes in orbital space represented by the non-antisymmetrized product wave function

of type (1.2). This will be done by constructing suitable trial wave functions and em-

ploying them in calculations of selected atomic properties. Conclusions will be drawn by

comparing performance of a non-partitioned ('complete') wave function and that of wave

functions representing different levels of separation to the extent that their flexibility,

specifically, the number and type of variational parameters, is comparable.

Using all-electron partitioned non-antisymmetrized wave functions we can study sig-

nificance of the following effects occurring in atomic systems:

• core-valence antisymmetry,

• core-valence orthogonality,

• dynamical core-valence correlation.

Because we intend to treat the core electrons explicitly, we will be unable within this

approach to study the static core-polarization and core relaxation effects, peculiar to the

partitioning schemes where the core electrons are removed.

We are interested in the errors induced by omission of the above effects and their

trends as we go through a series of atomic systems. Furthermore, since in chemical appli-

cations one usually deals with properties which are differences between certain quantities

in two states, calculation and comparison of such property as ionization potential will be

used to determine to which the extent these errors cancel. As will be shown, variational

Monte Carlo (VMC) method is an excellent tool to achieve this goal.





Chapter 2

Model Wave Functions

2.1 Construction of the Trial Wave Functions

In the preceding chapter we described the nature of the effects which ideally should be

preserved in partitioned wave functions. In this chapter we develop models to estimate

the errors resulting from omission of these effects quantitatively.

Although the variational Monte Carlo (VMC) method, which we use in the present

study, is described in detail only in the Chapter 3, the following discussion is not restricted

to this particular technique.

2.1.1 General considerations for construction of trial wave functions

All averages in VMC are evaluated with respect to a certain trial function ^t, so that

its choice determines the accuracy of the results. Of course, a simple Vt is easy to

implement, but a more elaborate wave function gives better estimates of the properties

and with a lower variance.

Any acceptable trial wave function must be: continuous, single-valued, and square

integrable. A function meeting these requirements is said to be well-behaved. In addition

to these properties, a wave function must exhibit a proper behavior near the points of

configuration space where charged particles meet. For this, it must have a discontinuity

in its first derivative at such points. This discontinuity is called a cusp. Cusp conditions

may impose specific requirements on variational parameters (see Appendix B).

17
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Finally, for fermion systems, a many-electron valid wave function must satisfy the

antisymmetry (exclusion) principle: it must be antisymmetric with respect to the

interchange of the coordinates of any two electrons. Partitioned wave functions do not

satisfy this requirement.

The exact ground-state eigenvalue and eigenfunction of the non-relativistic, station-

ary nucleus Hamiltonian are called the exact energy J5exact and the exact wave function,

respectively. Except for certain trivial cases the exact wave function is unknown. Approx-

imate wave functions are usually expressed using expansions of one-electron functions,

known as orbitals. The expectation value associated with a valid approximate non-

relativistic wave function ^t is always above inexact- The larger and more complete is

the set of basis orbitals used to construct the approximate wave function, the greater is

the degree of flexibility in the expansion and the lower is the variational energy E.

In the Hartree—Fock method, enlargement of the basis set lowers the energy until a

certain limit is reached, known as the Hariree-Fock limit. The Hartree—Fock limit is

never equal to the exact energy because the exact wave function cannot be expressed as

a single determinant, and the motion of electrons with opposite spins is not correlated

within the Hartree-Fock approximation. The difference between the exact energy of the

system inexact and the Hartree-Fock limit Ejjf is called the correlation energy

Ecott — -Eexact
— Ef{F- (2.1)

A wave function performing better than the best uncorrelated single determinant of

spin-orbitals is referred to as a 'post-Hartree-Fock' function. Normally, instead of the

absolute value of the correlation energy recovered by a certain post-Hartree-Fock wave

function, one uses the percent expression defined as

%£corr = /"* "/ 100%. (2.2)
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This is a customary measure of the quality of a post-Hartree-Fock wave function.

The treatment of electron correlation is a difficult problem. It can be approached

directly by introduction of an electron correlation function which contains explicitly in-

terelectronic distances r^. However, in conventional methods this leads to molecular

integrals that are inconvenient for analytical integration or not analytically integrable at

all. The other approach — full configuration interaction — is based on the idea that the

exact wave function can be expanded as a linear combination of all possible n-electron

Slater determinants formed from a complete set of spin-orbitals. The resulting wave func-

tion may include a tremendous number of Slater determinants, but as long as r^-terms

never appear in the expansion, all the integrals can be evaluated analytically.

One of the advantages of Monte Carlo methods is the flexibility they afford in the

choice of trial wave functions. In contrast to other ab initio methods, VMC can use wave

functions of arbitrary forms— notably with explicit interelectronic distance dependencies

— which, even if they are relatively compact, allow one to go beyond the Hartree-Fock

limit to recover a considerable part of the correlation energy and ultimately to approach

the exact non-relativistic solution.

2.1.2 The complete wave function

The complete wave function, which we will call ^i and its expectation value E\, is

a bench mark for subsequent modifications. Understandably, it should incorporate as

many qualities of the exact wave function as possible.

As shown in Appendix A, instead of the complete nx n Slater determinant of spin-

orbitals, in variational calculations one can use a wave function in the form of the product

of Slater determinants of spatial orbitals for spin-up and spin-down electrons, without

explicit inclusion of spin-functions. All spin-independent properties estimated with such
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a wave function within variational method are unchanged with respect to the single deter-

minant of spin-orbitals, whereas breaking one determinant into two of smaller dimensions

is computationally advantageous.

Following a common practice, we chose the wave function ^i to be of this pair-product

form

ti =

*i(l) *<*) •

&(1) <M2) •

Mi) <M2) • 0nt(nT
)

<Ai("
T+ l) <MnT+2) ... M")

2(n
T+ l) <£2(n

T+2) ...
(f>2 (n)

• • . •

• • •

<f>ni(ri+l) <j>ni{rf+2) ...
<f>ni(n)

(2.3)

where ^L axi L̂ ^b denote Slater determinants of atomic orbitals for spin-up and spin-

down electrons, respectively. As shown in Chapter 3, in the VMC method one needs not

know the normalization factor in (2.3).

To allow explicitly for electron correlation the simple product of the determinants is

multiplied by a Pade-Jastrow pair-correlation function

The value of a is determined from the electron-electron cusp conditions (Appendix B),

(2.4)

a = <

\ if i and j are of like spin,

\ if i and j are of unlike spin,

(2.5)

while b is an optimized variational parameter.

The functional form of atomic orbitals used to construct determinants tjjp and ipp was

developed by Langfelder [16]. These resemble hydrogen-type orbitals
1

, and because of

'It is essential since a simple STO 2s-orbital does not have the proper cusp behavior.





Chapter 2. Model Wave Functions 21

inclusion of the electron-nuclear correlation factors the set can be viewed as 'double-zeta'

quality. In the explicit form,

<f>2s = (l + cr)e-C2' re"T^£:

, (2.6)

,
V** T

K, = qe~Q"r
e 1+«v,

where q = x, y, z.

As shown in Appendix B, the electron-nuclear cusp conditions produce the following

relationships between the parameters

wu = Z-(.Is

Wu = Z-Cis + c (2.7)

Z
fw2p =

"J
-Cap

where Z is the charge of the nucleus.

No distinction is made between £2s and C,2p , wit and w2a , vu and v2a , so that by

grouping we obtain

C2» = C?p = C2

wis = w2t = w, (2.8)

Vis = v2s = vs .

Eq. (2.7) and (2.8) determine the value of parameter c. For consistency, we also introduce

wp
= w2p

vp = v2p . (2.9)

Since ws , wv , and c are not independent, the total number of optimization parameters

for wave function ^ x varies from 3 to 5 (see Table 2.1 below).
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The wave function ^i is continuous, single-valued, and square integrable. It has

correct discontinuities of its first derivatives, and is antisymmetric with respect to inter-

change of electrons with like spins. Although this wave function is relatively simple, it

is good enough to recover consistently 60-62% of the correlation energy for the Be - Ne

atoms, and up to 91% for the Li atom (see Chapter 5).

2.1.3 Full-atomic implementation of the core-valence partitioning

We partition the complete wave function ^i into core and valence parts such that the

electrons of the K-shell (Is orbitals) constitute the core, while the remaining electrons

belong to the valence group.

In ^i each of the Slater determinants incorporates all electrons with like spins. This

means that we do distinguish two types of electrons— those with spin 'up' and those with

spin 'down'. This seeming violation of the indistinguishability principle notwithstanding,

the use of wave function ^ does not lead to any troubles, because \&i still satisfies a

modified formulation of the exclusion principle: each spatial orbital can be occupied by

no more than two electrons with opposite spins. When two or more electrons with the

same spin occupy the same spatial orbital, one of the determinants of ^i vanishes. In

other words, the n-electron identity requirement has been partially substituted by an

appropriate form of the wave function.

Now consider a partitioned wave function with a ls2
-core. The partitioning is achieved

by splitting each of the determinants of \&! into core and valence parts. If there is no

antisymmetrizer (which enforces unit occupation numbers) and if the valence orbitals

are not orthogonal to the ls-core orbital, there is nothing that can prevent the valence

electrons from occupying the core orbitals and thereby admixing bosonic states to the

ground state wave function of supposed fermions! Since this model bears no relationship

to reality, the total energy of such a system may drop below the experimental value.
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Once electrons become distinguishable as either core or valence, the antisymmetry is

broken, and to prevent the collapse one must re-introduce the orthogonality explicitly by

constructing a partitioned wave function * = #„„.<:#voj such that {^corel^voi) = 0.

Function ^Icore will be orthogonal to Vval if each atomic orbital used to construct

Slater determinant (s) ^vai is orthogonal to every atomic orbital in ^core- In the basis

set used in this work, the core orbital is <f>\ t and the valence ones are fa, and <f>2P ,
given

by Eq. (2.6). Orbitals </>2p are orthogonal to
<f>u by virtue of their angular parts, but

the 4>2i orbital is not. To obtain the (un-normalized) orthogonal orbital (j)^, we use

Gram-Schmidt orthogonalization

4 * ^2.02, - Sl2Nlt <f>ls , (2.10)

where N\ and N2 are normalization factors, and

Si2 = NuNi.J<f>i.<h.dV. (2.11)

This method accomplishes exactly what is desired: removal of the core component from

a valence orbital
2

.

Finally, the values of parameter a appearing in Eq. (2.4), determined by the electron-

electron cusp conditions (Appendix B), are slightly different from those for the complete

wave function, namely

{4
if electrons i and j belong to the same determinant,

4
'

6
(2.12)

| if electrons i and j belong to different determinants.

Thus a can be 1/2 even if the electrons have the like spins but belong to different shells.

2Other orthogonalization procedures exist. Recently Banerjee [17] proposed an orthogonalization

method which allows construction of valence orbitals that are orthogonal to the core orbitals and yet

involve no component of the core, unlike Gram-Schmidt and symmetric orthogonalizations. A very

useful application of this procedure has been suggested for the effective core potential method.
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2.2 Study of the Core-Valence Separation Effects

The next step in our plan is the design of model partitioned wave functions imitating

the absence of effects occurring in \&i. Explicit treatment of all electrons is necessary to

avoid any effects other than the one being studied.

2.2.1 The loss of core-valence antisymmetry

We have seen that although the wave function ^ is neither symmetric nor antisymmetric

with respect to interchange of electrons with opposite spins, this fact has no effect on

the variational estimates. This is a consequence of ^i's not being an eigenfunction of

spin-operators. However, any further loss of antisymmetry, in particular, resulting in

distinguishing 'core' and 'valence' electrons is expected to lead to a change in variational

estimates, since the wave function is no longer strictly valid. In order to study this effect,

we split both the spin-up and spin-down determinants of $i into core and valence parts,

while at the same time keeping the Jastrow correlation function unchanged. We call the

resulting wave function ^2

*2 =
I tf (1) 1 1 tf (2) 1 1 tf(fie+1) • • • ^(nc+nl)

1 1
flte+nj+l) • • •

<f>

v

ni(n) I
*

= #k^*Mi'«* (2-13)

Peculiarly, the antisymmetry principle is satisfied within a group of electrons of the

same spin only if the determinant accommodates two or more such electrons. It follows

that Vcore, with two ls-electrons representing the core, is in fact not even partially

antisymmetric. This is also true for the valence shells of Li, Be, Be+ , B, B+ , and C+ .

In any case, the wave function ^2 a whole is neither symmetric nor antisymmetric

with respect to interchange of one core and one valence electron of the same spin. The

core and valence parts of ^2 must therefore be orthogonal to each other.
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Orbitals (2.6) are used to construct the determinants ipp
, D̂ , tpp , and Vd • Or-

thogonality is maintained using 0^ as given by (2.10).

Variational parameters of \& 2 are the same type as those of ^ x . The optimized expec-

tation value of total energy is denoted i?2 . The difference between £2 and E\ characterizes

the partial loss of antisymmetry, assuming that \ti and \&2 match in terms of number

of variational parameters and the basis set. Other interesting properties to calculate

using #2 include electron-nuclear distances for the core and valence electrons, 'core' and

'valence' energies, and first ionization potentials.

2.2.2 The core-valence overlap effect

The extent to which the total energy of a partitioned system is affected by inexact

orthogonality of core and valence parts of the wave function {core-valence overlap) can

be assessed by computing the total energy of a system described with a partitioned

wave function \t 2 , in which the strict orthogonality condition of 4>u core and <£2« valence

orbitals is released.

For this purpose we introduce a Schmidt-modified 02»-type orbital

^ = ^TTThm {N^- kNuU ' (214)

where 5i 2 is given by (2.11) and k can be changed so as to allow various values of the

overlap integral

Q = NuK J fr4 iV If -k) ^ + J_^^ . (2.15)

Of course, Q can be both positive and negative. Solution of Eq. (2.15) for k gives

k = S12 - Q<
~ Sl2

(2.16)\l-Qf

In the particular case of Q = 0, which corresponds to 4>'
2s = 4>i„ k = Si2 .
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Varying the overlap Q we can explore how sensitive the total energy is to the exactness

of the core-valence orthogonality condition.

2.2.3 The core-valence correlation effect

In wave function ^i (2.3), motion of core and valence electrons is correlated by virtue of

the factor J which includes all possible electron pairs via r^. To estimate the magnitude

of the core-valence correlation effect, we will construct a wave function where the motion

of the core and valence electrons is correlated within the shells but not between them.

This is achieved when both determinants and correlation parts of the complete wave

function \ti are separated into core and valence parts. We call this wave function \t3

*3 = |^(1)||^(2)|

x
I

0?(nc+l) • • -^T(nc
+ni;)

1 1

^(nc+nj;+l) • •

-^i^) I

x exp fg £ jffc-) exp
( g ± giu) (2.17)

Alternatively, the product Jc Jv can be viewed as a complete correlation function J from

which all core-valence interaction terms are excluded.

Atomic orbitals used to construct \?3 are the same as those for ^ and ^2 - It is

necessary for a valid comparison with ^i and \?2 that a single electron-electron Jastrow

parameter b be used for both the core and valence electrons, because *3 should have no

advantage over ^i or W2 in terms of flexibility.

The differences AE3i
= £3 — Ei of the total energies computed with wave functions

ty3 and #|, respectively, give the combined effect of losing antisymmetry and neglecting

core-valence correlation. Other properties mentioned above are also computed.
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2.2.4 Further study of electron correlation

Much of chemistry is the science of energy differences rather than of absolute energies.

Specifically, ionization potentials based on ^1-^3 provide a more useful and realistic

indication of the validity of a core-valence partitioning scheme.

The findings presented in Chapter 5 indicate that the wave function ^3 consistently

outperforms the two others in terms of ionization potentials. We assume that the un-

expected good performance of #3 is accounted for by a better treatment of intra-shell

electron correlation than in ^2 and even ^1. If this is true, then a more flexible correla-

tion function J = JC JV should provide even better estimates of the ionization potentials.

In such a wave function, denoted as ^4, there are two distinct parameters bc and bv , one

for the core and the other for valence electrons,

*4 = 1^(1)11^(2)1

x
I

#(nc+l) • -.^(nc+nl)
\ |

^(nc+nj+l) • -^(n)
|

(2.18)

\ i=l j=i+l * T OcTxj
J \i=nc+l j=i+l * + °«r

»J
t

When ^4 indeed proved to be superior to ^3 in terms of accuracy of ionization po-

tentials, we decided to make the next step — to re-introduce the core-valence correlation

terms into ^4, this time, however, associated with an independent variational parameter

be,. This new wave function is denoted as ^5,

*5 - |^(l)ll^(2)|

x
I
^K+l) • • -<T(nc+r4) 1

1 <ft(nc+nl+ l) • • •&(»)
I

(2-19)

= #L#k*k#kJUJU«
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Thus, Jc J'v Jo, can be viewed as our most flexible analog of J. In the former, param-

eter b depends on the nature of electrons involved in the correlated pair, whereas in J it

has a single value for all possible pairs.

Table 2.1 summarizes the parametrization of the trial wave functions.

Table 2.1: Parametrization of wave functions ^1-^5.

System





Chapter 3

Variational Monte Carlo Method

In this chapter, we give a detailed description of the methods employed in our work:

variational method, the Monte Carlo procedure for evaluating definite integrals, its im-

portant particular case — variational Monte Carlo method, and the Metropolis algorithm

— an effective sampling technique necessary to perform the integration.

3.1 Variational Method

The variational method is based on the variation principle [18]: given a system with

Hamiltonian operator H and any well-behaved function "if, it is true that

where E[$) is the variational energy, which can be treated as a functional, and inexact &

the true lowest energy eigenvalue of H.

The variation principle for the ground state guarantees that the energy associated with

an approximate wave function ^ is always higher than the ground-state exact energy.

Thus the quality of a trial wave function can be measured by its variational energy: the

lower the energy, the better the wave function 1
. The idea of the variational method,

is to take a trial wave function, which depends on certain parameters, and vary these

parameters to get the lowest possible expectation value E[^f\. The expectation value

depends, of course, on the functional form of ^ and the variational parameters.

1A more universal criterion is the constancy of the quantity Hi/¥, which has the exact zero variance

only for the exact wave function $.

29
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E[if] can be estimated numerically or analytically, whichever method is more ade-

quate. We discuss here a numerical procedure known as Monte Carlo integration which

is particularly suitable for evaluation of the integral (3.1).

3.2 Monte Carlo Integration

The generic name 'Monte Carlo' refers to a whole group of numerical methods which use

random numbers similar to those coming out in roulette games, to simulate behavior of

a physical system. These methods are therefore stochastic, in contrast to deterministic

simulation methods such as molecular dynamics. Monte Carlo simulations are frequently

applied in the study of systems with a large number of degrees of freedom. Over the

past years these methods have proved to be remarkably successful tools of quantum

chemistry [19, 20], where they are used for evaluation of definite integrals, particularly

multidimensional integrals with complicated boundary conditions, and for solving the

partial differential Schrodinger equation [21].

How are random numbers utilized for integration? Let us consider [19] first the case

of a one-dimensional definite integral

fb

= f f(x)dx. (3.2)
Ja

One can approximate / in terms of the finite sum S#:

L N
I = lim SN = lim -^£ f(Xi ) = (/(*)). (3.3)

N—*oo N—*oo TV t^T

The sample points {xi}, at which the function f(x) is evaluated, should completely

cover the domain from a to b. If N is finite, the sum will fluctuate depending on the

choice of {xj}. Thus one confronts the problem of generating the proper set of sample

points. The simplest choice is a uniform one-dimensional grid, and in very simple cases

this approach is indeed satisfactory. However, for complex forms of f(x) and for higher
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dimensions, this procedure is computationally extremely inefficient. In fact, in proves to

be advantageous to choose the points {xi} randomly. Prom the mathematical standpoint,

one will have a certain probability density distribution function f(x), from which the

random variables x\, X2, ..., x^ are drawn.

The stochastical analog of the grid is the uniform sampling of {x^} with direct appli-

cation of formula (3.3). However, the principal contributions to the integral come from

the regions where the integrand f(x) is large, so that the uniform sampling does not

produce enough points in these important regions to provide an accurate estimate of the

integral, while much effort is wasted at the tails of the integrand whose contributions

are negligible. It is therefore desirable to have the majority of sample points clustered

in the regions where the integrand is large, rather than having all the points distributed

uniformly. This can be achieved by drawing the sample points from a probability distri-

bution p(x) such that p(x) ~ f(x), which allows one to generate more variables in the

important regions. Such methods are called importance sampling.

To illustrate how the importance sampling works, we choose a normalized probability

density distribution function p(x), approximately proportional to f(x), and introduce a

new function tj(x) defined as

V(x)
d^ f(x)/p(x), (3.4)

so that the integral is now obtained as

/ = jT

6

/(*) dx = J*^ p(x) dx =
J*

V(x) p(x) dx m (i?(x))K„. (3.5)

Since p(x) ~ f(x), the integrand r)(x) does not vary sizeably over the integration range,

so the estimate is more reliable.

Thus, with a sufficiently large number of points {x{} sampled from distribution p(x),

I = f^(xMx)dx^pixt) =^±m (3 .a)
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A method using these principles to evaluate the variational integral for an arbitrary

form of the trial wave function ^ is the so-called variational Monte Carlo method. With

this background, we can understand how it works.

3.3 Estimation of the Variational Integral

In VMC, the expectation value A of operator A is obtained by evaluation of the multi-

dimensional integral

T, JgjLfefg (-17)

where \&t = ^r(R) is the trial wave function (not necessarily normalized) defined in

3n-dimensional space of electron configurations {R}.

To implement the importance sampling technique, this integral is transformed as

follows

-j- f AVT \VT \

2 m r . |#r |

2
. „

A =I^J^M dR = I
A'J^h dR- (38>

In the case of A = H (the Hamiltonian of the system), the quantity

is called the local energy. The variational estimate is therefore the expectation value of

the local property, sampled from probability distribution

ftfjffx**
<310>

One averages the local energies El and other properties computed at sample points Rj

drawn from the distribution (3.10). Thus the estimate of the variational energy amounts

to finding the sum

^=I ELm^R dR={ELh'^^t EL(Ri)
-

(311)
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Provided that all sample points are independent, this value is associated with the variance

*$ = tv^t (
<J®n ~ (**>W)

• (312)

In an important special case, when ^r is an eigenfunction of H, the local energy El

is constant, and the variance is therefore zero.

So far we have not discussed an important question: How does one generate in VMC

the sample points from probability distribution p(R) a |^r|
2? This is achieved by the

Metropolis algorithm.

3.4 Metropolis Sampling

The Metropolis sampling technique was first described by Metropolis et al. [22]. This

method belongs to the group of rejection techniques, so named because a trial value for

a random variable is selected and proposed. Subjected to a test, the proposed move may

be accepted or rejected. If it is rejected, the cycle of choosing and testing a trial value

is repeated until an acceptance takes place. The Metropolis algorithm can be used to

sample essentially any probability density function regardless of analytic complexity and

the number of dimensions.

3.4.1 Description of the algorithm

In the following discussion based on the description due to Kalos [23] , we will specify a

state of the system by a point R in multidimensional space {R}. The evolution of the

system can be described with a probability density function P(R' <— R) which gives the

probability of a stochastic transition of a system known to be at R to R'.

A necessary condition that a system evolve toward equilibrium and stay there is that

the system be, on the average, as likely to move from a neighborhood ofR into a specific

neighborhood of R' as to move exactly in the reverse direction. If the probability density
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of observing the system in equilibrium near R is p(R), and p(R') near R', then the

kinetics must satisfy the detailed balance condition

P(R' «- R) p(R) = P(R - R') p(R'). (3.13)

Here P(R' <— R) p(R) is the probability of moving from R to R' is expressed as the

a priori chance of finding the system nearR times the conditional probability P(R' <— R)

that it will move from R to R'.

In the Metropolis algorithm, transitions from, say, R to R' can be proposed using

essentially any distribution T(R' <— R). On comparing p(R') with p(R) and taking into

account T(R' <— R), the system is either moved to R' (the move is said to be 'accepted')

or returned to R (the move is 'rejected').

The moves are accepted with probability A(R' <— R), which must be calculated so

as to satisfy the detailed balance condition. Thus A(R' <— R) is determined by

P(R' tr R) = A(B! ^ R) T(R' «- R). (3.14)

Detailed balance requires

A(R' t- R) T(R' - R) p(R) = A(R *- R') T(R ^ R') p(R'). (3.15)

Then

***+^W&t# (316)

We introduce a quantity ^(R' <— R) defined as

,R, . . def T(R^R)p(R)
9(R-R)- r(RI _ R)p(R)

- (3-17)

From q(R.' *— R) the probability of accepting a move can be calculated. A frequently

used possibility is

A(R! 4- R) = min [1, q(R' <- R)]

.

(3.18)
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Consider the case when the transition probability T(R' <— R) is assumed to be

constant over a domain AR in space {R}. That is to say that

1/AR ifR eAR
(3.19)

otherwise.

T(R' «- R) = i

This corresponds to a uniform random sampling of R in AR:

R' = R + c*N, (3.20)

where N is the unit uniform 3n-dimensional random variate and a is a scaling coefficient.

This choice yields

T(R' pm R) = T(R
4-s

R),

so that q(H' <— R) becomes

'(R, - R»=S (321)

In improved techniques, by making T(R' <— R) approximate p(R'), rapid convergence

and small correlation are obtained, since q(R' <— R) approaches unity, as can be seen

from Eq. (3.17). Were it possible to sample T(R' <— R) = p(R') exactly, then all moves

would be accepted and the samples would be independent2
.

Since we need to compute only the ratio p(R')/p(R), knowledge of the normaliza-

tion factor for the probability density distribution function is not required. This is an

extremely attractive feature of the method because determination of this factor would

require evaluation of another multidimensional integral.

Normally, at the very first step, the distribution of walkers R is far from p(R). How

does the simulation produce the equilibrium distribution p(R)?

If £*(R) is the probability density distribution of R at step k, then the distribution

£*+i(R') of walkers R' at step (k + 1) is determined by two contributions: the probability

2However, if it were possible to generate random variables from p(R) distribution, there would be no

need to use the Metropolis algorithm.
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of entering into the vicinity of R'

J A(R! «- R) T(R' - R) &(R) dR, (3.22)

and the probability that once the system is at R', it will stay there, i.e. the probability

that a move away from R' is not accepted

j{\ - A(R *- R')] T(R «- R') dR. (3.23)

Since the probability that the system is at R' in step k is £fc(R'), the probability that

it will stay at R' will be

&(R') / [1 - i4(R «- R')] T(R *- R') dR. (3.24)

This gives the following relationship for ^+i(R')

&+i(R') =
J
A(B! +-B)T(B! <-*)&(*) dR

+ &(R') / [1 - A(R - R')] T(R «- R') dR. (3.25)

The random walk thus generates a recursion relationship for the density functions.

Setting &(R) = p(R) in Eq. (3.25) we obtain

&+i(R') = /A(R'«-R)T(R'*-R)p(R)dR

+ / [1 - A(R +i R')] T(R *- R') p(R') dR

- fT(R^R')p(R')dR = p(R'), (3.26)

since /T(R <— R') dR = 1. If the move is accepted, R' and p(R') become R and p(R)

in our notation. Therefore, p(R) is guaranteed to be the asymptotic distribution of the

random walk.

Unfortunately, because of the asymptotic behavior, we must throw away a certain

number of first steps N^ of the random walk until the steps are being sampled from
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p(R). In addition, N&, is very difficult to estimate in advance by a method other than

trial and error.

In VMC, the probability density p(R) of Eq. (3.5) is the probability of observing

the system near R given by Eq. (3.10), whereas the sampled quantity rj(x) is the local

energy (3.9).

3.4.2 Generalized Metropolis algorithm

The above description of the Metropolis algorithm can be summarized in its generalized

form as a recipe for one walker:

(1) pick an arbitrary initial state R;

(2) being in state R, propose a possible next state R' with probability T(R' *— R);

(3) accept the move to R' with the probability A(R <— R') calculated using Eq. (3.18);

(4) if the move is accepted, the new state is R', otherwise it is R;

(5) repeat steps 2 through 4;

After a sufficiently long run, states R become drawn from the distribution p(R).

3.5 Optimization of the Wave Functions

The search for the set of variational parameters corresponding to the best possible ground

state trial wave function is a typical optimization problem. Optimization methods may

differ from one another by the search technique and by the quantity being optimized.

Ordinarily, wave functions are optimized with respect to variational parameters by

(i) minimization of the total energy,

(ii) minimization of the variance of the local energy.
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Minimization of the variance of the local energy has the advantage that the true minimum

of the variance is always known to be zero. The disadvantage of the variance optimization

is that it is less sensitive to the valence region than to the nuclear where the local energy

is a more strongly varying function. Energy optimization is more sensitive to the nuclear

region too, but to a lesser degree.

In either case, the principal problem is that the energy (or the variance) associated

with a parameter set cannot be precisely known: one always obtains it with a certain

statistical error. For that reason it is sometimes difficult to find that unique set of param-

eters that correspond to the true minimum. Obvious strategies to deal with this problem

include increasing of the ensemble size and improving the efficiency of the sampling al-

gorithm, both of which lower the variance and are used in the present work.





Chapter 4

Running Simulations

This chapter deals with practical issues and specific problems of the variational Monte

Carlo simulations.

4.1 Implementation of the Metropolis Algorithm

Terminology. Simulations are performed on an ensemble of n-electron configurations

('walkers') {R.}, i = 1, 2, ..., Nc, where Nc is the number of configurations and Rj is the

3n-dimensional vector representing the coordinates of n electrons in the i-th configura-

tion. Each step in the development of a walker is called iteration. A series of consecutive

iterations constitutes a block.

4.1.1 Estimation of the variance

One of the disadvantages of the Metropolis technique is that successively produced sample

points are correlated, sometimes very strongly. In this case, there is a positive correlation

in the successive values of the integrand, too. As a result, one cannot use separate itera-

tions as independent sources of the local energy El (3.9) because the resulting variance

(and, consequently, standard error) will be underestimated.

Quantitatively, if successive values of the random quantity x are statistically inde-

pendent, the variance of the mean is estimated as

1
N

(4.1)var(x) = a\ = -r—- £(* - x)
iy L

»=i

39





Chapter 4. Running Simulations 40

However, if the values of x are correlated, then the correct expression is

2
N

a2 = a2 + 2 cov{xi, Xj} = a2 + —-— £(*, - x){Xj - H). (4.2)
1 i<j

Alternatively, this relationship can be expressed in terms of (auto)correlation (serial

correlation) coefficients [24],

def 1
N~k

Pk ~ ni TS _ T\ S fo ~ x)(xi+k ~ x), k = i,...,N-l (4.3)

Autocorrelation coefficients can be regarded as a measure of correlation between sample

points in a random walk separated by k steps. Rewritten in terms of pk , Eq. (4.2) assumes

the following form

a2 = a2
(l + 2Y,Pk). (4.4)

It follows from the definition of pk that < pk < 1. Normally, pk decreases rapidly

with k, so there exists ko such that pk « for all k > ko. This ko is called the correlation

length. It is therefore sufficient to sum only the first ko correlation coefficients to estimate

the true variance (4.4).

In practice, taking into account even a finite number of correlation coefficients to

estimate o2
is computationally expensive. A common alternative is to divide all iterations

into 'blocks' of Ni iterations, which, if large enough, to a good approximation can be

treated as independent. The i-th block average xf is defined as

i Mb
*? = TT £ ** i = l,-.,NB . (4.5)

It is not clear, however, what Ni should be chosen to make the blocks independent,

since the block size is subject to variations depending on time steps, acceptance rate,

variational parameters, etc. It is more reliable to adopt the extreme case: to count all

iterations for each configuration as a single block. The number of blocks therefore will

be Nb = Nc- Since the configurations are mutually independent, all block averages Ei
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will be independent, too, so that one can exactly estimate the expectation value x and

variance &2
(x) as follows

* = ^E*f. CM)

• OR = TTT
-^

^
*

•

(Nc - 1)

The standard error is then given by the expression

W = \v ' » ' (47>

Sampling efficiency can be characterized not only by the correlation length but also

by the so-called correlation time defined as [16]

2

Tc = lim 2k (4.9)
N-^co aft

where o2

Nb is based on truly independent blocks, and a2
N (N = Ni x Nb) on blocks

of single iterations only. In the case of zero correlation, all iterations are completely

independent, so that Tc = 1.

4.1.2 Variance reduction: Improved sampling technique

Even if we have secured correct estimates of the standard error, we have done nothing to

improve efficiency of the sampling. The reason why the Metropolis algorithm may have

low efficiency is that many values may be rejected before one is accepted. As shown in

Chapter 3, the use of a non-uniform transition probability T(R' <— R) instead of a uni-

form one can increase the acceptance rate and thereby weaken the autocorrelation. This

is particularly advantageous in combination with a technique where moves are proposed

in spherical polar coordinates with the coordinate system originating at the nucleus, as

suggested by Umrigar [25].
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In this approach, the initial position of an electron is given by r = (r, ip, 6). The

new position of the electron is described by an isotropic vector r' (i.e. ip
1 and cos are

sampled uniformly from intervals [0, 2tt] and [—1, 1], respectively). The length of the new

position vector r' is drawn from the distribution proposed by Langfelder 1
[16]

/(r'-r) = /(r') = ^r'e-r'W
) (4.10)

where p = p(r) is a function of the the initial electron-nucleus distance r

^ =
[max{e*,l + /?(r-7)}]

1/2 '

which has the maximum at p with parameters a, /?, and 7 chosen by trial and error to

provide as short correlation time as possible. In the case of ¥2-^5 there are distinct /?

and 7 parameters for core and valence electrons.

For large r, p < r, so that the new position is likely to be closer to the nucleus. On

the contrary, when r is small, p > r, so the electron is likely to be pushed to the outer

region. A necessary condition for an unbiased sampling is a reasonable probability of the

reverse move, i.e. the move from r' to r.

The transition probability density T(R' <— R) is given by

T(R'

«" R) = 4^/(r ' ^ r)
' (412)

1 Thi8 is done by the inverse transform method [26]. The cumulative probability distribution of r' is

F{r') =
j

T
'

f(t)dt =
J''

±te- t2<»2

di = \- e^'/V

Since F(r') is a non-decreasing function, the inverse function F-1
(r') may be defined for any value of

r' between and 1. If variable u is uniformly distributed over the interval (0,1), then r' = F_1
(u) is

distributed according to f(r'). If f(r') is given by (4.10), then by setting u = F(r') = 1 - e~r>2/2''
2

,

which is equivalent to u = 1 - F(r') = e
_r" /2',\ one obtains

r' = F- 1
(u) = pV-2\nu.



i
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because the probability density of choosing a point on a sphere is inversely proportional

to the sphere's surface area.

The acceptance probability assumes the form

«
= mm

^' |*,(a)|'iXB.'^R) J-
<413)

Implementation of this technique results in a decrease of the correlation time by a factor

of 2 to 3 with respect to the uniform sampling technique using 'time step' parameters2
.

4.1.3 Simulation algorithm

The nature of the simulation is a Metropolis walk in configuration space with the position

probability density proportional to ^, where ^T is the trial wave function. We chose

to move electrons one at a time. Before accumulating the data, the ensemble always was

2A common technique, called 'importance sampled VMC [19] attempts to enhance sampling efficiency

by guiding walkers toward regions of large |*t(R)|
2

. This is done by choosing the transition probability

T(R' <- R) to be of the form

T(R' - E) - G(R' -V) -J^m»
(

JR, ~ R
2

~

r

rF(R)l2

)
<4 '14)

where

is the 'drift' vector. It arises from the Fokker-Planck equation describing isotropic diffusion process with

a drift caused by an external potential.

A new configuration R' is proposed as follows

R' = R + tF(R) + v^N(0, 1), (4.16)

where N(0, 1) is a 3n-dimensional Gaussian random variable with zero mean and unit variance. It is the

drift that causes the move to be biased by *r(R). The acceptance probability is given by

'M2 ,W ™ min (y IMR-')l
2 g(R^-R') \

A(R - R) = mm ^1,
|
$t(r)|2 G(R, ^ R) J

We do not use this technique because its implementation is seriously complicated by nodal problems.

In particular, configurations which happen to be near a nodal surface tend to be locked in their positions.

The problem may be so severe that the ensemble does not reach the proper distribution even after many

moves [27].
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allowed to develop for 150-200 iterations until equilibrium is reached.

Following is the algorithmic description of the actual procedure.

1. Generate an ensemble of Nc electron configurations with random positions

{Ri, R.2, ..., Ri, ..., R;vc },

where Rj is a set of n one-electron position vectors rti (k is the electron label) using

random numbers drawn from the Gaussian distribution3 .

2. Propose a move of electron A; in Rj in spherical coordinates from position r^ to

r'ik
= (r', <p', #'), where <p' and & are obtained from uniform distributions

<p' = u(0,2tt),

cos^ = u{— 1,1),

and r' is sampled from distribution (4.10). The new configuration R'* differs from

Ri by the position of electron k.

3. Calculate the acceptance probability of this move

q = mm

Accept the move from R to R' with probability q as follows.

Draw a random variable from uniform distribution u(0, 1):

if q > u, the move is accepted, and new configuration i is R';

if q < u, the move is rejected, and new configuration i is R.

3A pair of random numbers (<?i, g?) from the Gaussian (normal) distribution with the zero mean and

unit variance can be efficiently generated using the equations

pi = y/-2 In Ui sin(2Tti2),

52 = V~2 hi «i cos(2irt*2),

where «i and «2 *re uniform random numbers taken from the interval (0,1).
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4. If the move is accepted, recompute the values of the wave function and deriva-

tives for the new electron configuration. Repeat steps 2-3 for all n electrons in

configuration i.

5. Compute the local energy Eij and other properties of configuration i in iteration j.

6. Repeat steps 2-5 for all other configurations; this completes iteration j.

7. Repeat steps 2-6 for Ni iterations; this completes the simulation.

8. Compute Nb = Nc block averages Ei, each over Ni iterations

1 a

and block averages for the other properties.

9. Using formulas (4.6)-(4.8) calculate the grand averages E, r etc. and associated

standard errors.

We employ a very efficient and convenient technique to compute derivatives of the

determinantal parts of \I>t and the ratio of Slater determinants, based on the use of

inverse matrices, as was suggested by Ceperley et al. [28]
4

.

4.2 The 'Core' and 'Valence' Energy

The fact that in wave functions #2 and #3 the core electrons are distinguishable from

valence ones allows us to define and calculate the 'core' and 'valence' energies— the total

energies of the core and valence electron shells.

This corresponds to representing the total Hamiltonian operator as the sum

H = JW+ Hval . (4.17)

The choice of i/core and Hval now depends on how the Coulombic repulsion between

4Working formula (12) in that paper has a typing error: instead of Dkj it should read Dki .
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the core and valence electrons is assigned to the core and valence shells. As in the core-

valence partitioning scheme suggested by Rothstein [29] for estimation of the valence

energies of Cu and CuH, we assign all core-valence repulsion energy to the valence shell.

This is necessary for Hcare to be the same even if the number of valence electrons varies.

The Hamiltonians corresponding to the 'local core' and 'local valence energies' are

given by equations (1.20) and (1.21), respectively. The explicit expressions for E^e and

Evai are straightforward. Use the formulas (D.17), (D.19), and (D.22) (Appendix D) to

obtain the kinetic energy terms pertaining to the core or valence electrons, respectively,

and equations (1.20) and (1.21) for the potential energy terms5
.

The use of the valence energies for neutral atoms and ions is that they provide an

alternative way to estimate the ionization potentials.

5One should distinguish this valence energy from the so-called 'experimental' valence energy defined

by Desmarais and Fliszar [4, 5] as the energy of the ion left behind after removal of n„ valence electrons,

Evai = £*tom - £ion
, (4.18)

namely, the difference between the energy of the neutral atom A and the energy of the nc-electron

ion A(n
~nc )+

. The energies of A^n_n,; ^+ are taken as the appropriate sums of experimental ionization

potentials. This Evai is not, however, simply the sum of kinetic and potential energies of the electrons

in the valence region, because the definition of the former accounts for any relaxation that accompanies

an actual removal of the nv valence electrons. In our definition, the valence energy is precisely the sum
of kinetic and potential energies of the valence electrons.
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Results

This chapter contains the results of optimizations of wave functions ^i through ^5 and

variational Monte Carlo estimates of selected atomic properties.

5.1 Optimized Wave Functions for Atoms and Ions

All calculations on atoms and ions were performed for the respective ground states. Wave

functions were optimized using the simplex method (see Appendix C for details). For

several atoms, slightly better results were obtained using the steepest descent method.

Improved sampling does not require the use of a time-step parameter. Parameters

a, /?, and 7 appearing in Eq. (4.11) were chosen so as to decrease the correlation time.

The actual correlation times ranged between ~1.6 and ~3.5. We did not run into the

problem of locked configurations. The limit of 'staleness', set to 6-9 iterations, was never

exceeded in our simulations.

At the early stage of the optimization the ensemble had the size Nc = 150, Ni = 1125,

and the 'restart coefficient' k = 3.5 (see Appendix C). Every time the ensemble was to be

enlarged, Nc and jVj were multiplied by y/2 and rounded to the nearest integer, thereby

increasing the ensemble size by a factor of 2. In the end, when the simplex reached its

maximum size, the ensemble parameters were Nc = 600, Nj = 4500, and k = 1.2.

Optimized values of the variational parameters are listed in Tables 5.1-5.5. Three

decimal digits are given only for reproducibility, although not all of them are significant.

Generally, £i's for ions are larger than 0's for the respective atoms. A distinct increase

47





Chapter 5. Results 48

of Ci's is observed from \&! to *3 , while 0's for tf4 and \P5 are not much different from

those for ^3. Electron correlation parameter b tends to steadily increase through the

row, whereas for v3 and vp the overall trend is a decrease.

Attempts to optimize wave functions ¥1 for negative ions to estimate electron affinities

failed to yield sensible results. With correlation energies only 69% for Li
-

to 42% for F~,

EA's were sometimes wrong even in sign.

The values of the optimized variational parameters for both the neutral atoms and

positive ions are summarized 1
in Tables 5.1-5.5.

System
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5.2 Calculations on Atoms and Ions

Once the optimal set of parameters was found, a longer run was performed in order to

decrease further the statistical errors and thus obtain more reliable estimates. In these

verification runs, parameters specifying the ensemble size were chosen to be: Nb(Nc) =

103 , Ni = 5 • 104 .

Simulation parameters of Eq. (4.10) for ^i were as follows: a = 0.04, (3 = &> 7 = 0.5.

For *2-*s: A = 2.0, /?„ = 1.0, and 7c = 0.3, jv = 1.3.

Selected properties of atoms and ions calculated with wave functions #i-\?5 are given

in Tables 5.6-5.10. The energy differences AE2 i = E% — Ei and A£3 i = E3
- Ei provide

quantitative estimates of the effects of loss of core-valence antisymmetry and combined

effect of the loss of antisymmetry and core-valence correlation, respectively. Correlation

energies are reported only for ^i because the approximate non-antisymmetrized parti-

tioned wave functions are not expected to reproduce the exact energy even in the limit

of infinitely large basis set and sufficiently flexible electron-electron correlation function,

hence the notion of Ecorr is irrelevant to ^2_*5-

Average distances of electrons from the nucleus f are normalized to one electron. For

^2-^5 normalized distances from the nucleus are reported for both the core and valence

electrons, denoted Fc and rv , respectively. Virial ratios
2 V/T estimated for all wave

2
It is well known that the virial theorem holds for the exact solution of the Schrodinger equation. For

an approximate wave function, if a single nonlinear variational parameter multiplying all coordinates of

the particles ('scale factor') is varied, the value of this parameter for which the energy is minimum is

also the value for which the virial theorem is satisfied [30]. If a wave function contains a set of nonlinear

variational parameters (Jfei, hi, ..., km), which can be viewed as a position vector k in an m-dimensional

Euclidean space, there exist a hyperplane in that space defined by the equation

k-VE(k) = 2T+V = 0,

whose points k satisfy the virial theorem [31]. Since only one point k* corresponds to the minimum
of the enery, fulfillment of the virial theorem for such wave functions is a necessary but not sufficient

condition for the fulfillment of the variational principle.





Chapter 5. Results 52

functions
3
indicate quality of optimization.

The effect of the core-valence overlap was studied using wave function ^2 on several

atoms. In all cases, a series of VMC runs was performed for the same set of optimized

variational parameters and k allowing the overlap Q = Ni tN'2t (<f>i t \<l>'2t ) varying in the

range [-0.3,0.4] with a step AC? = 0.01 in the region Q = [-0.1,0.1] and AQ = 0.05

outside that region. The typical result is presented in Fig. 5.3.

System
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-54.0

"
1

'
1

-0.2 0.0 0.2

Figure 5.3: Effect of the core-valence overlap Q = NuNi,(4uWu) on tne tota^ en~

ergy of the N atom computed with wave function ^2 - See section (2.2.2) for details.

£«** = -54.5892 a.u.
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5.3 Ionization Potentials

Table 5.11 summarizes the estimates of first ionization potentials (IP's) computed with

wave functions \Pi through \f 5 using the total energies, and cites exact values4 for com-

parison.

Atom
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Chapter 6

Discussion and Conclusions

6.1 Atomic Calculations with the Complete wave Function

Best available VMC calculations on the first row atoms and ions are those by Alexan-

der and Coldwell [35]. Using the explicitly-correlated wave functions of Schmidt and

Moskowitz (a pair product of Hartree-Fock determinants multiplied by a correlation

function) [36], they found expectation values of the Hamiltonian containing between

70.0% and 99.8% of the correlation energy for the neutral atoms (nine-term correlation

function) and 60.8% to 99.1% for selected cations (17-term correlation function). Details

are found in Table 6.1.

Our wave function ^i recovers between 60.0% and 91.0% of the correlation energy for

the neutral atoms and 58.8% to 91.3% for the positive ions. Generally, the expectation

value contains ~90% of the correlation energy for the 2-3-electron systems and ~61% for

the systems consisting of four and more electrons. From this perspective, ^ is reasonably

good, especially considering its relative simplicity.

Not intending to reproduce ionization potentials, Alexander and Coldwell used wave

functions with different flexibility for atoms and ions. For this reason, the estimates

of ionization potentials based on their results are not as accurate as those computed by

Moskowitz and Schmidt [37] who used wave functions of the same type with 9 parameters

both for the ions and neutral atoms. To our knowledge Moskowitz and Schmidt's values

are the best VMC estimates of ionization potential available at the present time (with

59
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6.2 Calculations with the Partitioned Functions

6.2.1 Wave function ^2- The loss of core-valence antisymmetry

The loss of core-valence antisymmetry represented by wave function ^ results in an

increase of the total energy by amounts from nearly zero for Li to more than 0.3 hartree

for Ne (see the lower plots in Figs. 5.1 and 5.2). In the valid wave function #i, collapse of

valence electrons does not occur because the determinants of ^i ensure antisymmetry. In

^2i which does not possess this property, the collapse is prevented by orthogonalization of

the core and valence wave functions. However, the orthogonality does not substitute the

antisymmetry: in fact it places the total energy E2 above Ei (see Tables 5.10 and 5.10).

The rapid increase of AE2 i = E2 — E\ through the series Li-Ne is plausibly due

to the fact that \&2 is a 'truncated expansion' of ¥f. The proportion of missing terms

increases rapidly as the number of electrons gets larger, so that \?2 becomes more and

more deficient with the increase of n. The relative magnitude of the effect increases at a

slower pace to reach ~2.5% of the total energy in the case of the Ne atom.

Performance of #2 is inferior with respect to that of \?i not only for the total energies.

An obvious worsening is observed for the ionization potentials (see Fig. 5.4). Significantly,

the core energies for atoms and respective ions differ by up to 0.02 hartree, which is a

noticeable change.

6.2.2 Wave function \&2 : The core-valence overlap

The approach to studying the core-valence overlap effect, as outlined above, was applied

to several atomic systems, including boron, carbon, nitrogen and oxygen. We report

only calculations on the nitrogen atom, because the results for the other systems are

very similar except they are at a different level of the energy scale. The most remarkable

features of the plot shown in Fig. 5.3 are the strong (quadratic) dependence of the total
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energy on the overlap Q, and a shift of the symmetry axis of the parabola to the right

with respect to the zero overlap vertical by amounts ranging approximately from 0.1

to 0.2 depending on the atom. The E2 vs. Q dependence is obviously quadratic (the

value of the squared correlation coefficient was found to be r2 = 0.9993). Thus, the

total energy is very sensitive to the accuracy of core-valence orthogonality, but a non-

zero overlap does not mean necessarily a lower energy expectation value. The question

whether calculations with inexactly orthogonal ^fcore and \tuaj are still capable of yielding

correct energy differences remains open.

6.2.3 Wave function #3 : The effect of core-valence correlation

Further elevation of the total energy occurs after removing the core-valence correlation

terms — the effect which is modeled with the wave function ^3. Inspection of Figs. 5.1

and 5.2 reveals that a loss in the correlation energy A2£32 = E3 — E2 resulting from

the transition from \£2 to \&3 is relatively small compared to AE2 i and is fairly con-

stant through the series constituting approximately 0.01 hartree for atoms and 0.03-0.04

hartree for the ions.

It has been pointed out in the literature that "any calculation following core-valence

partitioning can never be better than the accuracy with which the interactions between

core and valence electrons are treated" [15]. Our result E\ < E2 < E3 , where respective

functions #1-^3 have comparable flexibility, agrees with that conclusion.

On the other hand, it is surprising that ^-estimates of ionization potentials are very

close to the exact values: in fact, far closer than the IP's based on ff%. Formally, the

improvement occurs because separating the Jastrow correlation function increases the

total energy by a larger amount for the ions than for the neutral atoms. As a result, the

difference IP = E(A+ ) — E(A) approaches the exact values. A plausible explanation for

this is that while the average distances of core electrons from the nucleus are almost the
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same for atoms and ions, the valence electrons in ions are on the average closer to the

core than they are in atoms. The stronger Coulombic core-valence interaction in the ions

thus increases the total energy of the system by a larger amount than in the atoms.

6.2.4 Wave functions ^ 4 and ^ 5 : Improving electron correlation

In wave function ^3 the electron-electron correlation factor JCJV includes only interelec-

tronic distances of the types core-core and valence-valence, but for the sake of comparison

with ^i and \& 2 the variational parameter b is constrained to the same value in Jc and Jv .

Releasing this constraint we introduced the wave function ^4. As evident from Table 5.9,

this does not lead to a substantial change in the total energy, although new parameters

bc and bv clearly tend to be different (see Table 5.4). However, these small changes result

in systematically better IP's (see Table 5.11), especially for the heavier atoms, for which

electron correlation is more important.

The wave function \t5 is already flexible enough (it has 5 to 7 parameters) to perform

noticeably better than ^ 2-^4 in terms of the total energy and even outdo ^1 for Be and

B, thus recovering the increase of energy due to the loss of core-valence antisymmetry.

IP's based on ^5 turn out to be worse than those based on ^4. The question why

re-introducing the core-valence correlation in the Jastrow function has such an effect on

the IP's is the central part of the following section.

6.3 Comparative Performance of the Wave Functions

Calculations with the whole set of wave functions ^1-^5 provide sufficient material for

contributive speculation. First we turn our attention to the concept of a 'constant (frozen)

core', which is believed to be not only a reasonable approximation but also the basis for

a number of partitioning techniques.
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That the core characteristics do not change considerably with the valence environment

is confirmed by the observation that in most cases the core energies and electron-nuclear

distances rc for the neutral atom and its positive ion differ by less than 0.01 hartree and

0.001 bohr, respectively, the numbers being even lower in the case of \&3 and #4. (For

the reasons outlined above, the Be atom is an exception).

Furthermore, since the ensembles used in calculations with ^2-^5 had the same size,

the standard errors allow us to compare the energy variance. Naturally, the variance in

the case of complete wave function \&i is the lowest. For the partitioned wave functions,

the result is that the variance of the total energy increases in the order

whereas for the variance of E^e, and constancy of the core energy the order is

which is exactly the order of decreasing accuracy of ionization potentials! This implies

that the most adequate description of the core, associated with the lowest variance,

corresponds to the 'most partitioned' wave function ^4. Thus the approximate constancy

of the core is not only a physically meaningful notion, it is a condition under which

valence-electron-only calculations should succeed.

We argue that the constancy of the core is affected by core-valence correlation terms in

the Jastrow function in that removal of these terms leads to a more thorough separation of

^fcore and ^fvai, resulting in more accurate estimates of the properties of valence electrons.

Indeed, this idea is supported by a repetitive pattern in the observations: the pair ^5-

\?4, where ^4 does not include core-valence electron correlation terms yet performs much

better on IP's, is analogous to the pair ^2~*3, where core-valence uncorrected \f 3 gives

considerably more accurate estimates of ionization potentials.
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When there is a perceptible change in the energy of the core from neutral atom

to the ion (as in the cases of #2 and *s), the IP determined as a difference of the

valence energies is almost without exception worse than that based on the total energies

(Tables 5.11 and 5.12). Naturally, for \? 3 and #4 , which provide essentially constant

cores, there is almost no difference between 7 tot and f"1
.

Assuming that in systems described with partitioned wave functions, removal of one

valence electron is followed by a certain restructuring of the core, one might expect that

the change in the core would affect the valence energy such that /*' is closer to the exact

values than I***. The fact that we do not observe this effect suggests once again that the

constancy of the atomic core is indeed a real feature of partitioned systems.

Accuracy of ionization potentials found from the total energies can be regarded as a

measure of quality of a wave functions \£i. Quantitatively, we can compare the sums of

absolute deviations of the ionization potentials found with *?j from the exact values. We

define this quantity 0(1^) as follows

10

*(ht) - £ 1'*^) - W2)l, (6-1)

Z=5

with Li and Be excluded for the reasons explained above. The values of a-(/*J for ^-Ats

and the wave function of Schmidt and Moskowitz are presented in Table 6.2
1

.

Wave function
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evident from comparison of i#
4
with the literature values based on sophisticated mod-

ern all-electron ab initio calculations. Exact (non-relativistic, Born-Oppenheimer) IP

values are given in Table 5.11. In Table 6.3 we cite selected reference estimates of the

ionization potentials, viz. those based on Hartree-Fock calculations, VMC calculations

by Alexander and Coldwell, Schmidt and Moskowitz, CI-SD, and CCSD(T) calculations.

Graphical representation of comparative accuracy of the best IP's obtained in this (those

with ^4) and the literature values are presented in Fig. 6.1.

Atom
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are defined. In the case of beryllium, the reason is the above-mentioned inadequacy of a

single-determinantal wave function.

6.4 Comments, Suggestions

Our findings show that the accuracy of ionization potentials is the best in cases where

partitioning allows maximum separation of ^core and ^vai, while retaining their internal

flexibility, evidenced by the accuracy of IP's increasing in the succession ^2-^3-^4

•

However, wave function ^4 is not the ultimate point in this series: it still has a single

electron-nuclear variational parameter vs both for the ls2-core and 2s2-valence electrons.

In order to provide more evidence in support of our hypothesis we suggest exploring

another wave function (^6)1 in which vs parameters for core and valence electrons are

independent. We do not expect rather unrealistically that \&6, constructed with the same

small basis set and primitive Jastrow as those in ^1-^4, will outdo the best modern

ab initio calculations. However, if it does perform perceptibly better than ^4 (which is

already competitive) credibility of our most important conclusion will be considerably

enhanced.

Another interesting application of the wave function ^4 would be a calculation of the

negative ions. One can assume that ^4 should be much better for this purpose than ^1

as the case is with the ionization potentials. However, to obtain competitive results it

may be necessary to extend the basis set and/or the correlation function.
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6.5 Conclusions

We have shown that all-electron partitioning of a complete wave function into core and

valence parts in orbital space results in noticeable deterioration in the values of total

energies.

The largest error of the partitioning is a loss of antisymmetry of the wave function

with respect to interchange of core and valence electrons. Its absolute value increases

rapidly with the number of electrons, but relative to the total energy remains virtually

constant at the level of about 2 per cent.

The error introduced by neglect of the core-valence correlation is comparatively large

for the smaller atoms but definitely smaller than the loss of antisymmetry error for the

heavier ones. Its absolute value appears to be almost constant through the first row.

Release of the core-valence orthogonality condition may lead to an increase or decrease

in the total energy within a range of small overlaps. Beyond that range the valence

electrons collapse into core orbitals.

Provided the core-valence orthogonality is maintained, partitioned wave functions

may perform very well on energy differences such as ionization potentials. The decisive

factors are: (i) maximum separation (independence) of core and valence shells, accom-

panied by (ii) high internal flexibility of Vcore and yval . In those cases, constancy of the

atomic core is a good approximation at least with respect to the core energy and the

average distance of core electrons from the nucleus.





Appendix A

The Wave Function as a Product of Slater Determinants

In this appendix we show that a wave function Vd written in the general case as the full

unnormalized, unrestricted, open-shell Slater determinant of n spin-orbitals

*D - I
Xi(l) X2(2) • • • X„t(nT

) x'i(n
T+ l) x'2 («

T +2) i . • x'„;(n
TW) |,

(A.l)

where nT
-I- v} = n, gives the same variational energy as the wave function npQ written

as the (unnormalized) product of two separate Slater determinants of spatial orbitals for

v) spin-up and n^- spin-down electrons

+]} = 1>Wd (A.2)

m
| *(1) fc(2) . . . nT (n

T
) | |

#(nT+ l) 0'
2(n^+2) . . . <^(nTW) |.

The spin-orbitals are space-spin orbital products, as usual

Xi(0 = ^i (*)«(*).

X'j(i) = $®m (A-3)

with (f>j(i) is not necessarily equal to 4>'j(i).

First we expand yD using the definition of a determinant

*d = E(-l)*A
n
{Xi(l) X2 (2) . . . X„r(n

T
) x'i(n

T+ l) X2 (^
T+2) . . . &(»)} ,

(A.4)

»

where P? is an operator generating the i-th permutation of the electron labels 1, 2, ...,

n and pi is the number of transpositions required to obtain this permutation from the

natural order (1, 2, ..., n).
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By virtue of (A.3), Eq. (A.4) is equivalent to the following form

n'

**> - E[(-l)p<An
{^i(l)^(2)...0„T(nT)^(nT + l)«A'2(n

T +2)...^(n)}
i

x P? {a(l) a(2) . . .<*(nT
) /?(nT +l) /?(nT +2) . . ./?(n)}]

.

(A.5)

An immediate observation is that not all n! permutations P? of electron labels in the

product of spin functions are different. Indeed, any interchange of labels of two electrons

with like spins leaves the product of spin functions unchanged, although it produces a

new permutation of spatial orbitals. Each of the v) spin-up electrons can be assigned

any label ranging from 1 to n. A complete set of labels for the spin-up electrons uniquely

determines the assignment of labels to the n^ spin-down ones. Thus the number of

distinct products of spin functions a and /? is equal to the number of combinations

" n "
(nT)! (n - »T)| " (*T)|

(nA)!

"

K }

Factoring out the products of spin-functions we obtain the sum of C" terms

¥D = (-l)°[a(l)a(2)...a(nT)/?(nT+ l)/?(nT +2).../?(n)]

i

x £ {-irPf {^(nT+ l) ^(nT+2) . . .^(n)} (A.7)

3

+ (-lY[a(^+ l) a(2) . . .a(nT
) 0(1) /?(nT +2) . . .p(n)

}

x E (-l)*A
nT

{*i(»
T+ l) fc(2) . .

. nt(n
T

)}
i

x Zi-WPf {^i(l) ^(nT +2) • • .^i(n)}

where the sign (-l)p* is determined by evenness of the permutation of electron labels in

the product of spin functions.
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Now the linear combinations of permutations of the products of spatial orbitals ap-

pearing in (A.7) are Slater determinants for the respective electrons. Denoting the deter-

minants in the k-th. term by D\ and D[ and the respective spin permutation by (— l)Pk a%,

we introduce the following shorthand for (A.7)

*B*T{-lY*<ttiibt. (A.8)

k

Comparing (A. 2) with (A.7) we note that £)T and D^ in the first term of expan-

sion (A.8) are identical to the Slater determinants appearing in (A.2),

i

^^(Wl^+^^^l = < (A -9 )

j

Thus all possible permutations of tp]j = ^J, D̂ are present in the spatial part of the full

wave function \&£>.

Now consider the expressions for the expectation value of energy with fg (A.2) and

VD (A.8). The former is

E[M -i«r - msm w E
i

( ]

where N2
is a certain factor arising because ip]j is not normalized.

When deriving the expression for the latter, ^[^d], we keep in mind that (i) the terms

in the sum (A.8) differ only by electron labels which are dummy variables in integration;

(ii) the spin parts of wave function #£> are not affected by H, and (iii) the spin functions

are orthonormal:
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The consequence is

((-iy>aZDlDi\H\(-iy>a?D}Dl) = (-iy^(anM)(DlDi\H\DJDl)

(DlDl\H\D}Dl) itk = l

if fcfftJ

((-ly'^DlDiK-ir^DjDi) m (-iy^'(a^)(DlDi\DjDi)

(DlDi\DjDi) iik = l

if k ^ I

Since all spatial terms in (A. 7) differ only by labeling the n electrons,

(DlDi\H\DlDl) = (DjDi\H\D}Di) = N2E,

(DlDi\DlDi) = {D}D\\D}D\) = N\

we obtain

Thus

(A.12)

(A.13)£[^] = E[9D ]
= E.

Unlike the expectation values E[ip]j] and E[$D }, the local energies EL {^D ) and

El(i(j]J) as well as probability distributions from which they are sampled will be, of

course, different.





Appendix B

Cusp Conditions

The cusp conditions should be imposed on wave functions in order to eliminate singular-

ities in the local energy and thereby control the variance. Two types of pairs of charged

particles are possible: electron-nuclear and electron-electron pairs. Correspondingly, we

consider electron-nuclear and electron-electron cusp conditions.

B.l Electron-nuclear cusp conditions

B.l.l General electron-nuclear cusp conditions

Consider a many-electron system described with a wave function ij>. The total Hamilto-

nian operator can be written as the sum of one-electron Hamiltonians

IL IL

2 * r 2 *-" r-
(B.l)

To treat the electron-nuclear interaction singularities, we need not consider the in-

terelectronic interaction terms. Ignoring these, the contribution to the local energy from

electron i is

-££-*. (B.2)
2 if n

v '

When electron i approaches the nucleus (r j
— 0) there arises a singularity in the potential

energy term (—Z/ri). This singularity is cancelled out if the kinetic energy term gives in

the limit r* — an equal term with the opposite sign (+Z/ri). The requirement that the
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wave function tp exhibit such behavior near the nucleus imposes the following restriction:

1.3*. -22. (B.3)

This is called the general electron-nuclear cusp condition.

It turns out that the general cusp condition imposed on the wave function can be

split into cusp conditions for individual atomic orbitals.

Consider first an uncorrelated wave function written as a product of Slater determi-

nants of spatial orbitals ip = tp]j = ^J,^. Without reference to the spin orientation

i>D = \4>i(n)Mr2) •••<£„(*•„)
I,

(B.4)

where the first index represents an orbital, the second a particle.

Expansion of ipo in terms of cofactors of the elements of the z'-th column gives

i>D = JZHn) An. (B.5)

i

Cofactors Aji do not depend on the coordinates of the z'-th electron, so that the contri-

bution from the z'-th electron to the kinetic energy term is

"2
i>

'
2 i>D 2 rjWJAji

Now, if each orbital individually satisfies the cusp condition

(B.6)

Um
V^) = _M, (B.7)

then

,. V?fe ft [-2Z/n) Mn)A* 2Z «,,,
*»~*T

=
13 **«)*» T

-- (a8)

Thus for Vd to satisfy Eq. (B.3), each orbital must individually satisfy Eq. (B.7).

Now consider a correlated wave function of the form

4> = Tp]$J(ri,rj ,rij ). (B.9)
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The problem here is whether the inclusion of J affects condition (B.7).

One can incorporate the electron-electron correlation factor into determinants by

modifying the orbitals constituting the determinants as follows

4>(n) = <P(ri) Ji = <j>(ri) exp

This leads to

Km»=lim
<j>{ri) <f>{n) Ji Ji

The first term has already been discussed.

The second term

hm lt
'—

—

H=+ (j>{Ti) Ji

contains no divergences (it is a scalar product of two vectors of finite length).

For the third term, introducing the shorthand fy = f(ri,rj,Tij), we obtain

24 = Ksw
Ji Ji

i¥*

n

+E

dfjjTj dfjjTjj

dn n dnj nj

dfjjTj dfjjTjj

dn n dm rij

dr? dtidrij TiTij dr\j b\i Ti dr^ m
The only term diverging in the limit r* — is

2&2

(B.10)

(B.ll)

(B.12)

(B.13)

(B.14)

If one wants to use an electron-electron correlation function which does not affect the

individual orbital cusp conditions, /(r^, tv,-, r^) must satisfy

(B.15)

It is straightforward to verify that J as given by (2.4) obeys (B.15).

ri— OTi Ti
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B.1.2 Specific cusp conditions imposed on the atomic orbitals

Applying formulas given in Appendix D one obtains the following relationships

l™-7 = (<2+W2* -C)
r=+

(f>2, r

r^° <P2p(qa )
r

(B.16)

Using (B.7) the individual orbital cusp conditions are immediately found to be 1

Orbital





Appendix B. Cusp Conditions 78

where tp]j is the determinantal part (product of determinants), the interelectronic dis-

tance appears only in the correlation function, which is in the general case as follows

J = exp

n— 1 n

£ £ f(rii ri> rij)
i=i j=i+i

(B.19)

Consider contributions to the local energy from electron i

*Mj$-M£i
Substitution of ip =^ J into (B.20) gives

F T. + V.
l gjj> Y^tlYil iV

'J Z 1 \- 1
hi ~ li + Vi ~

2 ^ 3 J 2 J S
+
ift5

lVfog A Vrt# p/ij^ flferB \ l /a/pTj BtoV man
2 V# & *B V*»n **fij *V*«* ***<J

l
'

j

If electrons i and j approaching each other belong to different determinants then

lim^.-.o ^L I* 0) and the only divergent term in the kinetic energy expression is

iki.

Since it must cancel the respective term in the potential energy

1J_

2/V
(B.22)

we obtain the following condition

lim |& = i (B.23)

This is the electron-electron cusp condition for two electrons belonging to different de-

terminants. In the case of two-determinant non-partitioned wave functions this means

that the two electrons have opposite spins.
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If colliding electrons i and j belong to the same determinant then limr<j_oV'D = 0>

so that we need to consider the following diverging terms in the kinetic energy

lim

,uVindfij*ij dfij 1

V»d dTij Tij drij Tij.

,UExpanding tpp in the vicinity of rj = r,-

^{Ti,Tj,...) = tfjklit !*+ !*,.«)

(B.24)

(B.25)

Thus

The sum of diverging terms (B.26) in the kinetic energy expression

will be cancelled by (B.22) if

dry Tij

Tij—O OTij 4

for all pairs of electrons belonging to the same determinant.

In the case of the Jastrow correlation function (2.4),

so that the electron-electron cusp conditions are

lim
dfij

odr,
<kj = <

H

4 if electrons i and j belong to the same determinant,

\ if electrons i and j belong to different determinants.

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)
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Simplex Optimization

The simplex technique belongs to the group of direct search methods. These methods

rely only on evaluating /(x) at a sequence of points xo,xi, X2, ... and comparing these

values, in order to reach the optimal point x*.

The principal advantage of the direct search methods is that they do not require

evaluation of derivatives of /(x), which usually presents a problem.

A simplex in n-dimensional space consists of (n+1) points Xj (i = 0, 1, ..., n) which do

not lie on a hyperplane (i.e. the vectors r* = Xj— xo, i = 1, ...n, are linearly independent),

and all their interconnecting line segments, polygonal faces, etc. The points are called

vertices of the simplex.

Let xo be an initial estimate of x*. The algorithm for the search of x* with modifica-

tions due to Langfelder [16] is as follows.

1. Generate the vertices of an initial simplex in n-dimensional space Xi, x2 , ..., xn

Xi = Xo + Mh i = l,...,n (C.l)

where e; are the unit coordinate vectors and h> are 'dimensions' of the simplex.

2. Evaluate /(xj) at the vertices Xj (i = 1, 2, ..., n).

3. Determine the 'worst' vertex xp (the one with the highest function) and evaluate

fP = /(*„)•

4. Find the 'center of mass' (centroid) of the remaining vertices

X = - (Xo -I- Xi + ... + Xp_! + Xp+ i + ... + xn )

.

n
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5. Reflection. Reflect the vertex xp about the centroid Xasx' = X — (xp — X) (Fig. 1)

and evaluate /(x;

).

Figure 1. Reflection and expansion of a vertex Xp (n=2).

6. Expansion. If /(x') < /p , replace xp by x7

and try to expand the simplex (Fig. 1)

introducing a new vertex x" = X - (x* - X). Evaluate /(x").

(a) If /(x") < /(x*), replace xp by x" and return to step (3).

(b) If /(x") > f(x!), return to step (3).

7. Contraction. If /(x') > fp , contract the simplex (Fig. 2), i.e. find the vertex

x" = X + |(xp - X).

Figure 2. Contraction of the simplex (n=2).

(a) If /(x") < fp , replace xp by x" and return to step (3).

(b) If /(x") > /p , restart or enlarge the simplex.
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9. Restart. The simplex is restarted until it gets locked within two consecutive trials.

First determine the new estimate xj, of x* by choosing xj,

(i) as the current best vertex (when the ensemble is relatively small), or

(ii) as the weighted average of all points

where

Wi = exp
(fi - fmy
(A/m )

2

where fm is the lowest function value and A/m is its error (if the ensemble is

large enough to ensure small statistical errors).

Then generate the next simplex

xi
= x! + (-l)9 khiei ,

i = l,...,n (C.2)

where q is the number of the consecutive restart, and A; is a size control factor.

Return to step (2).

10. Enlargement. The ensemble is enlarged if the simplex cannot move within three

consecutive trials. Increase the number of configurations and/or blocks, and return

to step (2).

11. Termination. The algorithm is terminated when all the vertices of a simplex are

within a specified precision or when the ensemble reaches the maximum allowed

size and the simplex is locked for 3 consecutive moves.

When the expanding or restarting simplex attempts to cross the specified boundaries,

the move is truncated.
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Compendium of Formulas

D.l Numerical evaluation of the integral (<t>u\<f>2s)

-

Since the orbital functions

—C r w * r

(pi s = e u e !+«.<•,

w M r

<t>2,
= (1 + cr) e"Care~"n^ (D.l)

are not analytically integrable, a numerical procedure has to be employed in order to

evaluate the following integrals

{<t>u\<l>i.) = 4tt £**€-**€-**& 4r, (D.2)
Jo

{<h.\<h.) = 4»f"f
,
(l + «r)"f~,6r«~**fe4rl

(D.3)
JO

(01.1^2.) = 4tt /°°r
2
(l + cr)e-(<1+C2)re"

2TT^dr. (D.4)
Jo

Integration is performed with high accuracy, 15-point quadrature formulas using un-

evenly spaced abscissae 1

f °e-x f(x)dx =
1£Ai f(xi ). (D.5)

Jo »=i

The obvious transformations of variables involve x = 2£xr for (D.2), x = 2C,2t for (D.3)

and x = (Ci + C2 )r for (D.4).

xThe 12-decimal-digit values of abscissae Xi and weights Ai were taken from: V. I. Krylov. Prib-

lizhennoe vychislenie integralov, Moskva, 1967. .
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D.2 Derivatives of the atomic orbitals and correlation functions

Given below are the first and second derivatives of the atomic orbitals and correlation

functions. Although some expressions are straightforward, we list them for completeness

and convenience, so that they can be readily used to follow derivation of the cusp con-

ditions (see Appendix B). Atomic orbitals
(f>

are viewed here as a product of the 'pure'

orbital (p and electron-nuclear correlation factor: <j> = (pjm . Symbols qQ and qp are

generalizations for x, y, and z (a, = 1, 2, 3, respectively).

C.2.1 Derivatives of the 'pure' atomic orbitals

,-Cir
<Pl, = C

oq r

VVi. - Ci(G-f)e-<-

(D.6)

<P2s

d

dq

m (1 + or) e~^r

C-C2
C(2

-&r

v*<pu = C2
2
(l + cr)-4cC2 +

2(c-C2 ) ,-Car

4L = N2s4>2, - kNu+u

(D.7)

<P2p(qa )
= Qae

Car

d
•^2p(,a ) =

vV2p{to) = too, ( C2
-

(l-C2^)e-^r
, ita-0

&&*
(D.8)
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C.2.2 Derivatives of the electron-nuclear correlation function

jr = exp
\ l + vrj

dJf
n

72 Ten

= -J.
Xi

V* Ten 7en„„
^Jj = Jj W

1

Tiil + VTi)2

WTi — 2(1 + VTi)

Ti(l+ VTiY

C.2.3 Derivatives of the electron-electron correlation function

<n— 1 n

dJ A g(a:i -Xj)

dxi

w = I
a*J layj UJ + 'E

2a

ftW + fruY

D.3 The local energy

(D.9)

(D.10)

The local energy at the point R is defined as

#tf(R)
E,=

*(R)
'

with the electronic Hamiltonian

^ »=i

where the potential energy operator

n 7 n— 1 n i

i=i
ri »=i j=.+i * »j

(D.ll)

(D.12)

(D.13)

Now J depends on coordinates of all n electrons, whereas Slater determinants are

functions of only certain electrons depending on their spin and assignment to the core or

valence shell. This is stressed in the notation used in the formulas. The explicit forms of

wave functions ^ are given below.
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C.3.1 The local energy with * x

Wave function \&i has the form

ffliibJ. (D.i4)

Thus, the local energy is

2
V i +B i +h i

J

-g-aftoj^Maj+tt (D,5)
t Vm j

i Vd j

C.3.2 The local energy with tf 2

Wave function ^ 2 has the form

* - -u^ +t^tL +i^ +^ +±^) (D .17)
2

v t *k i v>k i #k i i>d. i
J

J

t 5k J
« 3! ' r"5C j ~r"HT7 '

C.3.3 The local energy with tf3 and tf4

Wave functions #3 (bc = bv ) and \1>4 (bc ^ bv ) have the form

*3 = 1>De 1>De 1>kl>D. J° J'» (D - 18)

*4 - *k*k*k#k*£

2 VT m 1 #k » *k i V-k i
Jc i

Jv

r v>k J
< 1 5k Jc r 5k J

» 1 *k J»

(D.19)
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C.3.4 The local energy with # 5

Wave function ^5 (bc ^ bv ^ be) has the form

*5 = 1>]>c Vk 4>]>u *t Jc Jv Jcv, (D.20)

but it is more convenient to regard it as having one all-electron Jastrow correlation

function pairing all electrons,

so that the local energy is given by

^-^E^ +E^ +E^ +E^+E^) (D.22)

A V^k V JJ y* v^k v^ y> v^k VJJ y v^k V^ v
r ipk j i A J

i K J
i < J

'
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