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ABSTRACT 

The avian bill is a textbook example of how evolution shapes morphology in response to 

changing environments. Bills of seed-specialist finches in particular have been the focus of 

intense study demonstrating how climatic fluctuations acting on food availability drive bill size 

and shape. The avian bill also plays an important but under-appreciated role in body temperature 

regulation, and therefore in energetics. Birds are endothermic and rely on numerous mechanisms 

for balancing internal heat production with biophysical constraints of the environment. The bill is 

highly vascularized and heat exchange with the environment can vary substantially, ranging from 

around 2% to as high as 400% of basal heat production in certain species. This heat exchange 

may impact how birds respond to heat stress, substitute for evaporative water loss at elevated 

temperatures or environments of altered water availability, or be an energetic liability at low 

environmental temperatures. As a result, in numerous taxa, there is evidence for a positive 

association between bill size and environmental temperatures, both within and among species. 

Therefore, bill size is both developmentally flexible and evolutionarily adaptive in response to 

temperature. Understanding the evolution of variation in bill size however, requires explanations 

of all potential mechanisms. The purpose of this review, therefore, is to promote a greater 

understanding of the role of temperature on shaping bill size over spatial gradients as well as 

developmental, seasonal, and evolutionary time scales.  

 

Key words: birds, bill, beak, growth, character traits, temperature, developmental plasticity, 

phenotypic flexibility, Allen’s Rule, biogeography, thermoregulation. 
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I. INTRODUCTION 

The avian bill is the archetype for how evolution shapes morphology in response to 

changing environments. Variation in bill morphology within and between species has been 

interpreted in light of differences in foraging behaviour and diet, and studies of the avian bill 

provide some of the most compelling evidence of the effects of food supply on a morphological 

trait (Badyaev et al., 2008; Benkman, 1993; Bowman, 1961; Giuliano, Griggio & Pilastro, 2002; 

Herrel et al., 2005, 2010; Remsen, 1991; Smith, 1990b). Behaviours such as vocalization also 

contribute to the evolution of bill size (Brittan-Powell et al., 1997; Fletcher, 1988; Giraudeau et 

al., 2014; Hausberger, Black & Richard, 1991; Podos & Nowicki, 2004; Podos, Southall & 

Rossi-Santos, 2004), implicating reproductive trade-offs in bill size. Indeed, extreme bill sizes, 

such as the large-billed toucans, were interpreted by Darwin (1871) to result from sexual 

selection, suggesting that bill size plays a role in sex-specific traits, such as mate selection or 
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vocalization (Greenberg & Olsen, 2010). Changes in bill size have also been associated with 

climate-induced changes in resource availability (Boag & Grant, 1981), and the addition and 

subtraction of potentially competitive species (Grant & Grant, 2006). Until recently, however, 

the importance the bill plays in physiological homeostasis has received little focus, perhaps 

because of an impression that the bill is a ‘dead structure’, being insufficiently vascularized or 

too small in size to be a significant area of heat exchange (Grant, 1965; Scholander, 1955, 1956; 

Walsberg & King, 1978). Contrary to this perception, bills are well vascularized (Lucas & 

Stettenheim, 1972), grow continuously (Matthysen, 1989), and can be significant sites for heat 

exchange (Hagan & Heath, 1980; Scott et al., 2008; Tattersall, Andrade & Abe, 2009). The role 

of bird bills in energetics and thermoregulation, as well as the effects of climate on geographic 

variation in bill size, is therefore not widely appreciated. In this review, we focus on how 

temperature directly or indirectly drives the evolution of bird bills through their function as 

thermoregulatory structures. Recent research has also uncovered a direct relationship between 

bill size and temperature (Greenberg et al., 2012a, b; Greenberg & Danner, 2012; Symonds & 

Tattersall, 2010), however, bill size is clearly important in foraging and social interactions (Boag 

& Grant, 1981). In this context, the bill may have inherent maintenance costs, dependent on the 

environmental conditions. Muscles that move the bill or turbinates that occur within the upper 

airways at the base of the bill require a blood supply (Hughes, 1934), and this blood flow is a 

source of heat loss or gain for the bird. Therefore, thermoregulatory constraints may be a 

manifested cost of having bills selected for resource competition, particularly if they result in 

heat loss in cold environments or heat gain in hot environments. In addition to these potential 

maintenance costs, appendage growth during early life is temperature sensitive (Serrat, Williams 

& Farnum, 2010; Serrat, 2013; Serrat, King & Lovejoy, 2008) and therefore phenotypically 



 
 

 5 

flexible (Burness et al., 2013). Therefore, any evolutionary thermoregulatory selection on bill 

size may also be facilitated by phenotypic flexibility. The extent to which environment, nutrition, 

and developmental constraints interact to drive bill growth and impact energetic costs is not well 

understood.  

Understanding the origins of variation in bill size requires explanations that consider both 

proximate and ultimate causes. Proximate causation relates to the mechanisms by which 

biological traits operate in an individual animal, while ultimate causation generally addresses 

why a trait evolved to address a particular function (Mayr, 1988). Ultimate causes take into 

account environmental factors that contribute to why an animal is able to survive and reproduce. 

Heritability, adaptation, and their relationship with phenotypic flexibility must be considered 

when assessing how a trait confers a fitness advantage (Lande, 2009; Pigliucci, Murren & 

Schlichting, 2006; Price, Qvarnstrom & Irwin, 2003; Scheiner, 1993; West-Eberhard, 2005). 

This review will examine the role of the bill in a thermoregulatory context, both in terms of 

physiological mechanisms and in an adaptive evolutionary sense. To the latter end we shall 

examine causal mechanisms or constraints on bill size variation by highlighting the role of 

environmental determinants, such as ambient climate, on bill size. The primary focus will be 

placed on the historical and emerging evidence of environmental factors affecting avian bill size. 

In addition to being selected by factors such as resource availability (Boag & Grant, 1981) and 

vocalization constraints (Brittan-Powell et al., 1997; Fletcher, 1988; Hausberger et al., 1991; 

Podos & Nowicki, 2004), it is hypothesized that bills are constrained by ecogeographic clines 

where larger bills are found in warmer climates and smaller bills in cooler climates (Snow, 1954; 

Symonds & Tattersall, 2010), due to their thermoregulatory function (Greenberg et al., 2012a; 

Hagan & Heath, 1980; Tattersall et al., 2009) The time scales on which these latter patterns act 
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may be rapid, and occur through phenotypic flexibility, or of greater adaptive significance, 

manifesting in bill size patterns that conform strongly to environmental temperatures. 

 

II. BACKGROUND: FUNCTION, ANATOMY, GROWTH, AND EVOLUTION 

(1) Definition and function 

Often used interchangeably, the terms ‘beak’ and ‘bill’ are prevalent in the avian 

literature. In some instances, the use of the term ‘bill’ incorporates the entire feeding appendage 

including the underlying bone and the ‘horny beak’; this usage would imply that beak is typically 

used to refer to the keratinised structure, and that bill refers to the entire structure, although this 

is by no means consistently applied. Whether to use the term ‘beak’ or ‘bill’ when referring to a 

bird’s feeding appendage is a common question in the non-scientific community. Surprisingly, 

within the scientific community there is no consistent pattern or consensus, although 

approximately 2.5 times as many scientific studies used the word ‘bill’ compared to ‘beak’ in 

reference to ‘bird or avian’ studies (Web of Science, Accession Date 19 October 2015). The 

oldest origins of the English word ‘bill’ refer to the act of striking at an object, sensu stricto: ‘the 

sparrow bitep [sic] and billetth [sic]’ (Oxford English Dictionary, 2015), highlighting the 

utilitarian function rather than anatomical features. According to some authorities, the term bill is 

preferred when referring to the ‘bird, platypus or dinosaur beak’ (Encyclopedia Brittanica, 2014). 

In all cases, the feeding structure shares certain key properties: a stiff, projecting oral structure, 

generally lacking in teeth (Louchart & Viriot, 2011), composed of upper and lower jaws covered 

by a horny sheath (ramphotheca). For the reasons outlined above, we favour the use of the word 

‘bill’ throughout this review. 
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The bill is a characteristic feature of birds, serving many essential and highly adapted 

functions (Van Hemert et al., 2012), and taking on a variety of forms (Fig. 1). Bills are clearly 

adapted to allow birds to exploit a tremendous diversity of food resources. Some species, like 

flamingos, possess bills which are highly specialized for one feeding method. Flamingos have a 

broad, downturned bill, lined with lamellae for filtering (Mascitti & Kravetz, 2002), convergent 

in morphology with that of balleen whales (Olson & Feduccia, 1980). This shape allows the 

birds to eat many different types of invertebrates, sifted from bodies of water. On the other hand, 

crows have bills which are straight and roughly conical and these birds consume a more general 

diet, being able to eat foods such as insects, fruits, flowers, and vertebrates (Sakai, Ralph & 

Jenkins, 1989). More subtle variations in bill size or shape can be found within species, as well 

as among closely related species. Interpopulation comparisons of oystercatchers (Haematopus 

ostralegus) have shown that morphological differences in the bill are great enough significantly 

to change feeding techniques and food handling times (Swennen et al., 1983). In the tropical 

highlands of Costa Rica, hummingbird bills match the corolla depth of their favourite flowers 

(Wolf, Stiles & Hainsworth, 1976). In addition to foraging, bills also serve the important 

functions of preening, vocalization, and thermoregulation. 

 

(2) Overview of bill anatomy 

The size and shape of the avian bill is highly variable within and among species, ranging 

from the powerful mandibles of a seed specialist to the precision appendages of nectar feeders; 

however, the basic underlying structure remains the same. Bills consist of lightweight bones that 

form the cores of the upper and lower mandibles (Fig. 2). Part of the inner and the complete 

outer surface of the bill are covered in a modified layer of cells, collectively called the 
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ramphotheca (Stettenheim, 2000). Except in the flexion area of the upper bill, the ramphotheca is 

hard as a result of cornified cells (corneocytes) and calcium salt deposits (Bonser, 1996; 

Stettenheim, 2000; Van Hemert et al., 2012). The bones provide the frame for the ramphotheca 

and it is further shaped in individuals by local thickenings of the epidermis. Beneath the 

continually replaced ramphotheca lies the living epidermis, which serves to provide the 

ramphotheca with a constant flow of cellular material. The epidermis is made up of tightly 

packed keratinocytes that migrate outward as they mature, shifting from an actively growing 

germinative layer to a fully cornified layer (Van Hemert et al., 2012). Local thickenings of the 

epidermis may occur around the edge of the bill and be highly modified according to an 

individual’s diet (Stettenheim, 2000). The dermis, a more heterogeneous layer of tissue, contains 

blood vessels (Fig. 2), nerve endings, and thermal and mechanoreceptors, and is located between 

the epidermis and the bone (Kuenzel, 2007). The dermis is highly vascularized and 

proportionately thickest in the tip of the bill as it replaces the premaxillary and mandibular bones 

in this area (Van Hemert et al., 2012). Since capillaries and blood vessels are abundant in the 

dermis and the dermis is proportionately thickest at the tip of the bill, the accumulation of blood 

vessels may serve to provide a larger proportion of nutrients to this area. On a larger scale, major 

arteries and veins permeate the bill itself (Fig. 3). From limited studies of vascular casts of ducks 

and herring gulls (Larus argentatus) (Midtgård, 1980, 1984a), the maxillary and mandibular 

arteries supply blood to the entire bill structure, with the maxillary artery branching into the 

facial and palatine arteries, the former extending superficial branches to the dorsal side of the 

beak. The two palatine arteries fuse together to form the medial palatine artery that extends into 

the upper jaw (Midtgård, 1984a). Venous return from the superficial areas of the upper beak is 

effected via the ethmoidal vein that connects to the opthalmic vein within a network of blood 
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vessels in the region between the nasal capsule and the optic nerve (Midtgård, 1980, 1984a). In 

short, the bill receives blood from major cranial vessels, and the arteries and arterioles within the 

bill possess pre-capillary sphincters capable of varying degrees of vasoconstriction (Midtgård, 

1984a). The dermis and epidermis, meanwhile, supply nutrients to the bill surface through the 

capillary blood vessels, facilitating ramphothecal growth. Therefore, contrary to general belief, 

the bill is not a dead structure, but is part of a larger network of cranial vasculature (Porter & 

Witmer, 2016), and uninsulated, all of which make it a significant area of heat loss, hence 

implicating a vital role in thermoregulation. 

 

(3) Overview of bill development 

Avian bill size has an important role in determining thermoregulatory abilities 

(Greenberg et al., 2012a; Symonds & Tattersall, 2010; Tattersall et al., 2009), and recent 

evidence suggests that the manner in which the bill develops constrains the variation in bill sizes 

and shapes (Fritz et al., 2014; Young et al., 2014). Therefore, a brief overview of the 

developmental origins of the bill is warranted. The embryonic avian upper bill develops from 

three different components that contribute to the formation of the postnatal bill, each of which 

will be considered in turn. All the embryonic components of the bill form from the migration and 

proliferation of a population of embryonic mesenchymal cells known as neural crest cells 

(Gilbert, 2010; Minoux & Rijli, 2010). Neural crest cells form after the closure of the neural tube 

and then disassociate from the embryonic neural ectoderm and migrate ventrally (Santagati & 

Rijli, 2003). Of these migrating neural crest cells, some migrate to the facial region of the 

embryo, and are known as cranial neural crest cells (Minoux & Rijli, 2010). After reaching their 

destination they begin to proliferate between the neural and the epidermal ectoderm, leading to 
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the formation of bulges or prominences that appear in the embryonic facial region (Gilbert, 

2010).  

One of these prominences, the frontonasal mass, plays an important role in determining 

the bill size because it leads to the formation of the two major parts of the bill: the prenasal 

cartilage and the premaxillary bone (Lee et al., 2001). The frontonasal mass forms from the 

proliferation of neural crest cells by induction from the bordering epidermal region known as the 

frontonasal ectodermal zone that defines the dorso-ventral polarity of the upper bill (Helms & 

Schneider, 2003). The frontonasal ectodermal zone contains two regions of two signalling 

molecules, Sonic hedgehog (Shh) and Fibroblast growth factor 8 (fgf8). These two signalling 

centres form a boundary between them at which cellular proliferation occurs (Helms & 

Schneider, 2003). The cellular proliferation accelerates in specific regions of the frontonasal 

mass, known as localized growth zones, and the interaction between these zones determines the 

width of the bill (Wu et al., 2004). As localized growth zones are areas of high cellular 

proliferation they provide certain regions of the bill with many undifferentiated neural crest cells 

that can become cartilaginous or bony cells. Mediating the fate of the neural crest cells in the 

localized growth zones is the signalling molecule bone morphogenetic protein (BMP)4 that plays 

a role in the formation of the prenasal cartilage and consequently affects the depth and width of 

the bill (Abzhanov et al., 2004). Another molecule that plays a role in the formation of the 

prenasal cartilage is the Ca2+ binding protein calmodulin that has been shown to affect bill length 

(Mallarino et al., 2011). Co-developing with the prenasal cartilage and adding to its contribution 

to bill size is the premaxillary bone that also develops in the frontonasal mass. Determining the 

formation of the premaxillary bone by directing the neural crest cells to a bony fate are the 

transforming growth factor TgfbIIr, b-catenin, and Dickkopf 3, which have been shown to affect 
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the depth and the width of the bill (Mallarino et al., 2011). The two other developmental 

prominences that recently have been shown to play a role in constraining bill size variation 

through fusing with the frontonasal prominence are the two maxillary prominences and the two 

lateral nasal prominences (Francis-West et al., 1998; Young et al., 2014). Similarly to the 

frontonasal prominence, BMP4 has been shown to play a role in regulating the size of these 

prominences, all of which has to be tightly coordinated (Wu et al., 2006). Overall, then, bill size 

is readily modulated by changes in overall activity of the BMP4 pathway, while its shape appears 

finely tuned by localized changes in the concentration, timing, and distribution of BMP4 

expression during early development. Little is known about the role of temperature in 

influencing early development of the avian bill, although slight changes (36.7 versus 38.9°C) in 

incubation temperature can lead to bill malformations in domestic birds (Noiva, Menezes & 

Peleteiro, 2014), suggesting strong potential for temperature to constrain bill development.  

 

(4) Growth and wear 

Following attainment of adult size, the underlying bone ceases to grow, in what appears 

to be determinate growth of the skeletal structures (Greenberg, Etterson & Danner, 2013; 

Matthysen, 1989). The overlying horny beak (e.g. the ramphotheca), however, undergoes 

continuous growth throughout life. The integument grows continually from the base of the bill, 

with rostrally directed growth so that there is continuous forward movement of the horny part of 

the bill (Kuenzel, 2007). Bonser (1996) found bill keratin to be harder than other sources of 

keratin from the avian integument. Bills are subject to substantial wear when feeding or foraging, 

particularly where the upper and lower mandibles meet, and a higher density of keratin provides 

some resistance (Bonser, 1996). This higher density may also protect against the abrasive effects 
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of bill wiping behaviour, commonly thought to serve as a cleaning mechanism (Cuthill, Witter & 

Clarke, 1992). Nevertheless, the consensus is that bill growth and abrasion tend to balance each 

other out, although with temporal, species, sex, or individual-specific variation contributing to 

dynamic changes in bill size (Green, 1981; Hulscher, 1985; Matthysen, 1989; Swennen et al., 

1983; van de Pol et al., 2009). Net bill growth is assessed by measuring culmen length or bill 

depth in individuals over time. Determining the rate of ramphotheca growth is achieved by 

placing visual markers on the bill surface and tracking their progression towards the proximal tip 

of the bill, while abrasion rates are assessed as the difference between total culmen length 

changes and ramphotheca growth rates (Hulscher, 1985; Swennen et al., 1983). 

The ramphotheca appears to grow primarily from the proximal half (Hulscher, 1985), 

presumably where cellular proliferation is most abundant, which ‘pushes’ the bill tissue forward 

towards the tip. Typically, the upper mandible grows ‘over’ the lower mandible, due to 

differential rates of tissue growth, but during the time of year of peak feeding, bill wear occurs, 

associated with excessive use from foraging behaviours such as digging, hammering, or sifting 

for food within a hardened substrate (Green, 1981). Overall seasonal variation in bill size results 

from the differential growth and wear (see Section IV.6). Abrasion primarily occurs at the apex 

of the bill since this is the region where most prey manipulation and handling occurs. One of the 

most well studied in terms of balance between bill growth and wear is the oystercatcher and 

related wading birds (Hulscher, 1985; Swennen et al., 1983; van de Pol et al., 2009). 

Oystercatcher bill size is variable and dynamic in size and shape, but strongly related to diet 

(Hulscher, 1985). Upon arrival at the spring feeding grounds, bills rapidly change from a 

relatively blunt to a longer and more pointed morphology as the birds sift through the wet 

substrate for their invertebrate prey. Furthermore, captive oystercatchers fed mussels exhibit 
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higher abrasion rates than birds fed a softer, pelleted diet (Hulscher, 1985). Indirect evidence that 

abrasion rates relate to foraging intensity in the wild was provided by the observation that birds 

that lost the least mass in the wild also had higher rates of abrasion. However, an individual 

bird’s ramphothecal growth does not appear to react to abrasion rates, which explains why 

external bill length measurements tend to vary as a function of foraging. Since ramphotheca 

growth and wear rates are similar to each other within a species but show remarkable 

interspecific variability, Hulscher (1985) suggested that growth and abrasion rates have co-

evolved. Bill growth rates in birds that experience high rates of abrasion (e.g. oystercatchers) can 

be up to four times higher than in birds that experience minimal rates of abrasion (e.g. pigeons), 

suggesting that rates are adaptive responses to nominal rates of foraging-induced abrasion. 

Finally, although inter-individual variation in external bill morphology is driven mostly by 

differences in the ramphotheca structure, interspecific differences in bill size and morphology are 

heavily driven by developmental changes that produce differential bone growth (Borras, Pascual 

& Senar, 2000). 

 

(5) Heritability and bill size 

Intraspecific variation in bill size may be influenced by multiple sources, including how 

much of the variation is heritable and how much is explained by the environment, developmental 

variation, or epigenetic mechanisms. In a broad sense, then, heritability is the fraction of total 

phenotypic variation in a population that is caused by genetic differences among individuals 

(Pigliucci et al., 2006). A plot of mid-parent trait value versus offspring trait value is often used 

to determine heritability; the closer the slope of the line of best fit is to 1, the larger the estimated 

heritability (h2) of the trait. A value of 0 would be evidence that the trait variation is due to 
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variation in the environment and phenotypic flexibility is more than likely the mechanism at 

work. Research into bill size variation has suggested strong genetic control over bill size, 

primarily assessed via this estimate of heritability (Smith & Dhondt, 1980). In the case of 

Darwin’s finches, Keller et al. (2001) found heritability (h2) of morphological traits such as bill 

size, bill depth, bill length and body size to range from 0.5 to 0.9, suggesting quite strong within-

population genetic determination. However, because the offspring and parent environments are 

typically similar, these may be overestimates of heritability (Grant & Grant, 1995). 

In their examination of heritability of bill size in song sparrows (Melospiza melodia), 

Smith & Dhondt (1980) proposed the best way to test for parent–offspring resemblance was to 

exchange eggs among broods and compare the resulting offspring to their true parents and foster 

parents. In this study, following maturation the chicks resembled their biological parents strongly 

and their foster parents not at all; bill depth heritability was estimated to be 0.98 (Smith & 

Dhondt, 1980). Even here, the high heritability may be an overestimate as only nest 

environmental effects (which include parent behaviours) were controlled for, but larger scale 

climatic/environmental effects were not. If the environment (i.e. temperature, rainfall) of the 

foster and biological parents was similar, then the variance attributable to potential 

environmental and flexibility components would not have been expressed, and total variances 

underestimated. Other issues that complicate how heritability is estimated are misidentified 

paternity and conspecific nest parasitism. Both scenarios involve misidentified paternity and 

would actually lead to an underestimate of heritability. Finally, birds tend to grow larger when 

they have abundant food, and yet the most plentiful feeding sites are often defended by the 

largest birds (Garnett, 1981); their offspring will then grow up in the same plentiful area and be 

large as well. Therefore, issues such as shared environments and maternal effects have 



 
 

 15 

consequences to estimates of heritability. Even maternal effects may contribute to an 

overestimation in that they are a form of ‘environmental’ variance due to differences in nutrient 

stores or hormonal composition of eggs (Keller et al., 2001). Consequently, while it seems 

apparent that bill size has a heritable component, the relative strength of this compared to 

environmental effects is still unclear. 

 

(6) Foraging, competition and bill size 

Any discussion of selective forces shaping avian bill size is overshadowed by studies on a 

single group of birds: the Galápagos Finches, or ‘Darwin’s Finches’. A monophyletic group 

(subfamily Geospizinae) containing 15 species (Sato et al., 2001), Darwin’s finches are the 

prototypical example of an evolutionary radiation (Weiner, 1994), with species exhibiting 

evolutionary modifications to bill size and shape that reflect feeding specializations; this is 

especially pronounced in the ground finches and cactus finches, which are heavily reliant on 

seeds for their diet. Since Charles Darwin’s early descriptions and David Lack’s subsequent 

analysis (Lack, 1947), the finches of the Galápagos archipelago have been a fruitful study system 

into the rapid potential for evolutionary changes in avian bill morphology. Indeed, numerous 

fundamental evolutionary processes have been documented through the study of bill morphology 

(Boag & Grant, 1981; Grant & Grant, 1995, 2000, 2002a, b, 2005, 2006; Price et al., 1984; 

Schluter, Price & Grant, 1985). It is now widely accepted that much of the remarkable variation 

seen in finch bills is reflected in the foods they eat. Birds with large bills are able to crack larger 

seeds, while birds with smaller beaks are more efficient at exploiting smaller, softer seeds 

(Herrel et al., 2009; van der Meij & Bout, 2008). Foraging and resource availability also play a 

major role in bill size in other species of birds (Benkman, 1987; Smith, 1990a, b). In cases where 
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food is abundant, however, a different set of selection pressures is likely in operation (Boag & 

Grant, 1981), just as in cases of ecological release (Greenberg & Danner, 2013; Luther & 

Greenberg, 2014), where reduced competition and widening of niche partitioning relaxes 

selection pressures, and reveals strong environmental (i.e. thermal) determinants of bill size and 

morphology. Indeed, Grant & Grant (1993) demonstrated how climatic events can lead to 

significant changes in bill dimensions, although the direct involvement of environmental factors 

on the changes in bill size was not considered. Therefore, the broader applicability of resource 

acquisition driving avian bill sizes in more complex environments is likely to be dependent on 

other factors, including climatic variables such as temperature, humidity, or water availability. 

 

III. BILLS AS THERMOREGULATORY STRUCTURES 

The evolution of birds has been shaped by a tremendous variety of factors. Birds are 

endotherms, and are therefore capable of sustaining elevated body temperatures through the 

actions of their elevated metabolism (Angilletta et al., 2010; Tattersall et al., 2012; Ward & 

Slater, 2005; Yarbrough, 1971). To aid in this process, birds have evolved several different 

mechanisms of thermoregulation (Hafez, 1964). These mechanisms include panting, bathing, 

microsite selection, ptilo-erection, and using heterothermy to avoid mismatches between energy 

supply and demand (Hafez, 1964). Nevertheless, thermoregulation is a process involving the 

whole organism, and it is challenging to assign exclusive thermoregulatory function to any 

specific organ like one might ascribe to the heart or the lung as organs of the cardiovascular and 

respiratory systems. Until recently, the form and function of the bill have mostly been considered 

as adaptations related to different feeding strategies; however, evidence accruing over the past 

few years suggests that birds may also be able to use their bill to conserve or dissipate body heat, 
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depending on the environmental conditions (Burness et al., 2013; Greenberg et al., 2012a; 

Hagan & Heath, 1980; Tattersall et al., 2009; Tattersall & Cadena, 2010). 

The avian bill is a viable candidate for a role in thermoregulation since it is highly 

vascularized but poorly insulated (i.e. a potent thermal radiator). Blood flow is supported beneath 

the horny ramphotheca by a network of blood vessels (Stettenheim, 2000). The surface area of 

most bills are small compared to total body surface area, however, bills contribute significantly 

to the total un-insulated surface area of a bird (Greenberg et al., 2012a). There are a number of 

recent studies which have provided evidence for the bill being employed in thermoregulation. 

One of the first studies on this subject involved Pekin ducks (Anas platyrhynchos) and showed 

that bill surface temperatures can change dramatically with ambient temperature (Hagan & 

Heath, 1980). In cold environments, the surface of the duck’s bill became cool, and the base of 

the bill was kept warmer than the tip. In very warm environments, the surface temperature of the 

bill was more variable. Small regions on the surface of the bill would heat up, then cool down in 

only a few minutes, indicating high levels of rapidly changing blood flow to the bill (Hagan & 

Heath, 1980). This experiment shows that the ducks were able to change the blood flow within 

their beaks in response to environmental temperature variation, which in turn would change their 

ability to lose heat to the environment through radiation and conduction from the bill (Hagan & 

Heath, 1980). The removal of body heat through vasculature in the bill is likely to be especially 

efficient, as in most birds it is the only body part, aside from the feet and legs, which is 

featherless and exposed to the environment. 

One test of the thermal radiator hypothesis for avian bills is to examine how its function 

has evolved. Scott et al. (2008) examined low oxygen (i.e. hypoxia) tolerance and bill vascular 

recruitment in three species of waterfowl with different reliance on high-altitude flying. A 
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common response to brief low-oxygen exposure in many endotherms is rapidly to adopt a 

controlled reduction in body temperature (Tattersall & Milsom, 2009), which is often 

accompanied by a transient ‘dumping’ of core body heat through a thermal window, or non-

insulated surface, such as the bill or feet (Tattersall & Milsom, 2003). Greater reliance on 

thermal windows would indicate a more profound lowering of body temperature in response to 

hypoxia, and be indicative of a controlled body-temperature reduction strategy over a hypoxia 

tolerance strategy. The bar-headed goose (Anser indicus) is known for its migratory flights 

within and through the passes of the Himalayas, achieving powered flight at altitudes of over 

6000 m (Scott et al., 2015), whereas the related greylag goose (Anser anser) and outgroup Pekin 

duck are low-altitude waterfowl. The bar-headed goose possesses genetic and physiological 

adaptations that allow it to fly in low-oxygen conditions (Scott et al., 2015). When compared 

under simulated high-altitude conditions, the bar-headed geese showed less usage of the bill as a 

thermal radiator, only adopting this strategy at extreme levels of hypoxia compared to the 

greylag goose and Pekin ducks which showed extremely high recruitment of the bill vasculature 

to assist in lowering body temperature. These bill vasomotory adjustments were dynamic both 

across species as well as within species (Fig. 4), with bill surface temperatures changing 

dramatically within seconds, indicating extensive neurophysiological control of blood supply, a 

feature critical to thermoregulatory control.  

An extreme example of the avian bill as a thermal radiator was demonstrated by 

Tattersall et al. (2009). The toco toucan (Ramphastos toco) bill is extremely large relative to 

body size, at nearly 40% of the total body surface area. Adult toucans vasodilate the blood 

vessels beneath the ramphotheca when temperatures rise above the thermal neutral zone and 

constrict blood flow when below the thermal neutral zone to conserve metabolic heat; as a 
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consequence, 30–60% of total heat loss at rest can be accounted for by the bill, with maximum 

values of heat loss rising above 400% of resting heat production. These high estimates of heat 

exchange belie the transient nature of the underlying blood flow, since thermal balance could not 

be maintained if blood flow was constantly elevated. Tattersall et al. (2009) also suggested a 

possible explanation for the advantage of the bill as a thermal organ over other uninsulated 

appendages (i.e. limbs) lies in its vascular arrangement. In a normal avian limb, blood flows in a 

counter current manner, with heat from arterial blood recovered by the veins without the need for 

vasoconstriction (Steen & Steen, 1965). In counter-current limb heat exchange, warm blood 

flows through the arteries from the core of the body to the ends of limbs. The heat from this 

blood warms nearby veins and is transferred back from the extremities to the core of the body 

(Ederstrom & Brumleve, 1964; Midtgård, 1981; Millard & Reite, 1970; Steen & Steen, 1965), 

preventing heat loss to the environment through the legs and feet. To date no evidence suggests 

that any avian bills possess counter-current heat exchange and therefore a more random vascular 

arrangement would preclude or minimise their capacity for heat conservation relative to the 

limbs. As the poorly insulated bill has been proven an asset for dumping heat in a warm 

environment, it may simultaneously function as a liability in a cold environment (Symonds & 

Tattersall, 2010). Although vasoconstriction to the bill would still conserve heat, it would also 

serve to starve the bill tissue of blood flow, so it is likely that a trade-off exists in the level of 

vasoconstriction of blood flow to the bird bill at low air temperatures, with the net result that low 

but constant levels of heat loss always occur across the bill. These effects are not restricted to 

large-billed birds like the toucan. It is common for birds to tuck their bills between or under their 

wings while sleeping, presumably to aid in heat conservation (Reebs, 1986; Tattersall et al., 

2009; Wellmann & Downs, 2009). 
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Understandably, based on surface area alone, birds with relatively large bills would be 

expected to exhibit considerable heat exchange capacity; however, even the smaller bills of 

passerines appear to play a role in thermal homeostasis. In a study on two subspecies of song 

sparrows with different bill sizes, Greenberg et al. (2012a) estimated heat loss from the bill and 

limbs at a range of different ambient temperatures and found that the subspecies with the larger 

bills would exchange significantly more heat through their bills regardless of ambient 

temperature. This augmented heat exchange was only partly due to bill size differences, implying 

a functional association between the forces driving bill size and bill thermal radiator function. 

We posit that when bill size co-varies with thermal radiator function, bills may be considered as 

thermoregulatory exaptations sensu stricto (Gould & Vrba, 1982).  

One well-known example of a thermoregulatory exaptation is in the legs of birds (Arad, 

Midtgard & Bernstein, 1989; Midtgård, 1981). While clearly adapted for locomotion, the legs of 

birds have dense networks of veins and arteries arranged in a non-random manner which 

facilitates counter-current heat exchange (Arad et al., 1989; Midtgård, 1981). Interestingly, the 

fact that bird legs are unfeathered is also likely related to another method of limb-based 

thermoregulation, involving vascular retes and shunt vessels, called anastomoses that bypass the 

capillary bed between arteries and veins. These anastomoses are much larger in diameter than 

capillaries, which allows for much larger amounts of blood flow to reach the periphery, thereby 

facilitating convective heat transfer from the core of the body to the periphery. In some species, 

the legs are very important for heat dissipation in warm climates and during flight (Baudinette et 

al., 1976; Johansen & Bech, 1983; Johansen & Millard, 1973; Maloney & Dawson, 1994; 

Martineau & Larochelle, 1988). For an emu (Dromaius novaehollandae), heat loss through the 

legs can account for almost 40% of total body heat loss at rest (Maloney & Dawson, 1994). In 
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pigeons (Columba livia), heat loss through the legs is a large part of overall heat loss, especially 

during flight (Martineau & Larochelle, 1988). When a pigeon’s legs are exposed to moving air 

they are able rapidly to decrease their deep cloacal temperatures from values attained during 

flight (Maloney & Dawson, 1994). The vascularization needed to supply the leg with energy for 

movement could have been selected for improved thermoregulatory abilities in the face of 

thermal stress. 

Analogous non-avian examples of thermoregulatory exaptations have been described 

previously; ungulate horns are well vascularized, and have been shown to be involved in 

thermoregulation (Cain et al., 2006; Picard et al., 1994; Taylor, 1966). Goat horns have an 

extensive network of blood vessels, which are able to vasoconstrict and vasodilate in response to 

cold or hot environmental conditions, respectively (Taylor, 1966). Additionally, after exercise, 

up to 12% of total body heat loss occurs through the horns (Taylor, 1966), which could help 

prevent hyperthermia after exertion in warm climates; this exertion could result from any 

activity, including mate competition or regular activities. In summary, since homeostatic control 

of body temperature can take advantage of any physical transfer of thermal energy, numerous 

organs and structures may turn out to be thermoregulatory exaptations, and at minimum the 

influence of the thermal environment should be considered in any size-based adaptive 

assessment of function. 

 

IV. ENVIRONMENTAL CONTRIBUTIONS TO VARIATION IN BILL SIZE 

(1) Allen’s Rule and bill size 

Ecogeographical rules relate large-scale geographical distributions to morphological 

variation and offer the potential to describe how animals may be restricted to the environmental 
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conditions under which they persist (Mayr, 1956; Olson et al., 2009). One prominent parameter 

that varies systematically across large geographic regions is temperature, and Allen (1877) 

observed over 100 years ago that appendages are shorter in endotherms from colder climates, 

leading to ‘Allen’s Rule’ (Allen, 1877). Clinal variation in appendage size is argued to exist for 

reasons related to thermoregulatory efficiency afforded by differences in the surface area to 

volume ratio; large appendages lose heat more effectively in warm environments. Tails, ears, 

limbs and bills in endotherms function as specific areas for enhanced heat exchange with the 

environment as they usually have little to no insulative properties (Cartar & Morrison, 2005; 

Demicka & Caputa, 1993a; Fooden & Albrecht, 1999; Raman, Roberts & Vanhuyse, 1983; 

Stevenson, 1986; Symonds & Tattersall, 2010). The progressive shortening of extremities in the 

cold is regularly viewed as a genetically determined thermoregulatory adaptation (Allen, 1877), 

however, several experiments have shown that adjusting ambient rearing temperatures of 

mammals can modify phenotype and alter extremity length (Al-Hilli & Wright, 1983; Demicka 

& Caputa, 1993b). Recently, it has also been shown that after accounting for genetic and 

environmental components, one possible reason for difference in body form under different 

temperatures may be post-embryonic ontogenetic plasticity (Serrat et al., 2008).  

To date, most research into Allen’s rule has focused on limbs, tails, or ears, and primarily 

in mammals (Fooden & Albrecht, 1999; Mayr, 1956; Nudds & Oswald, 2007; Scholander, 1955; 

Stevenson, 1986). In terms of birds, however, there has been less effort to examine Allen’s rule, 

possibly because of an impression that their high mobility (e.g. migration) would mitigate many 

of the potential climatic effects on morphology. However, the size of any heat exchange organ 

may be under selection in relation to a particular thermal environment. Therefore, if Allen’s rule 

holds, species at higher latitudes or altitudes (i.e. colder environments) should have relatively 
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smaller bills as a means to conserve heat. Despite the lack of research focus on this topic in avian 

bills, considerable evidence exists from descriptions of intraspecific variation that many bird 

species do display geographic patterns in bill size that can be interpreted in light of climatic 

variables like temperature or water availability. Table 1 provides a list of studies where 

intraspecific variation in bill size has been documented in the context of latitude or climate, 

indicating where patterns conform to the thermoregulatory trend outlined according to Allen’s 

rule. The list comprises 110 bird species or populations, although is unlikely to be 

comprehensive since many studies only report this information coincidentally to other research 

questions. Of these, 64 (58%) demonstrate the pattern predicted by Allen’s rule (smaller bills at 

higher latitudes/altitudes and cooler climates). For another 10 studies which do not appear to 

show Allen’s rule in relation to bills, the pattern is potentially confounded by lack of body size 

data. Climate selecting for smaller-sized individuals in warm climates (Bergmann’s rule) might 

also indirectly select for smaller bills in absolute terms, but larger bills in relative terms. 

Consequently, our survey suggests that, while not ubiquitous, climate-related geographic clines 

in bill size are likely to be the norm for many bird species. 

Such intraspecific variation might be due to adaptation and selection, but equally could 

be the result of phenotypic flexibility to warm environments. Interspecific studies however, 

would be more suggestive of an evolutionary basis to this geographic variation in bill size. To 

this end, Symonds & Tattersall (2010) undertook a phylogenetic comparative analysis of bill 

length across 214 species across eight families of birds. Bill sizes were standardised relative to 

body size, since bill size scales closely with body size, and metabolic heat production and loss is 

also a function of body mass. Once body size and phylogeny were taken into consideration, a 

significant relationship in support of Allen’s Rule was found in all but one of the eight 
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taxonomic groups analysed, the Australian estrildid finches (Fig. 5). Bill lengths were typically 

smaller in species found at higher latitudes or elevations in all other groups. A possible 

evolutionary explanation, in agreement with Allen’s rule, is that thermoregulatory costs of larger 

bills become extreme in colder environments. Conversely, it may be that there is selection for 

large bills in warm environments, in order to assist with the dumping of excess heat loads, 

thereby minimizing thermal stress (Greenberg et al., 2012b; Tattersall et al., 2009). Subsequent 

research by Greenberg et al. (2012b) suggests that variation in bill size in song sparrows is more 

strongly tied to maximum summer temperatures, suggesting that augmentation of heat loss is 

under selection in these species (see Section IV.6). Whilst it is possible that there is geographical 

variation in bill size for other reasons such as resource exploitation or sexual selection that 

constrains the distribution of birds with larger bills to warmer environments, the consistency of 

the pattern across such diverse species, from piscivorous penguins, to granivorous parrots, to 

omnivorous toucans strongly suggests a thermoregulatory adaptation, not one related to diet or 

reproduction (Symonds & Tattersall, 2010). Although the estrildid finches did not inhabit a wide 

range of temperatures (Symonds & Tattersall, 2010), the lack of relationship may be attributed to 

costs in exhibiting temperature-dependent bill sizes in seed-cracking birds, where dependency on 

resource handling is important. Further, Mayr (1970) suggested that exceptions to Allen’s rule 

would occur in smaller-sized birds where there may be constraints on how small the bill can be 

and still remain functional (i.e. incapable of handling available food). Symonds & Tattersall’s 

(2010) results support this argument given that estrildid finches were the only group that showed 

no correlation between bill length and body size.  

Nudds & Oswald (2007) demonstrated that limb size of numerous seabird species was 

strongly associated with temperature of breeding habitat, providing convincing interspecific 
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evidence for the adaptive value of Allen’s Rule. It is noteworthy, therefore, that when Symonds 

& Tattersall (2010) found evidence for Allen’s Rule in a wider array of bird taxa, bill size was 

always more strongly associated with habitat temperature than limb size. We suggest that this 

result may be partially explained by constraints that blood vessel architecture imposes on any 

potential thermoregulatory efficiency. Bird limbs are iconic for their counter-current artery–vein 

arrangement that bestows maximal efficiency of heat retention in the cold. Given the network-

style vasculature supplying the bill surface, it is unlikely that bills are able completely to negate 

heat exchange to the environment in the cold, which supports the stronger trend in bill size with 

temperature. 

 

 (2) Phenotypic flexibility and appendage size 

Adult character traits associated with environmental variables are the product of both 

genetic and environmental sources of variation. Dynamic phenotypes (i.e. physiological, 

behavioural) have long been studied in this regard, with physiological traits demonstrating 

evidence of thermal acclimation and seasonal acclimatisation (Tattersall et al., 2012). The role of 

phenotypic flexibility (Piersma & Drent, 2003) in morphological variation is more contentious 

(Travis, 1994). We use the term ‘flexibility’ based on Piersma & Drent’s (2003) definition to 

refer to any change in an organism’s behaviour, morphology, or physiology in response to its 

environment that is generally reversible (Debat & David, 2001; Fordyce, 2006). Such flexibility 

allows for a single genotype to produce a variety of phenotypes (i.e. reaction norms; Pigliucci et 

al., 2006; Travis, 1994), and contributes to observed morphological variation, especially in 

species with wide geographic ranges. Therefore, the spectrum of an organism’s potential 

phenotypic responses is made possible by the combination of its genotype and surrounding 
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environment (Debat & David, 2001). Geographical variation in trait phenotype is often assumed 

to be due to genetic factors, and that a change in phenotype is due to natural selection acting on 

genes, however, if environmental gradients exist within a species’ geographic range, phenotypic 

flexibility cannot be assumed to be absent (Kinnard & Westneat, 2009; Kunz & Ekman, 2000; 

Price et al., 2003). Indeed, phenotypic flexibility is important in species expanding ranges or 

dispersing into new ones (Lande, 2009; Pigliucci et al., 2006; Price et al., 2003; Travis, 1994; 

West-Eberhard, 2005). Entry into a new environment via dispersal results in pressures favouring 

divergence from the ancestor. Moderate levels of phenotypic flexibility may therefore facilitate 

surviving in novel environments and later promote genetic changes linked to selection or local 

adaptation (Price et al., 2003).  

The extent to which variation in appendage size results from genetic versus 

environmental sources is not well studied. Direct tests of adaptive flexibility in bill size have not 

been performed, although phenotypic flexibility could explain the temperature sensitivity of 

appendage growth in endotherms (Serrat, 2013; Serrat et al., 2008). The traditional explanation 

for temperature-dependent extremity growth is from a decreased or increased delivery of 

nutrients in the blood from thermoregulatory-induced vasoconstriction and vasodilation, 

respectively (Weaver & Ingram, 1969). This ‘vascularity hypothesis’ predicts that bone growth 

and elongation is related to bone perfusion, with the latter dependent on ambient temperature. 

Serrat et al. (2008) addressed this hypothesis in mice, which exhibit extremity sizes that depend 

on environmental temperatures (Villarreal, Schlegel & Prange, 2007). Mice were reared at cold 

(7°C), intermediate–control (21°C), and warm (27°C) temperatures for approximately 9 weeks. 

Cold-reared mice had the lowest growth rates and reduced extremity blood flow, while the 

control and warm groups had similar growth and blood flow (Serrat et al., 2008). Appendage 
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length was thus directly influenced by appendage temperature. They further tested the hypothesis 

that limb temperature directly modifies post-embryonic bone growth by examining growth plates 

in vitro. Warm-reared bones had a higher growth rate expressed as a percentage of starting size 

than cold-reared bones, and thus Serrat et al. (2008) argue that blood not only provides a source 

of nutrients and oxygen but also a source of heat, which is important for temperature-sensitive 

processes. Serrat et al. (2010) subsequently studied the direct effect of temperature on solute 

delivery to the bone’s growth plate and found a minimal effect of rearing temperature on solute 

delivery, but that exercise can mitigate the cold-induced stunting of limb growth. Only load-

bearing structures benefited from exercise-induced changes in nutrient delivery, whereas tails 

appeared to be sensitive directly to tissue temperature. Thus, it appears that that appendage 

length is primarily due to the effect of temperature rather than the rate of nutrient delivery to the 

growing bone.  

 

 (3) Phenotypic flexibility in bill form and function 

Although the experiments by Serrat et al. (2010, 2008) were conducted on extremities in 

mice, extending similar arguments to the avian bill is plausible as they share similar underlying 

structures. Bills contain bones that are surrounded by highly vascularized tissue, which supply a 

constant flow of blood and nutrients (Van Hemert et al., 2012), similar to the highly vascularized 

tissue found in the tail of a mouse (Demicka & Caputa, 1993a, b; Raman, Roberts & Vanhuyse, 

1983). The poorly insulated structure of a bill also experiences environmental conditions similar 

to those experienced by a poorly insulated foot of a mouse. These structural similarities suggest 

that bills may also experience a stunting effect of low temperature, with size constraints set by 

the underlying bony structures. There is precedent for flexibility in bill growth and morphology 
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with respect to non-thermal effects (Bryant, 1978). In laboratory zebra finches (Taeniopygia 

guttata), Boag (1987) found that diet quality significantly impacts growth rates, showing that 

early-life growth effects can extend into adulthood, where body size, wing size and bill depth 

were all significantly different even though adult birds were no longer on restricted diets. That 

said, some species are capable of catch-up growth when removed from restricted diets (Negro, 

Chastin & Bird, 1994). Non-pathological dietary restrictions led to changes in bill sizes of 3–

10%, which are similar to levels observed in studies where this degree of change was deemed to 

result from adaptive mechanisms acting on phenotypes (Boag, 1987). Combined, these results 

raise the question of whether all phenotypic variation in bill size is necessarily adaptive.  

 

(4) Critical period in development of bills 

To determine whether size or thermoregulatory function of the bill is a plastic response to 

environmental temperature, birds of similar genetic background need to be reared at different 

temperatures. NeSmith (1985) carried out such an experiment to determine whether temperature 

variation could be a direct cause of environmentally induced effects on the bill size of 

developing red-winged blackbirds (Agelaius phoeniceus). She randomly assigned four-day old 

birds from different populations to three environmental chambers: (a) cold, (b) hot and humid, 

and (c) hot and dry. At 20 days of age, a significant number of birds in the cold chamber had 

proportionately shorter bills than did their siblings in the other chambers. This shows that the 

development of the bill is susceptible to rearing environment temperature, but since the effect 

was not seen in every population tested, there may be genetic variation within populations in 

their predisposition to environmental variation (James, 1991). In light of the results of Serrat et 

al. (2008), it is possible that birds from NeSmith (1985) reared in colder environments have 
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proportionately smaller bills due to reduced blood flow and/or temperature during development. 

This may occur through a mechanism in which fledglings reared in colder environments reduce 

blood flow to extremities to conserve heat, although there is currently no evidence suggesting 

that this occurs in young birds. Indeed, work from juvenile toucans suggests that 

vasoconstriction of the bill in response to cold is minimal compared to what adults can do 

(Tattersall et al., 2009), however, in these species, the bill actively grows during the first year of 

life and may be constrained from exhibiting thermoregulatory responses; if there are changes in 

bill blood flow during a critical time in development, there may be permanent effects on bill 

growth. Differences in morphological characteristics among bird species arise and are 

consolidated within a relatively brief 1–2 day period within a 12–14 day period of development 

(Grant & Grant, 2006). Because the bills are uninsulated and exposed, it is possible that birds 

reared in cold environments experience low enough temperatures that the flow of essential 

nutrients to the bill is reduced, thereby resulting in a reduction in size. Reduced blood flow at 

low temperatures during development may confer a fitness advantage in the ability to conserve 

heat through a smaller bill size as an adult, although whether these early developmental effects 

are fixed or reversible is unknown. Regardless of the relative role of genetic or environmental 

effects, it is no coincidence that the flexibility of appendage growth follows the same direction as 

that predicted from thermoregulatory hypotheses (i.e. Allen’s Rule), and that different species 

experiencing different environmental constraints may show more or less evidence for phenotypic 

flexibility (Table 1). 

Phenotypic flexibility of the bill in response to temperature has also been demonstrated in 

Japanese quail (Coturnix japonica) (Burness et al., 2013); birds raised in cold environments 

grew smaller bills than those raised in warm environments, consistent in direction with Allen’s 
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rule. This bill size difference persisted until birds were subsequently housed under common 

thermal conditions, where birds with smaller bills exhibited catch-up growth (Burness et al., 

2013), similar to that observed in body mass of developing collared flycatchers (Ficedula 

albicollis) (Hegyi & Torok, 2007). This phenotypic flexibility extended beyond morphology also 

to include the physiological control of thermoregulation through the bill. In the quail study, when 

mature birds were exposed acutely to 15°C, birds that were raised in the cold were able to keep 

their bills cooler than birds raised in the warm conditions (Burness et al., 2013). Contrary to the 

morphological flexibility, where catch-up growth was demonstrated, these changes in 

physiological control persisted even after the mature birds were housed under the same thermal 

conditions. These results suggest that there is a permanent change in bill function and possibly 

the amount of vasculature or the degree of physiological control over the vasculature due to the 

thermal conditions experienced during development. Understanding these internal changes in the 

bill may help elucidate the mechanisms behind the evolution of the bill as a thermoregulatory 

organ, and may indicate the role which developmental plasticity and phenotypic flexibility 

(Piersma & Drent, 2003) could play in the evolution of both the morphology and 

thermoregulatory functions of the bill. That early life events lead to persistent physiological 

differences, whereas morphological traits are reversibly plastic, is intriguing as it infers that 

‘matching’ of thermoregulation function to local climatic conditions may be better achieved 

post-development by morphological, rather than physiological adaptations.  

 

(5) Evolutionary contributions versus phenotypic flexibility in bill morphology 

One way to investigate the contribution of genetic and non-genetic variation to size-

related clines (James, 1970) is through transplant experiments in which individuals are 
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exchanged among localities (James, 1991) and their morphologies assessed after being reared in 

these alternative environments. James & NeSmith (1988) performed a reciprocal transplant 

experiment with redwing blackbird eggs between the warm climate of Florida and a cooler 

climate of Colorado. Florida blackbirds reared in Colorado were smaller than control birds and 

Colorado birds reared in Florida were larger than control birds. In contrast to body size, bill 

growth was retarded by transplantation to Colorado (warm source to cooler climate) and 

accelerated by transplantation to Florida (James & NeSmith, 1988). Their results directly 

demonstrate that some proportion of bill shape is non-genetic. The increased bill growth in the 

warmer climate is plastic, which would allow the bird an increased thermoregulatory capacity, 

while the retarded growth in the cooler climate may be an attempt to conserve heat. It is also 

possible that the thermal environment affects earlier embryonic growth; for example, if the 

cooler environments limit bill mesenchymal proliferation, overall bill size would be smaller, 

which would result in smaller bill surface area, but subsequent heat conservation in the adult as 

an indirect consequence. The results from James & NeSmith (1988) also support the intraspecific 

evidence for Allen’s rule with the caveat that at least part of the bill growth is due to inherent 

differences in developmental phenotypic flexibility.  

Common garden and reciprocal transplant experiments are primarily used as tools to 

uncover the adaptive significance of a trait, but they are also able to test the effect of a single 

environmental variable on an organism. Ballentine & Greenberg (2010) compared bill size in 

swamp sparrows (Melospiza georgiana) taken from coastal (Delaware) and inland (Maryland) 

populations, and subsequently raised under common garden conditions. Although geographically 

close, the coastal habitats offer little shade, are water limited due to the high salinity of the 

ocean, and are windier than inland habitats (Greenberg et al., 2012b). Ballentine & Greenberg 
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(2010) found that birds derived from coastal populations had significantly larger bills than those 

from inland, and suggested that coastal populations have larger bills as an adaptation to new food 

sources. Coastal habitats have a lower abundance of seeds and a higher abundance of 

invertebrate prey, and having a larger bill may increase success in capturing and consuming prey 

(Ballentine & Greenberg, 2010). These significant differences in bill size between the two 

populations raised under identical environments provided evidence for a genetic basis while also 

ruling out a plastic response to the environment.  

 

(6) Seasonal changes in bill size 

It has long been appreciated that avian bills change in size seasonally (Davis, 1954). The 

traditional explanation for seasonal effects on bill size has been a foraging-induced imbalance 

between growth and abrasion (see Section II.4). As feeding switches to harder substrates in the 

winter, wear outpaces growth and net growth is diminished, leading to shorter bills. These 

seasonal changes in bill size are known in a variety of species (Davis, 1954) where bill growth 

and/or wear do respond to changes in temporal variation in food abundance and food type 

(Gosler, 1987). Matthysen (1989) observed seasonal changes in bill size in nuthatches (Sitta 

europaea) that were ascribed to differences in abrasion rates; bills are smaller during the peak 

foraging season, peaking in size in the autumn. Matthysen (1989) makes the point that bill size in 

the nuthatches ‘lags’ behind what would be considered optimal for resource and trophic 

considerations, and refers to the abrasion hypothesis as ‘non-adaptive’ (i.e. a passive effect of 

dietary change rather than an optimisation). He also makes the point that changes in seasonal 

growth alone cannot explain the data since growth-based changes would be expected for both bill 

depth and length. Seasonal changes in oystercatcher bill size and shape have also been linked to 



 
 

 33 

differential growth and abrasion rates (Hulscher, 1985; White & Gittin, 1964), although 

individual variation in bill length is extremely high (up to ~10% of bill length) suggesting 

unaccounted contributions to bill size. In spite of the available information on seasonal flexibility 

in bill size, physiological explanations have only recently been considered as possible 

mechanisms (Greenberg et al., 2013). An extreme example of seasonal morphological change in 

bill structure not based on changes in abrasion rates occurs in the Atlantic puffin (Fratercula 

artica) (Harris, 2014) originally described by Bureau (1877). During the transition period from 

summer to winter the horny plates on the inner part of the beak are shed and the overall bill 

structure becomes much reduced in size and colour in the winter. In the spring, the regrowth on 

the upper and lower bill surfaces is described as flesh-like (Harris, 2014), with small feather-like 

projections appearing along the grooves of the growing plates, which would require a high 

degree of blood supply and vascularity. Whether this bill shedding affords an energetic saving 

during the winter has never been tested, although the seasonal size changes support a 

thermoregulatory explanation rather than a dietary-switch abrasion hypothesis. 

To address seasonal contributions to bill size variation, Greenberg et al. (2012b) studied 

1380 specimens from 10 species of saltmarsh sparrow along a latitudinal gradient finding that 

summer temperature explained 82–89% of the variance in bill size, whereas winter temperature 

was unrelated to bill size (Fig. 6). Greenberg et al. (2012b) attributed these results to different 

migratory behaviours of the birds; wintering in moderate climates may prevent strong selection 

from extremely cold temperatures (Greenberg et al., 2012b) or may possibly allow selection 

from other factors, such as foraging. However, the pattern may also result from the stronger 

selection effect of summer temperature in relation to thermoregulation through the bill. At 

elevated temperatures, if evaporative water loss cannot keep pace with heat generation, processes 
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that enhance dry heat loss would be favoured; a larger bill would facilitate greater heat exchange. 

At this point, the ‘thermoregulatory hypothesis’ for variation in bill size is supported by a strong 

correlation between bill size and high summer temperature (Greenberg et al., 2012b), as opposed 

to selection against larger bills in cold climates to prevent heat loss Further research, however, is 

needed to establish whether individual fitness is influenced by heat loss through the bill.  

Given the seasonal variability and species differences in bill size changes, it is clear that 

forces shaping bill size vary among species. With respect to Allen’s rule, Danner & Greenberg 

(2015) introduce a ‘critical season hypothesis’ to explain the variation in the degree to which 

Allen’s rule is followed with respect to bill size. They proposed that the strength or applicability 

of Allen’s rule depends on the ‘season of critical thermal stress’. For example, smaller bill sizes 

may be advantageous in the cold to retain heat and larger bills beneficial to dissipate heat at 

higher temperatures, the season driving selection may differ. To address this question, Danner & 

Greenberg (2015) examined song sparrows along the eastern coast of the USA, and found that 

winter temperatures were stronger predictors of bill size (smaller bills in colder habitats) than 

summer temperatures. Although still following the predictions from Allen’s Rule, these results 

contrast with song sparrows on the west coast of the USA, where summer temperatures are 

strong predictors of bill size (larger bills in warmer habitats), and therefore the critical season is 

expected to vary geographically and possibly at even smaller scales. 

 

(7) Climate changes and bill size 

The observation that relative bill size is positively associated with climatic temperature 

both across and within species (Greenberg et al., 2012b; Symonds & Tattersall, 2010) invites 

speculation that as the climate changes, then selection should likewise drive evolutionary change 
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in bill size. More specifically, with the documented increases in global temperatures (Hartmann 

et al., 2013), we might observe shifts towards large relative bill size analogous to the changes in 

body size that have been attributed to the same mechanism (Gardner et al., 2011). Although few 

studies have specifically examined this issue, there is some evidence for increases in endotherm 

appendage size over the past century, in the manner predicted by Allen’s rule (larger appendages 

as the climate has become warmer). Thus, tail lengths of Sorex cinereus shrews in Alaska have 

increased during the second half of the 20th century (Yom-Tov & Yom-Tov, 2005). For birds, in 

a study of specimens of five Australian parrot species, Campbell-Tennant et al. (2015) found 

increases in bill size of 4–10% in four of the species in the period since 1871 (Fig. 7), and in 

three of those species there was also a correlation between maximum summer temperature at the 

localities in the year of collection and bill size. These results are certainly consistent with the 

idea that climatic warming is selecting for larger bills. However, at the moment it is not possible 

to rule out that the observed changes are due to factors other than temperature such as changes in 

habitat and food availability which have occurred over the same time period. Moreno-Rueda & 

Rivas (2007) found similar increases in bill size over a 20-year period (1985–2005) in dippers 

(Cinclus cinclus) along rivers in south-eastern Spain, but they attributed these increases to 

changes in trophic niches induced by decreases in water flow. Ultimately, because any historical 

association between year and bill size is correlational, it is difficult to identify the proximate 

mechanism. However, if studies of a more diverse range of birds with different foraging 

strategies and across different habitats were to demonstrate similar increases in bill size this 

would provide more convincing evidence that a thermoregulatory adaptation was the cause of 

these increases. 
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V. HEAT TRANSFER AND BILL SIZE 

Peripheral structures that are involved in thermoregulation exchange heat with the 

environment in a manner dependent on two dominant traits: surface area and surface 

temperature. Additional factors, such as wind speed, humidity, solar radiation, surface 

reflectivity, and shape also contribute to heat exchange, but are beyond the scope of this review. 

Therefore, to understand the impact on heat exchange from structures such as the bill, total size 

as well as the degree of blood flow to the bill surface are the primary traits that may be 

responding to climate-related selection pressures. Actual measurements of heat transfer from 

bills are rare; the few studies that have examined this have done so using non-invasive thermal 

imaging to obtain surface temperatures of bills, limbs, and plumage, combined with fixed mount 

models of surface areas to estimate heat exchange (Greenberg et al., 2012a; Hagan & Heath, 

1980; Phillips & Sanborn, 1994; Tattersall et al., 2009). To date, no studies have incorporated 

these measurements into the context of known biogeographical relationships as outlined herein, 

however, a simplified analysis of the potential importance of heat exchange is possible. Using 

published data on bill surface areas (Walsberg & King, 1978) from birds ranging in body mass 

(3–650 g), and calculations from published heat transfer models (McCafferty et al., 2013; 

Tattersall, 2016a; Tattersall et al., 2009), we have estimated the minimum and maximum 

reasonable heat exchange (the sum of radiative and convective exchange) from the bill and 

normalise these to body mass scaling estimates of basal heat production (McNab, 2002). We ran 

the models at a common ambient temperature (Ta = 20°C), and set bill surface temperatures (Ts) 

1, 5, and 10°C warmer than ambient temperature to mimic low, moderate, and high bill 

vasodilation (Ts – Ta is the driving force for heat exchange). Solar radiation was set to 0 in order 

to examine only heat loss to the environment. Forced convective heat transfer from the bill was 
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modelled as a horizontal cylinder and all other parameters were held constant (wind speed = 1 

m/s; relative humidity = 0.5). Calculations follow the principles outlined by Gates (2003) with 

further elaboration provided in the ‘Thermimage’ package for R (Tattersall, 2016b). The results 

of this heat transfer modelling are shown in Fig. 8. 

The first trend of note is that at larger body mass, the effectiveness of the bill as a heat 

loss organ, expressed as the proportion of basal heat production, is diminished (Fig. 8). The 

negative relationship with body mass is reflective of geometric constraints, since surface area 

does not scale isometrically with mass, and the birds used for this model all exhibit small bill 

surface areas (~2% of total body surface area). Interestingly, however, the range of heat 

exchange is high (from ~1.5 up to 40% of BMR), especially at small body sizes. The reason for 

this is that convective heat loss from small surfaces is much higher per unit surface area than 

from larger surfaces, due to how convection depends on Reynolds number (Gates, 2003). 

Furthermore, relatively small changes in Ts – Ta (1, 5, 10°C are based on previous research; 

Greenberg et al., 2012a; Tattersall et al., 2009) dramatically alter the potential importance of the 

bill as a heat exchanger. Similar trends would be expected for any other uninsulated surface, 

such as the limbs, although incorporating the efficiencies inherent to counter-current vascular 

systems complicates the situation. 

Overall, then, if the bill is performing a critical role in thermoregulation, this analysis 

provides a few predictions. Larger relative surface areas are more likely to evolve in larger birds, 

at least in warm climates, since the actual effectiveness of heat exchange decreases with 

increasing body size. Likewise, small-bodied birds in cold climates would be under stronger 

selection pressures to reduce heat loss from the bill. Conversely, the disproportionate influence 

of altering blood flow to the bill surface in small birds suggests that variation in the use of bill as 
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a thermal radiator should be greatest in small birds, due to the much greater scope for heat 

transfer. Therefore, unlike early impressions about the low potential for heat exchange from 

avian bills (Scholander, 1955, 1956), we present mathematical support for levels of heat 

exchange that are quite substantial, and recommend that thermoregulatory concerns should be 

considered in any studies of bill (or limb) morphological responses, especially in species that 

span wide latitudinal or climatic gradients. 

 

VI. CONCLUSIONS 

(1) Although the bill has been primarily shaped by evolutionary pressures related to feeding, the 

keratinous, featherless structure of the beak has enabled selection for a novel means of 

thermoregulation. 

(2) Bills are thermoregulatory structures, and the notion that thermoregulation is restricted only 

to large-billed species is erroneous. 

(3) Thermal considerations have shaped the evolution of the avian bill. The thermal capabilities 

of bills coupled with the morphological manifestations of Allen’s rule provide a comprehensive 

explanation of the proximate causes behind temperature effects on bill size in birds.  

(4) Common garden and transplant experiments have shown that populations may have adapted 

to different temperature conditions or may possibly retain growth flexibility should conditions 

change. In this manner, bills behave as other appendages in endotherms, which are plastic with 

respect to rearing temperatures. 

(5) Bills are well vascularized structures with dynamic changes in blood flow. Future analysis of 

bill vascular morphology in widespread taxonomic groups may also help us understand the 

environmental factors which influenced the evolution of thermoregulatory exaptation in the bill. 
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(6) Seasonal variation in bill size is common. The proximate mechanism in some cases is related 

to dietary-induced abrasion and in other cases to temperature-induced enhancement of 

ramphotheca growth.  

(7) Bill size is often strongly related to local climate conditions, and population-level changes in 

bill size reflect evolutionary changes geared towards climate. Bill size, along with body size, 

could serve as a metric to examine the impact of climate on avian populations, and provide 

valuable insights into the evolutionary dynamics of functional morphology. 

(8) Heat transfer models demonstrate that surface area and surface temperature both contribute to 

the potential role of the bill as a heat exchanger. Understanding of the role of bills as thermal 

radiators under selection by local climate would be greatly improved with actual bill surface 

areas as well as surface temperatures obtained from birds in natural settings. 
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Table 1. Bird species (Nspecies = 102; Nstudies = 110) in which geographic clines in bill size have been documented or studied 

intraspecifically.  

Species Common name Geographic 
scale 

Bill size 
measure 

Covariate(
s) 

Support for 
Allen’s rule Reference 

Acanthiza pusilla Brown thornbill Australia Length Latitude No Abbott (1974) 

Acanthorhynchus 
tenuirostris Eastern spinebill Australia Length Latitude No Abbott (1974) 

Aeronautes saxatilis White-throated 
swift North America Length Latitude 

No – but no 
control for body 
size 

Behle (1973) 

Agelaius phoeniceus Red-winged 
blackbird North America Surface area to 

volume ratio 

Minimum 
April 
temperatur
e 

Yes Power (1970) 

Agelaius phoeniceus Red-winged 
blackbird Florida Length, depth Latitude No Mosimann & James 

(1979) 

Alisterus scapularis Australian king 
parrot Australia Surface area 

Latitude, 
summer 
maximum 
temperatur
e 

No Campbell-Tennant et al. 
(2015) 

Anthochaera 
carunculata Red wattlebird Australia Length Latitude Unclear Abbott (1974) 

Anthochaera 
chrysoptera Little wattlebird Australia Length Latitude Unclear Abbott (1974) 

Arenaria interpres Ruddy turnstone Australia Length Locality Yes Nebel et al. (2013) 
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Branta canadensis Canada goose Canada Length Locality No Leafloor et al. (1998) 

Calidris acuminate Sharp-tailed 
sandpiper Australia Length Locality No Nebel et al. (2013) 

Calidris alba Sanderling Australia Length Locality Yes Nebel et al. (2013) 

Calidris canutus Red knot Australia Length Locality No Nebel et al. (2013) 

Calidris ferruginea Curlew 
sandpiper Australia Length Locality Yes Nebel et al. (2013) 

Calidris mauri Western 
sandpiper Americas Length Latitude Yes Nebel (2005) 

Calidris pusilla Semipalmated 
Sandpiper Canada, Alaska Length Latitude Yes Gratto-Trevor et al. 

(2012) 

Calidris ruficollis Red-necked stint Australia Length Locality No Nebel et al. (2013) 

Calidris tenuirostris Great knot Australia Length Locality Yes Nebel et al. (2013) 

Callocephalon 
fimbriatum 

Gang-gang 
cockatoo Australia Surface area 

Latitude, 
summer 
maximum 
temperatur
e 

No Campbell-Tennant et al. 
(2015) 

Carduelis chloris European 
greenfinch Europe Length, width, 

depth Latitude Yes Merilä (1997) 

Carpodacus 
mexicanus House finch North America Length Locality No Hill (1993) 

Chamaea fasciata Wrentit California Length Locality Yes Bowers (1960) 

Charadrius 
leschenaultia 

Greater sand 
plover Australia Length Locality Yes Nebel et al. (2013) 

Charadrius Lesser sand Australia Length Locality Yes Nebel et al. (2013) 
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mongolus plover 

Charadrius ruficollis Tawny-throated 
dotterel Australia Length Locality Yes Nebel et al. (2013) 

Chasiempis 
sandwichensis Hawaii elepaio Hawaii Length Elevation Yes VanderWerf (2012) 

Cinclus cinclus White-throated 
dipper Spain, Portugal Length 

Mean 
annual 
temperatur
e over time 
(not space) 

Yes, indirectly Moreno-Rueda & Rivas 
(2007) 

Cladorhynchus 
leucocephalus Banded stilt Australia Length Locality No Nebel et al. (2013) 

Coereba flaveola Bananaquit Jamaica Length Altitude 
No – but no 
control for body 
size 

Diamond (1973) 

Columba livia Rock dove Europe, Middle 
East, Africa Length, Width Latitude Yes Johnston (1992) 

Coturnix japonica Japanese quail Captive 

Length, width, 
depth PCs 
(principal 
components) 

Temperatu
re Yes Burness et al. (2013) 

Dendroica petechia American 
yellow warbler 

Americas and 
Caribbean Length, width Temperatu

re Yes Wiedenfeld (1991) 

Dendroica 
townsendi 

Townsend 
warbler 

North America 
and Mexico 

Length, width, 
depth Locality No Morrison (1983) 

Diglossa carbonaria Grey-bellied 
flowerpiercer 

Central & South 
America Length Latitude 

No – but no 
control for body 
size 

Graves (1991) 

Embernagra Pampa finch Southern South Length, width Latitude, Yes Hayes (2003) 
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platensis America altitude 

Eopsaltria australis Eastern yellow 
robin Australia Length Latitude Unclear Abbott (1974) 

Epthianura albifrons White-fronted 
chat Australia Length Locality 

No – but no 
control for body 
size 

Major (2012) 

Eremophila alpestris Horned lark South-west USA Length 
Summer 
temperatur
e 

No Niles (1973) 

Erythrogonys 
cinctus 

Red-kneed 
dotterel Australia Length Locality Yes Nebel et al. (2013) 

Eudyptes 
chrysosome 

Southern 
rockhopper 
penguin 

New Zealand 
islands 

Length, width, 
depth Locality Yes Warham (1972) 

Falco peregrinus Peregrine falcon Global Volume Locality Yes, indirectly Johansson et al. (1998) 

Fringilla coelobs Common 
chaffinch 

Canary Islands, 
North Africa, 
Azores 

Length, width, 
depth 

Temperatu
re No Grant (1979b) 

Gymnorhina tibicen Australian 
magpie Australia Length Latitude No Abbott (1974) 

Haematopus 
fuliginosus 

Sooty 
oystercatcher Australia Length Locality No Nebel et al. (2013) 

Haematopus 
longirostris 

Pied 
oystercatcher Australia Length Locality Yes Nebel et al. (2013) 

Henicorhina 
leucophrys 

Grey-breasted 
wood wren Colombia Length, width, 

depth, PCs Altitude Yes Caro et al. (2013) 

Himantopus 
himantopus 

Black-winged 
stilt Australia Length Locality Yes Nebel et al. (2013) 
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Junco hyemalis Dark-eyed junco Canada Length, width, 
depth Elevation Yes – but 

females only Bears et al. (2008) 

Leptodon forbesi White-collared 
kite Brazil Length, width Latitude 

No – but no 
control for body 
size 

Dénes et al. (2011) 

Limosa fedoa Marbled godwit North America Length Locality Yes Gibson & Kessel (1989) 

Limosa lapponica Bar-tailed 
godwit 

Alaska, New 
Zealand Length Latitude Yes Conklin et al. (2011) 

Malurus cyaneus Superb 
fairywren Australia Length Latitude No Abbott (1974) 

Melanerpes 
formicivorus 

Acorn 
woodpecker Americas Length, width, 

depth Locality No Benítez-Díez (1993) 

Meliphaga leucotis White-eared 
honeyeater Australia Length Latitude No Abbott (1974) 

Melospiza melodia Song Sparrow North America Surface area 

Maximum 
summer 
temperatur
e, latitude 

Yes Greenberg et al. (2012) 

Melospiza melodia Song Sparrow North America Surface area 

Minimum 
winter 
temperatur
e, distance 
from coast 

Yes Danner & Greenberg 
(2015) 

Merganetta armata Torrent Duck South America Length 
Temperatu
re, latitude, 
elevation 

Yes Gutiérrez-Pinto et al. 
(2014) 

Numenius 
madagascariensis 

Far Eastern 
Curlew Australia Length Locality Yes Nebel et al. (2013) 

Oceanodroma Leach's Storm North America Length, depth Locality No Power & Ainley (1986) 
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leucorhoa Petrel 

Otus asio Eastern Screech 
Owl North America Length Latitude Yes Gehlbach (2003) 

Otus kennicottii Western Screech 
Owl North America Length Latitude Yes Gehlbach (2003) 

Paradoxornis 
webbianus 

Vinous-throated 
Parrotbill  China Length, width, 

depth PCs Elevation No Hsu et al. (2013) 

Parus atricapillus Black-capped 
Chickadee Palaearctic Length 

Mean 
winter 
temperatur
e 

Yes Snow (1954) 

Parus caeruleus Eurasian Blue 
Tit Palaearctic Length 

Mean 
winter 
temperatur
e 

Yes Snow (1954) 

Parus caeruleus Eurasian Blue 
Tit Canary Islands Length, width 

and depth Longitude Yes Grant (1979a) 

Parus caeruleus Eurasian Blue 
Tit 

Canary Islands, 
North Africa, 
England 

Length, depth Locality Yes Partridge & Pring-Mill 
(1977) 

Parus caeruleus Eurasian Blue 
Tit Europe Length, depth Locality Unclear Martin (1991) 

Parus major Great Tit Palaearctic Length 

Mean 
winter 
temperatur
e 

Yes Snow (1954) 

Parus palustris Marsh Tit Palaearctic Length 

Mean 
winter 
temperatur
e 

Yes Snow (1954) 
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Passer domesticus House Sparrow Western Europe Length 

Latitude, 
mean 
January 
and July 
temperatur
es 

Yes Johnston (1969) 

Passer domesticus House Sparrow Americas, 
Europe Length, width Latitude Yes Johnston & Selander 

(1973) 

Passer 
hispaniolensis Spanish Sparrow Western Europe Length 

Latitude, 
mean 
January 
and July 
temperatur
es 

Yes Johnston (1969) 

Passerculus 
sandwichensis 

Savannah 
Sparrow North America Length, depth 

Mean 
winter 
temperatur
e 

Yes Rising (1987) 

Passerculus 
sandwichensis 

Savannah 
Sparrow North America PC bill 

dimensions 

Average 
winter 
temperatur
e 

Yes Rising (1988) 

Passerculus 
sandwichensis 

Savannah 
Sparrow North America Surface area 

Maximum 
summer 
temperatur
e, latitude 

Yes Greenberg et al. (2012) 

Passerella iliaca Red Fox 
Sparrow North America Length, width, 

depth Locality Yes Zink (1986) 

Petroica cucullata Hooded Robin Australia Length Latitude No Abbott (1974) 

Phaethon 
rubricauda 

Red-tailed 
Tropicbird Pacific Islands Length Latitude 

Unclear – yes in 
Northern 
Hemisphere; no 
in Southern 

Tarburton (1989) 
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Hemisphere 

Phylidonyris 
novaehollandiae 

New Holland 
Honeyeater Australia Length Latitude No Abbott (1974) 

Phylidonyris 
pyrrhoptera 

Crescent 
Honeyeater Australia Length Latitude Yes Abbott (1974) 

Picoides borealis Red-cockaded 
Woodpecker 

South-eastern 
USA Length Latitude Yes Mengel & Jackson 

(1977) 

Pinicola enucleata Pine Grosbeak North America Length, depth 

Latitude, 
longitude, 
mean 
January 
temperatur
e 

Yes Adkisson (1981) 

Platycercus elegans Crimson Rosella Australia Surface area 

Latitude, 
summer 
maximum 
temperatur
e 

Yes Campbell-Tennant et al. 
(2015) 

Pluvialis fulva Pacific Golden 
Plover Australia Length Locality No Nebel et al. (2013) 

Pluvialis squaterola Grey Plover Australia Length Locality Yes Nebel et al. (2013) 

Pogoniulus 
bilineatus 

Yellow-rumped 
Tinkerbird Central Africa Length, width, 

depth PC Altitude 
No – but no 
control for body 
size 

Kirschel et al. (2009) 

Pogoniulus 
subsulphureus 

Yellow-throated 
Tinkerbird Central Africa Length, width, 

depth PC Altitude 
No – but no 
control for body 
size 

Kirschel et al. (2009) 

Psephotus 
haematonotus 

Red-rumped 
Parrot Australia Surface area 

Latitude, 
summer 
maximum 
temperatur

Yes Campbell-Tennant et al. 
(2015) 
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e 

Psephotus varius Mulga Parrot Australia Surface area 

Latitude, 
summer 
maximum 
temperatur
e 

Yes Campbell-Tennant et al. 
(2015) 

Pycnonotus jocosus Red-whiskered 
Bulbul Reunion Island Length, width, 

depth 

Locality, 
temperatur
e, humidity 

No Amiot et al. (2007) 

Pyrenestes minor Lesser 
Seedcracker East Africa Length, width, 

depth Rainfall Yes Smith (1990) 

Pyrenestes ostrinus Black-bellied 
Seedcracker East Africa Length, width, 

depth Rainfall Yes Smith (1990) 

Pyrenestes 
sanguineus 

Crimson 
Seedcracker East Africa Length, width, 

depth Rainfall Yes Smith (1990) 

Pyrrhocorax 
graculus Alpine Chough Palaearctic, 

North Africa 
Length, width 
and depth 

Latitude, 
temperatur
e 

Yes Laiolo & Rolando 
(2001) 

Pyrrhocorax 
pyrrhocorax 

Red-billed 
Chough 

Palaearctic, 
North Africa 

Length, width 
and depth 

Latitude, 
temperatur
e 

Yes Laiolo & Rolando 
(2001) 

Recurvirostra 
novaehollandiae 

Red-necked 
Avocet Australia Length Locality No Nebel et al. (2013) 

Sericornis frontalis White-browed 
Scrubwren Australia Length Latitude No Abbott (1974) 

Setophaga petechia Mangrove 
Warbler 

Central and 
South America, 
Caribbean 

Surface area 

Summer 
maximum 
temperatur
e 

Yes Luther & Greenberg 
(2014) 
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Strepera graculina Pied Currawong Australia Length Latitude Yes Abbott (1974) 

Sturnus vulgaris Common 
Starling Australia Length 

Latitude, 
summer 
maximum 
temperatur
e, rainfall 

Yes Cardilini et al. (2016) 

Telespyza cantans Laysan Finch Hawaiian islands Length, width, 
depth Locality Unclear Conant (1988) 

Tringa brevipes Grey-tailed 
Tattler Australia Length Locality No Nebel et al. (2013) 

Tringa nebularia Common 
Greenshank Australia Length Locality No Nebel et al. (2013) 

Turdus migratorius American Robin North America Length Locality No Aldrich & James (1991) 

Vanellus miles Masked 
Lapwing Australia Length Locality Yes Nebel et al. (2013) 

Vireo griseus White-eyed 
Vireo North America Length Locality 

No – but no 
control for body 
size 

Hamilton (1958) 

Vireo huttoni Hutton's Vireo North America Length Locality 
No – but no 
control for body 
size 

Hamilton (1958) 

Vireo solitaries Solitary Vireo North America Length Locality 
No – but no 
control for body 
size 

Hamilton (1958) 

Xanthocephalus 
xanthocephalus 

Yellow-headed 
Blackbird North America Length Latitude 

No – but no 
control for body 
size 

Twedt et al. (1994) 

Zonotrichia capensis Rufous-collared 
Sparrow 

Central & South 
America 

Length, width, 
depth, volume Latitude Yes Handford (1983) 
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Figure Legends 
 

Fig. 1. Diversity in size and shape of beaks underlies their role in resource acquisition. Depicted 

in this historical hand-drawing are 50 avian and two non-avian examples (#51, 52) of beaks or 

bills (drawing from Larousse & Augé, 1928). 

 

Fig. 2. Avian bills are composed of underlying bony structures (top, radiograph) overlaid with 

layers of dermal and epidermal structures (lower panels, A and B depict the upper and lower bill 

structures, respectively, in sagittal and cross section). The outer layer, the stratum corneum 

overlies the nourishing thinner stratum germinativum. Note the presence of capillaries within the 

dermis. Figures used with permission (Van Hemert et al., 2012). 

 

Fig. 3. Cranio-facial vasculature of the herring gull (Larus argentatus), (A) with emphasis on 

superficial vessels, and (B) with superficial vessels removed. Arteries are shown in black, veins 

in grey. Adapted from Midtgård (1984b). 

 

Fig. 4. Rapid vasomotion in bar-headed goose bills during exposure to a heat load to the body. 

Frames a–f represent infrared thermal images taken 30 s apart showing a rapid and large change 

in surface temperatures (~10°C change from minimum to maximum) (images derived from data 

in Scott et al., 2008). 

 

Fig. 5. Relationship (partial residual plots, accounting for body size and phylogeny) between bill 

length and minimum monthly temperature (Tmin) among the bird families used in Symonds & 

Tattersall (2010). Significantly positive relationships were observed in seven out of eight of the 
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groups examined (only the Australian Estrildidae did not show support). Best-fit lines are 

indicated for each group. Residuals were calculated across all 214 species. Figure redrawn from 

data in Symonds & Tattersall (2010). 

 

Fig. 6. Bill size in saltmarsh sparrows depends on the season of measurement, and correlates 

strongly with breeding season temperature but not with winter temperature. The left two panels 

are the mean July high temperature versus mean breeding season bill surface area in males and 

females of saltmarsh sparrow taxa (Ammodramus, Melospiza, and Passerculus). The right two 

panels are the mean January low temperature versus mean winter bill surface area in males and 

females. Figure redrawn from data in Greenberg et al. (2012b). Abbreviations refer to the 

following taxa: M.m.a., Atlantic song sparrow Melospiza melodia atlantica; M.m.p., Alameda 

song sparrow M. m. pusillula; M.m.s., San Pablo song sparrow M. m. samuelis; M.m.m., Susuin 

song sparrow M. m. maxillaris; P.s.r., large-billed savannah sparrow Passerculus sandwichensis 

rostratus; P.s.b., Belding’s savannah sparrow P. s. beldingi; A.n.s., Acadian Nelson’s sparrow A. 

nelson subvirgatus; A.c., saltmarsh sparrow A. caudacutus; A.m.m., Atlantic seaside sparrow A. 

maritmus maritimus; A.m.f., Gulf Coast seaside sparrow A. m. fisheri.  

 

Fig. 7. Relationship between relative bill size and year of collection for four species of 

Australian parrot demonstrating increases in bill size over the past 140 years. (A) Mulga parrot 

(Psephotus varius) (filled triangles) and red-rumped parrot (Psephotus haematonotus) (open 

squares); (B) gang-gang cockatoo (Callocephalon fimbriatum); and (C) crimson rosella 

(Platycercus elegans) males. Redrawn from Campbell-Tennant et al. (2015). 
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Fig. 8. Heat transfer model predictions from the bill surface normalised to basal heat production 

(basal metabolic rate, BMR) scale negatively with body mass. The gradient for heat transfer (Ts – 

Ta) was set to three different levels (1, 5, and 10°C; solid lines), leading to high variation in heat 

transfer estimates. The dashed line indicates the ratio of bill surface area:body mass, to 

demonstrate that blood flow to the bill surface allows the bill to disproportionately transfer heat 

beyond morphological predictions. See text for details of calculations. Note: under high solar 

radiation, larger surface areas will exhibit heat gain (not shown here), making this comparison 

appropriate from the perspective of heat balance at thermoneutral temperatures. 
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Figure 1. 
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Figure 2.  
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Figure 3. 
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Figure 5. 
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Figure 7. 
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Figure 8. 
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